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Notation

X ∼ Y: the random variables X and Y possess the same distribution.
X ∼ P: the random variable has distribution P.
Xi

iid
∼ P: the random variables X1, X2, . . . , are independent and Xi ∼ P.

Xi
ind
∼ Pi: the random variables X1, X2, . . . , are independent and Xi ∼ Pi.

X ∼ Y |Z: same as above but conditionally on Z.
Xi|Z iid

∼ P: same as above but conditionally on Z.
Xi|Zi

ind
∼ Pi: same as above but conditionally on Z.

U y V: the random variables U and V are independent.
U y V |W: the random variables U and V are conditionally independent given W.
P f :

∫
f dP = E f (X), if X ∼ P.

Pn: product measure of n copies of P.
Pn f :

∫
f dPn = E f (X1, . . . , Xn), if X1, . . . , Xn

iid
∼ P.

Pn: empirical measure of X1, . . . , Xn, the random discrete probability measure that puts
mass 1/n at every Xi.

Pn f : n−1 ∑n
i=1 f (Xi).

Sn: n-dimensional unit simplex, all probability vectors (w1, . . . ,wn) of length n.
S∞: all probability vectors of countably infinite length.
∥x∥r: (

∑
|xi|

r)1/r, for r ≥ 1 and x ∈ Rd, or x ∈ R∞.
∥ f ∥r: (

∫
| f |2 dν)1/r, for a function f :X→ R.

h: Hellinger distance.
dTV : total variation distance.
K(P; Q), K(p; q): Kullback–Leibler (KL) divergence.
V(P; Q), V(p; q): Kullback–Leibler (KL) variation, see (5.4).
K2(P; Q), K2(p; q): maximum of K and V .
D(ϵ, S , d): ϵ-packing number of B with respect to distance d.
N(ϵ, S , d): ϵ-covering number of B with respect to distance d.
N[ ](ϵ, S , d): ϵ-bracketing number of B with respect to distance d.
M(X): space of probability measures on a sample space X
M∞(X): space of (positive) measures on a sample space X
C(X): space of continuous functions on X
Cb(X): space of bounded continuous functions on X
Cα(X): Hölder space of functions of smoothness α on X
UC(X): space of uniformly continuous functions on X
Wα(X): Sobolev space of functions of smoothness α on X

P
→ : convergence in probability
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2 Notation

⇝: convergence in law/distribution, weak convergence
≲: smaller than up to a multiplicative constant that is fixed in the context.
Nor(µ, σ2): normal distribution with mean µ and variance σ2.
Nork(µ,Σ): k-variate normal distribution with mean vector µ and dispersion matrix Σ.
ϕµ,Σ: normal density with mean (vector) µ and dispersion (matrix) Σ.
Bin(n, p): binomial distribution with parameters n and p.
Exp(λ): exponential distribution with mean 1/λ.
Ga(a, b): gamma distribution with shape a and scale b.
Be(a, b): beta distribution with parameter a and b.
MNk(n; p1, . . . , pk): k-variate multinomial distribution with n trials.
Dir(k;α1, . . . , αk): k-dimensional Dirichlet distribution.



Preface

These notes are a mathematically rigorous introduction to Bayesian statistical inference,
with an emphasis on nonparametric methods.

Knowledge of measure theory and probability are assumed throughout. Each chapter ends
with a section that reviews other useful background.

3



1

The Bayesian Paradigm

In statistics data x is modelled as a realization of a random variable X. The statistical model
is the set of possible probability distributions Pθ of X, indexed by a parameter θ running
through a parameter set Θ.

The Bayesian statistical approach adds the assumption, or working hypothesis, that the
parameter θ itself is also a realization of a random variable, say ϑ. The distribution Pθ is
then considered the conditional distribution of X given ϑ = θ. In this setup the pair (X, ϑ)
then has a joint probability distribution, given by

Pr
(
X ∈ A, ϑ ∈ B) =

∫
B

Pθ(A) dΠ(θ). (1.1)

HereΠ is the marginal distribution of ϑ, which is called the prior distribution in this context,
meaning the distribution of the parameter before the data x was collected. Once the data is
available the Bayesian statistician will “update” this prior distribution to the conditional
distribution of ϑ given X = x, called the posterior distribution: the distribution on Θ given
by

Π(B| x) = Pr(ϑ ∈ B| X = x).

This is considered to contain all the relevant information; all further inference will be based
on it.

This updating is perfectly natural to anybody with a basic knowledge of probability. How-
ever, the Bayesian paradigm is a little controversial in its insistence that the parameter is a
random variable. As an assumption on the world this is untenable to most scientists. As a
working hypothesis or an “expression of uncertainty” it is much easier to accept, with still
the objection that the final result of the analysis will depend on the prior distribution Π, and
this may be chosen differently by different scientists.

De Finetti’s theorem is often brought forward in favor of the random variable assumption.
According to this theorem a sequence X1, X2, . . . is exchangeable, that is has a joint distribu-
tion that is invariant under permutation of its elements, if and only if there exists a variable
ϑ such that given ϑ the variables X1, X2, . . . are i.i.d. Since exchangeability is a reasonable
assumption in many situations, the prior variable ϑ arises naturally.

The debate may also zoom in on the question whether there is a “true parameter”. For
a subjectivist Bayesian (i.e. a true Bayesian) there is none; statistical inference is only an
expression of uncertainty. For most scientists there is a true parameter, often denoted by θ0;
it is assumed that the data x was generated according to the measure Pθ0 .

In this course we shall not dwell too much on philosophical questions. In fact, we shall be
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1.1 Measure-theoretic definitions 5

both Bayesian and non-Bayesian, or frequentist as the opposite of Bayesian is often called,
for not too clear reasons. We shall adopt the Bayesian approach to obtain posterior distri-
butions, and next study these posterior distributions (in their dependence on x) under the
assumption that x was generated from a “true distribution”. We can then pose and answer
the question whether the Bayesian methods “works”, relate it to other statistical methods,
and compare different priors. Some priors turn out to work better than others.

1.1 Measure-theoretic definitions

Random variables and their (conditional) distributions are mathematically defined in mea-
sure theory. We assume the relevant definitions known, but in this section review some facts
on conditional distributions. These are complicated objects, in particular in the nonparamet-
ric setup that we shall be concerned with later on.

The random variables X and ϑ are formally defined as measurable maps on a probability
space, with values in measurable spaces (X,X ) and (Θ,B). Here X and B are σ-fields
of subsets of the (arbitrary) sets X and Θ, called the sample space and the parameter space.
We are usually not concerned with the way that X and Θ are defined on the underlying
probability space, but only with their induced laws on (X,X ) and (Θ,B), or their joint law
on the product of these spaces. To work with these laws the following definition is crucial.

Definition 1.1 (Markov kernel). A Markov kernel from a measurable space (X,X ) into
another measurable space (Y,Y ) is a map Q:X × Y → [0, 1] such that:

(i) The map B 7→ Q(x, B) is a probability measure for every x ∈ X.
(ii) The map x 7→ Q(x, B) is measurable for every B ∈ Y .

Informally the Markov kernel Q(x, ·) can be viewed as the distribution of a variable Y
with values in Y given that a variable X with values in X takes the value x. Corresponding to
this a Markov kernel is also called a regular conditional distribution, and we shall typically
write Q(B| x) instead of Q(x, B). This is the probability that the (imagined) variable Y falls in
the set B given the knowledge that the (imagined) variable X has been realized as the value
x.

For the basic definitions of Bayesian statistics we need two types of Markov kernels. As
starting point we assume that the statistical model (Pθ: θ ∈ Θ) is given by a Markov kernel
from (Θ,B) into (X,X ):

(i) The map A 7→ Pθ(A) is a probability measure for every θ ∈ Θ.
(ii) The map θ 7→ Pθ(A) is measurable for every A ∈X .

This formalizes viewing Pθ as the conditional distribution of X given ϑ = θ.
The assumed measurability (ii) ensures that the integral on the right side of (1.1) is well

defined, for every measurable sets A ∈X and B ∈ B. The integral defines a number in [0, 1]
for every set A×B in the productσ-field X ×B. By the usual measure-theoretic construction
this can be extended to exactly one probability measure on this productσ-field. This measure
formalizes the joint distribution of the pair (X, ϑ) mentioned in the introduction.

Starting from the statistical model as a Markov kernel we have constructed the “law of the
pair” (X, ϑ), but not the pair itself. The latter has little relevance, as all later developments
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will concern the law and not the pair of variables. However, viewing the right hand side
of (1.1) as the distribution of some pair (X, ϑ) yields very convenient notation. A trivial
way to define also the random variables is to take the underlying probability space equal to
Ω = X × Θ with the product σ-field X ×B, and define (X, ϑ):Ω → X × Θ as the identity
map: X(ω) = x and ϑ(ω) = θ if ω = (x, θ) ∈ Ω. Then {ω: (X(ω), ϑ(ω)) ∈ A × B} = A × B and
hence (1.1) holds.

From (1.1) the marginal law of ϑ is obtained by setting A = X. For this choice the equation
reduces to Pr(ϑ ∈ B) = Π(B), whence ϑ has law Π.

The marginal distribution of X is similarly obtained by setting B = Θ in (1.1), and is given
by

P(A):= Pr(X ∈ A) =
∫

Pθ(A) dΠ(θ). (1.2)

This is a mixture of the distributions Pθ. This Bayesian marginal law should not be con-
fused with the “frequentist law” of the observation X, which is the distribution Pθ0 of X
under the “true” parameter θ0. Instead of marginal law, Bayesians also say prior predictive
distribution.

Next we turn to the posterior distribution, which should be the conditional distribution of
ϑ given X = x. Now conditioning on an event of probability zero is problematic. Since the
events {X = x} are often zero events, we define the posterior distribution through integration,
as follows.

Definition 1.2 (Posterior distribution). Given a model (Pθ: θ ∈ Θ), given as a Markov kernel,
and a prior probability distribution Π, a posterior distribution is a Markov kernel (x, B) 7→
Π(B| x) from (X,X ) into (Θ,B) such that, for every A ∈X and B ∈ B,

Pr
(
X ∈ A, ϑ ∈ B) =

∫
A
Π(B| x) dP(x). (1.3)

Here (X, ϑ) is the random variable satisfying (1.1) constructed in the preceding, and P is the
marginal law of X defined in (1.2).

Equation (1.3) is analogous to (1.1), but on the right side the roles of X and ϑ are swapped.
One says that both equations give disintegrations of the joint law of (X, ϑ), but in different
orders.

Another Markov kernel (x, B) 7→ Π1(B| x) such that Π1(B| x) = Π(B| x), for almost every x
under the marginal law P, will also satisfy (1.3), for every A. Hence a posterior distribution
is uniquely defined only up to a null set of x-values. Since we think of these as negligible,
we shall often speak of the posterior distribution, despite the possible lack of uniqueness.
A potential embarrassment is that the null sets are relative to the marginal law P, which
is the relevant law for Bayesians, but not for a statistician who believes the data were in
reality generated from a true distribution Pθ0 . Usually, but not always, a null set for P is also
a null set for every Pθ; if not, then additional criteria are needed to work with a posterior
distribution.

It is not true in full generality that a posterior distribution exists. By Kolmogorov’s defini-
tion of conditional expectation from measure theory, for every B ∈ B there always exists a
measurable map x 7→ Π(B| x) that satisfies (1.3) for every A ∈X (see proof of next proposi-
tion). The map (x, B) 7→ Π(B| x) then satisfies requirement (ii) of the definition of a Markov
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kernel. However, requirement (i) of the definition of a Markov kernel imposes relations be-
tween the maps x 7→ Π(B| x) for different B, and it is not true that the maps can always be
chosen so that these are satisfied and (x, B) 7→ Π(B| x) is a Markov kernel. In the following
proposition we see that usually they can. The key condition is that there are “not too many”
sets B, a condition that is expressed in topological terms.

Proposition 1.3 (Existence of posterior distribution). Suppose that there exists a metric d
on Θ under which Θ is separable and complete, and assume that B is the σ-field generated
by the open sets for this metric. Then there exists a Markov kernel (x, B) 7→ Π(B| x) from
(X,X ) into (Θ,B) that satisfies (1.3) for every A ∈X and B ∈ B. Furthermore, any other
such Markov kernel (x, B) 7→ Π1(B| x) satisfies Π1(B| x) = Π(B| x) for every B ∈ B, for all x
except possibly in a set N with Pr(X ∈ N) = 0, where the set N can be chosen independent
of B.

Proof This result can be found in any good text on measure-theoretic probability. E.g.
Bauer (1981), Theorem 10.3.5 (about three or four pages of proof). The main work is to
put versions of the conditional probabilities Π(B| x) together to a probability measure B 7→
Π(B| x). The existence of the conditional probabilities itself is a consequence of the Radon-
Nikodym theorem, as follows. For given B we consider the measure Q(A) = Pr(X ∈ A, ϑ ∈
B). This is absolutely continuous with respect to P: if Pr(X ∈ A) = 0, then also Q(A) = 0.
Thus there exists a measurable map x 7→ fB(x) on X such that Q(A) =

∫
A

fB(x) dP(x), for all
A ∈X . This is a version of the map Π(B| x). □

The σ-field generated by the open sets in a topological space is called the Borel σ-field. A
topological space whose topology is generated by a metric under which the space is separa-
ble and complete is called a Polish topological space. Thus the preceding proposition can be
paraphrased as saying that a posterior distribution exists as soon as (Θ,B) is a Polish space
with its Borel σ-field. This will be the case in all examples of interest.

Example 1.4 (Euclidean space). The space Rd is complete and separable under the usual
metric and hence Polish. The usual σ-field, which is also generated by the cells (a, b], is the
Borel σ-field.

Example 1.5 (Unit interval). The open unit interval (0, 1) is not complete under the usual
metric, but it is still Polish. For instance, the topology is also generated by the metric
d(x, y) =

∣∣∣Φ−1(x) − Φ−1(y)
∣∣∣, for Φ the standard normal distribution function, which makes

(0, 1) into a complete space. (Sequences {xn} ⊂ (0, 1) that approach 0 or 1 in the usual topol-
ogy are not Cauchy for d. This solves the problem that (0, 1) is not closed at its end points.)
The usual σ-field, which is also generated by the cells (a, b], is the Borel σ-field for this
metric.

Example 1.6 (Sequence space). The space R∞ is complete and separable under the metric
d(x, y) =

∑∞
i=1 2−i(|xi − yi| ∧ 1), if x = (x1, x2, . . .) and y = (y1, y2, . . .), and hence Polish. The

usual σ-field, generated by the cylindrical sets, can be shown to be the Borel σ-field for d.

The second and third examples are generalized in the following lemma, which shows
that Polish spaces abound. We shall encounter other examples of interest later on, including
spaces of measures and spaces of functions.
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Lemma 1.7. (i) Every closed subset of a Polish space is again a Polish space.
(ii) Every open subset of a Polish space is again a Polish space.

(iii) The product of finitely many or countably many Polish spaces is a Polish space.

Proof Assertion (i) is trivial, as a closed subset of a separable, complete space is separable
and complete. Assertion (iii) follows by constructing a metric on the product in the manner of
Example 1.6, where the Euclidean distances |xi−yi| are replaced by the (complete) distances
of the individual spaces in the product. For the proof of (ii), let G be an open subset of the
Polish space E. Since F = Gc is closed, the map ψ:R × E → R given by ψ(r, x) = r d(x, F)
is continuous. Hence the inverse image G0:= ψ−1({1}) = {(r, x): r d(x, F) = 1} is closed in
R× E. By (iii) the latter product is Polish and hence by (i) this inverse image is Polish. Now
the map ϕ: G0 → E given by (r, x) 7→ x can be seen to be a homeomorphism of G0 onto G.
This implies that G inherits its Polishness from G0. □

1.2 Bayes’s rule

Nowadays Bayes’s rule is taught as a probability rule, but Thomas Bayes (1701–1761), was
in fact a statistician (the first Bayesian statistician). We present a version of his rule as a
concrete formula for the posterior distribution, available in a special but common situation.

This situation is that the measures Pθ in the statistical model permit jointly measurable
densities relative to a given σ-finite measure µ on the sample space (X,X ). We assume that
there exists a map (x, θ) 7→ pθ(x) that is measurable for the product σ-field X ×B such that
Pθ(A) =

∫
A

pθ(x) dµ(x), for every A ∈ X . In this case a version of the posterior distribution
is given by Bayes’s formula:

Π(B| x) =

∫
B

pθ(x) dΠ(θ)∫
pθ(x) dΠ(θ)

. (1.4)

Of course, this expression is defined only if the denominator
∫

pθ(x) dΠ(θ) is nonzero. For
x such that the denominator is zero the definition is not important, but for definiteness we
define the quotient in that case to be equal to Q(B), for an arbitrary probability measure Q
on (Θ,B).

Proposition 1.8 (Bayes’s formula). If there exists a σ-finite measure µ on the sample space
(X,X ) and jointly measurable maps (x, θ) 7→ pθ(x) such that Pθ(A) =

∫
A

pθ(x) dµ(x), for
every A ∈X , then formula (1.4) gives an expression for the posterior distribution.

Proof It is one of the assertions of Fubini’s theorem that the integrals with respect to one
argument

∫
B

pθ(x) dΠ(θ) and
∫

pθ(x) dΠ(θ) of the jointly measurable function (x, θ) 7→ pθ(x)
are measurable functions of the remaining argument x. Their quotient is then also measur-
able, and hence Π(B| x) defined by (1.4) satisfies requirement (ii) of a Markov kernel.

It is clear from the definition thatΠ(∅| x) = 0 andΠ(Θ| x) = 1. Furthermore, the map B 7→
Π(B| x) is additive over disjoint sets, by the properties of integrals. Applying the monotone
convergence theorem to the indicators of a sequence ∪n

i=1Bi of unions of disjoint sets, we
see that is also countably additive. Thus requirement (i) is satisfied as well, so that (x, B) 7→
Π(B| x) is a Markov kernel.
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By (1.1) and the representation of Pθ(A) as an integral, followed by Fubini’s theorem,

Pr(X ∈ A, ϑ ∈ B) =
∫

B

∫
A

pθ(x) dµ(x) dΠ(θ) =
∫

A

∫
B

pθ(x) dΠ(θ) dµ(x).

Setting B = Θ we see that p(x):=
∫

pθ(x) dΠ(θ) is a density of P relative to µ. Then the set
N = {x: p(x) = 0} is a null set for P, and the preceding display does not change if we intersect
A with Nc. On A ∩ Nc, we can rewrite the inner integral in the expression on the far right as
Π(B| x)p(x), by (1.4), and hence we find that the left side is equal to

∫
A∩Nc Π(B| x)p(x) dµ(x).

This does not change if we replace A ∩ Nc again by A. Thus we have verified that Π(B| x)
satisfies the disintegration (1.3). □

Bayes’s formula can be best memorized as a reweighting rule. A priori the value θ of the
parameter has weight dΠ(θ). The data x is observed with “probability proportional to” the
likelihood pθ(x). A posteriori the weight of θ is proportional to pθ(x) dΠ(θ). With the symbol
∝ meaning “is proportional to as a function of θ”, we can express this by the formula

dΠ(θ| x) ∝ pθ(x) dΠ(θ).

Bayes’s rule is the integrated form of this formula. The denominator p(x) =
∫

pθ(x) dΠ(θ)
in (1.4) acts as the norming constant for the density, which makes the quotient (1.4) equal
to 1 for B = Θ. Note that p is precisely the marginal density of X. Bayesians call it also the
evidence or prior predictive density.

Example 1.9 (Binomial distribution). Thomas Bayes derived his rule for a special model
and prior, which we nowadays can describe as a binomial observation with uniform prior on
the success probability. Thus

pθ(x) =
(
n
x

)
θx(1 − θ)n−x, dΠ(θ) = dθ, x = 0, 1, . . . , n, θ ∈ (0, 1).

In this case the posterior distribution takes the form

dΠ(θ| x) ∝ θx(1 − θ)n−xdθ, θ ∈ (0, 1).

This distribution is known as the beta distribution with parameters x + 1 and n − x + 1.
Figure 1.1 shows the prior density and the posterior density for n = 20 and x = 7.

The denominator in Bayes’s rule ensures that the total mass of the measure is equal to 1.
This is true even ifΠ itself is not a probability measure. A true prior is a probability measure,
and it is not useful to replace it by a finite measure of total mass unequal to 1, but it can be
useful to employ an infinite measure. Provided the integral in the denominator is finite, the
right side of formula (1.1) still defines a random probability measure, which we could call a
posterior measure. A “prior” of infinite mass is called improper.

Example 1.10 (Normal distribution). For an observation X from a normal distribution with
unknown mean θ and variance 1 and Π Lebesgue measure, Bayes’s rule gives

dΠ(θ| x) =
ϕ(x − θ) dθ∫
ϕ(x − θ) dθ

= ϕ(x − θ) dθ.

Thus the posterior distribution is Gaussian with mean x and variance 1.
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Figure 1.1 Uniform prior density (dashed) and posterior density for observation
x = 7 from a binomial distribution with parameters n = 20 and success probability
θ.

1.3 Hierarchical modelling

The Bayesian model can be portrayed as a two-step algorithm to generate the pair (x, θ) of a
data point and a parameter:

• θ is generated from Π.
• x is generated from Pθ.

The two steps concern the parameter θ and the data x, respectively. There is no distinction
between these quantities other than that the first is not observed, whereas the second is.
Bayesian modelling can be viewed more generally as describing the mechanism by which
data and unobservables have been generated. Here the “unobservables” may well consist of
other variables besides the parameter that indexes the model for the observables, and the
generative model may well consist of a hierarchy of more than two steps. Every unobserv-
able receives a distribution in this hierarchy, and after observing the data these distributions
are updated to their conditional distributions given the data. Depending on their nature, un-
observables may be called latent variables or parameters, but the conditional distribution of
any unobservable given the data is called a “posterior distribution”.

Some examples make this clearer.

Example 1.11 (Linear mixed model). In a linear mixed model (also called random effects
model) the observation is a vector Y with values in Rn satisfying the regression equation

Y = Xβ + Zγ + e,

where X and Z are known matrices (of dimensions (n × p) and (n × q) say), β ∈ Rp is an
unknown parameter vector, and γ and e are independent random variables, in the simplest
case with zero-mean normal distributions of dimensions q and n with unknown covariance
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matrices D and σ2I, say. The “random effects” γ are not observed, but used to model depen-
dencies between the coordinates of Y . The “error vector” e is also not observed, as usual in
a regression model.

The distribution of the observable Y is normal with mean Xβ and covariance matrix
ZDZT + σ2I.

As a parameter vector we can take θ = (β,D, σ2). In its most basic form the Bayesian
hierarchy would be to generate θ from a prior (on Rp ×D × (0,∞), for D the set of positive-
definite matrices), and next Y from the Nn(Xβ,ZDZT + σ2I)-distribution.

However, it is attractive to split the generative model in more than two steps:

• (β,D, σ2) are generated from a prior.
• γ is generated from Nq(0, σ2D).
• e is generated from Nn(0, σ2I).
• Y = Xβ + Zγ + e.

In this hierarchy the unobservables γ receive a similar treatment as the unobservables β,
which are part of the parameter vector θ. This is even more so if the prior for β would also
be chosen Gaussian, as is customary.

One concrete example is a longitudinal study, in which individuals are followed over
time and measured at multiple occasions. The observational vector Y would then consist
of blocks, and could be indexed as (Y1,1, . . . ,Y1,T ,Y2,1, . . . ,Y2,T , . . . ,YS ,1, . . . ,YS ,T )T , where
Ys,1, . . . ,Ys,T are the consecutive measurements on individual s. A simple linear model would
be

Ys,t = β0 + β1t + γs,0 + γs,1t + es,t,

where es,t are i.i.d. univariate normal variables. The idea of this model is that every individual
s follows a linear model in time t, but the intercept and slopes vary over the individuals: for
individual s these are β0 + γs,0 and β1 + γs,1. The parameters β0 and β1 are the “population
intercept and slope”, while the parameters γs,0 and γs,1 are the deviations of individual s
from the average. If the data consists of measurements on individuals sampled from some
population, then it makes sense to think of the pairs (γs,0, γs,1) as an i.i.d. sample from a
distribution. The vector γ = (γ1,0, γ1,1, . . . , γS ,0, γS ,1)T is then also random (with covariance
matrix σ2D having block structure, as individuals are independent).

One advantage of the Bayesian model is that one can speak naturally of the conditional
distribution of the latent variable γ given the data Y . This will reveal the hidden structure
behind the data. In the concrete example the posterior distribution of γ would show the
variability of the intercepts and slopes in the population.

A possible prior for (β,D, σ2) is given by the following scheme:

• 1/σ2 is generated from a Γ(a, b)-distribution.
• β is generated from a N(0, σ2C)-distribution.
• D is generated from a Wishart distribution with parameters σ2∆.

These three lines could replace the first line of the preceding hierarchy. The parameters
a, b,C,∆ could be chosen fixed constants (such as a = b = 0.001 to obtain a widely spread
prior), or one could add a further hierarchical step by generating these in term from a prior.

The subsequent steps in this hierarchical description may use values from previous steps.
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The distributions from which the variables are generated are then understood to be condi-
tional distributions given those variables, something that is often not made explicit. Further-
more and more confusing, if variables are not mentioned, then this usually is meant to imply
stochastic independence.

Example 1.12 (Probit regression). Suppose that the data consists of independent random
variables Y1, . . . ,Yn taking values in two-point set {0, 1} and of fixed constants x1, . . . , xn

such that

Pr(Yi = 1) = Φ(β0 + β1xi) = 1 − Pr(Yi = 0).

The only parameters are β0 and β1, and hence a Bayesian analysis proceeds from a prior on
β = (β0, β1).

One could consider that the normal distribution function Φ appears only to map the linear
regressions β0 + β1x into the interval (0, 1), which is necessary to model the probabilities
Pr(Yi = 1). One could also give a more structural motivation for the form of the model
through the following hierarchical Bayesian model:

• Generate (β0, β1) from a prior.
• Generate i.i.d. γ1, . . . , γn from a standard normal distribution.
• Form Zi = β0 + β1xi + γi.
• Set Yi = 1Zi>0.

One can check that this gives variables Y1, . . . ,Yn following the model as before. The vari-
ables Zi are not observable, but they explain the observables: Zi can be viewed as a measure
of fitness, or “propensity”, of the ith unit. If the fitness is above a threshold (taken zero 0
here), then the observed value is 1; otherwise it is 0.

1.4 Empirical Bayes

Even in a multistep hierarchical model some prior specifications may be difficult. One may
then opt for objective priors (see Section 2.2) or (other) vague priors, defined as priors that
spread their mass evenly over the parameter space, in some way. A Gamma distribution with
parameters (0.001, 0.001) (so that the mean is 1 and the variance 1000) is a typical example
of a vague prior on (0,∞).

An alternative is to “estimate the prior from the data”. The standard empirical Bayes
approach uses maximum likelihood for this purpose. Given a collection of priors Πα that
depends on some parameter α, this parameter is estimated by

α̂:= argmax
α

∫
pθ(X) dΠα(θ).

The reasoning here is that x 7→
∫

pθ(x) dΠα(θ) is the density of the data X if the Bayesian
model with prior Πα would indeed be valid: it is the marginal density of X if θ is generated
from the prior Πα and next X generated from pθ. This marginal density depends on α and
hence it makes sense to apply the maximum likelihood principle to estimate it.

The prior Πα̂ is next used to form a posterior as if α̂ were fixed from the beginning.
We shall later use this method to determine hyperparameters of nonparametric priors,
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which are essential to good performance. The empirical Bayes method is also important in
many other settings, as illustrated in the following intriguing example.

Example 1.13 (Shrinkage estimation). Consider estimating a vector-valued parameter θ ∈
Rd based on an observation X with the Nd(θ, σ2I)-distribution, i.e. the coordinates X1, . . . , Xd

of X are independent random variables with Xi ∼ N(θi, σ
2). There are no known relationships

between the coordinates θ1, . . . , θd of θ, and we consider σ2 to be known.
The maximum likelihood estimator of θ is the vector X itself and has mean square error

Eθ∥X − θ∥2 = dσ2. Somewhat surprisingly, for d ≥ 3 there exist estimators with a smaller
mean square error, and even much smaller if d is big.

One way of deriving such an improvement is by a combination of Bayesian and em-
pirical Bayesian thinking. As a working hypothesis assume that the coordinates θ1, . . . , θd

are realizations of i.i.d. variables ϑ1, . . . , ϑd following a N(0, A)-prior distribution, for some
A > 0. Then (X1, ϑ1)T , . . . , (Xd, ϑd)T are i.i.d. random vectors following a bivariate normal
distribution (

Xi

ϑi

)
iid
∼ N2

(
0,

(
σ2 + A A

A A

))
.

Under this model

E(ϑi| X1, . . . Xd) = E(ϑi| Xi) =
A

σ2 + A
Xi =

(
1 −

σ2

σ2 + A

)
Xi.

If we really believe the prior model, then these would be natural estimators for the parame-
ters. Even then, we would probably not want to pretend to know the value of A.

We may estimate this prior parameter from the data. Under the Bayesian model the vari-
ables X1, . . . , Xd are i.i.d. with Bayesian marginal distribution N(0, σ2 + A). The maximum
likelihood estimator forσ2+A in this model is given by d−1∥X∥2 and hence we might estimate
1/(σ2+A) by d/∥X∥2. The variable ∥X∥2/(σ2+A) possesses a chisquared distribution with d
degrees of freedom. A calculation based on this will show that E(d − 2)/∥X∥2 = 1/(σ2 + A).
This motivates to replace d−1 in d−1∥X∥2 by (d − 2)−1 and use as estimators

θ̂i =
(
1 −

σ2(d − 2)
∥X∥2

)
Xi.

It can be shown that Eθ∥θ̂ − θ∥
2 < dσ2, for every θ ∈ Rd, and hence this estimator improves

the standard estimator X for every parameter value.
The estimator θ̂ is known as the Stein shrinkage estimator. Because the multiplicative

factor is strictly smaller than 1, and typically will be nonnegative, it “shrinks” the vector X
to zero. That shrinkage is a good idea is also suggested by the fact that Eθ∥X∥2 = ∥θ∥2 +dσ2:
the vector X is “too big” for estimating the vector θ.

1.5 Bayesian inference

The posterior distribution, or the conditional distribution of some unobservable given the
data, is the end-point of the Bayesian analysis. It expresses our knowledge on the value
of the unobservable in the form of probabilities. However, we may wish to summarize the
information in this full probability distribution by simpler quantities.
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1.5.1 Location

The “location” of the posterior distribution is a natural point estimator of the parameter.
If the parameter set is a linear space that allows integration, then the posterior mean∫
θ dΠ(θ| X) is the most popular measure of location.
If the parameter set is a subset of Euclidean space and the prior distribution has a density

π relative to Lebesgue measure, and the model is given by densities pθ, then the posterior
mode is defined as

argmax
θ

log π(θ| X) = argmax
θ

[
log pθ(X) + log π(θ)

]
.

The second way of writing the posterior shows that the posterior mode is a penalized maxi-
mum likelihood estimator, with penalty the log prior density. If the prior density were con-
stant, then the posterior mode would be the maximum likelihood estimator.

The posterior mode means to give a point of highest posterior probability, but the latter
concept is usually ill defined, as single parameter values typically have posterior probability
zero. An alternative is to define for a given δ > 0 a δ-posterior mode as

argmax
θ

Π
(
B(θ, δ)| X

)
,

where B(θ, δ) is the ball of radius δ around θ, for some metric on Θ. If the limit of the δ-
modes as δ ↓ 0 exists, then this would be a good candidate for a definition of a posterior
mode in general.

Another possible point estimator is the spatial short, which is defined as the center of the
smallest ball containing posterior mass at least 3/4 (or some other prescribed number).

1.5.2 Spread and credible sets

The spread is the second important characteristic of a distribution. The spread of the poste-
rior distribution can be interpreted as measuring our uncertainty about the parameter after
seeing the data.

The posterior standard deviation is a natural quantitative measure of spread.
A credible set is a map x 7→ Cx from X to the measurable subsets B of the parameter

space such that, for some prescribed level 1 − α,

Π(Cx| x) ≥ 1 − α.

The concept is reminiscent of a confidence set in non-Bayesian statistics, which is a set Cx

such that Pθ(CX ∋ θ) ≥ 1 − α, for every θ ∈ Θ. However, the two concepts are different. The
only link in general is the equality∫

Π(Cx| x) dP(x) = Pr(ϑ ∈ CX) =
∫

Pθ(CX ∋ θ) dΠ(θ),

of the integrals of the two defining quantities. Confidence sets have a somewhat complicated
interpretation, the level referring to the probability that data has been obtained so that the
set covers the parameter. Credible sets express a probability concerning the parameter, and
seem to have a more natural interpretation.
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Figure 1.2 Credible set for observation x = 7 in a a binomial experiment with
parameter n = 20 and uniform prior on the success probability θ. The shaded area
corresponds to 95% posterior mass; the credible set is its projection on the
horizontal axis.

Example 1.14 (Normal mean). The posterior distribution for θ ∈ R based on a sample
of size n from the N(θ, 1)-distribution relative to a N(0, λ) prior distribution is the normal
distribution with mean (1+λ−1/n)−1X̄n and variance (n+λ)−1. A central interval of posterior
probability 1−α is (1+λ−1/n)−1X̄n±(n+λ−1)−1/2ξ1−α/2, for ξα the standard normal α-quantile.
The interval depends on the prior distribution through λ. For λ → ∞ the interval tends to
the “usual” interval X̄n ± n−1/2ξ1−α/2. We shall see later on that for n → ∞ the interval also
approaches the usual interval, for any λ.

1.5.3 Prediction

Within the Bayesian framework a prediction of a variable Y given data X is based on the
conditional distribution Y of X. If desired this could be summarized by the location (such as
E(Y | X)) or a credible set (called predictive set in this context) corresponding to this condi-
tional distribution.

If Y and X are conditionally independent given a parameter (or latent variable) ϑ and
Π(·| x) gives the posterior distribution of ϑ given X = x, then the predictive distribution can
be expressed as

Pr(Y ∈ C| X = x) =
∫

Pr(Y ∈ C|ϑ = θ) dΠ(θ| x).

Therefore, if Y and X are conditionally independent given ϑ = θ and possess conditional
densities qθ and pθ, then the predictive distribution has density

y 7→
∫

qθ(y) dΠ(θ| x).

This is known as the posterior predictive density. In particular, if X1, X2, . . . , are i.i.d. given
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ϑ from a density pθ, then the posterior predictive density of Xn+1 given data X1, . . . , Xn is

xn+1 7→

∫
pθ(xn+1) dΠ(θ| x1, . . . , xn).

This may be compared to the prior predictive density, which is obtained if n = 0, with
Π(·| x1, . . . , xn) interpreted as the prior distribution.

1.5.4 Bayes factors and testing

Statistical testing is concerned with choosing between competing hypotheses on the param-
eter. The usual setup, with a significance level and power function, does not fit well into the
Bayesian approach. Instead Bayesians advocate to calculate the posterior probabilities of the
various hypotheses.

Suppose that the hypotheses correspond to disjoint subsets Θi of the parameter set. Every
set Θi receives both a prior weight λi (with λi ≥ 0 and

∑
i λi = 1) and a prior distribution

Πi, that spreads its mass over Θi. This gives an overall prior Π =
∑

i λiΠi over Θ. If the data
X has a density pθ with respect to some dominating measure, then Bayes’s rule gives the
posterior distribution of θ as

dΠ(θ| x) ∝ pθ(x) dΠ(θ) =
∑

i

λi pθ(x) dΠi(θ).

The posterior probability of the set Θi is

Π(Θi| x) =
λi

∫
Θi

pθ(x) dΠi(θ)∑
j λ j

∫
pθ(x) dΠ j(θ)

.

If we had to choose for one of the hypotheses Θi, then it would be natural to choose the one
with the highest posterior probability.

The comparison between a pair of models i and j is often summarized by the Bayes factor

BF(Θi,Θ j)(x) =

∫
Θi

pθ(x) dΠi(θ)∫
Θ j

pθ(x) dΠ j(θ)
.

The Bayes factor is precisely the quotient of the Bayesian marginal densities of the data
given models i and j, respectively. It is the likelihood ratio statistic for testing the two hy-
potheses in the Bayesian setup; it gives the most powerful test according to the Neyman-
Pearson theory. A large value of BF(Θi,Θ j) is an indication that model i gives a better fit to
the data. This explains that the Bayesian marginal density is also called “evidence”.

A proper comparison of the models should also take account of their prior probabilities
λi. Indeed, the quotient of the posterior probabilities of the models is

Π(Θi| x)
Π(Θ j| x)

=
λi

λ j
BF(Θi,Θ j)(x).

In words this reads: posterior odds is equal to prior odds times Bayes factor.
Bayesian model choice seems straightforward, but unfortunately there are many problems

with its implementation. The following examples illustrate that one should be careful with
models of different complexities, and that one should not use improper priors.
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Example 1.15 (Lindley’s paradox). Consider data consisting of a random sample X1, . . . , Xn

from a normal distribution with mean θ and variance 1. We wish to decide between the
hypotheses H0: θ = 0 and H1: θ , 0. The only possible prior under H0 is the Dirac measure
at 0. As a prior under H1 we choose a normal distribution with mean 0 and variance τ2, still
to be determined. The Bayes factor between the hypotheses is then given by∫ ∏n

i=1 ϕ(Xi − θ) ϕ(θ/τ)/τ dθ∏n
i=1 ϕ(Xi)

=
1

√
1 + nτ2

e
1
2 nX̄2/(1+(nτ2)−1).

For nτ2 ≫ 1 and a fixed observation this expression has the same order of magnitude as
τ−1n−1/2 exp(nX̄2/2).

A first observation is that the prior standard deviation τ plays a crucial role. A large value
of τ leads to a small Bayes factor and hence evidence in favor of the null hypothesis. Large
τ corresponds to giving more weight to bigger values of |θ| in the alternative hypothesis,
and apparently makes the alternative hypothesis less likely. As τ → ∞ the Bayes factor
even tends to zero, for any fixed values of the observations. This is usually not viewed as
an advantage, as larger values of τ specify greater uncertainty on the value of θ, yielding
uninformative priors.

For the Bayes factor to be larger than a threshold c ≥ 1 it is necessary that
√

n|X̄| >
√

2 log(cτ) + log n.

Thus the Bayes factor gives evidence for H1 only if
√

n|Xn| exceeds
√

log n (if τ > 1). On the
other hand, the usual test rejects H0 if

√
n|X̄n| > ξ1−α/2. For values between ξ1−α/2 and

√
log n

the frequentist and Bayesian conclusions will be different. The p-value 2
(
1−Φ(

√
n|X̄n|)

)
can

be very small even though the Bayes factor strongly favors H0.
If the observations are distributed according to a true parameter value θ1,n, then

√
nX̄ is

N(
√

nθ1,n, 1)-distributed and hence takes its values in the interval (
√

nθ1,n−Mn,
√

nθ1,n+Mn)
with probability tending to one, for any Mn → ∞. Then for values θ1,n such that

√
n|θ1,n| →

∞ slowly enough that
√

n|θ1,n| ≪
√

log n, the frequentist and Bayesian procedures make
different decisions with probability tending to one: the frequentist procedure rejects the null
hypothesis (correctly) as

√
n|X̄n| ≥

√
n|θ1,n| − Mn → ∞ and hence exceeds ξ1−α/2 with prob-

ability tending to one, whereas the Bayesian procedure does not reject the null hypothesis
(incorrectly) as

√
n|X̄n| ≤

√
n|θ1,n| + Mn ≪

√
log n with probability tending to 1. (For se-

quences with
√

log log n ≪
√

n|θ1,n| ≪
√

log n, the argument can be refined to an almost
sure statement, as

√
nX̄ will be in the interval as above almost surely as n → ∞ for Mn of

the order
√

log log n, by the law of the iterated logarithm.)
This phenomenon was apparently first noted by Jeffreys and later called a paradox by

Lindley. Since then it has been subject of much debate. That the Bayes factor may lead
to the opposite conclusion as simple frequentist statistical reasoning seems not necessarily
paradoxical, but it is certainly embarrassing to the Bayesian. One conclusion could be that
we should be careful in giving equal prior weights to models of different complexities, such
as the zero-dimensional null model and the one-dimensional alternative in the present case.
The data may not in all cases correct the prior bias to the more precise smaller model.

Example 1.16 (Improper priors). For an improper prior there is usually no natural norming
constant, in that cΠ is just as reasonable as Π, for any c > 0. For the posterior distribution
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this makes no difference as the multiplicative constant cancels from Bayes’s formula. How-
ever, in the posterior probability Π(Θi| x) when there are multiple models Θi, or the Bayes
factor between two models, the norming constants of the various models cancel only if they
are all identical. If the models or their priors are not comparable, then there may not be good
arguments for the relative sizes of the norming constants. It is therefore a common opinion
that improper priors should not be used in the case of multiple models, or at best are admis-
sible for parameters that are common to the models and a priori independent of the other
parameters, so that the norming constants of their priors cancel.

1.6 Decision theory

Suppose that one is required to choose an action or decision t from a set D leading to a loss
ℓ(θ, t) if θ ∈ Θ is the true state of the world, for a given function ℓ:Θ × D → [0,∞). One is
provided with data x that is generated from the measure Pθ, and is allowed to randomize the
action by using a number u that is independently generated from the uniform distribution
on [0, 1], and choose an action T (x, u), where T :X × [0, 1] → D is a given map.1 The risk
function of the procedure (or randomized decision function) T is defined as

θ 7→ Eθℓ
(
θ,T

)
=

∫ ∫ 1

0
ℓ
(
θ,T (x, u)

)
du dPθ(x),

and the Bayes risk of T for prior Π is the average risk∫
Eθℓ

(
θ,T

)
dΠ(θ) = Eℓ

(
ϑ,T (X,U)

)
.

To make these expressions well defined, we assume given a σ-field on D, and require that ℓ
and T are measurable maps.

The purpose is to find a procedure with small Bayes risk.

Example 1.17 (Estimation with quadratic loss). A possible loss function for Θ ⊂ Rd and
D = Rd is square loss ℓ(θ, t) = ∥θ − t∥2. The risk function of the randomized estimator T is
then its mean square error Eθ∥T − θ∥2, as a function of the parameter θ.

Given a procedure T , the procedure
∫ 1

0
T (x, u) du can be seen to have smaller risk, by

Jensen’s inequality, and hence randomization is not useful in this case. This is true more
generally for convex loss functions.

The risk function will typically be minimized by different procedures for different θ, and
then there will not be a uniformly optimal procedure. However, the Bayes risk reduces the
risk function to a number and there will usually be a procedure that minimizes the Bayes
risk. It suffices that the infimum of the Bayes risks over all procedures is assumed. The
minimizer is called the Bayes procedure.

1 The map (x, B) 7→ Pr
(
T (x,U) ∈ B

)
is a Markov kernel. Instead of maps T , one could also consider Markov

kernels from the observational space into the decision space as the possible “randomised decisions”. For a
Polish decision space this is no more general in the sense that any Markov kernel (x, B) 7→ Q(B| x) arises from
some T as considered here. We prefer the more concrete T notation, as it hides the randomisation and
simplifies formulas. See Lemma 1.25.
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The following theorem shows that the Bayes procedure can be found by minimizing the
posterior risk, given by, for Π(·| x) the posterior distribution of θ,

E
(
ℓ(ϑ,T )| X = x) =

∫ ∫ 1

0
ℓ
(
θ,T (x, u)

)
du dΠ(θ| x).

Theorem 1.18. Assume that there exists a procedure T0 such that T0(x,U) minimizes the
posterior risk at x over all procedures T , for every x. Then T0 is a Bayes procedure.

Proof The Bayes risk can be written in the form Eℓ
(
ϑ,T

)
=

∫
L(x,T ) dP(x), for L(x,T )

the posterior risk, and P the marginal distribution of X. Minimization of the integral on the
right is achieved by minimizing the integrand L(x,T ), for every x separately. □

Example 1.19 (Estimation with quadratic loss). For the quadratic loss function ℓ(θ, t) =
∥θ − t∥2 on Θ ⊆ Rd, the posterior risk of a nonrandomized procedure is∫ ∥∥∥T (x) − θ

∥∥∥2
dΠ(θ| x).

Minimization over all procedures T leads to the posterior mean T (x) =
∫
θ dΠ(θ| x). This

follows because µ 7→ E∥Y −µ∥2 is minimized by µ = EY , for any random vector Y; we apply
this to Y distributed according to Π(·| x).

Example 1.20 (Binomial distribution). Suppose the observation X is bin(n, θ)-distributed,
with n known and 0 ≤ θ ≤ 1 the success probability. A convenient class of prior distributions
on [0, 1] is the class of Beta-distributions, given by the densities, for α > 0 and β > 0,

π(θ) ∝ θα−1(1 − θ)β−1.

The (omitted) norming constant for this density is the beta-function B(α, β) =
∫ 1

0
θα−1(1 −

θ)β−1 dθ. By Bayes’s rule the posterior density is given by

π(θ| x) ∝
(
n
x

)
θx(1 − θ)n−xπ(θ) ∝ θx+α−1(1 − θ)n−x+β−1.

In other words: the a-posteriori distribution of θ is a Beta-distribution with parameters x+ α
and n − x + β. The posterior mean is

Tα,β(x) =
∫ 1

0
θ π(θ| x) dθ =

B(x + α + 1, n − x + β)
B(x + α, n − x + β)

=
x + α

n + α + β
.

Here we use that B(α, β) = Γ(α)Γ(β)/Γ(α + β) so that B(α + 1, β) = α/(α + β) B(α, β). For
every parameter (α, β) we find a different estimator. The “natural estimator” X/n is not a
Bayes estimator, but is obtained as a limit as (α, β)→ (0, 0).

Which of the estimators is best? None of the Bayes estimators is “wrong”, because each
one is optimal in terms of its own Bayes risk as criterion. The mean square errors of the
estimators can be computed as

Eθ(T − θ)2 = Eθ

( X + α
n + α + β

− θ
)2
=

varθ X
(n + α + β)2 +

( EθX + α
n + α + β

− θ
)2

=
θ2((α + β)2 − n

)
+ θ(n − 2α(α + β)

)
+ α2

(n + α + β)2 .
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Figure 1.3 Mean square error of the Bayes estimators Tα,β with α = β = 1
2

√
n

(constant), α = β = 0 (curved, solid), α =
√

n, β = 0 (dashed, linear), α = β = 1
(dashed).

Figure 1.3 shows the graphs of some of these functions. Every Bayes estimator is best for
some region of θ-values, but worse in other regions, and there is no absolutely best estimator.

Minimizing the Bayes risk entails minimizing a weighted average of the risk function,
with the weights determined by the prior distribution. Different prior distributions will give
different solutions. The complete class theorem shows that all procedures of interest are ob-
tained in this manner. The minimax theorem shows that the minimax risk is the maximum
over all Bayes risks. Unfortunately, neither of the two theorems is true in exactly this simple
form, but both require significant regularity conditions and/or a closure operation. The fol-
lowing are versions of these results that are compromises between generality and simplicity.

A randomized estimator T is called admissible if there is no randomized estimator T1

with Eθℓ(θ,T1) ≤ Eθℓ(θ,T ), for every θ ∈ Θ with strict inequality for at least one value of θ.
A loss function ℓ:Θ × D is called subcompact if for every θ and c ∈ R the set {t: ℓ(θ, t) ≤ c}
is either compact or the full space D.

Theorem 1.21 (Complete class theorem). Suppose that the measures Pθ permit densities
relative to a σ-finite measure on (X,X ), assume that the decision space (D,D) is Polish
with its Borel σ-field, and let the loss function ℓ be subcompact.

(i) If Θ is finite, then every admissible procedure is Bayes for some prior on Θ.
(ii) If (Θ,B) is a compact metric space with its Borel σ-field and every risk function
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Eθℓ(θ,T ) is continuous, then every admissible procedure is Bayes with respect to some
prior on (Θ,B).

(iii) For any Θ the risk function of any admissible procedure is the pointwise limit (on Θ) of
risk functions of a net of Bayes procedures for finitely discrete priors on Θ.

Theorem 1.22 (Minimax theorem). Under the conditions of the preceding theorem

sup
Π

inf
T

∫
Eθℓ(θ,T ) dΠ(θ) = inf

T
sup
θ∈Θ

Eθℓ(θ,T ),

where the first supremum is taken over all finitely discrete measures Π on Θ and the infima
are taken over all randomized estimators T .

Proofs of these results can be found in abstract form in Le Cam (1986) or Strasser (1985),
and in different forms in other books.

1.7 Complements
Theorem 1.23 (De Finetti’s theorem). If X1, X2, . . . are random variables with values in a Polish
measurable space (X,X ) such that (Xσ1 , . . . , Xσn ) and (X1, . . . , Xn) are equal in distribution for
every permutation (σ1, . . . , σn) of {1, . . . , n} and every n, then there exists a Markov kernel from
[0, 1] into (X,X ) and a probability measure Π on [0, 1] such that Pr

(
X1 ∈ A1, X2 ∈ A2, . . .)

)
=∫ 1

0
∏∞

i=1 Q(Ai| u) dΠ(u), for every Ai ∈X .

Lemma 1.24. If (x, B) 7→ Q(B| x) is a Markov kernel from a measurable space (X,X ) into a measur-
able space (Y,Y ) and P is a probability measure on (X,X ), then there exists a unique probability
measure R on (X × Y,X × Y ) such that R(A × B) =

∫
A Q(B| x) dP(x).

Lemma 1.25. For any Markov kernel (x, B) 7→ Q(B| x) from a measurable space (X,X ) into a Polish
space D there exists a measurable map T :X × [0, 1] → D such that Q(B| x) = Pr

(
T (x,U) ∈ B

)
, for

every x ∈ X, where U is a uniform variable.

Exercises
1.1 Consider the decision problem with decision space {0, 1} and loss function ℓ(θ, i) = ci1θ<Θi , for

given constants ci > 0 and a given partition Θ = Θ0 ∪ Θ1. Determine the Bayes procedure
relative to a given prior Π.

1.2 Suppose that V = V(X) is a sufficient statistic for θ. Show that the posterior distribution of θ
given X is the same as the posterior distribution of θ given V . [As a definition of sufficiency you
may use that there exists a regular version of the conditional distribution of X given V that does
not depend on θ.]

1.3 Suppose the vector X is normally distributed with unknown mean θ ∈ Rk and known covariance
matrix Σ. Show that the posterior distribution for θ relative to the prior Π = Nk(0,Λ) is the
normal distribution with mean (Σ−1 + Λ−1)−1Σ−1X and covariance matrix (Σ−1 + Λ−1)−1.

1.4 Suppose the data is a sample X1, . . . , Xn from the Poisson distribution with mean θ, and choose
the prior to have density π(θ) = e−θ. Find the posterior distribution. Find the posterior mean and
the posterior variance.

1.5 Given an improper prior Π let Θ1 ⊂ Θ2 ⊂ · · · be a sequence of subsets of the parameter set
with Θ = ∪iΘi and such that Π(Θi) < ∞, for every i. Assume that

∫
pθ(x) dΠ(θ) < ∞, for a

given statistical model with densities pθ. Show that the posterior distributions Πi(·| x) for the
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proper priors Π(· ∩Θi)/Π(Θi) converge to the posterior distribution for the improper prior Π in
the sense of Kullback-Leibler divergence:

∫
log

(
πi(θ| x)/π(θ| x)

)
dΠi(θ| x)→ 0, as i→ ∞.



2

Parametric Models

A statistical model is called parametric if it is finite-dimensional, as opposed to the “non-
parametric” infinite-dimensional models in a later chapter. This definition is empty without
a further specification of “dimension”, but there is no need to be very specific. The exam-
ples in this chapter concern models with parameter set Θ a subset of Rd and such that the
dependence θ 7→ Pθ is continuous in some way.

Many of the well-known statistical models are parametric. In this chapter we give exam-
ples of standard prior specifications. We also present the Bernstein-von Mises theorem on
the asymptotic behavior of posterior distributions for differentiable parametric models, and
discuss its consequences.

2.1 Conjugate priors

Despite its simplicity Bayes’s formula (1.4) may be hard to apply, because numerical eval-
uations, such as computing the posterior mean or a credible set, require integration over the
parameter space. One solution are simulation schemes, as discussed in Chapter 3. Another
way out is to use priors that make the computations easy.

Definition 2.1 (Conjugacy). A parametrized family (Πα:α ∈ A) of priors is called conjugate
with respect to a statistical model if the posterior distribution relative to a member of the
family is again a member of the family.

Example 2.2 (Dirichlet-Multinomial). In Example 1.20 the family of Beta distributions
was seen to be conjugate with respect to the binomial likelihood. A generalization to higher
dimensions is the family of Dirichlet distributions relative to the multinomial distribution.

A random vector ϑ = (ϑ1, . . . , ϑk) is said to possess a Dirichlet distribution with param-
eters k ∈ N and α1, . . . , αk > 0 if ϑ1 + · · · + ϑk = 1 and the vector (ϑ1, . . . , ϑk−1) of its first
k − 1 coordinates has Lebesgue density, for θi > 0 and

∑k−1
i=1 θi < 1,

(θ1, . . . , θk−1) 7→
Γ(α1 + · · · + αk)
Γ(α1) · · · Γ(αk)

θα1−1
1 θα2−1

2 · · · θαk−1−1
k−1 (1 − θ1 − · · · − θk−1)αk−1.

The full vector (ϑ1, . . . , ϑk) is restricted to the (k−1)-dimensional unit simplex in Rk and has
no density, but it is convenient to think of it as having a density proportional to θα1−1

1 · · · θαk−1
k

with respect to the “Lebesgue measure on the unit simplex”.
For k = 2 the vector (ϑ1, ϑ2) is completely described by a single coordinate, where

ϑ1 ∼ Be(α1, α2) and ϑ2 = 1− ϑ1 ∼ Be(α2, α1). Thus the Dirichlet distribution is a multivari-
ate generalization of the Beta distribution. The Dir(k; 1, . . . , 1)-distribution is the uniform

23
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distribution on the unit simplex. See Section 2.8.1 for more information on the Dirichlet
distribution.

The Dirichlet family is conjugate for data X following a multinomial distribution with
success parameter θ. Indeed if X = (X1, . . . , Xk) has density

pθ(x) =
(
n
x

)
θx1

1 θ
x2
2 · · · θ

xk
k , xi ∈ Z

+,
∑

i

xi = n,

and the prior is chosen to be Dir(k;α), then the posterior density satisfies

π(θ| x) ∝ θα1+x1−1
1 θα2+x2−1

2 · · · θαk+xk−1
k .

Thus the posterior distribution is Dir(k;α + x).
From the properties of the Dirichlet distribution it follows that the posterior mean is equal

to (α+X)/(n+ |α|), for |α| =
∑

i αi. For α→ 0 this tends to the maximum likelihood estimator
X/n.

Example 2.3 (Normal/Gamma-Gaussian). The likelihood of an i.i.d. sample X1, . . . , Xn

from the N(µ, σ2)-distribution is proportional to

(µ, σ) 7→
1
σn e−

∑n
i=1(Xi−µ)2/(2σ2) =

1
σn e−

1
2σ2

∑n
i=1 X2

i +
µ

σ2
∑n

i=1 Xi−
nµ2

2σ2 .

It follows that a conjugate prior density is of the form, for given constants γ1, γ2, γ3, γ4,

π(µ, σ) ∝
1
σγ1

e−
γ2
σ2 +

γ3µ

σ2 −
γ4µ

2

σ2 .

This depends on µ through a parabola in the exponent, in which we recognize a Gaussian
density with scale σ and mean and variance determined by the pair (γ3, γ4). For µ given σ
distributed according to N(ν, σ2λ), we have

π(µ|σ) =
1

σ
√

2πλ
e−(µ−ν)2/(2σ2λ).

If we choose (ν, λ) so that the parabola in the exponent matches the parabola in the exponent
of π(µ, σ), then we see that, for some γ5, γ6,

π(σ) =
π(µ, σ)
π(µ|σ)

∝
1
σγ5

e−
γ6
σ2 .

It can be verified that this is equivalent to 1/σ2 following a Gamma distribution with certain
parameters (α, β).

Thus the conjugate family for a normal sample with unknown mean and variance can
be conveniently described by the hierarchy 1/σ2 ∼ Γ(α, β) and µ|σ2 ∼ N(ν, σ2λ), for hyper
parameters α > 0, β > 0, ν ∈ R, λ > 0. The update formula for the posterior can be computed
to be, for x = (x1, . . . , xn),

1
σ2 | x ∼ Γ

(
α +

n
2
, β +

1
2

n∑
i=1

(xi − x̄)2 +
n(x̄ − ν)2

2nλ + 2

)
,

µ| x, σ ∼ N
(nλ(x̄ − ν)

nλ + 1
+ ν,

σ2λ

nλ + 1

)
.
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Choosing the prior for µ proportional to σ seems not easily defendable from a subjectivist
Bayesian point of view, but is often considered reasonable as σ measures the noise level of
the data. The posterior means are given by

E
( 1
σ2 | x

)
=

α + n/2
β +

∑n
i=1(xi − x̄)2/2 + n(x̄ − ν)2/(2nλ + 2)

,

E
(
µ| x

)
=

nλ(x̄ − ν)
nλ + 1

+ ν.

For ν = 0 and λ→ ∞ this reduces to the maximum likelihood estimators of 1/σ2 and µ.

Example 2.4 (Regression). The likelihood for observing a variable Y with the Nn(Xβ, σ2I)-
distribution, where X is a known and fixed (n × p)-matrix, β a vector in Rp and σ > 0,
is

pβ,σ(y) =
1

(2π)n/2σn e−∥y−Xβ∥2/(2σ2) =
1

(2π)n/2σn e−
∥y∥2

2σ2 +
βT

σ2 XT y− βT XT Xβ
2σ2 .

This is similar in structure as in Example 2.3, except that β is a vector and enters linearly and
through a quadratic form in the exponent. Similar reasoning shows that a conjugate prior is
given by 1/σ2 ∼ Γ(a, b) and β|σ ∼ Np(ν, σ2Λ), for hyper parameters a > 0, b > 0, ν ∈ Rp

and a positive-definite matrix Λ. The posterior distribution can be shown to take the form

1
σ2 |Y ∼ Γ

(
a +

n
2
, b + 1

2∥Y−Xν∥2 − 1
2 (Y−Xν)TX(XTX + Λ−1)−1XT(Y−Xν)

)
,

β|Y, σ ∼ N
(
(XTX + Λ−1)−1XT (Y−Xν) + ν, σ2(XTX + Λ−1)−1

)
.

For a, b → 0, ν = 0, and Λ−1 → 0, the posterior means of β and 1/σ2 tend to the maximum
likelihood (or least squares) estimators β̂ = (XT X)−1XT Y and n/S S res, where S S res = ∥Y −
Xβ̂∥2 is the residual sum of squares. (Use the decomposition ∥Y∥2 = ∥Y − Xβ̂∥2 + ∥Xβ̂∥2,
which follows from the fact that Xβ̂ is the orthogonal projection of Y onto the column space
of X.)

Since the regression matrix X is considered fixed, it can be used to construct the prior. The
Zellner g-prior, or just short, g-prior, uses β|σ, g ∼ N(ν, σ2g(XT X)−1), for a hyperparameter
g > 0. It is usually combined with the improper prior density π(σ) ∝ 1/σ, for σ, which can
be viewed as the limit of 1/σ2 ∼ Γ(a, b) as (a, b)→ 0. The posterior is then given by

1
σ2 |Y, g ∼ Γ

(n
2
,

S S res

2
+

(β̂ − ν)XT X(β̂ − ν)
2(g + 1)

)
,

β|Y, σ, g ∼ Np

(ν + β̂
g + 1

, σ2 g
g + 1

(XT X)−1
)
.

The hyper parameter g is fixed in these calculations, as giving it a prior destroys conjugacy.
It may be estimated by the empirical Bayes method, by maximizing the marginal likelihood.
Since the marginal likelihood has an interpretation only for a proper prior, we may compute
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this first for the situation that 1/σ2 ∼ Γ(a, b) as, setting ν = 0 for simplicity,

p(Y | g) =
∫ ∞

0

∫
un/2e−

1
2 u∥y−Xβ∥2

(2π)n/2

ua−1bae−bu

Γ(a)
up/2e−

1
2 uβT g−1XT Xβ

(2π)p/2(det g(XT X)−1)1/2 dβ du

=
baΓ(n/2 + a)
πn/2Γ(a)

(1 + g)n/2−p/2−a(
b(1 + g) + g∥Y − Xβ̂∥2 + ∥Y∥2

)n/2−a .

As b → 0 this tends to a limit, but as a → 0 the factor Γ(a) tends to infinity and the
expression approaches 0. This is usually solved by dropping the factor ba/Γ(a), and setting
the other appearances of a and b to zero.

The main motivation for Zellner’s prior appears to be that it leads to simple formulas,
which are reminiscent of least squares theory. However, the same computations are possible
for a general covariance matrix Λ.

The regression matrix X usually contains a column of 1s, to model a general intercept,
and then the other columns are taken orthogonal to this column. A variation is to model the
intercept coefficient by the improper Lebesgue prior, and equip only the other coefficients
with a Zellner g-prior. This leads to slightly different formulas.

See Liang et al. (2008) for further discussion.

Example 2.5 (Exponential families). A statistical model follows an exponential family if
it is given by densities relative to some σ-finite dominating measure of the form, for given
functions c,Q1, . . . ,Qk on Θ and h, τ1, . . . , τk on X and given k ∈ N,

pθ(x) = c(θ)h(x)e
∑k

j=1 Q j(θ)τ j(x).

Then a conjugate family of priors is given by the densities

πα,β(θ) ∝ c(θ)αe
∑k

j=1 Q j(θ)β j ,

indexed by parameters α and β = (β1, . . . , βk) such that the functions in the display are
integrable with respect to the dominating measure. The posterior is obtained by updating the
parameters from (α, β) to

(
α + 1, β + τ(x)

)
for τ(x) =

(
τ1(x), . . . , τk(x)

)
.

