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LITERATURE

There are very many books on the topics of the course. The list below is a
small selection.

Discrete martingales are discussed in most advanced introductions to
general probability theory. The book by David Williams is particularly close
to our presentation.

For an introduction to stochastic integration we prefer the book by
Chung and Williams (Ruth Williams this time). It has introductions to
most of the important topics and is very well written. The two volumes by
Rogers and Williams (David again) are a classic, but they are not easy and
perhaps even a bit messy at times. The book by Karatzas and Shreve is
more accessible, and good if you like the details. The book by Revuz and
Yor has a wider scope on stochastic processes. Unlike Chung and Williams
or Rogers and Williams the latter two books are restricted to martingales
with continuous sample paths, which obscures some interesting aspects, but
also makes some things easier.

The theory of stochastic integration and much of the theory of abstract
stochastic processes was originally developed by the “french school”, with
Meyer as the most famous proponent. Few people can appreciate the fairly
abstract and detailed original books (Look for Dellacherie and Meyer, vol-
umes 1, 2, 3, 4). The book by Elliott is in this tradition, but somewhat more
readable. The first chapter of Jacod and Shiryaev is an excellent summary
and reference, but is not meant for introductory reading.

The book by Øksendal is a popular introduction. It does not belong to
my personal favourites.

The book by Stroock and Varadhan is a classic on stochastic differen-
tial equations and particularly important as a source on the “martingale
problem”.

There are also many books on financial calculus. Some of them are
written from the perspective of differential equations. Then Brownian mo-
tion is reduced to a process such that (dBt)

2 = dt. The books mentioned
below are of course written from a probabilistic point of view. Baxter and
Rennie have written their book for a wide audience. It is interesting how
they formulate “theorems” very imprecisely, but never wrong. It is good
to read to get a feel for the subject. Karatzas and Shreve, and Kopp and
Elliott have written rigorous mathematical books that give you less feel,
but more theorems.
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EXAM

The written exam will consist of problems as in these notes, questions to
work out examples as in the notes or variations thereof, and will require
to give precise definitions and statements of theorems plus a numbers of
proofs.

The requirements for the oral exam are the same. For a very high mark
it is, of course, necessary to know everything.

Very important is to be able to give a good overview of the main points
of the course and their connections.

Starred sections or lemmas in the lecture notes can be skipped com-
pletely. Starred exercises may be harder than other exercises.

Proofs to learn by heart:
2.13, 2.43, 2.44 for p = 2.
4.22, 4.23, 4.27, 4.29.
5.23, 5.26(i)-(iii), 5.45, 5.53 case that M is continuous, 5.60, 5.64, 5.113,

5.85.
6.1, 6.9(ii),
7.8 case that Eξ2 <∞ and (7.6) holds for every x, y, 7.15.
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Measure Theory

In this chapter we review or introduce a number of results from measure
theory that are especially important in the following.

1.1 Conditional Expectation

Let X be an integrable random variable defined on the probability space
(Ω,F ,P). In other words X: Ω 7→ R is a measurable map (relative to F and
the Borel sets on R) with E|X| <∞.

1.1 Definition. Given a sub σ-field F0 ⊂ F the conditional expectation
of X relative to F0 is a F0-measurable map X ′: Ω 7→ R such that

(1.2). EX1F = EX ′1F , for every F ∈ F0,

The random variable X ′ is denoted by E(X| F0).

It is clear from this definition that any other F0-measurable map
X ′′: Ω 7→ R such that X ′ = X ′′ almost surely is also a conditional expec-
tation. In the following theorem it is shown that conditional expectations
exist and are unique, apart from this indeterminacy on null sets.

1.3 Theorem. Let X be a random variable with E|X| < ∞ and F0 ⊂ F
a σ-field. Then there exists an F0-measurable map X ′: Ω 7→ R such that
(1.2) holds. Furthermore, any two such maps X ′ agree almost surely.

Proof. If X ≥ 0, then on the σ-field F0 we can define a measure µ(F ) =∫
F
X dP. Clearly this measure is finite and absolutely continuous relative

to the restriction of P to F0. By the Radon-Nikodym theorem there exists
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an F0-measurable function X ′, unique up to null sets, such that µ(F ) =∫
F
X ′ dP for every F ∈ F0. This is the desired map X ′. For a general X we

apply this argument separately to X+ and X− and take differences.
Suppose that E(X ′ − X ′′)1F = 0 for every F in a σ-field for which

X ′ − X ′′ is measurable. Then we may choose F = {X ′ > X} to see that
the probability of this set is zero, because the integral of a strictly positive
variable over a set of positive measure must be positive. Similarly we see
that the set F = {X ′ < X ′′} must be a null set. Thus X ′ = X ′′ almost
surely.

The definition of a conditional expectation is not terribly insightful,
even though the name suggests an easy interpretation as an expected value.
A number of examples will make the definition clearer.

A measurable map Y : Ω 7→ (D,D) generates a σ-field σ(Y ). We use the
notation E(X|Y ) as an abbreviation of E(X|σ(Y )).

1.4 Example (Ordinary expectation). The expectation EX of a random
variable X is a number, and as such can of course be viewed as a degenerate
random variable. Actually, it is also the conditional expectation relative to
the trivial σ-field F0 = {∅,Ω}. More generally, we have that E(X| F0) = EX
if X and F0 are independent. In this case F0 gives “no information” about
X and hence the expectation given F0 is the “unconditional” expectation.

To see this note that E(EX)1F = EXE1F = EX1F for every F such
that X and F are independent.

1.5 Example. At the other extreme we have that E(X| F0) = X if X itself
is F0-measurable. This is immediate from the definition. “Given F0 we then
know X exactly.”

1.6 Example. Let (X,Y ): Ω 7→ R× Rk be measurable and possess a den-
sity f(x, y) relative to a σ-finite product measure µ × ν on R × Rk (for
instance, the Lebesgue measure on Rk+1). Then it is customary to define a
conditional density of X given Y = y by

f(x| y) =
f(x, y)∫

f(x, y) dµ(x)
.

This is well defined for every y for which the denominator is positive, i.e.
for all y in a set of measure one under the distribution of Y .

We now have that the conditional expection is given by the “usual
formula”

E(X|Y ) =

∫
xf(x|Y ) dµ(x),

where we may define the right hand zero as zero if the expression is not
well defined.
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That this formula is the conditional expectation according to the ab-
stract definition follows by a number of applications of Fubini’s theorem.
Note that, to begin with, it is a part of the statement of Fubini’s theorem
that the function on the right is a measurable function of Y .

1.7 Example (Partitioned Ω). If F0 = σ(F1, . . . , Fk) for a partition Ω =
∪ki=1Fi, then

E(X| F0) =

k∑
i=1

E(X|Fi)1Fi ,

where E(X|Fi) is defined as EX1Fi/P(Fi) if P(Fi) > 0 and arbitrary oth-
erwise. Thus the conditional expectation is constant on every of the parti-
tioning sets Fi (as it needs to be to be F0-measurable) and the constant
values are equal to the average values of X over these sets.

The validity of (1.2) is easy to verify for F = Fj and every j. And then
also for every F ∈ F0 by taking sums, since every F ∈ F0 is a union of a
number of Fj ’s.

This example extends to σ-fields generated by a countable partition of
Ω. In particular, E(X|Y ) is exactly what we would think it should be if Y
is a discrete random variable.

A different perspective on an expectation is to view it as a best predic-
tion if “best” is defined through minimizing a second moment. For instance,
the ordinary expectation EX minimizes µ 7→ E(X−µ)2 over µ ∈ R. A con-
ditional expectation is a best prediction by an F0-measurable variable.

1.8 Lemma (L2-projection). If EX2 < ∞, then E(X| F0) minimizes
E(X − Y )2 over all F0-measurable random variables Y .

Proof. We first show that X ′ = E(X| F0) satisfies EX ′Z = EXZ for every
F0-measurable Z with EZ2 <∞.

By linearity of the conditional expectation we have that EX ′Z = EXZ
for every F0-simple variable Z. If Z is F0-measurable with EZ2 < ∞,
then there exists a sequence Zn of F0-simple variables with E(Zn −Z)2 →
0. Then EX ′Zn → EX ′Z and similarly with X instead of X ′ and hence
EX ′Z = EXZ.

Now we decompose, for arbitrary square-integrable Y ,

E(X − Y )2 = E(X −X ′)2 + 2E(X −X ′)(X ′ − Y ) + E(X ′ − Y )2.

The middle term vanishes, because Z = X ′ − Y is F0-measurable and
square-integrable. The third term on the right is clearly minimal for X ′ =
Y .
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1.9 Lemma (Properties).
(i) EE(X| F0) = EX.

(ii) If Z is F0-measurable, then E(ZX| F0) = ZE(X| F0) a.s.. (Here require
that X ∈ Lp(Ω,F ,P) and Z ∈ Lq(Ω,F ,P) for 1 ≤ p ≤ ∞ and p−1 +
q−1 = 1.)

(iii) (linearity) E(αX + βY | F0) = αE(X| F0) + βE(Y | F0) a.s..
(iv) (positivity) If X ≥ 0 a.s., then E(X| F0) ≥ 0 a.s..
(v) (towering property) If F0 ⊂ F1 ⊂ F , then E

(
E(X| F1)| F0) = E(X| F0)

a.s..
(vi) (Jensen) If φ:R 7→ R is convex, then E(φ(X)| F0) ≥ φ

(
E(X| F0)

)
a.s..

(Here require that φ(X) is integrable.)
(vii) ‖E(X| F0)‖p ≤ ‖X‖p (p ≥ 1).

* 1.10 Lemma (Convergence theorems).
(i) If 0 ≤ Xn ↑ X a.s., then 0 ≤ E(Xn| F0) ↑ E(X| F0) a.s..

(ii) If Xn ≥ 0 a.s. for every n, then E(lim inf Xn| F0) ≤ lim inf E(Xn| F0)
a.s..

(iii) If |Xn| ≤ Y for every n and and integrable variable Y , and Xn
as→ X,

then E(Xn| F0) as→ E(X| F0) a.s..

The conditional expectation E(X|Y ) given a random vector Y is by
definition a σ(Y )-measurable function. For most Y , this means that it is a
measurable function g(Y ) of Y . (See the following lemma.) The value g(y)
is often denoted by E(X|Y = y).

Warning. Unless P(Y = y) > 0 it is not right to give a meaning to
E(X|Y = y) for a fixed, single y, even though the interpretation as an
expectation given “that we know that Y = y” often makes this tempting.
We may only think of a conditional expectation as a function y 7→ E(X|Y =
y) and this is only determined up to null sets.

1.11 Lemma. Let {Yα:α ∈ A} be random variables on Ω and let X be a
σ(Yα:α ∈ A)-measurable random variable.
(i) If A = {1, 2, . . . , k}, then there exists a measurable map g:Rk 7→ R

such that X = g(Y1, . . . , Yk).
(ii) If |A| = ∞, then there exists a countable subset {αn}∞n=1 ⊂ A and a

measurable map g:R∞ 7→ R such that X = g(Yα1
, Yα2

, . . .).

1.2 Uniform Integrability

In many courses on measure theory the dominated convergence theorem
is one of the best results. Actually, domination is not the right concept,
uniform integrability is.
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1.12 Definition. A collection {Xα:α ∈ A} of random variables is uni-
formly integrable if

lim
M→∞

sup
α∈A

E|Xα|1|Xα|>M = 0.

1.13 Example. A finite collection of integrable random variables is uni-
formly integrable.

This follows because E|X|1|X|>M → 0 as M → ∞ for any integrable
variable X, by the dominated convergence theorem.

1.14 Example. A dominated collection of random variables is uniformly
integrable: if |Xα| ≤ Y and EY < ∞, then {Xα:α ∈ A} is uniformly
integrable.

To see this note that |Xα|1|Xα|>M ≤ Y 1Y >M .

1.15 Example. If the collection of random variables {Xα:α ∈ A} is
bounded in L2, then it is is uniformly integrable.

This follows from the inequality E|X|1|X|>M ≤ M−1EX2, which is
valid for any random variable X.

Similarly, it suffices for uniform integrability that supα E|Xα|p < ∞
for some p > 1.

1.16 EXERCISE. Show that a uniformly integrable collection of random
variables is bounded in L1(Ω,F ,P).

1.17 EXERCISE. Show that any converging sequence Xn in L1(Ω,F ,P) is
uniformly integrable.

1.18 Theorem. Suppose that {Xn:n ∈ N} ⊂ L1(Ω,F ,P). Then E|Xn −
X| → 0 for some X ∈ L1(Ω,F ,P) if and only if Xn

P→ X and {Xn:n ∈ N}
is uniformly integrable.

Proof. We only give the proof of “if”. (The main part of the proof in the
other direction is the preceding exercise.)

If Xn
P→ X, then there is a subsequence Xnj that converges almost

surely to X. By Fatou’s lemma E|X| ≤ lim inf E|Xnj |. If Xn is uniformly
integrable, then the right side is finite and hence X ∈ L1(Ω,F ,P).

For any random variables X and Y and positive numbers M and N ,

(1.19)
E|X|1|Y |>M ≤ E|X|1|X|>N1|Y |>M +NP

(
|Y | > M

)
≤ E|X|1|X|>N +

N

M
E|Y |1|Y |>M .

Applying this with M = N and (X,Y ) equal to the four pairs that can be
formed of Xn and X we find, for any M > 0,

E|Xn −X|(1|Xn|>M + 1|X|>M ) ≤ 2E|Xn|1|Xn|>M + 2E|X|1|X|>M .
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We can make this arbitrarily small by making M sufficiently large. Next,
for any ε > 0,

E|Xn −X|1|Xn|≤M,|X|≤M ≤ ε+ 2MP
(
|Xn −X| > ε

)
.

As n → ∞ the second term on the right converges to zero for every fixed
ε > 0 and M .

1.20 EXERCISE. If {|Xn|p:n ∈ N} is uniformly integrable (p ≥ 1) and
Xn

P→ X, then E|Xn −X|p → 0. Show this.

1.21 Lemma. If X ∈ L1(Ω,F ,P), then the collection of all conditional ex-
pectations E(X| F0) with F0 ranging over all sub σ-fields of F is uniformly
integrable.

Proof. By Jensen’s inequality |E(X| F0)| ≤ E(|X| | F0) almost surely. It
therefore suffices to show that the conditional expectations E(|X| | F0) are
uniformly integrable. For simplicity of notation suppose that X ≥ 0.

With X ′ = E(X| F0) and arguing as in (1.19) we see that

EX ′1X′>M = EX1X′>M ≤ EX1X>N +
N

M
EX ′.

We can make the right side arbitrarily small by first choosing N and next
M sufficiently large.

We conclude with a lemma that is sometimes useful.

1.22 Lemma. Suppose that Xn and X are random variables such that
Xn

P→ X and lim sup E|Xn|p ≤ E|X|p <∞ for some p ≥ 1. Then {Xn:n ∈
N} is uniformly integrable and E|Xn −X|p → 0.

1.3 Monotone Class Theorem

Many arguments in measure theory are carried out first for simple types
of functions and then extended to general functions by taking limits. A
monotone class theorem is meant to codify this procedure. This purpose of
standardizing proofs is only partly successful, as there are many monotone
class theorems in the literature, each tailored to a particular purpose. The
following theorem will be of use to us.

We say that a class H of functions h: Ω 7→ R is closed under monotone
limits if for each sequence {hn} ⊂ H such that 0 ≤ hn ↑ h for some
function h, the limit h is contained in H. We say that it is closed under
bounded monotone limits if this is true for every such sequence hn with a
(uniformly) bounded limit. A class of sets is intersection-stable if it contains
the intersection of every pair of its elements (i.e. is a π-system).
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1.23 Theorem. Let H be a vector space of functions h: Ω 7→ R on a mea-
surable space (Ω,F) that contains the constant functions and the indica-
tor of every set in a collection F0 ⊂ F , and is closed under (bounded)
monotone limits. If F0 is intersection-stable, then H contains all (bounded)
σ(F0)-measurable functions.

Proof. See e.g. Williams, A3.1 on p205.



2
Discrete Time Martingales

A stochastic process X in discrete time is a sequence X0, X1, X2, . . . of
random variables defined on some common probability space (Ω,F ,P). The
index n of Xn is referred to as “time” and a map n 7→ Xn(ω), for a fixed
ω ∈ Ω, is a sample path. (Later we replace n by a continuous parameter
t ∈ [0,∞) and use the same terminology.) Usually the discrete time set is
Z+ = N∪{0}. Sometimes we delete 0 or add∞ to get N or Z̄+ = N∪{0,∞},
and add or delete a corresponding random variable X∞ or X0 to form the
stochastic process.

2.1 Martingales

A filtration {Fn} (in discrete time) on a given probability space (Ω,F ,P)
is a nested sequence of σ-fields

F0 ⊂ F1 ⊂ · · · ⊂ F .

The σ-field Fn is interpreted as the events F of which it is known at “time” n
whether F has occurred or not. A stochastic process X is said to be adapted
if Xn is Fn-measurable for every n ≥ 0. The quadruple (Ω,F , {Fn},P) is
called a “filtered probability space” or “stochastic basis”.

A typical example of a filtration is the natural filtration generated by
a stochastic process X, defined as

Fn = σ(X0, X1, . . . , Xn).

Then F ∈ Fn if and only if F = {(X0, . . . , Xn) ∈ B} for some Borel set B.
Once X0, . . . , Xn are realized we know whether F has occurred or not. The
natural filtration is the smallest filtration to which X is adapted.
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2.1 Definition. An adapted, integrable stochastic process X on the fil-
tered space (Ω,F , {Fn},P) is a
(i) martingale if E(Xn| Fm) = Xm a.s. for all m ≤ n.

(ii) submartingale if E(Xn| Fm) ≥ Xm a.s. for all m ≤ n.
(ii) supermartingale if E(Xn| Fm) ≤ Xm a.s. for all m ≤ n.

A different way of writing the martingale property is

E(Xn −Xm| Fm) = 0, m ≤ n.

Thus given all information at time m the expected increment Xn −Xm in
the future time interval (m,n] is zero, for every initial time m. This shows
that a martingale Xn can be interpreted as the total gain up to time n in a
fair game: at every time m we expect to make a zero gain in the future (but
may have gained in the past and we expect to keep this). In particular, the
expectation EXn of a martingale is constant in n.

