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Bayes Procedures 

In this chapter Bayes estimators are studied from a frequentist perspec­
tive. Both posterior measures and Bayes point estimators in smooth 
parametric models are shown to be asymptotically normal. 

10.1 Introduction 

In Bayesian terminology the distribution Pn.o of an observation in under a parameter 0 
is viewed as the conditional law of in given that a random variable en is equal to O. 
The distribution n of the "random parameter" en is called the prior distribution, and the 
conditional distribution of en given in is the posterior distribution. If en possesses a 
density 7r and Pn.o admits a density Pn.O (relative to given dominating measures), then the 
density of the posterior distribution is given by Bayes' formula 

__ (0)_ Pn.O(x)7r(O) 
Pe.lx.=x - JPn.o(x)dn(O)· 

This expression may define a probability density even if 7r is not a probability density itself. 
A prior distribution with infinite mass is called improper. 

The calculation of the posterior measure can be considered the ultimate aim of a Bayesian 
analysis. Alternatively, one may wish to obtain a "point estimator" for the parameter 0, 
using the posterior distribution. The posterior mean E(e n I in) = J 0 Pe.1 i. (0) dO is 
often used for this purpose, but other location estimators are also reasonable. 

A choice of point estimator may be motivated by a loss function. The Bayes risk of an 
estimator Tn relative to the loss function i and prior measure n is defined as 

Here the expectation Eoi(Tn - 0) is the risk function of Tn in the usual set-up and is identical 
to the conditional risk E( i(Tn - en) I en = 0) in the Bayesian notation. The corresponding 
Bayes estimator is the estimator Tn that minimizes the Bayes risk. Because the Bayes risk 
can be written in the formEE(i(Tn - en) I in), the value Tn = Tn (x) minimizes, for every 
fixed x, the "posterior risk" 

( _.. ) J i(Tn - 0) Pn.O(x) dn(O) 
E i(Tn - en) I Xn = x = "---J-=-P-n-.o....:.(X--') d-n-(-O)--
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10.1 1ntroduction 139 

Minimizing this expression may again be a well-defined problem even for prior densities 
of infinite total mass. For the loss function l(y) = Ily112, the solution Tn is the posterior 
mean E(8n I Xn), for absolute loss l(y) = lIyll, the solution is the posterior median. 

Other Bayesian point estimators are the posterior mode, which reduces to the maximum 
likelihood estimator in the case of a uniform prior density; or a maximum probability 
estimator, such as the center of the smallest ball that contains at least posterior mass 1/2 
(the "posterior shorth" in dimension one). 

If the underlying experiments converge, in a suitable sense, to a Gaussian location 
experiment, then all these possibilities are typically asymptotically equivalent. Consider 
the case that the observation consists of a random sample of size n from a density Po that 
depends smoothly on a Euclidean parameter e. Thus the density Pn.O has a product form, 
and, for a given prior Lebesgue density 7r, the posterior density takes the form 

Typically, the distribution corresponding to this measure converges to the measure that is 
degenerate at the true parameter value eo, as n -+ 00. In this sense Bayes estimators are 
usually consistent. A further discussion is given in sections 10.2 and 10.4. To obtain a 
more interesting limit, we rescale the parameter in the usual way and study the sequence of 
posterior distributions of ,Jfi.(8n - eo), whose densities are given by 

P./ii(8n-Oo) \ x1 ..... x.<h) = Jon P (K)7r(e +hl t;;)dh' 
i=' Oo+hl./ii I 0 V n 

If the prior density 7r is continuous, then 7r (eo + h I "jii), for large n, behaves like the constant 
7r(eo), and 7r cancels from the expression for the posterior density. For densities Po that 
are sufficiently smooth in the parameter, the sequence of models (POo+hl./ii: h E :IRk) is 
locally asymptotically normal, as discussed in Chapter 7. This means that the likelihood 
ratio processes h ~ 07=, P90+hl./ii1 P90(Xi ) behave asymptotically as the likelihood ratio 
process of the normal experiment (N(h, 100') : h E :IRk). Then we may expect the preceding 
display to be asymptotically equivalent in distribution to 

dN(h r')(X) 
, 00 - dN(X r')(h) J dN(h, lo~')(X)dh - 'lio ' 

where dN(/.1, ~) denotes the density of the normal distribution. The expression in the 
preceding display is exactly the posterior density for the experiment (N(h, 100'): hE :IRk), 
relative to the (improper) Lebesgue prior distribution. The expression on the right shows 
that this is a normal distribution with mean X and covariance matrix 100'. 