The distributions of a random sample X1, . . . , Xn from pθ form an exponential family
with the same functions Qi, but with the statistics

∑
i τ(xi) replacing the statistics τ(x). The

conjugacy is then retained with the update being from (α, β) to
(
α + n, β +

∑
i τ(xi)

)
.

Example 2.6 (Multivariate normal). The likelihood for a sample X1, . . . , Xn from the multivariate-
normal distribution Nd(µ,Σ) is given by

pµ,Σ(x1, . . . , xn) =
n∏

i=1

1
(2π)d/2(detΣ)1/2 e−

1
2 (xi−µ)TΣ−1(xi−µ)

∝
1

(detΣ)n/2 e−
1
2 tr(S xΣ

−1)+µTΣ−1nx̄− 1
2 nµTΣ−1µ,

for S x =
∑n

i=1 xixT
i . A conjugate prior for (µ,Σ) is given by

π(Σ) ∝
1

(detΣ)(a+d+1)/2 e−
1
2 tr(BΣ−1),

π(µ|Σ) =
1

τd(detΣ)1/2 e−
1
2 (µ−ν)TΣ−1(µ−ν)/τ2

.
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The first is the density of an inverse Wishart distribution with a degrees of freedom and
precision matrix B. The second corresponds to a multivariate normal density.

2.2 Default priors

There may be compelling reasons to choose a particular prior, but often there are none. For
the latter cases it is desirable to have a default prior, or objective prior, or non-informative
prior, terms that roughly mean the same, but do not have an accepted rigorous definition.

One might think that a “uniform prior” or “flat prior” (also called “vague prior” if the
parameter space is large), one that spreads its mass evenly over the parameter space, could
serve this purpose. However, such priors are often criticized for lacking invariance. One
argues that a parametrization θ 7→ Pθ is only a way to describe a statistical model (Pθ: θ ∈ Θ),
which is a set of possible laws for the data, whence the parameter itself has no intrinsic
meaning. As a consequence, “objectivity” cannot be independent of the statistical model.

To descirbe this more precisely, consider a bijection ϕ: H → Θ from some set H onto
Θ. Then the model is equally well described as the set of laws (Pθ: θ ∈ Θ) or the set of
laws (Pϕ(η): η ∈ H). Should “vagueness” then refer to a uniform prior for θ or for η? For
a nonlinear reparametrization only one of the two priors can be uniform. Indeed, if θ has
a density θ 7→ π(θ), then for a given diffeomorphism ϕ the variable η = ϕ−1(θ) will have
density π1 given by

π1(η) = π
(
ϕ(η)

)
| det ϕ′(η)|.

Unless the Jacobian | det ϕ′(η)| is constant, at most one of the two densities π or π1 can be
uniform.

This argument supposedly rules out the uniform measure as a prior for a fraction or suc-
cess probability θ in a binomial experiment on parameter space [0, 1], as for instance the
odds ratio θ/(1 − θ) or its logarithm also give natural parametrizations.

2.2.1 Group invariance

Some statistical models are invariant under the action of a group: to every element g of a
given group correspond measurable bijections ḡ:X→ X and g̃:Θ→ Θ on the sample space
and the parameter space such that ḡ(X) has law Pg̃(θ) if X has law Pθ.1 It is reasonable that,
given data ḡ(X), a statistician would form a posterior law for g̃(θ) that is the transformation
under the map g̃ of the posterior law for of θ given data X. In other words, it is reasonable
that the prior is chosen such that

Pr
(
g̃(ϑ) ∈ B| ḡ(X)

)
= Pr(ϑ ∈ B| X).

In words: the conditional law of g̃(ϑ) given ḡ(X) is the same as the conditional law of ϑ
given X. We also have that ḡ(X)| g̃(ϑ) = g̃(θ) is the same as ḡ(X)|ϑ = θ ∼ X|ϑ = g̃(θ), by the
invariance assumption, whence ḡ(X)| g̃(ϑ) ∼ X|ϑ. Thus it follows that

(
g̃(ϑ), ḡ(X)

)
and (ϑ, X)

1 So the pair (ḡ, g̃) refers to the element g of the group; a preciser notation would add the group element g as a
subscript to ḡ and g̃, and perhaps use different letters to denote the latter two maps, but the sloppy notation
seems the clearer one. Even sloppier would be to use the same letter g for the group element and the two
maps.
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must be equal in distribution, by Lemma 2.36. Consequently, the marginal distributions of
these pairs must be the same, and in particular g̃(ϑ) must be distributed as ϑ. We conclude
that the prior must be invariant under the group action.

The invariance principle is known to lead to reasonable solutions, but also known to rule
out many statistical procedures of interest. The preceding argument shows that it clearly
rules out many priors.

Another point of criticism is that many statistical models are not invariant. The following
two examples are important exceptions.

Example 2.7 (Location family). The statistical model corresponding to observing a random
sample from a density of the form pθ(x) = f (x−θ), for θ ∈ Rd and a fixed probability density
f on Rd, is invariant under the translation group on Rd. The group actions are given by the
shift maps (x1, . . . , xn) 7→ (x1 + g, . . . , xn + g) and θ 7→ θ + g. The only measures on the
parameter set Rd that are invariant for this group action are multiples of Lebesgue measure,
which are improper as priors.

Example 2.8 (Scale family). The statistical model corresponding to observing a random
sample from a density of the form pθ(x) = f (x/θ)/θ, for θ ∈ (0,∞) and a fixed probability
density f on R, is invariant under the multiplicative group on R+. The group actions are
given by the maps (x1, . . . , xn) 7→ (x1/g, . . . , xn/g) and θ 7→ θ/g, for g > 0. The only
measures on the parameter set (0,∞) that are invariant for this group action are the measures
with Lebesgue measure π(θ) ∝ 1/θ, which are improper as priors.

The groups in the two preceding examples are both locally compact topological groups.
The invariant measures on such a group are called Haar measure. Haar measure is finite and
gives rise to a proper prior (only) in the case that the group is compact. Although “invariant”
under the group action, Haar priors are not invariant under nonlinear reparametrizations, as
discussed previously. Real Bayesians seem not to like them.

Example 2.9 (Orthogonal group). The statistical model corresponding to observing a ran-
dom sample from a density of the form pθ(x) = f (θx), for θ:Rd → Rd an orthogonal linear
map and a fixed probability density f on Rd, is invariant under the orthogonal group on Rd.
The group actions are given by the maps (x1, . . . , xn) 7→ (gx1, . . . , gxn) and θ 7→ gθ, for g
an orthogonal matrix. The Haar measure on the orthogonal group is the only invariant prior
and it can be normalised to a probability measure.

2.2.2 Jeffreys priors

Recall that for a statistical model given by densities pθ that are smoothly parametrized by
θ ∈ Rd the gradient of the map θ 7→ log pθ(x) is known as the score function of the model,
and its covariance matrix is the Fisher information:

Iθ = Covθ(ℓ̇θ(X1)
)
, ℓ̇θ(x) =

∂

∂θ
log pθ(x).

Definition 2.10 (Jeffreys prior). If the model (Pθ: θ ∈ Θ) with parameter set Θ ⊂ Rd permits
finite Fisher information Iθ, the Jeffreys prior is defined by the Lebesgue density

π(θ) ∝
√

det Iθ.
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Even if the Fisher information is finite, it may be that the function θ 7→
√

det Iθ is not
integrable over the parameter set Θ. In that case, which is common, the Jeffreys prior is
improper.

In the Cramér-Rao theorem, or asymptotic estimation theory (e.g. van der Vaart (1998),
Chapter 8), the inverse of the Fisher information arises as the minimal variance or mean
square error of (unbiased) estimators of θ from data generated from pθ. If Iθ is large, then the
parameter is easy to estimate. Thus the Jeffreys prior weighs the parameters in accordance
to the intrinsic difficulty by which they can be estimated, putting more mass on parameter
values that are easy.

To give intuition for why the Jeffreys prior is “non-informative” this is usually rephrased
as follows. Because a large value of Iθ makes the data informative about θ, the Jeffreys
prior prefers parameters that make the data informative. If the data is informative, then it
will have strong influence when forming the posterior distribution and can easily overcome
the prior. Thus the role of the prior is diminished: the prior has less influence and hence is
uninformative.

Not every statistician is convinced by this reasoning.
Real Bayesians find another reason to dislike Jeffreys priors: they involve an expectation

(in the definition of the Fisher information). Because this is an average over the sample
space, this means that the Jeffreys prior “involves samples that were never observed”, and
does not satisfy the likelihood principle.2 See Exercise 2.5 for a concrete illustration.

Because the Fisher information is additive over independent observations, the Jeffreys
prior for a random sample from pθ is the same as for a single observation. Another desirable
property is invariance.

Lemma 2.11. The Jeffreys prior is equivariant under reparametrization: the Jeffreys prior
of η = ϕ−1(θ) for a smooth reparametrization is given by η 7→ π

(
ϕ(η)

)
| det ϕ′(η)| if π is the

Jeffreys prior of θ.

Proof By the chain rule the derivative of η 7→ log pϕ(η) is equal to ℓ̇T
ϕ(η)ϕ

′(η), where ϕ′(η)
is the derivative matrix of ϕ. Thus the score function of the densities η 7→ pϕ(η) is equal to
ϕ′(η)T ℓ̇ϕ(η) and the Fisher information matrix of this model is equal to ϕ′(η)T Iϕ(η)ϕ

′(η). (Note
that the score function is defined as a (d × 1)-vector, while the derivative matrix of the map
θ 7→ log pθ from Rd into R, which arises in the chain rule, is a (1 × d)-matrix.) Thus the
Jeffreys prior for η is proportional to the root of the determinant of this matrix, which is
(det Iϕ(η))1/2 | det ϕ′(η)|. This reduces to π

(
ϕ(η)

)
| det ϕ′(η)| if π is the Jeffreys prior for θ. □

Example 2.12 (Binomial). The score function and Fisher information for the binomial den-
sity pθ(x) =

(
n
x

)
θx(1 − θ)n−x are equal to

ℓ̇θ(x) =
x − nθ
θ(1 − θ)

, Iθ =
n

θ(1 − θ)
.

Thus the Jeffreys prior has density proportional to θ−1/2(1 − θ)−1/2. On the natural parameter

2 The likelihood principle says that if the observed likelihoods θ 7→ pθ(x) resulting from two possibly different
models are proportional, then the statistical inferences should be the same. In particular, only the observed
value of x of the data matters, not which other values could have been observed.
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space [0, 1], this is the Beta distribution with parameters (1/2, 1/2). Values of θ close to 0 or
1 receive much more prior weight than under the uniform measure.

Example 2.13 (Location-scale). The score function and Fisher information matrix of the
location-scale family pµ,σ(x) = f

(
(x − µ)/σ

)
/σ, for a fixed density f on R, are equal to

ℓ̇µ,σ(x) =
(

−( f ′/ f )
(
(x − µ)/σ

)
/σ

−1/σ − ( f ′/ f )
(
(x − µ)/σ

)
(x − µ)/σ2

)
,

Iµ,σ =
1
σ2

( ∫
( f ′/ f )2(x) f (x) dx

∫
x( f ′/ f )2(x) f (x) dx∫

x( f ′/ f )2(x) f (x) dx
∫ (

1 + x( f ′/ f )(x)
)2 f (x) dx

)
.

Thus the Jeffreys prior for (µ, σ) satisfies π(µ, σ) ∝ 1/σ2. For the natural parameter space
R × (0,∞), this prior is improper.

If we consider the scale parameter σ fixed, then the Jeffreys prior for µ is proportional to
1/σ, which is constant in µ and hence still improper for the natural parameter space R.

If we consider the location parameter µ fixed, then the Jeffreys prior for σ is also pro-
portional to 1/σ, and hence is still improper for the natural parameter space (0,∞) (at both
ends of the parameter space). It is often thought to be embarrassing that this distribution is
not the “marginal” of the Jeffreys prior for (µ, σ) jointly, which is proportional to 1/σ2. The
“marginal Jeffreys prior” is often considered more natural.

Example 2.14 (Regression). The score function and Fisher information matrix for the pa-
rameter (β, σ) of the linear regression model with one observation y from a Nn(Xβ, σ2I)-
distribution are

ℓ̇β,σ(y) =
(

XT (y − Xβ)/σ2

−n/σ + ∥y − Xβ∥2/σ3

)
, Iβ,σ =

1
σ2

(
XT X 0

0 2n

)
.

Therefore the joint Jeffreys prior is given by π(β, σ) ∝ 1/σ2.

2.2.3 *Reference priors

A reference prior is meant to be a prior such that the data is maximally informative, and
hence the prior is uninformative. It can be viewed as an attempt to abstract the intuition
behind the Jeffreys prior. Unfortunately, it is involved.3

Assume that the statistical model is given by densities pθ relative to someσ-finite measure
µ, so that the posterior distribution is given by Bayes’s rule, and hence has a density relative
to the prior. For ease of notation we write π(θ| x) and π(θ) for the posterior and prior densities
of θ relative to some dominating measure ν. Recall that in the Bayesian model the marginal
density of the observation X is given by pπ(x):=

∫
pθ(x) π(θ) dθ. In the following definition

it is helpful to write this as pπ (and not as p as before) to stress its dependence on the prior.
The following definition concerns a prior to be used with data X (which will often be

a vector), but the definition involves a random sample X(n) = (X1, . . . , Xn) of independent

3 The name appears to originate from the advice to perform a data analysis multiple times, with different priors,
including an uninformative prior as a “reference” to assess the influence of the other priors on the final
conclusion (Bernardo (1979)).
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replications Xi of X, where n will tend to infinity. For a given prior π, define

In(π) =
∫ ∫

π(θ| x(n)) log
π(θ| x(n))
π(θ)

dν(θ) pπ(x(n)) dµn(x(n)).

The inner integral is the Kullback-Leibler divergence between the posterior density π(·| x(n))
and the prior density π given the sample x(n) = (x1, . . . , xn) of observations from pθ. This
expression is always nonnegative, and zero if and only if these two densities are equal, and
may be viewed a measure of “distance” between the two densities. (See Complements. It is
called “divergence”, because it is not a mathematical distance.) The outer integral computes
the expectation of this divergence under the Bayesian marginal distribution of x(n).

For K ⊂ Θ, let ΠK be the renormalized restriction of the prior to K, given by Π(· ∩
K)/Π(K), and let πK its density.

Definition 2.15 (Reference prior). A density π is a reference prior for the statistical model
with densities pθ if

lim
n→∞

(
In(πK) − In(π̃K)

)
≥ 0,

for every compact K ⊂ Θ and every other prior density π̃ on Θ.

For multivariate parameters the preceding definition is sometimes replaced by a definition
that sequentially considers single coordinates conditionally on other coordinates. We omit
a discussion. The definition may also allow improper priors, provided the corresponding
posteriors are defined and the restrictions ΠK are proper. It is then also required that π and π̃
are permissible: the Kullback-Leibler divergence between the posteriors based on ΠK and Π
must tend to zero as the sets K increase to Θ, and the same for Π̃K and Π̃ (see Berger et al.
(2009)).

So a reference prior asymptotically maximizes the “distance” In(π) between posterior
and prior. The reasoning is that if the posterior is far from the prior, then the prior cannot
have been “informative” and hence was “objective”. That the distance is maximized “on the
average under pπ” and in an asymptotic sense is important, but does not make the intuition
easier to grasp.

For (θ, x(n)) 7→ γπ(θ, x(n)) = π(θ| x(n))pπ(x(n)) the joint density of (ϑ, X1, . . . , Xn) in the
Bayesian setup, the expected Kullback-Leibler divergence can also be rewritten in the form

In(π) =
∫ ∫

γπ(θ, x(n)) log
γπ(θ, x(n))
π(θ)pπ(x(n))

dν(θ) dµn(x(n)).

This exhibits In(π) as the Kullback-Leibler divergence between the joint distribution of
(ϑ, X1, . . . , Xn) and the product of the marginal distributions of ϑ and (X1, . . . , Xn). In in-
formation theory this is known as the mutual information, and interpreted as the “amount
of information shared by ϑ and (X1, . . . , Xn)”. The mutual information is a measure for de-
pendence between ϑ and (X1, . . . , Xn), large values meaning stronger dependence. Thus the
reference prior makes these variables maximally dependent, asymptotically. This does not
seem to yield a better intuition for the definition.

Still another motivation is that the reference prior is least favorable in a decision problem.
Suppose that the statistician is to choose a probability density q that is closest to pθ with



32 Parametric Models

respect to the (random) loss ℓ(θ, q) = log(pθ/q)(x). The risk function for this problem is
θ 7→

∫
pθ(x) log(pθ/q)(x) dµ(x), and the Bayes risk for the prior Π is∫ ∫

pθ(x) log
pθ(x)
q(x)

dµ(x) dΠ(θ) = −
∫

pπ(x) log q(x) dµ(x)

+

∫ ∫
pθ(x) log pθ(x) dµ(x) dΠ(θ).

The second term on the right does not depend on q, so that minimization with respect to q
entails minimizing the first term. The non-negativeness of the Kullback-Leibler divergence
implies that the minimizer is the marginal density q = pπ. The minimal risk attained by this
procedure is equal to∫ ∫

pθ(x) log
pθ(x)
pπ(x)

dµ(x) dΠ(θ) =
∫ ∫

π(θ| x) log
π(θ| x)
π(θ)

dν(θ) pπ(x) dµ(x),

in view of Bayes’s rule. When applied to the product density of n copies of pθ instead of pθ,
the right side is equal to In(π), the quantity that the reference prior is defined to maximize,
up to truncation to compact sets and taking the limit as n→ ∞. The reference prior can thus
be seen as a distribution that makes the minimal Bayes risk of the decision problem as large
as possible: it is nature’s choice of prior that is least favorable to the statistician.

It turns out that for smoothly parameterized models the Jeffreys prior is a reference prior.
We only give a heuristic derivation of this result, using an expansion of the likelihood from
the next section. A precise statement, with regularity conditions, can be found in Clarke
and Barron (1994), together with a proof that for finite parameter sets the uniform prior is a
reference prior. The paper Berger et al. (2009) discusses still other examples, of non-smooth
models.

Write p(n)
θ and p(n)

π for the joint density of (X1, . . . , Xn). Using the expansion (2.1), we find
that

p(n)
π

p(n)
θ

(X(n)) =
∫ n∏

i=1

pθ+h/
√

n

pθ
(Xi) π

(
θ +

h
√

n

) dh
nd/2

≈

∫
ehT∆n,θ−

1
2 hT Iθhπ(θ)

dh
nd/2 =

π(θ)
√

det Iθ

(2π)d/2

nd/2 e
1
2∆

T
n,θ I
−1
θ ∆n,θ .

See Theorem 2.22 below for precise conditions for this approximation. It follows that

Eθ log
p(n)
θ

p(n)
π

(X(n)) ≈ log
√

det Iθ
π(θ)

+
d
2

log
n

2π
− 1

2 Eθ∆
T
n,θI
−1
θ ∆n,θ.

Because the variables ∆n,θ are under θ asymptotically normally distributed with mean zero
and covariance matrix Iθ, the quadratic form ∆T

n,θI
−1
θ ∆n,θ is asymptotically chisquare dis-

tributed with d degrees of freedom, and hence its expectation ought to be close to d. Replac-
ing the last term of the preceding display by −d/2 and taking the integral with respect to Π,
yields

In(π) ≈
∫

log
√

det Iθ
π(θ)

dΠ(θ) +
d
2

log
n

2πe
.
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Figure 2.1 Posterior distribution for data from the binomial distribution with
n = 10, n = 25, and n = 100 (left to right) relative to a Beta prior with parameters
0.5 and 1. Each panel shows three realizations of the posterior density, based on
data generated according to success probability 1/3.

Non-negativeness of the Kullback-Leibler divergence shows that this is maximized for π(θ) ∝
√

det Iθ.
If the model were reparametrized as θ = ϕ(η) for a measurable bijection ϕ: H → Θ,

then we would form the risk measure, say In,1(π1), based on priors Π1 on H and likelihood
pϕ(η)(x). Then In,1(π1) = In(π) if Π = Π1 ◦ ϕ

−1 is the law of ϕ(η) if η ∼ Π1. Maximizing In,1

is equivalent to maximizing In, where the maximizers, the reference priors for η and θ, are
related by the relation Π = Π1 ◦ ϕ

−1. This means that the reference prior is invariant, at least
under transformations that map compact sets to compact sets.

2.3 Bernstein-von Mises theorem

The Bernstein-von Mises theorem is the main theoretical result on Bayesian methods for
parametric models. It asserts that the posterior distribution can be approximated by a normal
distribution as the sample size increases. This normal distribution has a fixed covariance,
but a random location, reflecting that a posterior distribution is a random probability distri-
bution, depending on the data. Figure 2.1 illustrates the theorem in the case of the binomial
distribution. Each panel shows multiple realizations of the posterior density, where the sam-
ple size increases from left to right. The shape of the density becomes more symmetric and
normal when the sample size increases, while the scale decreases in size. For fixed sample
size (in a single panel) the locations vary among the realizations, but the scale is roughly
constant. We shall see below that the scale decreases to zero (at the speed 1/

√
n), so that

in the limit as n → ∞ the posterior distributions contract to a Dirac measure; the normal
approximation works after rescaling the parameter. This is reminiscent of the behavior of
averages of samples of random variables, which tend to a constant (the mean) by the law of
large numbers, and tend to a normal distribution after rescaling by the central limit theorem.
By analogy the Bernstein-von Mises theorem is sometimes called the “Bayesian central limit
theorem”.

We first give a heuristic derivation of the theorem. Suppose that the data are a random
sample X1, . . . , Xn from a density pθ that depends smoothly on the parameter θ ∈ Θ and
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allows a Taylor expansion of the form, as h→ 0,

log
pθ+h

pθ
(x) = hT ℓ̇θ(x) + 1

2 hT ℓ̈θ(x)h + · · · .

Here ℓ̇θ(x) is the gradient of the log likelihood θ 7→ log pθ(x), and is known as the score
function of the model. Replacing h by h/

√
n and summing over the observations, we find

log
n∏

i=1

pθ+h/
√

n

pθ
(Xi) = hT∆n,θ −

1
2 hT In,θh + · · · , (2.1)

where

∆n,θ =
1
√

n

n∑
i=1

ℓ̇θ(Xi), In,θ = −
1
n

n∑
i=1

ℓ̈θ(Xi). (2.2)

It can be shown that the score function has mean zero (see Complements), so that the se-
quence ∆n,θ will tend (if θ is the true parameter) in distribution to a Gaussian variable with
mean zero and covariance the Fisher information Iθ = Covθ

(
ℓ̇θ(X1)

)
, by the central limit

theorem. Furthermore, by the law of large numbers the sequence In,θ will converge in prob-
ability to its expectation. It can be shown (see Complements) that this expectation is equal
to the Fisher information Iθ, which explains the notation In,θ. The remainder term in the
expansion (the dots) is a sum over n terms of the order (h/

√
n)3 and should therefore be

negligible.
We compare this to a statistical model with a single observation X from the N(h, I−1

θ )-
distribution, where h is an unknown parameter and the precision matrix Iθ is considered
fixed. If dN(µ,Σ) denotes the density of the normal distribution with mean µ and covariance
Σ, then by direct computation

log
dN(h, I−1

θ )
dN(0, I−1

θ )
(X) = hT IθX − 1

2 hT Iθh.

The right side is similar in form to the right side of (2.1), where ∆θ:= IθX has taken the place
of ∆n,θ, and Iθ the place of In,θ. In the model for X1, . . . , Xn the parameter h = 0 corresponds
to the parameter θ, and ∆n,θ was seen to be approximately N(0, Iθ)-distributed, which is also
the distribution of ∆θ under true parameter h = 0. Thus apart from having similar form the
two expansions also agree in a distributional sense. One therefore says that the sequence of
statistical models (Pn

θ+h/
√

n
: h ∈ Rd) converges to the models

(
N(h, I−1

θ ): h ∈ Rd), as n→ ∞.
We do not develop the theory of convergence of models here, but use the correspondence

for a heuristic derivation of the Bernstein-von Mises theorem. The posterior density of ϑ
given X1, . . . , Xn relative to a prior density π is given by

π(θ| X1, . . . , Xn) =
∏n

i=1 pθ(Xi) π(θ)∫ ∏n
i=1 pθ(Xi) π(θ) dθ

.

Typically, the distribution corresponding to this measure will shrink to the true parameter
value θ0, as n → ∞. To obtain a more interesting limit we rescale the parameter, and study
the sequence of posterior distributions of

√
n(ϑ − θ0), whose densities are given by

πn(h| X1, . . . , Xn) =
∏n

i=1 pθ0+h/
√

n(Xi) π(θ0 + h/
√

n)∫ ∏n
i=1 pθ0+h/

√
n(Xi) π(θ0 + h/

√
n) dh

.
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If the prior density π is continuous, then π(θ0 + h/
√

n) ≈ π(θ0), for large n, and π will cancel
from the right side. We can also divide both numerator and denominator by the “constant”∏n

i=1 pθ0 (Xi) to find that the posterior density is approximately given by∏n
i=1 pθ0+h/

√
n/pθ0 (Xi)∫ ∏n

i=1 pθ0+h/
√

n/pθ0 (Xi) dh
.

As we noted the likelihood ratio processes of the statistical models (Pn
θ0+h/

√
n
: h ∈ Rd) are

asymptotically similar to the likelihood ratio process of the normal statistical experiment(
N(h, I−1

θ0
): h ∈ Rd). Then we may expect the preceding display to be “asymptotically equiv-

alent in distribution” to

dN(h, I−1
θ0

)/dN(0, I−1
θ0

)(X)∫
dN(h, I−1

θ0
)/dN(0, I−1

θ0
)(X) dh

=
dN(h, I−1

θ0
)(X)∫

dN(h, I−1
θ0

)(X) dh
= dN(X, I−1

θ0
)(h).

Thus the sequence of rescaled posterior distributions should converge to the (random) nor-
mal distribution N(X, I−1

θ0
), as n → ∞. The expression in the middle of the display is pre-

cisely the posterior density for h based on an observation X from the N(h, I−1
θ0

)-distribution
relative to the (improper) Lebesgue prior. Thus we can also say heuristically that the pos-
terior distribution of

√
n(ϑ − θ0) tends to a posterior distribution in the “limit experiment”(

N(h, I−1
θ0

): h ∈ Rd), the one relative to the Lebesgue prior dh. Interestingly, when taking the
limit, the prior π in the original experiment has disappeared; in the asymptotic experiment
the prior is always Lebesgue measure.

We now give a rigorous formulation of the Bernstein-von Mises theorem. The smoothness
of the map θ 7→ pθ is essential, but it turns out that we can do with existence of a first
derivative in an appropriate sense, rather than assume three derivatives as in the preceding
heuristic discussion. We assume that for every θ in the interior of Θ ⊂ Rd, there exists a
vector-valued measurable function ℓ̇θ:X→ Rd such that, as h→ 0,∫ [

p1/2
θ+h − p1/2

θ −
1
2 hT ℓ̇θ p1/2

θ

]2
dµ = o

(
∥h∥2

)
. (2.3)

The function ℓ̇θ in (2.3) agrees with the score function in the heuristic discussion, because,
by the chain rule,

∂

∂θ
p1/2
θ =

1
2

( ∂
∂θ

log pθ
)

p1/2
θ .

We define the Fisher information from the function in (2.3) as Iθ = Covθ
(
ℓ̇θ(X1)

)
, and assume

that this matrix is nonsingular for every θ and that the map θ 7→ Iθ is continuous. Finally, we
assume that the parameter is identifiable, i.e. the map θ 7→ Pθ is one-to-one.

In the case that the parameter set Θ is not bounded we assume in addition that there exists
a sequence of uniformly consistent tests for testing the null hypothesis H0: θ = θ0 against the
alternative H1: θ < Θ0, for some compact neighborhood Θ0 ⊂ Θ of θ0. Recall that a test is
a measurable function of the observations taking values in the interval [0, 1]; in the present
context this means a measurable function ϕn:Xn → [0, 1]. The interpretation is that H0 is
rejected with probability ϕn(x) and hence the expectations Pn

θ0
ϕn and Pn

θ(1−ϕn) appearing in
the following theorem are the probabilities of errors of the first and second kinds of the tests.
It can be shown that for a compact parameter set Θ the required tests exist automatically
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under (2.3) and identifiability (see van der Vaart (1998), Chapters 6 and 7). The condition in
the theorem serves to extend to non-compact parameter sets.

The total variation norm between two probability measures P and Q is given by

∥P − Q∥TV = 2 sup
B

∣∣∣P(B) − Q(B)
∣∣∣ = ∫

|p − q| dν,

where the supremum is taken over all measurable sets B and p and q are densities of P and
Q relative to some measure ν (see Lemma 2.28).

Theorem 2.16 (Bernstein-von Mises). Suppose that for some compact neighborhood Θ0 ⊂

Θ of θ0, there exists a sequence of tests ϕn such that

Pn
θ0
ϕn → 0, sup

θ<Θ0

Pn
θ(1 − ϕn)→ 0. (2.4)

Furthermore, assume that (2.3) holds at every θ in the interior of Θ with nonsingular Fisher
information, and that the map θ 7→ Pθ is one-to-one. If θ0 is an inner point ofΘ and the prior
measure is absolutely continuous with a bounded density that is continuous and positive in
a neighborhood of θ0, then the corresponding posterior distributions satisfy∥∥∥∥Π(√n(ϑ − θ0) ∈ ·| X1, . . . , Xn

)
− Nd

(
I−1
θ0
∆n,θ0 , I

−1
θ0

)∥∥∥∥
TV

Pn
θ0
→ 0.

Here the sequence of variables ∆n,θ0 is defined in (2.2) and converges under θ0 in distribution
to a Nd(0, Iθ0 )-distribution.

Proof For a given sequence Mn → ∞, to be determined later in the proof, we consider
the posterior distribution of

√
n(ϑ − θ0) conditioned on ϑ to belong to Θn = {θ: ∥θ − θ0∥ <

Mn/
√

n}, given by

Πn
(
B| X(n)) =

∫
Θn∩(θ0+B/

√
n)

∏n
i=1(pθ/pθ0 )(Xi) dΠ(θ)∫

Θn

∏n
i=1(pθ/pθ0 )(Xi) dΠ(θ)

. (2.5)

The total variation distance between a probability distribution Q and its renormalized re-
striction Q(·|Θn) = Q(· ∩ Θn)/Q(Θn) to a set Θn is bounded above by 2Q(Θc

n). Therefore
it suffices to show that Π

(√
n(ϑ − θ0) ∈ Θc

n| X1, . . . , Xn
)
→ 0 in probability, and that the

measures in (2.5) approximate the Gaussian distribution in the theorem.
Let An be the event that

∫ ∏n
i=1(pθ/pθ0 )(Xi) dΠ(θ) ≥ n−d/2ϵn, for a given sequence ϵn → 0.

We prove below that the probability of the events An tends to one for any ϵn → 0. By Bayes’s
formula,

Π
(√

n(ϑ − θ0) ∈ Θc
n| X1, . . . , Xn

)
1An (1 − ϕn) ≤

∫
Θc

n

∏n
i=1(pθ/pθ0 )(Xi)(1 − ϕn) dΠ(θ)

n−d/2ϵn
,

where we leave off the argument (X1, . . . , Xn) of ϕn for ease of notation. The expectation of
the integrand on the right is equal to

∫∏
pθ0 (xi)>0

∏n
i=1 pθ(xi)(1− ϕn) ⊗ dµ(xi) ≤ Pn

θ(1− ϕn). By
Lemma 2.35 we can assume without loss of generality that the tests ϕn satisfy Pn

θ(1 − ϕn) ≤
e−cn(∥θ−θ0∥

2∧1), for every θ ∈ Θc
n. Then, by Fubini’s theorem, the expectation of the preceding
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display is bounded above by∫
∥θ−θ0∥>Mn/

√
n

e−cn(∥θ−θ∥2∧1) dΠ(θ)

n−d/2ϵn

≤ ϵ−1
n

∫
Mn<∥h∥<

√
n

e−c∥h∥2 ∥π∥∞ dh + nd/2ϵ−1
n

∫
∥θ−θ0∥≥1

e−cn dΠ(θ).

This tends to zero if ϵn tends to zero sufficiently slowly (relative to Mn).
Trivially, we also have Eθ0Π

(√
n(ϑ − θ0) ∈ Θc

n| X1, . . . , Xn)ϕn ≤ Pn
θ0
ϕn → 0. We are left to

prove that Pn
θ0

(An)→ 1 and that the measures in (2.5) approximate the Gaussian distribution
in the theorem.

Under condition (2.3) the log likelihood can be expanded as in (2.1) with a remainder
term that tends to zero (see Lemma 2.30). By replacing ∆n,θ as given in (2.2), if necessary,
by “truncated versions”, it is possible to ensure that (2.1) holds with random vectors ∆n,θ

that tend under θ to a Nd(0, I−1
θ )-distribution not only in the ordinary sense of distributional

convergence (which is always valid for the vectors in (2.2) by the central limit theorem), but
also in the sense of convergence of Laplace transforms: for every M:

sup
∥h∥<M

∣∣∣Eθe
hT∆n,θ−

1
2 hT Iθh − 1

∣∣∣→ 0.

See Lemma 2.32 in the Complements. Note that EehT∆θ−hT Iθh/2 = 1, for every h, when ∆θ is
a Nd(0, I−1

θ )-vector. By an extension of Scheffé’s lemma (see Lemma 2.38), it follows that
the sequence ehT∆n,θ−hT Iθh/2 is uniformly integrable. Similarly, by (2.1) the sequence of likeli-
hood ratios Ln:=

∏n
i=1(pθ+h/

√
n/pθ)(Xi) tends in distribution to ehT∆θ−hT Iθh/2, and, by Fubini’s

theorem,

EθLn =

∫
∏

pθ(xi)>0

n∏
i=1

pθ+h/
√

n(xi) ⊗ dµ(xi) =
(
1 − Pθ+h/

√
n(pθ = 0)

)n
→ 1,

as Pθ+h(pθ = 0) = o
(
∥h∥2

)
, as h → 0, by (2.3) with the integral restricted to the set {pθ = 0}.

Hence by Lemma 2.38 the sequence Ln is also uniformly integrable, whence (2.1) can be
strengthened to convergence in mean: for every h:

Eθ

∣∣∣∣ n∏
i=1

pθ+h/
√

n

pθ
(Xi) − ehT∆n,θ−

1
2 hT Iθh

∣∣∣∣→ 0.

By dominated convergence the integral with respect to h over the set {h ∈ B: ∥h∥ < M} also
tends to zero, uniformly in B, for every fixed M. Next, by Jensen’s inequality and Fubini’s
theorem, we obtain that

Eθ sup
B

∣∣∣∣∫
h∈B:∥h∥<M

n∏
i=1

pθ+h/
√

n

pθ
(Xi) dh −

∫
h∈B:∥h∥<M

ehT∆n,θ−
1
2 hT Iθh dh

∣∣∣∣→ 0.

Since this is true for every fixed M, there also exists M = Mn → ∞ such that the expression
at M = Mn also tends to zero.

By changing coordinates
√

n(θ− θ0) ↪→ h in the two integrals in the right side of (2.5) we
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can write this quotient in the form Yn(B)/Yn(Rd), for

Yn(B) =
∫

h∈B:∥h∥<Mn

n∏
i=1

pθ0+h/
√

n

pθ0

(Xi)
π(θ0 + h/

√
n)

π(θ0)
dh.

The quotient π(θ0 + h/
√

n)/π(θ0) tends to 1, uniformly in ∥h∥ ≤ Mn, provided Mn/
√

n→ 0.
We compare Yn(B) to Zn(B), given by

Zn(B) =
∫

h∈B:∥h∥<Mn

ehT∆n,θ0−
1
2 hT Iθ0 h dh.

For B = Rd and Mn = ∞ the integral on the right can be computed explicitly, using the
expression for a multivariate normal density. For finite Mn we have

Zn(Rd) =
(2π)d/2√

det Iθ0

e
1
2∆

T
n,θ0

I−1
θ0
∆n,θ0

(
1 − cn

)
, cn = ΦI−1

θ0
∆n,θ0 ,I

−1
θ0

(
h: ∥h∥ ≥ Mn

)
,

for Φµ,Σ the normal distribution with mean µ and covariance matrix Σ. For Mn → ∞ the
sequence cn tends in mean to 0, whence Zn(Rd) is bounded away from zero and tends in
distribution to a positive random variable. Then 0 ≤ Zn(B) ≤ Zn(Rd) is bounded, uniformly
in B, and we can conclude that supB

∣∣∣Yn(B) − Zn(B)
∣∣∣ → 0, in probability, by the preceding

paragraph, and also that supB |Yn(B)/Yn(Rd) − Zn(B)/Zn(Rd)| tends to zero, uniformly in B.
The quotient Zn(B)(1 − cn)/Zn(Rd) is equal to Nd(I−1

θ0
∆n,θ0 , I

−1
θ0

)
(
B ∩ {h: ∥h∥ < Mn}

)
, which

converges to Nd(I−1
θ0
∆n,θ0 , I

−1
θ0

)(B), uniformly in B. This completes the proof that the measures
(2.5) approximate the Gaussian distribution in the theorem in the total variation norm.

Finally the events An contain the events that Yn(Rd) ≥ cϵn, if c ≤ π(θ0 + h/
√

n)/π(θ0) for
every ∥h∥ < Mn. If ϵn → 0 their probability tends to one, as Yn(Rd) tends to a strictly positive
random variable. □

Under conditions somewhat stronger than imposed in the preceding theorem (see e.g.
van der Vaart (1998), Theorem 5.39), the maximum likelihood estimators θ̂n of θ satisfy

√
n(θ̂n − θ0) − I−1

θ0
∆n,θ0

Pn
θ0
→ 0. (2.6)

This motivates to restate the theorem in a different form.

Corollary 2.17. Under the conditions of the preceding theorem, for any estimators θ̂n that
satisfy (2.6), ∥∥∥∥Π(ϑ ∈ ·| X1, . . . , Xn

)
− Nd

(
θ̂n,

1
n

I−1
θ0

)∥∥∥∥
TV

Pn
θ0
→ 0.

Under regularity conditions this is true for the maximum likelihood estimators θ̂n.

Proof We can first replace the mean I−1
θ0
∆n,θ0 of the normal approximation in Theorem 2.16

by
√

n(θ̂n − θ0), using the fact that the total variation distance between two normal distri-
butions N(µ,Σ) and N(ν,Σ) with means µ and ν and equal nonsingular covariance matrix
Σ is bounded above by a multiple of ∥µ − ν∥ (with constant depending on Σ). Because it
is the supremum over all Borel sets, the total variation distance is invariant under shift-
ing and scaling: if Pµ,σ and Qµ,σ are the laws of σZ + µ if some variable Z has laws
P and Q, then ∥Pµ,σ − Qµ,σ∥ = ∥P − Q∥. We apply this to replace

√
n(ϑ − θ0) by ϑ in
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Π
(√

n(ϑ − θ0) ∈ ·| X1, . . . , Xn
)
, changing the location and scale of the approximating normal

distribution Nd
(√

n(θ̂n − θ0), I−1
θ0

)
simultaneously. □

2.4 Credible regions

An important consequence of the Bernstein-von Mises theorem is that credible sets are
asymptotic confidence sets: for parametric models Bayesian and frequentist inference are
asymptotically equivalent.

We consider the case of setting a confidence interval for a linear combination gTθ of the
parameters, for given g, for instance an individual coordinate θi. Then a natural Bayesian
credible interval would range between two quantiles of the posterior distribution of gTϑ

given X1, . . . , Xn. Denote the distribution function and quantile function of this posterior
distribution by

FgTϑ(y| x1, . . . , xn) = Π
(
θ: gTθ ≤ y| x1, . . . , xn

)
,

F−1
gTϑ(α| x1, . . . , xn) = inf

{
y: FgTϑ(y| x1, . . . , xn) ≥ α

}
.

The natural Bayesian credible interval of level 1 − 2α for gTθ is

Ĉn =
[
F−1

gTϑ

(
α| X1, . . . , Xn

)
, F−1

gTϑ

(
1 − α| x1, . . . , xn

)]
. (2.7)

We compare this to the usual Wald asymptotic confidence interval for gTθ. If θ̂n is a se-
quence of estimators satisfying (2.6), then the sequence

√
n
(
gT θ̂n − gTθ0

)
/(gT I−1

θ0
g)1/2 con-

verges under θ0 in distribution to a standard normal distribution. Therefore this variable is an
asymptotic pivot (i.e. its distribution is free of the parameter) and gives rise to the asymptotic
1 − 2α-confidence interval[

gT θ̂n + Φ
−1(α)

√
gT I−1

θ̂n
g

n
, gT θ̂n + Φ

−1(1 − α)

√
gT I−1

θ̂n
g

n

]
.

The following theorem shows that the credible and Wald intervals are asymptotically equiv-
alent.

Theorem 2.18. Under the conditions of Corollary 2.17, for any θ̂n satisfying (2.6), and
0 < α < 1,

F−1
gTϑ(α| X1, . . . , Xn) − gT θ̂n − Φ

−1(α)

√
gT I−1

θ̂n
g

n
= oPn

θ

( 1
√

n

)
.

Consequently, the frequentist coverage Prθ0

(
gTθ0 ∈ Ĉn

)
of the credible interval (2.7) tends to

1 − 2α, as n→ ∞.

Proof Because the total variation norm is a supremum over all Borel sets, the Bernstein-
von Mises theorem implies that

ϵ̂n:= sup
y

∣∣∣FgTϑ(y| X1, . . . , Xn) − Φ
(
(gT I−1

θ0
g/n)−1/2(y − gT θ̂n)

)∣∣∣ Pn
θ0
→ 0.

By the definition of a quantile function F−1 and right-continuity of a distribution function,
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we have F
(
F−1(α) − 1/n

)
≤ α ≤ F

(
F−1(α)

)
. Therefore, applying the preceding display with

ξ̂n = F−1
gTϑ

(α| X1, . . . , Xn) and this same value −1/n, we conclude that

Φ
(
(gT I−1

θ0
g/n)−1/2(ξ̂n − 1/n − gT θ̂n)

)
≤ α + ϵ̂n,

α − ϵ̂n ≤ Φ
(
(gT I−1

θ0
g/n)−1/2(ξ̂n − gT θ̂n)

)
.

We apply Φ−1 across these inequalities to obtain the first assertion of the theorem.
For the proof of the final assertion we note that θ0 falls to the left of Ĉn if and only if

gTθ0 < F−1
gTϑ

(α| X1, . . . , Xn). In view of the first assertion this is equivalent to

√
n(gT θ̂n − gTθ0) > −Φ−1(α)

√
gT I−1

θ̂n
g + oP(1).

The probability of this event tends to α by assumption (2.6). We combine this with a similar
argument for the right tail. □

Warning 2.19. It is tempting to think that under the conditions of the Bernstein-von Mises
theorem any data-based Ĉn that satisfiesΠ(Ĉn| X1, . . . , Xn) = 1−α almost surely, also satisfies
Pn
θ(θ ∈ Ĉn) → 1 − α, for every θ. In other words, that every credible set is automatically a

confidence set of asymptotically the same level. However, this is false (see Problem 2.11).
The sets in the preceding theorem are special in that they have a pivotal property.

2.5 Bayes estimators

The Bernstein-von Mises theorem shows that the posterior laws converge in distribution
to a Gaussian posterior law in total variation norm. As a consequence, by the continuous
mapping theorem for convergence in distribution any “location functional” that is continuous
relative to the total variation norm applied to the sequence of posterior laws will converge
to the same location functional applied to the limiting Gaussian posterior distribution. For
most choices this means to X, i.e. a N(0, I−1

θ0
)-distribution. For instance, this argument may

be applied to show that the posterior median is asymptotically normal (Problem 2.8).
Not every location functional is continuous relative to the total variation norm. For in-

stance, to show that the posterior mean is asymptotically normally distributed we need to do
extra work. Consider general Bayes estimators relative to a loss function ℓ:Rd → [0,∞): for
fixed X1, . . . , Xn let Tn minimize the posterior risk

t 7→

∫
ℓ
(√

n(t − θ)
) ∏n

i=1 pθ(Xi) dΠ(θ)∫ ∏n
i=1 pθ(Xi) dΠ(θ)

.

We assume that the integrals in the preceding display exist, for almost every sequence of
observations, and that Tn can be selected as a measurable function of the observations.

We restrict ourselves to loss functions with the property, for every M > 0,

sup
∥h∥≤M

ℓ(h) ≤ inf
∥h∥≥2M

ℓ(h),

with strict inequality for at least one M4. This is true, for instance, for loss functions of the
form ℓ(h) = ℓ0

(
∥h∥) for a nondecreasing function ℓ0: [0,∞) → [0,∞) that is not constant

4 The 2 is for convenience, any other number would do.
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on (0,∞). Furthermore, we suppose that ℓ grows at most polynomially: for some constant
p ≥ 0,

ℓ(h) ≤ 1 + ∥h∥p.

Theorem 2.20. Let the conditions of Theorem 2.16 hold, and let ℓ satisfy the conditions
as listed, for a p such that

∫
∥θ∥p dΠ(θ) < ∞. Then the sequence

√
n(Tn − θ0) converges

under θ0 in distribution to the minimizer of t 7→
∫
ℓ(t − h) dN(X, I−1

θ0
)(h), for X possessing

the N(0, I−1
θ0

)-distribution, provided that any two minimizers of this process coincide almost
surely. In particular, for a loss function of the form ℓ(h) = ℓ0

(
∥h∥) for a nonzero, nondecreas-

ing function ℓ0 the sequence
√

n(Tn − θ0) converges under θ0 to the N(0, I−1
θ0

)-distribution.

Proof See van der Vaart (1998), Theorem 10.8. The final assertion follows because t 7→∫
ℓ0

(
τ − X − h∥

)
dN(0,Σ)(h) is minimized at t − X = 0, by the symmetry of the normal

distribution. □

Example 2.21 (Posterior mean). The Bayes estimator for ℓ(x) = ∥x∥2 is the posterior mean

Tn =

∫
θ
∏n

i=1 pθ(Xi) π(θ) dθ∫ ∏n
i=1 pθ(Xi) π(θ) dθ

.

The sequence
√

n(Tn − θ0) converges in distribution to a Nd(0, I−1
θ0

)-distribution provided the
prior has a finite second moment (and the conditions of Theorem 2.16 hold).

By extending the argument, it can also be shown that the difference
√

n(Tn − θ̂n) between
a Bayes estimator and the centering θ̂n in the Bernstein-von Mises theorem tends to zero in
probability. As the latter can typically be taken equal to the maximum likelihood estimator, it
follows that Bayes and maximum likelihood estimators are often asymptotically equivalent.

2.6 Bayes factors and BIC

A Bayes factor between two models is defined as the quotient of the evidences of the models,
and can be used to select the model that best fits the data. For parametric models Bayes
factors turn out to be equivalent, in the large sample limit, to the maximum of the likelihood
penalized by a multiple of the dimension of the model. This connection leads to the Bayesian
information criterion for model selection.

We start with an expansion of the evidence for a given prior Π on a smooth d-dimensional
parametric model (Pθ: θ ∈ Θ).

Theorem 2.22 (Evidence). Under the conditions of Theorem 2.16,

log
∫ n∏

i=1

pθ
pθ0

(Xi) dΠ(θ) = −
d
2

log n + log
(2π)d/2π(θ0)√

det Iθ0

+
1
2
∆T

n,θ0
I−1
θ0
∆n,θ0 + oPn

θ0
(1).

Proof For a given sequence Mn → ∞, which will be determined later in the proof, we
partition the domain Rd of the integral into the sets Θn,1, Θn,2 and Θn,3, consisting of the
vectors θ such that ∥θ − θ0∥ is contained in [0,Mn/

√
n), or [Mn/

√
n, 1) or [1,∞). We write
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the left side of the theorem accordingly as log(Bn,1 + Bn,2 + Bn,3), for

Bn,i =

∫
Θn,i

n∏
i=1

pθ
pθ0

(Xi) dΠ(θ).

It suffices to show that there exists Mn → ∞ such that log Bn,1 has the expansion as given in
the right side of the theorem, while Bn,i/Bn,1 → 0 in probability, for both i = 2, 3.

By Lemma 2.35 there exist tests ϕn with Pn
θ0
ϕn → 0 and Pn

θ(1 − ϕn) ≤ e−cn(∥θ−θ0∥
2∧1), for

every θ ∈ Θn,2 ∪ Θn,3. Then Pn
θ0

1Bn,i/Bn,1>ϵϕn → 0, for every ϵ > 0, and

Pn
θ0

Bn,2(1 − ϕn) ≤
∫
Θn,2

e−cn∥θ−θ0∥
2

dΠ(θ) ≤ ∥π∥∞

∫
M≤∥h∥<

√
n

e−c∥h∥2 dh
nd/2 ,

Pn
θ0

Bn,3(1 − ϕn) ≤
∫
Θn,3

e−cn dΠ(θ) ≤ e−cn.

The second term tends to zero at exponential speed and hence is o(n−d/2), while the first term
is o(n−d/2) for any Mn → ∞. We show below that the sequence Bn,1nd/2 tends in probability
to a positive constant for a particular Mn → ∞, and can then conclude that Pn

θ0
1Bn,i/Bn,1>ϵ(1 −

ϕn) ≤ Pn
θ0

1Bn,i>ϵCnd/2 (1 − ϕn) + o(1)→ 0, for every ϵ > 0 and i = 2, 3, by Markov’s inequality.
Under condition (2.3) the log likelihood can be expanded as in (2.1) with a remainder

term that tends to zero (see Lemma 2.30). By replacing ∆n,θ as given in (2.2), if necessary,
by a “truncated version”, it is possible to ensure that (2.1) holds with random vectors ∆n,θ

that tend under θ to a Nd(0, I−1
θ )-distribution not only in the ordinary sense of distribution

convergence (which is always valid for the vectors in (2.2) by the central limit theorem), but
also in the sense of convergence of Laplace transforms: for every M:

sup
∥h∥<M

∣∣∣Eθe
hT∆n,θ−

1
2 hT Iθh − 1

∣∣∣→ 0.

See Lemma 2.32 in the Complements. (Note that EehT∆θ−hT Iθh/2 = 1, for every h, when ∆θ is
a Nd(0, I−1

θ )-vector.) By an extension of Scheffé’s lemma (see Lemma 2.38), it follows that
the sequence ehT∆n,θ−hT Iθh/2 is uniformly integrable. Similarly, by (2.1) the sequence of likeli-
hood ratios Ln:=

∏n
i=1(pθ+h/

√
n/pθ)(Xi) tends in distribution to ehT∆θ−hT Iθh/2, and, by Fubini’s

theorem,

EθLn =

∫
∏

pθ(xi)>0

n∏
i=1

pθ+h/
√

n(xi) ⊗ dµ(xi) =
(
1 − Pθ+h/

√
n(pθ = 0)

)n
→ 1,

as Pθ+h(pθ = 0) = o
(
∥h∥2

)
, as h → 0, by (2.3) with the integral restricted to the set {pθ = 0}.

Hence by Lemma 2.38 the sequence Ln is also uniformly integrable, whence (2.1) can be
strengthened to convergence in mean: for every h:

Eθ

∣∣∣∣ n∏
i=1

pθ+h/
√

n

pθ
(Xi) − ehT∆n,θ−

1
2 hT Iθh

∣∣∣∣→ 0.

By dominated convergence the integral with respect to h over the set {h: ∥h∥ < M} also tends
to zero. Next, by Jensen’s inequality and Fubini’s theorem, we obtain that

Eθ

∣∣∣∣∫
∥h∥<M

n∏
i=1

pθ+h/
√

n

pθ
(Xi) dh −

∫
∥h∥<M

ehT∆n,θ−
1
2 hT Iθh dh

∣∣∣∣→ 0.
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The second, Gaussian integral in this display can be explicitly evaluated using the formula
for a density of the multivariate distribution when M = ∞, and hence∫

∥h∥<M

n∏
i=1

pθ+h/
√

n

pθ
(Xi) dh =

(2π)d/2

√
det Iθ

e
1
2∆

T
n,θ I
−1
θ ∆n,θ

(
1−ΦI−1

θ ∆n,θ ,I−1
θ

(Bc
0,M)

)
+ rn,M,

for Φµ,Σ the normal distribution with mean µ and covariance matrix Σ and Bc
0,M the com-

plement of a ball of radius M around 0 ∈ Rd, and rn,M the discrepancy in the preceding
display. As n → ∞ followed by M → ∞, the term within brackets tends to 1 in mean and
Eθrn,M → 0. Then there also exists Mn → ∞ such that evaluated at M = Mn this remains
true when n→ ∞.

The final step is to note that by a change of variables

Bn,1 =

∫
∥h∥<Mn

n∏
i=1

pθ0+h/
√

n

pθ0

(Xi) π(θ0 + h/
√

n)
dh
nd/2 .

Here π(θ0 + h/
√

n) = π(θ0)
(
1 + o(1)

)
, uniformly in ∥h∥ < Mn, provided Mn ≪

√
n, which

we can assume without loss of generality. We can then equate the expression to π(θ0)/nd/2

times the left side of the preceding display evaluated at θ = θ0. □

It can be shown, under stronger conditions than in the preceding theorem, that the log like-
lihood ratio statistics for testing the null hypothesis H0: θ = θ0 are under the null hypothesis
asymptotic to the random part of the expansion in the preceding theorem (e.g. van der Vaart
(1998), Chapter 16):

sup
θ∈Θ

log
n∏

i=1

pθ
pθ0

(Xi) =
1
2
∆T

n,θ0
I−1
θ0
∆n,θ0 + oPn

θ0
(1).

This expansion is the justification for the usual chisquare approximation to the null distribu-
tion of twice the log likelihood ratio statistics. More interesting in the present context is that
combined the two approximations give

log
∫ n∏

i=1

pθ(Xi) dΠ(θ) = sup
θ∈Θ

log
n∏

i=1

pθ(Xi) −
d
2

log n + log
(2π)d/2π(θ0)√

det Iθ0

+ oPn
θ0

(1).

This Laplace expansion can also be obtained by expanding the integrand in the integral
on the left around its point of maximum

∏n
i=1 pθ̂(Xi), where θ̂ is the maximum likelihood

estimator. (For large n the integrand is determined by a small neighborhood of its point
of maximum, and can be approximated by replacing the logarithm of its integrand by a
quadratic Taylor expansion. The latter calculation is similar to the one in the preceding
proof, which uses an expansion around the true value of the parameter.)

The preceding display shows that the log evidence is equal to the maximum of the log
likelihood minus a remainder term. For n → ∞, the factor −(d/2) log n is the dominant part
of the remainder, the other part being fixed, and hence the remainder is negative and can be
viewed as a penalty that pulls down the maximum of the likelihood. Twice this penalty is
known as the BIC penalty, and the BIC criterion is defined by

BIC = −2
[
sup
θ∈Θ

log
n∏

i=1

pθ(Xi) −
d
2

log n
]
.
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Models of higher dimension d are penalized more, which is meant to compensate for the
bigger maximum over a bigger model. The maximum value of the penalized likelihood is
often used to compare the quality of competing models of different dimensions. The pre-
ceding approximation shows that the model with the largest penalized likelihood (and hence
smallest BIC-value) is, up to a constant, the same as the model with the largest evidence. 5

The real Bayesian will of course not need BIC, but use the evidence of a model directly,
through the comparison of models by Bayes factors. The following theorem shows that the
criterion is consistent in that given a finite set of models, it chooses the smallest model that
fits the data.

Suppose given a finite set of models (Pθ,k: θ ∈ Θk) indexed by parameter sets Θk ⊂ R
dk of

dimensions dk, for k running through some finite index set. Each model comes with a prior
Πk, and hence models k and l can be compared by their Bayes factor

BFn(Θk,Θl) =

∫ ∏n
i=1 pθ,k(Xi) dΠk(θ)∫ ∏n
i=1 pθ,l(Xi) dΠl(θ)

.

Theorem 2.23. Assume that the conditions of Theorem 2.16 hold for every of the finitely
many models (Pθ,k: ∈ Θk). If the observations are distributed according to a parameter θ0 ∈

Θk0 , then BFn(Θk,Θk0 )→ 0 in Pn
θ0,k0

-probability, for any k satisfying one of the two following
conditions:

(i) dk > dk0 and pθ0,k0 = pθk ,k, for some θk ∈ Θk.
(ii) there exists tests ϕn with Pn

θ0,k0
ϕn → 0 and supθ∈Θk

Pn
θ,k(1 − ϕn)→ 0.

Proof To prove assertion (i) we apply Theorem 2.22 to find that the logarithm of the Bayes
factors BFn(Θk,Θk0 )

P
→ 0 behave asymptotically as −(dk/2 − dk0/2) log n up to a term that is

bounded in probability. If dk > dk0 , then this tends to −∞.
For the proof of (ii) we note first that by Theorem 2.22 the probability of the events

An such that
∫ ∏n

i=1(pθ,k0/pθ0,k0 )(Xi) dΠk0 (θ) ≥ n−dk0 /2ϵn, tends to one, for an arbitrary given
ϵn → 0. On the events An the Bayes factors are bounded above by

ndk0 /2

ϵn

∫ n∏
i=1

pθ,k
pθ0,k0

(Xi) dΠk(θ),

and hence it suffices to show that this sequence tends to zero in probability. By Lemma 2.33,
the tests ϕn in (ii) can be improved, if necessary, to have error probabilities satisfying Pn

θ,k(1−
ϕn) ≤ e−cn, for every θ ∈ Θk, and some c > 0. The event Kn = {ϕn > 1/2} has probability
Pn
θ0,k0

(Kn) ≤ 2Pn
θ0,k0

ϕn → 0, while, by Fubini’s theorem,

Pn
θ0,k0

BFn(Θk,Θk0 )1Kc
n∩An ≤

ndk0 /2

ϵn

∫
Pn
θ,k(Kc

n) dΠk(θ) ≤ 2
ndk0 /2

ϵn
e−cn → 0,

since 1Kc
n ≤ 2(1 − ϕn). Thus on the events Kc

n ∩ An the Bayes factors tend to zero in mean.
An application of Markov’s inequality completes the proof. □

5 The “B” of BIC is for “Bayesian”, but it can also be viewed as the next letter following the “A” of the
competing AIC penalty (Akaike’s information criterion), which uses the penalty d instead of (d/2) log n. For
large n the BIC penalty pulls the likelihood of bigger models down more than the AIC penalty, with as a
result that BIC tends to choose smaller models than AIC.
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Part (i) of the theorem shows that the Bayes factors (or equivalently the BIC criterion)
will asymptotically choose the model with the smaller dimension if both models contain the
true distribution of the data. This is comforting; it implies for instance that no unnecessary
explanatory variables will be included in a regression model. Part (ii) is applicable in the
situation that the alternative model does not contain the true distribution of the data. In
that case the Bayes factors will still choose the correct model provided that there is some
procedure (the test ϕn) that is able to make the discrimination between the true parameter
and the alternative. The condition will typically be satisfied if the true distribution Pθ0,k0 is
at a positive distance from the model (Pθ,k: θ ∈ Θk), as is the case for most of the usual
models. The testing criterion rules out situations, where the true distribution Pθ0,k0 can be
approximated by distributions Pθ,k for θ approaching the boundary of the parameter set. We
discuss the construction of tests in Section 5.2.

*Uniform consistency

These positive assertions concern pointwise consistency, in that the probability of choosing
the correct model tends to one under a fixed true distribution. This convergence is not neces-
sarily uniform in the underlying law Pθ0,k0 , so that the size of the dataset needed for a correct
choice may be much larger for some laws than for other laws. The lack of uniformity was
illustrated in Example 1.15, where the Bayes factor made the wrong choice for parameter
sequences in the alternative model approaching the null model at the rate 1/

√
n. This is a

general phenomenon. Probability measures in a smooth parametric model (Pθ: θ ∈ Rk) at
parameter values separated by a distance of the order 1/

√
n are contiguous: for any events

An and any h ∈ Rk:

Pn
θ+h/

√
n(An)→ 1, if and only if Pn

θ(An)→ 1.

(See e.g. van der Vaart (1998), Chapters 6 and 7.) This implies that the Bayes factor (or
any other model selection method) will choose the same model when the true parameter is
θ+h/

√
n or θ if it consistently chooses some model under one of these parameters. However,

the parameters θ + h/
√

n may not belong to the same model as θ, as the perturbation h/
√

n
may point outside the model for θ, depending on h. In the latter case no method can choose
the correct model both when θ + h/

√
n or θ is the true parameter, as any method will choose

the same model in both cases. Thus there cannot be uniformity in the parameter for choosing
the correct model, not even locally, as θ and θ + h/

√
n are close.

2.7 DIC

For data X, a statistical model given by densities pθ, and a given prior, the deviance infor-
mation criterion (DIC) is defined as, for θ̄ = θ̄(X) = E(ϑ| X) the posterior mean,

DIC = −2
[
log pθ̄(X) − 2 E

(
log

pθ̄
pϑ

(X)| X
)]
.

One prefers the model that scores the smallest value on this criterion. The conditional expec-
tation on the right side refers to the variable ϑ given X, and hence is relative to the posterior
distribution.
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The first term of the criterion may be compared to the maximum of the likelihood, to
which it would reduce if the Bayes estimator θ̄ were replaced by the maximum likelihood
estimator. The second term is a penalty, which should prevent fitting a too large model. Both
θ̄ and the penalty are posterior means and hence may be approximated by an average over
a large sample of values generated from the posterior distribution. As explained in the next
chapter, generating such samples is a popular way of computing a posterior distribution.
This explains that the DIC has become standard output of computer packages for Bayesian
computation, and hence has gained some popularity.