Submartingales and supermartingales can be interpreted similarly as
total gains in favourable and unfavourable games. If you are not able to re-
member which inequalities correspond to “sub” and “super”, that is prob-
ably normal. It helps a bit to try and remember that a submartingale is
increasing in mean: EXm ≤ EXn if m ≤ n.

2.2 EXERCISE. If E(Xn+1| Fn) = Xn for every n ≥ 0, then automatically
E(Xn| Fm) = Xm for every m ≤ n and hence X is a martingale. Similarly
for sub/super. Show this.

2.3 Example. Let Y1, Y2, . . . be a sequence of independent random vari-
ables with mean zero. Then the sequence of partial sums Xn = Y1 + · · ·+Yn
is a martingale relative to the filtration Fn = σ(Y1, . . . , Yn). Set X0 = 0.

This follows upon noting that for m ≤ n the increment Xn − Xm =∑
m<i≤n Yi is independent of Fm and hence E(Xn − Xm| Fm) = E(Xn −

Xm) = 0.

2.4 EXERCISE. In the preceding example show that σ(Y1, . . . , Yn) =
σ(X1, . . . , Xn).

2.5 EXERCISE. If {N(t): t ≥ 0} is a standard Poisson process and 0 ≤
t0 < t1 < · · · is a fixed sequence of numbers, then Xn = N(tn) − tn is a
martingale relative to the filtration Fn = σ(N(t): t ≤ tn). Show this, using
the fact that the Poisson process has independent increments.

2.6 Example. Let ξ be a fixed, integrable random variable and Fn an
arbitrary filtration. Then Xn = E(ξ| Fn) is a martingale.

This is an immediate consequence of the towering property of con-
ditional expectations, which gives that E(Xn| Fm) = E

(
E(ξ| Fn)| Fm

)
=

E(ξ| Fm) for every m ≤ n.
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By Theorem 1.18 this martingale X is uniformly integrable. Later we
shall see that any uniformly integrable martingale takes this form. More-
over, we can choose ξ such that Xn

as→ ξ as n→∞.

It is part of the definition of a martingale X that every of the random
variables Xn is integrable. If supn E|Xn| <∞, then we call the martingale
L1-bounded. If E|Xn|p < ∞ for ally n and some p, then we call X an
Lp-martingale and if supn E|Xn|p <∞, then we call X Lp-bounded.

Warning. Some authors use the phrase “Lp-martingale” for a martin-
gale that is bounded in Lp(Ω,F ,P). To avoid this confusion, it is perhaps
better to use the more complete phrases “martingale in Lp” and “martin-
gale that is bounded in Lp”.

2.7 Lemma. If φ:R 7→ R is convex and X a martingale, then {φ(Xn)}
is a submartingale relative to the same filtration, provided that φ(Xn) is
integrable for every n.

Proof. Because a convex function is automatically measurable, the variable
φ(Xn) is adapted for every n. By Jensen’s inequality E

(
φ(Xn)| Fm

)
≥

φ
(
E(Xn| Fm)

)
almost surely. The right side is φ(Xm) almost surely if m ≤

n, by the martingale property.

2.8 EXERCISE. If φ:R 7→ R is convex and nondecreasing and X is a sub-
martingale, then {φ(Xn)} is a submartingale relative to the same filtration,
provided that φ(Xn) is integrable for every n. Show this.

2.2 Stopped Martingales

If Xn is interpreted as the total gain at time n, then a natural question is if
we can maximize profit by quitting the game at a suitable time. If Xn is a
martingale with EX0 = 0 and we quit at a fixed time T , then our expected
profit is EXT = EX0 = 0 and hence quitting the game does not help.
However, this does not exclude the possibility that stopping at a random
time might help. This is the gambler’s dream.

If we could let our choice to stop depend on the future, then it is easy
to win. For instance, if we were allowed to stop just before we incurred a
big loss. This we prohibit by considering only “stopping times” as in the
following definition.

2.9 Definition. A random variable T : Ω 7→ Z̄+ on (Ω,F , {Fn},P) is a
stopping time if {T ≤ n} ∈ Fn for every n ≥ 0.

Warning. A stopping time is permitted to take the value ∞.
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2.10 EXERCISE. Let X be an adapted stochastic process and let B ⊂ R
be measurable. Show that T = inf{n:Xn ∈ B} defines a stopping time.
(Set inf ∅ =∞.)

2.11 EXERCISE. Show that T is a stopping time if and only if {T = n} ∈
Fn for all n ∈ N ∪ {0}.

The restriction to stopping times is natural. If we are to stop playing
at time T , then for every time n = 0, 1, 2 . . . we must know if T = n at time
n. If the filtration is generated by the process X, then the event {T = n}
must, for every n, depend on the history X0, . . . , Xn of the process up to
time n only, if T is a stopping time. So we are allowed to base our decision
to stop on the past history of gains or losses, but not on future times.

The question now is if we can find a stopping time T such that EXT >
0. We shall see that this is usually not the case. Here the random variable
XT is defined as

(2.12) (XT )(ω) = XT (ω)(ω).

If T can take the value ∞, this requires that X∞ is defined.
A first step towards answering this question is to note that the stopped

process XT defined by

(XT )n(ω) = XT (ω)∧n(ω),

is a martingale whenever X is one.

2.13 Theorem. If T is a stopping time and X is a martingale, then XT

is a martingale.

Proof. We can write (with an empty sum denoting zero)

XT
n = X0 +

n∑
i=1

1i≤T (Xi −Xi−1).

Hence XT
n+1−XT

n = 1n+1≤T (Xn+1−Xn). The variable 1n+1≤T = 1−1T≤n
is Fn-measurable. Taking the conditional expectation relative to Fn we find
that

E(XT
n+1 −XT

n | Fn) = 1n+1≤TE(Xn+1 −Xn| Fn) = 0, a.s.

because X is a martingale. (To be complete, also note that |XT
n | ≤

max1≤i≤n |Xi| is integrable for every fixed n and verify thatXT is a stochas-
tic process.)
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2.14 EXERCISE. Show that the sub- and supermartingale properties are
also retained under stopping.

If the stopped process XT is a martingale, then EXT
n = EXT∧n is

constant in n. If T is bounded and EX0 = 0, then we can immediately
conclude that EXT = 0 and hence stopping does not help. For general T
we would like to take the limit as n → ∞ in the relation EXT∧n = 0 and
obtain the same conclusion that EXT = 0. Here we must be careful. If
T < ∞ we always have that XT∧n

as→ XT as n → ∞, but we need some
integrability to be able to conclude that the expectations converge as well.
Domination of X suffices. Later we shall see that uniform integrability is
also sufficient, and then we can also allow the stopping time T to take the
value ∞ (after defining X∞ appropriately).

2.15 EXERCISE. Suppose that X is a martingale with uniformly bounded
increments: |Xn+1−Xn| ≤M for every n and some constant M . Show that
EXT = 0 for every stopping time T with ET <∞.

2.3 Martingale Transforms

Another way to try and beat the system would be to change stakes. If
Xn −Xn−1 is the standard pay-off at time n, we could devise a new game
in which our pay-off is Cn(Xn − Xn−1) at time n. Then our total capital
at time n is

(2.16) (C ·X)n: =

n∑
i=1

Ci(Xi −Xi−1), (C ·X)0 = 0.

If Cn were allowed to depend on Xn−Xn−1, then it would be easy to make
a profit. We exclude this by requiring that Cn may depend on knowledge
of the past only.

2.17 Definition. A stochastic process C on (Ω,F , {Fn},P) is predictable
if Cn is Fn−1 measurable for every n ≥ 1.

The process C · X in (2.16) is called a martingale transform of X (if
X is a martingale). It is the discrete time version of the stochastic integral
that we shall be concerned with later. Again we cannot beat the system:
the martingale transform is a martingale.
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2.18 Theorem. Suppose that Cn ∈ Lp(Ω,F ,P) and Xn ∈ Lq(Ω,F ,P) for
all n and some p−1 + q−1 = 1.
(i) If C is predictable and X a martingale, then C ·X is a martingale.

(ii) If C is predictable and nonnegative and X is a supermartingale, then
C ·X is a supermartingale.

Proof. If Y = C · X, then Yn+1 − Yn = Cn(Xn+1 − Xn). Because Cn is
Fn-measurable, E(Yn+1 − Yn| Fn) = CnE(Xn+1 − Xn| Fn) almost surely.
Both (i) and (ii) are now immediate.

2.4 Doob’s Upcrossing Inequality

Let a < b be given numbers. The number of upcrossings of the interval [a, b]
by the process X in the time interval {0, 1, . . . , n} is defined as the largest
integer k for which we can find

0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ n,

with

Xsi < a, Xti > b, i = 1, 2, . . . , k.

The number of upcrossings is denoted by Un[a, b]. The definition is meant to
be “ω”-wise and hence Un[a, b] is a function on Ω. Because the description
involves only finitely many steps, Un[a, b] is a random variable.

A high number of upcrossings of [a, b] indicates that X is “variable”
around the level [a, b]. The upcrossing numbers Un[a, b] are therefore an
important tool to study convergence properties of processes. For super-
martingales Doob’s lemma gives a surprisingly simple bound on the size of
the upcrossings, just in terms of the last variable.

2.19 Lemma. If X is a supermartingale, then

(b− a)EUn[a, b] ≤ E(Xn − a)−.

Proof. We define a process C1, C2, . . . taking values “0” and “1” only as
follows. If X0 ≥ a, then Cn = 0 until and including the first time n that
Xn < a, then Cn = 1 until and including the first time that Xn > b, next
Cn = 0 until and including the first time that Xn < a, etcetera. If X0 < a,
then Cn = 1 until and including the first time that Xn > b, then Cn = 0
etcetera. Thus the process is switched “on” and “off” each time the process
X crosses the levels a or b. It is “on” during each crossing of the interval
[a, b].
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We claim that

(2.20) (b− a)Un[a, b] ≤ (C ·X)n + (Xn − a)−,

where C · X is the martingale transform of the preceding section. To see
this note that (C · X)n is the sum of all increments Xi − Xi−1 for which
Ci = 1. A given realization of the process C is a sequence of n zeros and
ones. Every consecutive series of ones (a “run”) corresponds to a crossing
of [a, b] by X, except possibly the final run (if this ends at position n). The
final run (as every run) starts when X is below a and ends at Xn, which
could be anywhere. Thus the final run contributes positively to (C ·X)n if
Xn > a and can contribute negatively only if Xn < a. In the last case it
can contribute in absolute value never more than |Xn − a|. Thus if we add
(Xn − a)− to (C ·X)n, then we obtain at least the sum of the increments
over all completed crossings.

It follows from the description, that Cn depends on C1, . . . , Cn−1 and
Xn−1 only. Hence, by induction, the process C is predictable. By The-
orem 2.18 the martingale transform C · X is a supermartingale and has
nonincreasing mean E(C · X)n ≤ E(C · X)0 = 0. Taking means across
(2.20) concludes the proof.

2.5 Martingale Convergence

In this section we give conditions under which a (sub/super) martingale
converges to a limit X∞, almost surely or in pth mean. Furthermore, we in-
vestigate if we can add X∞ to the end of the sequence X0, X1, . . . and obtain
a (sub/super) martingale X0, X1, . . . , X∞ (with the definition extended to
include the time ∞ in the obvious way).

2.21 Theorem. If Xn is a (sub/super) martingale with supn E|Xn| < ∞,
then there exists an integrable random variable X∞ with Xn → X∞ almost
surely.

Proof. If we can show that Xn converges almost surely to a limit X∞ in
[−∞,∞], then X∞ is automatically integrable, because by Fatou’s lemma
E|X∞| ≤ lim inf E|Xn| <∞.

We can assume without loss of generality that Xn is a supermartingale.
For a fixed pair of numbers a < b, let

Fa,b =
{
ω ∈ Ω: lim inf

n→∞
Xn(ω) < a ≤ b < lim sup

n→∞
Xn(ω)

}
.

If limn→∞Xn(ω) does not exist in [−∞,∞], then we can find a < b such
that ω ∈ Fa,b. Because the rational numbers are dense in R, we can even
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find such a < b among the rational numbers. The theorem is proved if we
can show that P(Fa,b) = 0 for every of the countably many pairs (a, b) ∈ Q2.

Fix a < b and let Un[a, b] be the number of upcrossings of [a, b] on
{0, . . . , n} by X. If ω ∈ Fa,b, then Un[a, b] ↑ ∞ as n → ∞ and hence by
monotone convergence EUn[a, b] ↑ ∞ if P(Fa,b) > 0. However, by Doob’s
upcrossing’s inequality

(b− a)EUn[a, b] ≤ E(Xn − a)− ≤ E|Xn − a| ≤ sup
n

E|Xn|+ |a|.

The right side is finite by assumption and hence the left side cannot increase
to ∞. We conclude that P(Fa,b) = 0.

2.22 EXERCISE. Let Xn be a nonnegative supermartingale. Show that
supn E|Xn| <∞ and hence Xn converges almost surely to some limit.

If we define X∞ as limXn if this limit exists and as 0 otherwise, then,
if X is adapted, X∞ is measurable relative to the σ-field

F∞ = σ(F1,F2, . . .).

Then the stochastic process X0, X1, . . . , X∞ is adapted to the filtration
F0,F1, . . . ,F∞. We may ask whether the martingale property E(Xn| Fm) =
Xm (for n ≥ m) extends to the case n =∞. The martingale is then called
closed. From Example 2.6 we know that the martingale Xm = E(X∞| Fm)
is uniformly integrable. This condition is also sufficient.

2.23 Theorem. If X is a uniformly integrable (sub/super) martingale,
then there exists a random variable X∞ such that Xn → X∞ almost surely
and in L1. Moreoever,
(i) If X is a martingale, then Xn = E(X∞| Fn) almost surely for every

n ≥ 0.
(ii) If X is a submartingale, then Xn ≤ E(X∞| Fn) almost surely for every

n ≥ 0.

Proof. The first assertion is a corollary of the preceding theorem and the
fact that a uniformly integrable sequence of random variables that converges
almost surely converges in L1 as well.

Statement (i) follows by taking the L1-limit as n→∞ in the equality
Xm = E(Xn| Fm), where we use that ‖E(Xn| Fm)−E(X∞| Fm)‖1 ≤ ‖Xn−
X∞‖1 → 0, so that the right side converges to E(X∞| Fm).

Statement (ii) follows similarly (where we must note that L1-
convergence retains ordering almost surely), or by the following argument.
By the submartingale property, for every m ≤ n, EXm1F ≤ EXn1F . By
uniformly integrability of the process X1F we can take the limit as n→∞
in this and obtain that EXm1F ≤ EE(Xn| Fm)1F = EX∞1F for every
F ∈ Fm. The right side equals EX ′m1F for X ′m = E(X∞| Fm) and hence
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E(Xm − X ′m)1F ≤ 0 for every F ∈ Fm. This implies that Xm − X ′m ≤ 0
almost surely.

2.24 Corollary. If ξ is an integrable random variable and Xn = E(ξ| Fn)
for a filtration {Fn}, then Xn → E(ξ| F∞) almost surely and in L1.

Proof. Because X is a uniformly integrable martingale, the preceding
theorem gives that Xn → X∞ almost surely and in L1 for some inte-
grable random variable X∞, and Xn = E(X∞| Fn) for every n. The vari-
able X∞ can be chosen F∞ measurable (a matter of null sets). It follows
that E(ξ| Fn) = Xn = E(X∞| Fn) almost surely for every n and hence
Eξ1F = EX∞1F for every F ∈ ∪nFn. But the set of F for which this holds
is a σ-field and hence Eξ1F = EX∞1F for every F ∈ F∞. This shows that
X∞ = E(ξ| F∞).

The preceding theorem applies in particular to Lp-bounded martin-
gales (for p > 1). But then more is true.

2.25 Theorem. If X is an Lp-bounded martingale (p > 1), then there
exists a random variable X∞ such that Xn → X∞ almost surely and in Lp.

Proof. By the preceding theorem Xn → X∞ almost surely and in L1 and
moreover E(X∞| Fn) = Xn almost surely for every n. By Jensen’s inequality
|Xn|p =

∣∣E(X∞| Fn)
∣∣p ≤ E

(
|X∞|p| Fn

)
and hence E|Xn|p ≤ E|X∞|p for

every n. The theorem follows from Lemma 1.22.

2.26 EXERCISE. Show that the theorem remains true if X is a nonnega-
tive submartingale.

Warning. A stochastic process that is bounded in Lp and converges
almost surely to a limit does not necessarily converge in Lp. For this |X|p
must be uniformly integrable. The preceding theorem makes essential use
of the martingale property of X. Also see Section 2.9.

2.6 Reverse Martingale Convergence

Thus far we have considered filtrations that are increasing. In this section,
and in this section only, we consider a reverse filtration

F ⊃ F0 ⊃ F1 ⊃ · · · ⊃ F∞ = ∩nFn.
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2.27 Definition. An adapted, integrable stochastic process X on the re-
verse filtered space (Ω,F , {Fn},P) is a
(i) reverse martingale if E(Xm| Fn) = Xn a.s. for all m ≤ n.

(ii) reverse submartingale if E(Xm| Fn) ≥ Xn a.s. for all m ≤ n.
(ii) reverse supermartingale if E(Xm| Fn) ≤ Xn a.s. for all m ≤ n.

It is more insightful to say that a reverse (sub/super) martingale is
a process X = (X0, X1, . . .) such that the sequence . . . , X2, X1, X0 is a
(sub/super) martingale as defined before, relative to the filtration · · · ⊂
F2 ⊂ F1 ⊂ F0. In deviation from the definition of (sub/super) martingales,
the time index . . . , 2, 1, 0 then runs against the natural order and there is
a “final time” 0. Thus the (sub/super) martingales obtained by reversing
a reverse (sub/super) martingale are automatically closed (by the “final
element” X0).

2.28 Example. If ξ is an integrable random variable and {Fn} an arbitrary
reverse filtration, then Xn = E(ξ| Fn) defines a reverse martingale. We can
include n =∞ in this definition.