This heuristic argument leads us to expect that the posterior distribution of ,Jfi.(8n -

eo) "converges" under the true parameter eo to the posterior distribution of the Gaussian 
limit experiment relative to the Lebesgue prior. The latter is equal to the N(X, 100')­
distribution, for X possessing the N (0, 100' )-distribution. The notion of convergence in this 
statement is a complicated one, because a posterior distribution is a conditional, and hence 
stochastic, probability measure, but there is no need to make the heuristics precise at this 
point. On the other hand, the convergence should certainly include that "nice" Euclidean­
valued functionals applied to the posterior laws converge in distribution in the usual sense. 
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140 Bayes Procedures 

Consequently, a sequence of Bayes point estimators, which can be viewed as location 
functionals applied to the posterior distributions, should converge to the corresponding 
Bayes point estimator in the limit experiment. Most location estimators (all reasonable 
ones) map symmetric distributions, such as the normal distribution, into their center of 
symmetry. Then, the Bayes point estimator in the limit experiment is X, and we should 
expect Bayes point estimators to converge in distribution to the random vector X, that is, 
to a N(O, 10001)-distribution under eo. In particular, they are asymptotically efficient and 
asymptotically equivalent to maximum likelihood estimators (under regularity conditions). 

A remarkable fact about this conclusion is that the limit distribution of a sequence of 
Bayes estimators does not depend on the prior measure. Apparently, for an increasing 
number of observations one's prior beliefs are erased (or corrected) by the observations. To 
make this true an essential assumption is that the prior distribution possesses a density that 
is smooth and positive in a neighborhood of the true value of the parameter. Without this 
property the conclusion fails. For instance, in the case in which one rigorously sticks to a 
fixed discrete distribution that does not charge eo, the sequence of posterior distributions of 
en cannot even be consistent. 

In the next sections we make the preceding heuristic argument precise. For technical 
reasons we separately consider the distributional approximation of the posterior distributions 
by a Gaussian one and the weak convergence of Bayes point estimators. 

Even though the heuristic extends to convergence to other than Gaussian location exper­
iments, we limit ourselves in this chapter to the locally asymptotically normal case. More 
precisely, we even assume that the observations are a random sample Xl, ... , Xn from a 
distribution PrJ that admits a density PrJ with respect to a measure IL on a measurable space 
(X, A). The parameter e is assumed to belong to a measurable subset e oflRk that contains 
the true parameter eo as an interior point, and we assume that the maps (e, x) t-+ PrJ (x) are 
jointly measurable. 

All theorems in this chapter are frequentist in character in that we study the posterior laws 
under the assumption that the observations are a random sample from P90 for some fixed, 
nonrandom eo. The alternative, which we do not consider, would be to make probability 
statements relative to the joint distribution of (X 1, ..• , Xn, en), given a fixed prior marginal 
measure for en and with P: being the conditional law of (XI, ... , Xn) given en. 

10.2 Bernstein-von Mises Theorem 

The heuristic argument in the preceding section indicates that posterior distributions in dif­
ferentiable parametric models converge to the Gaussian posterior distribution N(X, 10;;1). 
The Bernstein-von Mises theorem makes this approximation rigorous and actually yields 
the approximation in a stronger sense than discussed so far. In Chapter 7 it is seen that the 
observation X in the limit experiment is the asymptotic analogue of the "locally sufficient" 
statistics 

1 f-. -I· 
dn,lJo = Fn b IIJo llJo(Xj), 

where lrJ is the score function of the model. The Bernstein-von Mises theorem asserts 
that the total variation distance between the posterior distribution of Fn(e n - eo) and the 
random distribution N(dn,lJo' 10;;1) converges to zero. Because dn,lJo --+ X, this has as a 
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10.2 Bernstein-von Mises Theorem 141 

consequence that the posterior distribution of v'ii(8n - (0) converges, in any reasonable 
sense, in distribution to N(X, 1601). 

The conditions of the following version of the Bernstein-von Mises theorem are re­
markably weak. Besides differentiability in quadratic mean of the model, it is assumed 
that there exists a sequence of uniformly consistent tests for testing Ho: 0 = 00 against 
HI: 110 - 0011 ~ e, for every e > O. In other words, it must be possible to separate the 
true value 00 from the complements of balls centered at 00. Because the theorem implies 
that the posterior distributions eventually concentrate on balls of radii Mnl v'ii around 00, 
for every Mn ~ 00, this separation hypothesis appears to be very reasonable. Even more 
so, since, as is noted in Lemmas 10.4 and 10.6, under continuity and identifiability of the 
model, separation by tests of Ho : 0 = 00 from HI : 110 - 00 II ~ e for a single (large) e > 0 
already implies separation for every e > O. Furthermore, if 8 is compact and the model 
continuous and identifiable, then even the separation condition is superfluous (because it is 
automatically satisfied). t 

10.1 Theorem (Bemstein-von Mises). Let the experiment (Po: 0 E 8) be differentiable 
in quadratic mean at 00 with nonsingular Fisher information matrix 160, and suppose that 
for every e > 0 there exists a sequence of tests tPn such that 

sup P:(1-tPn)~O. 
110-6011:::£ 

(10.2) 

Furthermore, let the prior measure be absolutely continuous in a neighborhood 0/00 with 
a continuous positive density at 00. Then the corresponding posterior distributions satisfy 