We shall now show that DIC is closely related to the AIC criterion for model selection,
and hence possesses good properties.6

In the case that X = (X1, . . . , Xn) is a sample from a smoothly parametrized model θ 7→ pθ,
the difference between the Bayes estimator θ̄ and the maximum likelihood estimator θ̂ will
be negligible, in view of the Bernstein-von Mises theorem, and hence the leading term in
the DIC criterion will essentially be equal to the maximum of the likelihood. Furthermore,
the linear term in an expansion of the log likelihood ratio log pθ around θ̄ will approximately
vanish (as θ̄ ≈ θ̂), and it will certainly vanish after taking a conditional expectation given the
data, and hence in the penalty term we can make the approximation

log
pθ̄
pϑ

(X) ≈ 1
2 n(ϑ − θ̄)T Iθ(ϑ − θ̄),

where Iθ is the Fisher information in a single observation. By the Bernstein-von Mises theo-
rem ϑ is conditionally given X approximately normally distributed with mean θ̄ (of course!)
and covariance (nIθ)−1, whence n(ϑ− θ̄)T Iθ(ϑ− θ̄) is approximately chisquare distributed with
d degrees for freedom, for d the dimension of the parameter, still given X. This suggests that
the posterior expectation of the right side of the preceding display is approximately equal to
d/2. Thus the DIC penalty is close to d, and the DIC criterion is close to the AIC criterion,
which is given by

AIC = −2
[
sup
θ∈Θ

log pθ(X) − d
]
.

Relative to BIC this replaces the penalty d log n/2 by d and hence puts a smaller penalty
on higher dimensions (when log n > 2), and favors bigger models. AIC is typically not
consistent for model selection, but can be shown to yield a “best fitting model” in terms of
Kullback-Leibler distance.

*Misspecified model

If the true distribution of the data does not belong to the model, as can be expected for a
model that is too small, then the preceding derivation should be adapted, although the con-
clusion will be the same. The Bayesian and maximum likelihood estimators will still be
close, but in the expansion of the log likelihood the Fisher information matrix should be
replaced by the expectation J = −Pℓ̈θ∗ of the second derivative matrix of the likelihood
under the true distribution P, evaluated at a parameter θ∗ in the model for which K(p; pθ)
is minimal, which is known to be the asymptotic value of θ̄ (see Kleijn and van der Vaart

6 We have also seen it applied to choose between different priors. That appears not to be justifiable.
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(2012)). The matrix J does not necessarily reduce to the Fisher information. Furthermore,
the Bernstein-von Mises theorem should be adapted to the misspecified model as well, and
will now show that the posterior distribution is normal with mean θ̄ (of course!) and covari-
ance matrix n−1J. The same argument as before will show that the DIC penalty will again
be close to the dimension d of the model. This is not necessarily good news, as a different
penalty than AIC may be preferable for smaller models. 7

2.8 Complements

2.8.1 Finite-dimensional Dirichlet distribution
Definition 2.24 (Dirichlet distribution). The Dirichlet distribution Dir(k;α) with parameters k ∈ N −
{1} and α = (α1, . . . , αk) > 0 is the distribution of a vector (X1, . . . , Xk) such that

∑k
i=1 Xi = 1 and such

that (X1, . . . , Xk−1) has density

Γ(α1 + · · · + αk)
Γ(α1) · · · Γ(αk)

xα1−1
1 xα2−1

2 · · · xαk−1−1
k−1 (1 − x1 − · · · − xk−1)αk−1, xi > 0,

∑
i

xi < 1. (2.8)

The Dirichlet distribution with parameters k and α ≥ 0, where αi = 0 for i ∈ I ⊊ {1, . . . , k}, is the
distribution of the vector (X1, . . . , Xk) such that Xi = 0 for i ∈ I and such that (Xi: i < I) possesses a
lower-dimensional Dirichlet distribution, given by a density of the form (2.8).

Proposition 2.25 (Gamma representation). If Yi
ind
∼ Ga(αi, 1) for i = 1, . . . , k and Y:=

∑k
i=1 Yi, then

(Y1/Y, . . . ,Yk/Y) ∼ Dir(k;α1, . . . , αk), and is independent of Y.

Proof We may assume that all αi are positive. The Jacobian of the inverse of the transformation
(y1, . . . , yk) 7→ (y1/y, . . . , yk−1/y, y) =: (x1, . . . , xk−1, y) is given by yk−1. The density of the Ga(αi, 1)-
distribution is proportional to e−yi yαi−1

i . Therefore the joint density of (Y1/Y, . . . ,Yk−1/Y,Y) is, propor-
tional to,

e−yy|α|−1xα1−1
1 · · · xαk−1−1

k−1 (1 − x1 − · · · − xk−1)αk−1.

This factorizes into a Dirichlet density dimension k − 1 and the Ga(|α|, 1)-density of Y . □

Proposition 2.26 (Aggregation). If X ∼ Dir(k;α1, . . . , αk) and Z j =
∑

i∈I j
Xi for a given partition

I1, . . . , Im of {1, . . . , k}, then

(i) (Z1, . . . ,Zm) ∼ Dir(m; β1, . . . , βm), where β j =
∑

i∈I j
αi, for j = 1, . . . ,m.

(ii) (Xi/Z j: i ∈ I j) ind
∼ Dir(#I j;αi, i ∈ I j), for j = 1, . . . ,m.

(iii) (Z1, . . . ,Zm) and (Xi/Z j: i ∈ I j, j = 1, . . . ,m) are independent.

Conversely, if X is a random vector such that (i)–(iii) hold, for a given partition I1, . . . , Im and Z j =∑
i∈I j

Xi, then X ∼ Dir(k;α1, . . . , αk).

Proof In terms of the Gamma representation Xi = Yi/Y of Proposition 2.25 we have

Z j =

∑
i∈I j

Yi

Y
, and

Xi

Z j
=

Yi∑
i∈I j

Yi
.

7 Under misspecification the posterior mean and the maximum likelihood estimator will be approximately
normal with mean θ∗ and covariance matrix n−1 JK−1 J, for K = P(ℓ̇θ∗ℓ̇T

θ∗ ). This “sandwich” covariance matrix
causes trouble for the usual interpretation of the AIC penalty, which is sometimes solved by replacing the
penalty d by an estimate of tr(KJ−1), the so-called Takeuchi correction, TIC. See Claeskens and Hjort (2008),
Sections 2.5 and 3.5. In the discussion following formula (3.16) they appear to suggest that in the
misspecified case the DIC criterion is asymptotic to TIC, not AIC, but this is wrong?
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Because W j:=
∑

i∈I j
Yi

ind
∼ Ga(β j, 1) for j = 1, . . . ,m, and

∑
j W j = Y , the Dirichlet distributions in

(i) and (ii) are immediate from Proposition 2.25. The independence in (ii) is immediate from the
independence of the groups (Yi: i ∈ I j), for j = 1, . . . ,m. By Proposition 2.25 W j is independent of
(Yi/W j: i ∈ I j), for every j, whence by the independence of the groups the variables W j, (Yi/W j: i ∈ I j),
for j = 1, . . . ,m, are jointly independent. Then (iii) follows, because (Xi/Z j: i ∈ I j, j = 1, . . . ,m) is a
function of (Yi/W j: i ∈ I j, j = 1, . . . ,m) and (Z1, . . . ,Zm) is a function of (W j: j = 1, . . . ,m).

The converse also follows from the Gamma representation. □

Proposition 2.27 (Moments). If X ∼ Dir(k;α1, . . . , αk), then Xi ∼ Be(αi, |α|−αi), where |α| =
∑k

i=1 αi.
In particular,

E(Xi) =
αi

|α|
, var(Xi) =

αi(|α| − αi)
(|α|2(|α| + 1))

.

Furthermore, cov(Xi, X j) = −αiα j/(|α|2(|α| + 1)) and, with r = r1 + · · · + rk,

E(Xr1
1 · · · X

rk
k ) =

Γ(α1 + r1) · · · Γ(αk + rk)
Γ(α1) · · · Γ(αk)

×
Γ(|α|)
Γ(|α| + r)

. (2.9)

In particular, if r1, . . . , rk ∈ N, then the expression in (2.9) is equal to α[r1]
1 · · ·α[rk]

k /|α|[r], where
x[m] = x(x + 1) · · · (x + m − 1), m ∈ N, stands for the ascending factorial.

Proof The first assertion follows from Proposition 2.26 by taking m = 2, Ii = {i}, I2 = I \ {i}, for
I = {1, . . . , k}. Next the expressions for expectation and variance follow by the properties of the beta
distribution.

For the second assertion, we take m = 2, I1 = {i, j} and I2 = I \ I1 in Proposition 2.26 to see that
Xi + X j ∼ Be(αi + α j, |α| − αi − α j). This gives var(Xi + X j) = (αi + α j)(|α| − αi − α j)/

(
|α|2(|α| + 1)

)
,

and allows to obtain the expression for the covariance from the identity 2 cov(Xi, X j) = var(Xi + X j)−
var(Xi) − var(X j).

For the derivation of (2.9), observe that the mixed moment is the ratio of two Dirichlet forms with
parameters (α1 + r1, . . . , αk + rk) and (α1, . . . , αk). □

2.8.2 Distances
Let P and Q be probability measures on the measurable space (X,X ), having densities p and q with
respect to some σ-finite measure µ. Three measures of discrepancy between P and Q are

K(p; q) =
∫

log
p
q

dP, Kullback-Leibler divergence,

∥P − Q∥TV = sup
B∈X

∣∣∣P(B) − Q(B)
∣∣∣, total variation distance,

h(p, q) =
(∫

(
√

p −
√

q)2 dµ
)1/2

, Hellinger distance.

In the definition of K(p; q) the logarithm log(p/q) is understood to be ∞ if p > 0 = q; thus K(p; q) =
∞ if P(q = 0) > 0.

Lemma 2.28. For any probability measures P and Q:

(i) h2(p, q) ≤ K(p; q).
(ii) ∥P − Q∥TV = 2

∫
|p − q| dµ.

(iii) ∥P − Q∥2TV ≤ 16K(p; q).
(iv) ∥P − Q∥TV ≤ 4h(p; q) ≤ 2

√
2∥P − Q∥1/2TV .
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Proof (i). Because log x ≤ 2(
√

x − 1), for every x ≥ 0, we have that
∫

log(q/p) dP ≤ 2
∫

(
√

q/p −
1) dP = 2

∫ √
pq − 2 = −h2(p, q).

(ii). For any measurable set B we have P(B) − Q(B) =
∫

B(p − q) dµ ≤
∫

p>q(p − q) dµ. Furthermore,

since
∫

(p − q) dµ = 0, we have
∫

p>q(p − q) dµ =
∫

p<q(q − p) dµ, while the sum of these integral is∫
|p − q| dµ.
(iv). The first inequality follows from (ii) and the Cauchy-Schwarz inequality applied to

∫
|p −

q| dµ =
∫
|
√

p −
√

q|(
√

p +
√

q) dµ. The second inequality follows from (
√

x −
√

y)2 ≤ |x − y|, for
every x, y ≥ 0.

(iii). This follows by combining (iv) and (i). (A preciser proof can improve on the constant 16.) □

2.8.3 Local asymptotic normality
Lemma 2.29. If (pθ: θ ∈ Θ ⊂ Rd) are probability densities that satisfy (2.3), then

∫
ℓ̇θpθ dµ = 0 and∫

∥ℓ̇θ∥
2 pθ dµ < ∞.

Proof Equation (2.3) entails that the difference (p1/2
θ+h − p1/2

θ )/h tends to 1
2 ℓ̇θp1/2

θ in L2(µ), as h→ 0.
This implies that p1/2

θ+h − p1/2
θ → 0 and hence p1/2

θ+h + p1/2
θ → 2p1/2

θ . Then

0 =
∫

pθ+h − pθ
h

dµ =
∫ p1/2

θ+h − p1/2
θ

h
(p1/2
θ+h + p1/2

θ ) dµ→
∫

1
2 ℓ̇θp1/2

θ 2p1/2
θ dµ =

∫
ℓ̇θpθ dµ.

The second assertion is a consequence of the fact that (p1/2
θ+h − p1/2

θ )/h is in L2(µ) for every h, which
implies that also its limit 1

2 ℓ̇θp1/2
θ is contained in this space. □

Lemma 2.30. If (pθ: θ ∈ Θ ⊂ Rd) are probability densities that satisfy (2.3), then, for Iθ = Pθ(ℓ̇θ ℓ̇T
θ ),

log
n∏

i=1

pθ+h/
√

n

pθ
(Xi) =

1
√

n

n∑
i=1

hT ℓ̇θ(Xi) − 1
2 hT Iθh + oPn

θ
(1).

Proof See van der Vaart (1998), Theorem 7.2. □

Lemma 2.31. If θ 7→ pθ(x) is twice continuously differentiable, for every x, with derivatives ℓ̇θ(x) and
ℓ̈θ(x) whose norms are for every θ bounded by functions x 7→ L1(x) and x 7→ L2(x) with PθL2

1 < ∞

and PθL2 < ∞, then (2.3) holds and −
∫
ℓ̈θpθ dµ = Pθ(ℓ̇θ ℓ̇T

θ ).

Proof For a proof (under weaker conditions) that (2.3) holds, see Lemma 7.6 in van der Vaart (1998).
The equality can be proved by differentiating the identity

∫
ℓ̇θpθ dµ = 0, which itself follows from

differentiating the identity
∫

pθ dµ = 1, or from Lemma 2.29. □

Lemma 2.32. If ∆n are random vectors with ∆n ⇝ Nd(0, J), then there exists Mn → ∞ such that
∆n1∥∆n∥≤Mn − ∆n → 0 and, for every C > 0,

sup
∥h∥<C

∣∣∣EehT∆n1∥∆n∥≤Mn−hT Jh/2 − 1
∣∣∣→ 0.

Proof The first property is automatic for any Mn → ∞, since Pr
(
∥∆n∥ > Mn

)
≤ Pr

(
∥∆n∥ > M

)
→

Pr
(
∥∆∥ > M

)
, for a Gaussian variable ∆, for any M. Because the limit becomes arbitrarily small if M

is large enough, we can conclude that the probability that ∆n and its truncation coincide tends to 1, for
any Mn → ∞.

To construct Mn with the second property define a(M,C, n) to be the expression in the display
with Mn replaced by M. Since the vectors ∆n1∥∆n∥≤M tend in distribution to the truncated Gaus-
sian vector ∆1∥∆∥≤M , for any fixed M as n → ∞, the exponential functions x 7→ exp(hT x) are
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uniformly bounded and uniformly equicontinuous on compact sets, it follows that a(M,C, n) →
sup∥h∥<C |E exp(hT∆1∥∆∥≤M − hT Jh/2) − 1|, as n → ∞ by the portmanteau lemma for weak con-
vergence, for every fixed (M,C). Next, as M → ∞ this tends to zero, for every fixed C. One can then
show that there exist Mn → ∞ and Cn → ∞ such that a(Mn,Cn, n)→ 0. □

2.8.4 Tests
Lemma 2.33. If there exist tests ϕn such that supθ∈Θ0

Pn
θϕn → 0 and supθ∈Θ1

Pn
θ(1 − ϕn) → 0, for

given fixed sets Θ0 and Θ1 and a given statistical model, then there exist tests ψn and c > 0 such that
supθ∈Θ0

Pn
θϕn ≤ e−cn and supθ∈Θ1

Pn
θ(1 − ϕn) ≤ e−cn.

Proof Fix k large enough such that Pk
θ0
ϕk and Pk

θ1
(1−ϕk) are smaller than 1/4 for every θ0 ∈ Θ0 and

θ1 ∈ Θ1. Let n = mk + r for 0 ≤ r < k, and define Yn,1, . . . ,Yn,m as ϕk applied in turn to X1, . . . , Xk, to
Xk+1, . . . , X2k, etcetera. Let Ȳm be their average and then define ψn = 1{Ȳm ≥ 1/2}. Since EθY j ≥ 3/4
for every θ ∈ Θ1 and every j, Hoeffding’s inequality, Lemma 2.34, implies that

Pn
θ(1 − ψn) = Prθ(Ȳm ≤ 1/2) ≤ e−2m( 1

2−
3
4 )2
≤ e−m/8.

Since m is proportional to n, this gives the desired exponential decay. Since EθY j ≤ 1/4, for every
θ ∈ Θ0, the expectations Pn

θψn are similarly bounded for θ ∈ Θ0. □

Lemma 2.34 (Hoeffding). For any independent random variables Y1, . . . ,Yn such that a ≤ Yi ≤ b for
every i, and any y > 0,

P
(
Ȳn − EȲn ≥ y

)
≤ e−2ny2/(b−a)2

.

Proof By Markov’s inequality applied to the variable ehn(Ȳn−EȲn), for h > 0 to be chosen later, we
obtain

P
( n∑

i=1

(Yi − EYi) ≥ y
)
≤ e−hnyE

n∏
i=1

eh(Yi−EYi).

By independence of the Yi the order of expectation and product on the right side can be swapped. By
convexity of the exponential function ehY ≤ ((b − Y)eha + (Y − a)ehb)/(b − a) whenever a ≤ Y ≤ b,
whence, by taking expectation,

EehY ≤ eha b − EY
b − a

+ ehb EY − a
b − a

= eg(ξ),

where g(ξ) = log(1 − p + peξ) − pξ, for ξ = (b − a)h and p = (EY − a)/(b − a).
Now g(0) = 0, g′(0) = 0 and g′′(ξ) = (1− p)peξ/(1− p+ peξ)2 ≤ 1

4 for all ξ, so that a second order
Taylor’s expansion gives g(ξ) ≤ ξ2/8. Combining this with the preceding displays, we obtain, for any
h > 0,

P
( n∑

i=1

(Yi − EYi) ≥ y
)
≤ exp(−hny + h2n(b − a)2).

The result follows upon choosing h = 4y/(b − a)2. □

Lemma 2.35. Under the conditions of Theorem 2.16, there exists for every Mn → ∞ a sequence of
tests ϕn and a constant c > 0 such that, for every sufficiently large n and every ∥θ − θ0∥ ≥ Mn/

√
n,

Pn
θ0
ϕn → 0, Pn

θ(1 − ϕn) ≤ e−cn
(
∥θ−θ0∥

2∧1
)
.
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Proof We construct two sequences of tests, which “work” for the ranges Mn/
√

n ≤ ∥θ − θ0∥ ≤ ϵ and
∥θ−θ0∥ > ϵ, respectively, and a given ϵ > 0. Then the ϕn of the lemma can be defined as the maximum
of the two sequences.

First consider the range Mn/
√

n ≤ ∥θ − θ0∥ ≤ ϵ. Let ℓ̇L
θ0

be the score function truncated to the
interval [−L, L]. By the dominated convergence theorem, Pθ0 ℓ̇

L
θ0
ℓ̇T
θ0
→ Iθ0 as L → ∞. Hence, there

exists L > 0 such that the matrix Pθ0 ℓ̇
L
θ0
ℓ̇T
θ0

is nonsingular. Fix such an L and define

ωn = 1
{∥∥∥(Pn − Pθ0 )ℓ̇L

θ0

∥∥∥ ≥ √
Mn/n

}
.

By the central limit theorem, Pn
θ0
ωn → 0, so that ωn satisfies the first requirement. By the triangle

inequality, ∥∥∥(Pn − Pθ)ℓ̇L
θ0

∥∥∥ ≥ ∥∥∥(Pθ0 − Pθ)ℓ̇L
θ0

∥∥∥ − ∥∥∥(Pn − Pθ0 )ℓ̇L
θ0

∥∥∥.
Since Pθ ℓ̇L

θ0
− Pθ0 ℓ̇

L
θ0
= (Pθ0 ℓ̇

L
θ0
ℓ̇T
θ0
+ o(1)

)
(θ − θ0), by the differentiability (2.3) of the model, the first

term on the right is bounded below by c∥θ− θ0∥ for some c > 0, for every θ that is sufficiently close to
θ0, say for ∥θ − θ0∥ < ϵ and a sufficiently small ϵ. If ωn = 0, then the second term is bounded below
by
√

Mn/n. Consequently, for every c∥θ− θ0∥ ≥ 2
√

Mn/n, and hence for every ∥θ− θ0∥ ≥ Mn/
√

n and
every sufficiently large n,

Pn
θ(1 − ωn) ≤ Prθ

(∥∥∥(Pn − Pθ)ℓ̇L
θ0

∥∥∥ ≥ 1
2 c∥θ − θ0∥

)
≤ e−Cn∥θ−θ0∥

2
,

by Hoeffding’s inequality, Lemma 2.34, for a sufficiently small constant C.
Next, consider the range ∥θ − θ0∥ > ϵ for a fixed ϵ > 0. By assumption (2.4) there exist uniformly

consistent tests ϕn of θ0 versus the complement of some compact neighborhood Θ0 of θ0. It can be
shown that under assumption (2.3) and identifiability of the model, there automatically exists such a
test for any neighborhood Θ0 of θ0, in particular for Θ0 = {θ: ∥θ − θ0∥ ≤ ϵ} (see van der Vaart (1998),
pages 144-145.) By Lemma 2.33 applied with Θ0 = {θ0} and Θ1 = {θ: ∥θ − θ0∥ > ϵ} there also exists
tests with exponential error probabilities. □

2.8.5 Miscellaneous results
Lemma 2.36. If (Xi,Yi) are random vectors (i = 1, 2) such that the conditional distributions Xi|Yi = y
and Yi| Xi = x possess regular versions that do not depend on i and are given by densities relative to
σ-finite measures, then (X1,Y1) and (X2,Y2) are identically distributed.

Proof If pi(x| y) and pi(y| x) are densities of the conditional distributions and pi(x) and pi(y) are
marginal densities (with the usual abuse of notation that the arguments reveal which density is which),
then by Bayes’s formula pi(x| y)/pi(y| x) = pi(x)/pi(y). By assumption the left side is the same for i =
1, 2. We conclude that p1(x)p2(y) = p2(x)p1(y). Integrate with respect to y to see that p1(x) = p2(x),
or: X1 ∼ X2. Together with the equality of the conditional distributions this gives equality of the joint
distributions. □

A sequence of random variables Zn is said to be uniformly integrable if supn E|Zn|1|Zn |≥M → 0, as
M → ∞. This is weaker than domination of the variables (|Zn| ≤ Z for all n) by an integrable variable
(and also does not require the variables to be defined on the same probability space), but is exactly
what is needed for convergence in mean (i.e. E|Zn − Z| → 0).

Lemma 2.37. A sequence of integrable random variables Zn converges in mean to a random variable
Z if and only if the sequence Zn is uniformly integrable and converges in probability to Z.

Proof See e.g. Bauer (1981), Theorem 2.12.4. Alternatively, the lemma may be proved using the
dominated convergence theorem. □
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Lemma 2.38 (Scheffé’s theorem). Let Zn be a sequence of integrable random variables such that
lim sup E|Zn| ≤ E|Z| for an integrable random variable Z.

(i) If all variables are defined on the same probability space and Zn
P
→ Z, then E|Zn − Z| → 0.

(ii) If Zn ≥ 0 and Zn ⇝ Z, then the sequence Zn is uniformly integrable.

Proof (i). Since 0 ≤ |Zn|+ |Z|−|Zn−Z| → 2|Z| in probability, Fatou’s lemma gives that lim inf E
(
|Zn|+

|Z| − |Zn − Z|
)
≥ 2E|Z|. The liminf is also bounded above by 2E|Z| − lim sup E|Zn − Z|, by assumption.

By combining these inequalities we conclude that lim sup E|Zn − Z| ≤ 0.
(ii). Uniform integrability and the assumption lim sup E|Zn| ≤ E|Z| depend only on the marginal

distributions of the Zn and Z. Thus it suffices to prove the assertion for some sequence Zn and Z with
the same distributions. We may choose Zn = F−1

n (U) and Z = F−1(U), for Fn and F the distribution
functions of the original Zn and Z, and U a uniform variable. This sequence satisfies the assumption
of (i) and hence converges in mean. Then it is uniformly integrable by Lemma 2.37. □

Exercises
2.1 Find a conjugate prior family for X1, . . . , Xn a sample from the Poisson distribution with param-

eter θ.
2.2 Derive the updating formula for the posterior distribution for the Gaussian location-scale family

given in Example 2.3.
2.3 Show that the marginal density for Y in the regression model Y | β, σ ∼ Nn(Xβ, σ2I) with prior

1/σ2 ∼ Γ(a, b) and β|σ ∼ Np(0, σ2Λ) is given by

baΓ(n/2 + a)
(2π)n/2Γ(a)

(
b + 1

2 ∥Y∥
2 − 1

2 YT X(XT X + Λ−1)−1XT Y
)−n/2+a(

det(XT X + Λ−1)Λ
)1/2 .

2.4 Specialize the formula in the preceding exercise to the special cases of

• the g-prior Λ = g(XT X)−1;
• the adapted g-prior in which the first column of X is the vector with entries only 1, the

remaining columns are orthogonal to this column, and Λ1,1 → ∞, Λ>1,>1 = g(XT
>1X>1)−1,

and the remaining Λi, j are zero.

2.5 Find the Jeffreys prior for the success parameter in a negative-binomial distribution with fixed
number of required successes. [The likelihoods of the negative-binomial and binomial distribu-
tions for the same observation x are proportional, but the Jeffreys priors are different. Bayesians
consider this a violation of the likelihood principle according to which proportional likelihoods
should give the same inference.]

2.6 Compute the total variation norm between two univariate normal distributions with different
means and unit variance.

2.7 Let X1, . . . , Xn be the k-dimensional normal distribution with mean θ and covariance matrix
the identity, and choose as prior Π = N(0,Λ) for some nonsingular matrix Λ. Show by direct
computation that the Bernstein-von Mises theorem is true in this case.

2.8 Suppose that θ is one-dimensional. Show, using Theorem 2.16, that the median Mn of the poste-
rior distribution satisfies that

√
n(Mn − θ0) converges in distribution to a N(0, I−1

θ0
)-distribution.

2.9 Suppose that, in the case of a one-dimensional parameter, we use the loss function ℓ(h) =
1(−1,2)(h). Find the limit distribution of the corresponding Bayes point estimator, assuming that
the conditions of the Bernstein-von Mises theorem hold.

2.10 A credible ball around the posterior mean θ̂n takes the form {θ: ∥θ − θ̂n∥ ≤ r̂n}, for r̂n defined by
Π
(
θ: ∥θ − θ̂n∥ ≤ r̂n

)
= 1 − α. Show that under the conditions of Theorem 2.16 the confidence
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level of a credible ball tends to 1 − α, as n → ∞. Assume that the prior has a finite second
moment.

2.11 Suppose that the Bernstein-von Mises theorem holds for the one-dimensional parameter θ, with
Fisher information equal to 1. Define the sets Ĉn as (−∞, θ̂n + ξα/

√
n) if θ̂n < 0 and as (θ̂n −

ξα/
√

n,∞) if θ̂n ≥ 0. Show that:

(a) Π(Ĉn| X1, . . . , Xn)→ 1 − α.
(b) Pn

0(0 ∈ Ĉn)→ 1 − 2α.

Conclude that not every credible set is a confidence set of the same asymptotic level.
2.12 Derive the formulas for (1/σ2)|Y and β|Y, σ in Example 2.4.
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Bayesian Computation

Given an observation x of a variable with density pθ and a prior density π, the posterior
density π(θ| x) is proportional to

pθ(x)π(θ).

In most cases it is easy to compute this number, because it is directly related to the speci-
fications of model and prior. However, to compute a posterior mean or a posterior credible
region we must also evaluate the proportionality constant: the integral of the preceding dis-
play relative to θ, for fixed x. Except in special cases, for instance a prior that is conjugate
with respect to the statistical model, this could be cumbersome. The lack of analytical ex-
pressions for the posterior distribution in general cases has hampered the popularity of Bayes
estimation for many years. It is simply not attractive to have to select a prior density on the
basis that the computations are easy.

Stochastic approximation methods allow to overcome this difficulty. We focus on evalu-
ating integrals of the type

∫
Θ

f (θ) dΠ(θ| x), for some given measurable function f :Θ 7→ R.
The idea is to generate a sample of values θ1, θ2, ..., θn with the property

1
n

n∑
i=1

f (θi)
a.s.
→

∫
Θ

f (θ) dΠ(θ| x).

By the law of large numbers this is certainly the case if the values θ1, θ2, ..., are i.i.d. from
the posterior distribution, but it is rarely practical to simulate such variables. Instead one
simulates dependent values θ1, θ2, ...,, forming a Markov chain. Markov Chain Monte Carlo
(MCMC) was developed in image analysis and statistical physics since the 1960s, and con-
sists of simulating values from a Markov chain with equilibrium distribution approximately
equal to the posterior distribution.

In this chapter we introduce the most popular MCMC algorithms, and investigate their
approximation properties. We start with a review of Markov chains and their ergodic prop-
erties. Next we discuss a general MCMC algorithm, the Metropolis Hastings (MH) algo-
rithm, with special cases the independent MH and the random walk MH. This algorithm is
very generally applicable, but may have a slow rate of convergence, in particular to approxi-
mate complex distributions. More efficient methods can be constructed by exploiting specific
properties of the target density. We discuss the slice sampler, the Gibbs sampler and Hamil-
tonian MCMC as examples. We also discuss the variational Bayes method, which cuts down
on computational cost, by targetting an approximation to the posterior distribution. Simu-
lating from mixture distributions, as arising in model selection problems, requires special

54
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techniques, in particular if the components possess different dimensions. This is explained
in the section on reversible jump MCMC.

In all cases our goal will be to simulate from a given target density or distribution. In the
Bayesian setup this would be the posterior distribution, for fixed data, but in this chapter
we use the notation π and Π for the target density and distribution from which we wish
to simulate, not showing the dependence on the data. Thus, in this chapter Π denotes the
posterior, not the prior. We also denote the underlying sample space by Y, with elements y
rather than θ.

For more details on Markov chains we refer to Meyn and Tweedie (2012), and for a longer
introduction to MCMC techniques, and other sampling algorithms, to, for instance, Robert
and Casella (2004).

3.1 Brief introduction to Markov chains

A Markov chain is a sequence of random variables Y1,Y2, ... with values in a measurable
space (Y,Y ) with the Markov property: for every measurable set B and y1, y2, ..., yn ∈ Y:

Pr(Yn+1 ∈ B|Yn = yn,Yn−1 = yn−1, ...,Y1 = y1) = Pr(Yn+1 ∈ B|Yn = yn).

The right side of this equation is a Markov kernel in the sense of Definition 1.1, and is also
called transition kernel in this context. The measurable space (Y,Y ) is the state space of
the chain, which we shall assume to be a Polish space with Borel σ-field to be sure that
conditional distributions are well defined.

In this chapter we consider only time homogeneous Markov chains, for which the transi-
tion kernel is independent of n. The evolution of the chain is then completely described by
the starting value and the transition kernel Q, defined by, for y ∈ Y, n ∈ N, and B ∈ Y ,

Q(y, B) = Pr(Yn+1 ∈ B|Yn = y).

This kernel may be given by a transition density q relative to a σ-finite measure µ on (Y,Y )
in that

Q(y, B) =
∫

B
q(y, z) dµ(z), B ∈ Y .

The function q is assumed to be jointly measurable in its two arguments, and z 7→ q(y, z) is
a probability density, for every ∈ Y.1

Example 3.1. The AR(1) model Yn = θYn−1+εn, with εn
iid
∼ N(0, σ2) independent of a given

starting value Y0, is a time-homogeneous Markov chain with transition kernel Q(y, B) =
Pr(Z + θy ∈ B), with Z ∼ N(0, σ2).

A Markov chain with transition kernel Q is called ψ-irreducible, for a given nondegener-
ate measure ψ on the state space of the chain, if for every measurable set B with ψ(B) > 0
and every y ∈ Y there exists a time point n such that Qn(y, B) > 0. This means that from
every possible starting point y ∈ Y, every set B of positive ψ-measure can be reached with

1 The notation q(z| y) would show that the latter function is a conditional density, but in this chapter we use the
notation q(y, z), which better expresses the order in a “transition” from y to z.
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positive probability. The arbitrariness of the starting point means that the chain does not par-
tition into separate pieces. The irreducibility measure ψ is not unique, but it can be shown
(see Meyn and Tweedie (2012), Proposition 4.2.2) that there is a maximal one, in the sense
that it dominates any other such measure in the sense of absolute continuity. In the following
ψ will always refer to this maximal measure. 2

Just having a positive probability of visiting a set is a weak sense of connection. For good
long term behavior the chain must also visit sets often enough. We measure this by the count
of the total number of visits to a measurable set B:

ηB =

∞∑
n=1

1Yn∈B.

The Markov chain (Yn) is called recurrent if it is ψ-irreducible and E(ηB|Y0 = y) = ∞, for
every set B with ψ(B) > 0 and every y ∈ B. The chain is called Harris recurrent if, moreover,
P(ηB = ∞|Y0 = y) = 1, for every set B with ψ(B) > 0 and every y ∈ B. Thus the chain is
recurrent or Harris recurrent if the expected number of returns to a set B is infinite, or the
number of returns is infinite almost surely, for every set B of positive ψ-measure, whenever
the chain is started somewhere in B. Harris recurrence is of course (much) stronger than
recurrence.

A probability distribution Π is called a stationary distribution for Q if, for every measur-
able set B, ∫

Y

Q(y, B) dΠ(y) = Π(B).

This implies that, if Y1 ∼ Π, then Y2 ∼ Π, and so on. If Q allows a transition density q and Π
a density π relative to some σ-finite measure µ, then this is equivalent to, for µ-almost every
z ∈ Y, ∫

Y

q(y, z) π(y) dµ(y) = π(z).

A stationary, ψ-irreducible Markov chain is called positive Harris recurrent if it is Harris
recurrent and its transition kernel possesses a stationary distribution.

We shall construct and generate Markov chains with a given stationary distribution, in
order to estimate the latter distribution. Typically it will be impossible to generate the starting
value Y1 from the stationary distribution and the chain will not be stationary, but we still use
the empirical distribution of Y1, . . . ,Yn as an estimate of the stationary distribution Π. This
is justified by the following version of the law of large numbers.

Theorem 3.2 (Ergodic theorem). If the Markov chain Y1,Y2, . . . is Harris recurrent and its
transition kernel has stationary probability distributionΠ, then for everyΠ-integrable f and
n→ ∞,

1
n

n∑
i=1

f (Yi)→
∫

f dΠ, a.s..

2 For this maximal irreducibility measure ψ, a set B with ψ(B) = 0 has the property that the set of y such that
Qn(y, B) > 0 for some n has ψ measure zero. Thus a set B with ψ(B) = 0 can be reached only from a null set
of starting points. We note that in Meyn and Tweedie (2012) the notation ψ always refers to a maximal
irreducibility measure, while the notation ϕ is used for a general measure.
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Proof See Meyn and Tweedie (2012), Theorem 12.1.7. We note that “positive Harris re-
current” in this reference means “Harris recurrent and admits a stationary probability mea-
sure”. □

A sequence of random variables Y1,Y2, . . . that satisfies the law of large numbers in the
theorem (for every bounded measurable function f and some distribution Π) is called er-
godic. The practical use of the theorem is that an average over Y1,Y2, . . . ,Yn, for a large n,
can be used to approximate a (posterior) mean. The theorem generalizes the ordinary strong
law of large numbers, in that an i.i.d. sequence of variables Y1,Y2, . . . is a Harris recurrent
Markov chain with its marginal law as stationary distribution. It can also be proved that
the averages n−1 ∑n

i=1 f (Yi) of any strictly stationary sequence Y1,Y2, . . . of variables with
E| f (Y1)| < ∞ tends almost surely to a limit (Birkhoff-Khinchin ergodic theorem), but in
general the limit will be a random variable. In the special case that this variable is degener-
ate (for every f ), the sequence is called ergodic. So a Harris recurrent Markov chain which
has a stationary (probability) distribution is ergodic.

The averages may converge even if the individual variables Yn are far from distributed
according to the stationary distribution. However, even when the starting value Y1 is not
drawn from the stationary distribution, we may hope that the marginal distributions of the
Yn approach stationarity for large n. This “ergodicity of the Markov chain” is often true, but
only under the additional assumption of aperiodicity, which prevents cycling of the chain
between certain subsets of the state space in a periodic way. This somewhat involved concept
is defined in terms of “small sets”, as follows.

With Q1 = Q the kernel determining one transition, the n-transition kernel is given by the
recursion formula

Qn(y, B) =
∫
Y

Qn−1(z, B) Q(y, dz).

By the Markov property it is easily derived that Yn|Y0 = y ∼ Qn(y, ·), for every n. We wish
to find conditions so that for large n the distributions Qn(y, ·) closely resemble the stationary
distribution, for any starting point y of the chain. The Markov chain with transition kernel
(y, B) 7→ Q(y, B) is called ergodic if

lim
n→∞

∥∥∥Qn(y, ·) − Π(·)
∥∥∥

TV
= 0, for all y ∈ Y. (3.1)

This property does not show how many iterations are needed to come close to the target
distribution. In general this depends on the particular chain and the starting point, and is
a complicated matter. Exponentially fast convergence is desirable. The Markov chain with
transition kernel (y, B) 7→ Q(y, B) is called geometrically ergodic if there exists a constant
r > 1 such that

∞∑
n=1

rn∥Qn(y, ·) − Π(·)∥TV < ∞, for all y ∈ Y.

This implies that ∥Qn(y, ·)−Π(·)∥TV tends to zero exponentially fast for every y, but the speed
need not be uniform in y. The Markov chain is called uniformly ergodic if

lim
n→∞

sup
y∈Y

∥∥∥Qn(y, ·) − Π(·)
∥∥∥

TV
= 0.
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This definition does not explicitly require a rate of convergence, but the theorem below
shows that the speed is automatically exponentially fast, so that uniform ergodicity is stronger
than geometric ergodicity.

An atom of the Markov chain (Yn) is a measurable set C ⊂ Y such that there exists a
measure ν with Q(y, B) = ν(B), for every y ∈ C and B ∈ Y . Thus from any starting point
y ∈ C the chain moves in an identical manner, to a point picked from the measure ν. An
atom C in a ψ-irreducible chain is called accessible if ψ(C) > 0. Accessible atoms can be
thought of as counterparts in a general Markov chain of the states/atoms of a Markov chain
with countable state space. They are helpful to analyze long term behavior, as every time the
chain enters an atom, it starts “from the beginning”.

However, many continuous state space Markov chains do not have useful atoms, necessi-
tating the following relaxation. A measurable set C is called a small set if there exist n ∈ N,
δ > 0 and a probability measure ν such that

Qn(y, B) ≥ δν(B), for all y ∈ C, B ∈ Y . (3.2)

For a ψ-irreducible Markov chain it can be shown (see Proposition 5.2.4 of Meyn and
Tweedie (2012)) that it is no loss of generality to require that n, δ and ν in (3.2) be cho-
sen such that ν(C) > 0. Then the equation implies that Qn(y,C) ≥ δν(C) > 0, for every
y ∈ C, so that the chain will return to the set C in n steps with positive probability. Next
the way the chain leaves C may depend on the exact state in C, but with probability δ it
moves independently from this state, according to ν. This turns out to be almost as good as
an atom.3

The Markov chain with transition kernel Q is said to have period d if there exists a small
set C with associated integer n and probability distribution ν with ν(C) > 0 such that d is the
greatest common divisor of the set{

k ∈ N: Qk(y, B) ≥ δkν(B), for all y ∈ C and B ∈ Y , for some δk > 0
}
.

The latter greatest common divisor can be shown not to depend on the choice of the small
set C and to correspond to a partition of the sample space such that the chain visits the
partitioning sets in a given fixed order (Meyn and Tweedie (2012), Theorem 5.44). The
chain is called aperiodic if its period is equal to one.

Theorem 3.3. Any ψ-irreducible, Harris recurrent and aperiodic Markov chain is ergodic
in the sense of (3.1). A Markov chain is uniformly ergodic if and only if it is ψ-irreducible,
aperiodic, and the full state space Y is a small set. In this case there exist numbers R > 0
and ρ ∈ (0, 1) such that ∥∥∥Qn(y, ·) − Π(·)

∥∥∥
TV
≤ Rρn, for all y ∈ Y.

Proof For the first assertion see Theorem 13.0.1 in Meyn and Tweedie (2012). For the
second, see Theorem 6.59 of Robert and Casella (2004). Or see Theorems 16.2.1 and 16.2.2
in Meyn and Tweedie (2012), together with Theorem 5.5.7. □

3 Small sets abound. In fact, it can be shown (see again Proposition 5.2.4 of Meyn and Tweedie (2012)) that for
a ψ-irreducible chain there always exists a countable collection of small sets Ci that covers the state space:
Y =

⋃
i Ci. This collection of small sets presents an analogue to the single points in a countable state space.
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Example 3.4. Suppose that the transition kernel (y, B) 7→ Q(y, B) has a density q such that
the function

h(z) = inf
y∈Y

q(y, z)

is measurable and strictly positive. Intuitively, this means that the chain may move from any-
where to anywhere in a single step. The assumption of positivity of the infimum is unneces-
sary strong, in particular for unbounded spaces, but the example is useful for illustration.

Then Q(y, B) =
∫

B
q(y, z) dµ(z) ≥

∫
B

h dµ, for every B ∈ Y and y ∈ Y, which is positive
whenever µ(B) > 0. Thus the chain is ψ-irreducible for ψ = µ. (This is a maximal irre-
ducibility measure, because any irreducibility measure must be absolutely continuous with
respect to Q(y, ·), for any y.)

Also Q(y, B) ≥ δν(B), for every y ∈ Y and B ∈ Y , where δ =
∫

h dµ > 0 and ν is the
probability measure with density h/δ. It follows that the state space Y is a small set, with
corresponding period 1.

By Theorem 3.3 the Markov chain is uniformly ergodic.

Although the ergodic theorem shows that averages over Y1, . . . ,Yn converge to the target
value, as n → ∞, it is customary to throw away the earlier variables Y1,Y2, . . . ,Ym and use
only Ym+1,Ym+2, . . . for a sufficiently large m. This is called the “burn-in” of the “MCMC
sampler”, and is justified if the chain is ergodic, since the laws Qm(Y0, ·) will typically be
close(r) to the target for larger m.

Detailed balance and reversibility
A transition density q is said to satisfy the detailed balance relationship relative to a density
π if for every y, z ∈ Y:

π(y)q(y, z) = π(z)q(z, y). (3.3)

The following lemma shows that the density π is necessarily a stationary density. In the next
section we shall see how the detailed balance relation may be used to construct a transition
density q that corresponds to a given stationary density π.

Lemma 3.5 (Detailed balance). If the probability density π and transition density q satisfy
the detailed balance relationship (3.3), then π is a stationary density for the transition kernel
with density q.

Proof This is immediate from integrating (3.3) with respect to y and using the identity∫
q(z, y) dµ(y) = 1, on the right side. □

The detailed balance relationship expresses that starting the chain at y and then moving
to z is “equally likely” as starting in z and then moving to y. Intuitively, the dynamics of
the chain remain the same if the direction is reversed. Because (y, z) 7→ π(y)q(y, z) is the
joint density of two consecutive variables of the (stationary) chain, the detailed balance
relationship is equivalent to (Yn,Yn+1) ∼ (Yn+1,Yn), for every n. A Markov chain with this
property is called reversible. Thus the stationary Markov chains that satisfy the detailed
balance condition are precisely the reversible Markov chains.4

4 In general a Markov chain (Yn) remains a Markov chain if run in the opposite time direction: the sequence of
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Equation (3.3) is the key to constructing a transition density q for which a given target
density π is a stationary density. To verify that a given (reversible) chain has a given station-
ary density or distribution, the following (very) trivial observation is useful.

Lemma 3.6. For a given measure Π and transition kernel Q, let Yn ∼ Π and Yn+1|Yn =

y ∼ Q(y, ·). If the probability Pr(Yn ∈ A,Yn+1 ∈ B) is invariant under swapping A and B, for
every pair of measurable sets A and B, then Π is a stationary measure of Q.

Proof The assumption on the probabilities is equivalent to (Yn,Yn+1) ∼ (Yn+1,Yn). By
marginalization to the first marginal, we see that Yn ∼ Yn+1, and this common distribution is
Π by the assumption Yn ∼ Π. □

3.2 Metropolis-Hastings

Let q be a transition density such that it is easy to draw a sample from the density z 7→ q(y, z),
for given y. We further require that we know q up to a multiplicative constant, or that it
is symmetric, i.e. q(y, z) = q(z, y), for every y and z. We define the Metropolis-Hastings
acceptance probability as

α(y, z) =
π(z)q(z, y)
π(y)q(y, z)

∧ 1.

To calculate α(y, z) it suffices to know π and q up to multiplicative constants (in case of a
symmetric q even this is not necessary). This is essential for Bayesian computation, as the
norming constant of the posterior distribution poses the main challenge.

Given a starting value Y0 we proceed recursively, for n = 0, 1, 2, . . ., as follows:

Given Yn.

Generate Zn+1 from the distribution with density q(Yn, ·).
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(Yn,Zn+1), set Yn+1:= Zn+1,

else set Yn+1:= Yn.

The acceptance probability α(y, z) is defined only if π(y) > 0, but if the starting value Y0 is
chosen to satisfy π(Y0) > 0, then π(Yn) > 0, for every n, since moves to states z with π(z) = 0
are rejected, as α(y, z) = 0 if π(z) = 0. Similarly the chain will with probability one never
reach states such that q(Yn,Zn+1) = 0.

By construction (Yn) is a Markov chain. Its transition kernel is given in the next theorem.
It is not absolutely continuous, but consists of two parts, which are typically orthogonal:
either the test involving Un+1 is rejected and the chain does not move, or the test is accepted
and the proposal Zn+1 becomes the new state of the chain. Staying put is the same as a move

variables (Zn) defined by Zn = Y−n is a Markov chain. This follows for instance from the fact that the Markov
property can also be formulated in the symmetric form: “past and future are independent given the present”.
The chain is reversible if and only if the transition distributions in the two directions are identical. Indeed
Yn+1|Yn = y ∼ Yn|Yn+1 = y, for every y, implies that (Yn,Yn+1) ∼ (Yn+1,Yn), by Lemma 2.36, applied to the
special case that (X1,Y1) is (Yn,Yn+1) and (X2,Y2) is (Yn+1,Yn).
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from y to y and intuitively this is clearly reversible. The other part moves according to the
density α(y, z)q(y, z). The acceptance probability α, (y, z) is chosen such that

π(y)α(y, z)q(y, z) = π(z)α(z, y)q(z, y). (3.4)

(To see this, split out in the two cases that π(z)q(z, y) is bigger or smaller than π(y)q(y, z),
respectively, when α(y, z) is equal to 1 or smaller than 1, respectively, and conversely for
α(z, y).) This is a detailed balance condition relative to π and together with Lemma 3.5
suggests that π is indeed a stationary distribution.

The following theorem makes this precise, under the assumption that the kernel is positive
(which could be relaxed to the kernel z 7→ q(y, z) to contain the support of π).

Theorem 3.7. The transition kernel P of the sequence (Yn) produced by the Metropolis-
Hastings algorithm with proposal density z 7→ q(y, z) is given by, for δy the Dirac measure
at y,

P(y, B) =
∫

B
α(y, z)q(y, z) dµ(z) +

∫ (
1 − α(y, z)

)
q(y, z) dµ(z) δy(B). (3.5)

If q(y, z) > 0 for every (y, z) ∈ Y ×Y, then π is a stationary density of the chain, and for any
π-integrable function f

1
n

n∑
i=1

f (Yn) P
→

∫
fπ dµ.

If (Yn) is also aperiodic, then also∥∥∥Pn(y, ·) − Π(·)
∥∥∥

TV
→ 0, ∀y ∈ Y.

Proof By the tower rule for conditional expectation, for every measurable set B and y,

Pr(Yn+1 ∈ B|Yn = y) = E
[
Pr(Yn+1 ∈ B|Yn = y,Zn+1)|Yn = y

]
= E

[
1B(Zn+1)α(Yn,Zn+1) + 1B(Yn)

(
1 − α(Yn,Zn+1)

)
|Yn = y

]
.

Since Zn+1|Yn = y ∼ q(y, ·), this reduces to to the expression given in (3.5). The number
t(y) =

∫ (
1 − α(y, z)

)
q(y, z) dµ(z) is the probability that the chain does not move.

To prove that π is a stationary density, note that∫
P(y, B) dΠ(y) =

∫ ∫
B
α(y, z)q(y, z)π(y) dµ(z) dµ(y) +

∫
B

∫ (
1 − α(y, z)

)
q(y, z) dµ(z) dΠ(y)

=

∫ ∫
B
α(z, y)q(z, y)π(z) dµ(z) dµ(y) +

∫
B

∫ (
1 − α(z, y)

)
q(z, y) dµ(y) dΠ(z)

=

∫ ∫
B

q(z, y)π(z) dµ(z) dµ(y) =
∫

B
π(z) dµ(z).

In the second equality we use the detailed balanced condition (3.4) in the first integral, and
simply swap the notations y and z in the second integral.

Alternatively, and perhaps easier, we can express a joint probability of a chain started
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from Yn ∼ π, by

Pr(Yn ∈ A,Yn+1 ∈ B) =
∫ ∫

1A(y)π(y)q(y, z)α(y, z)1B(z) dµ(y) dµ(z)

+

∫ ∫
1A(y)π(y)q(y, z)

(
1 − α(y, z)

)
1B(y) dµ(y) dµ(z).

The second integral depends on (A, B) only through A ∩ B and hence is symmetric in A and
B. The first integral is invariant under swapping A and B if the integrand π(y)q(y, z)α(y, z) is
symmetric in y and z. This is the detailed balance condition (3.4), which is ensured by the
definition of α.

The convergence follows by combining Theorem 6.51 and Lemma 7.3 of Robert and
Casella (2004). □

The performance of the Metropolis-Hastings algorithm depends heavily on the proposal
kernel q. Choosing a good kernel is somewhat of an art. The general principle is to choose
a kernel that proposes variables Zn+1 throughout the support of π (is “sufficiently mixing” or
“sufficiently explores the space”; possibly only when taking multiple steps together), and at
the same time does not run into the “else” step too often, for efficiency reasons.

The two most popular choices are the independent- and the random walk MH algorithms.

3.2.1 Independent Metropolis-Hastings

In the independent Metropolis-Hastings algorithm the proposals are independent of the cur-
rent states. For a given probability density g on Y, the transition density is chosen equal to
q(y, z) = g(z), giving the acceptance probability

α(y, z) =
π(z)g(y)
π(y)g(z)

∧ 1

The algorithm reduces to (only the first step changes):

Given Yn.

Generate Zn+1 from g.
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(Yn,Zn+1), set Yn+1:= Zn+1,

else set Yn+1:= Yn.

Example 3.8. Consider estimating the expected value of the variable f (Y) =
√
|Y |, where

the random variable Y follows the density π satisfying π(y) ∝ e−y4
. Based on the shape of

π the standard normal distribution seems reasonable as a transition kernel. Given starting
value y0 = 0 we iterate the following steps:

• independently draw zn+1 ∼ N(0, 1) and un+1 ∼ U(0, 1),
• set yn+1:= zn+1 if un+1 < ey4

n+z2
n+1/2−z4

n+1−y2
n/2, or else set yn+1:= yn.

After n iterations we compute the estimator n−1 ∑n
i=1

√
|yi| of E

√
|Y |.

For appropriate choice of g one can prove uniform ergodicity for the Markov chain (Yn).
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Theorem 3.9. If there exists a constant M with π(y) ≤ Mg(y), for every y ∈ Y, then the
Markov chain (Yn) generated by the independent Metropolis-Hastings algorithm is uniformly
ergodic. More specifically

∥Pn(y, ·) − Π(·)∥TV ≤ (1 − 1/M)n, for all y ∈ Y.

Proof See Theorem 2.1 of Mengersen and Tweedie (1996). □

The speed of convergence of the IMH-algorithm depends on the choice of the proposal
density g. If this resembles the target density π closely, then the proposals Zn+1 are nearly
from the target distribution, and the acceptance probabilities α(Yn,Zn+1) will be large. The
extreme case would be to choose g equal to π, when the acceptance probability becomes
1. A more feasible approach for finding a suitable g is to start with a family of proposal
densities, parametrized by some hyper-parameter τ, and next choose τ that maximizes the
acceptance rate. This rate can be empirically evaluated by running the chain for a given
number of iterations with a given value of τ.

The IMH-sampler works well if the proposal density resembles the target density glob-
ally, but this may be difficult to achieve especially in high-dimensional state spaces. Global
resemblance is necessary, because the proposals are generated independently of the past val-
ues of the chain, but must explore the target density. In the following section we consider
the alternative of drawing proposals more locally, from neighborhoods of the current state.
The long run of the chain may then take care of the exploration of the state space.

3.2.2 Random walk Metropolis-Hastings

In the random walk Metropolis-Hastings algorithm the transition kernel takes the form
q(y, z) = f (z − y), for a probability density f on the state space (which is assumed to be
a vector space). The name comes from the representation Zn+1 = Yn + εn+1, where εn+1 ∼ f
is the proposed step. For state space the real line, common choices for the density f are the
normal, student or symmetric uniform distribution.

When f is symmetric around zero, the acceptance probability α(y, z) reduces to π(z)/π(y),
simplifying the algorithm, which becomes:

Given Yn.

Generate Zn+1 from f (· − Yn).
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < π(Zn+1)/π(Yn), set Yn+1:= Zn+1,

else set Yn+1:= Yn.

Example 3.10. Consider simulating from the probability density satisfying

π(y) ∝ y2e−(y−1)2
+ e−|y|.

We may use a random walk Metropolis-Hastings algorithm with proposal density f the
normal density with mean zero and variance τ2. The scale parameter τ can be used to tune
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the step sizes of the random walk. Starting from some value y0, in each iteration step n ≥ 0
we draw zn+1 ∼ N(yn, τ

2) and un+1 ∼ U(0, 1), and next set

yn+1:=

zn+1, if un+1 ≤ vn+1,

yn, if un+1 > vn+1,
vn+1 =

z2
n+1e−(zn+1−1)2

+ e−|zn+1 |

y2
ne−(yn−1)2

+ e−|yn |
.

The chain ym, ym+1, . . . remaining after a sufficiently long burn-in can be used as an approxi-
mate sample from π.

Theorem 3.11. If the target density π is log-concave, or more generally log π(x)− log π(y) ≥
α|y − x|, for every M ≤ |x| ≤ |y| and a sufficiently large M, then the Markov chain pro-
duced by the random walk Metropolis-Hastings algorithm with kernel f is geometrically
ergodic whenever f is positive, symmetric, and has exponentially small tails (in case π is
non-symmetric).

The choice of the random walk kernel strongly influences the speed of convergence. In
contrast to the independent Metropolis-Hastings algorithm, it is not optimal to maximize
the acceptance rate. Accepting too many moves might mean that the steps of the random
walk are too small and the state space is not explored appropriately, resulting in slow con-
vergence of the Markov chain. As always the acceptance rate should not be too small either,
as rejections mean wasted simulations.

Thus the step size of the random walk should neither be too small, nor too large. As this
is relative to π, again choice of a good proposal distribution is a bit of an art.

3.2.3 Metropolis-adjusted Langevin

The Langevin diffusion with drift function ∇ log π is the stochastic process (Xt: t ≥ 0) on
Y = Rd following the stochastic differential equation, for Wt a d-dimensional Brownian
motion,

dXt = ∇ log π(Xt) dt +
√

2 dWt.

It is known that, as t → ∞, the distribution of Xt will approach the distribution with density
π whatever the initial value X0, and if X0 ∼ π, then Xt will have density π for every t > 0. (In
other words π is a stationary density for the diffusion.) Thus we could approximately draw
from π by running the Langevin process for a sufficiently large time.

In practice, the stochastic differential equation cannot be solved in continuous time, and
its solution is approximated by taking discrete time steps. The Euler-Maruyama scheme
simply computes, for a given time step ϵ, the sequence of variables X0, Xϵ , X2ϵ , . . . by the
recursions

Xiϵ+ϵ = Xiϵ + ϵ∇ log π(Xiϵ) +
√

2(Wiϵ+ϵ −Wiϵ).

Here the increments Wiϵ+ϵ −Wiϵ of Brownian motion are normal vectors with mean zero and
covariance matrix ϵ times the identity matrix I. As ϵ ↓ 0, the variables will resemble the
sampled Langevin diffusion more and more.

The Metropolis-adjusted Langevin algorithm or MALA turns this idea into a sampler by
combining it with a Metropolis-Hastings step. It uses the discrete time steps to generate
proposals and next accepts or rejects these by ordinary Metropolis-Hastings, thus correcting
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for the discretization error. For a given time step ϵ, the proposal distribution is taken normal
with mean y + ϵ∇ log π(y) and covariance matrix 2ϵI, leading to the acceptance probability

α(y, z) =
π(z) exp

(
−∥y − z − ϵ∇ log π(z)∥2/(4ϵ)

)
π(y) exp

(
−∥z − y − ϵ∇ log π(y)∥2/(4ϵ)

) ∧ 1.

A potential advantage is that the proposals involve the gradient of π, and not just the values
of the function π itself. They should be better guided by the target density, leading to fewer
rejections even if the moves are larger. The value of ϵ must of course be chosen appropriately.

The algorithm becomes as follows.

Given Yn.

Generate Zn+1 from the normal distribution with mean Yn+ϵ∇ log π(Yn) and
covariance matrix 2ϵI.

Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(Yn,Zn+1), set Yn+1:= Zn+1,

else set Yn+1:= Yn.

For results on ergodicity of the Langevin chain, see Roberts and Tweedie (1996).

3.3 Slice sampling

The slice sampling algorithm does not use a proposal density, but is defined directly in
terms of the target density. It relies on the fact that making a draw from a density π on Rd is
equivalent to drawing a point from the uniform distribution on the subgraph of π, defined by

F (π) = {(y, u) ∈ Rd × R+: 0 ≤ u ≤ π(y)}.

Indeed, if (Y,U) is distributed according to the uniform distribution onF (π), then the marginal
density of Y is given by π:

Pr(Y ∈ B) =
λ
(
(y, u): y ∈ B, 0 ≤ u ≤ π(y)

)
λ
(
(y, u): 0 ≤ u ≤ π(y)

) ∝

∫
B

∫ π(y)

0
du dλ(y) =

∫
B
π(y) dλ(y).

Here λ is the Lebesgue measure. We may thus construct a (nearly) uniform Markov chain
(Yn,Un) on the subgraph, next throw away the uniform variables, and obtain a sample (Yn)
from π. The same strategy works using the subgraph F (cπ) of a fixed multiple cπ of π, and
hence can also be used if π is only known up to a constant.

The slice sampler constructs a Markov chain onF (cπ) by repeated consecutive, uniformly
distributed moves along the y- and z-axis:

Given Yn.

Generate Un+1 from U
(
0, cπ(Yn)

)
.

Generate Yn+1 from U(Bn+1), where Bn+1 =
{
y: cπ(y) ≥ Un+1

}
.

We note that the set Bn+1 is never empty, since Yn is inside. An advantage of the algorithm is
that it does not have an accept/reject step, all draws are accepted.
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Theorem 3.12. The sequence (Yn,Un) produced by the slice sampler is a Markov chain with
stationary distribution equal to the uniform distribution on the subgraph F (π∗) and hence
the sequence (Yn) is a Markov chain with stationary density π. Furthermore, if π is bounded
and has bounded support in R, then the slice sampler is uniformly ergodic.

Proof From the description of the algorithm it is seen that the conditional density of
(Yn+1,Un+1) given (Yn = y,Un) is given by

(yn+1, un+1) 7→
Iπ∗(yn+1)≥un+1

λ(y: π∗(y) ≥ un+1)
I0≤un+1≤π∗(y)

π∗(y)
.

Note that this does not depend on the value of Un. If (Yn,Un) is uniformly distributed over
F (π∗), then Yn has marginal density π. In that case the density of (Yn+1,Un+1) is given by∫

Iπ∗(yn+1)≥un+1

λ(y: π∗(y) ≥ un+1)
I0≤un+1≤π∗(y)

π∗(y)
π(y) dy =

1
c

Iπ∗(yn+1)≥un+1 ,

for c the proportionality constant so that π∗ = cπ. This shows that (Yn+1,Un+1) is uniformly
distributed over F (π∗).

Since the conditional distribution of (Yn+1,Un+1) given (Yn,Un) depends only on Yn, the
Markov property of the joint chain ((Yn,Un)) gives that

Pr
(
(Yn+1,Un+1) ∈ B| (Yn,Un), . . . , (Y1,U1)

)
= Pr

(
(Yn+1,Un+1) ∈ B|Yn

)
.

Taking the conditional expectation given Yn, . . . ,Y1 across this identity, shows that (Yn) is a
Markov chain. It was already noted that the first marginal density of the uniform density on
F (π∗) is π. This proves the second assertion.

For the final assertion of the theorem, see Lemma 8.5 of Robert and Casella (2004). □

Example 3.13. Consider the density π(y) ∝ e−y4
. From an arbitrary starting value, for in-

stance, y0 = 0, the slice sampler repeats the steps un+1 ∼ U(0, e−y4
n ) and yn+1 ∼ U

(
−

(− log un+1)1/4, (− log un+1)1/4), for n = 0, 1, 2, . . .. The resulting values y1, y2, ... will, after
a burn-in period, be approximate draws from π.

The difficulty of implementing the slice sampling algorithm is to determine the sets Bn+1.
These sets may have a complicated form, especially for multi-modal distributions. This prob-
lem can be alleviated by introducing multiple slices.

Assume that the density π can be factorized into nonnegative functions π1, . . . , πk as

π(y) ∝
k∏

i=1

πi(y).

The quantities πi(y) can be considered “new dimensions”, which can be consecutively ex-
plored by a random walk, one direction at a time. The generalized slice sampling algorithm
takes the form:

Given Yn,

generate U (1)
n+1 from U

(
0, π1(Yn)

)
,

generate U (2)
n+1 from U

(
0, π2(Yn)

)
,

...
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generate U (k)
n+1 from U

(
0, πk(Yn)

)
,

generate Yn+1 from U(Bn+1), where Bn+1 =
⋂k

i=1{y: πi(y) ≥ U (i)
n+1}.