Because every reverse martingale satisfies Xn = E(X0| Fn), this is
actually the only type of reverse martingale.

2.29 Example. If {N(t): t > 0} is a standard Poisson process, and t1 >
t2 > · · · ≥ 0 a decreasing sequence of numbers, then Xn = N(tn)− tn is a
reverse martingale relative to the reverse filtration Fn = σ(N(t): t ≤ tn).

The verification of this is exactly the same as the for the corresponding
martingale property of this process for an increasing sequence of times.

That a reverse martingale becomes an ordinary martingale if we turn
it around may be true, but it is not very helpful for the convergence results
that we are interested in. The results on (sub/super) martingales do not
imply those for reverse (sub/super) martingales, because the “infiniteness”
is on the other end of the sequence. Fortunately, the same techniques apply.

2.30 Theorem. If X is a uniformly integrable reverse (sub/super) martin-
gale, then there exists a random variable X∞ such that Xn → X∞ almost
surely and in mean as n→∞. Moreover,
(i) If X is a reverse martingale, then E(Xm| F∞) = X∞ a.s. for every m.

(ii) If X is a reverse submartingale, then E(Xm| F∞) ≥ X∞ a.s. for every
m.

Proof. Doob’s upcrossings inequality is applicable to bound the number of
upcrossings of X0, . . . , Xn, because Xn, Xn−1, . . . , X0 is a supermartingale
if X is a reverse supermartingale. Thus we can mimic the proof of Theo-
rem 2.21 to prove the existence of an almost sure limit X∞. By uniform
integrability this is then also a limit in L1.
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The submartingale property implies that EXm1F ≥ EXn1F for every
F ∈ Fn and n ≥ m. In particular, this is true for every F ∈ F∞. Upon
taking the limit as n → ∞, we see that EXm1F ≥ EX∞1F for every
F ∈ F∞. This proves the relationship in (ii). The proof of (i) is easier.

2.31 EXERCISE. Let {Fn} be a reverse filtration and ξ integrable. Show
that E(ξ| Fn) → E(ξ| F∞) in L1 and in mean for F∞ = ∩nFn. What if
X1, X2, . . . are i.i.d.?

* 2.32 Example (Strong law of large numbers). A stochastic process
X = (X1, X2, . . .) is called exchangeable if for every n the distribution
of (Xσ(1), . . . , Xσ(n)) is the same for every permutation (σ(1), . . . , σ(n))
of (1, . . . , n). If E|X1| < ∞, then the sequence of averages X̄n converges
almost surely and in mean to a limit (which may be stochastic).

To prove this consider the reverse filtration Fn = σ(Xn, Xn+1, . . .).
The σ-field Fn “depends” on X1, . . . , Xn only through X1 + · · ·+Xn and
hence by symmetry and exchangeability E(Xi| Fn) is the same for i =
1, . . . , n. Then

Xn = E(Xn| Fn) =
1

n

n∑
i=1

E(Xi| Fn) = E(X1| Fn), a.s..

The right side converges almost surely and in mean by the preceding theo-
rem.

2.33 EXERCISE. Identify the limit in the preceding example as E(X1| F∞)
for F∞ = ∩nFn.

Because, by definition, a reverse martingale satisfiesXn = E(X0| Fn), a
reverse martingale is automatically uniformly integrable. Consequently the
preceding theorem applies to any reverse martingale. A reverse (sub/super)
martingale is uniformly integrable as soon as it is bounded in L1. In fact,
it suffices to verify that EXn is bounded below/above.

2.34 Lemma. A reverse supermartingale X is uniformly integrable if and
only if EXn is bounded above (in which case it increases to a finite limit as
n→∞).

Proof. The expectations EXn of any uniformly integrable process X are
bounded. Therefore, the “only if” part of the lemma is clear and the “if”
part is the nontrivial part of the lemma. Suppose that X is a reverse su-
permartingale.

The sequence of expectations EXn is nondecreasing in n by the reverse
supermartingale property. Because it is bounded above it converges to a
finite limit. Furthermore, Xn ≥ E(X0| Fn) for every n and hence X− is
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uniformly integrable, since E(X0| Fn) is. It suffices to show that X+ is
uniformly integrable, or equivalently that EXn1Xn>M → 0 as M → ∞,
uniformly in n.

By the supermartingale property and because {Xn ≤ M} ∈ Fn, for
every M,N > 0 and every m ≤ n,

EXn1Xn>M = EXn − EXn1Xn≤M ≤ EXn − EXm1Xn≤M

= EXn − EXm + EXm1Xn>M

≤ EXn − EXm + EX+
m1Xm>N +

N

M
EX+

n .

We can make the right side arbitrarily small, uniformly in n ≥ m, by first
choosing m sufficiently large (so that EXn −EXm is small), next choosing
N sufficiently large and finally choosing M large. For the given m we can
increase M , if necessary, to ensure that EXn1Xn>M is also small for every
0 ≤ n ≤ m.

* 2.7 Doob Decomposition

If a martingale is a model for a fair game, then non-martingale processes
should correspond to unfair games. This can be made precise by the Doob
decomposition of an adapted process as a sum of a martingale and a pre-
dictable process. The Doob decomposition is the discrete time version of
the celebrated (and much more complicated) Doob-Meyer decomposition
of a “semi-martingale” in continuous time. We need it here to extend some
results on martingales to (sub/super) martingales.

2.35 Theorem. For any adapted process X there exists a martingale M
and a predictable process A, unique up to null sets, both 0 at 0, such that
Xn = X0 +Mn +An, for every n ≥ 0,

Proof. If we set A0 = 0 and An −An−1 = E(Xn −Xn−1| Fn−1), then A is
predictable. In order to satisfy the equation, we must set

M0 = 0, Mn −Mn−1 = Xn −Xn−1 − E(Xn −Xn−1| Fn−1).

This clearly defines a martingale M .
Conversely, if the decomposition holds as stated, then E(Xn −

Xn−1| Fn−1) = E(An−An−1| Fn−1), because M is a martingale. The right
side is equal to An −An−1 because A is predictable.
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If Xn − Xn−1 = (Mn −Mn−1) + (An − An−1) were our gain in the
nth game, then our strategy could be to play if An − An−1 > 0 and not
to play if this is negative. Because A is predictable, we “know” this before
time n and hence this would be a valid strategy. The martingale part M
corresponds to a fair game and would give us expected gain zero. Relative
to the predictable part we would avoid all losses and make all gains. Thus
our expected profit would certainly be positive (unless we never play). We
conclude that only martingales correspond to fair games.

From the fact that An − An−1 = E(Xn −Xn−1| Fn−1) it is clear that
(sub/super) martingales X correspond precisely to the cases that the sam-
ple paths of A are increasing or decreasing. These are the case where we
would always or never play.

2.8 Optional Stopping

Let T be a stopping time relative to the filtration Fn. Just as Fn are the
events “known at time n”, we like to introduce a σ-field FT of “events
known at time T”. This is to be an ordinary σ-field. Plugging T into Fn
would not do, as this would give something random.

2.36 Definition. The σ-field FT is defined as the collection of all F ⊂ Ω
such that F ∩ {T ≤ n} ∈ Fn for all n ∈ Z̄+. (This includes n = ∞, where
F∞ = σ(F0,F1, . . .).)

2.37 EXERCISE. Show that FT is indeed a σ-field.

2.38 EXERCISE. Show that FT can be equivalently described as the col-
lection of all F ⊂ Ω such that F ∩ {T = n} ∈ Fn for all n ∈ Z̄+.

2.39 EXERCISE. Show that FT = Fn if T ≡ n.

2.40 EXERCISE. Show that XT is FT -measurable if {Xn:n ∈ Z̄+} is
adapted.

2.41 Lemma. Let S and T be stopping times. Then
(i) if S ≤ T , then FS ⊂ FT .

(ii) FS ∩ FT = FS∧T .

Proof. (i). If S ≤ T , then F ∩ {T ≤ n} =
(
F ∩ {S ≤ n}

)
∩ {T ≤ n}. If

F ∈ FS , then F ∩{S ≤ n} ∈ Fn and hence, because always {T ≤ n} ∈ Fn,
the right side is in Fn. Thus F ∈ FT .

(ii). By (i) we have FS∧T ⊂ FS ∩FT . Conversely, if F ∈ FS ∩FT , then
F ∩ {S ∧ T ≤ n} = (F ∩ {S ≤ n}) ∪ (F ∩ {T ≤ n}) ∈ Fn for every n and
hence F ∈ FS∧T .
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If the (sub/super) martingale X is uniformly integrable, then there
exists an integrable random variable X∞ such that Xn → X∞ almost
surely and in mean, by Theorem 2.23. Then we can define XT as in (2.12),
also if T assumes the value∞. The optional stopping theorem shows that in
this case we may replace the fixed times m ≤ n in the defining martingale
relationship E(Xn| Fm) = Xm by stopping times S ≤ T .

2.42 Theorem (Optional stopping). If X is a uniformly integrable su-
permartingale, then XT is integrable for any stopping time T . Furthermore,
(i) If T is a stopping time, then E(X∞| FT ) ≤ XT a.s..

(ii) If S ≤ T are stopping times, then E(XT | FS) ≤ XS a.s..

Proof. First we note that XT is FT -measurable (see Exercise 2.40). For (i)
we wish to prove that EX∞1F ≤ EXT 1F for all F ∈ FT . Now

EX∞1F = E

∞+∑
n=0

X∞1F 1T=n =

∞+∑
n=0

EX∞1F 1T=n,

by the dominated convergence theorem. (The “+” in the upper limit ∞+
of the sums indicates that the sums also include a term n = ∞.) Because
F ∩ {T = n} ∈ Fn and E(X∞| Fn) ≤ Xn for every n, the supermartingale
property gives that the right side is bounded above by

∞+∑
n=0

EXn1F 1T=n = EXT 1F ,

if XT is integrable, by the dominated convergence theorem. This gives the
desired inequality and concludes the proof of (i) for any stopping time T
for which XT is integrable.

If T is bounded, then |XT | ≤ maxm≤n |Xm| for n an upper bound on
T and hence XT is integrable. Thus we can apply the preceding paragraph
to see that E(X∞| FT∧n) ≤ XT∧n almost surely for every n. If X is a
martingale, then this inequality is valid for both X and −X and hence, for
every n,

XT∧n = E(X∞| FT∧n), a.s..

for every n. If n → ∞ the left side converges to XT . The right side is a
uniformly integrable martingale that converges to an integrable limit in L1

by Theorem 2.23. Because the limits must agree, XT is integrable.
Combining the preceding we see that XT = E(X∞| FT ) for every

stopping time T if X is a uniformly integrable martingale. Then for stop-
ping times S ≤ T the towering property of conditional expectations gives
E(X| FS) = E

(
E(X∞| FT )| FS

)
= E(X∞| FS), because FS ⊂ FT . Apply-

ing (i) again we see that the right side is equal to XS . This proves (ii) in
the case that X is a martingale.
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To extend the proof to supermartingales X, we employ the Doob
decomposition Xn = X0 + Mn − An, where M is a martingale with
M0 = 0 and A is a nondecreasing (predictable) process with A0 = 0.
Then EAn = EX0 − EXn is bounded if X is uniformly integrable. Hence
A∞ = limAn is integrable, and A is dominated (by A∞) and hence uni-
formly integrable. Then M must be uniformly integrable as well, whence,
by the preceding, MT is integrable and E(MT | FS) = MT . It follows that
XT = X0 +MT −AT is integrable. Furthermore, by linearity of the condi-
tional expectation, for S ≤ T ,

E(XT | FS) = X0 + E(MT | FS)− E(AT | FS)

≤ X0 +MS −AS = XS ,

because AS ≤ AT implies that AS ≤ E(AT | FS) almost surely. This con-
cludes the proof of (ii). The statement (i) (with S playing the role of T ) is
the special case that T =∞.

One consequence of the preceding theorem is that EXT = EX0, when-
ever T is a stopping time and X a uniformly integrable martingale.

Warning. The condition that X be uniformly integrable cannot be
omitted.

2.9 Maximal Inequalities

A maximal inequality for a stochastic process X is a bound on some as-
pect of the distribution of supnXn. Suprema over stochastic processes are
usually hard to control, but not so for martingales. Somewhat remarkably,
we can bound the norm of supnXn by the supremum of the norms, up to
a constant.

We start with a probability inequality.

2.43 Lemma. If X is a submartingale, then for any x ≥ 0 and every
n ∈ Z+,

xP
(

max
0≤i≤n

Xi ≥ x
)
≤ EXn1 max

0≤i≤n
Xi≥x.

Proof. We can write the event in the left side as the disjoint union ∪ni=0Fi
of the events

F0 = {X0 ≥ x}, F1 = {X0 < x,X1 ≥ x},
F2 = {X0 < x,X1 < x,X2 ≥ x}, . . . .

Because Fi ∈ Fi, the submartingale property gives EXn1Fi ≥ EXi1Fi ≥
xP(Fi), because Xi ≥ x on Fi. Summing this over i = 0, 1, . . . , n yields the
result.
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2.44 Corollary. If X is a nonnegative submartingale, then for any p > 1
and p−1 + q−1 = 1, and every n ∈ Z+,∥∥∥ max

0≤i≤n
Xi

∥∥∥
p
≤ q‖Xn‖p.

If X is bounded in Lp(Ω,F ,P), then Xn → X∞ in Lp for some random
variable X∞ and ∥∥∥sup

n
Xn

∥∥∥
p
≤ q‖X∞‖p = q sup

n
‖Xn‖p.

Proof. Set Yn = max0≤i≤nXi. By Fubini’s theorem (or partial integra-
tion),

EY pn =

∫ ∞
0

pxp−1P(Yn ≥ x) dx ≤
∫ ∞

0

pxp−2EXn1Yn≥x dx,

by the preceding lemma. After changing the order of integration and ex-
pectation, we can write the right side as

pE
(
Xn

∫ Yn

0

xp−2 dx
)

=
p

p− 1
EXnY

p−1
n .

Here p/(p− 1) = q and EXnY
p−1
n ≤ ‖Xn‖p‖Y p−1

n ‖q by Hölder’s inequality.
Thus EY pn ≤ ‖Xn‖p‖Y p−1

n ‖q. If Yn ∈ Lp(Ω,F ,P), then we can rearrange
this inequality to obtain the result.

This rearranging is permitted only if EY pn <∞. By the submartingale
property 0 ≤ Xi ≤ E(Xn| Fi), whence EXp

i ≤ EXp
n, by Jensen’s inequality.

Thus EY pn is finite whenever EXp
n is finite, and this we can assume without

loss of generality.
Because X is a nonnegative submartingale, so is Xp and hence the

sequence EXp
n is nondecreasing. If X is Lp-bounded (for p > 1), then it is

uniformly integrable and hence Xn → X∞ almost surely for some random
variable X∞, by Theorem 2.23. Taking the limit as n → ∞ in the first
assertion, we find by the monotone convergence theorem that

E sup
n
Xp
n = EY p∞ = lim

n→∞
EY pn ≤ qp lim

n→∞
EXp

n = qp sup
n

EXp
n.

The supremum on the left does not increase if we extend it to n ∈ Z̄+.
Because |Xn−X| is dominated by 2Y∞, we find that Xn → X∞ also in Lp
and hence EXp

∞ = limn→∞ EXp
n.

The results of this section apply in particular to the submartingales
formed by applying a convex function to a martingale. For instance, |X|,
X2 or eαX for some α > 0 and some martingale X. This yields a wealth of
useful inequalities. For instance, for any martingale X,∥∥∥sup

n
|Xn|

∥∥∥
2
≤ 2 sup

n
‖Xn‖2.
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2.45 EXERCISE. Let Y1, Y2, . . . be an i.i.d. sequence of random variables
with mean zero. set Sn =

∑n
i=1Yi. Show that E max1≤i≤n S

2
i ≤ 4ES2

n.



3
Discrete Time
Option Pricing

In this chapter we discuss the binary tree model for the pricing of “con-
tingent claims” such as options, due to Cox, Ross and Rubinstein. In this
model the price Sn of a stock is evaluated and changes at the discrete time
instants n = 0, 1, . . . only and it is assumed that its increments Sn − Sn−1

can assume two values only. (This is essential; the following would not work
if the increments could assume e.g. three values.) We assume that S is a
stochastic process on a given probability space and let Fn be its natural
filtration.

Next to stock the model allows for bonds. A bond is a “risk-free invest-
ment”, comparable to a deposit in a savings account, whose value increases
deterministically according to the relation

Rn = (1 + rn)Rn−1, R0 = 1,

the constant rn > 0 being the “interest rate” in the time interval (n−1, n).
A general name for both stock and bond is “asset”.

A “portfolio” is a combination of bonds and stocks. Its contents may
change over time. A portfolio containing An bonds and Bn stocks at time
n possesses the value

(3.1) Vn = AnRn +BnSn.

A pair of processes (A,B), giving the contents over time, is an “investment
strategy” if the processes are predictable. We call a strategy “self-financing”
if after investment of an initial capital at time 0, we can reshuffle the port-
folio according to the strategy without further capital import. Technically
this requirement means that, for every n ≥ 1,

(3.2) AnRn−1 +BnSn−1 = An−1Rn−1 +Bn−1Sn−1.

Thus the capital Vn−1 at time n − 1 (on the right side of the equation) is
used in the time interval (n − 1, n) to exchange bonds for stocks or vice
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versa at the current prices Rn−1 and Sn−1. The left side of the equation
gives the value of the portfolio after the reshuffling. At time n the value
changes to Vn = AnSn + BnSn, due to the changes in the values of the
underlying assets.

A “derivative” is a financial contract that is based on the stock. A
popular derivative is the option, of which there are several varieties. A
“European call option” is a contract giving the owner of the option the
right to buy the stock at some fixed time N (the “term” or “expiry time”
of the option) in the future at a fixed price K (the “strike price”). At the
expiry time the stock is worth SN . If SN > K, then the owner of the option
will exercise his right and buy the stock, making a profit of SN −K. (He
could sell off the stock immediately, if he wanted to, making a profit of
SN −K.) On the other hand, if SN < K, then the option is worthless. (It
is said to be “out of the money”.) If the owner of the option would want to
buy the stock, he would do better to buy it on the regular market, for the
price SN , rather than use the option.