Proof. Throughout the proof we rescale the parameter 0 to the local parameter h = 
v'ii(0 - (0)' Let nn be the corresponding prior distribution on h (hence nn(B) = n(Oo + 
B I v'ii», and for a given set C let n~ be the probability measure obtained by restricting 
nn to C and next renormalizing. Write Pn.h for the distribution of Xn = (Xl, ... , Xn) 
under the original parameter 00 + hlv'ii, and let Pn.C = J Pn.h dn;(h). Finally, let 
H n = v'ii(8n - (0), and denote the posterior distributions relative to nn and n; by Iti Ii 

C n n 

and Pii I in' respectively. 
The proof consists of two steps. First, it is shown that the difference between the posterior 

measures relative to the priors nn and n;n, for Cn the ball with radius Mn, is asymptotically 
negligible, for any Mn ~ 00. Next it is shown that the difference between N(iln.IJo' 19;/) 
and the posterior measures relative to the priors n;n converges to zero in probability, for 
someMn~oo. 

For U, a ball of fixed radius around zero, we have Pn.u <J I> Pn.O, because Pn.hn <J I> Pn.O 

for every bounded sequence hn, by Theorem 7.2. Thus, when showing convergence to zero 
in probability, we may always exchange Pn.o and Pn.U • 

t Recall that a test is a measurable function of the observations taking values in the interval [0, 1]; in the present 
context this means a measurable function tPn : xn 1-+ [0, 1]. 
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142 Bayes Procedures 

Let C n be the ball of radius M n' By writing out the conditional densities we see that, for 
any measurable set B, 

Taking the supremum over B yields the bound 

IIPw.lx. - p~:lx.11 ~ 2Pw.IX.(C~), 
The right side will be shown to converge to zero in mean under 'pn,u for U a ball of fixed 
radius around zero. First, by assumption and because Pn,u <l Pn,o, 

Manipulating again the expressions for the posterior densities, we can rewrite the first term 
on the right as 

For the tests given in the statement of the theorem, the integrand on the right converges 
to zero pointwise, but this is not enough. By Lemma 10.3, there automatically exist tests 
~n for which the convergence is exponentially fast. For the tests given by the lemma the 
preceding display is bounded above by 

_1_ ( e-c(lI h Il21\n) dnn(h). 
nn(U) Jllhll?!.M. 

Here nn(U) = n(Oo + U/,.fo.) is bounded below by a term of the order 1/,.fo.k, by the 
positivity and continuity of the density 7r at 00 • Splitting the integral into the domains 
Mn ~ IIhll ~ D,.fo. and IIhll ~ D,.fo. for D ~ I sufficiently small that 7r(0) is uniformly 
bounded on 110 - 0011 ~ D, we see that the expression is bounded above by a multiple of 

This converges to zero as n, Mn ~ 00. 

In the second part of the proof, let C be the ball of fixed radius M around zero, and let 
N C (J1" ~) be the normal distribution restricted and renormalized to C. The total variation 
distance between two arbitrary probability measures P and Q can be expressed in the form 
liP - QII = 2 j(1- p/q)+ dQ. It follows that 

!IINC (dn ,lIo' 19;;1) - Pi: IX. II 

= /(1- ~NC(dn,lIo' 19;;I)(h~ )+ dpE ~ (h) 
lc(h)Pn,h (Xn)7rn (h)/ Ic Pn,g(Xn)7rn(g)dg H.IX. 

< /f(l- Pn,g(Xn)7rn(g)dNC(dn,lIo' /9;;1) (h) )+ dNC(d rl)( )dpE ~ (h) 
- Pn,h(Xn)7rn(h)dNC(dn,lIo' /9;;1) (g) n,lIo'lio g H.IX. ' 
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10.2 Bernstein-von Mises Theorem 143 

because (l - EY)+ ::::: E(l - Y)+. This can be further bounded by replacing the third 

occurrence of N C (D.n.80' lio 1) by a multiple of the uniform measure )..C on C. By the 
dominated-convergence theorem, the double integral on the right side converges to zero in 
mean under Pn•C if the integrand converges to zero in probability under the measure 

Pn.c(dx) Pi. I xn=/dh) )"c(dg) = fl~ (dh) Pn.h(dx) )"c(dg). 

(Note that Pn.C is the marginal distribution of Xn under the Bayesian model with prior 
fl~.) Here fl~ is bounded up to a constant by )..c for every sufficiently large n. Because 
Pn.h <II> Pn.o for every h, the sequence of measures on the right is contiguous with respect 
to the measures )"c(dh) Pn.o(dx) )"c(dg). The integrand converges to zero in probability 
under the latter measure by Theorem 7.2 and the continuity of 7r at eo. 

This is true for every ball C of fixed radius M and hence also for some Mn -+ 00. • 

10.3 Lemma. Under the conditions of Theorem /O./, there exists for every Mn -+ 00 a 
sequence of tests <Pn and a constant c > ° such that, for every sufficiently large n and every 
lie -eoll ~ MnIJTi, 

Proof. We shall construct two sequences of tests, which "work" for the ranges Mnl JTi ::::: 
II e - eo II ::::: B and II e - eo II > B, respectively, and a given B > 0. Then the <Pn of the lemma 
can be defined as the maximum of the two sequences. 