The decomposition, although seemingly slowing down the algorithm, may make it easier to
compute the sets Bn+1, as the intersection of the sets B(i)

n+1 = {y: πi(y) ≥ U (i)
n+1}.

Example 3.14. Consider sampling from the density π(y) ∝ cos(y)2y−2e−2|y|. One factoriza-
tion of the function is as the product of the three function π1(y) = cos(y)2, π2(y) = y−2, and
π3(y) = e−2|y|. Given a starting point, for instance y0 = 0, we iterate the general slice sampling
algorithm for a large number of times. by drawing un+1,1 ∼ U(0, cos2 yn), un+1,2 ∼ U(0, y2

n),
and un+1,3 ∼ U(0, e−2|yn |), and finally sample yn+1 uniformly from the set

{y: |y| ≤
√

un+1,1} ∩ {y: arccos(
√

un+1,2) ≤ y − kπ ≤ arccos(−
√

un+1,2), k ∈ Z}

∩ {y: |y| ≤ − log(un+1,3)/2}.

3.4 Gibbs sampler

The Gibbs sampler reduces the problem of simulating a vector (y1, . . . , ym) in a product space
Y = Y1 × · · · × Ym to simulating from lower-dimensional distributions. Suppose that π is a
density relative to a product measure µ1 × · · · × µm on a product space, and suppose that we
can generate variables from each of the conditional densities,

πi
(
yi| y1, . . . , yi−1, yi+1, . . . ym

)
=

π(y)∫
π(y) dµi(yi)

.

The corresponding distributions are known as the full conditional distributions, and it is of
course helpful if these can be characterized analytically.

The Gibbs sampling algorithm proceeds, from a given initial value Y0 = (Y0,1, . . . ,Y0,m),
recursively for n = 0, 1, 2, . . . by the following steps:

Given Yn = (Yn,1, . . . ,Yn,m).
Generate Yn+1,1 from π1(·|Yn,2, . . . ,Yn,m).
Generate Yn+1,2 from π2(·|Yn+1,1,Yn,3 . . . ,Yn,m).
...

Generate Yn+1,m from πm(·|Yn+1,1, . . . ,Yn+1,m−1).

Thus we update each of the coordinates in turn, every time conditioning on the last available
value of the other coordinates.

A variation is to update not in the preceding deterministic order, but to choose the coor-
dinate to be updated randomly with respect to some distribution.

Example 3.15. The Ising model describes the distribution of a (d × d)-matrix σ, whose
coordinates σi, for i ∈ {1, . . . , d}2, are random variables with values in {−1, 1}. The variables
represent the magnetic dipole moments of atomic spins in a geometric configuration given
by the matrix. The energy function of a configuration σ ∈ {−1, 1}d×d is given as

H(σ) = −J
∑
i∼ j

σiσ j − µ
∑

i

σi,
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where i ∼ j denotes that the variables σi and σ j are neighbours in the matrix configuration.
The probability mass function of the random matrix σ is given as

π(σ) ∝ e−H(σ), σ ∈ {−1, 1}d×d.

The conditional probability mass function of the variable σi given all the other variables is

π(σi|σ j: j , i) =
e−J

∑
j: j∼i σiσ j−µσi

e−J
∑

j: j∼i σ j−µ + eJ
∑

j: j∼i σ j+µ
, σi ∈ {−1, 1}.

A Gibbs sampler for the Ising-model can be implemented by simulating iteratively from
these two-point distributions.

Example 3.16. The joint distribution of the pair of variables (θ, τ2), where θ| τ ∼ N(µ, τ2)
and 1/τ2 ∼ Γ(a, b), has density

π(θ, τ2) ∝ τ−2a+1e−
(θ−µ)2+2b

2τ2 , θ ∈ R, τ2 > 0.

The conditional density of τ2 given θ is proportional to this function as a function of τ2. It
follows that the second conditional distribution satisfies 1/τ2| θ ∼ Γ

(
a+ 1/2, (θ − µ)2/2+ b

)
.

The first conditional is already given in the definition of the model. Therefore the Gibbs
sampler to simulate from the distribution of (θ, τ2) proceeds by the sequence of updates

θn+1 ∼ N(µ, τ2
n),

1
τ2

n+1

∼ Γ
(
a + 1

2 ,
1
2 (θn+1 − µ)2 + b

)
.

Alternatively (and preferably?), one might simulate from this distribution by repeatedly
drawing a value τ2 from its marginal distribution, and then θ from its conditional distri-
bution given τ. This would give a sequence of independent variables with exactly the correct
distribution.

Next we discuss the stationarity and ergodicity properties of the two stage (m = 2) Gibbs
sampler. We say that a density π satisfies the positivity condition if the positivity of the
marginal densities implies the positivity of the joint density: if πi(yi) > 0 for i = 1, ...,m,
then π(y1, ..., ym) > 0, for every (y1, . . . , ym).

Theorem 3.17. The density π is a stationary distribution of the Markov chain (Yn) generated
by the Gibbs sampling algorithm. If the density π satisfies the positivity condition, then the
chain (Yn,1,Yn,2) resulting from the two stage Gibbs sampler is ergodic.

Proof If Yn is distributed according to π, then (Yn,2, . . . ,Yn,m) is distributed according to
marginal of π on the last m−1 coordinates. The first step of the Gibbs sampler is to generate
Yn+1,1 from the conditional distribution of the first coordinate given the last m−1 coordinates
under π, evaluated at (Yn,2, . . . ,Yn,m). Then (Yn+1,1,Yn,2, . . . ,Yn,m) is distributed according to
π. (If X2 ∼ Π2 and X1| X2 ∼ Π1|2(·| X2), for Π2 and Π1|2 the second marginal and first con-
ditional of a distribution Π, then (X1, X2) ∼ Π.) This shows that the stationary distribution
is preserved under the first step of the Gibbs sampler. By the same argument it is preserved
under every of the m steps of an iteration.

For a proof of the second assertion, see ? □
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3.5 Missing data and data augmentation

Suppose that we wish to generate a sample from a density π, but this density is only known as
the marginal density π(y) =

∫
π̄(y, z) dµ(z) of a joint density (y, z) 7→ π̄(y, z). Any of the sam-

pling schemes would suffer in efficiency if at every step we would have to approximate the
integral numerically. An easy way around this is to generate a sample (Y1,Z1), . . . , (Yn,Zn)
from π̄, and then discarding the Zs. Marginalizing an empirical sample just means throwing
away the other variables!

This situation arises commonly in Bayesian computation with “missing data”. Suppose
that instead of the “full data” (X,Y) we only observe X. If (x, y) 7→ pθ(x, y) is a density of
(X,Y), then

∫
pθ(x, y) dµ(y) is the density of the observation X. Given a prior density π the

posterior density of interest is proportional to

θ 7→

∫
pθ(x, y) dµ(y) π(θ).

If the integration cannot be performed analytically, implementing an MCMC scheme will
be awkward.

The posterior distribution of ϑ given the observation X is the first marginal distribution of
the conditional distribution of (ϑ,Y) given X. If (ϑ1,Y1), . . . , (ϑn,Yn) are a sample from the
latter conditional distribution, then ϑ1, . . . , ϑn are a sample from the distribution of interest.
This leads to the following strategy. We apply an MCMC scheme to simulate from the den-
sity that is proportional to (θ, y) 7→ pθ(x, y)π(θ), with x fixed to the observed value. Next we
throw away the Y-values.

In this scheme the data y may be naturally missing, for instance due to the way the data is
ascertained. However, the preceding strategy is valid for any y added to the data x, as long as
there is joint distribution of (x, y, ϑ). When y is added for the convenience of sampling, one
speaks of data augmentation. The augmented data could be part of any Bayesian hierarchy
of distributional assumptions, provided the pair (x, ϑ) is contained in the hierarchy and its
marginal distribution is the same as in the problem at hand.

3.6 *Hamiltonian MCMC

The Hamiltonian Markov chain Monte Carlo method is inspired by the laws of motion from
physics. The negative log target density − log π is viewed as the potential energy of a par-
ticle, which is located at the value of the target variable y. The movement of the particle is
controlled by the Hamiltonian

H(y, v) = − log π(y) + 1
2 vT M−1v,

where M is a positive-definite matrix, usually diagonal, often a scalar multiple of the identity
matrix.5 The variable v is interpreted as the velocity of the particle and the term 1

2 vT Mv as
its kinetic energy. In the MCMC scheme it just serves as an augmented variable, which
facilitates the MCMC steps. The function

(y, v) 7→ e−H(y,v) = π(y)e−vT M−1v/2

5 Choosing M−1 approximately equal to the covariance matrix of π typically leads to a more stable algorithm.
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is proportional to the joint density of the target variable Y ∼ π taken together with an inde-
pendent multivariate-normal variable V ∼ N(0,M). The algorithm generates a Markov chain
of variables (Yn,Vn) and then discards the second coordinates to obtain a sample from π.

Hamiltonian MCMC was introduced in the 1980s, but is only recently (and rapidly) gain-
ing popularity, because it can be more efficient, in particular for irregularly shaped target
densities π, for instance densities that spread very differently in different directions.

The algorithm consists of two steps. The first step changes only the momentum v, simply
by generating a new value from the N(0,M)-distribution. By the independence of Y and V
in the target density, this step clearly retains the stationary density. The second step is more
interesting and changes both variables. In the idealized version of the algorithm, this step is
deterministic. It replaces (y, v) by the value

(
y(T ), v(T )

)
at time T of the curve (or integral

flow) started at
(
y(0), v(0)

)
= (y, v) and evolving according to the system of differential

equations

y′(t) =
∂H
∂v

(
y(t), v(t)

)
,

v′(t) = −
∂H
∂y

(
y(t), v(t)

)
.

This is the so-called Hamiltonian flow, which describes the joint location and momentum
of a particle as determined by the energy. The time step T is a parameter of the algorithm
and must be chosen carefully for efficiency. In practice, it is typically impossible to solve
the system exactly and

(
y(T ), v(T )

)
is replaced by a numerical approximation, which we

shall describe in a moment. The discrete approximation can be justified without studying
the continuous flow (see Theorem 3.19), but for intuition it is instructive to explain why
Hamiltonian MCMC works in the idealized setup.

Most deterministic algorithms do not retain a stationary density. The Hamiltonian flow is
special in that (see next lemma) it retains the value of the Hamiltonian (i.e. H

(
y(T ), v(T )

)
=

H
(
y(0), v(0)

)
), it preserves volume (the map

(
y(0), v(0)

)
7→ (y(T ), v(T )

)
has Jacobian equal

to 1), and it is reversible, up to sign changes. The first (“preservation of energy”) means that
the value of the target density e−H(y,v) does not change. Combination with the second (and
the transformation rule for densities) shows that the new point

(
y(T ), v(T )

)
is distributed

according to this target if this is true for the initial point
(
y(0), v(0)

)
. The third property

seems not to be needed to justify the idealized Hamiltonian algorithm, but it will be seen to
be important for discretization.

We record the three properties in a lemma, where we restrict to densities on Y = Rd.6 Let
ϕ:Rd × Rd × R → Rd × Rd give the map that sends the initial value

(
y(0), v(0)

)
= (y, v) into

ϕ(y, v, t):=
(
y(t),−v(t)

)
. The sign of the second coordinate is flipped to make the map exactly

reversible (see (iii) below). This does not affect preservation of Hamiltonian or volume, as
these are symmetric in momentum.

Lemma 3.18. The Hamiltonian flow satisfies

(i) The map t 7→ H
(
ϕ(y, v, t)

)
is constant, for every fixed (y, v).

(ii) The map (y, v) 7→ ϕ(y, v, t) has Jacobian det
( ∂
∂(y,v)ϕ(y, v, t)

)
equal to 1, for every fixed t.

(iii) The inverse of the map (y, v) 7→ ϕ(y, v, t) is the map itself, for every fixed t.
6 Hamiltonian flow can be defined on general differential manifolds.
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Proof Abbreviate the partial derivatives (gradients) of H with respect to y and v by Hy and
Hv, respectively, and use similar notation for other functions. For (i) and (ii) we may ignore
the sign flip of the second coordinate and prove the assertions for the map ϕ without the
minus sign, which we call ψ. Thus ψ:Rd ×Rd ×R→ Rd ×Rd is the map that sends the initial
value

(
y(0), v(0)

)
= (y, v) into ψ(y, v, t) =

(
y(t), v(t)

)
, for

(
y(t), v(t)

)
defined as the solutions

of the system

∂

∂t
ψ(y, v, t)1 = y′(t) = Hv

(
y(t), v(t)

)
= Hv

(
ψ(y, v, t)

)
,

∂

∂t
ψ(y, v, t)2 = v′(t) = −Hy

(
y(t), v(t)

)
= −Hy

(
ψ(y, v, t)

)
.

If we abbreviate x = (y, v), then we have ψ(x, 0) = x and we can write the pair of equations
as the single equation ψt(x, t) = F

(
ψ(x, t)

)
, for F(x) =

(
Hv(x),−Hy(x)

)
.

The map in (i) with ϕ replaced by ψ can be written as t 7→ H
(
y(t), v(t)

)
, and has derivative

Hy
(
y(t), v(t)

)
y′(t) + Hv

(
y(t), v(t)

)
v′(t), which vanishes, in view of the system of differential

equations.
Integrating the vector equation ψt(x, t) = F

(
ψ(x, t)

)
with respect to t, we obtain ψ(x, t) =

x+
∫ t

0
F
(
ψ(x, s)

)
ds. Differentiating this with respect to x, we obtain that the derivative matrix

of x 7→ ψ(x, t) satisfies ψx(x, t) = I +
∫ t

0
F′

(
ψ(x, s)

)
ψx(x, s) ds, for F′(x) the derivative matrix

of F at x, given by

F′(x) =
(

Hvy(x) Hvv(x)
−Hyy(x) −Hyv(x)

)
.

Since the derivative of the map t 7→ det At is equal to det At tr(A−1
t Ȧt), we see that the deriva-

tive of t 7→ detψx(x, t) is given by

detψx(x, t) tr
(
ψx(x, t)−1F′

(
ψ(x, s)

)
ψx(x, s)

)
= detψx(x, t) tr

(
F′

(
ψ(x, s)

))
,

since tr(AB) = tr(BA), for any matrices A and B. From the expression for F′(x), we see that
tr
(
F′(x)

)
= Hvy(x) − Hyv(x) = 0.7 Thus the time derivative in the display is zero and hence

the map t 7→ detψx(x, t) is constant and equal to its value 1 at t = 0.
The inverse of the map x 7→ ψ(x, t) is the flow obtained by negating the derivatives,

i.e. by replacing F by −F: the map x 7→ ψ̄(x, t) satisfying ψ̄(x, 0) = x and ∂/∂t ψ̄(x, t) =
−F

(
ψ̄(x, t)

)
. We claim that this inverse is given by first flipping the sign of the momentum,

next following the original flow, and finally flipping the sign of the momentum again, i.e.
ψ̄(y, v, t)1 = ψ(y,−v, t)1 and ψ̄(y, v, t)2 = −ψ(y,−v, t)2. Indeed ψ(y,−v, t)1 = Hv

(
ψ(y,−v, t)

)
=

−Hv
(
ψ(y,−v, t)1,−ψ(y,−v, t)2

)
, since Hv(y, v) = −Hv(y,−v) by symmetry of the Hamiltonian

in v; and −ψ(y,−v, t)2 = Hy
(
ψ(y,−v, t)

)
= Hy

(
ψ̄(y, v, t)

)
, because Hy(y, v) depends on the first

coordinate y only, which is the identical for ψ(y,−v, t) and ψ̄(y, v, t)
)
, by definition.

Assertion (iii) is just a relabelling of the statement on the form of the inverse of ψ̄, putting
one of the two flips in the definition of ψ. □

The preservation of the Hamiltonian under the flow suggests why the algorithm may be
efficient. The easy part of the (augmented) target distribution, the Gaussian factor, is updated

7 The trace of the Jacobian matrix is the divergence tr(F′) = div F and describes the flow of the vector field.
Under Hamiltonian flow this is zero.
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efficiently by exact and independent sampling. Next the pair (y, v) is updated moving along
the level sets of the Hamiltonian, thus preventing a drift to parts of the parameter space with
little mass under the target. The algorithm achieves this by incorporating the gradient of the
target density π next to the density itself, through the update of the momentum using the
gradient of H.

Which time step T to use? The Hamiltonian flow may eventually lead a particle back to a
position near its starting point. (Some flows are even periodic.) A too large value of T may
therefore lead to inefficiency. A too small value is not desirable either, as this will correspond
to small moves. We shall come back to this in the context of the discretized algorithm.

For most target densities π it will be impossible to derive a usable, analytic formula for
the Hamiltonian flow. Instead we may solve the differential equation numerically. Euler’s
method would approximate the solution

(
y(T ), v(T )

)
by recursively computing approxima-

tions
(
y(ϵ), v(ϵ)

)
,
(
y(2ϵ), v(2ϵ)

)
, . . . ,

(
y(Lϵ), v(Lϵ)

)
, for a given (small) step size ϵ > 0 and

T = Lϵ, using the difference equations

y(iϵ + ϵ) = y(iϵ) + ϵ
∂H
∂v

(
y(iϵ), v(iϵ)

)
,

v(iϵ + ϵ) = v(iϵ) − ϵ
∂H
∂y

(
y(iϵ), v(iϵ)

)
.

It turns out that this does not work so well. First the final value
(
y(T ), v(T )

)
will be far

from the continuous solution, unless the step size ϵ is very small. Second (and related), the
discretization loses the three good properties of the continuous flow. A simple fix to retain
volume preservation and reversibility is to update the two coordinates y and v separately,
using the last values of the coordinates as input in every update. Even better is to split one
of the two updates in two “half updates”, leading to the leap-frog algorithm

v(iϵ + ϵ/2) = v(iϵ) −
ϵ

2
∂H
∂y

(
y(iϵ, v(iϵ)

)
,

y(iϵ + ϵ) = y(iϵ) + ϵ
∂H
∂v

(
y(iϵ), v(iϵ + ϵ/2)

)
,

v(iϵ + ϵ) = v(iϵ + ϵ/2) −
ϵ

2
∂H
∂y

(
y(iϵ + ϵ), v(iϵ + ϵ/2)

)
.

This algorithm preserves volume and is reversible, and is also numerically more stable than
Euler’s algorithm (see lemma below). To compensate for the fact that it still does not repro-
duce the exact continuous flow (and does not exactly retain the Hamiltonian), Hamiltonian
MCMC introduces a Metropolis-Hastings step, using the acceptance probability

α
(
y(0), v(0), y(Lϵ), v(Lϵ)

)
=

e−H
(

y(Lϵ),v(Lϵ)
)

e−H
(

y(0),v(0
) ∧ 1.

Because the leap-frog algorithm is deterministic, the acceptance probability is actually only
a function of the starting value

(
y(0), v(0)

)
, unlike in the general Metropolis-Hastings al-
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gorithm, but we included the endpoint as an argument of α for consistency with earlier
notation.8 We now define Hamiltonian MCMC as follows:9

Given (Yn,Vn).
Generate W ∼ N(0,M).
Compute (Zn+1,Wn+1) as the endpoint of L leap-frog iterations

starting from (Yn,W).
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(Yn,W,Zn+1,Wn+1), set (Yn+1,Vn+1):= (Zn+1,−Wn+1),
else set (Yn+1,Vn+1):= (Yn,Vn).

We may now discard the Vn and are left with a sample of Yn that will be approximately
from π, after burn-in. The swapping of the sign of Wn+1 is included, because it makes the
map reversible, but this step can be left out, as the variables Vn are not used and regenerated
independently from their Gaussian distribution, at the beginning of every iteration.

The step size ϵ and number of leap-frog iterations L are parameters of the algorithm,
which are chosen in advance. They are crucial to the efficiency of the algorithm, but not
easy to tune in general. A too small step size ϵ will unnecessarily increase the number of
computations, while a too large step size will lead to low acceptance probabilities, as the
Hamiltonian will not be preserved. If the total path length Lϵ is too small, then the sampler
will move too little, and if it is too long, the Hamiltonian dynamics may actually bring
back the particle to (almost) its initial state. In practice one determines good values by trial
and error. It can also be useful to choose a new, random value for the parameters at the
beginning of every update. The so-called no U-turn criterion is meant to automatically tune
the parameters. It is based on running the Hamiltonian flow both forward and backward until
the difference of the forward and backward locations possesses a negative inner product with
the momentum, which would indicate that the particle may be starting a return.

Theorem 3.19. The density proportional to (y, v) 7→ e−H(y,v) is stationary for the leap-frog
Hamiltonian MCMC algorithm.

Proof For H(y, v) = U(y)+K(v), the basic leap-frog updates (y, v) 7→
(
y, v− ϵ/2Uy(y)

)
and

(y, v) 7→
(
y + ϵKv(v), v

)
possess Jacobian matrices(

1 0
−ϵ/2Uyy(y) 1

) (
1 ϵKvv(v)
0 1

)
.

8 We could think of it as being of ordinary Metropolis-Hastings form, with the transition density q(y, z) in the
latter algorithm presently replaced by a Dirac function δϕ(y)(z) = 1{z = ϕ(y)}, giving the certain transition
from y to ϕ(y). In this interpretation, the same transition kernel, but with the arguments switched, hence
δϕ(z)(y) = 1{ϕ(z) = y}, should appear in the numerator of the acceptance probability. This is different, and
hence the two terms would not “cancel from the quotient”, unless ϕ = ϕ−1. The latter is true for the
Hamiltonian flow, and this may explain that no transition density enters in the present definition of α. In the
last paragraph of the proof of next theorem it is shown in general, that a deterministic move retains a
stationary distribution if it is strongly reversible in the latter sense.

9 The half step at the end of a leap-frog update is often combined with the half-step at the beginning of the next
leap-frog update into a single update. In other words, the “endpoint” in the algorithm is typically computed
by starting with a half-step update of the momentum, next alternating L full-step updates of the location and
L − 1 full-step updates of momentum and finally a half-step update of the momentum.
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The Jacobians of these transformations are 1 and hence both updates preserve volume.
The inverses of these maps are given by (y, v) 7→ (y, v + ϵ/2Uy(y)

)
and (y, v) 7→

(
y −

ϵKv(v), v
)
. From the fact that Kv(−v) = −Kv(v), we see that the inverses can also be obtained

by first flipping the sign of v, then applying the original map, and finally flipping the sign of
the new v: i.e. for ψ the original map, the inverse is ψ̄(y, v) =

(
ψ(y,−v)1,−ψ(y,−v)2

)
. This

means that the map ϕ that first flips the sign of v, then performs the leap-frog transformations
and finally flips the sign of the new momentum, is its own inverse.

We can now conclude the proof by proving in general that a deterministic, volume-
preserving transformation which is its own inverse (ϕ = ϕ−1) followed by a Metropolis-
Hastings step with acceptance probability α(x) =

(
π ◦ ϕ(x)/π(x)

)
∧ 1 preserves a stationary

density π.
If X0 ∼ π and X1 = ϕ(X0) with probability α(X0) and is equal to X0 otherwise, then

Pr(X1 ∈ B) is equal to∫
π(x)

[
α(x)1B(ϕ(x)) +

(
1 − α(x)

)
1B(x)

]
dx = Π(B) +

∫
π ◦ ϕ(x) ∧ π(x)

(
1ϕ(x)∈B − 1x∈B

)
dx.

Applying the substitution ϕ(x) = y to the integral on the right, we see that this integral is
equal to

∫
π(y) ∧ π ◦ ϕ−1(y)

(
1y∈B − 1ϕ−1(y)∈B

)
dy, if the Jacobian is unity. If also ϕ−1 = ϕ, then

the expression is identical to minus the original integral. Thus the integral vanishes. □

See Neal (2011) for an extended discussion of Hamiltonian MCMC and Livingstone et al.
(2019) for results on ergodicity of the Hamiltonian chain.

3.7 *Reversible jump chains

In some situations the state space Y carrying the target distribution Π is the disjoint union
of spaces of different dimensions. This is true for instance for a posterior distribution in
Bayesian model selection, when priors on statistical models of different dimensions are
combined in an overall prior on the union of the models by mixing over the model index.
In such a situation a Markov chain with target Π must ‘jump’ from one model to another
model from time to time. Suitable chains can be constructed using the Metropolis-Hastings
sampling scheme, but the jumps require special care. To make them reversible, as with the
ordinary Metropolis-Hastings sampler, the different subspaces must be linked in some way.10

Consider a state space Y = ∪k{k} × Yk that is the union of disjoint spaces {k} × Yk, for an
index k that ranges over a finite or countable set K. (The added notation {k}× helps to stress
that the spaces {k} × Yk are disjoint, and makes it possible to denote points in Y by pairs
(k, yk).) The target distribution Π is a probability distribution on Y, and can be decomposed
over the disjoint union. This is easiest described in terms of a random point (K,YK) in Y
drawn according to Π. Then K is a random variable with values in K with a distribution (ρk),
and given K = k the variable YK is chosen from Yk according to some distribution Πk:

ρk:= Pr(K = k), Πk(A):= Pr(YK ∈ A|K = k).

A general subset of Y can be written as A = ∪k{k} × Ak, for measurable sets Ak ⊂ Yk, and
then Π(A) =

∑
k ρkΠk(Ak).

10 Alternatively, non-reversible Markov chains have been developed for certain applications.
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We wish to construct a Markov chain (Yn) with state space Y and stationary distribution
Π. Given the current state Yn = (k, yk) the chain will move to a state Yn+1 = (l, yl) (which
as usual is allowed to be identical to (k, yk), so that the chain stays put). The idea is first to
decide on l using a transition distribution l 7→ r(k, l) from K to K, and next to decide on
the value yl ∈ Yl. If l = k, then the move is within Yk, and we can just follow any of the
schemes discussed before. On the other hand, if l , k, the move may be between spaces of a
different character. This could be complicated, lacking an easy common dominating measure
on the two spaces, that could be used to describe transition proposals q(yk, yl) and q(yl, yk)
and corresponding acceptance probabilities, making the moves reversible. We concentrate
on moves of the second type, and more precisely on moves between spaces of different
dimensions.

For k ∈ K assume that Yk ⊂ R
dk is an open subset of Euclidean space of dimension dk.

For distinct indices k, l ∈ K such that dk < dl, let gk,l:Yk × Uk,l → Yl be a diffeomorphism,
for a given open subset Uk,l ⊂ R

dl−dk . The latter space will be used to generate an auxiliary
variable that makes up for the difference in dimensions between the two spaces. Let qk,l be a
probability density on Uk,l relative to Lebesgue measure.

Let g′k,l be the derivative of gk,l, and let |g′k,l(yk, uk)| be the Jacobian at (yk, uk), the absolute
value of the determinant of the dl × dl matrix g′k,l(yk, uk).

Assume that Πk has a density πk with respect to Lebesgue measure on Yk.
As mentioned, the transition of the Markov chain starts by proposing a new index l:

Given Yn = (k, yk).
Generate l from r(k, ·),

The next step is to generate a value yl ∈ Yl. If dk = dl this is done by any of the methods dis-
cussed before, after suitably identifying the spaces Yk and Yl, if necessary. We concentrate
on the other case, where the move depends on whether dk < dl or dk > dl.

Generate Un+1 from the uniform distribution on [0, 1].
If dk < dl generate uk,l from qk,l(·), and set zl = gk,l(yk, uk,l),
if Un+1 < αk,l

(
yk, uk,l, zl), set Yn+1:= (l, zl),

else set Yn+1:= Yn,

else if dk > dl set (zl, ul,k) = g−1
l,k (yk),

if Un+1 < βk,l
(
yk, zl, ul,k), set Yn+1:= (l, zl),

else set Yn+1:= Yn,

Here the acceptance probabilities αk,l:Yk ×Uk,l ×Yl → [0, 1] and βk,l:Yk ×Yl ×Ul,k → [0, 1]
are given by11

αk,l(y, u, z) =
ρlπl(z) r(l, k)|g′k,l(y, u)|

ρkπk(y) r(k, l)qk,l(u)
∧ 1, βk,l(y, z, u) =

ρlπl(z) r(l, k)ql,k(u)
ρkπk(y) r(k, l)|g′l,k(y, u)|

∧ 1.

The Jacobian |g′k,l(y, u)| arises in these formulas, because the densities are understood relative

11 These are acceptance probabilities for moves from Yk to Yl in the cases dk < dl and dk > dl, respectively. For
a reverse move from Yl to Yk the indices k and l must be switched!
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to Lebesgue measure. To see this better it could be written |∂z/∂(u, y)|, which suggests to read
αk,l(y, u, z) as

ρlπl(z) r(l, k) |dz|
ρkπk(y) r(k, l)qk,l(u) |dy du|

∧ 1.

One finds the formula in this way in the literature, but this may not be helpful for clarity.
Regrettably the norming constants of the densities πk, πl and qk,l, ql,k depend on k and l,

and do not cancel from the quotients. Unlike in the ordinary Metropolis-Hastings, these den-
sities must be known completely, except possibly for a single constant common to them all.
This can be inconvenient. For instance, to compute a posterior distribution in the Bayesian
setup the density πk would be proportional to the function θ 7→ pθ,k(x)πk(θ), for pθ,k the like-
lihood and πk the prior density of the parameter of the kth model, and the norming constant
would be the inverse of

∫
pθ,k(x)πk(θ) dθ. The sampling scheme would suffer in efficiency

if this (multivariate) integral would not be analytically computable. Choosing the prior πk

conjugate to the family pθ,k will help, provided the norming constant of the latter family is
explicit.

Theorem 3.20. Assume that the moves between spaces of equal dimension are reversible
with respect to Π. Then the sequence (Yn) produced by the reversible jump scheme is a
Markov chain on Y with stationary measure Π.

Proof It suffices to show that the chain is reversible: if Yn is sampled from Π and Yn+1 is
produced as described, then Pr(Yn ∈ A,Yn+1 ∈ B) = Pr(Yn ∈ B,Yn+1 ∈ A), for every pair of
measurable sets A, B ⊂ Y.

If A = {k} × Ak for Ak ⊂ Yk and B = {l} × Bl for Bl ⊂ Yl and dk < dl, then a jump must
take place for both events to occur, and hence

Pr(Yn ∈ A,Yn+1 ∈ B) =
∫ ∫

1Ak (y)ρkπk(y)r(k, l)qk,l(u)αk,l
(
y, u, gk,l(y, u)

)
1Bl

(
gk,l(y, u)

)
dy du,

Pr(Yn ∈ B,Yn+1 ∈ A) =
∫

1Bl (z)ρlπl(z)r(l, k)βl,k
(
z, g−1

k,l (z)
)
1Ak

(
g−1

k,l (z)1
)

dz

=

∫ ∫
1Bl

(
gk,l(y, u)

)
ρlπl

(
gk,l(y, u)

)
r(l, k)βl,k

(
gk,l(y, u), y, u

)
1Ak (y) |g′k,l(y, u)| dy du,

where in the second line g−1
k,l (z)1 is the first coordinate of the pair g−1

k,l (z) =: (y, u), and the last
line is obtained through the substitution z = gk,l(y, u), with dz = |g′k,l(y, u)| dy du. The two
expressions are equal if

ρkπk(y)r(k, l)qk,l(u)αk,l
(
y, u, gk,l(y, u)

)
= ρlπl

(
gk,l(y, u)

)
r(l, k)βl,k

(
gk,l(y, u), y, u

)
|g′k,l(y, u)|.

This is ensured by the definitions of αk,l and βl,k, where we simplify notation by setting
z = gk,l(y, u), and the expression for βl,k is derived from the formula for βk,l given preceding
the theorem by switching k and l, and y and z in the notation.

For the same type of sets, but with dk > dl, the equality entails just swapping A and B,
and hence follows by symmetry.

If dk = dl and k = l, either the new index generated from r(k, ·) is equal to k = l and
the chain moves by a sampler that is reversible by assumption, or the new index proposed
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is different from k = l, but next the proposed move is rejected and the chain stays put. The
latter is clearly reversible.

For the same type of sets, but with dk = dl and k , l, the equality is true by assumption
that the sampler used is reversible.

For general sets A, B ⊂ Y, the probability Pr(Yn ∈ A,Yn+1 ∈ B) can be decomposed as∑
k,l Pr(Yn ∈ {k} × Ak,Yn+1 ∈ {l} × Bl), and the reversal follows by symmetry of all terms. □

The sampler moves differently when jumping up or down in dimension, which is intrinsic
to the problem. However, the resulting asymmetry in the formulas is sometimes removed
by also generating an auxiliary variable when moving down in dimension. Then for every
k, l ∈ K a diffeomorphism gk,l:Yk × Uk,l → Yl × Ul,k between two augmented spaces (which
must have the same dimensions) is employed, where gk,l = g−1

l,k , and a jump between arbitrary
spaces Yk and Yl is described by

Generate Un+1 from the uniform distribution on [0, 1].
Generate uk,l from qk,l(·), and set (zl, ul,k) = gk,l(yk, uk,l).
If Un+1 < αk,l

(
yk, uk,l, zl, ul,k), set Yn+1:= (l, zl),

else set Yn+1:= Yn.

This works whatever the dimensions dk and dl, and there is a single acceptance probability
αk,l:Yk × Uk,l × Yl × Ul,k → [0, 1], given by

αk,l(y, u, z, v) =
ρlπl(z) r(l, k)ql,k(v)|g′k,l(y, u)|

ρkπk(y) r(k, l)qk,l(u)
∧ 1.

The values (y, u, z, v) appearing in this context satisfy (z, v) = gk,l(y, u), and then g′k,l(y, u) =
∂(z, v)/∂(y, u), and the right side can be further symmetrized (at least in notation) as

ρlπl(z) r(l, k)ql,k(v)
ρkπk(y) r(k, l)qk,l(u)

|∂(z, v)|
|∂(y, u)|

∧ 1.

Theorem 3.21. The sequence (Yn) produced by the symmetrized reversible jump scheme is
a Markov chain on Y with stationary measure Π.

Proof As in the proof of the preceding theorem it suffices to show that the chain is re-
versible, and this can be reduced to showing that Pr(Yn ∈ A,Yn+1 ∈ B) = Pr(Yn ∈ B,Yn+1 ∈

A), for every pair of measurable sets of the form A = {k} × Ak for Ak ⊂ Yk and B = {l} × Bl

for Bl ⊂ Yl if Yn is sampled from Π and Yn+1 is produced as described.
Presently, if k , l,

Pr(Yn ∈ A,Yn+1 ∈ B) =
∫ ∫

1Ak (y)ρkπk(y)r(k, l)qk,l(u)αk,l
(
y, u, gk,l(y, u)

)
1Bl

(
gk,l(y, u)1

)
dy du,

Pr(Yn ∈ B,Yn+1 ∈ A) =
∫ ∫

1Bl (z)ρlπl(z)r(l, k)ql,k(v)αl,k
(
z, v, gl,k(z, v)

)
1Ak

(
gl,k(z, v)1

)
dz dv.

The first formula is as before, except that now the proposed value in Yl is only the first
coordinate gk,l(y, u)1 of gk,l(y, u), the second coordinate being used for computing the accep-
tance probability only. We rewrite the second integral using the substitution (z, v) = gk,l(y, u),
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which by assumption is equivalent to (y, u) = gl,k(z, v), giving∫ ∫
1Bl

(
gk,l(y, u)1

)
ρlπl

(
gk,l(y, u)1

)
r(l, k)ql,k

(
gk,l(y, u)2)αl,k

(
gk,l(y, u), y, u

)
1Ak (y) |g′k,l(y, u)| dy du.

This shows that the two probabilities are equal if

ρkπk(y)r(k, l)qk,l(u)αk,l
(
y, u, gk,l(y, u)

)
= ρlπl

(
gk,l(y, u)1

)
r(l, k)ql,k

(
gk,l(y, u)2)αl,k

(
gk,l(y, u), y, u

)
|g′k,l(y, u)|.

We simplify this by substituting gk,l(y, u) = (z, v), and then see that this is ensured by the
definition of αk,l, and the implied definition of αl,k, where we note that g′l,k(z, v) is the inverse
of g′k,l(y, u).

If k = l, then the probabilities as computed must be enlarged with the probabilities that
the chain does not move and the value Yn = Yn+1 belongs to both Ak and Bl. In both cases
this probability is∫ ∫

1Ak∩Bl (y)ρkπk(y)r(k, k)qk,k(u)
(
1 − αk,k

(
y, u, gk,k(y, u)

)
dy du.

This is clearly invariant under swapping Ak and Bl. □

The reversible jump scheme generates a chain of joint values (k, yk). Sometimes it is
possible and advantageous to separate the index k and value yk. Given k, sampling yk from
πk is a problem of fixed dimension and can be solved without jumps. Sampling k involves
only the marginal distribution (ρk) on the countable set K and hence also does not need
jumps. Failing more efficient methods, we could implement a Metropolis-Hastings sampler
with proposal distribution r(k, ·) and acceptance probabilities

ρl r(l, k)
ρk r(k, l)

∧ 1.

Unfortunately, although in our abstract notation this looks easy, in practice it may not, as
the ρk may not be explicit. In particular, in the context of Bayesian model selection the ρk

would involve the likelihood and be proportional to
∫

pθ,k(x) ρkπk(θ) dθ, which could be a
high-dimensional integral of the type we wanted to avoid evaluating in the first place.

An intermediate approach, known as partial analytic structure, separates out the part of
yk that is not common to the value yl in the intended jump space, as follows. Given k and l,
assume that yk = (yk,l, yk,−l) and yl = (yl,k, yl,−k), where yk,l = yl,k. Then when jumping from k
to l, the common part yk,l could be retained, and we could conditionally on yk,l apply the idea
of the preceding paragraph to separate generating the new index l from updating the second
part of yk, as follows. Let

ρ(k| yk,l) =

∫
ρkπk(yk,l, yk,−l) dyk,−l∑

m

∫
ρmπm(yk,l, ym,−l) dym,−l

,

πk(·| yk,l) =
πk(yk,l, ·)∫

πk(yk,l, yk,−l) dyk,−l
.

The first gives the probabilities Pr(K = k|YK,l = yk,l), while the second is the conditional
density of Yk,−l given K = k,Yk,l = yk,l. (The sum over m in the first is restricted to the values
of m for which yk,l is possible as first coordinate of ym = (ym,l, ym,−l) and ym,l = yk,l.)
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Given Yn = (k, yk),
Generate l from r(k, ·).
Split yk = (yk,l, yk,−l) and set yl,k = yk,l.

Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < αk,l(yk,l), generate zl,−k from πl(·| yl,k) and set Yn+1:= (l, yl,k, zl,−k),
else generate zk,−l from πk(·| yk,l) and set Yn+1:= (k, yk,l, zk,−l).

Here the acceptance probability is given by

αk,l(y) =
ρ(l| y) r(l, k)
ρ(k| y) r(k, l)

∧ 1.

3.8 *Exchange algorithm

It was noted that the norming constant in the target density π cancels from the acceptance
probability of a Metropolis-Hastings chain, so that it suffices to know π up to a proportion-
ality factor. This is useful, but not always enough. In a Bayesian setup the target density is
proportional to θ 7→ π1(θ)pθ(x), for π1 the prior density, and hence we must still know the
norming constant to the data density pθ, as this is a function of θ. In a model selection setup
the target of the kth model is proportional to (k, θ) 7→ ρkπk(θ)pk,θ(x), and we must know the
norming constant of the posterior density θ 7→ πk(θ)pk,θ(x) of the kth model. Such difficulties
can be overcome with an extension of the Metropolis-Hastings algorithm.

Suppose that the target density is π(y) = c(y)π̄(y), where π̄(y) can be computed for every
y, but c(y) cannot. For instance, the target density is θ 7→ π1(θ)c(θ)p̄θ(x), where c is the
norming constant to p̄θ. Consider the following algorithm, with arbitrary proposal densities
q and r.

Given a starting value Y0 we proceed recursively, for n = 0, 1, 2, . . ., as follows.

Given Yn.

Generate Zn+1 from the distribution with density q(Yn, ·).
Generate Vn+1 from the distribution with density r(Zn+1, ·).
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(Yn,Zn+1,Vn+1), set Yn+1:= Zn+1,

else set Yn+1:= Yn.

Just as in the ordinary Metropolis-Hastings algorithm, the chain accepts a move to the
proposed value z with probability α(y, z, v), but this now also depends on the extra variable
v. By integrating out this variable, we obtain an ordinary Metropolis-Hastings chain with
acceptance probability ᾱ(y, z) =

∫
α(y, z, v)r(z, v) dµ(v). If we set this as in the ordinary

chain, then π will be a stationary density. Thus we assume that∫
α(y, z, v)r(z, v) dµ(v)∫
α(z, y, v)r(y, v) dµ(v)

=
π(z)q(z, y)
π(y)q(y, z)

.

Theorem 3.22. The Markov chain (Yn) has stationary density π.
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Proof If Yn ∼ π, then Pr(Yn ∈ A,Yn+1 ∈ B) is given by∫ ∫ ∫
1A(y)π(y)α(y, z, v)1B(z)q(y, z)r(z, v) dµ(v) dµ(z) dµ(y)

+

∫ ∫ ∫
1A(y)π(y)

(
1 − α(y, z, v)

)
1B(y)q(y, z)r(z, v) dµ(v) dµ(z) dµ(y)

The second integral depends on (A, B) only through A ∩ B and hence is symmetric in A and
B. The first integral is symmetric in A and B if the integral

∫
π(y)α(y, z, v)q(y, z)r(z, v) dµ(v)

is invariant under exchanging y and z, for every (y, z). This is ensured by the definition of α,
which is equivalent to symmetry of the latter integral. □

As an example consider the exchange algorithm meant to approximate the posterior dis-
tribution in the case that the constant in the likelihood is not explicit. The target density is
proportional to θ 7→ π1(θ)pθ(x), for fixed x, where pθ(x) = c(θ)p̄θ(x), for a computable value
p̄θ(x) and non-explicit norming constant c(θ)−1 =

∫
p̄θ(x) dµ(x). The algorithm assumes that

we can simulate variables from pθ.
The acceptance probability is set equal to

α(θ, θ′, v) =
π1(θ′)p̄θ′(x)q(θ′, θ)p̄θ(v)
π1(θ)p̄θ(x)q(θ, θ′)p̄θ′(v)

∧ 1.

Given Yn = θ.

Generate θ′ from the distribution with density q(θ, ·).
Generate v from the distribution with density pθ′.
Generate Un+1 from the uniform distribution on [0, 1].
If Un+1 < α(θ, θ′, v), set Yn+1:= θ′,
else set Yn+1:= θ.

To see that this works, it suffices to verify that
∫
α(θ, θ′, v)pθ′(v) dµ(v) π1(θ)pθ(x)q(θ, θ′) is

symmetric in θ and θ′, which readily follows from the definition of α.

3.9 *Connections between the samplers

The slice sampler is actually a special Gibbs sampler, and the coordinate updates of the
Gibbs sampler are special Metropolis-Hastings steps.

Lemma 3.23. The slice sampler is the special case of the Gibbs sampler applied to gener-
ating bivariate samples (Yn,Un) from the uniform distribution on F (π) = {(y, u): 0 ≤ u ≤
π∗(y)}.

Proof The density of the uniform distribution satisfies π(y, u) ∝ 10≤u≤π∗(y). The full con-
ditional densities π(y| u) and π(u| y) correspond to the uniform distributions U

(
B(u)

)
and

U
(
0, π∗(y)

)
, for B(u) = {y: u ≤ π∗(y)}. These correspond to the two updating steps of the

slice sampler. □

For the next lemma we extend the Metropolis-Hastings sampler to proposal distributions
that may not be dominated and given by a transition density. In the case that y = (y1, y2)
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and only y2 is updated and y1 is left unchanged, we require that the transition proposal for
y2 is given by a density and read the quotient q(z, y)/q(y, z) in the acceptance probability
accordingly as referring to the transition density for y2 only.

Lemma 3.24. Every coordinate update of the Gibbs sampler is a Metropolis-Hastings sam-
pler with acceptance probability equal to one.

Proof The transition kernel of the ith update of the Gibbs sampler is given by, for y−i =

(y1, ..., yi−1, yi+1, ..., ym),

qi(y, y′) = δy−i (y
′
−i)πi(y′i | y−i).

If this is taken to be the proposal distribution of a Metropolis-Hastings algorithm, then the
acceptance probability is equal to

π(y′)qi(y′, y)
π(y)qi(y, y′)

=
π(y′)πi(yi| y−i)
π(y)πi(y′i | y−i)

= 1,

since y−i = y′
−i by construction, and π(y′)/πi(y′i | y−i) = π−i(y−i), for π−i the marginal density

of y−i, and similarly π(y)/πi(yi| y−i) = π−i(y−i). □

The lemma does not mean that every Gibbs sampler is a Metropolis-Hastings algorithm.
In fact, there are elementary examples (see for instance VanDerwerken (2016)) of Gibbs
samplers that do not satisfy the detailed balance property, which automatically holds for
every Metropolis-Hastings algorithm, as seen in the proof of Theorem 3.7.

Notwithstanding the close relationship between the Gibbs sampler and the Metropolis-
Hastings algorithm, certain features of the Gibbs sampler are worth noting separately. The
Gibbs sampler accepts all proposed moves, whereas the acceptance rate is a delicate pa-
rameter of the general Metropolis-Hastings algorithm (see the discussion in Sections 3.2.1
and 3.2.2). The primary use of the Gibbs sampler is to reduce the dimension of the vari-
ables to be sampled, although sometimes artificial variables are added to break up sampling
in multiple steps (the slice sampler is an example). The Gibbs sampler is less useful when
the conditional distributions are not analytically available. Incorrect parametrization of the
model can substantially increase the convergence time of the Gibbs sampler, or even result
in the algorithm getting “trapped” in certain states (see for instance Hills and Smith (1992)).
Finally, the Gibbs sampler does not apply to a union of models of different dimensions.

There are various ways to combine the Gibbs sampler and the Metropolis-Hastings al-
gorithm. The hybrid MCMC algorithm simultaneously utilizes Gibbs and MH steps. For
instance, every rth iteration (or every iteration with probability 1/r) of a Gibbs sampler is
replaced by a Metropolis-Hastings step. In case one of the full conditional distributions is
not analytically tractable, one might sample from this conditional by a general Metropolis-
Hastings algorithm. This is called Metropolis-Hastings embedded in a Gibbs sampler.

3.10 Variational Bayes

MCMC methods can be slow, or even computationally infeasible, when the target distribu-
tion is complex. In the Bayesian framework this may happen when the data set is large or the
parameter set is high dimensional. To speed up the computations we may choose to compute
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an attractive approximation, rather than the exact target distribution. A popular approach is
the variational method, which casts inference as finding a best approximation of the tar-
get distribution Π in a given class of distributions Q. When applied to compute a posterior
distribution, this leads to the variational Bayes method.12

The standard variational method uses the Kullback-Leibler divergence to measure the
discrepancy between the target and its approximation. For two probability distributions P
and Q with densities p and q relative to a measure µ on a given measurable space this is
defined as

K(Q; P) =
∫

log
q
p

dQ =
∫ (

log
q
p

)
q dµ.

This number can be shown to be independent of the dominating measure µ, and nonnegative,
but can be ∞. (The quotient q/p is defined to be infinite if q > p = 0, with logarithm also
infinite; the integral over the set where q = 0 is understood to be 0.) Note that the divergence
is asymmetric in P and Q. We shall write K(O; P) and K(q; p) interchangeably.

Now given a target probability distribution Π and a given class Q of probability distribu-
tions Q, the variational approximation is defined by

Q∗ = argmin
Q∈Q

K(Q;Π)

When applied with Π equal to a posterior distribution, this gives the variational Bayes pos-
terior. If Π and every distribution in Q possesses a density, then the minimization problem
can be stated in terms of densities, and leads to a density q∗.

The choice of the variational class is crucial and somewhat a form of art. Larger, more
flexible classes provide better approximations, but may be computationally less attractive,
and vice versa. Without an efficient and accurate algorithm to find the minimum, the method
is empty. By the asymmetry of the Kullback-Leibler divergence the positioning of Q and
Π in the preceding display is important: the integral is taken with respect to Q, not Π. This
choice seems to be motivated by computational efficiency.

3.10.1 Evidence lower bound

In the Bayesian framework the target is the posterior distribution Π(·| X) given the data X. If
the likelihood is given by a density x 7→ pθ(x) and the prior by a density π, then Bayes’s rule
gives the posterior density as π(θ| X) = pθ(X)π(θ)/p(X), for x 7→ p(x) =

∫
pθ(x) dΠ(θ) the

Bayesian marginal density of X (or evidence), and the Kullback-Leibler divergence between
Π(·| X) and a probability measure Q with density q is

K
(
q; π(·| X)

)
=

∫ [
log q − log

(
π(θ)pθ(X)

)]
dQ + log p(X).

The term log p(X) on the far right does not depend on q and hence can be ignored when
searching a minimum over q. Thus minimizing the variational criterion is equivalent to max-
imizing the quantity

ELBO(q) = −K
(
q; π(·| X)

)
+ log p(X) = Eq log(pϑ(X)π(ϑ)) − Eq log q(ϑ).

12 For a more detailed introduction of the topic, we recommend Chapter 10 of Bishop (2006) or the review
article Blei et al. (2017).



3.10 Variational Bayes 83

Here Eq refers to the expectation relative to ϑ ∼ q, for fixed X. The nonnegativity of the
Kullback-Leibler divergence and the definition immediately that ELBO(q) ≤ log p(X). This
explains the name evidence lower bound and the acronym “ELBO”.

The variational class Q is typically chosen independent of the data X, but the variational
posterior distribution, the maximizer of the ELBO for fixed X, of course depends on the
given data.

3.10.2 Mean-field variational family

The most popular variational class Q is the set of all product measures in case the state space
is a product space Y = Y1 × · · · × Ym. As in the case of the Gibbs sampler, the coordinates
yi of y = (y1, . . . , ym) ∈ Y may arise naturally, or consist of blocks that are formed for
computational convenience. Suppose that the target distribution has density π relative to a
product measure µ1 × · · · × µm, and consider the class Q of all distributions with a density q
that can be decomposed as

q(y1, . . . , ym) =
m∏

i=1

qi(yi),

for some densities q1, ..., qm. Often the densities are left unspecified, and the variational crite-
rion is minimized over all densities. Alternatively, the densities q1, . . . , qm may be restricted
to some model.

The Kullback-Leibler divergence between the variational approximation to a target den-
sity π can be written, with y = (y1, . . . , ym) and µ =

∏m
i=1 µi,∫ (

log
∏m

i=1 qi(yi)
π(y)

) n∏
i=1

qi(yi) dµ(y1, . . . , ym)

=

m∑
j=1

∫
(log q j) q j dµ j −

∫
log π(y)

m∏
i=1

qi(yi) dµ(y1, . . . , ym).

Finding densities q1, . . . , qm that minimize this Kullback-Leibler divergence is not necessar-
ily an easy problem. However, minimization with respect to a single density qi given fixed
values of the other densities q j, for j , i, is often feasible. We rewrite the preceding display
as

m∑
j=1

∫
(log q j) q j dµ j −

∫ [∫
log π(y)

∏
j,i

q j(y j) dµ−i(y−i)
]

qi(yi) dµi(yi)

=
∑
j,i

∫
(log q j) q j dµ j +

∫ log
qi(yi)

exp
∫

log π(y)
∏

j,i q j(y j) dµ−i(y−i)

 qi(yi) dµi(yi).

Here µ−i =
∏

j,i µ j and y−i = (y j) j,i is the vector y with its ith coordinate left out. The
function in the denominator of the fraction within the logarithm in the second integral is
independent of qi and hence fixed given q j, for j , i. It is not a probability density, but its
norming constant is also independent of qi and hence the expression is up to an additive con-
stant equal to the Kullback-Leibler divergence between qi and the normalized function. The
nonnegativity of the Kullback-Leibler divergence shows that the expression is minimized
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with respect to qI ranging over all densities, by taking qi equal to the normalized function,
i.e. the minimizer is

q∗i (yi) ∝ exp
(∫

log π(y)
∏
j,i

q j(y j) dµ−i(y−i)
)
. (3.6)

This depends of course on q j, for j , i, and requires evaluation of the integral. In many
examples the latter is feasible. An iterative procedure can then cycle through updating the
qi in turn, each time fixing the other densities at their current values, a procedure known as
coordinate ascent variational inference, or CAVI. The iterations are repeated “until conver-
gence”. It is apparently unknown whether the algorithm converges, and, if it does, whether
the limit achieves the global optimum.

Equation (3.6) corresponds to unrestrained optimization of qi. The same coordinate ascent
algorithm also applies to constrained optimization. When using a parametric model for qi,
the coordinate ascents can be given in terms of updates of the parameters of the model.
In some “conjugate” examples, the unconstrained optimizer may also remain in a given
parametric model, and be given by a parameter update at each step.

In the Bayesian context the target is the posterior density π(θ| X) ∝ pθ(X)π(θ), for a parti-
tioned parameter θ = (θ1, . . . , θm), and the coordinate ascent (3.6) is given by

q∗i (θi) ∝ exp
(
E−i log

(
pϑ(X)π(ϑ)

))
, (3.7)

where E−i refers to the expectation relative to ϑ−i = (ϑ j) j,i under the distribution ϑ j
ind
∼ q j,

for j , i.

Example 3.25 (Normal location-scale). Suppose that the data X = (X1, . . . , Xn) are a random
sample Xi

iid
∼ N(µ, 1/τ). In Example 2.3 it is seen that the prior for the parameter θ = (µ, τ)

given by τ ∼ Γ(α, β) and µ| τ ∼ N(ν, τ−1) is conjugate, and an explicit expression for the pos-
terior is obtained. For illustration consider the mean-field variational approximation of the
posterior in which the parameters µ and τ are independent, i.e. we assume that the variational
class Q consists of all densities q of the form

q(µ, τ) = qµ(µ)qτ(τ),

for univariate densities qµ and qτ without any additional restriction on the form of the latter
densities.

The joint density takes the form

pµ,τ(X)π(µ, τ) ∝ exp
((n

2
+

1
2
+ α − 1

)
log τ −

τ

2

n∑
i=1

(Xi − µ)2 −
τ

2
(µ − ν)2 − βτ

)
.

In view of (3.7), the variational Bayes solutions satisfy

q∗µ(µ) ∝ exp
(
−

Eττ

2

( n∑
j=1

(X j − µ)2 + (µ − ν)2
))
= exp

(
−

(1 + n)Eττ

2

(
µ −

ν +
∑n

j=1 X j

n + 1

)2)
,

q∗τ(τ) ∝ exp
((n

2
+

1
2
+ α − 1

)
log τ −

τ

2
Eµ

( n∑
j=1

(X j − µ)2 + (µ − ν)2
)
− βτ

)
.

Here Eτ and Eµ denote the expectations with respect to the variational densities qτ and qµ.
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We conclude that q∗µ is the density of the N
(
(ν + nX̄n)/(n + 1), 1/(Eττ(1 + n))

)
-distribution,

and q∗τ is the density of the Γ
(
α + n/2, β + Eµ

(∑n
j=1(X j − µ)2 + (µ − ν)2)/2)-distribution.

In practice, the formulas are used recursively to update the two distributions, which boils
down to updating the parameters of the normal and Gamma distributions. The update for q∗µ
depends on Eττ, while the update of q∗τ depends on the two moments Eµµ and Eµµ

2.

Example 3.26 (Multivariate normal). Suppose that the target distributionΠ is the Nm(µ,Ω−1)-
distribution, for given mean vector µ and precision matrix Ω. Unless Ω is diagonal, the co-
ordinates of Π are not independent and hence a mean field variational approximation cannot
be exact. In this example we derive that it is equal to the product of the univariate normal
distributions N(µi, 1/Ωi,i). Thus the marginals of the mean field approximation are normal,
like the marginals of Π, with the same means µi. Unfortunately, the marginals of N(µ,Ω−1)
have variances (Ω−1)i,i, where

(Ω−1)i,i ≥
1
Ωi,i

.

Thus the marginals of the mean field approximation have smaller variance than the marginals
of the true distribution.

The example of a multivariate normal distribution is relevant in Bayesian inference, as
the posterior distribution of a multi-dimensional parameter θ = (θ1, . . . , θm) will typically
be approximately a normal distribution Nm(θ̂n, I−1

θ ), for Iθ the Fisher information, in view of
the Bernstein-von Mises theorem, Theorem 2.16. The marginals of the variational Bayes ap-
proximation to the posterior distribution then have a smaller variance than the true posterior
marginals. The difference can be substantial if the Fisher information matrix is far from di-
agonal. The difference between the two variances is equal to the difference between the true
Cramér-Rao bounds (I−1

θ )i,i and 1/(Iθ)i,i for estimating θi when the other coordinates of θ are
unknown or known, respectively. The second, the variational posterior variance is smaller.

To derive the variational approximation, we start from the log likelihood of the Nm(µ,Ω−1)
distribution

− log π(θ) = 1
2 (θ − µ)TΩ(θ − µ) − 1

2 log detΩ + 1
2 m log(2π).

We drop the last two terms and minimize over a product density q the expression∫
log q(θ) q(θ) dθ +

∫
1
2 (θ − µ)TΩ(θ − µ) q(θ) dθ

=

m∑
i=1

∫
log qi(θi) qi(θi) dθi +

1
2 tr(ΩΣq) + 1

2 (µq − µ)TΩ(µq − µ),

where the qi are the marginals of q, and µq and Σq the mean vector and covariance matrix of
q. The first two terms on the right are invariant under shifting the qi, while the third becomes
zero if the qi are centered at the µi. Furthermore, for diagonal Σq = diag(σ2

i,q), the second
term is equal to

∑m
i=1Ωi,iσ

2
i,q. It follows that after shifting to mean zero, the problem becomes

to minimize
m∑

i=1

[∫
log qi(θi) qi(θi) dθi +

1
2Ωi,iσ

2
i,q

]
,

where qi is centered and has second moment σ2
i,q. This splits in m separate minimization
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problems. By Lemma 3.27 the normal distribution has maximal entropy−
∫

log qi(θi) qi(θi) dθi

among distributions with fixed variance, which can be computed to be 1
2 log(2πeσ2

i,q). Hence
we take qi a centered normal density and need only minimize over its variance σ2

i,q. This
leads to minimization of − 1

2 log(2πeσ2
i,q) + 1

2Ωi,iσ
2
i,q, and gives σ2

i,q = 1/Ωi,i. Thus the vari-
ational Bayes approximation to the Nm(µ,Ω−1) distribution is the product of N(µi, 1/Ωi,i)-
distributions.

3.11 Complements
Lemma 3.27. The entropy −

∫ (
log f (x)

)
f (x) dx of a probability density f on R with variance 1 is

maximal for the standard normal density.

Proof For any centered density f with second moment 1, we have

0 ≤
∫

(log f /ϕ) f dλ =
∫

(log f ) f dλ + 1
2 log(2πe),

with equality if and only if f = ϕ. Rearrange to see
∫

(log f ) f dλ ≥ − 1
2 log(2πe) =

∫
(log ϕ)ϕ dλ. □

Exercises
3.1 Prove that the sequence (Yn) produced by the multivariate slice sampler is a Markov chain with

stationary distribution π.
3.2 Show that (Yn)n≥1 is a Markov chain if and only if (Y1, . . . ,Yn−1) and (Yn+1,Yn+2, . . .) are con-

ditionally independent given Yn, for every n.
3.3 Implement a random-walk Metropolis-Hastings algorithm to compute the posterior distribution

for θ based on a sample of size 50 from the N(θ, 1)-distribution, relative to a standard Cauchy
prior. Use N(0, τ2) steps for the proposal distribution. Experiment with different values of τ.
How does τ influence the acceptance rate? What seems a reasonable order of magnitude of τ?
Give an estimate of the posterior density through a histogram of the MCMC output. Use data
generated according to the model with θ0 = 0.

3.4 Implement the algorithm described in Example 3.8. Experiment with setting the burn-in period
and by choosing different proposal distributions.

3.5 Implement the algorithm described in Example 3.10. Experiment with the choice of the scaling
parameter τ. Using a test data set, try to find the scaling parameter which results in acceptance
rate around 25%.

3.6 As data generate a sample X1, . . . , Xn with of size n = 50 from the standard normal distribution.
Suppose we want to fit a N(θ, 1) model to this data, using a Bayesian approach with a prior
on θ defined hierarchically in two steps. The (hyper)parameter 1/τ2 is Gamma distributed with
parameters (4/10, 2/10); given τ, the parameter θ is N(0, τ2) distributed.

• Analytically derive the full conditionals of θ| τ, X1, . . . , Xn and 1/τ2| θ, X1, . . . , Xn.
• Implement the Gibbs sampler to draw an approximate sample from the posterior distribution

of (θ, τ).
• Use this sampler to estimate the marginal posterior mean of both θ and τ2, and to form a 95%

credible interval for θ.

3.7 Let Y = f (X) be a measurable transformation of some random vector X with distribution Π and
let Q(y, B) = Pr(X ∈ B|Y = y) be a version of the conditional distribution of X given Y = f (X).
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If we generate X from Π, coarsen X to Y = f (X) and next generate Z from Q(Y, ·), then Z
possesses law Π. Show this.

3.8 Implement a MCMC scheme to estimate the parameter β in a linear regression model Yi =

βXi + ei, where X1, . . . , Xn and e1, . . . , en are assumed to be independently generated from a
normal distribution, and where we assume that we observe only Y1, . . . ,Yn and Xm+1, . . . , Xn

for some m ≥ 2. (E.g. n = 10, m = 5.) Use a Gaussian prior on β and set the error variance
equal to 1.

3.9 Show that the Gibbs sampler is reversible only in the trivial case that the coordinates of Y =
(Y1, . . . ,Ym)| π are independent. (A proof for m = 2 suffices.)

3.10 Implement the variational Bayes algorithm described in Example 3.25. Compare (empirically)
the resulting variational Bayes posterior with the true posterior.