What is a good price for an option? Because the option gives a right
and no obligation it must cost money to get one. The value of the option
at expiry time is, as seen in the preceding discussion, (SN −K)+. However,
we want to know the price of the option at the beginning of the term. A
reasonable guess would be E(SN − K)+, where the expectation is taken
relative to the “true” law of the stock price SN . We don’t know this law,
but we could presumably estimate it after observing the stock market for
a while.

Wrong! Economic theory says that the actual distribution of SN has
nothing to do with the value of the option at the beginning of the term.
This economic reasoning is based on the following theorem.

Recall that we assume that possible values of the stock process S form
a binary tree. Given its value Sn−1 at time n−1, there are two possibilities
for the value Sn. For simplicity of notation assume that

Sn ∈ {anSn−1, bnSn−1},

where an and bn are known numbers. We assume that given Fn−1 each of
the two possibilities is chosen with fixed probabilities 1−pn and pn. We do
not assume that we know the “true” numbers pn, but we do assume that
we know the numbers (an, bn). Thus, for n ≥ 1,

(3.3)
P(Sn = anSn−1| Fn−1) = 1− pn,
P(Sn = bnSn−1| Fn−1) = pn.

(Pretty unrealistic, this, but good exercise for the continuous time case.) It
follows that the complete distribution of the process S, given its value S0

at time 0, can be parametrized by a vector p = (p1, . . . , pn) of probabilities.



3: Discrete Time Option Pricing 27

3.4 Theorem. Suppose that 0 < an < 1 + rn < bn for all n and nonzero
numbers an, bn. Then there exists a unique self-financing strategy (A,B)
with value process V (as in (3.1)) such that
(i) V ≥ 0.

(ii) VN = (SN −K)+.
This strategy requires an initial investment of
(iii) V0 = ẼR−1

N (SN −K)+,

where Ẽ is the expectation under the probability measure defined by (3.3)
with p = (p̃1, . . . , p̃n) given by

p̃n: =
1 + rn − an
bn − an

.

The values p̃ are the unique values in (0, 1) that ensure that the process S̃
defined by S̃n = R−1

n Sn is a martingale.

Proof. By assumption, given Fn−1, the variable Sn is supported on the
points anSn−1 and bnSn−1 with probabilities 1− pn and pn. Then

E(S̃n| Fn−1) = R−1
n

(
(1− pn)an + pnbn

)
Sn−1.

This is equal to S̃n−1 = R−1
n−1Sn−1 if and only if

(1− pn)an + pnbn =
Rn
Rn−1

= 1 + rn, ↔ pn =
1 + rn − an
bn − an

.

By assumption this value of pn is contained in (0, 1). Thus there exists a
unique martingale measure, as claimed.

The process Ṽn = Ẽ
(
R−1
N (SN − K)+| Fn

)
is a p̃-martingale. Given

Fn−1 the variables Ṽn− Ṽn−1 and S̃n− S̃n−1 are both functions of Sn/Sn−1

and hence supported on two points (dependent on Fn−1). (Note that the
possible values of Sn are S0 times a product of the numbers an and bn and
hence are nonzero by assumption.) Because these variables are martingale
differences, they have conditional mean zero under p̃n. Together this implies
that there exists a unique Fn−1-measurable variable Bn (given Fn−1 this
is a “constant”) such that (for n ≥ 1)

(3.5) Ṽn − Ṽn−1 = Bn(S̃n − S̃n−1).

Given this process B, define a process A to satisfy

(3.6) AnRn−1 +BnSn−1 = Rn−1Ṽn−1.

Then both the processes A and B are predictable and hence (A,B) is a
strategy. (The values (A0, B0) matter little, because we change the portfolio
to (A1, B1) before anything happens to the stock or bond at time 1; we can
choose (A0, B0) = (A1, B1).)
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The preceding displays imply

An +BnS̃n−1 = Ṽn−1,

An +BnS̃n = Ṽn−1 +Bn(S̃n − S̃n−1) = Ṽn, by (3.5),

RnAn +BnSn = RnṼn.

Evaluating the last line with n−1 instead of n and comparing the resulting
equation to (3.6), we see that the strategy (A,B) is self-financing.

By the last line of the preceding display the value of the portfolio
(An, Bn) at time n is

Vn = RnṼn = RnẼ
(
R−1
N (SN −K)+| Fn

)
.

At time N this becomes VN = (SN − K)+. At time 0 the value is V0 =
R0ẼR−1

N (SN −K)+. That V ≥ 0 is clear from the fact that Ṽ ≥ 0, being a
conditional expectation of a nonnegative random variable.

This concludes the proof that a strategy as claimed exists. To see tat it
is unique, suppose that (A,B) is an arbitrary self-financing strategy satis-
fying (i) and (ii). Let Vn = AnRn+BnSn be its value at time n, and define
S̃n = R−1

n Sn and Ṽn = R−1
n Vn, all as before. By the first paragraph of the

proof there is a unique probability measure p̃ making S̃ into a martingale.
Multipyling the self-financing equation (3.2) by R−1

n−1, we obtain (for n ≥ 1)

Ṽn−1 = An +BnS̃n−1 = An−1 +Bn−1S̃n−1.

Replacing n − 1 by n in the second representation of Ṽn−1 yields Ṽn =
An+BnS̃n. Subtracting from this the first representation of Ṽn−1, we obtain
that

Ṽn − Ṽn−1 = Bn(S̃n − S̃n−1).

Because S̃ is a p̃-martingale and B is predictable, Ṽ is a p̃-martingale as
well. In particular, Ṽn = Ẽ(ṼN | Fn) for every n ≤ N . By (ii) this means
that Ṽ is exactly as in the first part of the proof. The rest must also be the
same.

A strategy as in the preceding theorem is called a “hedging strategy”.
Its special feature is that given an initial investment of V0 at time zero
(to buy the portfolio (A0, B0)) it leads with certainty to a portfolio with
value (SN −K)+ at time N . This is remarkable, because S is a stochastic
process. Even though we have limited its increments to two possibilities
at every time, this still allows 2N possible sample paths for the process
S1, . . . , SN , and each of these has a probability attached to it in the real
world. The hedging strategy leads to a portfolio with value (SN −K)+ at
time N , no matter which sample path the process S will follow.

The existence of a hedging strategy and the following economic rea-
soning shows that the initial value V0 = ẼR−1

N (SN −K)+ is the only right
price for the option.
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First, if the option were more expensive than V0, then nobody would
buy it, because it would cost less to buy the portfolio (A0, B0) and go
through the hedging strategy. This is guaranteed to give the same value
(SN −K)+ at the expiry time, for less money.

On the other hand, if the option could be bought for less money
than V0, then selling a portfolio (A0, B0) and buying an option at time
0 would yield some immediate cash. During the term of the option we
could next implement the inverse hedging strategy: starting with the port-
folio (−A0,−B0) at time 0, we reshuffle the portfolio consecutively at
times n = 1, 2, . . . , N to (−An,−Bn). This can be done free of investment
and at expiry time we would possess both the option and the portfolio
(−AN ,−BN ), i.e. our capital would be −VN + (SN −K)+, which is zero.
Thus after making an initial gain of V0 minus the option price, we would
with certainty break even, no matter the stock price: we would be able to
make money without risk. Economists would say that the market would
allow for “arbitrage”. But in real markets nothing comes free; real markets
are “arbitrage-free”.

Thus the value V0 = ẼR−1
N (SN −K)+ is the only “reasonable price”.

As noted before, this value does not depend on the “true” values of
the probabilities (p1, . . . , pn): the expectation must be computed under
the “martingale measure” given by (p̃1, . . . , p̃n). It depends on the steps
(a1, b1, . . . , an, bn), the interest rates rn, the strike price K and the value
S0 of the stock at time 0. The distribution of SN under p̃ is supported on at
most 2N values, the corresponding probabilities being (sums of) products
over the probabilities p̃i. We can write out the expectation as a sum, but
this is not especially insightful. (Below we compute a limiting value, which
is more pleasing.)

The martingale measure given by p̃ is the unique measure (within the
model (3.3)) that makes the “discounted stock process” R−1

n Sn into a mar-
tingale. It is sometimes referred to as the “risk-free measure”. If the interest
rate were zero and the stock process a martingale under its true law, then
the option price would be exactly the expected value Ẽ(SN −K)+ of the
option at expiry term. In a “risk-free world we can price by expectation”.

The discounting of values, the premultiplying with R−1
n =

∏n
i=1(1+ri),

expresses the “time value of money”. A capital v at time 0 can be increased
to a capital Rnv at time n in a risk-free manner, for instance by putting
it in a savings account. Then a capital v that we shall receive at time n
in the future is worth only R−1

n v today. For instance, an option is worth
(SN − K)+ at expiry time N , but only R−1

N (SN − K)+ at time 0. The
right price of the option is the expectation of this discounted value “in the
risk-free world given by the martingale measure”.

The theorem imposes the condition that an < 1 + rn < bn for all n.
This condition is reasonable. If we had a stock at time n− 1, worth Sn−1,
and kept on to it until time n, then it would change in value to either
anSn−1 or bnSn−1. If we sold the stock and invested the money in bonds,
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then this capital would change in value to (1 + rn)Sn−1. The inequality
1 + rn < an < bn would mean that keeping the stock would always be more
advantageous; nobody would buy bonds. On the other hand, the inequality
an < bn < 1 + rn would mean that investing in bonds would always be
more advantageous. In both cases, the market would allow for arbitrage:
by exchanging bonds for stock or vice versa, we would have a guaranteed
positive profit, no matter the behaviour of the stock. Thus the condition is
necessary for the market to be “arbitrage-free”.

3.7 EXERCISE. See if the theorem can be extended to the cases that:
(i) the numbers (an, bn) are predictable processes.

(ii) the interest rates rn form a predictable process.

3.8 EXERCISE. Let ε1, ε2, . . . be i.i.d. random variables with the uniform
distribution on {−1, 1} and set Xn =

∑n
i=1εi. Suppose that Y is a martin-

gale relative to Fn = σ(X1, . . . , Xn). Show that there exists a predictable
process C such that Y = Y0 + C ·X.

We might view the binary stock price model of this section as arising
as a time discretization of a continuous time model. Then the model should
become more realistic by refining the discretization. Given a fixed time T >
0, we might consider the binary stock price model for (S0, S1, . . . , SN ) as a
discretization on the grid 0, T/N, 2T/N, . . . , T . Then it would be reasonable
to scale the increments (an, bn) and the interest rates rn, as they will reflect
changes on infinitesimal intervals as N → ∞. Given T > 0 consider the
choices

(3.9)

an,N = eµT/N−σ
√
T/N ,

bn,N = eµT/N+σ
√
T/N ,

1 + rn,N = erT/N .

These choices can be motivated from the fact that the resulting sequence
of binary tree models converges to the continuous time model that we shall
discuss later on. Presently, we can only motivate them by showing that they
lead to nice formulas.

Combining (3.3) and (3.9) we obtain that the stock price is given by

SN = S0 exp
(
µT + σ

√
T

(2XN −N)√
N

)
,

where XN is the number of times the stock price goes up in the time span
1, 2, . . . , N .

It is thought that a realistic model for the stock market has jumps
up and down with equal probabilities. Then XN is binomially (N, 1

2 )-
distributed and the “log returns” satisfy

log
SN
S0

= µT + σ
√
T
XN −N/2√

N/2
 N(µT, σ2T ),
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by the Central limit theorem. Thus in the limit the log return at time T is
log normally distributed with drift µT and variance σ2T .

As we have seen the true distribution of the stock prices is irrelevant for
pricing the option. Rather we need to repeat the preceding calculation using
the martingale measure p̃. Under this measure XN is binomially(N, p̃N )
distributed, for

p̃N =
erT/N − eµT/N−σ

√
T/N

eµT/N+σ
√
T/N − eµT/N−σ

√
T/N

= 1
2 −

1
2

√
T

N

(µ+ 1
2σ

2 − r
σ

)
+O

( 1

N

)
,

by a Taylor expansion. Then p̃N (1− p̃N )→ 1/4 and

log
SN
S0

= µT + σ
√
T
(XN −Np̃N√

N/2
−
√
T
(µ+ 1

2σ
2 − r

σ

))
+O

( 1√
N

)
 N

(
(r − 1

2σ
2)T, σ2T

)
.

Thus, under the martingale measure, in the limit the stock at time T is log
normally distributed with drift (r − 1

2σ
2)T and variance σ2T .

Evaluating the (limiting) option price is now a matter of straightfor-
ward integration. For an option with expiry time T and strike price K it
is the expectation of e−rT (ST −K)+, where log(ST /S0) possesses the log
normal distribution with parameters (r − 1

2σ
2)T and variance σ2T . This

can be computed to be

S0Φ
( log(S0/K) + (r + 1

2σ
2)T

σ
√
T

)
−Ke−rTΦ

( log(S0/K) + (r − 1
2σ

2)T

σ
√
T

)
.

This is the formula found by Black and Scholes in 1973 using a continuous
time model. We shall recover it later in a continuous time set-up.
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Continuous Time Martingales

In this chapter we extend the theory for discrete time martingales to the
continuous time setting. Besides much similarity there is the important
difference of dealing with uncountably many random variables, which is
solved by considering martingales with cadlag sample paths.

4.1 Stochastic Processes

A stochastic process in continuous time is a collection X = {Xt: t ≥ 0}
of random variables indexed by the “time” parameter t ∈ [0,∞) and de-
fined on a given probability space (Ω,F ,P). Occasionally we work with the
extended time set [0,∞] and have an additional random variable X∞.

The finite-dimensional marginals of a processX are the random vectors
(Xt1 , . . . , Xtk), for t1, . . . , tk ranging over the time set and k ∈ N, and the
marginal distributions of X are the distributions of these vectors. The maps
t 7→ Xt(ω), for ω ∈ Ω, are called sample paths. Unless stated otherwise the
variables Xt will be understood to be real-valued, but the definitions apply
equally well to vector-valued variables.

Two processes X and Y defined on the same probability space are
equivalent or each other’s modification if (Xt1 , . . . , Xtk) = (Yt1 , . . . , Ytk) al-
most surely. They are indistinguishable if P(Xt = Yt,∀t) = 1. Both concepts
express that X and Y are the “same”, but indistinguishability is quite a
bit stronger in general, because we are working with an uncountable set of
random variables. However, if the sample paths of X and Y are determined
by the values on a fixed countable set of time points, then the concepts
agree. This is the case, for instance, if the sample paths are continuous, or
more generally left- or right continuous. Most of the stochastic processes
that we shall be concerned with possess this property. In particular, we
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often consider cadlag processes (from “continu à droite, limite à gauche”):
processes with sample paths that are right-continuous and have limits from
the left at every point t > 0. If X is a left- or right-continuous process, then

Xt− = lim
s↑t,s<t

Xs, and Xt+ = lim
s↓t,s>t

Xs

define left- and right-continuous processes. These are denoted by X− and
X+ and referred to as the left- or right-continuous version of X. The dif-
ference ∆X: = X+ −X− is the jump process of X. The variable X0− can
only be defined by convention; it will usually be taken equal to 0, giving a
jump ∆X0 = X0 at time 0.

A filtration in continuous time is a collection {Ft}t≥0 of sub σ-fields of
F such that Fs ⊂ Ft whenever s ≤ t. A typical example is the natural fil-
tration Ft = σ(Xs: s ≤ t) generated by a stochastic process X. A stochastic
process X is adapted to a filtration {Ft} if Xt is Ft-measurable for every t.
The natural filtration is the smallest filtration to which X is adapted. We
define F∞ = σ(Ft: t ≥ 0). As in the discrete time case, we call a probability
space equipped with a filtration a filtered probability space or a “stochastic
basis”. We denote it by (Ω,F , {Ft},P), where it should be clear from the
notation or the context that t is a continuous parameter.

Throughout, without further mention, we assume that the probability
space (Ω,F ,P) is complete. This means that every subset of a null set (a
null set being a set F ∈ F with P(F ) = 0) is contained in F (and hence is
also a null set). This is not a very restrictive assumption, because we can
always extend a given σ-field and probability measure to make it complete.
(This will make a difference only if we would want to work with more than
one probability measure at the same time.)

We also always assume that our filtration satisfies the usual conditions:
for all t ≥ 0:
(i) (completeness): Ft contains all null sets.
(ii) (right continuity): Ft = ∩s>tFs.
The first condition can be ensured by completing a given filtration: replac-
ing a given Ft by the σ-field generated by Ft and all null sets. The second
condition is more technical, but turns out to be important for certain argu-
ments. Fortunately, the (completions of the) natural filtrations of the most
important processes are automatically right continuous. Furthermore, if a
given filtration is not right continuous, then we might replace it by the
filtration ∩s>tFs, which can be seen to be right-continuous.

Warning. The natural filtration of a right-continuous process is not
necessarily right continuous.

Warning. When completing a filtration we add all null sets in (Ω,F ,P)
to every Ft. This gives a bigger filtration than completing the space
(Ω,Ft,P) for every t ≥ 0 separately.

4.1 EXERCISE (Completion). Given an arbitrary probability space
(Ω,F ,P), let F̃ be the collection of all sets F ∪ N for F ranging over
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F and N ranging over all subsets of null sets, and define P̃(F ∪N) = P(F ).
Show that (Ω, F̃ , P̃) is well defined and a probability space.

* 4.2 EXERCISE. Let (Ω,F ,P) be a complete probability space and F0 ⊂ F
a sub σ-field. Show that the σ-field generated by F0 and the null sets of
(Ω,F ,P) is the collection of all F ∈ F such that there exists F0 ∈ F0 with
P(F 4 F0) = 0; equivalently, all F ∈ F such that there exists F0 ∈ F0 and
null sets N,N ′ with F0 −N ⊂ F ⊂ F0 ∪N ′.

* 4.3 EXERCISE. Show that the completion of a right-continuous filtration
is right continuous.

* 4.4 EXERCISE. Show that the natural filtration of the Poisson process is
right continuous. (More generally, this is true for any counting process.)

4.2 Martingales

The definition of a martingale in continuous time is an obvious generaliza-
tion of the discrete time case. We say that a process X is integrable (or is
in L1) if E|Xt| <∞ for every t.