First consider the range MnlJTi ::::: lie - eo II ::::: B. Let et be the score function 
truncated (coordinatewise ) to the interval [ - L, L]. By the dominated convergence theorem, 

pooete~ -+ 180 as L -+ 00. Hence, there exists L > ° such that the matrix plJoete~ is 
nonsingular. Fix such an L and define 

By the central limit theorem, P~wn -+ 0, so that Wn satisfies the first requirement. By the 
triangle inequality, 

II(JlDn - po)etll ~ II (Poo - po)etll-IIWn - plJo)etll· 
Because, by the differentiability of the model, poet - Pooet = (plJoete~ +0(1) )(e - eo), 
the first term on the right is bounded below by clle - eo II for some c > 0, for every e that is 
sufficiently close to eo, say for lie - eo II < B. If Wn = 0, then the second term (without the 
minus sign) is bounded above by ./ Mnln. Consequently, for every clle - eo II ~ 2./ Mnln, 
and hence for every lie - eo II ~ Mnl JTi and every sufficiently large n, 

by Hoeffding's inequality (e.g., Appendix Bin [117]), for a sufficiently small constant C. 
Next, consider the range lie - eo II > B for an arbitrary fixed B > 0. By assumption there 

exist tests <Pn such that 

sup P; (1 - <Pn) -+ 0. 
1I0-IJoII>B 
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144 Bayes Procedures 

It suffices to show that these tests can be replaced, if necessary, by tests for which the 
convergence to zero is exponentially fast. Fix k large enough such that P~ tPk and P; (1- tPk) 
are smaller than 1/4 for every 110 - 0011 > e. Let n = mk + r for 0 ~ r < k, and define 
Yn,l, ... , Yn,m as tPk applied in tum to XI, ... , Xl> to Xk+l, ..• , X 2/c, and so forth. Let Y n,m 
be their average and then define Wn = I{Yn,m ~ 1/2}. Because EgYn,j ~ 3/4 for every 
110 - 00 II > e and every j, Hoeffding's inequality implies that 

Because m is proportional to n, this gives the desired exponential decay. Because Eon Yn,j ~ 
1/4, the expectations P~ Wn are similarly bounded. • 

The Bernstein-von Mises theorem is sometimes written with a different "centering se­
quence." By Theorem 8.14 any sequence of standardized asymptotically efficient estimators 
In(On - 0) is asymptotically equivalent in probability to An ,9. Because the total variation 
distance 

IIN(An,9' /9- 1) - N(,Jn(On - 0), /9- 1) II 
is bounded by a multiple of II An,9 - In(On - 0) II, any such sequence In(On - 0) may 
replace An,9 in the Bernstein-von Mises theorem. By the invariance of the total variation 
norm under location and scale changes, the resulting statement can be written 

(
A 1 -1) P3 

Pe. 1 XI , ... ,x. - N On, ;/9 -+ O. 

Under regularity conditions this is true for the maximum likelihood estimators On. Com­
bining this with Theorem 5.39 we then have, informally, 

since conditioning On on en = 0 gives the usual "frequentist" distribution of On under O. 
This gives a remarkable symmetry. 

Le Cam's version of the Bernstein-von Mises theorem requires the existence of tests 
that are uniformly consistent for testing Ho: 0 = 00 versus HI : 110 - 0011 ~ e, for every 
e > O. Such tests certainly exist if there exist estimators Tn that are uniformly consistent, 
in that, for every e > 0, 

sup P9 (II Tn - 011 ~ e) -+ O. 
9 

In that case, we can define tPn = 1 { II Tn - 00 II ~ e /2 }. Thus the condition of the Bernstein­
von Mises theorem that certain tests exist can be replaced by the condition that uniformly 
consistent estimators exist. This is often the case. For instance, the next lemma shows that 
this is the case for a Euclidean sample space X provided, for F9 the distribution functions 
corresponding to the P9 , 

inf 11F9 - F9, 1100 > O. 
119-9'11>8 
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10.2 Bernstein-von Mises Theorem 145 

For compact parameter sets, this is implied by identifiability and continuity of the maps () 1--+ 

F(J. We generalize and formalize this in a second lemma, which shows that uniformity on 
compact subsets is always achievable if the model (P(J : () E e) is differentiable in quadratic 
mean at every () and the parameter () is identifiable. 

A class of measurable functions :F is a uniform Glivenko-Cantelli class (in probability) 
if, for every e > 0, 

sup pp{lIlPn - PIIF > e) ~ O. 
p 

Here the supremum is taken over all probability measures P on the sample space, and 
IIQIIF = SUPjeF IQfl. An example is the collection of indicators of all cells (-00, t] in a 
Euclidean sample space. 

10.4 Lemma. Suppose that there exists a uniform Glivenko-Cantelli class :F such that,for 
every e > 0, 

inf IIP(J - P(JIIiF > O. 
d«(J,(JI»e 

(10.5) 

Then there exists a sequence of estimators that is uniformly consistent on e for estimat­
ing (). 