3.11 Show that the leap-frog updates of the Hamiltonian MCMC algorithm for the Hamiltonian
function H(y, v) = y2/(2σ2) + v2/2 are given by the linear map with matrix(

1 − ϵ2/(2σ2) ϵ

−ϵ/σ2 + ϵ3/(4σ2) 1 − ϵ2/(2σ2)

)
.

Show that the updates are stable if ϵ < 2σ. Implement Hamiltonian MCMC algorithms to
sample from the normal distribution (σ = 1) with step sizes ϵ = 1, ϵ = 3/2 and ϵ = 3, keeping
the path length Lϵ constant. What are the acceptance rates? Conclusion?
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Dirichlet Process

The Dirichlet process is the “normal distribution of Bayesian nonparametrics”. It is the de-
fault prior on spaces of probability measures, and a building block for priors on other struc-
tures.

Throughout this chapter let the sample space (X,X ) be a Polish space with its Borel
σ-field, and let M be the collection of all probability measures on (X,X ). The Dirichlet
process prior will be defined as a probability measure onM.

4.1 Random measures

In this section we explain the measure-theoretic details of putting a prior on a probability
measure.

A prior on the set of probability measuresM is a probability measure on a σ-field M of
subsets ofM. Alternatively, it can be viewed as the law of a random measure: a measurable
map from some probability space into (M,M ). As usual we denote the prior by Π; we
denote the random measure by P. Thus Π is a probability measure on (M,M ) and P is a
random element with values inM, and the correspondence is that P ∼ Π.

It is natural to choose the σ-field M such that at least every P(A), for A ∈X , is a random
variable, i.e. the concatenation of the map P from the probability space intoM and the map
M 7→ M(A) is a measurable map fromM into [0, 1], for every A ∈X . We define the σ-field
M as the minimal one to make this true.

Definition 4.1. Given the setM of all Borel probability measures on a given Polish sample
space (X,X ), the σ-field M is defined as the smallest σ-field onM such that all maps M 7→
M(A) from M to R are measurable, for A ∈ X . A measurable map P from a probability
space into (M,M ) is called a random measure.

With the preceding definition a map P from a probability space into M is a random
measure if and only if P(A) is a random variable, for every A ∈ X . (See Exercise 4.1.)
Equivalently,

(
P(A): A ∈X

)
is a stochastic process on the underlying probability space. (A

stochastic process is by definition just a collection of random variables defined on a common
probability space. See Definition 7.1.)

Although other measurability structures on M are possible, the σ-field M is attractive
also because it is identical to the Borel σ-field for the weak topology on M. We state this
fact in the following proposition, which also gives other useful characterizations. (See Sec-
tion 4.9.1 for a review on the weak topology, also known as the topology of “convergence in
distribution”.)

88
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Proposition 4.2. If (X,X ) is a Polish space with its Borel σ-field, then the σ-field M of
Definition 4.1 is also:

(i) the Borel σ-field for the weak topology onM;
(ii) the smallestσ-field onMmaking all maps M 7→ M(A) measurable, for A in a generator

X0 for X ;
(iii) the smallest σ-field on M making all maps M 7→

∫
ψ dM measurable, for bounded

continuous functions ψ:X→ R.

A finite measure on (M,M ) is completely determined by the set of distributions induced
under the maps M 7→

(
M(A1), . . . ,M(Ak)

)
, for A1, . . . , Ak ∈ X0 and k ∈ N; and also under

the maps M 7→
∫
ψ dM, for bounded continuous functions ψ:X→ R.

For a proof see Proposition A.5 in Ghoshal and van der Vaart (2017).
As M is Polish under the weak topology (see Proposition 4.21), the proposition implies

that (M,M ) is a Polish space with its Borel σ-field. Thus taking the parameter θ from
Section 1.1 that indexes the statistical model (Pθ: θ ∈ Θ) equal to the distribution P itself,
andM as the parameter set, we obtain a Polish parameter set. As is noted in Section 1.1, this
is desirable for the definition of posterior distributions. We also note that, with respect to the
σ-field M on the parameter set M, the data distributions are trivially “regular conditional
probabilities”: the map (θ, A) 7→ Pθ(A), which becomes (P, A) 7→ P(A), satisfies:

(i) A 7→ P(A) is a probability measure for every P ∈ M.
(ii) P 7→ P(A) is M -measurable for every A ∈X ,

This verifies our assumption in Section 1.1, that the measures Pθ in the statistical model are
Markov kernels, and justifies speaking of “drawing a measure P from the prior Π and next
sampling observations X from P”.

Random measures as a stochastic process
By Kolmogorov’s consistency theorem (see Proposition 4.18) a stochastic process

(
P(A): A ∈

X
)

can be constructed simply from a specification of the distributions of all “marginal”
vectors

(
P(A1), . . . , P(Ak)

)
, for all finite collections A1, . . . , Ak of Borel sets in X. Indeed,

Kolmogorov’s theorem asserts that given any consistent specification of these distributions,
there exists a suitable probability space (Ω,U ,Pr) and a stochastic process

(
P(A): A ∈ X

)
defined on it with the given finite-dimensional distributions.

This falls short of constructing a random measure P, as the properties of measures are
much richer than can be described by the finite-dimensional distributions. While a stochastic
process is a measurable map from a probability space into RX , a random measure is a
measurable map in M. Through the identification M ↔

(
M(A): A ∈ X

)
, the space M can

be identified with a subset of RX ; the σ-field M is then the trace of the product σ-field on
RX , by Proposition 4.2. In the next theorem we give sufficient conditions that a stochastic
process can indeed be realized as a random measure, i.e. that there exists a version of the
stochastic process that takes its values in the smaller spaceM.

If the marginal distributions of the stochastic process
(
P(A): A ∈X

)
correspond to those

of a random measure, then it will be true that

(i) P(∅) = 0, P(X) = 1, a.s.
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(ii) P(A1 ∪ A2) = P(A1) + P(A2), a.s., for any disjoint A1, A2.

Assertion (i) follows, because the distributions of P(∅) and P(X) will be specified to be
degenerate at 0 and 1, respectively, while (ii) can be read off from the degeneracy of the joint
distribution of the three variables P(A1), P(A2) and P(A1 ∪ A2). Thus the process

(
P(A): A ∈

X
)

will automatically define a finitely-additive measure on (X,X ).
A problem is that the exceptional null sets in (ii) might depend on the pair (A1, A2). If

restricted to a countable sub-collection X0 ⊂X there would only be countably many pairs
and the null sets could be gathered in a single null set. This would give a version of P that
is an additive measure on X0 almost surely. Then still when extending (ii) to σ-additivity,
which is typically possible by similar distributional arguments, there would be uncountably
many sequences of sets. This problem can be overcome through existence of a mean measure

µ(A) = EP(A).

For a valid random measure P, this necessarily defines a Borel measure on X. Existence of
a mean measure is also sufficient for existence of version of

(
P(A): A ∈ X

)
that is a Borel

measure on X.

Theorem 4.3. Suppose that
(
P(A): A ∈ X

)
is a stochastic process defined on a probability

space (Ω,U ,Pr) that satisfies (i) and (ii) and whose mean A 7→ EP(A) is a Borel measure
on X. Then there exists a version of P that is a random Borel measure on X. More precisely,
there exists a measurable map P̃: (Ω,U ,Pr) → (M,M ) such that P(A) = P̃(A) almost
surely, for every A ∈X .

Proof Let X0 be a countable field that generates the Borel σ-field X , enumerated arbi-
trarily as A1, A2, . . .. Because the mean measure µ(A):= EP(A) is regular, there exists for
every i,m ∈ N a compact set Ki,m ⊂ Ai with µ(Ai − Ki,m) < 2−2i−2m. By Markov’s inequality

Pr
(
P(Ai − Ki,m) > 2−i−m)

≤ 2i+mEP(Ai − Ki,m) ≤ 2−i−m.

Consequently, the event Ωm = ∩i{P(Ai−Ki,m) ≤ 2−i−m} possesses probability at least 1−2−m,
and lim infΩm possesses probability 1, by the Borel-Cantelli lemma.

Because X0 is countable, the null sets involved in (i)-(ii) with A1, A2 ∈ X0 can be aggre-
gated into a single null set N. For every ω < N the process P is a finitely additive measure
on X0, with the resulting usual properties of monotonicity and sub-additivity. By increasing
N if necessary we can also ensure that it is sub-additive on all finite unions of sets Ai − Ki,m.

Let Ai1 ⊃ Ai2 ⊃ · · · be an arbitrary decreasing sequence of sets in X0 with empty intersec-
tion. Then, for every fixed m, the corresponding compacts Ki j,m possess empty intersection
also, whence there exists a finite Jm such that ∩ j≤Jm Ki j,m = ∅. This implies that

AiJm
= ∩

Jm
j=1Ai j − ∩

Jm
j=1Ki j,m ⊂ ∪

Jm
j=1(Ai j − Ki j,m).

Consequently, on the event Ωm \ N,

lim sup
j

P(Ai j ) ≤ P(AiJm
) ≤

Jm∑
j=1

P(Ai j − Ki j,m) ≤ 2−m.

Thus on the event Ω0 = lim infΩm \ N the limit is zero. We conclude that for every ω ∈ Ω0,
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the restriction of A 7→ P(A) to X0 is countably additive. By Carathéodory’s theorem it
extends to a measure P̃ on X .

By construction P̃(A) = P(A) almost surely, for every A ∈ X0. In particular EP̃(A) =
EP(A) = µ(A), for every A in the field X0, whence by uniqueness of extension the mean
measure of P̃ coincides with the original mean measure µ on X . For every A ∈ X , there
exists a sequence {Am} ⊂ X0 such that µ(A∆ Am)→ 0. Then both P(Am ∆ A) and P̃(Am ∆ A)
tend to zero in mean. Finite-additivity of P gives that

∣∣∣P(Am) − P(A)
∣∣∣ ≤ P(Am ∆ A), almost

surely, and by σ-additivity the same is true for P̃. This shows that P̃(A) = P(A) almost
surely, for every A ∈X .

This also proves that P̃(A) is a random variable for every A ∈ X , whence P̃ is a measur-
able map in (M,M ). □

Discrete random measures
Given random variables W1,W2, . . .with 0 ≤ W j ≤ 1 and

∑∞
j=1 W j = 1, and random variables

θ1, θ2, . . . with values in (X,X ), we can define a random probability measure by

P =
∞∑
j=1

W jδθ j . (4.1)

The realizations of this measure are discrete with countably many support points, which
may be different for each realization. The vectors of weights (W1,W2, . . .) and “locations”
(θ1, θ2, . . .) are often chosen independent.

The support of a Borel probability measure on a Polish space is defined as the smallest
closed set with probability one. Equivalently, it is the set of all points such that every open
neighborhood of the point receives positive probability. The support of a random variable
with values in a Polish space is understood to be the support of its induced distribution. The
following lemma shows that the random probability measure (4.1) has “full support” (i.e.
support the whole space) in the set of measures (M,M ), under the mild conditions that the
weight vector and the location variables have full support. For the weight vector this refers
to the infinite-dimensional unit simplex S∞: the set of all probability vectors (w1,w2, . . .).

Lemma 4.4. If the weight vector (W1,W2, . . .) has support S∞ and is independent of the
vector (θ1, θ2, . . .) of locations, and the vector (θ1, . . . , θk) has support Xk, for every k, then
the random measure P defined in (4.1) has weak support M, i.e. Pr(P ∈ B) > 0 for every
weakly open subset B ⊂ M.

Proof Every probability measure Q on a Polish space (X,X ) is the limit in distribution
(or “weak limit”) of a sequence of finitely discrete distributions (see Proposition 4.22).
Therefore, it suffices that to show that Pr(P ∈ B) > 0 for every weak neighborhood B of
a distribution P∗ =

∑k
j=1 w∗jδθ∗j with finite support. All distributions P′ =

∑∞
j=1 w jδθ j with∑

j>k w j sufficiently small, for some given k, and (w1, . . . ,wk) and (θ1, . . . , θk) sufficiently
close to (w∗1, . . . ,w

∗
k) and (θ∗1, . . . , θ

∗
k) are in such a neighborhood B. Thus the assertion fol-

lows if for every ϵ > 0 the intersection of the events
{∑

j>k W j < ϵ,max j≤k |W j −w∗j | < ϵ
}

and{
max j≤k d(θ j, θ

∗
j) < ϵ

}
has positive probability. Now both events have positive probability, as

they refer to open subsets of S∞ and Xk, respectively, and hence so does their intersection,
as the events are independent. □
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An important special case is obtained by choosing the locations θ1, θ2, . . . an i.i.d. se-
quence in X, and by choosing the weights W1,W2, . . . by the following stick-breaking al-
gorithm. Given a sequence of random variables Y1,Y2, . . . with values between 0 and 1, we
set

W j =
( j−1∏

l=1

(1 − Yl)
)
Y j. (4.2)

The idea is to divide the total weight (a “stick” of length 1) first in parts Y1 and 1 − Y1; the
first weight W1 is set equal to Y1. Next the remaining weight 1 − Y1 is divided in (1 − Y1)Y2

and (1 − Y1)(1 − Y2); the second weight W2 is set equal to (1 − Y1)Y2. The remaining weight
is divided in (1 − Y1)(1 − Y2)Y3 and (1 − Y1)(1 − Y2)(1 − Y3), etc.

Under mild conditions on the sequence Y1,Y2, . . . , the probabilities W j will sum to one,
and the distribution will have full support.

Lemma 4.5. For any random variables Yl with 0 ≤ Yl ≤ 1, the random vector (W1,W2, . . .)
defined by (4.2) has nonnegative coordinates with

∑
j W j ≤ 1. We have

∑
j W j = 1 almost

surely iff E
[∏ j

l=1(1−Yl)
]
→ 0 as j→ ∞. For independent variables Y1,Y2, . . . this condition

is equivalent to
∑∞

l=1 log E(1−Yl) = −∞. In particular, for i.i.d. variables Y1,Y2, . . . it suffices
that P(Y1 > 0) > 0. Finally, for any independent variables Y1,Y2, . . . with support [0, 1], the
vector (W1,W2, . . .) has support S∞.

Proof The first assertion is immediate from the construction. By induction, it easily follows
that the leftover mass at stage j is equal to 1 −

∑ j
l=1 Wl =

∏ j
l=1(1 − Yl). Hence

∑
j W j = 1

a.s. iff
∏ j

l=1(1 − Yl) → 0 a.s.. Since the leftover sequence is decreasing, nonnegative and
bounded by 1, the almost sure convergence is equivalent to convergence in mean. If the
Y j’s are independent, then this condition becomes

∏ j
l=1(1 − EYl) → 0 as j → ∞, which is

equivalent to the condition
∑∞

l=1 log E(1 − Yl) = −∞.
Because the map y 7→ w from stick lengths to weights is continuous, it follows that the

event {(W1,W2, . . .) ∈ B} for an open set B ⊂ S∞ translates into an event {(Y1,Y2, . . .) ∈ C}
for an open set C ⊂ [0, 1]∞. Hence the sequence of weights has full support as soon as
the sequence of stick lengths has full support. Now the cylindrical sets, of the form C =
{(y1, y2, . . .): (y1, . . . , yk) ∈ Ck}, for Ck ⊂ R

k an open interval, form a basis of the open sets
of [0, 1]∞, and the probability that (Y1, . . . ,Yk) ∈ Ck is positive, for every such Ck. Thus the
vector (Y1,Y2, . . .) has support [0, 1]∞. □

4.2 Definition and existence

Definition 4.6 (Dirichlet process). A random measure P on (X,X ) is said to possess a
Dirichlet process distribution DP(α) with base measure α, if for every finite measurable
partition A1, . . . , Ak of X,(

P(A1), . . . , P(Ak)
)
∼ Dir

(
k;α(A1), . . . , α(Ak)

)
. (4.3)

In this definition α is a given finite positive Borel measure on (X,X ). We write |α| = α(X)
for its total mass and ᾱ = α/|α| for the probability measure obtained by normalizing α,
respectively, and use the notations P ∼ DP(α) and P ∼ DP

(
|α|, ᾱ

)
interchangeably to say

that P has a Dirichlet process distribution with base measure α.
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Figure 4.1 Cumulative distribution functions of 10 draws from the Dirichlet
process with base measures N(0, 2) (left) and 10N(0, 2) (right). (Computations
based on stick-breaking representation truncated to 1000 terms.)

The existence of the Dirichlet process is not obvious, but can be proved using Theo-
rem 4.3.

Theorem 4.7. The Dirichlet process DP(α) exists: for any finite Borel measure α on the
Polish space X there exists a random measure P satisfying (4.3) for every finite measurable
partition A1, . . . , Ak of X.

Proof Definition 4.6 specifies the joint distribution of the vector
(
P(A1), . . . , P(Ak)

)
, for

any measurable partition {A1, . . . , Ak} of the sample space. In particular, it specifies the dis-
tribution of P(A), for every measurable set A, and hence the mean measure A 7→ E

[
P(A)

]
.

By Proposition 2.27,

EP(A) = ᾱ(A).

Thus the mean measure is the normalized base measure ᾱ, which is a valid Borel measure
by assumption. Therefore Theorem 4.3 implies existence of the Dirichlet process DP(α)
provided the specification of distributions can be consistently extended to any vector of the
type

(
P(A1), . . . , P(Ak)

)
, for arbitrary measurable sets and not just partitions, in such a way

that it gives a finitely-additive measure.
An arbitrary collection A1, . . . , Ak of measurable sets defines a collection of 2k atoms of

the form A∗1 ∩ A∗2 ∩ · · · ∩ A∗k, where A∗ stands for A or Ac. These atoms {B j: j = 1, . . . , 2k}

(some of which may be empty) form a partition of the sample space, and hence the joint
distribution of

(
P(B j): j = 1, . . . , 2k) is defined by Definition 4.6. Every Ai can be written

as a union of atoms, and P(Ai) can be defined accordingly as the sum of the corresponding
P(B j)’s. This defines the distribution of the vector

(
P(A1), . . . , P(Ak)

)
.

To prove the existence of a stochastic process
(
P(A): A ∈X

)
that possesses these marginal

distributions, it suffices to verify that this collection of marginal distributions is consistent
in the sense of Kolmogorov’s extension theorem. Consider the distribution of the vector(
P(A1), . . . , P(Ak−1)

)
. This has been defined using the coarser partitioning in the 2k−1 sets of

the form A∗1 ∩ A∗2 ∩ · · · ∩ A∗k−1. Every set in this coarser partition is a union of two sets in
the finer partition used previously to define the distribution of

(
P(A1), . . . , P(Ak)

)
. Therefore,

consistency pertains if the distributions specified by Definition 4.6 for two partitions, where
one is finer than the other, are consistent.

Let {A1, . . . , Ak} be a measurable partition and let {Ai1, Ai2} be a further measurable parti-
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tion of Ai, for i = 1, . . . , k. Then Definition 4.6 specifies that(
P(A11), P(A12), P(A21), . . . , P(Ak1), P(Ak2)

)
∼ Dir

(
2k;α(A11), α(A12), α(A21), . . . , α(Ak1), α(Ak2)

)
.

In view of the group additivity of finite dimensional Dirichlet distributions given by Propo-
sition 2.26, this implies( 2∑

j=1

P(A1 j), . . . ,
2∑

j=1

P(Ak j)
)
∼ Dir

(
k;

2∑
j=1

α(A1 j), . . . ,
2∑

j=1

α(Ak j)
)
.

Consistency follows as the right side is Dir
(
k;α(A1), . . . , α(Ak)

)
, since α is a measure.

That P(∅) = 0 and P(X) = 1 almost surely follow from the fact that {∅,X} is an eligible
partition in Definition 4.6, whence

(
P(∅), P(X)

)
∼ Dir(2; 0, |α|) by (4.3). That P(A1 ∪ A2) =

P(A1) + P(A2) almost surely for every disjoint pair of measurable sets A1, A2, follows sim-
ilarly from consideration of the distributions of the vectors

(
P(A1), P(A2), P(Ac

1 ∩ Ac
2)
)

and(
P(A1 ∪ A2), P(Ac

1 ∩ Ac
2)
)
, whose three and two components both add up to 1. □

4.3 Stick-breaking representation

The Dirichlet process can be represented as a random discrete measure of the type discussed
in Section 4.1. This representation gives an easy method to simulate a Dirichlet process, at
least approximately. It also proves the remarkable fact that realizations from the Dirichlet
measure are discrete measures, with probability one.

The weights are given by the stick-breaking algorithm with relative stick lengths from
the Beta-distribution. The random support points are generated from the normalized base
measure.

Theorem 4.8 (Stick-breaking). If θ1, θ2, . . .
iid
∼ ᾱ and Y1,Y2, . . .

iid
∼ Be(1,M) are independent

random variables and W j = Y j
∏ j−1

l=1 (1 − Yl), then
∑∞

j=1 W jδθ j ∼ DP(Mᾱ).

Proof Because E
(∏ j

l=1(1 − Yl)
)
= (M/(M + 1)) j → 0, the stick-breaking weights W j form

a probability vector a.s. (c.f. Lemma 4.5), so that P is a probability measure a.s..
For j ≥ 2 define W ′

j−1 = Y j
∏ j−1

l=2 (1 − Yl) and θ′j = θ j+1. Then W j = (1 − Y1)W ′
j−1 for every

j ≥ 1 and hence

P:= W1δθ1 +

∞∑
j=2

W jδθ j = Y1δθ1 + (1 − Y1)
∞∑
j=1

W ′
jδθ′j .

The random measure P′:=
∑∞

j=1 W ′
jδθ′j has exactly the same structure as P, and hence pos-

sesses the same distribution. Furthermore, it is independent of (Y1, θ1).
We conclude that P satisfies the distributional equation (4.4) given below, and the theorem

follows from Lemma 4.9. □

For independent random variables Y ∼ Be
(
1, |α|

)
and θ ∼ ᾱ, consider the equation

P =d Yδθ + (1 − Y)P. (4.4)

We say that a random measure P that is independent of (Y, θ) is a solution to equation (4.4) if
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for every measurable partition {A1, . . . , Ak} of the sample space the random vectors obtained
by evaluating the random measures on its left and right sides are equal in distribution in Rk.

Lemma 4.9. For given independent θ ∼ ᾱ and Y ∼ Be
(
1, |α|

)
, the Dirichlet process DP(α)

is the unique solution of the distributional equation (4.4).

Proof For a given measurable partition {A1, . . . , Ak}, the equation requires that the random
vector Q:=

(
P(A1), . . . , P(Ak)

)
has the same distribution as the vector YN + (1 − Y)Q, for

N ∼ MN(1; ᾱ(A1), . . . , ᾱ(Ak)
)

and (Y,N) independent of Q.
We first show that the solution is unique in distribution. Let (Yn,Nn) be a sequence of i.i.d.

copies of (Y,N), and for two solutions Q and Q′ that are independent of this sequence and
suitably defined on the same probability space, set Q0 = Q, Q′0 = Q′, and recursively define
Qn = YnNn+ (1−Yn)Qn−1, Q′n = YnNn+ (1−Yn)Q′n−1, for n ∈ N. Then every Qn is distributed
as Q and every Q′n is distributed as Q′, because each of them satisfies the distributional
equation. Also

∥Qn − Q′n∥ = |1 − Yn| ∥Qn−1 − Q′n−1∥ =

n∏
i=1

|1 − Yi| ∥Q − Q′∥ → 0

with probability 1, since the Yi are i.i.d. and are in (0, 1) with probability one. This forces
the distributions of Q and Q′ to agree.

To prove that the Dirichlet process is a solution (4.4), let W0,W1, . . . ,Wk
ind
∼ Ga(αi, 1), for

i = 0, 1, . . . , k, where α0 = 1. Then by Proposition 2.26 the vector (W0,W), for W =
∑k

i=1 Wi,
is independent of the vector Q:= (W1/W, . . . ,Wk/W) ∼ Dir(k, α1, . . . , αk). Furthermore,
Y:= W0/(W0 + W) ∼ Be(1, |α|) and (Y, (1 − Y)Q) ∼ Dir(k + 1; 1, α1, . . . , αk). Thus for any
i = 1, . . . , k, merging the 0th cell with the ith, we obtain from Proposition 2.26 that, with ei

the ith unit vector,

Yei + (1 − Y)Q ∼ Dir(k;α + ei), i = 1, . . . , k. (4.5)

This gives the conditional distribution of the vector YN + (1 − Y)Q given N = ei. It follows
that YN + (1 − Y)Q given N possesses a Dir(k;α + N)-distribution, just as θ given X in
Example 2.2. Because also the marginal distributions of N and X in the two cases are the
same, so must be the marginal distributions of YN + (1 − Y)Q and θ, where the latter is
θ ∼ Dir(k;α). □

4.4 Tail-freeness

Consider a sequence T0 = {X}, T1 = {A0, A1}, T2 = {A00, A01, A10, A11}, and so on, of
measurable partitions of the sample space X, obtained by splitting every set in the preceding
partition into two new sets. See Figure 4.2.

With E = {0, 1} and E∗ = ∪∞m=0E
m, the set of all finite strings ε1 · · · εm of 0’s and 1’s, we

can index the 2m sets in the mth partition Tm by ε ∈ Em, in such a way that Aε = Aε0 ∪ Aε1

for every ε ∈ E∗. Here ε0 and ε1 are the extensions of the string ε with a single symbol 0
or 1; the empty string indexes T0. Let |ε| stand for the length of a string ε, and let εδ be the
concatenation of two strings ε, δ ∈ E∗.

Because the probability of any Aε must be distributed to its “offspring” Aε0 and Aε1, a
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X

A0 A1

A00 A01 A10 A11

V0 V1

V00 V01 V10 V11

Figure 4.2 Tree diagram showing the distribution of mass over the first two
partitions X = A0 ∪ A1 = (A00 ∪ A01) ∪ (A10 ∪ A11) of the sample space. Mass at a
given node is distributed to its two children proportionally to the weights on the
arrows. Every pair of V’s on arrows originating from the same node add to 1.

probability measure P must satisfy the tree additivity requirement P(Aε) = P(Aε0) + P(Aε1).
The relative weights of the offspring sets are the conditional probabilities

Vε0 = P(Aε0| Aε), and Vε1 = P(Aε1| Aε). (4.6)

With V0 and V1 interpreted as the unconditional probabilities P(A0) and P(A1), it follows
that

P(Aε1···εm ) = Vε1 Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ E
m. (4.7)

In Figure 4.2 this corresponds with multiplying the weights on the arrows leading to a node
at the bottom level.

Write U y V to denote that random variables U and V are independent, and U y V |Z to
say that U and V are conditionally independent given a random variable Z.

Definition 4.10 (Tail-free). The random measure P is a tail-free process with respect to the
sequence of partitions Tm if {V0} y {V00,V10} y · · · y {Vε0: ε ∈ Em} y · · · .

A degenerate prior is certainly tail-free according to this definition (with respect to any
sequence of partitions), since all its V-variables are degenerate at appropriate values. The
Dirichlet process is a more interesting example.

Theorem 4.11. The DP(α) prior is tail-free. All splitting variables Vε0 are independent and
Vε0 ∼ Be

(
α(Aε0), α(Aε1)

)
.
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Proof We must show that the vectors (Vε0: ε ∈ Em) defined in (4.6) are mutually indepen-
dent across levels m. It suffices to show sequentially for every m that this vector is inde-
pendent of the vectors corresponding to lower levels. Because the vectors (Vε: ε ∈ ∪k≤mE

k),
and

(
P(Aε): ε ∈ Em)

generate the same σ-field, it suffices to show that (Vε0: ε ∈ Em) is
independent of

(
P(Aε): ε ∈ Em)

, for every fixed m.
This follows by an application of Proposition 2.26 to the vectors

(
P(Aεδ): ε ∈ Em, δ ∈ E

)
with the aggregation of the pairs

(
P(Aε0), P(Aε1)

)
into the sums P(Aε) = P(Aε0) + P(Aε1).

The beta distributions also follow by Proposition 2.26 (and the fact that the first marginal
of a Dir(2;α, β) is a Be(α, β)-distribution). □

The mass P(Aε) of a partitioning set at level m can be expressed in the V-variables up to
level m (see (4.7)), while, by their definition (4.6), the V-variables at higher levels control
conditional probabilities. Therefore, tail-freeness makes the distribution of mass within ev-
ery partitioning set in Tm independent of the distribution of the total mass one among the sets
in Tm. Definition 4.10 refers only to masses of partitioning sets, but under the assumption
that the partitions generate the Borel sets, the independence extends to all Borel sets.

Lemma 4.12. If P is a random measure that is tail-free relative to a sequence of partitions
Tm = {Aε: ε ∈ Em} that generates the Borel sets X in X, then for every m ∈ N the process(
P(A| Aε): A ∈X , ε ∈ Em)

is independent of the random vector
(
P(Aε): ε ∈ Em)

.

Proof Because P is a random measure, its mean measure µ(A) = E
[
P(A)

]
is a well defined

Borel probability measure. As T := ∪mTm is a field, which generates the Borel σ-field by
assumption, there exists for every A ∈ X a sequence An in T such that µ(An ∆ A) → 0.
Because P is a random measure P(An| Aε)→ P(A| Aε) in mean and hence a.s. along a subse-
quence. It follows that the random variable P(A| Aε) is measurable relative to the completion
U0 of the σ-field generated by the variables P(C| Aε), for C ∈ T . Every of the latter vari-
ables is a finite sum of probabilities of the form P(Aεδ| Aε) = Vεδ1 · · ·Vεδ1···δk , for ε ∈ Em,
δ = δ1 · · · δk ∈ E

k and k ∈ N. Therefore, by tail-freeness the σ-field U0 is independent of the
σ-field generated by the variables P(Aε) = Vε1 · · ·Vε1···εm , for ε = ε1 · · · εm ∈ E

m. □

Relative to the σ-field M the process
(
P(A| Aε): A ∈ X

)
contains all information about

the conditional random measure P(·| Aε). Thus the preceding lemma truly expresses that
the “conditional measure within partitioning sets is independent of the distribution of mass
among them”.

Suppose that the data consists of an i.i.d. sample X1, . . . , Xn from a distribution P, which is
a-priori modelled as a tail-free process. For each ε ∈ E∗, denote the number of observations
falling in Aε by

Nε:= #{1 ≤ i ≤ n: Xi ∈ Aε}. (4.8)

For each m the vector (Nε: ε ∈ Em) collects the counts of all partitioning sets at level m. The
following theorem shows that this vector contains all information (in the Bayesian sense)
about the probabilities

(
P(Aε): ε ∈ Em)

of these sets: the additional information about the
precise positions of the Xi within the partitioning sets is irrelevant.

Theorem 4.13. If a random measure P is tail-free relative to a given sequence of partitions
Tm = {Aε: ε ∈ Em} that generates the Borel sets, then for every m and n the posterior
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distribution of
(
P(Aε): ε ∈ Em)

given an i.i.d. sample X1, . . . , Xn from P is the same as the
posterior distribution of this vector given (Nε: ε ∈ Em) defined in (4.8), a.s..

Proof In view of Theorem 4.11 and Lemma 4.12, we may generate the variables P, X1, . . . , Xn

in four steps:

(a) Generate the vector θ:=
(
P(Aε): ε ∈ Em)

from its prior.
(b) Given θ generate a multinomial vector N = (Nε: ε ∈ Em) with parameters n and θ.
(c) Generate the process η:=

(
P(A| Aε): A ∈X , ε ∈ Em)

.
(d) Given (N, η) generate for every ε ∈ Em a random sample of size Nε from the measure

P(·| Aε), independently across ε ∈ Em, and let X1, . . . , Xn be the n values so obtained in a
random order.

For a tail-free measure step (c) is independent of step (a). Together with the fact that step
(b) uses θ but not η this implies that (N, θ) y η. Finally, that step (d) does not use θ

can be expressed as X y θ| (N, η). Together these (conditional) independencies imply that
θ y X|N, which is equivalent to the statement of the theorem. (Note that E

(
f (θ)g(X)|N, η

)
=

E
(
f (θ)|N, η

)
E
(
g(X)|N, η

)
, for every bounded measurable functions f and g. In the first con-

ditional expectation η can be deleted in the conditioning. Next we can take the conditional
expectation relative to N across. See Exercise 4.14 for more formal manipulation of these
(in)dependencies.)

Thus the theorem is proved for this special representation of prior and data. Because the
assertion depends on the joint distribution of (P, X,N) only, it is true in general. □

4.5 Posterior distribution

Consider observations X1, X2, . . . , Xn sampled independently from a distribution P that was
drawn from a Dirichlet prior distribution, i.e.

P ∼ DP(α), X1, X2, . . . | P iid
∼ P. (4.9)

By an abuse of language, which we shall follow, such observations are often termed a sample
from the Dirichlet process.

One of the most remarkable properties of the Dirichlet process prior is that the posterior
distribution is again Dirichlet.

Theorem 4.14 (Conjugacy). The posterior distribution of P given an i.i.d. sample X1, . . . , Xn

from a DP(α) process is DP(α +
∑n

i=1 δXi ).

Proof Because the Dirichlet process is tail-free for any sequence of partitions by Theo-
rem 4.13, and a given measurable partition {A1, . . . , Ak} of X can be viewed as part of a
sequence of successive binary partitions, the posterior distribution of the random vector(
P(A1), . . . , P(Ak)

)
given X1, . . . , Xn is the same as the posterior distribution of this vector

given the vector N = (N1, . . . ,Nk) of cell counts, defined by N j = #(1 ≤ i ≤ n: Xi ∈ A j).
Given P the vector N possesses a multinomial distribution with parameter

(
P(A1), . . . , P(Ak)

)
,

which has a Dir
(
k;α(A1), . . . , α(Ak)

)
prior distribution. The posterior distribution can be ob-

tained using Bayes’ rule applied to these finite-dimensional vectors, as in Example 2.2. □
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Figure 4.3 Cumulative distribution functions of 10 draws (black) from the Dirichlet
process with base measure 5N(0, 2), and of 10 draws (red) from the realization of
the posterior distribution based on a sample of size 100 from a N(2, 1) distribution.

Theorem 4.14 can be remembered as the updating rule α 7→ α +
∑n

i=1 δXi for the base
measure of the Dirichlet distribution. In terms of the parameterization α ↔

(
M = |α|, ᾱ) of

the base measure, this rule takes the form

M 7→ M + n and ᾱ 7→
M

M + n
ᾱ +

n
M + n

Pn, (4.10)

where Pn = n−1 ∑n
i=1 δXi is the empirical distribution of X1, . . . , Xn. Because the mean mea-

sure of a Dirichlet process is the normalized base measure, we see that

E
(
P(A)| X1, . . . , Xn

)
=
|α|

|α| + n
ᾱ(A) +

n
|α| + n

Pn(A). (4.11)

Thus the posterior mean (the “Bayes estimator” of P) is a convex combination of the prior
mean ᾱ and the empirical distribution, with weights M/(M + n) and n/(M + n), respectively.
For a given sample it is close to the prior mean if M is large, and close to the empirical
distribution (which is based only on the data) if M is small. Thus M determines the extent
to which the prior controls the posterior mean — a Dirichlet process prior with precision
M contributes information equivalent to a sample of size M (although M is not restricted
to integer values). This invites to view M as the prior sample size, or the “number of pre-
experiment observations”. In this interpretation the sum M+n is the “posterior sample size”.

As the number of observations n tends to infinity, the prior sample size M, if fixed, is
negligible. The posterior mean (4.11) is then dominated by the empirical part. The difference
with the empirical distribution is of order 1/n, and hence the posterior mean tends almost
surely to P(A), just as the empirical distribution Pn(A). The posterior variance of P(A) for a
given set A satisfies, for P̃n = (α + nPn)/(|α| + n) the posterior mean,

var
(
P(A)| X1, . . . , Xn

)
=
P̃n(A)P̃n(Ac)
1 + |α| + n

≤
1

4(1 + |α| + n)
.

This is also of the order 1/n, whence the posterior distribution contracts to the Dirac measure
at P(A). We say that the posterior distribution is consistent.

Closer inspection shows that the posterior distribution converges at the rate 1/
√

n and
satisfies a Bernstein-von Mises theorem.
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Theorem 4.15 (Bernstein–von Mises theorem for Dirichlet process). For any measurable
set A the process

√
n(P−Pn)(A) with P ∼ DP(α+nPn) converges conditionally in distribution

given X1, X2, . . . to a normal distribution with mean zero and variance P0(A)(1−P0)(A), a.s.,
[P∞0 ], as n→ ∞. The same conclusion is valid if the centering Pn is replaced by the posterior
mean P̃n = (α + nPn)/(|α| + n).

Proof The conditional distribution of P(A) is beta with parameters
(
(α + nPn)(A), (α +

nPn)(Ac)
)
. By Proposition 2.25 this can be represented as the quotient Vn/(Vn + Wn), for

independent Gamma variables Vn ∼ Γ
(
(α + nPn)(A), 1

)
and Wn ∼ Γ

(
(α + nPn)(Ac), 1

)
. The

sequences
√

n
(
Vn/n−Pn)(A)

)
and
√

n
(
Wn/n−Pn)(Ac)

)
are asymptotically normal by the cen-

tral limit theorem and Slutzky’s lemma. For instance, write Vn as the sum of n i.i.d. Gamma
variables with parameters (Pn(A), 1) and an independent Gamma variable with parameters
(α(A), 1). The last variable is negligible in the sum. The distribution of the first n variables
depends on n, but asymptotic normality follows by a version of the central limit theorem
that allows this, such as the Lindeberg-Feller theorem.

Next the asymptotic normality of the sequence
√

n
(
Vn/(Vn +Wn) − Pn(A)

)
follows by the

delta-method applied with the function (v,w) 7→ v/(v + w). □

4.6 Predictive distribution

The joint distribution of a sequence X1, X2, . . . generated from a Dirichlet process, as in (4.9),
has a complicated structure, but can be conveniently described by its sequence of predictive
distributions: the laws of X1, X2| X1, X3| X1, X2, etc.

Because Pr(X1 ∈ A) = E Pr(X1 ∈ A| P) = EP(A) = ᾱ(A), the marginal distribution of X1 is
ᾱ.

Because X2| (P, X1) ∼ P and P| X1 ∼ DP(α+ δX1 ), we can apply the same reasoning again,
but now conditionally given X1, to see that X2| X1 follows the normalization of α + δX1 . This
is a mixture of α and δX1 with weights |α|/(|α| + 1) and 1/(|α| + 1), respectively.

Repeating this argument, using that P| X1, . . . , Xi−1 ∼ DP(α +
∑i−1

j=1 δX j ), we find that

Xi| X1, . . . , Xi−1 ∼


δX1 , with probability 1

|α|+i−1 ,
...

...

δXi−1 , with probability 1
|α|+i−1 ,

ᾱ, with probability |α|
|α|+i−1 .

(4.12)

Being a mixture of a product of identical distributions, the joint distribution of X1, X2, . . . is
exchangeable. This means that the ordering of the variables in (4.12) is actually not impor-
tant; the formulas are valid for any permutation of the indices of X1, X2, . . ..

The recipe (4.12) is called the generalized Polya urn scheme, and can be viewed as a con-
tinuous analog of the familiar Polya urn scheme. Consider balls which can carry a continuum
X of “colors”. Initially the “number of balls” is M = |α|, which may be any positive number,
and the colors are distributed according to ᾱ. We draw a ball from the collection, observe its
color X1, and return it to the urn along with an additional ball of the same color. The total
number of balls is now M+1, and the colors are distributed according to (Mᾱ+δX1 )/(M+1).
We draw a ball from this updated urn, observe its color X2, and return it to the urn along with
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an additional ball of the same color. The probability of picking up the ball that was added af-
ter the first draw is 1/(M+1), in which case X2 = X1; otherwise, with probability M/(M+1),
we make a fresh draw from the original urn. This process continues indefinitely, leading to
the conditional distributions in (4.12).

4.7 Number of distinct values

It is clear from the predictive distribution that a realization of (X1, . . . , Xn) will have ties
(equal values) with positive probability. For instance, with probability at least

1
M + 1

2
M + 2

· · ·
n − 1

M + n − 1
all Xi will even be identical to the first drawn value. For simplicity assume that the base
measure α is non-atomic. Then the ith value Xi in the Polya scheme (4.12) is different from
the previous X1, . . . , Xi−1 if it is drawn from ᾱ. The vector (X1, . . . , Xn) induces a random
partition {P1, . . . ,PKn} of the set of indices {1, 2, . . . , n} corresponding to the ties (i.e. the
equivalence classes under the relation i ≡ j iff Xi = X j). It is intuitively clear that given this
partition the Kn distinct values are an i.i.d. sample from ᾱ.

The number of distinct values is remarkably small.

Proposition 4.16. If the base measure α is nonatomic and of strength |α| = M, then, as
n→ ∞,

(i) EKn ≍ M log n ≍ var Kn.
(ii) Kn/ log n→ M, a.s.

(iii) (Kn − EKn)/ sd(Kn)⇝ Nor(0, 1).

Proof For i ∈ N define Di = 1 if the ith observation Xi is a “new value”, i.e. if Xi <

{X1, . . . , Xi−1}, and set Di = 0 otherwise. Then Kn =
∑n

i=1 Di is the number of distinct values
among the first n observations. Given X1, . . . , Xi−1 the variable Xi is “new” if and only if it is
drawn from ᾱ, which happens with probability M/(M + i − 1). It follows that the variables
D1,D2, . . . are independent Bernoulli variables with success probabilities Pr(Di = 1) =
M/(M + i − 1).

Assertion (i) can be derived from the exact formulas

EKn =

n∑
i=1

M
M + i − 1

, var Kn =

n∑
i=1

M(i − 1)
(M + i − 1)2 .

Next, assertion (ii) follows from Kolmogorov’s strong law of large numbers for independent
variables, since

∞∑
i=1

var Di

(log i)2 =

∞∑
i=1

M(i − 1)
(M + i − 1)2(log i)2 < ∞.

Finally (iii) is a consequence of the Lindeberg central limit theorem. □

Thus the number of distinct values in a (large) sample from a distribution taken from a
fixed Dirichlet prior is logarithmic in the sample size, and the fluctuations of this number
around its mean are of the order

√
log n.
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The following proposition gives the distribution of the partition {P1, . . . ,PKn} induced by
(X1, . . . , Xn).

Proposition 4.17. A random sample X1, . . . , Xn from a Dirichlet process with nonatomic
base measure of strength |α| = M induces a given partition of {1, 2, . . . , n} into k sets of sizes
n1, . . . , nk with probability equal to

MkΓ(M)
∏k

j=1 Γ(n j)

Γ(M + n)
. (4.13)

Proof By exchangeability the probability depends on the sizes of the partitioning sets only.
The probability that the partitioning set of size n1 consists of the first n1 variables, the one of
size n2 of the next n2 variables, etc. can be obtained by multiplying the appropriate condi-
tional probabilities for the consecutive draws in the Polya urn scheme in their natural order
of occurrence. For r j =

∑ j
l=1 nl, it is given by

M
M

1
M + 1

2
M + 2

· · ·
n1 − 1

M + n1 − 1
M

M + n1

1
M + n1 + 1

× · · ·

· · · ×
M

M + rk−1

1
M + rk−1 + 1

· · ·
nk − 1

M + rk−1 + nk − 1
.

This can be rewritten as in the proposition. □

4.8 *Mixtures of Dirichlet processes

Application of the Dirichlet prior requires a choice of a base measure α. It is often reasonable
to choose the center measure ᾱ from a specific family such as the normal family, but then
the parameters of the family must still be specified. It is natural to give these a further prior.
Similarly, one may put a prior on the precision parameter |α|.

For a base measure αξ that depends on a parameter ξ the Bayesian model then consists of
the hierarchy

X1, . . . , Xn| P, ξ iid
∼ ∼ P, P| ξ ∼ DP(αξ), ξ ∼ π. (4.14)

We denote the induced (marginal) prior on P by MDP(αξ, ξ ∼ π). Many properties of this
mixture Dirichlet prior follow immediately from those of a Dirichlet process. For instance,
any P following an MDP is almost surely discrete. However, unlike a Dirichlet process, an
MDP is not tail-free.

Given ξ we can use the posterior updating rule for the ordinary Dirichlet process, and
obtain that

P| ξ, X1, . . . , Xn ∼ DP(αξ + nPn).

To obtain the posterior distribution of P given X1, . . . , Xn, we need to mix this over ξ rela-
tive to its posterior distribution given X1, . . . , Xn. By Bayes’s theorem the latter has density
proportional to

ξ 7→ π(ξ) p(X1, . . . , Xn| ξ). (4.15)

Here the marginal density of X1, . . . , Xn given ξ (the second factor) is described by the gen-
eralized Polya urn scheme (4.12) with αξ instead of α. In general, this has a somewhat
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complicated structure due to the ties between the observations. However, for a posterior
calculation we condition on the observed data X1, . . . , Xn, and know the partition that they
generate. Given this information the density takes a simple form. For instance, if the obser-
vations are distinct (which happens with probability one if the observations actually follow
a continuous distribution), then the Polya urn scheme must have simply generated a random
sample from the normalized base measure ᾱξ, in which case the preceding display becomes

π(ξ)
n∏

i=1

dαξ(Xi)
n∏

i=1

1
|αξ | + i − 1

,

for dαξ a density of αξ. Further calculations depend on the specific family and its parame-
terization.

Typically the precision parameter M and center measure G in α = MG will be mod-
elled as independent under the prior. The posterior calculation then factorizes in these two
parameters. To see this, consider the following scheme to generate the parameters and ob-
servations:

(i) Generate M from its prior.
(ii) Given M generate a random partition P = {P1, . . . ,PKn} according to the distribution

given in Proposition 4.17.
(iii) Generate G from its prior, independently of (M,P).
(iv) Given (P,G) generate a random sample of size Kn from G, independently of M, and

set Xi with i ∈ P j equal to the jth value in this sample.

By the description of the Polya urn scheme this indeed gives a sample X1, . . . , Xn from the
mixture of Dirichlet processes MDP(MG,M ∼ π,G ∼ π). We may now formally write the
density of (M,P,G, X1, . . . , Xn) in the form, with π abusively denoting prior densities for
both M and G and p conditional densities of observed quantities,

π(M) p(P|M) π(G) p(X1, . . . , Xn|G,P).

Since this factorizes in terms involving M and G, these parameters are also independent
under the posterior distribution, and the computation of their posterior distributions can be
separated.

The term involving M depends on the data through Kn only (the latter variable is sufficient
for M). Indeed, by Proposition 4.17 it is proportional to,

M 7→ π(M)
MKnΓ(M)
Γ(M + n)

∝ π(M)MKn

∫ 1

0
ηM−1(1 − η)n−1 dη.

Rather than by (numerically) integrating this expression, the posterior density is typically
computed by simulation. Suppose that M ∼ Ga(a, b) a priori, and consider a fictitious ran-
dom vector (M, η) with 0 ≤ η ≤ 1 and joint (Lebesgue) density proportional to

π(M)MKnηM−1(1 − η)n−1 ∝ Ma+Kn−1e−M(b−log η)η−1(1 − η)n−1.

Then by the preceding display the marginal density of M is equal to its posterior density
(given Kn, which is fixed for the calculation). Thus simulating from the distribution of (M, η)
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and dropping η simulates M from its posterior distribution. The conditional distributions are
given by

M| η,Kn ∼ Ga(a + Kn, b − log η), η|M,Kn ∼ Be(M, n). (4.16)

We can use these in a Gibbs sampling scheme: given an arbitrary starting value η0 we gen-
erate a sequence M1, η1,M2, η2,M3, . . ., by repeatedly generating M from its conditional
distribution given (η,Kn) and η from its conditional distribution given (M,Kn), each time
setting the conditioning variable (η or M) equal to its last value. After an initial burn-in the
values Mk,Mk+1, . . . will be approximately from the posterior distribution of M given Kn.

4.9 Complements
Proposition 4.18 (Kolmogorov extension theorem). For every finite subset S of an arbitrary set
T let PS be a probability distribution on RS . Then there exists a probability space (Ω,U ,Pr) and
measurable maps Xt:Ω → R such that (Xt: t ∈ S ) ∼ PS for every finite set S if and only if for every
pair S ′ ⊂ S of finite subsets the measure PS ′ is the marginal distribution of PS on RS ′ .

For a proof see a book on measure-theoretic probability or stochastic processes. The sets S in this
formulation are unordered; if ordered sets were used, then of course there must also be consistency
between marginals PS and PS ′ for every pair (S , S ′) with S ′ a reordering of S .

4.9.1 Weak topology on measures
Definition 4.19. The weak topology on the setM of all probability measures on a given Polish space
(X,X ) with its Borel σ-field, is the weakest topology such that all maps P 7→

∫
ψ dP, for a bounded

continuous function ψ:X → R, are continuous. Equivalently, it is the topology such that Pn → P if
and only if

∫
ψ dPn →

∫
ψ dP, for every bounded continuous function ψ:X→ R.

The weak topology is also called the topology of convergence in distribution. In particular, one
says that a sequence of random variables Xn with values in a Polish space converges in distribution to
a random variable X if the sequence of induced laws converges weakly to the law of X, i.e. Eψ(Xn)→
Eψ(X), for every bounded continuous ψ:X → R. For random vectors with values in Euclidean space,
this is equivalent to convergence of the corresponding cumulative distribution functions at continuity
points of the limit.

Proposition 4.20 (Portmanteau). A sequence of probability measures Pn on Rd converges weakly to
a probability measure P if and only if Fn(x):= Pn

(
(−∞, x]

)
→ F(x):= P

(
(−∞, x]

)
, for every x ∈ Rd

such that F is continuous at x.

For a proof see many books on probability, or van der Vaart (1998), Lemma 2.2.

Proposition 4.21. The weak topology W on the setM of Borel measures on a Polish space X is Polish.

For a proof see e.g. Dudley (2002), Corollary 11.5.5. In particular, the proposition implies that
convergence in distribution can be understood as convergence dw(Pn, P) → 0 for a metric dw on M.
There are several possibilities for this metric, perhaps the simplest being the bounded Lipschitz metric

dw(P,Q) = sup
ψ

∣∣∣∣ ∫ ψ dP −
∫

ψ dQ
∣∣∣,

where the supremum is taken over all functions ψ:X → [0, 1] such that |ψ(x) − ψ(y)| ≤ d(x, y), for
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every x, y ∈ X. (This metric can also be defined on the set of all signed measures on (X,X ), the linear
span of probability measures, and be derived from a norm on this space. The dual of the resulting
normed space is the space of bounded continuous functions and the weak topology can be understood
in terms of the functional analytic concept of the same name.)

Proposition 4.22. The set of discrete probability measures with finitely many support points is weakly
dense inM.

Proof It suffices to show that any probability measure P is the weak limit of a sequence of finitely
discrete measures. To see this, let X1, X2, . . . be a sequence of independent random variables with dis-
tribution P. By the law of large numbers n−1 ∑n

i=1 ψ(Xi)→
∫
ψ dP, almost surely, for every integrable

function ψ:X → R, in particular for every bounded continuous function ψ. This is then true also si-
multaneously almost surely for every ψ in a countable set of bounded continuous functions. Thus there
certainly exists a sequence of realizations x1, x2, . . . with

∫
ψ dPn →

∫
ψ dP, for Pn = n−1 ∑n

i=1 δxi . It
may be shown that there exists a countable set of bounded continuous functions such that the weak
topology is generated by the maps P 7→

∫
ψ dP. □

Exercises
4.1 For each A in an arbitrary index set A let fA:M→ R be an arbitrary map.

(a) Show that there exists a smallest σ-field M such that every map fA is measurable.
(b) Show that a map T : (Ω,U ) → (M,M ) is measurable if and only if fA ◦ T :Ω → R is

measurable for every A ∈ A .

4.2 Let K1,K2, . . . be compact sets in a topological space such that ∩iKi = ∅. Show that ∩m
i=1Ki = ∅

for some m.
4.3 Show that for any Borel set A ⊂ Rd and finite measure µ on the Borel sets, and every ϵ > 0,

there exists a compact set K with K ⊂ A and µ(A − K) < ϵ. [Let X0 be the set of all Borel sets
A such that there exists for every ϵ > 0 a closed set F and open set G with F ⊂ A ⊂ G and
µ(G − F) < ϵ. Show that X is a σ-field. Show that it is the Borel σ-field. Show that the sets F
can be taken compact without loss of generality.]

4.4 Show that the discrete probability measures with finitely many support points are dense in the
set of all Borel probability measures on a Polish space (or Rd) relative to the weak topology.

4.5 Show that the support of the Dirichlet process prior with base measure α such that α(G) > 0
for every open subset G ⊂ X is equal to the set X of all Borel probability measures on (X,X ),
in the sense that every weakly open subset of X has positive probability under DP(α). [Hint:
one possibility is to use the preceding exercise and the series representation of the Dirichlet
process.]

4.6 Consider a stick-breaking scheme with independent variables Yk with 1 − Pr(Yk = 0) = 1/k2 =

Pr(Yk = 1 − e−k). Show that the “stick is not finished”:
∑

k pk < 1 almost surely.
4.7 Show that if P ∼ DP(α) and ψ:X → Y is a measurable mapping, then P ◦ ψ−1 ∼ DP(β), for

β = α ◦ ψ−1.
4.8 Show that if P ∼ DP(α), then E

∫
ψ dP =

∫
ψ dᾱ, and var

∫
ψ dP =

∫
(ψ−

∫
ψ dᾱ)2 dᾱ/(1+ |α|),

for any measurable function ψ for which the integrals make sense. [Hint: prove this first for
ψ = 1A.]

4.9 Let 0 = T0 < T1 < T2 < · · · be the events of a standard Poisson process and let θ1, θ2, . . . iid
∼ ᾱ

and independent of (T1,T2, . . .). Show that

P =
∞∑

k=1

(e−Tk−1 − e−Tk )δθk
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follows a Dirichlet process DP(ᾱ). How can we change the prior precision to M , 1?
4.10 Let F ∼ DP(MG) be a Dirichlet process on X = R, for a constant M > 0 and probability

distribution G, identified by its cumulative distribution function x 7→ G(x). So F can be viewed
as a random cumulative distribution function. Define its median as any value mF such that
F(mF−) ≤ 1/2 ≤ F(mF). Show that

Pr
(
mF ≤ x

)
=

∫ 1

1/2
β
(
u,MG(x),M(1 −G(x)

)
du,

where β(·, α, β) is the density of the Beta-distribution.
4.11 Simulate and plot the cumulative distribution function of the Dirichlet processes F ∼ DP(Φ),

F ∼ DP(0.1Φ), and F ∼ DP(10Φ). Do the same with the Cauchy base measure. [Suggestion
use Sethuraman’s presentation. Cut the series at an appropriate point.]

4.12 Let G be a given continuous probability measure on R, identified by its cumulative distribution
function. Let the partition at level m consist of the sets

(
G−1((i − 1)2−m)

,G−1(i2−m)
]
, for i =

1, 2 . . . , 2m. Let the variables Vε0 be independent with mean 1/2 and define a random probability
measure by (4.7). Find EP(A), for a given measurable set.

4.13 Suppose that N ∼ MN(1, p1, . . . , pk) and given N = e j let X be drawn from a given probability
measure P j. Show that X ∼

∑
j p jP j. What is this latter measure if p j = P(A j) and P j = P(·| A j)

for a given measure P and measurable partition X = ∪ jA j?
4.14 Let θ, η,N, X be random elements defined on a common probability space with values in Polish

spaces. Show that

(a) η y θ if and only if Pr(η ∈ A| θ) = Pr(η ∈ A) almost surely, for all measurable sets A.
(b) θ y X|N if and only if Pr(θ ∈ A|N) = Pr(θ ∈ A| X,N) almost surely, for all measurable sets

A.
(c) η y (θ,N) if and only if (η y N | θ and η y θ).
(d) if X y θ| (N, η) and θ y η|N, then θ y X|N.

Conclude that if η y (N, θ) and X y θ| (N, η), then θ y X|N. [The Polish assumptions guarantee
that conditional distributions are well defined. Conditional independence of X and Y given Z
means that Pr(X ∈ A,Y ∈ B|Z) = Pr(X ∈ A|Z) Pr(Y ∈ B|Z) almost surely, for every measurable
sets A, B. The conditional expectation Pr(X ∈ A|Z) is a measurable function of Z such that
E Pr(X ∈ A|Z)1C(Z) = Pr(X ∈ A,Z ∈ C) for every measurable sets A,C.]

4.15 Let ψ be a given bounded measurable function. Show that if P ∼ DP(α) and X1, . . . , Xn| P iid
∼ P,

then the posterior distribution of
∫
ψ dP given X1, . . . , Xn tends in distribution to a Dirac mea-

sure at
∫
ψ dP0 for a.e. sequence X1, X2, . . . generated iid from P0.

4.16 In the model (4.14) assume that the total mass |αξ | is bounded uniformly in ξ. Show that the
posterior distribution of P(A) is consistent.

4.17 Simulate and plot the cumulative distribution functions of realizations of some posterior Dirich-
let processes. First use several fixed prior strengths. Second put a Gamma prior on the prior
strength.
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Posterior Contraction

This chapter investigates the question whether nonparametric Bayesian procedures “work”.
We adopt the “frequentist” point of view that the observations are generated according to
some “true parameter” and study whether the posterior distribution is able to recover this
parameter if the number of observations (or, more generally, their “informativeness”) in-
creases indefinitely. We start with posterior consistency, which is the basic form of recovery,
and next turn to the rate of posterior contraction, which is a much more informative refine-
ment of consistency.

5.1 Consistency

For every n ∈ N let X(n) be an observation in a sample space (X(n),X (n)) with distribution
P(n)
θ indexed by a parameter θ belonging to a semi-metric space (Θ, d). For instance X(n) may

be sample of size n from a given distribution Pθ, and (X(n),X (n), P(n)
θ ) the corresponding

product probability space. Given a prior Π on the Borel sets of Θ, let Πn(·| X(n)) be a version
of the posterior distribution.

Definition 5.1 (Posterior consistency). The posterior distributions Πn(·| X(n)) are said to be
(weakly) consistent at θ0 ∈ Θ if Πn

(
θ: d(θ, θ0) > ϵ | X(n)) → 0 in P(n)

θ0
-probability, as n → ∞,

for every ϵ > 0. The posterior distributions are said to be strongly consistent at θ0 ∈ Θ if the
convergence is in the almost sure sense.

Both forms of consistency are of interest. Naturally, strong consistency is more appealing
as it is stronger. (To be well defined it presumes that the observations X(n) are defined on a
common underlying probability space, which may or may not be natural.)

Consistency entails that the full posterior distribution contracts to within arbitrarily small
distance ϵ to the true parameter θ0. It can also be summarized as saying that the posterior
distributions converge weakly to a Dirac measure at θ0, in probability or almost surely.

Naturally an appropriate summary of the “location” of the posterior distribution should
provide a point estimator that is consistent in the usual sense of consistency of estimators.
The following proposition gives a summary that works without further conditions. (The
value 1/2 could be replaced by any other number between 0 and 1.)

Proposition 5.2 (Point estimator). Suppose that the posterior distributions Πn(·| X(n)) are
consistent (or strongly consistent) at θ0 relative to the metric d on Θ. Then θ̂n defined as
the center of a (nearly) smallest ball that contains posterior mass at least 1/2 satisfies
d(θ̂n, θ0)→ 0 in P(n)

θ0
-probability (or almost surely [P(∞)

θ0
], respectively).

107
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Proof For B(θ, r) = {s ∈ Θ: d(s, θ) ≤ r} the closed ball of radius r around θ ∈ Θ, let
r̂n(θ) = inf{r:Πn

(
B(θ, r)| X(n)) ≥ 1/2}, where the infimum over the empty set is∞. Taking the

balls closed ensures that Πn
(
B(θ, r̂n(θ))| X(n)) ≥ 1/2, for every θ. Let θ̂n be a near minimizer

of θ 7→ r̂n(θ) in the sense that r̂n(θ̂n) ≤ infθ r̂n(θ) + 1/n.
By consistency Πn

(
B(θ0, ϵ)| X(n)) → 1 in probability or almost surely, for every ϵ > 0. As

a first consequence, r̂n(θ0) ≤ ϵ with probability tending to one, or eventually almost surely,
and hence r̂n(θ̂n) ≤ r̂n(θ0) + 1/n is bounded by ϵ + 1/n with probability tending to one, or
eventually almost surely. As a second consequence the balls B(θ0, ϵ) and B

(
θ̂n, r̂n(θ̂n)

)
cannot

be disjoint, as their union would contain mass nearly 1+1/2. This shows that d(θ0, θ̂n) ≤ ϵ +
r̂n(θ̂n) with probability tending to one, or eventually almost surely, which is further bounded
by 2ϵ + 1/n. As this is true for every ϵ > 0, the result follows. □

An alternative point estimator is the posterior mean
∫
θ dΠn(θ| X(n)) (available whenΘ has

a vector space structure). This is attractive for computational reasons, as it can be approxi-
mated by the average of the output of a simulation run. Usually the posterior mean is also
consistent, but in general this requires additional assumptions, just as weak convergence to a
Dirac measure on a Euclidean space does not imply convergence of moments. Consistency
and boundedness of

∫
∥θ∥p dΠn(θ| X(n)) in probability or almost surely for some p > 1 would

be sufficient for consistency of the posterior mean.

Example 5.3 (Dirichlet process). If the observations are a random sample X1, . . . , Xn from a
distribution that is equipped with a Dirichlet process prior DP(α), then the posterior distribu-
tion is a Dirichlet process DP(α + nPn), for Pn the empirical distribution of the observations
(see Theorem 4.14). For a fixed measurable set A, the posterior distribution of P(A) is beta
distributed with parameters

(
α(A) + nPn(A), α(Ac) + nPn(Ac)

)
, whence

P̃n(A):= E
(
P(A)| X1, . . . , Xn

)
=
|α|

|α| + n
ᾱ(A) +

n
|α| + n

Pn(A),

var
(
P(A)| X1, . . . , Xn

)
=
P̃n(A)P̃n(Ac)
1 + |α| + n

≤
1

4(1 + |α| + n)
.