4.5 Definition. An adapted, integrable stochastic process X on the fil-
tered space (Ω,F , {Ft},P) is a
(i) martingale if E(Xt| Fs) = Xs a.s. for all s ≤ t.

(ii) submartingale if E(Xt| Fs) ≥ Xs a.s. for all s ≤ t.
(ii) supermartingale if E(Xt| Fs) ≤ Xs a.s. for all s ≤ t.

The (sub/super) martingales that we shall be interested in are cadlag
processes. It is relatively straightforward to extend results for discrete time
martingales to these, because given a (sub/super) martingale X:
(i) If 0 ≤ t1 < t2 < · · ·, then Yn = Xtn defines a (sub/super) martingale

relative to the filtration Gn = Ftn .
(ii) If t0 > t1 > · · · ≥ 0, then Yn = Xtn defines a reverse (sub/super)

martingale relative to the reverse filtration Gn = Ftn .
Thus we can apply results on discrete time (sub/super) martingales to the
discrete time “skeletons” Xtn formed by restricting X to countable sets of
times. If X is cadlag, then this should be enough to study the complete
sample paths of X.

The assumption that X is cadlag is not overly strong. The follow-
ing theorem shows that under the simple condition that the mean function
t 7→ EXt is cadlag, a cadlag modification of a (sub/super) martingale always
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exists. Because we assume our filtrations to be complete, such a modifica-
tion is automatically adapted. Of course, it also satisfies the (sub/super)
martingale property and hence is a (sub/super) martingale relative to the
original filtration. Thus rather than with the original (sub/super) martin-
gale we can work with the modification.

We can even allow filtrations that are not necessarily right-continuous.
Then we can both replace X by a modification and the filtration by its
“right-continuous version” Ft+ = ∩s>tFs and still keep the (sub/super)
martingale property, provided that X is right continuous in probability.
(This is much weaker than right continuous.) In part (ii) of the following
theorem, suppose that the filtration is complete, but not necessarily right-
continuous.

4.6 Theorem. Let X be a (sub/super) martingale relative to the complete
filtration {Ft}.
(i) If the filtration {Ft} is right continuous and the map t 7→ EXt is right

continuous, then there exists a cadlag modification of X.
(ii) If X is right continuous in probability, then there exists a modification

of X that is a cadlag (sub/super) martingale relative to the filtration
{Ft+}.

Proof. Assume without loss of generality thatX is a supermartingale. Then
Xs ≥ E(Xt| Fs) almost surely for every s ≤ t, whence X−s ≤ E(X−t | Fs)
almost surely and hence {X−s : 0 ≤ s ≤ t} is uniformly integrable. Combined
with the fact that t 7→ EXt is decreasing and hence bounded on compacts,
if follows that E|Xt| is bounded on compacts.

For fixed T and every a < b, define the event

Fa,b =
{
ω:∃t ∈ [0, T ): lim inf

s↑↑t,s∈Q
Xs(ω) < a < b < lim sup

s↑↑t,s∈Q
Xs(ω),

or lim inf
s↓↓t,s∈Q

Xs(ω) < a < b < lim sup
s↓↓t,s∈Q

Xs(ω)
}

(The symbol s ↑↑ t denotes a limit as s ↑ t with s restricted to s < t.) Let
Q ∩ [0, T ) = {t1, t2, . . .} and let Un[a, b] be the number of upcrossings of
[a, b] by the process Xt1 , . . . , Xtn put in its natural time order. If ω ∈ Fa,b,
then Un[a, b] ↑ ∞. However, by Doob’s upcrossings lemma EUn[a, b] <
sup0≤t≤T E|Xt| + |a|. We conclude that P(Fa,b) = 0 for every a < b and
hence the left and right limits

Xt− = lim
s↑↑t,s∈Q

Xs, Xt+ = lim
s↓↓t,s∈Q

Xs

exist for every t ∈ [0, T ), almost surely. If we define these processes to be
zero whenever one of the limits does not exist, then Xt+ is Ft+-adapted.
Moreover, from the definitions Xt+ can be seen to be right-continuous with
left limits equal to Xt−. By Fatou’s lemma Xt+ is integrable.
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We can repeat this for a sequence Tn ↑ ∞ to show that the limits Xt−
and Xt+ exist for every t ∈ [0,∞), almost surely. Setting Xt+ equal to zero
on the exceptional null set, we obtain a cadlag process that is adapted to
Ft+.

By the supermartingale property EXs1F ≥ EXt1F for every F ∈ Fs
and s ≤ t. Given a sequence of rational numbers tn ↓↓ t, the sequence
{Xtn} is a reverse super martingale. Because EXtn is bounded above, the
sequence is uniformly integrable and hence Xtn → Xt+ both almost surely
(by construction) and in mean. We conclude that EXs1F ≥ EXt+1F for
every F ∈ Fs and s ≤ t. Applying this for every s = sn and sn a sequence
of rational numbers decreasing to some fixed s, we find that EXs+1F ≥
EXt+1F for every F ∈ Fs+ = ∩nFsn and s < t. Thus {Xt+: t ≥ 0} is a
supermartingale relative to Ft+.

Applying the first half of the argument of the preceding paragraph with
s = t we see that EXt1F ≥ EXt+1F for every F ∈ Ft. If Ft+ = Ft, then
Xt−Xt+ is Ft-measurable and we conclude thatXt−Xt+ ≥ 0 almost surely.
If, moreover, t 7→ EXt is right continuous, then EXt = limn→∞ EXtn =
EXt+, because Xtn → Xt+ in mean. Combined this shows that Xt = Xt+

almost surely, so that Xt+ is a modification of X. This concludes the proof
of (i).

To prove (ii) we recall that Xt+ is the limit in mean of a sequence
Xtn for tn ↓↓ t. If X is right continuous in probability, then Xtn → Xt

in probability. Because the limits in mean and in probability must agree
almost surely, it follows that Xt = Xt+ almost surely.

In particular, every martingale (relative to a “usual filtration”) pos-
sesses a cadlag modification, because the mean function of a martingale is
constant and hence certainly continuous.

4.7 Example. If for a given filtration {Ft} and integrable random vari-
able ξ we “define” Xt = E(ξ| Ft), then in fact Xt is only determined up
to a null set, for every t. The union of these null sets may have positive
probability and hence we have not defined the process X yet. Any choice
of the conditional expectations Xt yields a martingale X. By the preceding
theorem there is a choice such that X is cadlag.

4.8 EXERCISE. Given a standard Poisson process {Nt: t ≥ 0}, let Ft be
the completion of the natural filtration σ(Ns: s ≤ t). (This can be proved
to be right continuous.) Show that:
(i) The process Nt is a submartingale.

(ii) The process Nt − t is a martingale.
(iii) The process (Nt − t)2 − t is a martingale.

4.9 EXERCISE. Show that every cadlag supermartingale is right continu-
ous in mean. [Hint: use reverse supermartingale convergence, as in the proof
of Theorem 4.6.]
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The martingale property is retained under convergence in L1.

4.10 Lemma. If Xn is a (sub/super) martingale for every n, defined on a
common filtered space, and E|Xn

t −Xt| → 0 as n→∞ for every t ≥ 0 and
some process X, then X is a (sub/super) martingale.

Proof. The inequalities EXn
s 1F ≥ / ≤ EXn

t 1F defining the (sub/super)
martingale property (for F ∈ Fs and s ≤ t) yield EXs1F ≥ / ≤ EXt1F .
Furthermore, the process X is adapted.

4.3 Martingale Convergence

The martingale convergence theorems for discrete time martingales extend
without surprises to the continuous time situation. We say that a process
X is in Lp if E|Xt|p < ∞ for every t, and we say that X is Lp-bounded if
supt E|Xt|p <∞.

4.11 Theorem. If X is a uniformly integrable, cadlag (sub/super) mar-
tingale, then there exists an integrable random variable X∞ such that
Xt → X∞ almost surely and in L1 as t→∞.
(i) If X is a martingale, then Xt = E(X∞| Ft) a.s. for all t ≥ 0.

(ii) If X is a submartingale, then Xt ≤ E(X∞| Ft) a.s. for t ≥ 0.
Furthermore, if X is Lp-bounded for some p > 1, then Xt → X∞ also in
Lp.

Proof. In view of Theorems 2.23 and 2.25 every sequence Xtn for t1 < t2 <
· · · → ∞ converges almost surely, in L1 or in Lp to a limit X∞. Then we
must have that Xt → X∞ in L1 or in Lp as t→∞. Assertions (i) and (ii)
follow from Theorem 2.23 as well.

The almost sure convergence of Xt as t → ∞ requires an additional
argument, as the null set on which a sequence Xtn as in the preceding
paragraph may not converge may depend on the sequence {tn}. In this
part of the proof we use the fact that X is cadlag. As in the proof of
Theorem 2.21 it suffices to show that for every fixed numbers a < b the
event

Fa,b =
{
ω: lim inf

t→∞
Xt(ω) < a < b < lim sup

t→∞
Xt(ω)

}
is a null set. Assume that X is a supermartingale and for given
t1, . . . , tn let Un[a, b] be the number of upcrossings of [a, b] by the pro-
cess Xt1 , . . . , Xtn put in its natural time order. By Doob’s upcrossing’s
inequality, Lemma 2.19,

(b− a)EUn[a, b] ≤ sup
t

E|Xt|+ |a|.
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If we let Q = {t1, t2, . . .}, then Un[a, b] ↑ ∞ on Fa,b, in view of the right-
continuity of X. We conclude that P(Fa,b) = 0.

4.4 Stopping

The main aim of this section is to show that a stopped martingale is a
martingale, also in continuous time, and to extend the optional stopping
theorem to continuous time.

4.12 Definition. A random variable T : Ω 7→ [0,∞] is a stopping time if
{T ≤ t} ∈ Ft for every t ≥ 0.

Warning. Some authors use the term optional time instead of stopping
time. Some authors define an optional time by the requirement that {T <
t} ∈ Ft for every t ≥ 0. This can make a difference if the filtration is not
right-continuous.

4.13 EXERCISE. Show that T : Ω 7→ [0,∞] is a stopping time if and only
if {T < t} ∈ Ft for every t ≥ 0. (Assume that the filtration is right-
continuous.)

4.14 Definition. The σ-field FT is defined as the collection of all F ⊂ Ω
such that F ∩ {T ≤ t} ∈ Ft for all t ∈ [0,∞]. (This includes t =∞, where
F∞ = σ(Ft: t ≥ 0).)

It should be checked that the collection FT is indeed a σ-field, con-
tained in F∞ ⊂ F , and FT = Ft if T ≡ t. Lemma 2.41 on comparing the
σ-fields FS and FT also remains valid as stated. The proofs are identical to
the proofs in discrete time. However, in the continuous time case it would
not do to consider events of the type {T = t} only. We also need to be a
little more careful with the definition of stopped processes, as the measur-
ability is not automatic. The stopped process XT and the variable XT are
defined exactly as before:

(XT )t(ω) = XT (ω)∧t(ω), XT (ω) = XT (ω)(ω).

In general these maps are not measurable, but if X is cadlag and adapted,
then they are. More generally, it suffices that X is “progressively measur-
able”. To define this concept think of X as the map X: [0,∞) × Ω 7→ R
given by

(t, ω) 7→ Xt(ω).
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The process X is measurable if X is measurable relative to the product σ-
field B∞×F , i.e. if it is “jointly measurable in (t, ω)” relative to the product
σ-field. The process X is progressively measurable if, for each t ≥ 0, the
restriction X: [0, t] × Ω 7→ R is measurable relative to the product σ-field
Bt ×Ft. This is somewhat stronger than being adapted.

4.15 EXERCISE. Show that a progressively measurable process is adapted.

4.16 Lemma. If the process X is progressively measurable and T is a
stopping time, then:
(i) XT is progressively measurable (and hence adapted).

(ii) XT is FT -measurable (and hence a random variable).
(In (ii) it is assumed that X∞ is defined and F∞-measurable if T assumes
the value ∞.)

Proof. For each t the map T ∧ t: Ω 7→ [0,∞] is Ft measurable, because
{T ∧ t > s} = {T > s} ∈ Fs ⊂ Ft if s < t and {T ∧ t > s} is empty if s ≥ t.
Then the map

(s, ω) 7→ (s, T (ω) ∧ t, ω) 7→
(
s ∧ T (ω), ω

)
,

[0, t]× Ω 7→ [0, t]× [0, t]× Ω 7→ [0, t]× Ω,

is Bt×Ft−Bt×Bt×Ft−Bt×Ft-measurable. The stopped process XT as a
map on [0, t]×Ω is obtained by composing X: [0, t]×Ω 7→ R to the right side
and hence is Bt × Ft-measurable, by the chain rule. That a progressively
measurable process is adapted is the preceding exercise.

For assertion (ii) we must prove that {XT ∈ B} ∩ {T ≤ t} ∈ Ft for
every Borel set B and t ∈ [0,∞]. The set on the left side can be written as
{XT∧t ∈ B}∩{T ≤ t}. For t <∞ this is contained in Ft by (i) and because
T is a stopping time. For t = ∞ we note that {XT ∈ B} = ∪t{XT∧t ∈
B} ∩ {T ≤ t} ∪ {X∞ ∈ B} ∩ {T =∞} and this is contained in F∞.

4.17 Example (Hitting time). Let X be an adapted, progressively mea-
surable stochastic process, B a Borel set, and define

T = inf{t ≥ 0:Xt ∈ B}.

(The infimum of the empty set is defined to be ∞.) Then T is a stopping
time.

Here X = (X1, . . . , Xd) may be vector-valued, where it is assumed that
all the coordinate processes Xi are adapted and progressively measurable
and B is a Borel set in Rd.

That T is a stopping time is not easy to prove in general, and does rely
on our assumption that the filtration satisfies the usual conditions. A proof
can be based on the fact that the set {T < t} is the projection on Ω of the
set {(s, ω): s < t,Xs(ω) ∈ B}. (The projection on Ω of a subset A ⊂ T ×Ω
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of some product space is the set {ω:∃t > 0: (t, ω) ∈ A}.) By the progressive
measurability of X this set is measurable in the product σ-field Bt × Ft.
By the projection theorem (this is the hard part), the projection of every
product measurable set is measurable in the completion. See Elliott, p50.

Under special assumptions on X and B the proof is more elementary.
For instance, suppose that X is continuous and that B is closed. Then, for
t > 0,

{T ≤ t} =
⋂
n

⋃
s<t,s∈Q

{d(Xs, B) < n−1}.

The right side is clearly contained in Ft. Furthermore, by the continuity
of X and the closedness of B we have {T = 0} = {X0 ∈ B} and this is
contained in F0.

To establish the preceding display, we note first that the event {T = 0}
is contained in both sides of the equation. Furthermore, it is easy to see
the inclusion of right side in left side; we now prove the inclusion of left
in right side. By the definition of T and continuity of X, the function
t 7→ d(Xt, B) must vanish at t = T and be strictly positive on [0, T ) if
T > 0. By continuity this function assumes every value in the interval
[0, d(X0, B)] on the interval [0, T ]. In particular, for every n ∈ N there must
be some rational number s ∈ (0, T ) such that d(Xs, B) < n−1.

4.18 EXERCISE. Give a direct proof that T = inf{t:Xt ∈ B} is a stopping
time if B is open and X is right-continuous. [Hint: consider the sets {T < t}
and use the right-continuity of the filtration.]

4.19 EXERCISE. Let X be a continuous stochastic process with X0 = 0
and T = inf{t ≥ 0: |Xt| ≥ a} for some a > 0. Show that T is a stopping
time and that |XT | ≤ a.

4.20 Lemma. If X is adapted and right continuous, then X is progres-
sively measurable. The same is true if X is adapted and left continuous.

Proof. We give the proof for the case that X is right continuous. For fixed
t ≥ 0, let 0 = tn0 < tn1 < · · · < tnkn = t be a sequence of partitions of
[0, t] with mesh widths tending to zero as n → ∞. Define Xn to be the
discretization of X equal to Xtn

i
on [tni−1, t

n
i ) and equal to Xt at {t}. By

right continuity of X, Xn
s (ω)→ Xs(ω) as n→∞ for every (s, ω) ∈ [0, t]×Ω.

Because a pointwise limit of measurable functions is measurable, it suffices
to show that every of the mapsXn: [0, t]×Ω 7→ R is Bt×Ft-measurable. Now
{Xn ∈ B} can be written as the union of the sets [tni−1, t

n
i )× {ω:Xtn

i
(ω) ∈

B} and the set {t} × {ω:Xt(ω) ∈ B} and each of these sets is certainly
contained in Bt ×Ft.

Exactly as in the discrete time situation a stopped (sub/super) mar-
tingale is a (sub/super) martingale, and the (in)equalities defining the
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(sub/super) martingale property remain valid if the (sub/super) martin-
gale is uniformly integrable and the times are replaces by stopping times.
At least if we assume that the (sub/super) martingale is cadlag.

4.21 Theorem (Stopped martingale). If X is a cadlag (sub/super) mar-
tingale and T is a stopping time, then XT is a (sub/super) martingale.

Proof. We can assume without loss of generality that X is a submartingale.
For n ∈ N define Tn to be the upward discretization of T on the grid
0 < 2−n < 22−n < · · ·; i.e. Tn = k2−n if T ∈ [(k− 1)2−n, k2−n) (for k ∈ N)
and Tn = ∞ if T = ∞. Then Tn ↓ T as n → ∞ and by right continuity
XTn∧t → XT∧t for all t, pointwise on Ω. For fixed t > 0 let kn,t2

−n be the
biggest point k2−n on the grid smaller than or equal to t.

For fixed t the sequence

X0, X2−n , X22−n , . . . , Xkn,t2−n , Xt

is a submartingale relative to the filtration

F0 ⊂ F2−n ⊂ F22−n ⊂ · · · ⊂ Fkn,t2−n ⊂ Ft.

Here the indexing by numbers k2−n or t differs from the standard indexing
by numbers in Z+, but the interpretation of “submartingale” should be
clear. Because the submartingale has finitely many elements, it is uniformly
integrable. (If you wish, you may also think of it as an infinite sequence, by
just repeating Xt at the end.)