10.6 Lemma. Suppose that e is 0' -compact, P(J f= P(JI for every pair() f= ()', and the maps 
() 1--+ P(J are continuous for the total variation norm. Then there exists a sequence of 
estimators that is uniformly consistent on every compact subset of e. 

Proof. For the proof of the first lemma, define On to be a point of (near) minimum of 
the map () 1--+ IIlP n - P(J II F. Then, by the triangle inequality and the definition of On, 
IIPen - P(JIIF ~ 211lPn - P(JIIF + lin, if the near minimum is chosen within distance lin 
of the true infimum. Fix e > 0, and let 8 be the positive number given in condition (10.5). 
Then 

By assumption, the right side converges to zero uniformly in (). 
For the proof of the second lemma, first assume that e is compact. Then there exists 

a uniform Glivenko-Cantelli class that satisfies the condition of the first lemma. To see 
this, first find a sequence AI, A2 , ••• of measurable sets that separates the points P(J. Thus, 
for every pair (), ()' E e, if P(J(Ad = P(JI(A i ) for every i, then () = ()'. A separating 
collection exists by the identifiability of the parameter, and it can be taken to be countable 
by the continuity of the maps () 1--+ P(J. (For a Euclidean sample space, we can use the 
cells (-00, t] for t ranging over the vectors with rational coordinates. More generally, 
see the lemma below.) Let:F be the collection of functions x 1--+ i-IIA; (x). Then the 
map h : e 1--+ [00 (:F) given by () 1--+ (P(J f) j eF is continuous and one-to-one. By the 
compactness of e, the inverse h-I : h(e) 1--+ e is automatically uniformly continuous. 
Thus, for every e > 0 there exists 8 > 0 such that 

Ilh«()) - h«()') IIF ~ 8 implies d«(), ()') ~ e. 
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146 Bayes Procedures 

This means that (10.5) is satisfied. The class F is also a unifonn Glivenko-Cantelli class, 
because by Chebyshev's inequality, 

This concludes the proof of the second lemma for compact e. 
To remove the compactness condition, write e as the union of an increasing sequence 

of compact sets K I C K2 C .... For every m there exists a sequence of estimators 
Tn,m that is uniformly consistent on Km, by the preceding argument. Thus, for every 
fixedm, 

an,m : = sup P6 (d(Tn,m, (J) ~ ..!..) -+ 0, 
6eKm m 

n-+ 00. 

Then there exists a sequence mn -+ 00 such that an,m. -+ 0 as n -+ 00. It is not hard to see 
that On = Tn,m. satisfies the requirements. • 

As a consequence of the second lemma, if there exists a sequence of tests tPn such that 
(10.2) holds for some e > 0, then it holds for every e > O. In that case we can replace the 
given sequence tPn by the minimum of tPn and the tests 1 { II Tn - (Jo II ~ e /2} for a sequence 
of estimators Tn that is uniformly consistent on a sufficiently large subset of e. 

10.7 Lemma. Let the set of probability measures P on a measurable space (X, A) be 
separable for the total variation norm. Then there exists a countable subset Ao C A such 
that PI = P2 on Ao implies PI = P2forevery PI, P2 E P. 

Proof. The set P can be identified with a subset of L I (JL) for a suitable probability measure 
JL. For instance, JL can be taken a convex linear combination of a countable dense set. Let 
Po be a countable dense subset, and let Ao be the set of all finite intersections of the sets 
p-I(B} for p ranging over a choice of densities of the set Po C LI (JL) and B ranging over 
a countable generator of the Borel sets in lR.. 

Then every density p E Po is a (Ao}-measurable by construction. A density of a measure 
PEP - Po can be approximated in LI (JL) by a sequence from Po and hence can be chosen 
a (Ao}-measurable, without loss of generality. 

Because Ao is intersection-stable (a "rr-system"), two probability measures that agree 
on Ao automatically agree on the a-field a(Ao) generated by Ao. Then they also give the 
same expectation to every a(Ao)-measurable function f: X ~ [0,1]. If the measures 
have a (Ao)-measurable densities, then they must agree on A, because P(A) = EJL1AP = 
EJLEJL(l A I a (Ao»)p if pis a (Ao)-measurab1e. • 

10.3 Point Estimators 

The Bernstein-von Mises theorem shows that the posterior laws converge in distribution to a 
Gaussian posterior law in total variation distance. As a consequence, any location functional 
that is suitably continuous relative to the total variation nonn applied to the sequence of 
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10.3 Point Estimators 147 

posterior laws converges to the same location functional applied to the limiting Gaussian 
posterior distribution. For most choices this means to X, or a N (0, 100 I)-distribution. 

In this section we consider more general Bayes point estimators that are defined as the 
minimizers of the posterior risk functions relative to some loss function. For a given loss 
function i:]Rk 1--+ [0,00), let Tn, for fixed XI, ... , Xn, minimize the posterior risk 

It is not immediately clear that the minimizing values Tn can be selected as a measurable 
function of the observations. This is an implicit assumption, or otherwise the statements 
are to be understood relative to outer probabilities. We also make it an implicit assumption 
that the integrals in the preceding display exist, for almost every sequence of observations. 