The first equation and the law of large numbers applied to Pn(A) shows that the posterior
mean tends almost surely to P0(A) if X1, X2, . . . are sampled from “true” distribution P0. The
second equation shows that the posterior variance tends almost surely to zero. An application
of Markov’s inequality gives that, for every ϵ > 0,

Πn
(
P: |P(A) − P0(A)| > ϵ| X1, . . . , Xn

)
≤

1
ϵ2

[
|P̃n(A) − P0(A)|2 + var

(
P(A)| X1, . . . , Xn

)] as
→ 0.

It follows that the posterior distribution is strongly consistent at P0 for d(P, P0) = |P(A) −
P0(A)|. This is true for any base measure α and any P0. (We should note that the posterior
distribution is unique only up to null sets under the marginal distribution of the data. The
claim is valid for the particular choice DP(α + nPn) of posterior distribution.)

The present d is a semi-metric only (in that d(P1, P2) = 0 does not imply P1 = P2), but
as the result is valid for any measurable set A, it can be inferred that the consistency is also
true relative to the weak topology on the set of probability measures. Stronger metrics, such
as d(P0, P) = supA∈A |P(A) − P0(A)| for a collection of set A , could also be used with the
help of the Glivenki-Cantelli theorem.
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5.1.1 Doob’s theorem

Doob’s theorem basically says that for any fixed prior, the posterior distribution is consistent
at every θ except those in a set that is “small” when seen from the prior point of view. We
first present the theorem, for i.i.d. observations only, and next argue that the message is
not as positive as it may seem. For a proof of the theorem, see e.g. van der Vaart (1998),
Chapter 10.

Theorem 5.4 (Doob). Let (X,X , Pθ: θ ∈ Θ) be experiments with (X,X ) a Polish space
with Borel σ-field and Θ a Borel subset of a Polish space such that θ 7→ Pθ(A) is Borel
measurable for every A ∈ X and the map θ 7→ Pθ is one-to-one. Then for any prior Π on
the Borel sets of Θ the posterior Πn(·| X1, . . . , Xn) in the model X1, . . . , Xn| θ

iid
∼ pθ and θ ∼ Π

is strongly consistent at θ, for Π-almost every θ.

Doob’s theorem is remarkable in that virtually no condition is imposed on the model or
the parameter space. A Bayesian will “almost always” have consistency, as long as she is
certain of her prior.

However, in practice no one can be certain of the prior, and troublesome values of the
parameter may really obtain. In fact, the Π-null set could be very large if not judged from
the point of view of the prior. An extreme example is a prior that assigns all its mass to some
fixed point θ0. The posterior then also assigns mass one to θ0 and hence is inconsistent at
every θ , θ0. Doob’s theorem is still true, of course; the point is that the set {θ: θ , θ0} is a
null set under the present prior.

Thus Doob’s theorem should not create a false sense of satisfaction about Bayesian proce-
dures in general. It is important to know, for a given “reasonable” prior, at which parameter
values consistency holds.

An exception is the case that the parameter set Θ is countable. Then Doob’s theorem
shows that consistency holds at θ as long as Π assigns positive mass to it. More generally,
consistency holds at any atom of a prior. However, even in these cases the theorem is of
“asymptopia” type only, in that at best it gives convergence, without quantification of the
approximation error, or uniformity in the parameter.

5.1.2 Schwartz’s theorem

In this section we take the parameter equal to a probability density, relative to a given dom-
inating measure ν on the sample space (X,X ). We denote this parameter by p rather than
θ, and the corresponding parameter set by P. We consider estimating p based on a random
sample X1, . . . , Xn of observations, with true density p0. As notational convention we denote
a density by a lower case letter p and the measure induced by it by the uppercase letter P. The
parameter set is equipped with a semi-metric d, which is left unspecified for the moment.

A key condition for posterior consistency is that the prior assigns positive probability
to any Kullback-Leibler (or KL) neighborhood of the true density. The Kullback-Leibler
divergence between two densities p0 and p is defined as

K(p0; p) =
∫

p0 log
p0

p
dν.
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Note that it is asymmetric in its arguments. We write K(p0;P0) = infp∈P0 K(p0; p) for the
minimal divergence of p0 to a set P0 of densities.

Definition 5.5 (KL-property). A density p0 is said to possess the Kullback-Leibler property
relative to a prior Π if Π

(
p: K(p0; p) < ϵ

)
> 0 for every ϵ > 0. This is denoted p0 ∈ KL(Π).

Alternatively, we say that p0 belongs to the Kullback-Leibler support of Π.1

Schwartz’s theorem is the basic result on posterior consistency for dominated models.
It has two conditions: the true density p0 should be in the KL-support of the prior, and
the hypothesis p = p0 should be testable against complements of neighborhoods of p0.
The first is clearly a Bayesian condition, but the second may be considered a condition to
enable recovery of p0 by any statistical method. Although in its original form the theorem
has limited applicability, extensions go far deeper, and lead to a rich theory of posterior
consistency.

In the present context tests ϕn are understood to refer both to measurable mappings
ϕn:Xn → [0, 1], and to the corresponding statistics ϕn(X1, . . . , Xn). The interpretation of a
test ϕn is that a null hypothesis is rejected with probability ϕn, whence Pnϕn is the probabil-
ity of rejection if the data are sampled from P. It follows that Pn

0ϕn is the probability of a
type I error for testing H0: P = P0, and Pn(1 − ϕn) = 1 − Pnϕn is the probability of a type II
error if P , P0.

Theorem 5.6 (Schwartz). If p0 ∈ KL(Π) and for every neighborhood U of p0 there exist
tests ϕn such that Pn

0ϕn → 0 and supp∈Uc Pn(1 − ϕn) → 0, then the posterior distribution
Πn(·| X1, . . . , Xn) in the model X1 . . . , Xn| p iid

∼ p and p ∼ Π is strongly consistent at p0.

Proof By Lemma 2.33 it is not a loss of generality to assume that the tests ϕn as in the
theorem have exponentially small error probabilities, in the sense that, for some positive
constant C,

Pn
0ϕn ≤ e−Cn, sup

p∈Uc
Pn(1 − ϕn) ≤ e−Cn.

Then the theorem follows from an application of Theorem 5.9 below, with Pn = P for every
n. □

The weak topology on the set of probability measures P can also be viewed as a topology
on the corresponding densities p ∈ P. For this topology, consistent tests as in Schwartz’s
theorem, Theorem 5.6, always exist, and hence the posterior distribution is consistent at
every density that possesses the KL-property.

Corollary 5.7 (Consistency for weak topology). The posterior distribution is consistent for
the weak topology at any density p0 that has the Kullback-Leibler property for the prior.

Proof It suffices to construct tests with vanishing error probabilities for complements of
weak neighbourhoods of p0. The weak topology is by definition the weakest topology such
that the maps p 7→

∫
ψ dP are continuous, for bounded continuous functions ψ:X → R.

(See Section 4.9.1.) Thus all sets of the form U =
{
p: Pψ < P0ψ + ϵ

}
, for a continuous

1 The Kullback-Leibler divergence is typically measurable in its second argument, and then Kullback-Leibler
neighbourhoods are measurable in the space of densities. If not, then we interpret the KL-property in the
sense of inner probability: it suffices that there exists measurable sets B ⊂

{
p: K(p0; p) < ϵ

}
with Π(B) > 0.
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function ψ:X → [0, 1] and ϵ > 0, are weakly open, and all such sets form a sub-base for
the weak topology. This means that any weakly open set contains the intersection of finitely
many of sets of this form (and hence is the union of all such finite intersections). Thus it
suffices to construct consistent tests for every finite intersection. Now given a test for any
neighborhood U of the given type, we can form a test for a finite intersection ∩iUi by
rejecting P0 as soon as P0 is rejected for one of the finitely many neighborhoods Ui. The
resulting error probabilities are bounded by the sum of the error probabilities of the finitely
many tests, and hence will tend to zero if each test is consistent. Thus it suffices to construct
consistent tests for a single neighborhoodU.

For a given function ψ:X→ [0, 1], consider the test

ϕn = 1
{1
n

n∑
i=1

ψ(Xi) > P0ψ +
ϵ

2

}
.

By Hoeffding’s inequality, Lemma 2.34, this test has type I error satisfying Pn
0ϕn ≤ e−nϵ2/2.

Furthermore, since P0ψ−Pψ < −ϵ whenever P ∈ Uc, we have Pn(1−ϕn) ≤ Pn(n−1 ∑n
i=1(ψ(Xi)−

Pψ) < −ϵ/2
)

for P ∈ Uc and this is bounded by e−nϵ2/2, by a second application of Hoeffd-
ing’s inequality. □

Example 5.8 (Finite-dimensional models). If the model is smoothly parameterized by a
finite-dimensional parameter that varies over a bounded set, then consistent tests as required
in Schwartz’s theorem, Theorem 5.6, typically exist under mere regularity conditions on the
model. For unbounded Euclidean sets some conditions may be needed.

One may show this by direct arguments, or alternatively we can derive this from Corol-
lary 5.7 under the condition that the map Pθ 7→ θ is well defined (i.e. the model is identifi-
able) and continuous for the weak topology on Pθ. See Problem 5.9.

In its original form Schwartz’s theorem requires that the complement of every neighbor-
hood of p0 can be “tested away”. For strong metrics, such as the L1-distance, such tests may
not exist, even though the posterior distribution may be consistent. The following extension
of the theorem is useful for these situations. The idea is that sets of very small prior mass
need not be tested.

Theorem 5.9 (Extension of Schwartz’s theorem). If p0 ∈ KL(Π) and for every neighbor-
hood U of p0 there exist a constant C > 0, measurable sets Pn ⊂ P and tests ϕn such
that

Π(P \ Pn) < e−Cn, Pn
0ϕn ≤ e−Cn, sup

p∈Pn∩U
c
Pn(1 − ϕn) ≤ e−Cn,

then the posterior distribution Πn(·| X1, . . . , Xn) in the model X1 . . . , Xn| p iid
∼ p and p ∼ Π is

strongly consistent at p0.

Proof We first show that for any ϵ > 0 eventually a.s. [P∞0 ]:∫ n∏
i=1

p
p0

(Xi) dΠ(p) ≥ e−nϵ . (5.1)

Equivalently, the liminf of enϵ times the integral in the left side is bounded below by 1, almost
surely. We shall show that in fact this liminf is∞, almost surely.
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For any set P0 ⊂ P with positive prior mass the integral in (5.1) is bounded below by
Π(P0)

∫ ∏n
i=1(p/p0)(Xi) dΠ0(p), for Π0 the renormalized restriction Π(· ∩ P0)/Π(P0) of Π

to P0. Therefore the logarithm of the integral is bounded below by

logΠ(P0) + log
∫ n∏

i=1

p
p0

(Xi) dΠ0(p) ≥ logΠ(P0) +
∫

log
n∏

i=1

p
p0

(Xi) dΠ0(p),

by Jensen’s inequality applied to the logarithm (which is concave). The first term times n−1

tends to zero, while n−1 times the second term is the average

1
n

n∑
i=1

∫
log

p
p0

(Xi) dΠ0(p)→ P0

∫
log

p
p0

dΠ0(p), a.s.

by the strong law of large numbers. The right side is −
∫

K(p0; p) dΠ0(p), and is strictly
bigger than −ϵ for P0 =

{
p: K(p0; p) < ϵ}. We infer that n−1 times the logarithm of enϵ times

the left side of (5.1) is strictly positive, eventually, almost surely. Hence the liminf of this
expression without the n−1 is∞. This concludes the proof of (5.1).

Next fix a neighborhood U of p0, and let C, Pn and the tests ϕn be as in the state-
ment of the theorem. We shall show separately that Πn(Pn ∩ U

c| X1, . . . , Xn) → 0 and that
Πn(Pc

n| X1, . . . , Xn)→ 0, almost surely.
In view of Bayes’s rule (1.4),

Πn(Pn ∩U
c| X1, . . . , Xn) ≤ ϕn +

(1 − ϕn)
∫
Pn∩U

c

∏n
i=1(p/p0)(Xi) dΠ(p)∫ ∏n

i=1(p/p0)(Xi) dΠ(p)
.

The expectation of the first term is bounded by e−Cn by assumption, whence
∑

n Pn
0(ϕn > δ) <∑

n δ
−1e−Cn < ∞, by Markov’s inequality, for every δ > 0. This implies that ϕn → 0 almost

surely, by the Borel-Cantelli lemma.
By (5.1) and the fact that p0 is in the Kullback-Leibler support of Π the denominator of

the second term is bounded below by a constant times e−nϵ eventually a.s., for every given
ϵ. Thus this term of the display tends to zero if enϵ times the numerator tends to zero. By
Fubini’s theorem,

Pn
0

(
(1 − ϕn)

∫
Pn∩U

c

n∏
i=1

p
p0

(Xi) dΠ(p)
)
=

∫
Pn∩U

c
Pn

0

[
(1 − ϕn)

n∏
i=1

p
p0

(Xi)
]

dΠ(p)

≤

∫
Pn∩U

c
Pn(1 − ϕn) dΠ(p) ≤ e−Cn.

Since
∑

n enϵe−Cn < ∞ if ϵ < C, the desired convergence of enϵ times the numerator follows
by Markov’s inequality.

Finally we apply the argument of the preceding paragraph with Pn ∩ U
c replaced by Pc

n
and the tests ϕn = 0 instead of the given tests. The “power” Pn(1− ϕn) of this test is equal to
one, but the final term of the preceding display can be bounded by Π(Pc

n), which is also of
the order e−Cn, by assumption. This shows that Πn(Pc

n| X1, . . . , Xn)→ 0, almost surely. □
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5.2 Tests

In Schwartz’s theorem, and also the theorem on contraction rates later on, the existence of
tests ensures that the statistical model is not too complex. In this section we derive tests
in the important case of i.i.d. observations and distances bounded above by the Hellinger
distance.

5.2.1 Minimax theorem

The minimax risk for testing a probability P versus a set Q of probability measures is defined
by

π(P,Q) = inf
ϕ

(
Pϕ + sup

Q∈Q
Q(1 − ϕ)

)
, (5.2)

where the infimum is taken over all tests, i.e. measurable functions ϕ:X→ [0, 1]. The prob-
lem is to give a manageable bound on this risk, or equivalently on its two components, the
probabilities of errors of the first kind Pϕ and of the second kind Q(1 − ϕ). We assume
throughout that P and Q are dominated by a σ-finite measure µ, and denote by p and q the
densities of the measures P and Q. Let conv(Q) denote the convex hull of Q: the set of all
finite convex combinations

∑k
i=1 λiQi of elements Qi ∈ Q, where (λ1, . . . , λk) is a probability

vector.
The Hellinger affinity of two densities p and q is defined as

ρ1/2(p, q) =
∫
√

p
√

q dµ.

It is related to the Hellinger distance h(p, q) between p and q, whose square is defined by

h2(p, q) =
∫ (√

p −
√

q)2 dµ = 2 − 2ρ1/2(p, q). (5.3)

Proposition 5.10 (Minimax theorem for testing). For a probability measure P and domi-
nated set of probability measures Q,

π(P,Q) = 1 − 1
2∥P − conv(Q)∥TV ≤ sup

Q∈conv(Q)
ρ1/2(p, q).

Proof Replacing the set Q in the definition (5.2) of the minimax risk for testing by its
convex hull certainly does not make this quantity smaller. Since the minimax risk takes the
supremum over Q, the replacement makes it no bigger either. Therefore the minimax risk
for testing can be written in the form

π(P,Q) = inf
ϕ∈Φ

sup
Q∈conv(Q)

(
Pϕ + Q(1 − ϕ)

)
.

The next step is to interchange the order of inf and sup in this expression. Since the domains
for both ϕ and Q are convex and the function (ϕ,Q) 7→ Pϕ + Q(1 − ϕ) is linear in both argu-
ments, this is permitted by the minimax theorem, Theorem 5.21, as soon as this function is
continuous in ϕ relative to a topology that makes Φ a compact subset of a topological vector
space. Now the set Φ of test-functions ϕ can be identified with the nonnegative functions
in the unit ball of L∞(X,X , µ), which is dual to L1(X,X , µ), since µ is σ-finite. The unit
ball is compact and Hausdorff with respect to the weak∗-topology, by the Banach-Alaoglu
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theorem (cf. Theorem 3.15 of Rudin (1973)), and the nonnegative functions in this unit ball
form a weak-* closed subset. Therefore the minimax theorem applies and the minimax risk
for testing is equal to

sup
Q∈conv(Q)

inf
ϕ∈Φ

(
Pϕ + Q(1 − ϕ)

)
.

We finish the proof by explicitly determining the infimum in this expression, for fixed Q.
For fixed p, q the expression Pϕ+Q(1− ϕ) = 1+

∫
ϕ(p− q) dµ is minimized over all test

functions by choosing ϕ equal to the minimal permitted value 0 if p − q > 0 and equal to
the maximal permitted value 1 if p − q < 0. In other words, the infimum in the right side is
attained for ϕ = 1{p < q}, and the minimal value is equal to 1+

∫
p<q

(p−q) dµ = 1− 1
2∥p−q∥1,

since 0 =
∫

(p−q) dµ =
∫

p>q
(p−q) dµ−

∫
p<q

(q−p) dµ. This proves the equality in the assertion
of the theorem. For the inequality we write

P(p < q) + 1 − Q(p < q) =
∫

p<q
p dµ +

∫
p≥q

q dµ,

and bound p in the first integral and q in the second by
√

p
√

q. □

The proposition shows the importance of the convex hull of Q. Not the separation of Q
from the null hypothesis, but the separation of its convex hull drives the error probabilities.

5.2.2 Product measures

We shall be interested in tests based on n i.i.d. observations, and therefore wish to apply
Proposition 5.10 with the general P and Q replaced by product measures Pn and Qn. Because
the total variation distance between product measures is difficult to handle, the further bound
by the Hellinger affinity is useful. By Fubini’s theorem this is multiplicative in product
measures:

ρ1/2(p1 × p2, q1 × q2) = ρ1/2(p1, q1)ρ1/2(p2, q2).

When we take the supremum over convex hulls of sets of densities, then this multiplicativity
is lost, but the following lemma shows that the Hellinger affinity is still “sub-multiplicative”.

For i = 1, . . . , n let Pi and Qi be a probability measure and a set of probability mea-
sures on an arbitrary measurable space (Xi,Xi), and consider testing the product ⊗iPi versus
the set ⊗iQi of products ⊗iQi with Qi ranging over Qi. For simplicity write ρ1/2(P,Q) for
supQ∈Q ρ1/2(P,Q).

Lemma 5.11. For any probability measures Pi and classes Qi of probability measures (for
i = 1, . . . , n),

ρ1/2
(
⊗iPi, conv(⊗iQi)

)
≤

∏
i

ρ1/2
(
Pi, conv(Qi)

)
.

Proof It suffices to give the proof for n = 2; the general case follows by induction, as
conv(⊗k

i=1Qi) ⊂ conv
(
conv(⊗k−1

i=1Qi)×Qk
)
. Any measure Q ∈ conv(Q1⊗Q2) can be represented

by a density of the form q(x, y) =
∑

j κ jq1 j(x)q2 j(y), for nonnegative constants κ j with
∑

j κ j =
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1, and qi j densities of measures belong to Qi. Then ρ1/2(p1× p2, q) can be written in the form∫
p1(x)1/2

(∑
j

κ jq1 j(x)
)1/2[∫

p2(y)1/2
(∑ j κ jq1 j(x)q2 j(y)∑

j κ jq1 j(x)

)1/2
dµ2(y)

]
dµ1(x).

(If
∑

j κ jq1 j(x) = 0, the quotient in the inner integral is interpreted as 0.) The inner integral
is bounded by ρ1/2

(
P2, conv(Q2)

)
for every fixed x ∈ X, since the function of y within the

brackets is for every fixed x a convex combination of the densities q2 j (with weights propor-
tional to κ jq1 j(x)). After substitution of this upper bound the remaining integral is bounded
by ρ1/2

(
P1, conv(Q1)

)
. □

Combining the preceding lemma with Proposition 5.10, we see that, for every convex set
Q of measures:

π(Pn,Qn) ≤ ρ1/2
(
Pn, conv(Qn)

)
≤ ρ1/2(P,Q)n.

Thus any convex set Q with Hellinger affinity to P smaller than 1 can be tested with error
probabilities that decrease exponentially in the number of observations.

Proposition 5.12. For any probability measure P and convex, dominated set of probability
measures Q with h(p, q) > ϵ for every q ∈ Q and any n ∈ N, there exists a test ϕ such that

Pnϕ ≤ e−nϵ2/2, sup
Q∈Q

Qn(1 − ϕ) ≤ e−nϵ2/2.

Proof By (5.3) we have ρ1/2(P,Q) = 1−h2(P,Q)/2, which is bounded above by 1−ϵ2/2 by
assumption. Combined with the display preceding the proposition we see that π(Pn,Qn) ≤
(1 − ϵ2/2)n ≤ e−nϵ2/2, since 1 − x ≤ e−x, for every x. □

5.2.3 Entropy

The preceding theorem applies to convex alternatives. To handle alternatives that are not
convex, such as the complement of a ball, we cover these with convex sets, and combine the
corresponding tests into a single overall test. The power will then depend on the number of
sets needed in a cover.

Definition 5.13 (Covering number and entropy). Given a semi-metric d on a setQ and ϵ > 0,
the covering number N(ϵ,Q, d) is defined as the minimal number of balls of radius ϵ needed
to cover Q. The logarithm of the covering number is called (metric) entropy. A set of points
Q1, . . . ,QN in Q such that the balls {Q: d(Q,Qi) < ϵ} cover Q is called an ϵ-net.

The covering number increases as ϵ decreases to zero. Except in trivial cases, they in-
crease to infinity as ϵ ↓ 0. The rate of increase is a measure of the size of Q. For instance,
the covering numbers of a compact subset of Euclidean space of dimension d increase at
rate (1/ϵ)d, as δ ↓ 0; the covering numbers of a space of functions with bounded derivatives
are much bigger, their entropy is polynomial in (1/ϵ). There is a rich literature on covering
numbers. See Section 5.6.1 for some examples.
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Proposition 5.14. Let d be a metric whose balls are convex and which is bounded above by
the Hellinger distance h. Then for every ϵ > 0 and n there exists a test ϕ such that

Pnϕ ≤ N(ϵ/4,Q, d) e−nϵ2/8 sup
Q∈Q:d(P,Q)>ϵ

Qn(1 − ϕ) ≤ e−nϵ2/8.

Proof Choose a maximal set of points Q1, . . . ,QN in the set Q′:=
{
Q ∈ Q: d(P,Q) > ϵ

}
such that d(Qk,Ql) ≥ ϵ/2, for every k , l. Because every ball in a cover of Q by balls of
radius ϵ/4 can contain at most one Ql, it follows that N(ϵ/4,Q, d) ≥ N. Furthermore, the N
balls Bl = {Q′: d(Q′,Ql) < ϵ/2} of radius ϵ/2 around the Ql cover Q′, as otherwise the set
Q1, . . . ,QN would not be maximal. Since Ql ∈ Q

′, the distance of Ql to P is at least ϵ and
hence h(Bl, P) ≥ d(Bl, P) > ϵ/2 for every ball Bl. The balls Bl are convex by assumption.
Therefore, by Proposition 5.12 there exists a test ϕl of P versus Bl with error probabilities
bounded above by e−nϵ2/8. Let ϕ = maxl ϕl be the maximum of all the tests ϕl obtained in this
way, for l = 1, 2, . . . ,N. Then

Pnϕ ≤

N∑
l=1

Pnϕl ≤ N(ϵ/4,Q, d)e−nϵ2/8, and sup
Q∈Q′

Qn(1 − ϕ) ≤ e−nϵ2/8.

The first inequality follows, because the maximum is smaller than the sum; the second,
because by construction for every Q ∈ Q′ there exists a ball with Q ∈ Bl, and 1− ϕ ≤ 1− ϕl,
by construction. □

5.3 Consistency under an entropy bound

We combine the results on testing with the extended Schwartz theorem, Theorem 5.9, to
obtain sufficient conditions for consistency in terms of entropy. We could use any distance
that is bounded above by a multiple of the Hellinger distance, but for simplicity choose the
L1-distance (which is twice the total variation distance). By the Cauchy-Schwarz inequality
and the inequality (

√
p +
√

q)2 ≤ 2(p + q), for any probability distances p and q,∫
|p − q| dν ≤

(∫
(
√

p −
√

q)2 dν
∫

(
√

p +
√

q)2 dν
)1/2
≤ 2h(p, q).

Theorem 5.15 (Consistency in total variation). The posterior distribution is strongly consis-
tent relative to the L1-distance at every p0 ∈ KL(Π) if for every ϵ > 0 there exist measurable
sets Pn ⊂ P (which may depend on ϵ) such that, for constants C > 0, ξ < 1/2, and suffi-
ciently large n,

Π(P \ Pn) ≤ e−Cn, log N
(
ϵ,Pn, ∥ · ∥1

)
≤ ξnϵ2.

Proof Because the L1-distance is bounded above by twice the Hellinger distance, we can
apply Theorem 5.14 with d = ∥·∥1/2. Then N(ϵ/2,Pn, d) ≤ N

(
ϵ,Pn, ∥·∥1

)
≤ eξnϵ

2
. Therefore,

by Proposition 5.14 applied with 2ϵ instead of ϵ, there exists a test ϕn with

Pn
0ϕn ≤ eξnϵ

2
e−nϵ2/2, sup

p∈Pn:∥p−p0∥1>4ϵ
Pn(1 − ϕn) ≤ e−nϵ2/2.

Thus the conditions of Theorem 5.9 are satisfied, where we take U the ball of radius 5ϵ
around p0 and set the constant C equal to the minimum of (1/2 − ξ)ϵ2/2 and the present
constant C. □
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Example 5.16 (Totally bounded model). As a very crude example consider a model P such
that N

(
ϵ,P, ∥ · ∥1

)
< ∞, for every ϵ > 0. Clearly for every fixed ϵ > 0 the inequality

log N
(
ϵ,P, ∥ · ∥1

)
< nϵ2/4, is satisfied for sufficiently large n (which depends on ϵ). Thus

the entropy condition is satisfied for Pn = P, and then also Π(P \ Pn) = 0 is trivially
satisfied. Thus the theorem gives consistency at every probability density p0 that possesses
the Kullback-Leibler property.

A concrete example is the set of all densities p: [0, 1] → [0,K] that are uniformly Lips-
chitz: |p(x) − p(y)| ≤ K|x − y|β, for every x, y ∈ [0, 1] and some given constants K, β > 0
(see Proposition 5.24). This example shows that the entropy condition in the preceding the-
orem is not overly strong, as a Lipschitz condition is relatively weak. That the condition is
quantitative through the constant K is less pleasant. It would force us to use a prior that is
dependent on K, and which K would we use?

We can use the sieves Pn to resolve such questions and prove consistency for many more
priors. However, consistency is a very weak property, and it is not overly satisfying to apply
the preceding theorem to more general situations. In the next section we turn to stronger
results.

5.4 Rate of contraction

For every n ∈ N let X(n) be an observation in a sample space (X(n),X (n)) with distribution
P(n)
θ indexed by a parameter θ belonging to a metric space Θ. Given a prior Πn on the Borel

sets of Θ, let Πn(·| X(n)) be a version of the posterior distribution.

Definition 5.17 (Posterior rate of contraction). The posterior distribution Πn(·| X(n)) is said
to contract at rate ϵn → 0 at θ0 ∈ Θ if Πn

(
θ: d(θ, θ0) > Mnϵn| X(n)) → 0 in P(n)

θ0
-probability,

for every Mn → ∞ as n→ ∞.

A rough interpretation of the rate ϵn is that the posterior distribution concentrates on balls
of radius “of the order ϵn” around θ0. The construction using the additional sequence Mn

expresses the “of the order” part of this assertion. For “every Mn → ∞” must be read as
“whenever Mn → ∞, no matter how slowly”. Actually, in most nonparametric applications
the fixed sequence Mn = M for a large constant M also works. (In many parametric applica-
tions, the posterior distribution tends after scaling to a distribution that is supported on the
full space, and letting Mn tend to infinity is important.)

We may view the rate of contraction as the natural refinement of consistency. Consis-
tency requires that the posterior distribution contracts to within arbitrarily small distance
ϵ to the true parameter θ0; the rate as defined here quantifies “arbitrarily small”. Typically
contraction rates are much more informative about the quality of a Bayesian procedure than
is revealed by mere consistency.

If ϵn is a rate of contraction, then every sequence that tends to zero at a slower rate is also
a contraction rate, according to the definition. Saying that the contraction rate is at least ϵn

would be appropriate. Naturally we are interested in the fastest contraction rate, but we are
typically already satisfied with knowing some rate that is valid for every θ0 in a given class
of true parameters.

An appropriate summary of the location of the posterior distribution inherits its rate of



118 Posterior Contraction

contraction.‘ The same summary as used in Proposition 5.2 also works for rates. The proof
is very similar too and omitted.

Proposition 5.18 (Point estimator). Suppose that the posterior distribution Πn(·| X(n)) con-
tracts at rate ϵn at θ0 relative to the metric d on Θ. Then θ̂n defined as the center of a (nearly)
smallest ball that contains posterior mass at least 1/2 satisfies d(θ̂n, θ0) = OP(ϵn) under P(n)

θ0
.

In particular, the posterior distribution cannot contract faster than the best point estimator.
This makes it possible to connect the theory of posterior contraction rates to the theory of
“optimal” rates of estimation, which are typically defined by the minimax criterion. For a
given set Θ of possible parameters the minimax rate is the fastest rate so that, for some
sequence of estimators and every Mn → ∞,

sup
θ∈Θ

P(n)
θ

(
d(θ̂n, θ) > Mnϵn

)
→ 0.

We would like priors that give the same rate of contraction ϵn, preferably uniformly in θ ∈ Θ.

5.5 Contraction under an entropy bound

Let the observations be a random sample X1, . . . , Xn from a density p that belongs to a set of
densities P, relative to a given σ-finite measure ν. Let Πn be a prior on P, and let p0 denote
the true density of the observations.

Let d be a distance on P that is bounded above by the Hellinger distance h, and set

K(p0; p) = P0 log
p0

p
, V(p0; p) = P0

(
log

p0

p

)2
. (5.4)

The first is the Kullback-Leibler divergence, the second a corresponding second moment.
For simplicity of notation also define K2 as the maximum of these quantities:

K2(p0; p) = max
(
K(p0; p),V(p0; p)

)
. (5.5)

Theorem 5.19. Let d ≤ h be a metric whose balls are convex. The posterior distribution
contracts at rate ϵn at p0 for any ϵn such that there exists ϵn ≤ ϵn such that nϵ2

n → ∞ and
such that, for positive constants c1, c2 and sets Pn ⊂ P,

log N(ϵn,Pn, d) ≤ c1nϵ2
n , (5.6)

Πn
(
p: K2(p0; p) < ϵ2

n

)
≥ e−c2nϵ2

n , (5.7)

Πn(P \ Pn) ≤ e−(c2+3)nϵ2
n . (5.8)

Proof For every ϵ ≥ 4ϵn we have log N(ϵ/4,Pn, d) ≤ log N(ϵn,Pn, d) ≤ c1nϵ2
n , by assump-

tion (5.6). Therefore, by Proposition 5.14 applied with ϵ = Mϵn, where M ≥ 4 is a large
constant to be chosen later, there exist tests ϕn with errors

Pn
0ϕn ≤ ec1nϵ2

n e−nM2ϵ2
n/8, sup

p∈Pn:d(p,p0)>Mϵn

Pn(1 − ϕn) ≤ e−nM2ϵ2
n/8.

For M2/8 > c1 the first expression tends to zero. For An the event
{∫ ∏n

i=1(p/p0)(Xi) dΠn(p) ≥
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e−(2+c2)nϵ2
n
}

we can bound Πn
(
p: d(p, p0) > Mϵn| X1, . . . , Xn

)
by

ϕn + 1{Ac
n} + e(2+c2)nϵ2

n (1 − ϕn)
∫

d(p,p0)>Mϵn

n∏
i=1

p
p0

(Xi) dΠn(p).

The expected value under Pn
0 of the first term tends to zero, by choice of M and the preceding

display. The same is true for the second term, by (5.7) and Lemma 5.20 (below). We split
the integral in the third term over the intersection with the domain Pn and its complement.

The first is

Pn
0

[
(1 − ϕn)

∫
p∈Pn:d(p,p0)>Mϵn

n∏
i=1

p
p0

(Xi) dΠn(p)
]
≤

∫
p∈Pn:d(p,p0)>Mϵn

Pn(1 − ϕn) dΠn(p),

which is bounded by e−nM2ϵ2
n/8, by the construction of the tests. The second is bounded by

Pn
0

∫
P\Pn

n∏
i=1

p
p0

(Xi) dΠn(p) ≤ Πn(P \ Pn).

This is bounded above by e−(c2+3)nϵ2
n by (5.8). For M2/8 > 2 + c2 all terms tend to zero. □

The sequence ϵn may be chosen equal to the rate ϵn, but allowing a different rate gives
some flexibility that is important to treat some examples.

The condition nϵ2
n → ∞ excludes the parametric rate ϵn = n−1/2, and merely says that we

are considering the nonparametric situation, where slower rates obtain. The main conditions
of the theorem are (5.6)-(5.8).

Condition (5.8) is trivially satisfied by choosing Pn = P for every n. Similar as in the
consistency theorems, this condition expresses that a subset P \ Pn of the model Pn that
receives very little prior mass does not play a role in the rate of contraction.

The remaining pair (5.6)-(5.7) of conditions is more structural. For given Pn and c1, c2

each of the two conditions on its own determines a minimal value of ϵn (as their left sides
decrease and their right sides increase if ϵn is replaced by a bigger value). The rate of con-
traction is the slowest one defined by the two inequalities. Condition (5.7) involves the prior,
whereas condition (5.6) does not. The latter condition bounds the complexity of the model,
and should be viewed as characterizing the best rate of estimation by any method.

Lemma 5.20 (Evidence bound). For any probability measure Π on P, and positive constant
ϵ, with Pn

0-probability at least 1 − (nϵ2)−1,∫ n∏
i=1

p
p0

(Xi) dΠ(p) ≥ Π
(
p: K2(p0; p) < ϵ2) e−2nϵ2

.

Proof The integral becomes smaller by restricting it to the set B:=
{
p: K2(p0; p) < ϵ2

n
}
. By

next dividing the two sides of the inequality by Π(B), we can rewrite the inequality in terms
of the prior Π0 obtained by restricting Π to B and renormalizing it to a probability measure.
By Jensen’s inequality applied to the logarithm,

log
∫ n∏

i=1

p
p0

(Xi) dΠ0(P) ≥
n∑

i=1

∫
log

p
p0

(Xi) dΠ0(P) =: Z.
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The right side has mean EZ = −n
∫

K(p0; p) dΠ0(p) > −nϵ2, because Π0 concentrates on B,
and variance satisfying

var Z ≤ nP0

(∫
log

p0

p
dΠ0(p)

)2
≤ nP0

∫ (
log

p0

p

)2
dΠ0(p) ≤ nϵ2,

by Jensen’s inequality, Fubini’s theorem, and again the fact that Π0(B) = 1. It follows that

Pn
0
(
Z < −2nϵ2) ≤ Pn

0
(
Z − EZ < −nϵ2) ≤ nϵ2

(nϵ2)2 ,

by Chebyshev’s inequality. □

5.6 Complements
Theorem 5.21 (Minimax theorem). Let T be a compact, convex set of a locally convex topological
vector space and S a convex subset of a linear space. Let f : T × S → R be a function such that

(i) t 7→ f (t, s) is continuous and concave for all s ∈ S ;
(ii) s 7→ f (t, s) is convex for all s ∈ S .

Then

inf
s∈S

sup
t∈T

f (t, s) = sup
t∈T

inf
s∈S

f (t, s). (5.9)

For a proof, see Strasser (1985), pages 239–241.
The following proposition is a sharper version of Proposition 5.14. Instead of counting the cover

number of the full alternative, it partitions the alternative in rings {Q ∈ Q: jϵ < d(Q, P) < 2 jϵ} of
increasing radius, given by j = 1, 2, . . . and uses the supremum of the jϵ/2-cover numbers of these
rings. This makes a difference mostly for finite-dimensional models Q, as for big models the orders of
the cover numbers for different j are similar.

Proposition 5.22. Let d be a metric whose balls are convex and which is bounded above by the
Hellinger distance h. Then for every ϵ > 0 and n there exists a test ϕ such that, for all j ∈ N,

Pnϕ ≤ sup
j∈N

N
(
ϵ j/4, {Q ∈ Q: jϵ < d(Q, P) < 2 jϵ}, d

) e−nϵ2/8

1 − e−nϵ2/8
, sup

Q∈Q:d(P,Q)> jϵ
Qn(1−ϕ) ≤ e−nϵ2 j2/8.

Proof For a given j ∈ N, choose a maximal set of points Q j,1, . . . ,Q j,N j in the set Q j:=
{
Q ∈ Q: jϵ <

d(P,Q) < 2 jϵ
}

such that d(Q j,k,Q j,l) ≥ jϵ/2 for every k , l. Because every ball in a cover of Q j by
balls of radius jϵ/4 then contains at most one Q j,l, it follows that N j ≤ N( jϵ/4,Q j, d). Furthermore,
the N j balls B j,l of radius jϵ/2 around the Q j,l cover Q j, as otherwise this set was not maximal. Since
Q j,l ∈ Q j, the distance of Q j,l to P is at least jϵ and hence h(P, B j,l) ≥ d(P, B j,l) > jϵ/2 for every
ball B j,l. By Proposition 5.12 there exists a test ϕ j,l of P versus B j,l with error probabilities bounded
above by e−n j2ϵ2/8. Let ϕ be the supremum of all the tests ϕ j,l obtained in this way, for j = 1, 2, . . . ,
and l = 1, 2, . . . ,N j. Then

Pnϕ ≤

∞∑
j=1

N j∑
l=1

e−n j2ϵ2/8 ≤

∞∑
j=1

N( jϵ/4,Q j, d)e−n j2ϵ2/8 ≤ N(ϵ/4,Q, d)
e−nϵ2/8

1 − e−nϵ2/8

and, for every j ∈ N,

sup
Q∈∪l> jQl

Qn(1 − ϕ) ≤ sup
l> j

e−nl2ϵ2/8 ≤ e−n j2ϵ2/8,

since for every Q ∈ Q j there exists a test ϕ j,l with 1 − ϕ ≤ 1 − ϕ j,l, by construction. □
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5.6.1 Examples of entropy
Lemma 5.23 (Euclidean ball). For ∥x∥p =

(∑
i |xi|

p)1/p and p ≥ 1, for any M and ϵ ∈ (0,M),

N
(
ϵ, {x ∈ Rd: ∥x∥p ≤ M}, ∥ · ∥p

)
≤

(
3M
ϵ

)d

. (5.10)

Proof We can reduce to the case M = 1 by scaling. Let x1, . . . , xN be a maximal set of points in
the closed unit ball {x: ∥x∥p ≤ 1} such that ∥xi − x j∥p ≥ ϵ, for i , j, where “maximal” means that it
is impossible to add a further point while keeping the inequality ∥xi − x j∥p ≥ ϵ. Then any point of
the unit ball is within distance ϵ of at least one x1, . . . , xN and hence N

(
ϵ, {x: ∥x∥p ≤ 1}, ∥ · ∥p

)
≤ N.

The open balls B(xi, ϵ/2) around the points x1, . . . , xN are disjoint and their union is contained in
B(0, 1 + ϵ/2). Comparing the volume of the union to the volume of the latter ball gives the inequality
N(ϵ/2)d ≤ (1 + ϵ/2)d. Hence N ≤

(
(2 + ϵ)/ϵ

)d
≤ (3/ϵ)d, for ϵ < 1. □

The preceding bounds show that entropy numbers of sets in Euclidean spaces grow logarithmically.
For infinite-dimensional spaces the growth is much faster, as is illustrated by the following example.

The Hölder norm of order β of a continuous function f :X → R on a bounded, convex subset
X ⊂ Rd is defined as

∥ f ∥β = max
k:|k|≤β

sup
x∈X
|Dk f (x)| + max

k:|k|=β
sup

x,y∈X:x,y

|Dk f (x) − Dk f (y)|

∥x − y∥β−β
. (5.11)

Here β is the biggest integer strictly smaller than β, and for a vector k = (k1, . . . , kn) of integers, Dk is
the partial differential operator

Dk =
∂|k|

∂xk1
1 · · · ∂xkd

d

.

Lemma 5.24 (Hölder ball). There exists a constant K depending only on X, d and β such that,

log N
(
ϵ, { f : ∥ f ∥β ≤ M}, ∥ · ∥∞

)
≤ K

( M
ϵ

)d/β
.

Definition 5.25 (Sobolev space). The Sobolev spaceWα(X) of order α ∈ N for an interval X ⊂ R is the
class of all functions f ∈ L2(X) that possess an absolutely continuous (α−1)th derivative whose (weak)
derivative f (α) is contained in L2(X); the space is equipped with the norm ∥ f ∥2,2,α = ∥ f ∥2+∥ f (α)∥2. The
Sobolev spaceWα(Rm) of order α > 0 is the class of all functions f ∈ L2(Rm) with Fourier transform f̂
satisfying vα( f )2:=

∫
|λ|2α| f̂ (λ)|2 dλ < ∞; the space is equipped with the norm ∥ f ∥2,2,α = ∥ f ∥2+vα( f ).

The preceding definition is restricted to functions of “integral” smoothness α ∈ N with domain
an interval in the real line or functions of general smoothness α > 0 with domain a full Euclidean
space. The relation between the two cases is that for α ∈ N the function λ 7→ (iλ)α f̂ (λ) is the Fourier
transform of the (weak) αth derivative f (α) of a function f :R → R and hence vα( f ) = ∥ f (α)∥2. The
Fourier transform is not entirely natural for functions not defined on the full Euclidean space, which
makes definitions of Sobolev spaces for general domains and smoothness a technical matter. One
possibility suggests itself by the fact that in both cases the Sobolev space is known to be equivalent to
the Besov spaceBα2,2(X). Hence we may define a Sobolev spaceWα(X) in general as the corresponding
Besov space. This identification suggested the notation ∥ · ∥2,2,α for the norm. Another possibility arise
for periodic functions, which we briefly indicate below.

The Sobolev spaces of functions on a compact domain (identified with the corresponding Besov
space) are compact in Lr(R) if the smoothness level is high enough: α > m(1/2 − 1/r)+. The en-
tropy is not bigger than the entropy of the smaller Hölder spaces and hence the following proposition
generalizes and improves Lemma 5.24.
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Proposition 5.26 (Sobolev space). For α > m(1/2 − 1/r)+ and r ∈ (0,∞] there exists a constant K
that depends only on α and r such that

log N
(
ϵ, { f ∈ Wα[0, 1]m: ∥ f ∥2,2,α ≤ M},Lr([0, 1]m)

≤ K
( M
ϵ

)m/α
.

Proposition 5.27 (Analytic functions). The class AA[0, 1]m of all functions f : [0, 1]m → R that can
be extended to an analytic function on the set G =

{
z ∈ Cm: ∥z − [0, 1]m∥∞ < A

}
with supz∈G

∣∣∣ f (z)
∣∣∣ ≤ 1

satisfies, for ϵ < 1/2 and a constant c that depends on m only,

log N
(
ϵ,AA[0, 1]m, ∥ · ∥∞

)
≤ c

( 1
A

)m(
log

1
ϵ

)1+m
.

A function f ∈ L2[0, 2π] may be identified with its sequence of Fourier coefficients ( f j) ∈ ℓ2.
The αth derivative of f has Fourier coefficients ((i j)α f j). This suggests to think of the ℓ2-norm of
the sequence ( jα f j) as a Sobolev norm of order α. The following proposition gives the entropy of the
corresponding Sobolev sequence space relative to the ℓ2-norm.

Proposition 5.28 (Sobolev sequence). For ∥ϑ∥2 =
(∑∞

i=1 θ
2
i
)1/2 the norm of ℓ2 and α > 0, for all ϵ > 0,

log D
(
ϵ,

{
ϑ ∈ ℓ2:

∞∑
i=1

i2αθ2
i ≤ B2}, ∥ · ∥2) ≤ log(4(2e)2α)

(3B
ϵ

)1/α
.

Exercises
5.1 Suppose that the posterior distribution is strongly consistent. Show that the sequence of poste-

rior distributions converges almost surely to the Dirac measure relative to the weak topology.
5.2 Extend the preceding exercise to weak consistency.
5.3 Suppose thatΘ = Rd, and the posterior distribution is strongly consistent and

∫
∥θ∥p dΠn(θ| X(n))

is bounded in probability or almost surely for some p > 1. Show that the posterior mean∫
θ dΠn(θ| X(n)) is consistent as a point estimator.

5.4 Suppose that the posterior distribution Π(·| X(n)) of a probability density is consistent relative
to the L1-distance on the parameter set of densities. Show that the posterior mean density x 7→∫

p(x) dΠn(p| X(n)) is consistent in L1, as a point estimator for a density.
5.5 Consider the set F of functions f : [0, 1] → [0, 1] such that

∣∣∣ f (x) − f (y)
∣∣∣ ≤ |x − y|, for every

x, y ∈ [0, 1]. Show that there exists a constant K such that log N
(
ϵ,F , ∥ · ∥∞

)
≤ K(1/ϵ), for

ϵ < 1. [This is a special case of Lemma 5.24. Give a direct proof. Use balls around piecewise
constant (or linear) functions.]

5.6 Suppose d1 and d2 are metrics with d1 ≤ d2. Show that N(ϵ,Q, d1) ≤ N(ϵ,Q, d2), for every
ϵ > 0.

5.7 Prove Proposition 5.18.
5.8 Suppose that X1, . . . , Xn are a random sample from the uniform distribution on [0, θ] and θ is

equipped with a gamma prior with parameters (r, s). Use Schwartz’s theorem to show that the
posterior distribution of θ is consistent at θ0. [Hint: the Kullback-Leibler divergence K(U[0,θ0]; U[0,θ])
is infinite if θ < θ0, but continuous in θ for θ ≥ θ0. Devise uniformly consistent tests for
H0: θ = θ0 versus H1: |θ − θ0| > ϵ.]

5.9 If a model is parameterized by a parameter θ and g:Θ → H is a map that is continuous at θ0,
then consistency of the posterior distribution of θ at θ0 implies the consistency of the posterior
distribution of the parameter η = g(θ) at g(θ0). Show this.
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Dirichlet Process Mixtures

Because the Dirichlet process is discrete, it is useless as a prior for a distribution of which
we wish to estimate the density. This can be remedied by convolving it with a kernel. For
each θ in a parameter set Θ, let x 7→ ψ(x, θ) be a probability density function relative to
some σ-finite dominating measure µ, measurable in its two arguments. For a measure F on
Θ define a mixture density by

pF(x) =
∫

ψ(x, θ) dF(θ).

By equipping F with a prior, we obtain a prior on densities. Densities pF with F following
a Dirichlet process prior are known as Dirichlet mixtures.

As the Dirichlet process prior is defined for any Polish space Θ, the parameter θ in this
mixture representation can be high-dimensional, but in most applications it is Euclidean of
low dimension. It is often considered convenient to make the kernel depend on an additional
parameter σ ∈ S, which is given its own prior, giving mixtures of the form

pF,σ(x) =
∫

ψ(x, θ, σ) dF(θ). (6.1)

An example is to set ψ(·, θ, σ) equal to the density of the N(θ, σ2)-distribution. Equipping
this with a prior on σ and a Dirichlet process prior on F, results in a “mixture of Dirichlet
mixtures”.

Throughout the chapter the observations X1, . . . , Xn will be a random sample from a den-
sity p0 (relative to µ) on the sample space. When discussing posterior contraction, this den-
sity is not necessarily assumed to be one of the mixtures pF,σ. The idea is that for a well
chosen kernel any density can be approximated by mixture densities with appropriately cho-
sen (F, σ), so that contraction to p0 may pertain even if p0 is not a mixture itself. On the
other hand, when discussing the computation of the posterior distribution in the next sec-
tion, we adopt the Bayesian model, which assumes that the observations are a sample from
pF,σ given the pair (F, σ) generated from the prior.

6.1 Computation

In this section we discuss an MCMC algorithm to compute the posterior distribution result-
ing from a Dirichlet mixture.

123
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For x 7→ ψ(x; θ, σ) a probability density function, consider the Bayesian model

Xi| F, σ iid
∼ pF,σ(x) =

∫
ψ(x; θ, σ) dF(θ), i = 1, . . . , n. (6.2)

We equip F and σ with independent priors F ∼ DP(α) and σ ∼ π. The resulting model can
be equivalently written in terms of n latent variables θ1, . . . , θn as

Xi| θi, F, σ ind
∼ ψ(·; θi, σ), θi| F, σ iid

∼ F, F ∼ DP(α), σ ∼ π. (6.3)

The posterior distribution of any object of interest can be described in terms of the poste-
rior distribution of (F, σ) given X1, . . . , Xn. The latent variables θ1, . . . , θn help to make the
description simpler. Indeed,

• F| θ1, . . . , θn ∼ DP(α +
∑n

i=1 δθi ), by Theorem 4.14.
• Given σ, θ1, . . . , θn, the observations X1, . . . , Xn and F are independent.

Hence the conditional distribution of F given σ, θ1, . . . , θn, X1, . . . , Xn is free of the observa-
tions X1, . . . , Xn, and equal to the Dirichlet process DP(α +

∑n
i=1 δθi ). We thus obtain

Pr
(
F ∈ B| X1, . . . , Xn

)
=

∫
Pr

(
F ∈ B|σ, θ1, . . . , θn, X1, . . . , Xn

)
dPσ,θ1,...,θn |X1,...,Xn (σ, θ1, . . . , θn)

=

∫
DP

(
α +

n∑
i=1

δθi

)
(B) dPσ,θ1,...,θn |X1,...,Xn (σ, θ1, . . . , θn).

The integrand is the probability of the set B under the Dirichlet process DP(α +
∑n

i=1 δθi )-
distribution. The set B is a general set of measures, and hence the probability is somewhat
abstract. However, for given θ1, . . . , θn we can replace the Dirichlet process by its series
approximation, or we can consider sets B of the form {F:

(
F(A1), . . . , F(Ak)

)
∈ Bk} for par-

titions X = ∪iAi of the sample space and use the definition of the Dirichlet process. The
integrating measure is the posterior distribution of σ, θ1, . . . , θn. There are analytical formu-
las for this distribution, but these are too unwieldy for practical use. Computation is typically
done by simulating samples σ, θ1, . . . , θn from their posterior distribution. The theorem be-
low describes a Gibbs sampling scheme for this purpose.

The decomposition can also be read as a recipe for simulating F from its posterior distri-
bution: first simulate σ, θ1, . . . , θn from its posterior distribution (e.g. by the Gibbs sampler
below), next given these values simulate F from the DP(α +

∑n
i=1 δθi )-distribution.

For the expectation of a linear functional of a Dirichlet process there is an explicit for-
mula (see Exercise 4.8). This makes one of the two simulations unnecessary. Applied to the
preceding, the formula gives, for any measurable function ψ,

E
(∫

ψ dF|σ, θ1, . . . , θn, X1, . . . , Xn

)
=

1
|α| + n

[∫
ψ dα +

n∑
j=1

ψ(θ j)
]
. (6.4)

The advantage of this representation is that the infinite-dimensional parameter F has been
eliminated. To compute the posterior expectation of

∫
ψ dF it now suffices to take the condi-

tional expectation with respect to X1, . . . , Xn across the display. In other words, we average
out the right hand side of (6.4) with respect to the posterior distribution of (θ1, . . . , θn).
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Example 6.1 (Density estimation). The choice ψ(θ) = ψ(x, θ, σ) in (6.4), for a given x,
gives the integral

∫
ψ dF =

∫
ψ(x, θ, σ) dF(θ), which is the mixture density pF,σ(x). Thus

the posterior mean density satisfies

E
(
pF,σ(x)|σ, X1, . . . , Xn

)
=

1
|α| + n

[∫
ψ(x; θ, σ) dα(θ) + E

( n∑
j=1

ψ(x; θ j, σ)| X1, . . . , Xn

)]
.

The next theorem explains a Gibbs sampling scheme to simulate from the posterior dis-
tribution of (θ1, . . . , θn), based on a weighted generalized Polya urn scheme. Inclusion of a
possible parameter σ and other hyperparameters is tackled in the next section. This Gibbs
scheme can be used to generate samples (θ(b)

1 , . . . , θ(b)
n ), for b = 1, . . . , B, that are (ap-

proximately, after a burn-in) samples from the posterior distribution of (θ1, . . . , θn) given
(X1, . . . , Xn, σ). The conditional expectation E

[∑n
j=1 ψ(θ j)| X1, . . . , Xn

]
of the second term in

(6.4) can then be approximated by the average

1
B

B∑
b=1

n∑
j=1

ψ(θ(b)
j ).

Thus we obtain a Monte Carlo estimate of the posterior mean of a linear functional
∫
ψ dF.

We can also generate samples from the posterior distribution, by generating F from the
DP(α +

∑n
i=1 δθi )-distribution, for instance by using the series representation of the Dirichlet

process, after first generating (θ1, . . . , θn) from its posterior distribution given (X1, . . . , Xn).
We use the subscript −i to denote every index j , i, and θ−i = (θ j: j , i).

Theorem 6.2 (Gibbs sampler). The conditional posterior distribution of θi is given by:

θi| θ−i, σ, X1, . . . , Xn ∼
∑
j,i

qi, jδθ j + qi,iGb,i, (6.5)

where (qi,1, . . . , qi,n) is the probability vector satisfying

qi, j ∝

ψ(Xi; θ j, σ), j , i, j ≥ 1,∫
ψ(Xi; θ, σ) dα(θ), j = i,

(6.6)

and Gb,i is the “baseline posterior measure” given by

dGb,i(θ|σ, Xi) ∝ ψ(Xi; θ, σ) dα(θ). (6.7)

Proof Since the parameter σ is fixed throughout, we suppress it from the notation. For
measurable sets A and B,

E
(
1A(Xi)1B(θi)| θ−i, X−i

)
= E

(
E
(
1A(Xi)1B(θi)| F, θ−i, X−i

)
| θ−i, X−i

)
.

Because (θi, Xi) is conditionally independent of (θ−i, X−i) given F, the inner conditional ex-
pectation is equal to E

(
1A(Xi)1B(θi)| F

)
=

∫ ∫
1A(x)1B(θ)ψ(x; θ) dµ(x) dF(θ). In the outer

layer of conditioning the variables X−i are superfluous, by the conditional independence of
F and X−i given θ−i. Therefore, by Exercise 4.8 the preceding display is equal to

1
|α| + n − 1

∫ ∫
1A(x)1B(θ)ψ(x; θ) dµ(x) d

(
α +

∑
j,i

δθ j

)
(θ).
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This determines the joint conditional distribution of (Xi, θi) given (θ−i, X−i). By Bayes’s rule
(applied to this joint law conditionally given (θ−i, X−i)) we infer that

Pr
(
θi ∈ B| Xi, θ−i, X−i

)
=

∫
B
ψ(Xi; θ) d(α +

∑
j,i δθ j )(θ)∫

ψ(Xi; θ) d(α +
∑

j,i δθ j )(θ)
.

This in turn is equivalent to the assertion of the theorem. □

6.1.1 *MCMC method

Theorem 6.2 describes the full conditionals of the parameters θi in a Gibbs sampler. The
parameter σ is added by separate update steps. In practice one often also equips the base
measure with hyper parameters, giving the following augmented model:

Xi| θi, σ,M, ξ, F ind
∼ ψ(·; θi, σ), θi| F, σ,M, ξ iid

∼ F, F|M, ξ ∼ DP(M,Gξ),

where σ, M and ξ are independently generated hyperparameters. A basic algorithm uses the
Gibbs sampling scheme of Theorem 6.2 to generate θ1, . . . , θn given X1, . . . , Xn in combina-
tion with the Gibbs sampler for the posterior distribution of M given in Section 4.8, and/or
additional Gibbs steps. The prior densities of the hyperparameters are denoted by a generic
π.

Algorithm Generate samples by sequentially executing steps (i)–(iv) below:

(i) Given the observations and σ, M and ξ, update each θi sequentially using (6.5) inside
a loop i = 1, . . . , n.

(ii) Update σ ∼ p(σ| θ1, . . . , θn, X1, . . . , Xn) ∝ π(σ)
∏n

i=1 ψ(Xi; θi, σ).
(iii) Update ξ ∼ p(ξ| θ1, . . . , θn) ∝ π(ξ)p(θ1, . . . , θn| ξ), where the marginal distribution of

(θ1, . . . , θn) is as in the Polya scheme (4.12).
(iv) Update M and next the auxiliary variable η using (4.16), for Kn the number of distinct

values in {θ1, . . . , θn}.

In practice one chooses conjugate priors in steps (ii)-(iii), so that updating σ and ξ is
easy. Also the efficiency of the algorithm can be increased by making use of the fact that the
number of distinct values among θ1, . . . , θn can be small.

An efficient implementation in R is given in the package DPpackage.

6.2 Consistency

For a given family of probability densities x 7→ ψ(x; θ, σ), form the mixtures pF,σ as in (6.1),
and construct a prior distribution on densities by equipping F with the Dirichlet prior and
independently σ with another prior Πσ. Form the posterior distribution based on a random
sample of observations X1, . . . , Xn from pF,σ. This can be viewed as a distribution on the pair
(F, σ), but in this section we are interested in the induced posterior distribution on the den-
sities pF,σ, which we consider as a method of reconstructing the density of the observations.

We are interested in the success of this procedure in the (frequentist) situation that the ob-
servations are a random sample from a given density p0, which is not necessarily of mixture
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Figure 6.1 Posterior mean (solid black) and ten draws of the posterior distribution
of a Dirichlet location-scale mixture of a Gaussian density for data consisting of a
sample of size 50 from a mixture of two normals (shown in red). Computations in R
using the DPpackage version 1.1-6 (Jara et al. (2015)).

form. We ask whether the posterior distribution of pF,σ is consistent at p0 in the sense of
Definition 5.1, where we use the L1-norm as the metric. We shall answer this question with
the help of Theorem 5.15.

Obviously consistency is impossible if the distance of p0 to the set of all mixtures pF,σ

is positive: p0 must be in the closure of the set of all mixtures. Theorem 5.15 imposes the
slightly stronger condition that p0 possesses the Kullback-Leibler property relative to the
prior. Whether this is true depends on the combination of p0 and the kernels ψ(·; θ, σ). In the
following section we consider in detail the case of the normal location-scale kernel, and shall
see that almost every continuous density p0 then qualifies. In general, one might decompose
the Kullback-Leibler divergence as, for given (Fϵ , σϵ),

K(p0; pF,σ) = K(p0; pFϵ ,σϵ ) + P0 log
pFϵ ,σϵ

pF,σ
.

If for every ϵ > 0 there exists (Fϵ , σϵ) such that K(p0; pFϵ ,σϵ ) < ϵ, and the set of parameters
(F, σ) such that the second term is also smaller than ϵ has positive prior probability, then p0

possesses the Kullback-Leibler property. The following lemma gives a sufficient condition
for the latter, for the Dirichlet prior on F.

Lemma 6.3 (KL-property). Suppose that for every ϵ > 0 there exists (Fϵ , σϵ) such that
K(p0; pFϵ ,σϵ ) < ϵ, and such that the map (F, σ) 7→ P0 log(pFϵ ,σϵ/pF,σ) is continuous at
(Fϵ , σϵ) relative to the product of the weak topology on F and a given topology on σ. If
F ∼ DP(α) for a base measure α whose support contains the support of every Fϵ and
σ ∼ Πσ for a prior Πσ whose support contains every σϵ , then p0 is in the Kullback-Leibler
support of the prior on pF,σ induced by independent priors F ∼ DP(α) and σ ∼ Πσ.

Proof By Lemma 4.4 and Theorem 4.8 the Dirichlet prior gives positive mass to every
open neighborhood A of Fϵ for the weak topology. By assumption Πσ(B) > 0 for every
open neighborhood B of σϵ . By independence every product open neighborhood A × B
of (Fϵ , σϵ) possesses positive prior mass, and hence so does every open neighborhood for
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the product topology. By the assumed continuity the set {(F, σ): P0 log(pFϵ ,σϵ/pF,σ) < ϵ}

contains an open neighborhood of (Fϵ , σϵ), and hence has positive prior mass. We finish
with the decomposition argument given preceding the statement of the lemma. □

The second condition for posterior consistency in Theorem 5.15 concerns the entropy of
the support of the prior. The following theorem shows that this is often satisfied, and gives
sufficient conditions for consistency given the Kullback-Leibler property.

The theorem assumes that the parameters θ and σ of the kernel range over subsets Θ and
S of Euclidean spaces and that the kernel depends smoothly on these parameters.

Theorem 6.4 (Consistency Dirichlet mixtures). Suppose that for any given ϵ > 0 and n,
there exist convex subsets Θn ⊂ Θ ⊂ R

k and Sn ⊂ S ⊂ R
l and constants an, An, bn, Bn > 1

such that

(i)
∥∥∥ψ(·; θ, σ) − ψ(·; θ′, σ′)

∥∥∥
1
≤ an∥θ − θ

′∥ + bn∥σ − σ
′∥, for all θ, θ′ ∈ Θn and σ,σ′ ∈ Sn,

(ii) diam(Θn) ≤ An and diam(Sn) ≤ Bn,
(iii) log(anAn) ≤ C log n, for some C > 0, and log(bnBn) ≤ nϵ2/(8l),
(iv) max

(
α(Θc

n),Πσ(Sc
n)
)
≤ e−Cn, for some C > 0.

Then the posterior distributionΠn(·| X1, . . . , Xn) for pF,σ in the model X1, . . . , Xn| (F, σ) iid
∼ pF,σ,

for (F, σ) ∼ DP(α) × Πσ, is strongly consistent relative to the L1-norm at every p0 in the
Kullback-Leibler support of the prior of pF,σ.