Both Tn∧t and Tn−1∧t can be viewed as stopping times relative to this
filtration. For instance, the first follows from the fact that {Tn ≤ k2−n} =
{T < k2−n} ∈ Fk2−n for every k, and the fact that the minimum of two
stopping times is always a stopping time. For Tn−1 we use the same argu-
ment and also note that the grid with mesh width 2−n+1 is contained in the
grid with mesh width 2−n. Because Tn−1∧ t ≥ Tn∧ t, the optional stopping
theorem in discrete time, Theorem 2.42, gives E(XTn−1∧t| FTn∧t) ≥ XTn∧t
almost surely. Furthermore, E(XTn∧t| F0) ≥ X0 and hence EXTn∧t ≥ EX0.

This being true for every n it follows that XT1∧t, XT2∧t, . . . is a reverse
submartingale relative to the reverse filtration FT1∧t ⊃ FT2∧t ⊃ · · · with
mean bounded below by EX0. By Lemma 2.34 {XTn∧t} is uniformly inte-
grable. Combining this with the first paragraph we see that XTn∧t → XT∧t
in L1, as n→∞.

For fixed s < t the sequence

X0, X2−n , . . . , Xks,n2−n , Xs, . . . , Xkt,n2−n , Xt

is a submartingale relative to the filtration

F0 ⊂ F2−n ⊂ · · · ⊂ Fks,n2−n ⊂ Fs ⊂ · · · ⊂ Fkt,n2−n ⊂ Ft.
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The variable Tn∧t is a stopping time relative to this set-up. By the extension
of Theorem 2.13 to submartingales the preceding process stopped at Tn ∧ t
is a submartingale relative to the given filtration. This is the process

X0, X2−n∧Tn , . . . , Xks,n2−n∧Tn , Xs∧Tn , . . . , Xkt,n2−n∧Tn , Xt∧Tn .

In particular, this gives that

E(XTn∧t| Fs) ≥ XTn∧s, a.s..

As n → ∞ the left and right sides of the display converge in L1 to
E(XT∧t| Fs) and XT∧s. Because L1-convergence implies the existence of
an almost surely converging subsequence, the inequality is retained in the
limit in an almost sure sense. Hence E(XT∧t| Fs) ≥ XT∧s almost surely.

A uniformly integrable, cadlag (sub/super) martingale X converges in
L1 to a limit X∞, by Theorem 4.11. This allows to define XT also if T takes
the value ∞.

4.22 Theorem (Optional stopping). If X is a uniformly integrable, cad-
lag submartingale and S ≤ T are stopping times, then XS and XT are
integrable and E(XT | FS) ≥ XS almost surely.

Proof. Define Sn and Tn to be the discretizations of S and T upwards on
the grid 0 < 2−n < 22−n < · · ·, defined as in the preceding proof. By right
continuity XSn → XS and XTn → XT pointwise on Ω. Both Sn and Tn are
stopping times relative to the filtration F0 ⊂ F2−n ⊂ · · ·, and X0, X2−n , . . .
is a uniformly integrable submartingale relative to this filtration. Because
Sn ≤ Tn the optional stopping theorem in discrete time, Theorem 2.42,
yields that XSn and XTn are integrable and E(XTn | FSn) ≥ XSn almost
surely. In other words, for every F ∈ FSn ,

EXTn1F ≥ EXSn1F .

Because S ≤ Sn we have FS ⊂ FSn and hence the preceding display is true
for every F ∈ FS . If the sequences XSn and XTn are uniformly integrable,
then we can take the limit as n → ∞ to find that EXT 1F ≥ EXS1F for
every F ∈ FS and the proof is complete.

Both Tn−1 and Tn are stopping times relative to the filtration F0 ⊂
F2−n ⊂ · · · and Tn ≤ Tn−1. By the optional stopping theorem in discrete
time E(XTn−1

| FTn) ≥ XTn , since X is uniformly integrable. Furthermore,
E(XTn | F0) ≥ X0 and hence EXTn ≥ EX0. It follows that {XTn} is a reverse
submartingale relative to the reverse filtration FT1 ⊃ FT2 ⊃ · · · with mean
bounded below. Therefore, the sequence {XTn} is uniformly integrable by
Lemma 2.34. Of course, the same proof applies to {XSn}.
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If X is a cadlag, uniformly integrable martingale and S ≤ T are stop-
ping times, then E(XT | FS) = XS , by two applications of the preceding
theorem. As a consequence the expectation EXT of the stopped process at
∞ is equal to the expectation EX0 for every stopping time T . This property
actually characterizes uniformly integrable martingales.

4.23 Lemma. Let X = {Xt: t ∈ [0,∞]} be a cadlag adapted process such
that XT is integrable with EXT = EX0 for every stopping time T . Then
X is a uniformly integrable martingale.

Proof. For a given F ∈ Ft define the random variable T to be t on F and
to be ∞ otherwise. Then T can be seen to be a stopping time, and

EXT = EXt1F + EX∞1F c ,

EX0 = EX∞ = EX∞1F + EX∞1F c .

We conclude that EXt1F = EX∞1F for every F ∈ Ft and hence Xt =
E(X∞| Ft) almost surely.

4.24 EXERCISE. Suppose that X is a cadlag process such that Xt =
E(ξ| Ft) almost surely, for every t. Show that XT = E(ξ| FT ) almost surely
for every stopping time T .

4.5 Brownian Motion

Brownian motion is a special stochastic process, which was first introduced
as a model for the “Brownian motion” of particles in a gas or fluid, but has
a much greater importance, both for applications and theory. It could be
thought of as the “standard normal distribution for processes”.

4.25 Definition. A stochastic process B is a (standard) Brownian motion
relative to the filtration {Ft} if:
(i) B is adapted.

(ii) all sample paths are continuous.
(iii) Bt −Bs is independent of Fs for all 0 ≤ s ≤ t.
(iv) Bt −Bs is N(0, t− s)-distributed.
(v) B0 = 0.

The model for the trajectory in R3 of a particle in a gas is a process
(B1

t , B
2
t , B

3
t ) consisting of three independent Brownian motions defined on

the same filtered probability space. Property (ii) is natural as a particle
cannot jump through space. Property (iii) says that given the path history
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Fs the displacement Bt −Bs in the time interval (s, t] does not depend on
the past. Property (iv) is the only quantitative property. The normality can
be motivated by the usual argument that, even in small time intervals, the
displacement should be a sum of many infinitesimal movements, but has
some arbitrariness to it. The zero mean indicates that there is no preferred
direction. The variance t−s is, up to a constant, a consequence of the other
assumptions if we also assume that it may only depend on t− s. Property
(v) is the main reason for the qualification “standard”. If we replace 0 by
x, then we obtain a “Brownian motion starting at x”.

We automatically have the following properties:
(vi) (independent increments) Bt2 − Bt1 , Bt3 − Bt2 , . . . , Btk − Btk−1

are
independent for every 0 ≤ t1 < t2 < · · · < tk.

(vii) (Bt1 , . . . , Btk) is multivariate-normally distributed with mean zero and
covariance matrix cov(Bti , Btj ) = ti ∧ tj .
It is certainly not immediately clear that Brownian motion exists, but

it does.

4.26 Theorem. There exists a complete probability space (Ω,F ,P) and
measurable mapsBt: Ω 7→ R such that the processB satisfies (i)–(v) relative
to the completion of the natural filtration generated by B (which is right-
continuous).

There are many different proofs of this theorem, but we omit giving a
proof altogether. It is reconforting to know that Brownian motion exists,
but, on the other hand, it is perfectly possible to work with it without
worrying about its existence.

The theorem asserts that a Brownian motion exists relative to its (com-
pleted) natural filtration, whereas the definition allows a general filtration.
In fact, there exist many Brownian motions. Not only can we use differ-
ent probability spaces to carry them, but, more importantly, we may use
another than the natural filtration.

Warning. Some authors always use the natural filtration, or its com-
pletion. Property (iii) requires more if {Ft} is a bigger filtration.

Brownian motion is “the” example of a continuous martingale.

4.27 Theorem. Any Brownian motion is a martingale.

Proof. Because Bt − Bs is independent of Fs, we have E(Bt − Bs| Fs) =
E(Bt −Bs) almost surely, and this is 0.

4.28 EXERCISE. Show that the process {B2
t − t} is a martingale.

Brownian motion has been studied extensively and possesses many
remarkable properties. For instance:
(i) Almost every sample path is nowhere differentiable.
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(ii) Almost every sample path has no point of increase. (A point of increase
of a function f is a point t that possesses a neighbourhood such that
f(s) ≤ f(t) for s < t and f(s) ≥ f(t) for s > t in the neighbourhood.)

(iii) For almost every sample path the set of points of local maximum is
countable and dense in [0,∞). (A point of local maximum of a func-
tion f is a point t that possesses a neighbourhood such that on this
neighbourhood f is maximal at t.)

(iv) lim supt→∞Bt/
√

2t loglog t = 1 a.s..
These properties are of little concern in the following. A weaker form of
property (i) follows from the following theorem, which is fundamental for
the theory of stochastic integration.

4.29 Theorem. IfB is a Brownian motion and 0 < tn0 < tnn < · · · < tnkn = t
is a sequence of partitions of [0, t] with mesh widths tending to zero, then

kn∑
i=1

(Btn
i
−Btn

i−1
)2 P→ t.

Proof. We shall even show convergence in quadratic mean. Because Bt−Bs
is N(0, t−s)-distributed, the variable (Bt−Bs)2 has mean t−s and variance
2(t − s)2. Therefore, by the independence of the increments and because
t =

∑
i(ti − ti−1)

E
[ kn∑
i=1

(Bti −Bti−1)2 − t
]2

=

kn∑
i=1

var(Bti −Bti−1)2 =

kn∑
i=1

2(ti − ti−1)2.

The right side is bounded by 2δn
∑kn
i=1 |ti − ti−1| = 2δnt for δn the mesh

width of the partition. Hence it converges to zero.

A consequence of the preceding theorem is that for any sequence of
partitions with mesh widths tending to 0

lim sup
n→∞

kn∑
i=1

|Btn
i
−Btn

i−1
| =∞, a.s..

Indeed, if the lim sup were finite on a set of positive probability, then on
this set we would have that

∑kn
i=1(Btn

i
−Btn

i−1
)2 → 0 almost surely, because

maxi |Btn
i
− Btn

i−1
| → 0 by the (uniform) continuity of the sample paths.

This would contradict the convergence in probability to t.
We conclude that the sample paths of Brownian motion are of un-

bounded variation. In comparison if f : [0, t] 7→ R is continuously differen-
tiable, then

lim
n→∞

kn∑
i=1

∣∣f(ti)− f(ti−1)
∣∣ =

∫ t

0

|f ′(s)| ds.
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It is the roughness (or “randomness”) of its sample paths that makes Brow-
nian motion interesting and complicated at the same time.

Physicists may even find that Brownian motion is too rough as a model
for “Brownian motion”. Sometimes this is alleviated by modelling velocity
by a Brownian motion, rather than location.

4.6 Local Martingales

In the definition of a stochastic integral L2-martingales play a special role.
A Brownian motion is L2-bounded if restricted to a compact time interval,
but not if the time set is [0,∞). Other martingales may not even be square-
integrable.

Localization is a method to extend definitions or properties from pro-
cesses that are well-behaved, often in the sense of integrability properties,
to more general processes. The simplest form is to consider a process X in
turn on the intervals [0, T1], [0, T2], . . . for numbers T1 ≤ T2 ≤ · · · increasing
to infinity. Equivalently, we consider the sequence of stopped processes XTn .
More flexible is to use stopping times Tn for this purpose. The following
definition of a “local martingale” is an example.

4.30 Definition. An adapted process X is a local (sub/super) martingale
in Lp if there exists a sequence of stopping times 0 ≤ T1 ≤ T2 ≤ · · · with
Tn ↑ ∞ almost surely such that XTn is a (sub/super) martingale in Lp for
every n.

In the case that p = 1 we drop the “in L1” and speak simply of
a local (sub/super) martingale. Rather than “martingale in Lp” we also
speak of “Lp-martingale”. Other properties of processes can be localized in
a similar way, yielding for instance, “locally bounded processes” or “locally
L2-bounded martingales”. The appropriate definitions will be given when
needed, but should be easy to guess. (Some of these classes actually are
identical. See the exercises at the end of this section.)

The sequence of stopping times 0 ≤ Tn ↑ ∞ is called a localizing
sequence. Such a sequence is certainly not unique. For instance, we can
always choose Tn ≤ n by truncating Tn at n.

Any martingale is a local martingale, for we can simply choose the
localizing sequence equal to Tn ≡ ∞. Conversely, a “sufficiently integrable”
local (sub/super) martingale is a (sub/super) martingale, as we now argue.
If X is a local martingale with localizing sequence Tn, then XTn

t → Xt

almost surely for every t. If this convergence also happens in L1, then
the martingale properties of XTn carries over onto X and X itself is a
martingale.
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4.31 EXERCISE. Show that a dominated local martingale is a martingale.

Warning. A local martingale that is bounded in L2 need not be a
martingale. A fortiori, a uniformly integrable local martingale need not be
a martingale. See Chung and Williams, pp20–21, for a counterexample.
Remember that we say a process M is bounded in L2 if supt EM2

t < ∞.
For a cadlag martingale, this is equivalent to E suptM

2
t < ∞, but not for

a local martingale!
Warning. Some authors define a local (sub/super) martingale in Lp by

the requirement that the process X−X0 can be localized as in the preceding
definition. If X0 ∈ Lp, this does not make a difference, but otherwise it may.
Because (XTn)0 = X0 our definition requires that the initial value X0 of a
local (sub/super) martingale in Lp be in Lp.

We shall mostly encounter the localization procedure as a means to
reduce a proof to bounded stochastic processes. If X is adapted and con-
tinuous, then

(4.32) Tn = inf{t: |Xt| ≥ n}

is a stopping time. On the set Tn > 0 we have |XTn | ≤ n. If X is a
continuous local martingale, then we can always use the sequence (4.32) as
the localizing sequence.

4.33 Lemma. If X is a continuous, local martingale, then Tn given by
(4.32) defines a localizing sequence. Furthermore, X is automatically a local
Lp-martingale for every p ≥ 1 such that X0 ∈ Lp.

Proof. If Tn = 0, then (XTn)t = X0 for all t ≥ 0. On the other hand, if
Tn > 0, then |Xt| < n for t < Tn and there exists tm ↓ Tn with |Xtm | ≥ n.
By continuity of X it follows that |XTn | = n in this case. Consequently,
|XTn | ≤ |X0| ∨ n and hence XTn is even dominated by an element of Lp if
X0 ∈ Lp. It suffices to prove that Tn is a localizing sequence.

Suppose that Sm is a sequence of stopping times with Sm ↑ ∞ as
m→∞ and such that XSm is a martingale for every m. Then XSm∧Tn =
(XSm)Tn is a martingale for each m and n, by Theorem 4.21. For every
fixed n we have |XSm∧Tn | ≤ |X0| ∨ n for every m, and XSm∧Tn → XTn

almost surely as m→∞. Because X0 = (XSm)0 and XSm is a martingale
by assumption, it follows that X0 is integrable. Thus XSm∧Tn∧t → XTn∧t
in L1 as m → ∞, for every t ≥ 0. Upon taking limits on both sides of the
martingale equality E(XSm∧Tn∧t| Fs) = XSm∧Tn∧s of XSm∧Tn we see that
XTn is a martingale for every n.

Because X is continuous, its sample paths are bounded on compacta.
This implies that Tn ↑ ∞ as n→∞.

4.34 EXERCISE. Show that a local martingale X is a uniformly integrable
martingale if and only if the set {XT :T finite stopping time} is uniformly
integrable. (A process with this property is said to be of class D.)
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4.35 EXERCISE. Show that a local L1-martingale X is also a locally uni-
formly integrable martingale, meaning that there exists a sequence of stop-
ping times 0 ≤ Tn ↑ ∞ such that XTn is a uniformly integrable martingale
for every n.

4.36 EXERCISE. Show that (for p > 1) a local Lp-martingale X is locally
bounded in Lp, meaning that there exists a sequence of stopping times
0 ≤ Tn ↑ ∞ such that XTn is a martingale that is bounded in Lp, for every
n.

4.37 EXERCISE. Show that a local martingale that is bounded below is a
supermartingale. [Hint: use the conditional Fatou lemma.]

4.7 Maximal Inequalities

The maximal inequalities for discrete time (sub/super) martingales carry
over to continuous time cadlag (sub/super) martingales, without surprises.
The essential observation is that for a cadlag process a supremum suptXt

over t ≥ 0 is equal to the supremum over a countable dense subset of [0,∞),
and a countable supremum is the (increasing) limit of finite maxima.

4.38 Lemma. If X is a nonnegative, cadlag submartingale, then for any
x ≥ 0 and every t ≥ 0,

xP
(

sup
0≤s≤t

Xs > x
)
≤ EXt1 sup

0≤s≤t
Xt≥x ≤ EXt.

4.39 Corollary. If X is a nonnegative, cadlag submartingale, then for any
p > 1 and p−1 + q−1 = 1, and every t ≥ 0,∥∥∥ sup

0≤s≤t
Xs

∥∥∥
p
≤ q‖Xt‖p.

If X is bounded in Lp(Ω,F ,P), then Xt → X∞ in Lp for some random
variable X∞ and ∥∥∥sup

t≥0
Xt

∥∥∥
p
≤ q‖X∞‖p = q sup

t≥0
‖Xt‖p.

The preceding results apply in particular to the absolute value of a
martingale. For instance, for any martingale X,

(4.40)
∥∥∥sup

t
|Xt|

∥∥∥
2
≤ 2 sup

t
‖Xt‖2.



5
Stochastic Integrals

In this chapter we define integrals
∫
X dM for pairs of a “predictable”

process X and a semimartingale M . The main challenge is that the sample
paths of many semimartingales of interest are of infinite variation. We have
seen this for Brownian motion in Section 4.5; this property is in fact shared
by all martingales with continuous sample paths. For this reason the integral∫
X dM cannot be defined using ordinary measure theory. Rather than

defining it “pathwise for every ω”, we define it as a random variable through
an L2-isometry.

In general the predictability of the integrand (defined in Section 5.1)
is important, but in special cases, including the one of Brownian motion,
the definition can be extended to more general processes.