To derive the limit distribution of In (Tn - (0), we apply general results on M -estimators, 
in particular the argmax continuous-mapping theorem, Theorem 5.56. 

We restrict ourselves to loss functions with the property, for every M > 0, 

sup i(h):s inf i(h), 
IIhll:::M IIhll:::2M 

with strict inequality for at least one M. t This is true, for instance, for loss functions of 
the form i(h) = io(lIhll) for a nondecreasing function lo: [0,00) 1--+ [0,00) that is not 
constant on (0, 00). Furthermore, we suppose that i grows at most polynomially: For some 
constant p ::: 0, 

10.8 Theorem. Let the conditions of Theorem 10.1 hold, and let i satisfy the conditions as 

listed, for a p such that J 110 liP dTI(O) < 00. Then the sequence In(Tn - (0) converges 
underOo in distribution to the minimizer oft 1--+ J i(t-h) dN(X, lOoI)(h),for X possessing 
the N (0, 100 I )-distribution, provided that any two minimizers of this process coincide almost 
surely. In particular, for every nonzero, subconvex loss function it converges to X. 

*Prooj. We adopt the notation as listed in the first paragraph of the proof of Theorem 10.1. 
The last assertion of the theorem is a consequence of Anderson's lemma, Lemma 8.5. 

The standardized estimator In(Tn - (0) minimizes the function 

where it is the function h 1--+ i(t - h). The proof consists of three parts. First it is shown 
that integrals over the sets Ilh II ::: Mn can be neglected for every Mn ~ 00. Next, it is proved 
that the sequence In(Tn - ( 0 ) is uniformly tight. Finally, it is shown that the stochastic 
processes t 1--+ Zn(t) converge in distribution in the space iOO(K), for every compact K, to 
the process 

t 1--+ Z(t) = f l(t - h)dN(X, lOoI)(h). 

t The 2 is for convenience, any other number would do. 
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The sample paths of this limit process are continuous in t, in view of the subexponential 
growth of.e and the smoothness of the normal density. Hence the theorem follows from the 
argmax theorem, Corollary 5.58. 

Let Cn be the ball of radius Mn for a given, arbitrary sequence Mn ~ 00. We first show 
that, for every measurable function f that grows subpolynomially of order p, 

(10.9) 

To see this, we utilize the tests cf>n for testing Ho : () = ()o that exist by assumption. In view 
of Lemma 10.3, these may be assumed without loss of generality to satisfy the stronger 
property as given in the statement of t.ltis lemma. Furthermore, they can be constructed 
to be nonrandomized (i.e., to have range {O, I}). Then it is immediate that (Pff.lx./)cf>n 
converges to zero in Pn,o-probability for every measurable function f. Next, by writing out 
the posterior densities, we see that, for U a fixed ball around the origin, 

Pn,U Pff.1x. (Jlc~)(1 - cf>n) = nn~U) lc f(h)Pn,h[ Pff.1 x. (U)(1 - cf>n)] dnn(h) . 
~ _1_ { (1 + IIhIlP)e-C(lIhIl2An) dnn(h). 

nn(U) Jc~ 

Here nn (U) is bounded below by a term of the order 1/ $', by the positivity and continuity 
at ()o of the prior density rr. Split the integral over the domains Mn ~ IIh II ~ D,Jn and 
IIhll ~ D,Jn, and use thefactthat J II()IIP dn«() < 00 to bound the right side of the display 
by terms of the order e-AM; and p+P e-Bn , for some A, B > O. These converge to zero, 
whence (10.9) has been proved. 

Define l(M) as the supremum of .e(h) over the ball of radius M, and :f:.(M) as the 
infimum over the complement of this ball. By assumption, there exists I) > 0 such that 
71: = :f:.(21) -l(l) > O. Let U be the ball of radius I) around o. For every IItll ~ 3Mn and 
sufficiently large Mn, we have l(t - h) -l(-h) 2: TJ if h E U, and l(t - h) -l(-h) 2: 
:f:.(2Mn) -l(Mn) 2: 0 if h E UC n Cn, by assumption. Therefore, 

Zn(t) - Zn(O) = Pff.1 x. [(.e(t - h) -l( -h) )(lu + lucnc. + lq)] 
2: TJPff.1x.(U) - Pff.IX.(l(-h)lc~), 

Here the posterior probability Pff.1 x. (U) of U converges in distribution to N (X, 1;;/ )(U), 
by the Bernstein-von Mises theorem. This limit is positive almost surely. The second 
term in the preceding display converges to zero in probability by (10.9). Conclude that the 
infimum of Zn(t) - Zn(O) over the set of t with IItll ~ 3Mn is bounded below by variables 
that converge in distribution to a strictly positive variable. Thus this infimum is positive 
with probability tending to one. This implies that the probability that t ~ Zn (t) has a 
minimizer in the set IItll ~ 3Mn converges to zero. Because this is true for any Mn ~ 00, 

it follows that the sequence ,In(Tn - ()o) is uniformly tight. 
Let C be the ball of fixed radius M around 0, and fix some compact set K C jRk. Define 

stochastic processes 

Wn,M = N(lln,90, I~l)(ltlC>, 

WM = N(X, I~l)(ltlC>. 
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lOA Consistency 149 