Proof We apply Theorem 5.15 with, for given ϵ > 0 the set Pn defined by, for Nn ∼

ηn/ log n and small η > 0 to be determined at the end of the proof,

Pn =
{ ∞∑

j=1

w jψ(·; θ j, σ): (w j) ∈ S∞,
∑
j>Nn

w j <
ϵ

8
, θ1, . . . , θNn ∈ Θn, σ ∈ Sn

}
.

By the series representation F =
∑

j W jδθ j of the Dirichlet process, given in Theorem 4.8,
the prior density pF,σ is contained in Pn, unless the weights of the representation satisfy∑

j>Nn
W j ≥ ϵ/8, or at least one of θ1, . . . , θNn

iid
∼ ᾱ falls outside Θn, or σ < Sn. It follows that

Π(pF,σ < Pn) ≤ Pr
(∑

j>Nn

W j ≥
ϵ

8

)
+ Nnᾱ(Θc

n) + Πσ(Sc
n).

The last two terms are exponentially small by assumption (iv) and the choice of Nn. The
stick-breaking weights in the first term satisfy W j = V j

∏ j−1
l=1 (1 − Vl), for Vl

iid
∼ Be(1, |α|) and∑

j>N W j =
∏N

j=1(1−V j). It can be checked that − log(1−V j) is exponentially distributed with
parameter |α|, so that Rn:= − log

∑
j>Nn

W j possesses a gamma distribution with parameters
Nn and |α|. Therefore the first term is bounded above by

Pr
(
Rn < log

8
ϵ

)
=

∫ log(8/ϵ)

0

1
(Nn − 1)!

rNn−1|α|Nn e−|α|r dr ≤
(
log(8/ϵ)|α|

)Nn

Nn!
≤

(e log(8/ϵ)|α|
Nn

)Nn
.

The last inequality follows, since xN/N! ≤ ex, for every x > 0, including x = N. For large n
the term within brackets is (easily, because log n ≪

√
n) bounded above by 1/

√
n and hence

the right side is bounded by e−(Nn/2) log n, which is also exponentially small, by the choice of
Nn, for every η > 0.

Given any infinite probability vector w = (w1,w2, . . .), the probability vector w̃ obtained
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by setting the coordinates with j > Nn to zero and renormalizing the remaining coordinates
to sum to 1 (hence w̃ j = 0 for j > Nn and w̃ j = w j/

∑
j≤Nn

w j, otherwise) satisfies ∥w− w̃∥1 =
2
∑

j>Nn
w j. By the triangle inequality and the fact that ∥ψ(·; θ, σ)∥1 = 1, it follows that∥∥∥∥ ∞∑

j=1

w jψ(·; θ j, σ) −
∑
j≤Nn

w̃ jψ(·; θ j, σ)
∥∥∥∥

1
≤ ∥w − w̃∥1.

Therefore, the finite mixtures
∑Nn

j=1 w jψ(·; θ j, σ), with (w1, . . . ,wNn ) an arbitrary probability
vector, form an ϵ/4-net over Pn for the L1-norm. Consequently, a 3ϵ/4-net over these finite
mixtures is an ϵ-net over Pn. To construct such a net we restrict (w1, . . . ,wNn ) to an ϵ/4-net
over all probability vectors of length Nn, restrict θ1, . . . , θNn to an ϵ/(4an)-net over Θn, and
restrict σ to an ϵ/(4bn)-net over Sn. By the triangle inequality∥∥∥∥∑

j≤Nn

w jψ(·; θ j, σ) −
∑
j≤Nn

w̃′jψ(·; θ′j, σ
′)
∥∥∥∥

1
≤ ∥w − w′∥1 +max

j≤Nn

∥∥∥ψ(·; θ j, σ) − ψ(·; θ′j, σ
′)
∥∥∥

1
.

In view of (i) it follows that for every w, θ, σ there exist w′, θ′, σ′ in the restricted set, so that
the right side is smaller than 3ϵ/4. By Lemma 5.23 and (ii) the cardinality of this 3ϵ/4-net
is bounded above by (24

ϵ

)Nn
×

(12Anan

ϵ

)kNn
×

(12Bnbn

ϵ

)l
.

Together with (iii) and the definition Nn ∼ nη/ log n, this shows that log N
(
ϵ,Pn, ∥ · ∥1

)
≤

nϵ2/4, for sufficiently large n, provided η is chosen small enough. □

Example 6.5 (Location-scale family). The density x 7→ ψ(x; θ, σ) = ψ
(
(x − θ)/σ

)
/σ of the

location scale family of a smooth density ψ will typically satisfy, for some D > 0,∥∥∥ψ(·; θ, σ) − ψ(·; θ′, σ′)
∥∥∥

1
≤

D
σ ∧ σ′

[
|θ − θ′| + |σ − σ′|

]
.

For instance, this is true for the normal density. In this case we may set Θn = [−na, na] ⊂
Θ = R and Sn = [n−b, ecn] ⊂ S = (0,∞), and apply the preceding theorem with constants
an = Dnb = bn, An = 2na, and Bn = ecn. This gives log(anAn) ∼ (a+ b) log n and log(bnBn) ∼
cn, so that (iii) of the theorem is satisfied provided c is chosen small enough (depending on
ϵ). Condition (iv) of the theorem becomes

Πσ
( 1
σ
< e−cn or

1
σ
> nb

)
≤ e−Cn, α

(
z: |z| > na) < e−Cn, for some C > 0.

This is true for instance if (1/σ)1/b ∼ Γ(r, s), for some r > 1 and s > 0, and α is a multiple
of the normal distribution and a = 1/2.

6.3 Rate of contraction

In this section we specialize to Dirichlet mixtures of a Gaussian location family. For ϕ the
standard normal density, set

pF,σ(x) =
∫

1
σ
ϕ
( x − θ
σ

)
dF(θ).
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Such Gaussian mixtures can approximate any density p0. In fact, the mixture pF,σ is the
convolution of F and a Gaussian density with variance σ2 and hence pF,σ is the density of
the sum Θ + σϵ, for independent variables Θ ∼ F and ϵ ∼ N(0, 1). It is immediate that
Θ + σϵ ⇝ Θ as σ → 0, and it is not surprising that this can be extended to convergence of
pF,σ to the density of F, if this exists and is sufficiently regular.

This suggests that Dirichlet mixtures of the normal family may provide consistent poste-
rior approximation for a density of general form. It is remarkable that in combination with
an inverse gamma prior on the scale σ of the normal density, Dirichlet mixtures even give a
near optimal rate of reconstruction of any smooth density.

Here “optimality” may be understood in the sense of minimax rate of estimation. There
exist density estimators p̂n(·) = p̂n(·; X1, . . . , Xn) such that, for a random sample X1, . . . , Xn

from a density p0 on a compact interval of R that is β times continuously differentiable,

Pn
0
(
d(p̂n, p0) ≥ Cn−β/(2β+1))→ 0.

Thus the rate of estimation for the distance d is n−β/(2β+1). The distance can be taken an
Lr-distance, given by dr(p, q) =

∫
|p − q|r(x) dx, or also the Hellinger distance, and the pre-

ceding display can be valid uniformly in sets of densities p0 whose derivatives are uniformly
bounded (and bounded away from zero). It can be shown that no estimators can attain a faster
rate uniformly in these sets of densities, making n−β/(2β+1) the minimax rate.

The same rate applies to smoothness levels β that are not integer values. For general β > 0
one says that p0 is smooth of order β if p0 is β times continuously differentiable, for β the
largest integer strictly smaller than β, with bth derivative satisfying, for some c > 0,

|p(b)
0 (x) − p(b)

0 (y)| ≤ c|x − y|β−β, for every x, y.

Furthermore, the density need not be limited to a compact interval, but it should have small
tails, as otherwise the rate of estimation will be determined by the difficulty of estimating
the tails, rather than estimating the bulk of the density.

The minimax rate of estimation is faster if β is bigger, and approaches n−1/2 if β → ∞,
which shows that estimation can be more accurate if p0 is known to be smoother. The rate is
attained for instance by kernel estimators, or truncated series estimators, such as those based
on a wavelet expansion for the underlying density. These estimators can also be tuned in such
a way that a single estimator p̂n attains the rate n−β/(2β+1) whenever p0 is β-smooth, whatever
the value of β > 0. One says that such estimators adapt to the underlying smoothness.

The following theorem shows that the posterior distribution arising from Dirichlet mix-
tures of normal densities also adapts to the smoothness level, and attains the optimal rate up
to a logarithmic factor. It assumes that p0:R→ [0,∞) is smooth of order β in the sense that
it is β times continuously differentiable with derivatives satisfying,

P0

( |p(k)
0 |

p0

)2β/k

< ∞, k = 1, . . . , β, (6.8)∣∣∣p(β)
0 (x + h) − p

(β)
0 (x)

∣∣∣ ≤ |h|β−βeb0h2
L(x), (6.9)

for some b0 > 0 and a function L:R→ R such that P0(L/p0)2 < ∞.

Theorem 6.6 (Contraction Dirichlet mixture). Suppose that p0 is β-smooth in the sense of
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(6.9) and satisfies p0(x) ≤ ae−b0 |x|d0 for some constants a0, b0, d0 > 0. Then the posterior
distribution of pF,σ, for the prior induced by choosing F ∼ DP(α) independently of 1/σ ∼
Γ(r, s), for r, s > 0 and a base measure α with a positive continuous density satisfying
α
(
z: |z| > M

)
≤ a1e−b1 Md1 for some constants a1, b1, d1 > 0, has contraction rate relative to

the Hellinger distance at least n−β/(2β+1)(log n)(2β+β/d0+1)/(2β+1).

The theorem can be proved by verifying the conditions of Theorem 5.19. Here the set
Pn is defined similarly to the set used in Theorem 6.4, and its entropy is computed in a
similar manner. Computing a lower bound on the prior mass, as in (5.7), is much more
involved. This is achieved by first approximating the density p0 by a density of the form
pFn,σn , for a finitely-discrete mixture distribution Fn and a suitable “bandwidth” σn, and
next analyzing probabilities concerning Fn under its prior using the characterization of the
finite-dimensional distributions of the Dirichlet process, as given in Definition 4.6.

The proof takes many steps, and occupies the next section.

6.3.1 *Proof of Theorem 6.6

Let ϵn be the contraction rate as claimed, and define Nn = Cnϵ2
n/ log n and τn = (Cnϵ2

n )−1,
for a constant C to be chosen. We verify the conditions of Theorem 5.19 with

Pn =
{
pF,σ: F =

∞∑
j=1

w jδz j ,
∑
j>Nn

w j < ϵ
2
n , max

1≤≤Nn

|z j| ≤ (Cnϵ2
n )1/d1 , 1 ≤

σ

τn
≤ (1 + ϵ2

n )Cn
}
.

This set has the same form as in the proof of Theorem 6.4. By the arguments given there,
based on the series representation of the Dirichlet process given in Theorem 4.8,

Π(Pc
n) ≤ Π

(∑
j>Nn

W j ≥ ϵ
2
n

)
+ Π

(
max

1≤ j≤Nn

|θ j| > (Cnϵ2
n )1/d1

)
+ Π

(σ
τn

< 1
)
+ Π

(σ
τn

> (1 + ϵ2
n )Cn

)
≲

(e|α|(log ϵ−2
n

Nn

)Nn
+ Nne−b1Cnϵ2

n +
e−s/τn

τr
n
+

(1 + ϵ2
n )−rCn

τr
n

.

All terms can be seen to be bounded be e−b2Cnϵ2
n , for a constant b2, so that (5.8) is satisfied,

for an arbitrary c2 if C is chosen large enough.
To bound the entropy of Pn we consider the set P′n of all elements of Pn such that also:

• w j = 0, for j > Nn,
• (w1, . . . ,wNn ) belongs to a maximal ϵ2

n -net over the set SNn of all probability vectors of
length Nn,

• every z j belongs to the grid 0,±τnϵ
2
n ,±2τnϵ

2
n , . . . intersecting {z: |z| ≤ (Cnϵ2

n )1/d1}.
• σ belongs to the grid τn, τn(1 + ϵ2

n ), τn(1 + ϵ2
n )2, . . . , τn(1 + ϵ2

n )Cn−1.

By Lemma 5.23 the cardinality of this set satisfies

log #P′n ≤ log
[( 3
ϵ2

n

)Nn(3(Cnϵ2
n )1/d1

τnϵ2
n

)Nn
Cn

]
≤ C2nϵ2

n ,

for a constant C2 that depends on C and d1 only. If we can show that P′n is an C3ϵn-net
over Pn for the Hellinger distance, for some C3, then It follows that (5.6) is satisfied for a
multiple of ϵn. Now a given pF,σ in Pn can be identified with the triple (w, z, σ) of weights w
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and locations z of F and scale σ, and can be linked with the density pF′,σ′ ∈ P
′
n given by the

triple (w′, z′, σ′) defined by:

• w′ equal to a closest point in the net over SNn to the renormalized restriction of w to SNn ;
so that ∥w − w′∥1 ≤ 3ϵ2

n .
• z′j equal to the projection of z j on the grid; so that ∥z − z′∥∞ < τnϵ

2
n .

• σ′ = τn(1+ϵ2
n )k if τn(1+ϵ2

n )k ≤ σ ≤ τn(1+ϵ2
n )k+1; so that 0 ≤ σ/σ′−1 = (σ−σ′)/σ′ ≤ ϵ2

n .

By Lemmas 6.10 and 6.9, we have h(pF,σ, pF,σ′) ≤ ϵ2
n . By the triangle inequality and again

the second lemma ∥pF,σ′ − pF′,σ′∥1 ≤ ∥w−w′∥1+2∥z− z′∥∞/σ′ ≤ 3ϵ2
n +2ϵ2

n , since σ′ ≥ τn. By
Lemma 2.28 and another application of the triangle inequality, we see that h(pF,σ, pF′,σ′) ≤
4ϵn.

It remains to verify (5.7). Fix small ϵ, τ > 0 and set Aτ = A(log τ−1)1/d0 , for a sufficiently
large constant A. By Lemma 6.7 there exists a discrete distribution Fϵ,τ with no more than
N ≍ τ−1Aτ(log ϵ−1) support points contained in the interval [−Aτ, Aτ] such that h(p0, pF,τ) ≲
ϵ+τβ. The support points can be chosen ϵτ-separated without loss of generality, so that there
exist intervals U1, . . . ,UN of lengths ϵ2τ, each containing one support point. We combine this
with Lemmas 6.11 and 6.10 to see that{

(F, σ):
N∑

j=1

|F(U j) − Fϵ,τ(U j)| < ϵ2, 1 ≤
σ

τ
≤ 1 + ϵ

}
⊂

{
(F, σ): h(pF,σ, pF,τ) ≲ ϵ + τβ

}
.

We can extend U1, . . . ,UN to a partition of [−Aτ, Aτ] in intervals of length at most τ and next
into a partition U1, . . . ,UK of R such that the total number K of sets is bounded above by a
multiple of N and such that τϵ2 ≤ α(U j) ≤ 1 for every j. Set w j = 0 for N < j ≤ K. By
Lemma 6.12

Π
( K∑

i=1

|F(U j) − w j| ≤ 2ϵ2, min
1≤ j≤K

F(U j) >
ϵ4

2

)
≥ Ce−cK log ϵ−1

.

Combining the preceding with the inverse gamma distribution of 1/σ we see that

Π
(
(F, σ): h(pF,σ, pF,τ) ≲ ϵ + τβ, min

1≤ j≤K
F(U j) >

ϵ4

2
, τ ≤ σ ≤ 2τ

)
≥ Ce−c3N log ϵ−1

e−s/ττ−rϵ.

Next we relate the Hellinger distance to the Kulback-Leibler divergence and variation, with
the help of Lemma 6.13. Every x ∈ [−Aτ, Aτ] is contained in a set U j of diameter at most τ,
say U j(x). Hence

pF,σ(x) ≥


∫

Ui(x)
e−(x−z)2/(2σ2)

σ
√

2π
dF(z) ≳ e−τ

2/(2σ2

σ
√

2π
F
(
Ui(x)

)
, if |x| ≤ Aτ,∫ A

−A
e−(x2+z2)2/σ2

σ
√

2π
dF(z) ≥ e−2x2/σ2

σ
√

2π
F[−Aτ, Aτ], if |x| > Aτ.

For F andσ contained in the event in the second last display, it follows that log(p0/pF,σ)(x) ≲
log(τ/ϵ4)1{|x| ≤ Aτ} + x2/τ2

1{|x| > Aτ}, and hence, for sufficiently small C4 > 0,

P0

(
log

p0

pF,σ

)2
1

{ p0

pF,σ
<

c4τ

ϵ4

}
≤ 2

∫ ∞

Aτ

x4

τ4 p0(x) dx ≤ τk,

by the assumed tail condition on p0, for any k, if the constant A in Aτ is chosen large
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enough. Lemma 6.13 now gives that both K2(p0; pF,σ) is bounded above by a multiple of
h2(p0; pF,σ)(log(τ/ϵ4))2 + τk ≲ (ϵ + τβ)2(log(τ/ϵ4))2, provided ϵ4/(c4τ) < 0.4.

Taking everything together we see that that the left side of (5.7) is bounded below by e−nϵ2
n

for ϵn such that there exist ϵ and τ such that, with N ≍ τ−1Aτ(log 1/τ)1/d0 ,

c5(ϵ + τβ)(log(τ/ϵ4)) ≤ ϵn, ϵ4 ≤ 0.4c4τ, e−c3N log ϵ−1
e−s/ττ−rϵ ≥ e−nϵ2

n .

We can choose ϵ ≪ τ to satisfy the second requirement. In the third requirement the terms
e−s/τ and τ−r are much bigger than the first exponential, and in view of the bound on N
the inequality can be reduced to nϵ2

n ≥ c6τ
−1(log n)2+1/d0 , if τ and ϵ are chosen so that both

log τ−1 and log ϵ−1 are equivalent to a constant times log n. We finish by choosing τ2β+1 =

n−1(log n)1/d0 and next ϵ a big multiple of τβ(log n). For τ as given, the latter ϵ has the same
order as ϵn in the statement of the theorem.

Supporting lemmas
Lemma 6.7. For every sufficiently small ϵ, σ > 0 there exists a discrete probability measure
F with no more that A(σ−1(logσ−1)1/d0 (log ϵ−1) support points contained in the interval[
−A(logσ−1)1/d0 , A(logσ−1)1/d0

]
such that h(p0, pF,σ) ≤ ϵ+Dσβ. Here A and D are constants

that depend on p0 only.

Proof Let k = β. The first step is to show that there exist constants c0 = 1, c1 = 0, c2, . . . , ck

and C0 such that ∣∣∣∣p0(x) − ϕσ ∗
k∑

l=0

σlcl p
(l)
0 (x)

∣∣∣∣ ≤ C0σ
βL(x). (6.10)

Since p0 satisfies (6.9), a Taylor expansion gives

p0(x) − p0(x − y) =
k∑

l=1

(−y)l

l!
p(l)

0 (x) + R(x, y), |R(x, y)| ≤ |y|βL(x)ecy2
.

Multiplying this equation by ϕσ(y) and integrating with respect to y, we find, with ml the lth
moment of the standard normal distribution,

p0(x) − ψσ ∗ p0(x) =
k∑

l=1

(−σ)lml

l!
p(l)

0 (x) + R̄(x), |R(x)| ≤ C1L(x).

For k = 0 the sum on the right is absent, and for k = 1 it also vanishes, as m1 = 0, and the
proof is complete. We proceed to the case k > 1 by induction on k. Suppose that (6.10) is
valid with α instead of β for every function p0 that satisfies (6.9) with α instead of β (but the
same L and c), for every α < β with the same fractional part as β. This class of functions
includes the functions p(l)

0 with 2 ≤ l ≤ k, with α = β − l. By the induction hypothesis these
function possess an approximation of the form ϕσ ∗

∑k−l
j=0 σ

jcl, j p
(l+ j)
0 . We substitute these

approximations in the preceding display and rearrange the resulting double sum by powers
of σ to arrive at the desired approximation (6.10).

Since
∫

p0(x) dx = 1 and
∫

p(l)
0 (x) dx = 0, for l > 0, the function pσ =

∑k
l=0 σ

lcl p
(l)
0

integrates to one. However, it may assume negative values. To remedy this we consider its
absolute value |pσ|. On the set where pσ < 0, where this differs from pσ, we have that
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|pσ| − pσ = −2pσ ≤ 2(p0 − pσ). On the set Eσ = ∩2≤l≤k{σ
l|p(l)| < ηp0}, we have that

|pσ − p0| ≲ ηp0, and hence pσ ≥ 0, for sufficiently small η. It follows that∫
(|pσ| − pσ) dλ ≤ 2

∫
Ec
σ

(p0 − pσ) dλ ≤
∑

2≤l≤k

|cl|σ
l
∫

Ec
σ

|p(l)
0 | dλ

≤
∑

2≤l≤k

|cl|σ
lP0

( |p(l)
0 |

p0

)2β/l
dλ

(σl

η

)2β/l−1
≲ σ2β.

Next

h2(p0, ϕσ ∗ |pσ|) ≤
∫

(p0 − ϕσ ∗ |pσ|)2

p0 + ϕσ ∗ |pσ|
dλ

≤ 2
∫

(p0 − ϕσ ∗ pσ)2

p0
dλ + 2

∫
(ϕσ ∗ (|pσ| − pσ))2

ϕσ ∗ |pσ|
dλ.

The first term on the right is bounded above by 2C0P0(L/p0)2σ2β, by the construction of pσ.
In the second term we can bound ϕσ ∗ (|pσ| − pσ) by ϕσ ∗ |pσ| and hence the whole term by∫
ϕσ ∗ (|pσ| − pσ) dλ =

∫
|pσ| dλ − 1, which is of the order σ2β.

Next we restrict and renormalize pσ to the given interval, and consider

fσ(x) =
|pσ|(x)1{|x| ≤ Aσ}∫
|pσ|(x)1{|x| ≤ Aσ} dx

, Aσ = A(logσ−1)1/d0 .

Since p0(x) ≲ e−b0 |x|d0 , we have that P0(x: |x| ≥ Aσ) ≲ σk if b0Ad0 > k. Thus P0(x: |x| ≥ Aσ)
is smaller than any power of k if A is small enough. Using the fact that P0(|p(l)

0 /p0|
r) <

∞ is assumed finite for some r > 1, it can be seen that the integrals of the derivatives∫
x:|x|>Aσ

|p(l)
0 |(x) dx similarly can be made smaller than any power of σ, by choosing a suf-

ficiently large A (use Hölder’s inequality). Then
∫

x:|x|>Aσ
|p(l)
σ |(x) dx is equally small, by its

definition and the triangle inequality, and hence

h2(ϕσ ∗ |pσ|, ϕσ ∗ fσ) =
∫
|pσ|(x) dx + 1 − 2

√∫ Aσ

−Aσ
|pσ|(x) dx

The first term on the right is 1 + O(σ2β), and the same is true for the term under the root. It
follows that the expression is bounded above by a multiple of σ2β.

The distribution Fσ corresponding to fσ satisfies the requirements for F, except that it is
not discrete. We can replace it by a discrete distribution in view Lemma 6.8, at the cost of
increasing the distance with ϵ. □

Lemma 6.8 (Finite approximation). For every probability measure F on [−A, A], σ ∈ (0, A)
and sufficiently small ϵ > 0, there exists a discrete probability measure F∗ on [−A, A] with
no more than 16eAσ−1 log ϵ−1 support points such that h(pF,σ, pF∗,σ) ≤ ϵ. Without loss of
generality the support points can be chosen in the set 0,±σϵ,±2σϵ, . . ..

Proof Because the Hellinger distance is invariant under a change of scale and pF,σ(x) =
detσ−1 pFσ,1(σ−1x), for Fσ the distribution of Z/σ if Z ∼ F, the distance in the lemma is
equal to h(pFσ,1, pF∗σ,1). The measures Fσ concentrate on the interval [−A/σ, A/σ]. Thus
the problem can be reduced to mixtures of the standard normal kernel relative to mixing
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distributions on the latter interval. This interval can be partitioned into fewer than 2a/σ
intervals of length at most 1. If F =

∑
i F(Ii)Fi, where each Fi is a probability measure on

a partitioning interval Ii, then pF,1 =
∑

i F(Ii)pFi,1. If F∗i is a discrete distribution on Ii with
at most D log(1/ϵ) support points such that h(pF∗i ,1, pF,1) ≤ ϵ, then F∗ =

∑
i F(Ii)F∗i will be

the appropriate approximation to F, by convexity of the square of the Hellinger distance.
Because the distance is invariant under shifting, we can shift the intervals Ii to the origin,
and hence it is no loss of generality to construct the approximation only for Ii = [0, 1]. Thus
for the remainder of the proof assume that σ = 1 and that F is concentrated on the unit
interval.

A Taylor expansion of the exponential function gives

ϕ(x − z) =
1
√

2π

[ k−1∑
l=0

[
−(x − z)2/2

]l

l!
+ R(x − z)

]
,

∣∣∣R(x)
∣∣∣ ≤ (x2/2)k

k!
.

Let F∗ be a probability measure on [0, 1] such that
∫

zl dF∗(z) =
∫

zl dF(z), for l = 1, . . . , 2k−
2. Then integrating the last display with respect to F∗−F, which gives (pF∗,1−pF,1)(x), leaves
only the integral over R. For |x| ≤ T and |z| ≤ 1 and T ≥ 2, we have |x − T | ≤ 2T and hence
|R(x − z)| ≤ (2eT 2/k)k, in view of the inequality k! ≥ kke−k. If |x| > T ≥ 2 and |z| ≤ 1,
then |x − z| ≥ x/2 and hence pF,1(x) ≤ e−x2/8, for any probability measure F on [0, 1]. Since∫
|x|≥T

pF,1(x) dx ≤ e−T 2/8, we have

∥pF∗,1 − pF,1∥1 ≤ 2T
(2eT 2

k

)k
+ e−T 2/8.

We choose T = 4(log ϵ−1)1/2 to reduce the second term to ϵ2. Next we choose k ≥ 4eT 2 and
such that 2T2−k ≤ ϵ2 to reduce also the first term to ϵ2. The choice k ∼ 16e log(1/ϵ) suffices
for both. a suitable multiple of (log ϵ−1)1/2 to reduce the right side to ϵ2. The Hellinger
distance is bounded by the root of the L1-distance and hence is bounded by

√
2ϵ.

By the geometric form of Jensen’s inequality, the vector
(∫

z dF(z), . . . ,
∫

z2k−1 dF(z)
)
,

is contained in the convex hull of the curve
{
(z, z2, . . . , z2k−1): 0 ≤ z ≤ 1

}
⊂ R2k−1. By

Carathéodory’s theorem any point of the convex hull can be written as the convex combina-
tion of (2k − 1) + 1 = 2k points from the curve. This convex combination corresponds to a
probability distribution F∗ on [01, ] with at most 2k support points that matches the moments
of F up to order 2k − 1.

The final assertion of the lemma follows from the fact that moving the support points of
F∗ to a closest point in the given lattice increases the Hellinger distance by at most a multiple
of ϵ, by Lemmas 6.10 and 6.9. □

Lemma 6.9. Let ϕµ,σ the density of the normal distribution with parameters (µ, σ2). Then
h(ϕµ,σ, ϕν,τ) ≤ |µ − ν|/(σ + τ) + 2|σ − τ|/(σ + τ), for any µ, ν ∈ R and any σ, τ > 0.

Proof The square Hellinger distance between normal densities with standard deviations σ
and τ can be calculated explicitly as

h2(ϕµ,σ, ϕν,τ) = 2−2
∫ √

ϕµ,σ(x)
√
ϕν,τ(x) dx = 2−2

√
1 − (σ − τ)2/(σ2 + τ2)e−|µ−ν|

2/(4σ2+4τ2).

Next we use the inequalities |1 −
√

1 − s| ≤ s, for s ∈ [0, 1], and 1 − e−t ≤ t, for t ≥ 0. □



136 Dirichlet Process Mixtures

Lemma 6.10. For any probability distribution F on R we have h(pF,σ, pF,τ) ≤ h(ϕσ, ϕτ).

Proof The density pF,σ is the convolution ϕσ ∗ F, and convolution decreases the Hellinger
distance h(pF,σ, pF,τ) ≤ h(ϕσ, ϕτ). Indeed, by Jensen’s inequality applied to the convex func-
tion (u, v) 7→ (

√
u−
√

v)2 and the expectations u = Eϕσ(x−Z) = pF,σ(x) and v = Eϕτ(x−Z) =
pF,τ(x), for Z ∼ F, we see that, for every x,

|
√

pF,σ(x) −
√

pF,τ(x)|2 ≤ E|
√
ϕσ(x − Z) −

√
ϕτ(x − Z)|2.

We integrate this with respect to x, and apply Fubini’s theorem to the right side, to see that
the integral is bounded above by

∫
|
√
ϕσ(x) −

√
ϕτ(x)|2 dx. □

Lemma 6.11. If U1, . . . ,UN are arbitrary disjoint intervals of length bounded by ϵ2σ, then∑N
j=1 |F(U j) −G(U j)| < ϵ2 implies that h(pF,σ, pG,σ) ≲ ϵ, for any probability measures F on
R, and G on ∪N

j=1U j, and σ > 0.

Proof For arbitrary points z1, . . . , zN contained in the intervals U1, . . . ,UN and a point z0 ∈

U0:= R\∪N
j=1U j, let F′ =

∑N
j=1 F(U j)δz j+F(V)δz. Then we can decompose pF,σ(x)−pF′,σ(x)

as
∑N

j=0

∫
U j

(
ϕσ(x − z) − ϕσ(x − z j)

)
dF(z) and hence by the triangle inequality and Fubini’s

theorem, ∥∥∥pF,σ − pF′,σ

∥∥∥
1
≤ 2F(U0) +

N∑
j=1

diam(U j)
σ

F(U j) ≲ 2F(U0) + ϵ2,

since the distance between two normal densities with the same scale σ is is bounded by the
difference between their locations divided by σ and the set U j have length bounded by ϵ2σ

by assumption.
Define G′ analogously and use the triangle inequality to see that ∥pF,σ− pG,σ∥1 is bounded

above by 2F(U0) + 2G(U0) + 2ϵ2 + ∥pF′,σ − pG′,σ∥1. Since pF′,σ(x) − pG′,σ(x) =
∑N

j=0 ϕσ(x −
z j)

(
F(U j) −G(U j)

)
, the last term is bounded above by

∑N
j=0

∣∣∣F(U j) −G(U j)
∣∣∣. It follows that

∥pF,σ − pG,σ∥1 is bounded above by 3F(U0) + 3G(U0) + 3ϵ2. Because G is concentrated on
∪ jU j by assumption, we have that G(U0) = 0, while F(U0) = F(U0)−G(U0) =

∑N
j=1

(
G(U j)−

F(U j)
)
≤ ϵ2. Conclude that ∥pF,σ − pG,σ∥1 is bounded above by 6ϵ2. The lemma follows as

h2 ≤ ∥ · ∥1. □

Lemma 6.12 (Prior mass Dirichlet). If (X1, . . . , XN) ∼ Dir(N;α1, . . . , αN), where Aϵb ≤

α j ≤ M, MNϵ ≤ 1, and
∑N

j=1 α j = m for some constants A, ϵ, b, M and M ≥ m, then there
exist positive constants c and C depending only on A, M, m and b such that for any point
(w1, . . . ,wN) in the N-simplex SN ,

Pr
( N∑

i=1

|Xi − wi| ≤ 2ϵ, min
1≤i≤N

Xi >
ϵ2

2

)
≥ Ce−cN log− ϵ .

Proof First assume that M = 1, so that ϵ < N−1. There is at least one index i with wi ≥ N−1;
by relabeling, we can assume that i = N, and then

∑N−1
i=1 wi = 1 − wN ≤ (N − 1)/N. If

(y1, . . . , yN) is contained in the N-simplex and |yi − wi| ≤ ϵ
2 for i = 1, . . . ,N − 1, then

N−1∑
i=1

yi ≤

N−1∑
i=1

wi + (N − 1)ϵ2 ≤ (N − 1)(N−1 + ϵ2) ≤ 1 − ϵ2 < 1.
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Furthermore,
∑N

i=1 |yi − wi| ≤ 2
∑N−1

i=1 |yi − wi| ≤ 2ϵ2(N − 1) ≤ 2ϵ and yN > ϵ2 > ϵ2/2 in view
of the preceding display. Therefore the probability on the left side of the lemma is bounded
below by

Pr
(

max
1≤i≤N−1

|Xi − wi| ≤ ϵ
2
)
≥

Γ(m)∏N
i=1 Γ(αi)

N−1∏
i=1

∫ min((wi+ϵ
2),1)

max((wi−ϵ2),0)
1 dyi,

because
∏N

i=1 yαi−1
i ≥ 1 for every (y1, . . . , yN) ∈ SN , as αi − 1 ≤ 0 by assumption. Since each

interval of integration contains an interval of at least length ϵ2, and αΓ(α) = Γ(α + 1) ≤ 1
for 0 < α ≤ 1, the last display is bounded from below by

Γ(m)ϵ2(N−1)
N∏

i=1

αi ≥ Γ(m)ϵ2(N−1)(Aϵb)N ≥ Ce−cN log− ϵ .

This concludes the proof in the case that M = 1.
We may assume without loss of generality that a “general” M is an integer, and represent

the Dirichlet vector as the aggregation
∑M

m=1(X1,m, . . . , XN,M) of a Dirichlet vector (X j,m: j =
1, . . . ,N,m = 1, . . . ,M) with parameters (α j,m: j = 1, . . . ,N,m = 1, . . . ,M), where α j,m =

α j/M. The event on the left side of the lemma contains the event{ N∑
j=1

M∑
m=1

∣∣∣X j,m −
w j

M

∣∣∣ ≤ 2ϵ, min
1≤ j≤N−1,1≤m≤M

X j,m > ϵ
2/2

}
.

The result now follows from the special case. □

6.4 Complements
Lemma 6.13. For every pair of probability densities p and q,

K(p; q) ≲ 2h2(p, q)
(
1 + log

∥∥∥∥ p
q

∥∥∥∥
∞

)
,

V(p; q) ≲ h2(p, q)
(
1 + log

∥∥∥∥ p
q

∥∥∥∥
∞

)2
.

Furthermore, for every pair of probability densities p and q and every r ∈ (0, 0.4),

K2(p; q) ≤ h2(p, q)
(
4 + 2 log

1
r

)2
+ 8P

[(
log

p
q

)2
1

{ p
q
>

1
r

}]
.

Exercises
6.1 Simulate vectors (θ1, θ2, . . . , θn) from the posterior distribution of the Dirichlet process mixture

using the Gibbs sampler. For simplicity take the kernel x 7→ ψ(x, θ) to be the density of the
N(θ, 1)-distribution, the base measure α equal to N(0, 1), and use data X1, . . . , Xn

iid
∼ N(0, 1),

with n = 20. Start by analytically calculating the (unnormalized) weights qi,i and the measures
Gb,i (which will be normal).

6.2 For ϕ the standard normal density, let pF(x) =
∫
ϕ(x − θ) dF(θ). We take the domain of F to be

the set of all probability measures on the interval [−1, 1].

(a) Show that the map F 7→ pF(x) is continuous relative to the weak topology, for every x.
(b) Show that pF(x) ≤ 1 and pF(x) ≥ e−x2

/(e
√

2π), for every x.
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(c) Show that F 7→ PF0 log(pF0/pF) is continuous at any probability measure F0 on [−1, 1].
(d) Show that PF0 possesses the Kullback-Leibler property relative to the prior induced on pF

by F ∼ DP(α), for α a distribution with positive density on [−1, 1].
(e) Show that the posterior distribution of pF relative to this prior based on a random sample of

size n from PF is L1-consistent at pF0 . [Hint: apply Theorem 5.15 with the entropy estimated
as in Example 6.5.]



7

Gaussian Process Priors

Gaussian processes are widely used as prior distributions for functional parameters. They
are stochastic processes whose finite-dimensional distributions are multivariate Gaussian
vectors, and can take many different forms. In this chapter we define Gaussian processes,
study basic properties and examples, and derive rates of posterior contraction.

7.1 Stochastic processes

We already encountered stochastic processes when discussing random measures. The gen-
eral definition, for an arbitrary set T , is as follows.

Definition 7.1 (Stochastic process). A stochastic process indexed by T is a collection W =
(Wt: t ∈ T ) of random variables Wt defined on a common probability space (Ω,U ,Pr), i.e. a
collection of measurable maps Wt:Ω→ R.

If T is a subset ofR, then we may think of the index t as “time”. Many stochastic processes
model the evolution of a process in time, but in Bayesian nonparametric applications T often
has a different meaning.

Instead of real-valued random variables one may also consider stochastic processes with
values in a more general state space, but the space R will suffice for our purposes.

Because the variables Wt are defined on the same probability space, the map t 7→ Wt(ω) is
well defined, for every ω ∈ Ω. These maps are called the trajectories, or sample paths of the
process. They are functions from T to R, i.e. elements of RT . Correspondingly, a stochastic
process W can be considered a random function, and its induced law is a prior probability
measure on functions. This “law” is always defined on the product σ-field on RT . In fact
W:Ω → RT is a stochastic process if and only if it is measurable relative to this product
σ-field (see Proposition 7.47).

Often we prefer a prior process W that has “nice” sample paths, for instance continu-
ous, integrable, or differentiable. The process W can then be viewed as a measurable map
W: (Ω,U ,Pr) → (Θ,B) in a subset Θ ⊂ RT , equipped with some natural σ-field B. For
instance, if T = [0, 1] and the sample paths of W are continuous, then we may consider W
as a map in C[0, 1].

We have insisted on defining a stochastic process as a map on an underlying probability
space, but shall mostly be interested in its “law”, and not in the exact construction. The law
of the process on RT is determined by the collection of all distributions of vectors of the
the form (Wt1 , . . . ,Wtn ), for n ∈ N and t1, . . . , tn ∈ T . These vectors are called the finite-
dimensional marginals of the process W, and their distribution are its finite-dimensional

139
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distributions (or fdds). Kolmogorov’s extension theorem, Proposition 4.18, allows to start
with a consistent set of finite-dimensional distributions, and then yields a construction of
a stochastic process with these fdds: a probability space (Ω,U ,Pr) and a measurable map
W:Ω→ RT whose finite-dimensional marginals possess the given finite-dimensional distri-
butions.

A next step could be to verify that there also exists a version of this map W whose sam-
ple paths have a desired property, such as continuity. A process W̃ is called a version or
modification of a process W if it is defined on the same probability space and W̃t = Wt,
almost surely, for every t. Clearly this implies that W̃ and W possess the same marginal dis-
tributions. However, because T is typically uncountable, it may well be that a process and
a version satisfy Pr(W̃t = Wt,∀t ∈ T ) < 1, so that their sample paths do not agree. This
makes sample path properties a subtle matter, and it often requires work to construct a nice
version of a stochastic process, such as a continuous one, or even prove that such a version
exists. (Actually even the definition of the preceding probability requires care, as the event
in question may not be measurable!)

7.2 Gaussian processes

Definition 7.2. A stochastic process is called Gaussian if all its finite-dimensional marginals
are multivariate-normally distributed.

A multivariate-normal distribution is determined by a mean vector and a covariance ma-
trix. Correspondingly, the set of finite-dimensional distributions of a Gaussian process W is
determined by the two functions m: T → R and r: T × T → R given by

m(t) = EWt,

r(s, t) = cov(Ws,Wt).

The function m is called the mean function and the function r the covariance function of the
process. Any two Gaussian processes with the same mean function and covariance function
are versions of each other. A process with mean function equal to zero is called centered.

The mean function of a Gaussian process can be an arbitrary function, but the covariance
function must be symmetric and positive-definite. The latter means that, for all a1, . . . , an ∈ R

and t1, . . . , tn ∈ T ,
n∑

i=1

n∑
i=1

aia jr(ti, t j) ≥ 0.

In fact, this expression can be seen to be var
∑

i aiWti . That every symmetric and positive-
definite function is the covariance function of some Gaussian process can be shown with the
help of Kolmogorov’s extension theorem, Proposition 4.18.

The question whether the sample paths of a stochastic process have a certain regularity is
not well posed, but we can give conditions under which a version with a certain regularity
exists. For a Gaussian process these conditions will only depend on the mean and covariance
function. Because a process minus its mean function is centered, it is not a great loss of
generality to consider only centered processes. For the case that the index set T is a subset
of Euclidean space, there are the following basic results, which essentially show that the
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regularity of the covariance function carries over to the sample paths (almost) of a suitable
version.

Proposition 7.3 (Modulus). If (Wt: t ∈ T ) is a centered Gaussian process indexed by a
compact set T ⊂ Rd with E|Ws −Wt|

2 ≤ ∥s− t∥2α, for all s, t ∈ T and some α ∈ (0, 1], then W
possesses a version with continuous sample paths such that |Ws−Wt| = O

(
∥s− t∥α log(1/∥s−

t∥)
)
, uniformly in (s, t) with ∥s − t∥ → 0, almost surely.

Since log(1/∥s− t∥)→ ∞ as ∥s− t∥ → 0, the preceding proposition shows that the sample
paths of W are nearly Lipschitz continuous of order α; they are Lipschitz continuous of any
order a < α.

For a multi-index j = ( j1, . . . , jd) of nonnegative integers , let D j denote the mixed partial
derivative operator ∂| j|/∂t j1

1 · · · ∂t jd
d . Furthermore, let Di

sD
j
t r(s, t) denote the function obtained

by differentiating the covariance function i times with respect to s and j times with respect
to t.

Proposition 7.4 (Differentiability). If the partial derivatives (s, t) 7→ D j
sD

j
t r(s, t) of order j

of the covariance function r of the centered Gaussian process (Wt: t ∈ T ), for T an inter-
val in Rd, exist and are Lipschitz continuous of order α > 0, then W possesses a version
whose sample paths are partially differentiable up to order j with jth order derivative that
is Lipschitz of order a, for any a < α.

For proofs, see e.g. Appendix I of Ghoshal and van der Vaart (2017). For one-dimensional
processes a slightly weaker result than Proposition 7.3 can be obtained from Kolmogorov’s
classical criterion (see Proposition 7.48).

7.3 Gaussian regression

Although Gaussian process priors are commonly used for many statistical problems, they
are particularly attractive in the regression problem. This is a rare case of a nonparametric
problem with a conjugate family of priors.

Suppose we have observations Y = (Y1, . . . ,Yn)T satisfying the regression relation

Yi = θ(ti) + ϵi, i = 1, 2 . . . , n,

where the ti are fixed, known elements of a set T , the ϵi are independent standard normal
variables, and the unknown regression function θ: T → R is the object of interest. We wish
to make Bayesian inference about the function θ using a Gaussian process prior with mean
function m and covariance function r.

Although a prior draw gives a full function
(
θ(t): t ∈ T

)
, the likelihood of the data Y

actually depends only on the vector θ⃗ =
(
θ(t1), . . . , θ(tn)

)T . This implies that in the Bayesian
setup the process

(
θ(t): t ∈ T

)
is conditionally independent of Y given θ⃗. Consequently, the

posterior distribution of θ can be decomposed as

Π
(
θ ∈ B|Y) =

∫
Π
(
θ ∈ B| θ⃗)Π(dθ⃗|Y).

The integrating measure Π(θ⃗ ∈ ·|Y) of the integral is the posterior distribution of θ⃗. The
integrand concerns the conditional law of θ given θ⃗, i.e. given its values at the design points



142 Gaussian Process Priors

t1, . . . , tn. This is free of the observations, and hence completely determined by the prior.
Properties of the multivariate-normal distribution (see Lemma 7.56) show that it is the law
of a Gaussian process, with mean equal to a linear function of θ⃗ and covariance function
independent of θ⃗. (The corresponding process is called the kriging of θ. Its values at the
design points t1, . . . , tn are degenerate at the values θ(ti): the sample paths of the kriging
process interpolate the observed values.) Thus it has a representation

θ| θ⃗ ∼ b0 +

n∑
i=1

θ(ti)bi +W,

for deterministic functions t 7→ bi(t) (for i = 0, 1, . . . , n) and a centered Gaussian process
W = (Wt: t ∈ T ) that is independent of (θ⃗,Y). By the conjugacy of the normal distribution as
a prior for the multivariate-normal distribution (see Example 2.4), the posterior distribution
Π(θ⃗ ∈ ·|Y) is multivariate-normal. It can be represented as

θ⃗|Y ∼ (I + R−1
n )−1(Y − µn) + µn + V,

for µn =
(
m(ti)

)
and Rn =

(
r(ti, t j)

)
the prior mean vector and covariance matrix of θ⃗, and

V a mean-zero, multivariate-normally distributed vector with covariance matrix (I + R−1
n )−1.

Combining the preceding two displays, we conclude that under the posterior distribution the
process θ is distributed as

θ|Y ∼ b0 +
(
(I + R−1

n )−1(Y − µn) + µn + V
)T

b +W,

for independent Gaussian variables V and W, where b = (b1, . . . , bn)T . This is the sum of
two independent Gaussian processes, and hence is itself a Gaussian process.

Thus a Gaussian process is a conjugate prior in the nonparametric regression model. The
updating formula can be cast in updating formulas for the mean function and covariance
function, which can be obtained along the preceding lines.

Figure 7.3 shows a simulation example, with T = [0, 1] and integrated Brownian as a
prior: this has mean function m = 0 and covariance function r(s, t) = s2t/2 − t3/16, for
s < t. We simulated n = 200 observations, with ti = i/n. The black curve depicts the
true regression function used in the simulations, the black dots are the simulated noisy data
points. The left panel shows 10 draws from the prior; the right panel 10 draws from the
corresponding posterior.

In more realistic situations the errors ϵi have an unknown variance σ2, which is then
endowed with a prior distribution as well. The resulting posterior distribution for θ is then not
Gaussian any more. However, one might use an MCMC method to generate (approximate)
draws from the posterior. This is particularly simple for an inverse Gamma prior of σ2,
in which case the posterior of 1/σ2 is Gamma, while the conditional of θ given (σ2,Y) is
Gaussian, in view of the preceding (see Example 2.4).

7.4 RKHS and concentration

The first chaos lin(W) of a Gaussian process W = (Wt: t ∈ T ) defined on some proba-
bility space (Ω,U ,Pr) is the closure in L2(Pr) of the collection of all linear combinations∑n

i=1 aiWti of variables Wt, for n ∈ N, t1, . . . , tn ∈ T , and a1, . . . , an ∈ R.
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Figure 7.1 Left: 10 draws from the integrated Brownian motion prior (gray), the
true regression function and the data. Right: 10 draws from the posterior (gray) and
the true regression function and the data.

Definition 7.5 (RKHS). The reproducing kernel Hilbert space (or RKHS) H associated to
the centered Gaussian process W is the set of functions

t 7→ hL(t):= E[WtL], L ∈ lin(W)

equipped with the inner product and norm given by

⟨hL1 , hL2⟩H = E[L1L2], ∥hL∥H =
√

E[L2].

To verify that the given formula indeed defines an inner product, one should first check
that the variable L ∈ lin(W) is uniquely determined by the function hL. Next one readily sees
that the map L 7→ hL defines a Hilbert space isometry between lin(W) and H, whence the
RKHS inherits its Hilbert space structure from the first chaos space.

Property (ii) of the following lemma is called the reproducing property, which gives the
RKHS its name. It shows that a function in H can be evaluated at the point t by taking
its inner product with the function r(·, t), derived from the covariance function r, which is
called also reproducing kernel in this context. The final assertion shows that for a process
with uniformly continuous sample paths, the functions in the RKHS are also uniformly
continuous, and that the embedding of the RKHS in the space of uniformly continuous
functions is continuous with norm bounded by σ(W).

Lemma 7.6. For a centered Gaussian process W = (Wt: t ∈ T ) with covariance function r:

• the function t 7→ r(s, t) is contained in H, for every s ∈ T, and represented by Ws.
• h(t) =

〈
h, r(·, t)

〉
H, for every h ∈ H and t ∈ T.

•
〈
r(·, s), r(·, t)

〉
H = r(s, t), for every s, t ∈ T.
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Furthermore, if W has uniformly continuous sample paths relatively to some metric ρ on T ,
then so does every element h ∈ H, and supt∈T |h(t)| ≤ σ(W) ∥h∥H, for every h ∈ H, where
σ2(W) = supt∈T EW2

t .

Proof For (i) it suffices to note that hWs (t) = EWtWs, by applying the definition of hL to
L = Ws, and EWtWs = r(s, t). Next for (ii) we have have

〈
hL, r(·, t)

〉
H =

〈
hL, hWt

〉
H = ELWt =

hL(t), for every L ∈ lin(W). Property (iii) is immediate upon choosing h = r(·, s) in (ii).
We have |hL(s) − hL(t)| = E

[
(Ws − Wt)L

]
, which is bounded above by the square root of

E(Ws −Wt)2EL2, by the Cauchy-Schwarz inequality. If the sample paths of W are uniformly
continuous, then the right side tends to zero as ρ(s, t) → 0 (Exercise 7.10). It follows that
every function in the RKHS is uniformly continuous. The inequality |hL(t)| ≤ σ(W) ∥hL∥H,
for every t ∈ T , follows similarly. □

Example 7.7 (Euclidean space). To gain insight in the RKHS it helps to consider a Gaussian
random vector W ∼ Nork(0,Σ) in Rk. This can be identified with the stochastic process W =
(Wi: i = 1, . . . , k) on the time set T = {1, 2, . . . , k} and is of course also a random element
in Euclidean space Rk, which is trivially identical to UC(T, ρ), for ρ any metric on T that
generates the discrete topology (e.g. ρ(s, t) = 1s,t). The covariance kernel is K(i, j) = Σi, j and
the RKHS is the space of functions zα: {1, . . . , k} → R given by zα(i) = E

[
Wi(αT W)

]
= (Σα)i

indexed by the (coefficients of the) linear combinations α⊤W ∈ lin(W1, . . . ,Wk), with inner
product ⟨zα, zβ⟩H = E

[
(α⊤W)(β⊤W)

]
= α⊤Σβ. We can identify zα with the vector Σα, and the

inner product then satisfies ⟨Σα,Σβ⟩H = α⊤Σβ.
In other words, the RKHS is the range of the covariance matrix, with inner product given

through the (generalized) inverse of the covariance matrix. If the covariance matrix is non-
singular, then the RKHS is Rk, but equipped with the inner product generated by the inverse
covariance matrix Σ−1.

The RKHS reflects the familiar ellipsoid contours of the density of the multivariate normal
distribution.

Lemma 7.8. If V and W are independent centered Gaussian processes defined on the same
probability space, then the RKHS of the process V + W is equal to the direct sum of the
RKHS of V and W: all functions g + h with g and h ranging over the RKHS of V and W,
respectively, with norm

(
∥g∥2H + ∥h∥

2
H

)1/2.

Proof By the independence the first chaos of V + W is the set of variables K + L, for
K ∈ lin(V) and L ∈ lin(W). The variables K and L are independent, and also independent
of W and V , respectively. Therefore E(V + W)t(K + L) = EVtK + EWtL, and E(K + L)2 =

EK2 + EL2. □

Three properties of Gaussian processes relating to their RKHS are important for the anal-
ysis of Gaussian priors. In the following propositions and lemma we assume that T is a
totally bounded metric space with metric ρ, and that W has uniformly continuous sample
paths relative to ρ. For instance, let T be the unit square [0, 1]d with the usual metric. The
process W is then automatically a Borel measurable map in the Banach space UC(T, ρ) of
uniformly continuous functions z: T → R equipped with the supremum norm

∥z∥ = sup
t∈T
|z(t)|.
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See Lemma 7.43. The results extend to more general spaces (although the definition of
RKHS may have to be adapted). This motivates to formulate the results for a general Banach
space B with norm ∥ · ∥.

The first property of the RKHS relates to the shape of the Gaussian distribution, and
is described in Borell’s inequality. Let B1 and H1 stand for the unit balls of the spaces B
and H, respectively, under their norms, and let Φ be the cumulative distribution function of
the standard normal distribution. Furthermore, let φ0(ϵ) be the small ball exponent, defined
through, for ϵ > 0,

Pr
(
∥W∥ < ϵ

)
= e−φ0(ϵ). (7.1)

Proposition 7.9 (Borell’s inequality). For any centered Gaussian random element W in a
separable Banach space and every ϵ,M > 0,

Pr
(
W ∈ ϵ B1 + MH1

)
≥ Φ

(
Φ−1(e−φ0(ϵ)) + M

)
.

For M = 0 the inequality in the proposition is an equality, and just reduces to the definition
of the small ball exponent. For M → ∞ and fixed ϵ > 0, the right side tends to 1 like the tail
of the normal distribution. This shows that the bulk of the distribution of W is contained in
an ϵ-shell of a big multiple of the unit ball of the RKHS. We should keep in mind here the
ellipsoid shapes found in Example 7.7, which is coded in general in the shape of H1 within
the Banach space B. Not only does the Gaussian distribution concentrate most mass close
to zero (it has small tails), but also it distributes the mass unevenly in the infinitely many
possible directions, as determined by the shape of the RKHS.

The addition of the small ball ϵB1 creates an ϵ-cushion around the multiple MH1. This
is necessary to capture the mass of W, because the RKHS itself may have probability zero.
Since MH1 ↑ H as M ↑ ∞, we have the equality Pr(W ∈ ϵB1 + H) = 1, for any ϵ > 0, and
hence W is supported on the closure H̄ of the RKHS in B. Thus to use a process W as a prior
for estimating a function, we must at least ensure that the closure of its RKHS contains the
true function.

The second property of a Gaussian variable relates to the change in measure under changes
of location. Zero-mean Gaussian variables put most mass near 0; in the Euclidean case this
results from the mode of the density being at the mean, while Anderson’s lemma expresses
this in general. The decrease of mass in a ball of a given radius if the center of this ball is
moved away from 0 may be studied quantitatively using Radon-Nikodym derivatives.

The distributions of the two Gaussian variables W and W + h can be shown to be either
mutually absolutely continuous or orthogonal, depending on whether the shift h is contained
in the RKHS or not. In the first case, when h ∈ H, a density of the law of W + h relative to
the law of W can be shown to take the form

dPW+h

dPW
(W) = eUh− 1

2 ∥h∥
2
H ,

where U:H → lin(W) is the linear isometry defined by U(hL) = L, for L ∈ lin(W). The
formula allows us to compute the small ball probability Pr (∥W + h∥ < ϵ) of the shifted vari-
able (a decentered small ball probability) in terms of the distribution of W, and leads to the
following lemma.
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Lemma 7.10 (Decentered small ball). For any h ∈ H and every ϵ > 0 we have

Pr
(
∥W + h∥ < ϵ

)
≥ e−

1
2 ∥h∥

2
H Pr

(
∥W∥ < ϵ

)
.

Proof Since W and −W have the same distribution, Pr
(
∥W + h∥ < ϵ

)
= Pr

(
∥W − h∥ < ϵ

)
.

By the Cameron-Martin formula,

Pr
(
∥W + h∥ < ϵ

)
=

∫
1∥z∥<ϵ dPW+h(z) = EeUh− 1

2 ∥h∥
2
H1∥W∥<ϵ .

This is true with −h in the place of h as well. Combining these two facts we get

Pr
(
∥W − h∥ < ϵ

)
=

1
2

EeUh− 1
2 ∥h∥

2
H1∥W∥<ϵ +

1
2

EeU(−h)− 1
2 ∥−h∥2H1∥W∥<ϵ

= e−
1
2 ∥h∥

2
HE cosh(Uh)1∥W∥<ϵ ,

where cosh(x) = (exp(x) + exp(−x))/2 ≥ 1, for every x, so that the expectation is at least
Pr

(
∥W∥ < ϵ

)
. □

The lemma only applies to shifts within the reproducing kernel Hilbert space, but it can be
extended to general shifts by approximation. Here we restrict to shifts w inside the closure
of the RKHS, as otherwise a small enough ball around w will have probability zero. Define
the concentration function of W at w by

φw(ϵ) = inf
h∈H:∥h−w∥≤ϵ

1
2∥h∥

2
H − log Pr

(
∥W∥ < ϵ

)
. (7.2)

For w = 0 this reduces to the small ball exponent φ0(ϵ) defined in (7.1) (the infimum is
achieved for h = 0), and it measures concentration of W at 0. The extra term if w , 0, which
will be referred to as the decentering function, measures the decrease in mass when shifting
from the origin to w. Indeed, up to constants, the concentration function is the exponent of
the small ball around w, for every w in the support of W.

Proposition 7.11 (Small ball exponent). For any centered Gaussian random element in a
separable Banach space, and any w in the closure of its RKHS, and any ϵ > 0,

φw(ϵ) ≤ − log Pr
(
∥W − w∥ < ϵ

)
≤ φw(ϵ/2).

The asymptotic behavior for ϵ → 0 of the centered small ball probability Pr
(
∥W∥ < ϵ

)
on

the logarithmic scale turns out to be closely related to the “size” of the RKHS unit ball H1.
More precisely, it is determined by the asymptotic behavior for ϵ → 0 of the metric entropy
log N

(
ϵ,H1, ∥ · ∥

)
. The following special cases suffice for our purposes.

Proposition 7.12. For any centered Gaussian random element in a separable Banach space,
and any α, γ > 0, as ϵ → 0,

log N
(
ϵ,H1, ∥ · ∥

)
≍ ϵ−2α/(2+α) ⇐⇒ − log Pr(∥W∥ < ϵ) ≍ ϵ−α, (7.3)

log N
(
ϵ,H1, ∥ · ∥

)
≍ logγ

1
ϵ
⇐⇒ − log Pr(∥W∥ < ϵ) ≍ logγ

1
ϵ
. (7.4)
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7.5 Posterior contraction rates

In this section we first give a generic result on Gaussian priors, which characterizes rates
such that the prior has sufficient mass near a given “true function” w0 and almost all its mass
in a set of bounded complexity. The formulation of the result reminds of Theorem 5.19 on
posterior contraction rates. However, the result is purely in terms of the norm of the Banach
space in which the prior process lives. Next we apply the generic result to obtain rates of
posterior contraction for Gaussian process priors in standard statistical settings by relating
the statistically relevant norms and discrepancies to the Banach space norm.

Theorem 7.13 (Gaussian contraction rate). Let W be a centered Gaussian random element
in a separable Banach space B with RKHS H and let w0 ∈ H̄. If ϵn > 0 is such that

φw0 (ϵn) ≤ nϵ2
n , (7.5)

then

Pr (∥W − w0∥ < 2ϵn) ≥ e−nϵ2
n , (7.6)

and for any C > 1 such that Cnϵ2
n > log 2 there exists a measurable set Bn ⊂ B such that

log N(3ϵn, Bn, ∥ · ∥) ≤ 9Cnϵ2
n , (7.7)

Pr(W < Bn) ≤ e−Cnϵ2
n , . (7.8)

Proof Inequality (7.6) is an immediate consequence of (7.5) and Proposition 7.11. We need
to prove existence of the set Bn such that (7.7) and (7.8) hold.

Set Bn = ϵnB1 + MnH1, where B1 and H1 are the unit balls of B and H, respectively, and
Mn is a positive constant. Then Pr(W < Bn) ≤ 1 − Φ(αn + Mn) for αn given by Φ(αn) =
Pr(W ∈ ϵnB1) = e−φ0(ϵn), by Borell’s inequality. Since φ0(ϵn) ≤ φw0 (ϵn) ≤ nϵ2

n and C > 1, we
have that αn ≥ −Mn/2 if Mn = −2Φ−1(e−Cnϵ2

n ). It follows that for this choice Pr(W < Bn) ≤
1 − Φ(Mn/2) = e−Cnϵ2

n .
It remains to verify the complexity estimate (7.7). If h1, . . . , hN ∈ MnH1 are 2ϵn-separated

in terms of the Banach space norm ∥ · ∥, then the ϵn-balls h1+ ϵnB1, . . . , hN + ϵnB1 are disjoint
and hence, by Lemma 7.10,

1 ≥
N∑

j=1

Pr(W ∈ h j + ϵnB1) ≥
N∑

j=1

e−∥h j∥
2
H/2 Pr(W ∈ ϵnB1) ≥ Ne−M2

n/2e−φ0(ϵn).

For a maximal 2ϵn-separated set h1, . . . , hN , the balls around h1, . . . , hN of radius 2ϵn cover
the set MnH1 and hence we obtain the estimates N (2ϵn,MnH1, ∥ · ∥) ≤ N ≤ eM2

n/2eφ0(ϵn). Since
any point of Bn is within ϵn of an element of MnH1, this is also a bound on N (3ϵn, Bn, ∥ · ∥).
To complete the proof, observe that M2

n/2 ≤ 8Cnϵ2
n if e−Cnϵ2

n/2 < 1, by the definition of Mn,
because Φ−1(y) ≥ −2

√
log(1/y) and is negative for every y ∈ (0, 1/2). □

Ignoring multiplicative constants in the rate, we can rewrite relation (7.5) as the pair of
inequalities

− log Pr (∥W∥ < ϵn) ≤ nϵ2
n , inf

h∈H:∥h−w0∥≤ϵn

∥h∥2H ≤ nϵ2
n .

Both inequalities have a minimal solution ϵn, and the final rate ϵn satisfying (7.5) is the
maximum of the two minimal solutions, up to a constant. The first inequality in the preceding
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display concerns the small ball probability at 0. It depends on the prior, but not on the true
parameter w0: priors that put little mass near 0 will give slow rates ϵn, whatever the true
parameter w0. The second inequality measures the decrease of prior mass around the true
parameter w0 relative to the zero parameter (on a logarithmic scale). A prior that puts much
mass around 0 may still give bad performance for a nonzero w0, depending on its position
relative to the RKHS. The most favorable situation is that the true parameter is contained
in the RKHS: then the choice h = w0 is eligible in the infimum, whence the infimum is
bounded by ∥w0∥

2
H, and the condition merely says that ϵn must not be smaller than a multiple

of the “parametric rate” n−1/2. However, the RKHS can be a very small space, and hence this
favorable situation is rare.