The definition is carried out in several steps, each time including more
general processes X or M . After completing the definition we close the
chapter with Itô’s formula, which is the stochastic version of the chain rule
from calculus, and gives a method to manipulate stochastic integrals.

Throughout the chapter (Ω,F , {Ft},P) is a given filtered probability
space.

5.1 Predictable Sets and Processes

The product space [0,∞) × Ω is naturally equipped with the product σ-
field B∞ × F . Several sub σ-fields play an important role in the definition
of stochastic integrals.

A stochastic process X can be viewed as the map X: [0,∞) × Ω 7→ R
given by (t, ω) 7→ Xt(ω). We define σ-fields by requiring that certain types
of processes must be measurable as maps on [0,∞)× Ω.
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5.1 Definition. The predictable σ-field P is the σ-field on [0,∞)×Ω gen-
erated by the left-continuous, adapted processes X: [0,∞) × Ω 7→ R. (It
can be shown that the same σ-field is generated by all continuous, adapted
processes X: [0,∞)× Ω 7→ R.)

5.2 Definition. The optional σ-field O is the σ-field on [0,∞)× Ω gener-
ated by the cadlag, adapted processes X: [0,∞)× Ω 7→ R.

5.3 Definition. The progressive σ-field M is the σ-field on [0,∞) × Ω
generated by the progressively measurable processes X: [0,∞)× Ω 7→ R.

We call a process X: [0,∞) × Ω 7→ R predictable or optional if it is
measurable relative to the predictable or optional σ-field.

It can be shown that the three σ-fields are nested in the order of the
definitions:

P ⊂ O ⊂M ⊂ B∞ ×F .

The predictable σ-field is the most important one to us, as it defines the
processes X that are permitted as integrands in the stochastic integrals.
Because, obviously, left-continuous, adapted processes are predictable, these
are “good” integrands. In particular, continuous, adapted processes.

Warning. Not every predictable process is left-continuous.
The term “predictable” as applied to left-continuous processes ex-

presses the fact that the value of a left-continuous process at a time t
is (approximately) “known” just before time t. In contrast, a general pro-
cess may jump and hence be “unpredictable” from its values in the past.
However, it is not true that a predictable process cannot have jumps. The
following exercise illustrates this.

5.4 EXERCISE. Show that any measurable function f : [0,∞) 7→ R de-
fines a predictable process (t, ω) 7→ f(t). “Deterministic processes are pre-
dictable”.

There are several other ways to describe the various σ-fields. We give
some of these as a series of lemmas. For proofs, see Chung and Williams
p25–30 and p57–63.

5.5 Lemma. The predictable σ-field is generated by the collection of all
subsets of [0,∞)× Ω of the form

{0} × F0, F0 ∈ F0, and (s, t]× Fs, Fs ∈ Fs, s < t.

5.6 EXERCISE. Prove the preceding lemma.

We refer to the sets in Lemma 5.5 as predictable rectangles.
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Given two functions S, T : Ω 7→ [0,∞], the subset of [0,∞) × Ω given
by

[S, T ] =
{

(t, ω) ∈ [0,∞)× Ω:S(ω) ≤ t ≤ T (ω)
}

is a stochastic interval. In a similar way, we define the stochastic intervals
(S, T ], [S, T ) and (S, T ). The set [T ] = [T, T ] is the graph of T . By definition
these are subsets of [0,∞) × Ω, even though the right endpoint T may
assume the value ∞. If S and/or T is degenerate, then we use the same
notation, yielding, for instance, [0, T ] or (s, t].

Warning. This causes some confusion, because notation such as (s, t]
may now denote a subset of [0,∞] or of [0,∞)× Ω.

We are especially interested in stochastic intervals whose boundaries
are stopping times. These intervals may be used to describe the various
σ-fields, where we need to single out a special type of stopping time.

5.7 Definition. A stopping time T : Ω 7→ [0,∞] is predictable if there exists
a sequence Tn of stopping times such that 0 ≤ Tn ↑ T and such that Tn < T
for every n on the set {T > 0}.

A sequence of stopping times Tn as in the definition is called an an-
nouncing sequence. It “predicts” that we are about to stop. The phrase
“predictable stopping time” is often abbreviated to “predictable time”.

Warning. A hitting time of a predictable process is not necessarily a
predictable time.

5.8 Lemma. Each of the following collections of sets generates the pre-
dictable σ-field.
(i) All stochastic intervals [T,∞), where T is a predictable stopping time.

(ii) All stochastic intervals [S, T ), where S is a predictable stopping time
and T is a stopping time.

(iii) All sets {0} × F0, F0 ∈ F0 and all stochastic intervals (S, T ], where S
and T are stopping times.

(iv) All sets {0} × F0, F0 ∈ F0 and all stochastic intervals [0, T ], where T
is a stopping time.

Furthermore, a stopping time T is predictable if and only if its graph [T ] is
a predictable set.

5.9 Lemma. Each of the following collections of sets generates the optional
σ-field.
(i) All stochastic intervals [T,∞), where T is a stopping time.

(ii) All stochastic intervals [S, T ], [S, T ), (S, T ], (S, T ), where S and T are
stopping times.

5.10 Example. If T is a stopping time and c > 0, then T+c is a predictable
stopping time. An announcing sequence is the sequence T + cn for cn < c
numbers with 0 ≤ cn ↑ c. Thus there are many predictable stopping times.
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5.11 Example. Let X be an adapted process with continuous sample
paths and B be a closed set. Then T = inf{t ≥ 0:Xt ∈ B} is a predictable
time. An announcing sequence is Tn = inf{t ≥ 0: d(Xt, B) < n−1}∧n. The
proof of this is more or less given already in Example 4.17. (We take the
minimum with n to ensure that Tn < T on the set T =∞.)

5.12 Example. It can be shown that any stopping time relative to the nat-
ural filtration of a Brownian motion is predictable. See Chung and Williams,
p30–31.

5.13 Example. The left-continuous version of an adapted cadlag process
is predictable, by left continuity. Then so is the jump process ∆X of a
predictable process X. It can be shown that this jump process is nonzero
only on the union ∪n[Tn] of the graphs of countably many predictable times
Tn. (These predictable times are said to “exhaust the jumps of X”.) Thus
a predictable process has “predictable jumps”.

5.14 Example. Every measurable process that is indistinguishable from
a predictable process is predictable. This means that we do not need to
“worry about null sets” too much.

Our assumption that the filtered probability space satisfies the usual
conditions is essential for this to be true.

To verify the claim it suffices to show that every measurable process
X that is indistinguishable from the zero process (an evanescent process)
is predictable. By the completeness of the filtration a process of the form
1(u,v]×N is left-continuous and adapted for every null set N , and hence
predictable. The product σ-field B∞ × F is generated by the sets of the
form (u, v] × F with F ∈ F and hence for every fixed null set N its trace
on the set [0,∞) × N is generated by the collection of sets of the form
(u, v] × (F ∩ N). Because the latter sets are predictable the traces of the
product σ-field and the predictable σ-field on the set [0,∞)×N are identical
for every fixed null set N . We apply this with the null set N of all ω
such that there exists t ≥ 0 with Xt(ω) 6= 0. For every Borel set B in R
the set {(t, ω):Xt(ω) ∈ B} is B∞ × F-measurable by assumption, and is
contained in [0,∞)×N if B does not contain 0. Thus it can be written as
A ∩

(
[0,∞) × N

)
for some predictable set A and hence it is predictable,

because [0,∞) × N is predictable. The set B = {0} can be handled by
taking complements.

5.2 Doléans Measure

In this section we prove that for every cadlag martingale M in L2 there
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exists a σ-finite measure µM on the predictable σ-field such that

(5.15)
µM
(
{0} × F0

)
= 0, F0 ∈ F0,

µM
(
(s, t]× Fs

)
= E1Fs(M

2
t −M2

s ), s < t, Fs ∈ Fs.

The right side of the preceding display is nonnegative, because M2 is a
submartingale. We can see this explicitly by rewriting it as

E1Fs(Mt −Ms)(Mt +Ms) = E1Fs(Mt −Ms)
2,

which follows because E1Fs(Mt −Ms)Ms = 0 by the martingale property,
so that we can change “+” into “−”. The measure µM is called the Doléans
measure of M .

5.16 Example (Brownian motion). If M = B is a Brownian motion,
then by the independence of Bt −Bs and Fs,

µB
(
(s, t]× Fs) = E1FsE(B2

t −B2
s ) = P(Fs)(t− s)

= (λ× P)
(
(s, t]× Fs).

Thus the Doléans measure of Brownian motion is the product measure
λ× P. This is not only well defined on the predictable σ-field, but also on
the bigger product σ-field B∞ ×F .

5.17 EXERCISE. Find the Doléans measure of the compensated Poisson
process.

In order to prove the existence of the measure µM in general, we follow
the usual steps of measure theory. First we extend µM by additivity to
disjoint unions of the form

A = {0} × F0

⋃ k⋃
i=1

(si, ti]× Fi, F0 ∈ F0, Fi ∈ Fsi ,

by setting

µM (A) =

k∑
i=1

E1Fi(M
2
ti −M

2
si).

It must be shown that this is well defined: if A can be represented as a
disjoint, finite union of predictable rectangles in two different ways, then
the two numbers µM (A) obtained in this way must agree. This can be
shown by the usual trick of considering the common refinement. Given two
disjoint, finite unions that are equal,

A = {0} × F0

⋃ k⋃
i=1

(si, ti]× Fi = {0} × F0

⋃ l⋃
j=1

(s′j , t
′
j ]× F ′j ,
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we can write A also as the disjoint union of {0} × F0 and the sets(
(si, ti]× Fi

)
∩
(
(s′j , t

′
j ]× F ′j

)
= (s′′i,j , t

′′
i,j ]× F ′′i,j .

Thus we have represented A in three ways. Next we show that µM (A)
according to the third refined partition is equal to µM (A) defined through
the other partitions. We omit the details of this verification. Once we have
verified that the measure µM is well defined in this way, it is clear that it
is finitely additive on the collection of finite disjoint unions of predictable
rectangles.

The set of all finite disjoint unions of predictable rectangles is a ring,
and generates the predictable σ-field. The first can be proved in the same
way as it is proved that the cells in R2 form a ring. The second is the content
of Lemma 5.5. We take both for facts. Next Carathéodory’s theorem implies
that µM is extendible to P provided that it is countably additive on the
ring. This remains to proved.

5.18 Theorem. For every cadlag martingale M in L2 there exists a unique
measure µM on the predictable σ-field such that (5.15) holds.

Proof. See Chung and Williams, p50–53.

5.19 EXERCISE. Show that µM
(
[0, t]× Ω

)
<∞ for every t ≥ 0 and con-

clude that µM is σ-finite.

5.3 Square-integrable Martingales

Given a square-integrable martingale M we define an integral
∫
X dM for

increasingly more general processes X. If X is of the form 1(s,t]Z for some
(time-independent) random variable Z, then we want to define∫

1(s,t]Z dM = Z(Mt −Ms).

Here 1(s,t]Z is short-hand notation for the map (u, ω) 7→ 1(s,t](u)Z(ω) and

the right side is the random variable ω 7→ Z(ω)
(
Mt(ω)−Ms(ω)

)
. We now

agree that this random variable is the “integral” written on the left. Clearly
this integral is like a Riemann-Stieltjes integral for fixed ω.

We also want the integral to be linear in the integrand, and are lead
to define ∫ k∑

i=1

ai1(si,ti]×Fi dM =

k∑
i=1

ai1Fi(Mti −Msi).
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By convention we choose “to give measure 0 to 0” and set∫
a01{0}×F0

dM = 0.

We can only postulate these definitions if they are consistent. If X =∑k
i=1ai1(si,ti]×Fi has two representations as a linear combination of pre-

dictable rectangles, then the right sides of the second last display must
agree. For this it is convenient to restrict the definition initially to linear
combinations of disjoint predictable rectangles. The consistency can then
be checked using the joint refinements of two given representations. We
omit the details.

5.20 Definition. If X = a01{0}×F0
+
∑k
i=1ai1(si,ti]×Fi is a linear combi-

nation of disjoint predictable rectangles, then the stochastic integral of X
relative to M is defined as

∫
X dM =

∑k
i=1ai1Fi(Mti −Msi).

In this definition there is no need for the restriction to predictable pro-
cesses. However, predictability is important for the extension of the integral.
We extend by continuity, based on the following lemmas.

5.21 Lemma. Every uniformly continuous map defined on a dense subset
of a metric space with values in another metric space extends in a unique
way to a continuous map on the whole space. If the map is a linear isometry
between two normed spaces, then so is the extension.

5.22 Lemma. The collection of simple processes X as in Definition 5.20 is
dense in L2

(
[0,∞)×Ω,P, µM

)
. Every bounded X ∈ L2

(
[0,∞)×Ω,P, µM

)
is a limit in this space of a uniformly bounded sequence of simple processes.

5.23 Lemma. For every X as in Definition 5.20 we have
∫
X2 dµM =

E(
∫
X dM)2.

Proofs. The first lemma is a standard result from topology.
Because any function in L2

(
[0,∞)×Ω,P, µM

)
is the limit of a sequence

of bounded functions, for Lemma 5.22 it suffices to show that any bounded
element of L2

(
[0,∞)×Ω,P, µM

)
can be obtained as such a limit. Because

1[0,t]X → X in L2

(
[0,∞) × Ω,P, µM

)
as t → ∞, we can further restrict

ourselves to elements that vanish off [0, t]× Ω.
Let H be the set of all bounded, predictable X such that X1[0,t] is

a limit in L2

(
[0,∞) × Ω,P, µM

)
of a sequence of linear combinations of

indicators of predictable rectangles, for every t ≥ 0. ThenH is a vector space
and contains the constants. A “diagonal type” argument shows that it is also
closed under bounded monotone limits. Because H contains the indicators
of predictable rectangles (the sets in Lemma 5.5) and this collection of sets
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is intersection stable, the first statement of Lemma 5.22 follows from the
monotone class theorem, Theorem 1.23.

Using the common refinement of two finite disjoint unions of pre-
dictable rectangles, we can see that the minimum of two simple processes is
again a simple process. This implies the second statement of Lemma 5.22.

Finally consider Lemma 5.23. Given a linear combination X of disjoint
predictable rectangles as in Definition 5.20, its square is given by X2 =
a2

01{0}×F0
+
∑k
i=1a

2
i 1(si,ti]×Fi . Hence, by (5.15),

(5.24)

∫
X2 dµM =

k∑
i=1

a2
iµM

(
(si, ti]× Fi

)
=

k∑
i=1

a2
iE1Fi(Mti −Msi)

2.

On the other hand, by Definition 5.20,

E
(∫

X dM
)2

= E
( k∑
i=1

ai1Fi(Mti −Msi)
)2

=

k∑
i=1

k∑
j=1

aiajE1Fi1Fj (Mti −Msi)(Mtj −Msj ).

Because the rectangles are disjoint we have for i 6= j that either 1Fi1Fj = 0
or (si, ti]∩(sj , tj ] = ∅. In the first case the corresponding term in the double
sum is clearly zero. In the second case it is zero as well, because, if ti ≤
sj , the variable 1Fi1Fj (Mti −Msi) is Fsj -measurable and the martingale
difference Mtj − Msj is orthogonal to Fsj . Hence the off-diagonal terms
vanish and the expression is seen to reduce to the right side of (5.24).

Lemma 5.23 shows that the map

X 7→
∫
X dM,

L2

(
[0,∞)× Ω,P, µM

)
7→ L2(Ω,F ,P),

is an isometry if restricted to the linear combinations of disjoint indicators
of predictable rectangles. By Lemma 5.22 this class of functions is dense in
L2

(
[0,∞)×Ω,P, µM

)
. Because an isometry is certainly uniformly continu-

ous, this map has a unique continuous extension to L2

(
[0,∞)×Ω,P, µM

)
,

by Lemma 5.21. We define this extension to be the stochastic integral∫
X dM .

5.25 Definition. For M a cadlag martingale in L2 and X a predictable
process in L2

(
[0,∞)×Ω,P, µM

)
, the stochastic integral X 7→

∫
X dM is the

unique continuous extension to L2

(
[0,∞) × Ω,P, µM

)
of the map defined

in Definition 5.20 with range inside L2(Ω,F ,P).

Thus defined a stochastic integral is an element of the Hilbert space
L2(Ω,F ,P) and therefore an equivalence class of functions. We shall also
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consider every representative of the class to be “the” stochastic integral∫
X dM . In general, there is no preferred way of choosing a representative.

If X is a predictable process such that 1[0,t]X ∈ L2

(
[0,∞)×Ω,P, µM

)
,

then
∫

1[0,t]X dM is defined through the preceding definition. A short-hand

notation for this is
∫ t

0
X dM . By linearity of the stochastic integral we then

have ∫
1(s,t]X dM =

∫ t

0

X dM −
∫ s

0

X dM, s < t.

We abbreviate this to
∫ t
s
X dM . The equality is understood in an almost

sure sense, because all three integrals are equivalence classes.
If 1[0,t]X ∈ L2

(
[0,∞)× Ω,P, µM

)
for every t ≥ 0, then we can define

a process X ·M satisfying

(X ·M)t =

∫ t

0

X dM ≡
∫

1[0,t]X dM.

Because for every t ≥ 0 the stochastic integral on the right is defined only
up to a null set, this display does not completely define the process X ·M .
However, any specification yields a martingale X ·M and there always exists
a cadlag version of X ·M .

5.26 Theorem. Suppose that M is a cadlag martingale in L2 and that X
is a predictable process with

∫
1[0,t]X

2 dµM <∞ for every t ≥ 0.

(i) Any version of X ·M = {
∫ t

0
X dM : t ≥ 0} is a martingale in L2.

(ii) There exists a cadlag version of X ·M .
(iii) If M is continuous, then there exists a continuous version of X ·M .
(iv) The processes ∆(X ·M), where X ·M is chosen cadlag, and X∆M are

indistinguishable.

Proof. (i). If X is a finite linear combination of predictable rectangles, of
the form as in Definition 5.20, then so is 1[0,t]X and hence

∫
1[0,t]X dM is

defined as ∫
1[0,t]X dM =

k∑
i=1

ai1Fi(Mti∧t −Msi∧t).