The function h 1--+ l(t - h)lc(h) is bounded, unifonnly if t ranges over the compact K. 
Hence, by the Bernstein-von Mises theorem, Zn,M - Wn,M ~ 0 in lOO(K) as n -+ 00, 

for every fixed M. Second, by the continuous-mapping theorem, Wn,M - WM in lOO(K), 

as n -+ 00, for fixed M. Next WM ~ Z in lOO(K) as M -+ 00, or equivalently C t JRk • 

Conclude that there exists a sequence M n -+ 00 such that the processes Zn,Mn - Z in loo (K). 
Because, by (10.9), Zn (t) - Zn,Mn (t) ~ 0, we finally conclude that Zn - Z in lOO(K). • 

*10.4 Consistency 

A sequence of posterior measures Pen I Xl, ... , Xn is called consistent under () if under Pooo-
probability it converges in distribution to the measure 80 that is degenerate at (), in proba­
bility; it is strongly consistent if this happens for almost every sequence Xl, X2, .... 

Given that, usually, ordinarily consistent point estimators of () exist, consistency of 
posterior measures is a modest requirement. If we could know () with almost complete 
accuracy as n -+ 00, then we would use a Bayes estimator only if this would also yield the 
true value with similar accuracy. Fortunately, posterior measures are usually consistent. 
The following famous theorem by Doob shows that under hardly any conditions we already 
have consistency under almost every parameter. 

Recall that E> is assumed to be Euclidean and the maps () 1--+ Po(A) to be measurable 
for every measurable set A. 

10.10 Theorem (Doob's consistency theorem). Suppose that the sample space (X, A) is 
a subset of Euclidean space with its Borel (J -field. Suppose that Po #- Po' whenever () #- ()'. 
Then for every prior probability measure TI on E> the sequence of posterior measures is 
consistent/or TI-almost every (). 

Proof. On an arbitrary probability space construct random vectors E> and Xl, X2, ... 
such that E> is marginally distributed according to TI and such that given E> = () the vectors 
XI, X2 , ••• are i.i.d. according to Po. Then the posterior distribution based on the first n 
observations is PeIXl",.,Xn' Let Q be the distribution of (XI, X2, ... , E» on XOO x E>. 

The main part of the proof consists of showing that there exists a measurable function 
h : Xoo 1--+ E> with 

h(XI,X2, ... ) = (), Q-a.s .. (10.11) 

Suppose that this is true. Then, for any bounded, measurable function /: E> 1--+ JR, by 
Doob's martingale convergence theorem, 

E(J(E» I XI, ... , Xn) -+ E(J(E» I XI, X2 , ••• ) 

= f(h(X I , X2, . .. »), Q-a.s .. 

By Lemma 2.25 there exists a countable collection F of bounded, continuous functions f 
that are determining for convergence in distribution. Because the countable union of the 
associated null sets on which the convergence of the preceding display fails is a null set, 
we have that 

Q-a.s .. 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511802256.011
Downloaded from https://www.cambridge.org/core. Library African Studies Centre, on 15 Apr 2021 at 14:02:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511802256.011
https://www.cambridge.org/core


150 Bayes Procedures 

This statement refers to the marginal distribution of (Xl, X2, .•. ) under Q. We wish to 
translate it into a statement concerning the P~-measures. Let C c Xoo x e be the inter­
section of the sets on which the weak convergence holds and on which (15.9) is valid. By 
Fubini's theorem 

where Ce = {x: (x, 0) E C} is the horizontal section of C at height O. It follows that 
P~(Ce) = 1 for n-almost every 0. For every 0 such that P~(Ce) = 1, we have that 
(x,O) E C for P~-almost every sequence Xl, X2, ••• and hence 

This is the assertion of the theorem. 
In order to establish (15.9), call a measurable function /: e .... lR accessible if there 

exists a sequence of measurable functions hn: xn .... lR such that 

f f Ihn(x) - /(0)1/\ 1 dQ(x, 0) ~ o. 

(Here we abuse notation in viewing hn also as a measurable function on XOO x e.) Then 
there also exists a (sub)sequence with hn(x) ~ /(0) almost surely under Q, whence every 
accessible function / is almost everywhere equal to an Aoo x {0, e}-measurable function. 
This is a measurable function of X = (Xl, X2, ••• ) alone. If we can show that the functions 
/(0) = OJ are accessible, then (15.9) follows. We shall in fact show that every Borel 
measurable function is accessible. 