By Proposition 7.11 the concentration function φw0 (ϵ) measures the prior mass around w0.
Thus the theorem shows that for Gaussian priors the rate of contraction is driven by the prior
mass condition only. The existence of sieves of a prescribed complexity, required in (5.6)
and (5.7) of the general rate theorems, is implied by the prior mass condition. The preceding
theorem establishes this only for entropy, neighborhoods and metric of convergence all de-
scribed in terms of the Banach space norm, but in the sequel we show that for the standard
inference problems this can be translated into the Hellinger distance and Kullback-Leibler
discrepancies used in Theorem 5.19.

7.5.1 Density estimation

Consider estimating a probability density p on [0, 1]d based on a sample of observations
X1, . . . , Xn| p iid

∼ p. Because a Gaussian process can take on negative values, it would be an
unnatural prior for a density function. Instead we use an exponential link function, and
construct a prior Π for p as the exponential, normalized transform of a Gaussian process
W =

(
Wx: x ∈ [0, 1]d), given by

p(x) =
eWx∫
eWy dy

.

Theorem 7.14. Let W = (Wt: t ∈ [0, 1]d) be a centered Gaussian process with uniformly
continuous sample paths. If w0 = log p0 and ϵn satisfy the rate equation φw0 (ϵn) ≤ nϵ2

n , then
Πn (p: h(p, p0) > Mϵn| X1, . . . , Xn)→ 0 in Pn

0-probability, for some sufficiently large constant
M.

Proof The proof is based on Theorem 5.19, which is combined with Lemma 7.15 (below),
and Theorem 7.13.

We choose the set Pn in Theorem 5.19 equal to the set Pn = {pw: w ∈ Bn}, for Bn the
measurable set as in Theorem 7.13, with C a large constant. In view of Lemma 7.15(i) for
sufficiently large n the 4ϵn-entropy of Pn relative to the Hellinger distance is bounded above
by the 3ϵn-entropy of the set Bn relative to the uniform distance, which is bounded by 6Cnϵ2

n
by Theorem 7.13. The prior probability Π(Pc

n) outside the set Pn as in (5.8) is bounded by
the probability of the event {W < Bn}, which is bounded by e−Cnϵ2

n by Theorem 7.13. Finally,
by Lemma 7.15(ii)-(iii) the prior probability as in (5.7), but with ϵn replaced by a multiple
of ϵn, is bounded above by the probability of the event {∥W −w0∥∞ < 2ϵn}, which is bounded
below by e−nϵ2

n by Theorem 7.13. □
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Lemma 7.15. For any measurable functions f , g:X → R, and p f the probability densities
defined by p f (x) = e f (x)−c(( f ),

(i) h(p f , pg) ≤ ∥ f − g∥∞ e∥ f−g∥∞/2,
(ii) K(p f ; pg) ≲ ∥ f − g∥2∞ e∥ f−g∥∞(1 + ∥ f − g∥∞),

(iii) V(p f ; pg) ≲ ∥ f − g∥2∞ e∥ f−g∥∞(1 + ∥ f − g∥∞)2.

Proof The triangle inequality and simple algebra give

h(p f , pg) =
∥∥∥∥∥ e f /2

∥e f /2∥2
−

eg/2

∥eg/2∥2

∥∥∥∥∥
2
≤ 2
∥e f /2 − eg/2∥2

∥eg/2∥2
.

Because |e f /2 − eg/2| ≤ eg/2e| f−g|/2| f − g|/2 for any f , g ∈ R, the square of the right side is
bounded by ∫

ege| f−g|| f − g|2 dν∫
eg dν

≤ e∥ f−g∥∞∥ f − g∥2∞.

This proves assertion (i) of the lemma.
Next assertions (ii) and (iii) follow from (i) and the equivalence of K, V and the squared

Hellinger distance if the quotient of the densities is uniformly bounded (see Lemma 6.13).
From g−∥ f −g∥∞ ≤ f ≤ g+∥ f −g∥∞ it follows that c(g)−∥ f − g∥∞ ≤ c( f ) ≤ c(g)+∥ f − g∥∞.
Therefore

∥∥∥log(p f /pg)
∥∥∥
∞
=

∥∥∥ f − g− c( f )+ c(g)
∥∥∥
∞
≤ 2∥ f − g∥∞. Assertions (ii) and (iii) now

follow by Lemma 6.13. □

7.5.2 Nonparametric logistic regression

Consider estimating a binary regression function p(x) = Pr(Y = 1| X = x) based on an i.i.d.
sample (X1,Y1), . . . , (Xn,Yn) from the distribution of (X,Y), where Y ∈ {0, 1}, and X follows a
distribution G on some totally bounded metric space X. Because a Gaussian process ranges
over the full set of reals R, whereas p is restricted to [0, 1], it is natural to employ a link
function. For Ψ(x) = (1 + e−x)−1 the logistic function construct a prior for p through a
Gaussian process W = (Wx: x ∈ X) by

p(x) = Ψ(Wx).

The likelihood for (X,Y) factorizes as p(x)y (1 − p(x))1−y dG(x). Because the contribution
of G cancels out from the posterior distribution for p, we can consider G known and need
not specify a prior for it. Assume that p0 is never zero and let w0 = Ψ

−1(p0), for p0 the true
value of p.

Theorem 7.16. Let W = (Wx: x ∈ X) be a centered Gaussian process with uniformly con-
tinuous sample paths. If w0 = Ψ

−1(p0) and ϵn satisfies the rate equation φw0 (ϵn) ≤ nϵ2
n , then

Πn(∥p − p0∥2,G > Mϵn| X1,Y1, . . . , Xn,Yn)→ 0 in Pn
0-probability, for some M > 0.

Proof This follows from combining Lemma 7.17 (below), Theorem 5.19, and Theorem 7.13.
□

Lemma 7.17. For any measurable functions f , g:X → R, and p f (y| x) = Ψ
(
f (x)

)y(1 −
Ψ
(
f (x)

))1−y,
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(i) h(p f , pg) ≲ ∥ f − g∥2,G.

(ii) K(p f ; pg) ≲ ∥ f − g∥2,G.

(iii V(p f ; pg) ≲ ∥ f − g∥2,G.

Proof The square of the Hellinger distance in (i) can be written∫ ∣∣∣ √Ψ ◦ f −
√
Ψ ◦ g

∣∣∣2 + ∣∣∣ √1 − Ψ ◦ f −
√

1 − Ψ ◦ g
∣∣∣2 dG.

The functions
√
Ψ and

√
1 − Ψ possess derivatives 1

2ψ/
√
Ψ and 1

2ψ/
√

1 − Ψ, which are both
uniformly bounded. This readily gives (i).

To derive (ii) we express the Kullback-Leibler divergence as K(p f ; pg) =
∫
ϕ f (g) dG,

where

ϕu(v) = Ψ(u) log
Ψ(u)
Ψ(v)

+
(
1 − Ψ(u)

)
log

1 − Ψ(u)
1 − Ψ(v)

.

The function ϕu possesses derivative ϕ′u(v) = Ψ(v)−Ψ(u), since the function ψ/(Ψ(1−Ψ)) is
identically equal to 1. Because the function ϕu vanishes at u, the mean value theorem gives
that |ϕ f (g)| ≤ | f − g|, and assertion (iii) follows.

For the proof of (iii) we write V(p f , pg) =
∫
ϕ f (g) dG, where the function ϕ f is as ϕ f , but

with the logarithmic factors squared. The result follows because both log
(
Ψ(g)/Ψ( f )

)
and

log[(1 − Ψ(g))/(1 − Ψ( f )] are bounded by 1. □

7.5.3 Nonparametric normal regression

Consider estimating a regression function f based on observations Y1, . . . ,Yn in the nor-
mal regression model with fixed covariates Yi = f (xi) + εi, where εi

iid
∼Nor(0, σ2

0) and the
covariates x1, . . . , xn are fixed elements from a set X.

A prior on f is induced by setting f (x) = Wx, for a Gaussian process (Wx: x ∈ X). If σ
is unknown, then we also put a prior on σ, which we assume to be supported on an interval
[a, b] ⊂ (0,∞) with a density π that is bounded away from zero.

Let ∥ · ∥n be the L2(Px
n)-norm for the empirical measure Px

n of the design points x1, . . . , xn,
and let φw0,n be the concentration function of W viewed as a map in L2(Px

n). The incon-
venience that this depends on n can be removed by bounding the empirical norm by the
uniform norm, which gives a corresponding bound on the concentration function.

Theorem 7.18. Let W be a centered Gaussian random element in L2(Px
n), for every n, and

suppose that the true values f0 of f and σ0 of σ belong to the supports of W and π. If ϵn satis-
fies the rate equation φw0,n(ϵn) ≤ nϵ2

n , thenΠn ((w, σ): ∥w − w0∥n + |σ − σ0| > Mϵn|Y1, . . . ,Yn)→
0 in Pn

0-probability, for some M > 0.

Proof Because the observations are not identically distributed, we need an extension of
Theorem 5.19 to non-i.i.d. observations. Apart from this, the theorem can be derived from
Theorem 7.13. □
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7.6 Examples

Brownian motion
Brownian motion is a fundamental Gaussian process and can be used as a building block to
construct many more examples.

Definition 7.19. The stochastic process B = (Bt: t ≥ 0) is called a (standard) Brownian
motion, or Wiener process, if

(i) B0 = 0 a.s.,
(ii) Bt − Bs is independent of (Bu: u ≤ s) for all s ≤ t,

(iii) Bt − Bs has a N(0, t − s)-distribution for all s ≤ t,
(iv) almost all sample paths of B are continuous.

A process with property (ii) is called a process with independent increments. Property (iii)
implies that the distribution of the increment Bt −Bs only depends on t− s. This is called the
stationarity of the increments. Property (ii) implies that cov(Bt, Bs) = var Bs, for s ≤ t, and
together with property (iii) then gives the covariance function

r(s, t) = E[BsBt] = s ∧ t.

The mean function of B is zero in view of (i) and (iii).
It is not immediately clear that Brownian motion exists. With the help of Proposition 4.18

it is not too difficult to show that there exists a stochastic process B that satisfies properties
(i)–(iii) (see Exercise 7.2). Next, since E|Bs − Bt|

2 = |s− t| by (iii), Proposition 7.3 gives that
there exists a version whose sample paths satisfy |Bs − Bt| = O(|s − t|α), for every α < 1/2.
Thus this version is not only continuous, but also Hölder continuous of every order strictly
less than 1/2. 1

It can be proved that no version of Brownian motion has sample paths that are Hölder of
order exactly equal to 1/2. (In particular, they are non-differentiable functions.) However,
although then strictly speaking it is inaccurate (in the Hölder sense), we think of the sample
paths of Brownian motion as having “regularity 1/2”. Figure 7.6 shows an example of a
typical Brownian sample path.

Brownian motion B is a good starting point for modeling functions on [0, 1]. The RKHS
and small ball probabilities of Brownian motion are classical; the RKHS is also called the
Cameron-Martin space. LetWk[0, 1] be the Sobolev space of all functions f ∈ L2[0, 1] that
are k−1 times differentiable with f (k−1) absolutely continuous with derivative f (k) belonging
to L2[0, 1].

Lemma 7.20 (RKHS). The RKHS of Brownian motion is equal to { f ∈ W1[0, 1]: f (0) = 0}
with the inner product ⟨ f , g⟩H =

∫ 1

0
f ′(t)g′(t) dt.

Lemma 7.21 (Small ball). The small ball exponent of Brownian motion viewed as a map
into C[0, 1] or Lr[0, 1], for some r ≥ 1, satisfies, as ϵ ↓ 0,

φ0(ϵ) ≍ ϵ−2.

1 Recall that a function f : T ⊂ R on an interval T ⊂ Rd is called (uniformly) Hölder continuous of order
α ∈ (0, 1] if there exists a constant C > 0 such that | f (t) − f (s)| ≤ C∥t − s∥α for all s, t ∈ T .
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Figure 7.2 A sample path of one-dimensional Brownian motion

Proof The second lemma may be derived from the first using Proposition 7.12 and the
characterization of the entropy of a Sobolev space (see Proposition 5.26), or alternatively by
a probabilistic proof. For the first lemma we provide two proofs.

Since r(s, t) = s∧t, the RKHS is equal to the completion of the linear span of the functions
{t 7→ s ∧ t: s ∈ [0, 1]} under the inner product determined by

⟨s1 ∧ ·, s2 ∧ ·⟩H = s1 ∧ s2 =

∫ 1

0
(s1 ∧ t)′(s2 ∧ t)′ dt.

Here t 7→ (s∧ t)′ = 1{[0, s]}(t) is the derivative of the function s∧ ·. The equation shows that
the RKHS inner product is indeed the inner product ofW1[0, 1]. It suffices to show that the
linear span of all functions of this type is dense in { f ∈ W1[0, 1]: f (0) = 0}. Now the linear
span contains every function that is 0 at 0, continuous, and piecewise linear on a partition
0 = s0 < s1 · · · < sN = 1, since such a function with slopes α j on the intervals (s j−1, s j),
for j = 1, . . . ,N, can be constructed as a linear combination of the functions s ∧ · by first
determining the coefficient of (sN∧·) to have the correct slope on (sN−1, sN), next determining
the coefficient of (sN−1 ∧ ·) to have the correct slope on (sN−2, sN−1), etc. The derivatives of
these piecewise linear functions are piecewise constant, and the set of piecewise constant
functions is dense in L2[0, 1]. Thus the completion of the linear span is as claimed.

Another proof can be based on the characterization of the first chaos lin(B) of Brown-
ian motion as the collection of all Wiener integrals

∫ 1

0
f (u) dWu, where f ∈ L2[0, 1] (see

Section 7.8.3 and Exercise 7.9). The isometry (7.16) implies that

E[WtL] =
∫ t

0
f (u) du, EL2 =

∫ 1

0
f 2(u) du, for L =

∫ 1

0
f (u) dWu.

Thus the RKHS consists of all integrals
∫ t

0
f (u) du, which have square RKHS-norms given

by the L2-norm ∥ f ∥2 of f . □

Standard Brownian motion is zero at zero, and hence for use as a prior it is preferable to
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“release it at zero,” by adding a variable that gives a prior for the unknown function at zero.
Adding an independent Gaussian variable Z ∼ Nor(0, 1) yields another Gaussian process, of
the form t 7→ Z + Bt, which we call “Brownian motion released at zero”.

Lemma 7.22 (RKHS). The RKHS of Brownian motion released at zero is equal toW1[0, 1]
with the inner product ⟨ f , g⟩H = f (0)g(0) +

∫ 1

0
f ′(t)g′(t) dt.

Lemma 7.23 (Small ball). The small ball exponent of Brownian motion released at zero
viewed as a map into C[0, 1] or Lr[0, 1], for some r ≥ 1, satisfies, as ϵ ↓ 0,

φ0(ϵ) ≍ ϵ−2.

Proof The RKHS of the constant process t 7→ Z consists of the constant functions, and
the RKHS of a sum of two independent processes is the direct sum of the RKHS of the two
processes, by Lemma 7.8. This readily shows that the RKHS of Z + B is the direct sum of
the constant functions and the RKHS of B, which was derived in Lemma 7.20.

The addition of the single variable Z makes the small ball probability at 0 smaller, but it
does not change the rate ϵ−2 obtained Lemma 7.21, as − log Pr (|Z| < ϵ) ≍ log− ϵ ≪ ϵ−2. □

The concentration function φw0 (ϵ) of Z + B depends on the position of the true parameter
w0 relative to the RKHS. It can be computed using a kernel smoother w0 ∗ ψσ, which is
contained in the RKHS if ψ is a smooth kernel.

Lemma 7.24 (Decentering). If w0 ∈ C
β[0, 1] for some β ∈ (0, 1], then the decentering of

the concentration function of Brownian motion released at zero viewed as map in C[0, 1]
satisfies, for ϵ ↓ 0,

inf
h:∥h−w0∥∞<ϵ

∥h′∥22 ≲ ϵ
−(2−2β)/β.

Proof If ψσ is the density of the Nor(0, σ2)-distribution, then ∥w0∗ψσ−w0∥ ≲ σ
β, asσ→ 0,

and the squared RKHS-norm of w0 ∗ ψσ is given by (w0 ∗ ψσ)(0)2 + ∥(w0 ∗ ψσ)′∥22 ≍ σ
−(2−2β).

Choosing σ ≍ ϵ1/β, we obtain the assertion. □

Combining the preceding we see that the concentration function of released Brownian
motion satisfies, if w0 ∈ C

β[0, 1],

φw0 (ϵ) ≲ ϵ
−(2−2β)/β + ϵ−2.

For β ≥ 1/2, the second term ϵ−2 dominates, and hence the minimal solution to the rate
equation φw0 (ϵn) ≤ nϵ2

n satisfies ϵ−2
n ≍ nϵ2

n , or ϵn ≍ n−1/4. For β ∈ (0, 1/2), the first term
dominates, leading to ϵ−(2−2β)/β

n ≲ nϵ2
n , with minimal solution ϵn ≍ n−β/2.

The resulting contraction rate can be summarized as

n−(β∧1/2)/2.

It is equal to the minimax rate of estimation n−β/(2β+1) for functions in a Hölder space of
order β if and only if β = 1/2. This is intuitively understandable, as the sample paths of
a Brownian motion are regular of that order: only matching of prior and true smoothness
yields optimal results. For any positive β , 1/2 the posterior distribution is consistent, but
the performance of the Brownian motion prior is suboptimal. The discrepancy is most felt
for smooth w0: the contraction rate is n−1/4, no matter how smooth w0 is. This is caused by
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the rough paths of Brownian motion, which result in a tiny small ball probability. Even the
zero function, which may be viewed the smoothest function of all, receives probability only
of the order exp(−Cϵ−2) in a ball of radius ϵ. No amount of data will fully wash out this prior
preference for non-smooth functions.

Integrated Brownian motion
This shortcoming of Brownian motion as a prior for smooth functions can be remedied by
integrating its sample paths. For a given function f , denote by I0+ f its primitive function
t 7→

∫ t

0
f (s) ds, and define by induction Ik

0+ = Ik−1
0+ I0+. Since taking a primitive function

increases the smoothness by 1, the k-fold integrated Brownian motion Ik
0+B is smooth of

order (nearly) k+1/2. Its k vanishing derivatives at zero can be released by adding a random
polynomial, yielding the process

Wt =

k∑
i=0

Zi
ti

i!
+ (Ik

0+B)t, Z0, . . . ,Zk
iid
∼Nor(0, 1) y B. (7.9)

Lemma 7.25 (RKHS). The RKHS of the process W given in (7.9), for B a Brownian motion
independent of the variables Z1, . . . ,Zk

iid
∼Nor(0, 1), is the Sobolev space Wk+1[0, 1], with

inner product

⟨ f , g⟩H =
k∑

i=0

f (i)(0)g(i)(0) +
∫ 1

0
f (k+1)(t)g(k+1)(t) dt.

Lemma 7.26 (Small ball). The small ball exponents of k-fold integrated Brownian motion
Ik
0+B and the process W given in (7.9), for B a Brownian motion independent of Z1, . . . ,Zk

iid
∼Nor(0, 1),

viewed as maps into C[0, 1] satisfy, as ϵ ↓ 0,

φ0(ϵ) ≍ ϵ−2/(2k+1).

Lemma 7.27 (Decentering). If w0 ∈ C
β[0, 1] for β ≤ k + 1, then the decentering function of

the process in (7.9), for B a Brownian motion independent of Z1, . . . ,Zk
iid
∼Nor(0, 1), viewed

as map in C[0, 1] satisfies, as ϵ ↓ 0,

inf
h::∥h−w0∥∞<ϵ

∥h∥2H ≲ ϵ
−(2k−2β+2)/β.

Proofs The first lemma can be obtained from the corresponding results for Brownian mo-
tion: the RKHS of integrated Brownian motion is essentially the integral of the RKHS of
Brownian motion.

The second lemma may be derived from the first using Proposition 7.12 and the char-
acterization of the entropy of a Sobolev space (see Proposition 5.26), or alternatively by a
probabilistic proof.

For a proof of the third consider the convolution w0∗ψσ, of w0 with a scaled version ψσ of a
smooth kth order kernel (an integrable function ψ satisfying

∫
ψ(t) dt = 1 and

∫
trψ(t) dt = 0

for r = 1, . . . , k, and
∫
|t|k+1ψ(t) dt < ∞). By a Taylor expansion argument this can be seen

to satisfy ∥w0 ∗ ψσ − w0∥∞ ≲ σ
β. Furthermore, the function w0 ∗ ψσ belongs to the RKHS

and satisfies (w0 ∗ψσ)(l) = w(b)
0 ∗ψ

(l−b)
σ , for b the largest integer strictly smaller than β. Hence

∥(w0 ∗ ψσ)(l)∥∞ ≲ σ
−(l−β) if w0 ∈ C

β[0, 1] and l ≥ β. Consequently
∫

(w0 ∗ ψσ)(k+1)(t)2 dt ≲
σ−(2k−2β+2) and the square derivatives at 0 up to order k are bounded or of smaller order in
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1/σ. It follows that ∥w0 ∗ ψσ∥H ≲ σ
−(k−β+1), if w0 ∈ C

β[0, 1]. The choice σ ≍ ϵ1/β leads to
∥w0 ∗ ψσ − w0∥∞ ≲ ϵ and ∥w0 ∗ ψσ∥

2
H ≲ ϵ

−(2k−2β+2)/β. □

It follows that the concentration function of “released integrated Brownian motion” (7.9)
takes the form

φw0 (ϵ) ≲ ϵ
−(2k−2β+2)/β + ϵ−2/(2k+1).

For β ≥ k+ 1/2 the second term dominates, and the rate inequality becomes ϵ−2/(2k+1)
n ≤ nϵ2

n ,
with as minimal solution ϵn ≍ n−(2k+1)/(4k+4). For β ≤ k+1/2 the first term in the concentration
function dominates, and the rate inequality ϵ−(2k−2β+2)/β

n ≲ nϵ2
n has the minimal solution ϵn ≍

n−β/(2k+2). The posterior contraction rate can be summarized as the maximum

n−(β∧k+1/2)/(2k+2)

of the two rates. This is the minimax rate for β-regular functions if and only if β = k + 1/2.

* Riemann-Liouville processes
Brownian motion and its repeated integrals give Gaussian processes of regularities 1/2, 3/2, . . ..
We can interpolate between these values by performing fractional integrations. By Fubini’s
theorem and integration by parts (Proposition 7.50),∫ t

0

∫ tn−1

0
· · ·

∫ t1

0
Wt0 dt0dt1 · · · tn−1 =

1
n!

∫ t

0
(t − s)n dWs, a.s. (7.10)

(See Exercise 7.4). Now the right-hand side of this equation is well defined not just for n ∈ N,
but for every n ∈ R such that s 7→ (t − s)n belongs to L2[0, t], i.e. for every n > −1/2. This
leads to the definition of the following process, which can be viewed as the (α − 1/2)-fold
iterated integral of Brownian motion.

Definition 7.28. For α > 0 and W a Brownian motion, the Riemann-Liouville process with
parameter α > 0 is defined by

Rα
t =

1
Γ(α + 1/2)

∫ t

0
(t − s)α−1/2 dWs, t ≥ 0.

It can be shown that, if used as a prior, the Riemann-Liouville process indeed gives the
optimal contraction rate when the true function is α-regular, for any α > 0.

Changing the length scale
The Gaussian process priors in the preceding example possess sample paths of a given
smoothness. The generic picture is that they lead to optimal or near-optimal posterior con-
traction rates if this smoothness matches that of the target function, but to suboptimal rates
otherwise, although some rate and hence consistency is always attained. One way of over-
coming this limitation is to rescale the sample paths and use a process of the form Wa =

(Wat: t ∈ Rd), for a given Gaussian process W. This is called changing the length scale of the
prior, and is common in practice.

If the parameter a is chosen a fixed constant, then nothing much changes in the asymptotic
setup. However, even though the scaling does not change the qualitative properties of the
sample paths, a scaling that tends to zero or infinity with the number of observations may
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change the contraction rates dramatically. For a < 1 this entails shrinking a process on a
bigger time set to the time set [0, 1]d, whereas a > 1 corresponds to stretching. Intuitively
shrinking makes the sample paths more variable, as the randomness on a bigger time set is
packed inside [0, 1]d, whereas stretching creates a smoother process.

Figure 7.3 Changing the length scale of a process

The RKHS of a rescaled process is a rescaling of the RKHS of the original process.

Lemma 7.29 (RKHS). If the map w 7→ (t 7→ w(at)) is a continuous, linear map from the
Banach spaces Ba into B, and W is a random element in Ba, then the RKHS of the process
Wa given by Wa

t = Wat consists of the functions t 7→ h(at) for h in the RKHS of W, with
identical norms.

The small ball probability is equally easily to obtain from the original one for self-similar
processes. A stochastic process W is self-similar of order α if the processes (Wat: 0 ≤ t ≤
1) and (aαWt: 0 ≤ t ≤ 1) are equal in distribution. Thus the rescaling of the time-axis
is equivalent to a rescaling of the vertical axis. This observation makes the following two
lemmas evident.

Lemma 7.30 (RKHS). The RKHS Ha of the rescaled process Wa corresponding to a self-
similar process W of order α is the RKHS H of W, but equipped with the norm ∥h∥Ha =

a−α∥h∥H.

Lemma 7.31 (Small ball). The small ball exponent φa
0 of the rescaled process Wa corre-

sponding to a self-similar process W of order α satisfies φa
0(ϵ) = φ0(a−αϵ), for φ0 the small

ball exponent of W.

Proofs The function t 7→ E[WatZ] = aαE[WtZ] is contained in both Ha and H and has
square norm E[Z2] in Ha and a2αE[Z2] in H. The second lemma is immediate from the fact
that the events {∥Wa∥ < ϵ} and {∥aαW∥ < ϵ} are equal in probability. □

It follows that the concentration function φa
w0

of the rescaled, self-similar process Wa can
be written as

φa
w0

(ϵ) = φ0(a−αϵ) + a−2α inf
∥h−w0∥≤ϵ

∥h∥2H.

Increasing the scaling factor a makes the first term on the right side bigger, but decreases
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the second term. We may now choose a = an such that the solution ϵn of the rate equation
φan

w0 (ϵn) ≍ nϵ2
n is smallest. In the case that φ0(ϵ) ≍ ϵ−r and inf{∥h∥2H: ∥h − w0∥ ≤ ϵ} ≍ ϵ

−s, for
some r, s > 0, the optimal scaling value and resulting contraction rate can be seen to be

an = n(s−r)/(4α+4rα+rsα), ϵn = n−(2+r)/(4+4r+rs).

It may be noted that the exponent of self-similarity appears in the scaling factor, but not in
the contraction rate.

Rescaled integrated Brownian motion
The k-fold integrated Brownian motion is self-similar of order k + 1/2. Its small ball prob-
ability is of the order ϵ−1/(k+1/2), and its decentering function for a function w0 belonging to
the Hölder space of order β ≤ k + 1 and having vanishing derivatives at 0 is of the order
ϵ−(2k−2β+2)/β. Substitution of α = k + 1/2, r = 1/(k + 1/2) and s = (2k − 2β + 2)/β in the
preceding display yields the rescaling rate an = n(k+1/2−β)/((k+1/2)(2β+1)) and the contraction rate
n−β/(2β+1), for β ≤ k + 1. Thus the minimax rate is obtained for all β ≤ k + 1. For β < k + 1/2
the integrated Brownian motion is shrunk, and every possible smoothness level is attained.
For β > k + 1/2 the process is stretched, but this is successful only up to smoothness level
k + 1.

In order to drop the restriction that w0 has vanishing derivatives at 0 we added a random
polynomial of order k to the integrated Brownian motion. Because this polynomial process is
not self-similar, the preceding argument does not apply to this extension. Actually rescaling
the polynomial part in the same way as the integrated Brownian motion may also not be
natural. Now it may be checked that the decentering function of the process ak+1/2

n Ik
0+B +

bn
∑k

i=1 Ziti satisfies, for w0 ∈ C
β[0, 1] and β ≤ k + 1,

inf
∥h−w∥∞≤ϵ

∥h∥2Ha,b ≲ a−(2k+1)
n ϵ−(2k−2β+2)/β + b−2

n [ϵ−(2k−2β)/β ∨ 1].

This is dominated by the first term (arising from the integrated Brownian motion) if bn ≥

ak+1/2
n ϵ

((k+1−β)∧1)/β
n . Since the small ball exponent of the process is hardly determined by the

polynomial part, under the latter condition the preceding derivation goes through without
essential changes for any w0 in the Hölder space of order β ≤ k + 1.

Stationary Gaussian processes
Definition 7.32. A centered process W = (Wt: t ∈ Rd) with finite second moments is called
(wide sense) stationary if its covariance function satisfies EWsWt = r(t−s) for some function
r:Rd → R.

For a centered Gaussian process stationarity is equivalent to the invariance of the distri-
bution of the process (Wt: t ∈ Rd) under “time shifts”: the finite-dimensional distributions of
the processes (Wt+h: t ∈ Rd) are the same, for every h ∈ Rd. This seems to be a reasonable
property of a prior process.

Lemma 7.33. The process W is a mean-square continuous stationary process indexed by
Rd if and only if there exists a finite, symmetric Borel measure µ on Rd such that, for all
s, t ∈ Rd,

EWsWt =

∫
eiλT (s−t) dµ(λ). (7.11)
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Proof A process W with covariance function of the form (7.11) is clearly stationary. More-
over,

E(Wt −Ws)2 =

∫
|eiλT t − eiλT s|2 µ(dλ)→ 0,

as t → s, by dominated convergence. Hence, the process is mean-square continuous.
Conversely, if the process W is stationary, and EWsWt = r(t− s), for all s, t ∈ Rd, then, by

the Cauchy-Schwarz inequality,∣∣∣r(t) − r(s)
∣∣∣2 = ∣∣∣E(Wt −Ws)W0

∣∣∣2 ≤ E(Wt −Ws)2EW2
0 .

Thus mean-square continuity of W implies that r is a continuous function. Since it is also
positive-definite, existence of µ follows from Bochner’s theorem (Theorem 7.51). □

Definition 7.34. The measure µ in (7.11) is called the spectral measure of the process W. If
it admits a Lebesgue density, then this is called the spectral density.

The two sides of the spectral representation (7.11) are both inner products: on the left
between the variables Ws and Wt in L2(Pr), and on the right between the (complex-valued)
functions es and et, defined by et(λ) = exp(iλt), in L2(µ). The continuous, linear extension of
the association Wt ↔ et provides an isometry between the first chaos lin(W) of the process
W and the closure of the linear span of the functions et in L2(µ). This spectral isometry can
often be used to translate probabilistic problems concerning the process W into analytical
problems regarding the functions et in L2(µ).

The weight of the tails of the spectral distribution determine the regularity of a stationary
Gaussian process W. Heavier tails means “more high frequencies”, and give sample paths
that are less regular.

Proposition 7.35 (Regularity of stationary processes). Suppose that (Wt: t ∈ Rd) is a cen-
tered stationary Gaussian process with spectral measure µ.

(i) If
∫
∥λ∥2α dµ(λ) < ∞, then W has a version whose sample paths are partially differen-

tiable up to order the biggest integer k strictly smaller than α with partial derivatives of
order k that are Lipschitz of order a − k, for any a < α.

(ii) If
∫

ec∥λ∥ dµ(λ) < ∞ for some c > 0, then W has a version with analytic sample paths.

Proof By the dominated convergence theorem, for any multi-indices j and h with
∑

l( jl +

hl) ≤ 2k,

D j
sD

h
t r(s, t) =

∫
(iλ) j(−iλ)heiλT (s−t) dµ(λ).

Furthermore, the right-hand side is Lipschitz in (s, t) of order α − k. Thus (i) follows from
Proposition 7.4.

For the proof of (ii) we note that the function r(s, t) =
∫

eiλT (s−t̄) dµ(λ) is now also well
defined for complex-valued s, t with absolute imaginary parts smaller than c/2 (and t̄ the
complex conjugate of t). The function is conjugate-symmetric and nonnegative-definite and
hence defines a covariance function of a (complex-valued) stochastic process (Wt: t ∈ T ),
indexed by T = {t ∈ C: | Im t| < c/2}. By an extension of Proposition 7.4 this can be seen to
have sample paths with continuous partial derivatives, which satisfy the Cauchy-Riemann
equations, and hence the process is differentiable on its complex domain. □
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The RKHS of a stationary process can be described in spectral terms. As before, we define
et:Rd → C by et(λ) = exp(iλT t).

Lemma 7.36. The RKHS of a centered, continuous, stationary Gaussian process with W =
(Wt: t ∈ [0, 1]d) spectral measure µ is the set of (real parts of) the functions (from [0, 1]d to
C)

t 7→
∫

eiλT tψ(λ) µ(dλ),

where ψ runs through the complex Hilbert space L2(µ). The RKHS-norm of the displayed
function equals the norm in L2(µ) of the projection of ψ onto the closed linear span of the
set of functions {et: t ∈ [0, 1]d} (or, equivalently, the infimum of ∥ψ∥L2(µ) over all functions ψ
giving the same function in the preceding display).

Proof By the spectral isometry (7.11), the first chaos lin(W) of W is isometric to the space
of functions L ′ ⊂ L2(µ) defined as the closure in L2(µ) of the linear span of the functions
{et: t ∈ [0, 1]d}. Since every element of H is of the form t 7→ EWtL for L ∈ L , using the
spectral isometry again shows that every element of H is of the form t 7→ ⟨et, ψ⟩2,µ, for
ψ ∈ L ′, and the RKHS-norm of such a function is given by the L2(µ)-norm of ψ.

Now let P: L2(µ) → L2(µ) be the orthogonal projection onto the closed subspace L ′.
Then for every ψ ∈ L2(µ), ⟨et, ψ⟩2,µ = ⟨Pet, ψ⟩2,µ = ⟨et, Pψ⟩2,µ. Hence t 7→ ⟨et, ψ⟩2,µ belongs
to H and its RKHS norm is given by the L2(µ)-norm of the projection Pψ. □

Matérn process
For d ∈ N and α > 0, the Matérn process on Rd with parameter α is defined as the centered
stationary process with spectral density

λ 7→
1(

1 + ∥λ∥2
)α+d/2 .

The parameter α describes the regularity of the process. For k the largest integer strictly
smaller than α, the spectral measure of the Matérn process W has a finite moment of order
2k, hence it is k times differentiable in mean-square sense.

Example 7.37. The Ornstein-Uhlenbeck process is the special instance of the Matérn pro-
cess, corresponding to the choices d = 1 and α = 1/2. Its covariance function can be
explicitly computed as

EWsWt =
σ2

2θ
e−θ|t−s|.

This process also has a representation as an integral relative to Brownian motion B, of the
form Wt = σ

∫ t

−∞
e−θ(t−s) dBs. This shows that its sample paths have the same regularity as

those of Brownian motion.

Lemma 7.38 (Small ball). The small ball exponent of the Matérn process W viewed as a
map in C[0, 1] satisfies, as ϵ ↓ 0,

φ0(ϵ) ≲ ϵ−d/α.
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Proof The Fourier transform of Hψ is, up to a constant, the function ϕ = ψm, if dµ(λ) =
m dλ. For ψ the choice of minimal norm in the definition of Hψ, this function satisfies∫ ∣∣∣ϕ(λ)

∣∣∣2(1 + ∥λ∥2)α+d/2 dλ = ∥Hψ∥2H.

In other words, the unit ball H1 of the RKHS is contained in a Sobolev ball of order α+ d/2.
The metric entropy relative to the uniform norm of such a Sobolev ball is bounded by a
constant times ϵ−d/(α+d/2), by Proposition 5.26. The lemma next follows from Lemma 7.12,
which characterizes the small ball probability in terms of the entropy of the RKHS-unit
ball. □

To estimate the infimum in the definition of the concentration function φw0 for a nonzero
response function w0, we approximate w0 by elements of the RKHS. The idea is to write w0

in terms of its Fourier inverse ŵ0 as, with dµ(λ) = m(λ) dλ,

w0(x) =
∫

eiλ⊤xŵ0(λ) dλ =
∫

eiλ⊤x ŵ0

m
(λ) dµ(λ). (7.12)

If ŵ0/m were contained in L2(µ), then w0 would be contained in the RKHS, with RKHS-
norm bounded by the L2(µ)-norm of ŵ0/m, i.e. the square root of

∫
(|ŵ0|

2/m)(λ) dλ. In gen-
eral this integral may be infinite, but we can remedy this by truncating the tails of ŵ0/m.

A natural a priori condition on the true response function w0: [0, 1]d → R is that this
function is contained in a Sobolev space of order β. The Sobolev space Wα[0, 1]d is here
defined as the set of functions w: [0, 1]d → R that are restrictions of a function w:Rd → R

with Fourier transform ŵ(λ) = (2π)−d
∫

eiλ⊤tw(t) dt such that

∥w∥22,2,α:=
∫ (

1 + ∥λ∥2
)α∣∣∣ŵ(λ)

∣∣∣2 dλ < ∞.

Roughly speaking, for integer α, a function belongs toWα([0, 1]d) if it has partial derivatives
up to order α that are all square integrable. This follows, because the αth derivative of a
function w has Fourier transform λ 7→ (iλ)αŵ(λ),

Lemma 7.39 (Decentering). If w0 ∈ C
β([0, 1]d)∩Wβ([0, 1]d) for β ≤ α, then the decentering

function of the Matérn process satisfies, for ϵ < 1,

inf
h:∥h−w0∥∞<ϵ

∥h∥2H ≲ ϵ
−(2α+d−2β)/β.

Proof Let κ:R→ R be a function with a real, symmetric Fourier transform κ̂, which equals
1/(2π) in a neighborhood of 0 and which has compact support. From κ̂(λ) = (2π)−1

∫
eiλtκ(t) dt

it then follows that
∫
κ(t) dt = 1 and

∫
(it)kκ(t) dt = 0 for k ≥ 1. For t = (t1, . . . , td), define

ϕ(t) = κ(t1) · · · κ(td). Then ϕ integrates to 1, has finite absolute moments of all orders, and
vanishing moments of all orders bigger than 0.

For σ > 0 set ϕσ(x) = σ−dϕ(x/σ) and h = ϕσ ∗ w0. Because ϕ is a higher order kernel,
standard arguments from the theory of kernel estimation show that ∥w0 − ϕσ ∗ w0∥∞ ≲ σ

β.
The Fourier transform of h is the function λ 7→ ĥ(λ) = ϕ̂(σλ)ŵ0(λ), and therefore, by
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(7.12),

∥h∥2H ≲
∫ ∣∣∣ϕ̂(σλ)ŵ0(λ)

∣∣∣2 1
m(λ)

dλ ≲ sup
λ

[(
1 + ∥λ∥2

)α+d/2−β∣∣∣ϕ̂(σλ)
∣∣∣2] ∥w0∥

2
2,2,β

≲ C(σ) sup
λ

[(
1 + ∥λ∥2

)α+d/2−β∣∣∣ϕ̂(λ)
∣∣∣2] ∥w0∥

2
2,2,β,

for

C(σ) = sup
λ

( 1 + ∥λ∥2

1 + ∥σλ∥2
)α+d/2−β

≲
( 1
σ

)2α+d−2β
,

if σ ≤ 1. The assertion of the lemma follows upon choosing σ ∼ ϵ1/β. □

It follows that the rate equation φw0 (ϵn) ≤ nϵ2
n has the minimal solution ϵn ≍ n−β/(2α+d), for

β ≤ α. Thus again the rate is minimax if and only if prior and smoothness match.

Squared exponential process
The squared exponential process is the zero-mean Gaussian process with covariance func-
tion

EWsWt = e−∥s−t∥2 , s, t ∈ Rd.

Its spectral measure can be found using the fact that the Fourier transform of the Gaussian
density is Gaussian. Specifically, the spectral measure has density

λ 7→
1

2dπd/2 e−∥λ∥
2/4.

The sample paths of the squared exponential process are analytic. This makes the centered
small ball probability of this process much larger than that of the processes considered so
far: it is nearly “parametric.”

Lemma 7.40 (Small ball). The small ball exponent of the square exponential process viewed
as a map in C([0, 1]d) satisfies, for a constant C depending only on d, as ϵ ↓ 0,

φ0(ϵ) ≤ C
(
log− ϵ

)1+d/2
.

Lemma 7.41 (Decentering). If w0 ∈ W
β([0, 1]d) for β > d/2, then the concentration function

of the square exponential process satisfies, for ϵ < 1, a constant C that depends only on w0,

inf
h:∥h−w0∥∞<ϵ

∥h∥2H ≲ exp
(
Cϵ−2/(β−d/2)).

Proofs Every function Hψ in the (complex) RKHS as described in Lemma 7.36 can be
extended to an entire function Hψ:C → C defined by Hψ(z) =

∫
e⟨λ,z⟩ψ(λ) dµ(λ). If the

function Hψ is contained in the unit ball of the RKHS, then ∥ψ∥2,µ ≤ 1, and an application
of the Cauchy-Schwarz inequality gives that |Hψ(z)|2 ≤

∫
e2∥λ∥ |z| dµ(λ) ≤ e2C|z|2 , for some

universal constant C. In particular, the functions Hψ can be extended to analytic functions
on the strip {z ∈ C: ∥z∥∞ ≤ A} that are uniformly bounded by eCA2

, for any A. It follows by
Proposition 5.27 that N

(
ϵ,H1, ∥ · ∥∞

)
≤ A−d log(eCA2

/ϵ)1+d. Choosing A of the order log− ϵ
leads to the bound N

(
ϵ,H1, ∥ · ∥∞

)
≤ (log− ϵ)

1+d/2.
The first lemma now follows from the characterization of the small ball exponent by the

entropy of the RKHS unit ball, Lemma 7.12.
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Figure 7.4 Three realizations of the squared exponential process.

For given K > 0 let ψ(λ) = (ŵ0/m)(λ)1∥λ∥≤K , for m the density in (7.6). The function Hψ
satisfies

∥Hψ − w0∥∞ ≤

∫
∥λ∥>K

|ŵ0(λ)| dλ ≤ ∥w0∥
[∫
∥λ∥>K

(
1 + ∥λ∥2

)−β dλ
]1/2

≲ ∥w0∥2,2,βK−(β−d/2).

Furthermore, the squared RKHS-norm of Hψ is given by

∥Hψ∥2H =
∫
∥λ∥≤K

|ŵ0|
2

m
(λ) dλ ≤ sup

∥λ∥≤K

[
m(λ)−1(1 + ∥λ∥2)−β] ∥w0∥

2
2,2,β ≲ eK2/4∥w0∥

2
2,2,β.

We conclude the proof by choosing K ≍ ϵ−1/(β−d/2). □

Combining the preceding we see that the concentration function of the square exponential
process satisfies

φw0 (ϵ) ≲ exp
(
Cϵ−2/(β−d/2)) + (

log− ϵ
)1+d/2

.

The first term (decentering function) dominates the second (centered small ball exponent)
for any β > 0, and the contraction rate for a β-smooth function satisfies ϵn ≍ (log n)−(β/2−d/4).
This extremely slow rate is the result of the discrepancy between the infinite smoothness of
the prior and the finite smoothness of the true parameter. A remedy for this mismatch is to
rescale the sample paths and is discussed in Section 7.7.
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7.7 Mixtures of Gaussian processes

In the preceding it was seen that changing the length scale of a Gaussian prior may adapt this
prior better to a true target function of a given regularity. Because the latter true regularity
is usually not known, it is attractive to change the length scale in a way that can adapt to
the data. In the Bayesian setup the most attractive method is to choose the length scale itself
from a prior. The resulting prior will not be Gaussian, but a mixture of Gaussians.

Consider a stationary Gaussian process W = (Wt: t ∈ Rd) with spectral density with ex-
ponentially small tails, so that the process has analytic sample paths. Rather than scaling the
process deterministically, consider the process WA = (WAt: t ∈ [0, 1]d), for A a random vari-
able independent of W. The resulting prior is a mixture of Gaussian processes. Specifically
we study the case that the variable Ad follows a gamma distribution. The parameters of this
gamma distribution are inessential, and the gamma distribution can be replaced by another
distribution with tails of the same weights, but the power d in Ad appears important.

The following theorem gives the contraction rate for the prior process WA in the abstract
setting of a mixed Gaussian prior, and may be compared with Theorem 7.13. The theo-
rem can be translated to contraction rates in concrete settings, such as density estimation,
classification, and regression, in the same way as Theorems 7.14–7.16 are derived from
Theorem 7.13. The theorem gives the existence of sets Bn and rates ϵn and ϵ̄n such that

log N
(
ϵn, Bn, ∥ · ∥

)
≤ nϵ2

n , (7.13)

Pr(WA < Bn) ≤ e−4nϵ̄2
n , (7.14)

Pr
(
∥WA − w0∥ ≤ ϵ̄n

)
≥ e−nϵ̄2

n . (7.15)

The rates are specified for two situations: the ordinary smooth case, where the true function
w0 belongs to a Hölder class, and the super-smooth case, where w0 is analytic. The following
theorem shows that choosing the length scale according to dth root of a gamma variable,
leads to near optimal rate of contraction in both worlds.

Theorem 7.42 (Mixed Gaussian contraction rate). If (Wt: t ∈ Rd) is a stationary Gaussian
process with spectral density m such that a 7→ m(aλ) is decreasing on (0,∞), for every
λ ∈ Rd, and

∫
eδ∥λ∥m(λ) dλ < ∞, for some δ > 0, and Ad is an independent gamma variable,

then there exist measurable sets Bn ⊂ C([0, 1]d) such that (7.13)–(7.15) hold for the process
WA

t = WAt and ϵn and ϵ̄n defined as follows.

(i) If w0 ∈ C
β([0, 1]d), then ϵ̄n ≍ n−β/(2β+d)(log n)(1+d)β/(2β+d) and ϵn ≍ ϵ̄n(log n)(1+d)/2.

(ii) If w0 is the restriction of a function in Aγ,r(Rd) to [0, 1]d and m(λ) ≥ C3 exp(−D3∥λ∥
ν)

for constants C3,D3, ν > 0, then ϵ̄n ≍ n−1/2(log n)(d+1)/2 and ϵn ≍ ϵ̄n(log n)κ, where κ = 0
for r ≥ ν, and κ = d/(2r) for r < ν.

7.8 Complements

7.8.1 Random elements in the space of uniformly continuous functions
Let T be a totally bounded metric space, with metric denoted by ρ, and assume that W is a Gaussian
process with uniformly continuous sample paths.

The set UC(T, ρ) of uniformly continuous functions z: T → R is a separable Banach space under



164 Gaussian Process Priors

the uniform norm ∥·∥. A stochastic process (Wt: t ∈ T ) with uniformly continuous sample paths can be
viewed as a map W:Ω→ UC(T, ρ). By the next lemma this map is automatically measurable relative
to the Borel σ-field on UC(T, ρ).

Lemma 7.43. Let (T, ρ) be a totally bounded metric space and W a stochastic process whose sample
paths t 7→ Wt(ω) belong to UC(T, ρ). Then the map W: (Ω,U ) → UC(T, ρ) is measurable relative to
the Borel σ-field relative to the uniform norm on UC(T, ρ).

Proof Because the space UC(T, ρ) is separable under the uniform norm, every open set is a countable
union of open, and then also of closed, balls. (Take the balls centered at the points of a countable dense
set with rational radius.) Therefore it suffices to show that the inverse image under W of an arbitrary
closed ball is measurable. For a countable, dense subset D ⊂ T , continuity of the sample paths of W
implies that {

ω:
∥∥∥W(ω)

∥∥∥ ≤ a
}
=

⋂
t∈D

{
ω: |Wt(ω)| ≤ a

}
.

Every set appearing on the right is in U , since every Wt is a random variable. Since the intersection
is countable, it follows that the left-hand side belongs to U as well. □

The coordinates Wt of a Borel measurable map W:Ω→ UC(T, ρ) are clearly random variables, by
the continuity and hence measurability of the projections z 7→ z(t). Thus the converse of the preceding
lemma is true as well, so that stochastic processes with uniformly continuous sample paths and random
elements in UC(T, ρ) are identical objects.

7.8.2 Regular versions of stochastic processes
A minimal regularity property of a stochastic process is separability. Roughly speaking, the behavior
of a separable process over the whole index set is determined by its behavior on a countable subset.

Definition 7.44. Let (Xt: t ∈ T ) be a stochastic process indexed by a topological space T , with state
space (E,E), where E is a topological space and E is its Borel σ-field. The process is called separable
if there exists an event N with Pr(N) = 0 and a countable set S ⊂ T such that for all open U ⊂ T and
closed F ⊂ E, the subsets

⋂
t∈U {Xt ∈ F} and

⋂
t∈S∩U {Xt ∈ F} of the underlying outcome space differ

by at most a subset of N. Any countable set S with the stated property is called a separability set.

The definition immediately implies that for a separable process X indexed by T and defined on a
complete probability space, the set

⋂
t∈U {Xt ∈ F} is a measurable event for every open U ⊂ T and

closed F ⊂ E. If the process is real-valued we have in particular that for every b ∈ R,{
sup
t∈T

Xt ≤ b
}
=

⋂
t∈T

{Xt ≤ b}

is measurable, and hence supt∈T Xt is a well-defined random variable. Moreover, it is a.s. equal to
supt∈T∩S Xt. Similarly, the variables inf Xt, sup |Xt | and inf |Xt | are measurable as well.

Another useful consequence of separability is that to show that a real-valued separable process X
vanishes identically with probability one, it suffices to show that Xt = 0 a.s. for every t in a sep-
arability set S . Indeed, suppose that Xt = 0 a.s., for all t ∈ S . Then

⋂
t∈S {Xt = 0} has probabil-

ity one. By separability the event
⋂

t∈T {Xt = 0} is measurable and has probability one as well, i.e.
Pr(Xt = 0 for all t ∈ T ) = 1.

In addition to separability it is useful to know whether a stochastic process X is measurable as
function of the pair (ω, t). By Fubini’s theorem this implies for instance that the sample paths of the
process are measurable functions.
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Definition 7.45. Let X be a real-valued process indexed by a metric space (T, d), defined on (Ω,U ,Pr).
Let B(T ) be the Borel σ-field of T . The process X is called (Borel) measurable, if the map from
(Ω × T,U × B(T )) to (R,B(R)) given by (ω, t) 7→ Xt(ω) is measurable.

A process X indexed by a metric space (T, d) is called continuous in probability if for all s ∈ T ,
Xt → Xs in probability if d(t, s)→ 0. The following theorem says that a process admits a measurable
and separable modification if it is continuous in probability. Note that this property only depends on
the fdds of the process X.

Theorem 7.46. Let X be a real-valued process indexed by a separable metric space (T, d). If the
process is continuous in probability, it admits a Borel measurable, separable version, which may take
the value∞. Any countable, dense subset of (T, d) is a separability set.

The product σ-field on RT is the smallest σ-field containing all sets of the form {x ∈ RT : xt ∈ B},
for a Borel set B ⊂ R and t ∈ T .

Proposition 7.47. A map W: (Ω,U ) → RT is measurable relative to the product σ-field if and only
if all coordinate maps Wt: (Ω,U )→ R are measurable.

Proposition 7.48 (Kolmogorov’s continuity criterion). If X is a real-valued process indexed by a
compact interval T ⊂ R such that there exist constants p, q,C > 0 with E|Xt − Xs|

p ≤ C|t − s|1+q,
for every s, t ∈ T, then X admits a continuous modification with sample paths that are almost surely
Hölder continuous of order α for every α < q/p.

7.8.3 Wiener integrals
One way to construct new processes from a Brownian motion W is to integrate functions relative to
W, that is, to consider integrals of the form

∫
f dW. However, since the sample paths of W are very

rough, these integrals can not be defined path-wise in the ordinary Lebesgue-Stieltjes sense. The way
out is to define them via a Hilbert space isometry. In general this leads to integrals that are not defined
path-wise, but only in an L2-sense.

To have more flexibility we define integrals with respect to a two-sided Brownian motion. Let
W1 and W2 be two independent Brownian motions. Construct a two-sided Brownian motion W =

(Wt: t ∈ R), emanating from 0, by setting

Wt =

W1
t if t ≥ 0,

W2
−t if t < 0.

For real numbers t0 < · · · < tn and a1, . . . , an, consider the simple function f =
∑

ak1(tk−1,tk]. We define
the “integral” of f relative to W in the obvious way by setting∫

f dW =
∑

ak(Wtk −Wtk−1 ).

Using the basic properties of the Brownian motion it is straightforward to verify that for two simple
functions f , g, we have

E
( ∫

f dW
)( ∫

g dW
)
=

∫
R

f (x)g(x) dx. (7.16)

In other words, the linear map f 7→
∫

f dW is an isometry from the collection of simple functions
in L2(R) into L2(Pr). Since the simple functions are dense in L2(R), the map can be extended to the
whole space L2(R). This defines

∫
f dW for all f ∈ L2(R).



166 Gaussian Process Priors

Note that by construction the integral is almost surely unique. It is a centered Gaussian random
variable and the isometry relation (7.16) holds for all f , g ∈ L2(R).

Definition 7.49. We call
∫

f dW the Wiener integral of f relative to W. If f ∈ L2(R) and t ≥ s, we
write

∫ t
s f (u) dWu for

∫
1(s,t] f dW.

Under appropriate conditions, some of the usual calculus rules still hold for the Wiener integral, in
particular a version of Fubini’s theorem and the integration by parts formula. Recall that we say that
f : [s, t]→ R is of bounded variation if

var f = sup
∑
| f (tk) − f (tk−1)|

is finite, where the supremum is over all finite partitions of [s, t]. Note that such a function is neces-
sarily square integrable on [s, t].

Proposition 7.50. (i) (Fubini for Wiener integrals) Let (S ,Σ, µ) be a finite measure space and f ∈
L2(Leb × µ). Then it almost surely holds that∫ (∫

f (u, v) dWu
)
µ(dv) =

∫ (∫
f (u, v) µ(dv)

)
dWu.

(ii) (Integration by parts) If t ≥ s and f : [s, t]→ R is of bounded variation, then∫ t

s
f (u) dWu = Wt f (t) −Ws f (s) −

∫ t

s
Wu d f (u)

almost surely.

Proof (i). If f is a simple function of the form f =
∑

ai1Ii×Ei , for real numbers ai, intervals Ii and
Ei ∈ Σ, the statement is trivially true. For a general f ∈ L2(Leb× µ), there exists a sequence of simple
fn of the form just described such that fn → f in L2(Leb × µ). Then by Jensen’s inequality,∫ (∫

fn(u, v) µ(dv) −
∫

f (u, v) µ(dv)
)2

du ≤ ∥ fn − f ∥2L2
→ 0.

Hence, by definition of the Wiener integral,∫ (∫
fn(u, v) µ(dv)

)
dWu →

∫ (∫
f (u, v) µ(dv)

)
dWu

in L2(Pr). On the other hand, the convergence ∥ fn − f ∥2L2
→ 0 implies that there exists a subsequence

n′ and a set S ′ ⊂ S of full µ-measure such that∫
( fn′ (u, v) − f (u, v))2 du→ 0

for all v ∈ S ′. Again by definition of the Wiener integral it follows that for v ∈ S ′,∫
fn′ (u, v) dWu →

∫
f (u, v) dWu

in L2(Pr). First, this implies that there is a further subsequence along the convergence takes place
almost surely. Hence, since the left-hand side is a measurable function of v, so is the right-hand side.
Second, by Jensen and the ordinary Fubini theorem we have

E
( ∫ ( ∫

fn′ (u, v) dWu
)
µ(dv) −

∫ (∫
f (u, v) dWu

)
µ(dv)

)2
→ 0.

(ii). The function f can be written as the difference of two non-decreasing, cadlag functions on [s, t].
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Hence it suffices to prove the statement under the assumption that f itself is such a non-decreasing
function, so that d f is an ordinary Lebesgue-Stieltjes measure. By (i), we then have, a.s.,∫ t

s
Wu d f (u) =

∫ t

s

( ∫ s

0
dWv

)
d f (u) +

∫ t

s

( ∫ u

s
dWv

)
d f (u)

= ( f (t) − f (s))Ws +

∫ t

s
( f (t) − f (u)) dWu.

Rearranging gives the equality we have to prove. □

7.8.4 Bochner’s theorem
A function f :Rd → R is called positive definite if for all a1, . . . , an ∈ R and t1, . . . , tn ∈ Rd,∑∑

aia j f (ti − t j) ≥ 0.

Bochner’s theorem asserts that among the continuous functions on Rd, the positive definite ones are
precisely the Fourier transforms of finite measures.

Theorem 7.51 (Bochner). A continuous function f on Rd is positive definite if and only there exists a
finite Borel measure µ such that

f (t) =
∫

eiλT t µ(dλ), t ∈ Rd.

A collection of functions F ⊂ C[0, 1]d is called uniformly bounded if sup f∈F ∥ f ∥∞ < ∞. It is
called uniformly equicontinuous is for all ϵ > 0, there exists a δ > 0 such that ∥s − t∥ < δ implies that
| f (s) − f (t)| ≤ ϵ for all s, t ∈ [0, 1]d and f ∈ F .

Theorem 7.52 (Arzelà-Ascoli). The set F ⊂ C[0, 1]d is pre-compact if and only if it is uniformly
bounded and uniformly equicontinuous.

Theorem 7.53. (Hahn-Banach) Let W be a linear subspace of a normed linear space V. If every
bounded linear functional on V that vanishes on W, vanishes on the whole space V, then W is dense
in V.

Lemma 7.54 (Cameron-Martin). The measures PW and PW+h are equivalent Borel measures if and
only if h ∈ H. In this case a Radon-Nikodym density given by

dPW+h

dPW (W) = eUh− 1
2 ∥h∥

2
H .

Sketch of proof The process W can be written as W =
∑

Zihi, for Zi = Uhi independent, standard
normal variables and the hi an orthonormal basis of the RKHS H. The convergence of the series takes
place in C[0, 1]d almost surely. The function h ∈ H admits an expansion h =

∑
cihi for some c ∈ ℓ2.

The series converges in H, but it converges in C[0, 1]d as well, as the RKHS-norm is stronger. We can
thus write W + h =

∑
(Zi + ci)hi, convergence taking place in C[0, 1]d.

It can be proved that W and W + h are measurable functions of the sequences Z and Z + c, respec-
tively. This implies that to prove the equivalence of the laws PW and PW+h it suffices to show that the
laws of the sequences Z and Z + c are equivalent measures on the sequence space R∞. Now for a fixed
i, the squared Hellinger distance (see (5.3)) between the laws of Zi and Zi + ci equals

1 − e−
1
8 c2

i ≤ 1
8 c2

i .

Since c ∈ ℓ2, Theorem 7.55 yields the equivalence of the laws.
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The ratio of the densities of Zi and Zi + ci at the point zi is given by exp((zici − c2
i /2)). Therefore,

the Radon-Nikodym derivative of the law of Z + c relative to the law of Z at the point Z = (Z1,Z2, . . .)
is given by

∞∏
i=1

eciZi−
1
2 c2

i = e
∑

ciZi−
1
2
∑

c2
i .

This completes the proof, since Uh =
∑

ciZi and
∑

c2
i = ∥h∥

2
H. □

In the following theorems, h denotes the Hellinger distance between densities (see (5.3)).

Theorem 7.55 (Kakutani). Let X = (X1, X2, . . .) and Y = (Y1,Y2, . . .) be two sequences of independent
random variables. Assume Xi has a positive density fi with respect to a dominating measure µ, and
Yi has a positive density gi with respect to µ. Then the laws of the sequences X and Y are equivalent
probability measures on R∞ if and only if

∞∑
i=1

h2( fi, gi) < ∞.

If the laws are not equivalent, they are mutually singular.

7.8.5 Miscellaneous results
Lemma 7.56. If the vector (X,Y)T possesses a multivariate normal distribution(X

Y

)
∼ N

((µ
ν

)
,
( R C
CT S

))
,

with R nonsingular, then Y | X ∼ N
(
ν + A(X − µ), S − ARAT )

, for A = CT R−1.

Proof We can reduce to the case µ = ν = 0 by considering the conditional distribution of Y − ν
given X − µ. Because E(Y − AX)XT = CT − AR = 0, by the definition of A, the vector (X,Y − AX)
is multivariate normal with mean zero and cov(Y − AX, X) = 0. Properties of the multivariate normal
distribution imply that Y−AX and X are independent. It follows that Y = (Y−AX)+AX is conditionally
given X = x distributed as (Y − AX)+ Ax, where Y − AX follows its unconditional distribution, which
is normal with covariance matrix S − ARAT . □

Exercises
7.1 Derive the updating formulas for the mean and covariance function in the context of Section 7.3.
7.2 Prove that there exists a stochastic process W that satisfies conditions (i)–(iii) of Definition 7.19.
7.3 Prove that there exists a stochastic process W that satisfies conditions (i)–(iv) of Definition 7.19.
7.4 Verify (7.10).
7.5 Show that the Riemann-Liouville process Rα with parameter α > 0 is self-similar: for c > 0,

the process (c−αRct: t ≥ 0) is again a Riemann-Liouville process with parameter α.
7.6 Prove that the Ornstein-Uhlenbeck process admits a version that is locally Hölder continuous

of every order strictly less than 1/2.
7.7 Show that the Ornstein-Uhlenbeck process satisfies the integral equation

Xt − X0 = −θ

∫ t

0
Xs ds + σWt, t ≥ 0,

almost surely.
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7.8 Verify the posterior computations in Section 7.3.
7.9 Prove that the first chaos of the Brownian motion W = (Wt: t ∈ [0, 1]) can be identified with the

collection of Wiener integrals {
∫ 1

0 f (u) dWu: f ∈ L2[0, 1]}.
7.10 Prove that a Gaussian process with continuous sample paths is mean-square continuous.
7.11 Prove that the RKHS is a separable Hilbert space.
7.12 Determine the support of the Brownian motion indexed by [0, 1].
7.13 Determine the RKHS of integrated Brownian motion.
7.14 Determine the RKHS and the RKHS-norm of the Brownian motion with standard normal initial

distribution.
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