By the strong lawoflarge numbers, hn(x) = I:7=1 l A (xj) ~ P8(A) almost surely under 
Peoo, for every 0 and measurable set A. Consequently, by the dominated convergence 
theorem, 

Thus each of the functions 0 .... Pe (A) is accessible. 
Because (X, A) is Euclidean by assumption, there exists a countable measure-deter­

mining subcollectionAo c A. The functions () .... Pe(A) are measurable by assumption 
and separate the points of e as A ranges over .40, in view of the choice of .40 and the 
identifiability of the parameter o. This implies that these functions generate the Borel 
a-field on e, in view of Lemma 10.12. 

The proof is complete once it is shown that every function that is measurable in the 
a-field generated by the accessible functions (which is the Borel a-field) is accessible. 
From the definition it follows easily that the set of accessible functions is a vector space, 
contains the constant functions, is closed under monotone limits, and is a lattice. The 
desired result therefore follows by a monotone class argument, as in Lemma 10.13. • 

The merit of the preceding theorem is that it imposes hardly any conditions, but its 
drawback is that it gives the consistency only up to null sets of possible parameters (de­
pending on the prior). In certain ways these null sets can be quite large, and examples have 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511802256.011
Downloaded from https://www.cambridge.org/core. Library African Studies Centre, on 15 Apr 2021 at 14:02:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511802256.011
https://www.cambridge.org/core


10.4 Consistency 151 

been constructed where Bayes estimators behave badly. To guarantee consistency under 
every parameter it is necessary to impose some further conditions. Because in this chapter 
we are mainly concerned with asymptotic normality of Bayes estimators (which implies 
consistency with a rate), we omit a discussion. 

10.12 Lemma. LetF be a countable collection of measurable functions f: E> C JR.k t--+ JR. 
that separates the points ofE>. Then the Borel a-field and the a-field generated by F on E> 
coincide. 

Proof. By assumption, the map h: E> t--+ JR.,F defined by h«())f = f«()) is measurable and 
one-to-one. Because F is countable, the Borel a-field on JR.,F (for the product topology) is 
equal to the a-field generated by the coordinate projections. Hence the a-fields generated 
by hand F (viewed as Borel measurable maps in JR.,F and JR., respectively) on E> are identical. 
Now h- I , defined on the range of h, is automatically Borel measurable, by Proposition 8.3.5 
in [24], and hence E> and h(E» are Borel isomorphic. • 

10.13 Lemma. Let F be a linear subspace of £1 (n) with the properties 
(i) iff, g E F, then f /\ g E F; 

(ii) if 0 ~ fl ~ h ~ ... E F and fn t f E £1 (n), then f E F; 
(iii) 1 E F. 

Then F contains every a (F)-measurable function in £1 (n). 

Proof. Because any a (F )-measurable nonnegative function is the monotone limit of a 
sequence of simple functions, it suffices to prove that 1 A E F for every A E a (F). Define 
.40 = {A: lA E F}. Then .40 is an intersection-stable Dynkin system and hence a a-field. 
Furthermore, for every f E F and a E JR., the functions n(f - a)+ /\ 1 are contained in F 
and increase pointwise to 1{f>a}. It follows that {f > a} E .40. Hence a(F) c .40. • 

Notes 

The Bernstein-von Mises theorem has that name, because, as Le Cam and Yang [97] write, it 
was first discovered by Laplace. The theorem that is presented in this chapter is considerably 
more elegant than the results by these early authors, and also much better than the result 
in Le Cam [91], who revived the theorem in order to prove results on superefficiency. We 
adapted it from Le Cam [96] and Le Cam and Yang [97]. 

Ibragimov and Hasminskii [80] discuss the convergence of Bayes point estimators in 
greater generality, and also cover non-Gaussian limit experiments, but their discussion of 
the i.i.d. case as discussed in the present chapter is limited to bounded parameter sets and 
requires stronger assumptions. Our treatment uses some elements of their proof, but is 
heavily based on Le Cam's Bernstein-von Mises theorem. Inspection of the proof shows 
that the conditions on the loss function can be relaxed significantly, for instance allowing 
exponential growth. 

Doob's theorem originates in [39]. The potential null sets of inconsistency that it leaves 
open really exist in some situations particularly if the parameter set is infinite dimensional, 
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152 Bayes Procedures 

and have attracted much attention. See [34], which is accompanied by evaluations of the 
phenomenon by many authors, including Bayesians. 

PROBLEMS 

1. Verify the conditions of the Bernstein-von Mises theorem for the experiment where Pe is the 
Poisson measure of mean O. 

2. Let Pe be the k-dimensional nonnal distribution with mean 0 and covariance matrix the identify. 
Find the a posteriori law for the prior IT = N(r:. A) and some nonsingular matrix A. Can you 
see directly that the Bernstein-von Mises theorem is true in this case? 

3. Let Pe be the Bernoulli distribution with mean O. Find the posterior distribution relative to the 
beta-prior measure, which has density 

o ~ r(a)f(~) Oa-l(l - O)fJ- I l (0) rca +~) (0,1) • 

4. Suppose that, in the case of a one-dimensional parameter, we use the loss function t(h) = 
1(-1,2)(h). Find the limit distribution of the corresponding Bayes point estimator, assuming that 
the conditions of the Bernstein-von Mises theorem hold. 
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