As a process in t, this is a martingale in L2, because each of the stopped
processes M ti or Msi is a martingale, so that M ti − Msi is martingale
whence 1Fi(M

ti −Msi) is a martingale on the time set [si,∞), while this
process is zero on [0, si]; furthermore, a linear combination of martingales
is a martingale. The stochastic integral X ·M of a general integrand X is
defined as an L2-limit of stochastic integrals of simple predictable processes.
Because the martingale property is retained under convergence in L1, the
process X ·M is a martingale.

(ii). Statement (ii) is an immediate consequence of (i) and Theorem 4.6,
which implies that any martingale possesses a cadlag version.
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(iii). To prove statement (iii) it suffices to show that the cadlag version
of X ·M found in (ii) is continuous if M is continuous. If X is elementary,
then this is clear from the explicit formula (5.0) for the stochastic integral
used in (i). In general, the stochastic integral (X ·M)t is defined as the
L2-limit of a sequence of elementary stochastic integrals (Xn ·M)t. Given
a fixed T > 0 we can use the same sequence of linear combinations of
predictable rectangles for every 0 ≤ t ≤ T . Each process X ·M −Xn ·M is
a cadlag martingale in L2 and hence, by Corollary 4.39, for every T > 0,∥∥∥ sup

0≤t≤T

∣∣(X ·M)t − (Xn ·M)t
∣∣ ∥∥∥

2
≤ 2
∥∥(X ·M)T − (Xn ·M)T

∥∥
2
.

The right side converges to zero as n → ∞ and hence the variables in the
left side converge to zero in probability. There must be a subsequence {ni}
along which the convergence is almost surely, i.e. (Xni ·M)t → (X ·M)t
uniformly in t ∈ [0, T ], almost surely. Because continuity is retained under
uniform limits, the process X ·M is continuous almost surely. This concludes
the proof of (iii).

(iv). Let H be the set of all bounded predictable processes X for which
(iv) is true. Then H is a vector space that contains the constants, and it
is readily verified that it contains the indicators of predictable rectangles.
If 0 ≤ Xn ↑ X for a uniformly bounded X, then 1[0,t]Xn → 1[0,t]X in

L2

(
[0,∞)×Ω,P, µM

)
. As in the preceding paragraph we can select a sub-

sequence such that, for the cadlag versions, Xni ·M → X ·M uniformly on
compacta, almost surely. Because |∆Y | ≤ 2‖Y ‖∞ for any cadlag process
Y , the latter implies that ∆(Xni · M) → ∆(X · M) uniformly on com-
pacta, almost surely. On the other hand, by pointwise convergence of Xn

to X, Xni∆M → X∆M pointwise on [0,∞)× Ω. Thus {Xn} ⊂ H implies
that X ∈ H. By the monotone class theorem, Theorem 1.23, H contains
all bounded predictable X. A general X can be truncated to the interval
[−n, n], yielding a sequence Xn with Xn → X pointwise on [0,∞) × Ω
and 1[0,t]Xn → 1[0,t]X in L2

(
[0,∞) × Ω,P, µM

)
. The latter implies, as

before, that there exists a subsequence such that, for the cadlag versions,
Xni ·M → X ·M uniformly on compacta, almost surely. It is now seen that
(iv) extends to X.

The following two lemmas give further properties of stochastic inte-
grals. Here we use notation as in the following exercise.

5.27 EXERCISE. Let S ≤ T be stopping times and let X be an FS-
measurable random variable. Show that the process 1(S,T ]X, defined as
(t, ω) 7→ 1(S(ω),T (ω)](t)X(ω), is predictable.

5.28 Lemma. Let M be a cadlag martingale in L2 and let S ≤ T be
bounded stopping times.
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(i)
∫

1(S,T ]X dM = X(MT −MS) almost surely, for every bounded FS-
measurable random variable X.

(ii)
∫

1(S,T ]XY dM = X
∫

1(S,T ]Y dM almost surely, for every bounded
FS-measurable random variable X and bounded predictable process
Y .

(iii)
∫

1(S,T ]X dM = NT −NS almost surely, for every bounded predictable
process X, and N a cadlag version of X ·M .

(iv)
∫

1{0}×ΩX dM = 0 almost surely for every predictable process X.

Proof. Let Sn and Tn be the upward discretizations of S and T on the
grid 0 < 2−n < 22−n < · · · < kn2−n, as in the proof of Theorem 4.21, for
kn sufficiently large that kn2−n > S ∨ T . Then Sn ↓ S and Tn ↓ T , so that
1(Sn,Tn] → 1(S,T ] pointwise on Ω. Furthermore,

(5.29) 1(Sn,Tn] =

kn∑
k=0

1(k2−n,(k+1)2−n]×{S<k2−n≤T}.

If we can prove the lemma for (Sn, Tn] taking the place of (S, T ] and every
n, then it follows for (S, T ] upon taking limits. (Note here that µM is a
finite measure on sets of the form [0,K]×Ω and all (Sn, Tn] are contained
in a set of this form.)

For the proof of (i) we first consider the case that X = 1F for some F ∈
FS . In view of (5.29) and because {S < k2−n ≤ T} ∩ F = ({S < k2−n} ∩
F )∩{k2−n ≤ T} is contained in Fk2−n , the process 1(Sn,Tn]X = 1(Sn,Tn]1F
is a linear combination of predictable rectangles. Hence, by Definition 5.20,∫

1(Sn,Tn]1F dM =

kn∑
k=0

1{S<k2−n≤T}∩F (M(k+1)2−n −Mk2−n)

= 1F (MTn −MSn).

This proves (i) in the case that X = 1F . By linearity (i) is then also true
for X that are simple over FS . A general, bounded FS-measurable X can
be approximated by a uniformly bounded sequence of simple X. Both sides
of the equality in (i) then converge in L2 and hence the equality is valid for
such X.

For the proof of (ii) first assume that X = 1F for some F ∈ FS and
that Y = 1(u,v]×Fu for some Fu ∈ Fu. In view of (5.29),

1(Sn,Tn]1F 1(u,v]×Fu =

kn∑
k=0

k2−n∨u<(k+1)2−n∧v

1(k2−n∨u,(k+1)2−n∧v]×{S<k2−n≤T}∩F∩Fu

is a linear combination of predictable rectangles, whence, by Definition 5.20,
with the summation index k ranging over the same set as in the preceding
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display,∫
1(Sn,Tn]1F 1(u,v]×Fu dM

=
∑
k

1{S<k2−n≤T}∩F∩Fu(M(k+1)2−n∧v −Mk2−n∨u)

= 1F
∑
k

1{S<k2−n≤T}∩Fu(M(k+1)2−n∧v −Mk2−n∨u)

= 1F

∫
1(Sn,Tn]1(u,v]×Fu dM.

This proves (ii) for X and Y of the given forms. The general case follows
again by linear extension and approximation.

For (iii) it suffices to show that NTn =
∫

1(0,Tn]X dM almost surely.
Since N0 = 0,

NTn =
∑
k

1{k2−n≤T}(N(k+1)2−n −Nk2−n)

=
∑
k

∫
1{k2−n≤T}1(k2−n,(k+1)2−n]X dM =

∫
1(0,Tn]X dM,

where the second equality follows from (ii), and the last equality by (5.29)
after changing the order of summation and integration.

Because µM does not charge {0} × Ω, 1{0}×ΩX = 0 in L2

(
[0,∞) ×

Ω,P, µM
)

for any X and hence 0 =
∫

1{0}×ΩX dM in L2, by the isometry.
This proves (iv).

The preceding lemma remains valid for unbounded processes X,Y or
unbounded stopping times S, T , provided the processes involved in the
statements are appropriately square-integrable. In each case this is true
under several combinations of conditions on X,Y, S, T and M .

5.30 Lemma (Substitution). Let M be a cadlag martingale in L2 and let
N = Y ·M be a cadlag version of the stochastic integral of a predictable
process Y with 1[0,t]Y ∈ L2

(
[0,∞)× Ω,P, µM

)
for every t ≥ 0. Then

(i) µN is absolutely continuous relative to µM and dµN = Y 2 dµM .
(ii)

∫
X dN =

∫
XY dM almost surely for every X ∈ L2

(
[0,∞) ×

Ω,P, µN
)
.

Proof. By Lemma 5.28(ii), for every bounded predictable process Y and
every s < t and Fs ∈ Fs,

(5.31) 1Fs

∫
1(s,t]Y dM =

∫
1(s,t]×FsY dM.

This can be extended to predictable Y as in the statement of the lemma by
approximation. Specifically, if Yn is Y truncated to the interval [−n, n], then
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1(s,t]Yn → 1(s,t]Y in L2

(
[0,∞) × Ω,P, µM

)
and hence also 1Fs1(s,t]Yn →

1Fs1(s,t]Y in this space. By the isometry property of the stochastic integral
it follows that

∫
1(s,t]Yn dM and

∫
1(s,t]×FsYn dM converge in L2 to the

corresponding expressions with Y instead of Yn, as n → ∞. Therefore, if
(5.31) is valid for Yn instead of Y for every n, then it is valid for Y .

We can rewrite the left side of (5.31) as 1Fs(Nt − Ns). Therefore, for
every predictable rectangle (s, t]× Fs,

µN
(
(s, t]× Fs

)
= E1Fs(Nt −Ns)2 = E

(∫
1(s,t]×FsY dM

)2

=

∫
1(s,t]×FsY

2 dµM ,

by the isometry property of the stochastic integral. The predictable rect-
angles are an intersection-stable generator of the predictable σ-field and
[0,∞)×Ω is a countable union of predictable rectangles of finite measures
under µN and Y 2 · µM . Thus these measures must agree on all predictable
sets, as asserted in (i).

For the proof of (ii) first assume that X = 1(s,t]×Fs for Fs ∈ Fs. Then
the equality in (ii) reads

1Fs(Nt −Ns) =

∫
1(s,t]×FsY dM, a.s..

The left side of this display is exactly the left side of (5.31) and hence (ii)
is correct for this choice of X. By linearity this extends to all X that are
simple over the predictable rectangles.

A general X ∈ L2

(
[0,∞)×Ω,P, µN

)
can be approximated in this space

by a sequence of simple Xn. Then by (i),∫
|XnY −XY |2 dµM =

∫
|Xn −X|2 dµN → 0.

Thus, by the isometry property of the stochastic integral, we can take limits
as n → ∞ in the identities

∫
XnY dM =

∫
Xn dN to obtain the desired

identity for general X and Y .

5.4 Locally Square-integrable Martingales

In this section we extend the stochastic integral by localization to more
general processes X and M .

Given a cadlag local L2-martingale M we allow integrands X that are
predictable processes and are such that there exists a sequence of stopping
times 0 ≤ Tn ↑ ∞ such that, for every n,
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(i) MTn is a martingale in L2,
(ii) 1[0,t∧Tn]X ∈ L2

(
[0,∞)× Ω,P, µMTn

)
for every t ≥ 0.

A sequence of stopping times Tn of this type is called a localizing sequence
for the pair (X,M). If such a localizing sequence exists, then∫

1[0,t∧Tn]X dMTn

is a well-defined element of L2(Ω,F ,P), for every n, by Definition 5.25.

We define
∫ t

0
X dM as the almost sure limit as n → ∞ of these random

variables. The set of all X for which a localizing sequence exists for the pair
(X,M) is denoted L2,loc(M).

5.32 Definition. Given a cadlag local L2-martingale M and a predictable
process X for which there exists a localizing sequence Tn for the pair
(X,M), the stochastic integral

∫ t
0
X dM is defined as the almost sure limit

of the sequence of random variables
∫

1[0,t∧Tn]X dMTn , as n→∞.

We denote the stochastic process t 7→
∫ t

0
X dM by X ·M . If the limit

as t→∞ of (X ·M)t exists, then we denote this by
∫∞

0
X dM or (X ·M)∞.

It is not immediately clear that Definition 5.32 is well posed. Not only
do we need to show that the almost sure limit exists, but we must also
show that the limit does not depend on the localizing sequence. This issue
requires scrutiny of the definitions, but turns out to be easily resolvable.
An integral of the type

∫
1[0,S]X dMT ought to depend only on S ∧ T and

the values of the processes X and M on the set [0, S ∧ T ], because the
integrand 1[0,S]X vanishes outside [0, S] and the integrator MT is constant
outside [0, T ]. In analogy with the ordinary integral, a nonzero integral
should require both a nonzero integrand and a nonconstant integrator.

This reasoning suggests that, for every n ≥ m, on the event {t ≤ Tm},
where t ∧ Tm = t ∧ Tn, the variable

∫
1[0,t∧Tm]X dMTm is the same as the

variable
∫

1[0,t∧Tn]X dMTn . Then the limit as n→∞ trivially exists on the
event {t ≤ Tm}. Because ∪m{t ≤ Tm} = Ω the limit exists everywhere.

The following lemma makes these arguments precise.

5.33 Lemma. Let M be a cadlag process and X a predictable process, and
let S, T, U, V be stopping times such that S and U are bounded, MT and
MV are martingales in L2 and such that 1[0,S]X and 1[0,U ]X are contained

in L2

(
[0,∞)×Ω,P, µMT

)
and L2

(
[0,∞)×Ω,P, µMV

)
, respectively. Then∫

1[0,S]X dMT =
∫

1[0,U ]X dMV almost surely on the event {S ∧ T = U ∧
V }.

Proof. First assume that X is a predictable rectangle of the form X =
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1(s,t]×Fs . By Lemma 5.28(ii) and next (i),∫
1[0,S]1(s,t]×Fs dM

T = 1Fs

∫
1[0,S]1(s,t] dM

T = 1Fs(M
T
S∧t −MT

S∧s)

= 1Fs(MS∧t∧T −MS∧s∧T ).

The right side depends on on (S, T ) only through S ∧ T . Clearly the same
calculation with the stopping times U and V gives the same result on the
event {S ∧ T = U ∧ V }.

Next let X be a bounded predictable process. Then, for every given
t ≥ 0, the process 1[0,t]X is automatically contained in L2

(
[0,∞) ×

Ω,P, µMT +µMV

)
and by (a minor extension of) Lemma 5.22 there exists a

bounded sequence of simple processes Xn with Xn → 1[0,t]X in L2

(
[0,∞)×

Ω,P, µMT + µMV

)
. If t ≥ S, then this implies that 1[0,S]Xn → 1[0,S]X in

L2

(
[0,∞)×Ω,P, µMT

)
and hence

∫
1[0,S]Xn dM

T →
∫

1[0,S]X dMT in L2,
by the isometry. We can argue in the same way with S and T replaced by U
and V . Thus the equality of

∫
1[0,S]Xn dM

T and
∫

1[0,U ]Xn dM
V for every

n on the event {S ∧ T = U ∧ V } carries over onto X.
A general X as in the lemma can be truncated to [−n, n] and next we

take limits.

Thus the reasoning given previously is justified and shows that the
almost sure limit of

∫
1[0,t∧Tn]X dMTn exists. To see that the limit is also

independent of the localizing sequence, suppose that Sn and Tn are two lo-
calizing sequences for the pair of processes (X,M). Then the lemma implies
that on the event An = {t∧Sn = t∧Tn}, which contains Bn = {t ≤ Sn∧Tn},∫

1[0,t∧Sn]X dMSn =

∫
1[0,t∧Tn]X dMTn , a.s..

It follows that the almost sure limits of left and right sides of the display, as
n→∞, are the same almost surely on the event Bm for every fixed m, and
hence on the event ∪mBm = Ω. Thus the two localizing sequences yield the
same definition of

∫ t
0
X dM .

In a similar way we can prove that we get the same stochastic integral
if we use separate localizing sequences for X and M . (See Exercise 5.34.)
In particular, if M is an L2-martingale, X is a predictable process, and 0 ≤
Tn ↑ ∞ is a sequence of stopping times such that 1[0,t∧Tn]X ∈ L2

(
[0,∞)×

Ω,P, µM
)

for every t and every n, then∫
1[0,t∧Tn]X dM,

which is well defined by Definition 5.25, converges almost surely to
∫ t

0
X dM

as defined in Definition 5.32. So “if it is not necessary to localize M , then
not doing so yields the same result”.
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5.34 EXERCISE. Suppose that M is a local L2-martingale with localizing
sequence Tn, X a predictable process, and 0 ≤ Sn ↑ ∞ are stopping times
such that 1[0,t∧Sn]X ∈ L2

(
[0,∞) × Ω,P, µMTn

)
for every t ≥ 0 and n.

Show that limn→∞
∫

1[0,t∧Sn]X dMTn exists almost surely and is equal to∫ t
0
X dM . (Note that Sn ∧ Tn is a localizing sequence for the pair (X,M),

so that
∫ t

0
X dM is well defined in view of Exercise 5.35.)

5.35 EXERCISE. Let M be a cadlag process and S and T stopping times
such that MS and MT are L2-martingales. Show that
(i) µMS

(
A ∩ [0, S ∧ T ]

)
= µMT

(
A ∩ [0, S ∧ T ]

)
for every A ∈ P.

(ii) if M is an L2-martingale, then µMS (A) = µM
(
A ∩ [0, S]

)
for every

A ∈ P.

The present extension of the stochastic integral possesses similar prop-
erties as in the preceding section.

5.36 Theorem. Suppose that M is a cadlag local L2-martingale and X a
predictable process for which there exists a localizing sequence Tn for the
pair (X,M).
(i) There exists a cadlag version of X ·M .

(ii) Any cadlag version of X ·M is a local L2-martingale relative to the
localizing sequence Tn.

(iii) If M is continuous, then there exists a continuous version of X ·M .
(iv) The processes ∆(X ·M), where X ·M is chosen cadlag, and X∆M are

indistinguishable.

Proof. For every n let Yn be a cadlag version of the process t 7→∫
1[0,t∧Tn]X dMTn . By Theorem 5.26 such a version exists; it is an L2-

martingale; and we can and do choose it continuous if M is continuous.
For fixed t ≥ 0 the variable Tm ∧ t is a stopping time and hence by
Lemma 5.28(iii)

Yn,Tm∧t =

∫
1[0,Tm∧t∧Tn]X dMTn , a.s.

By Lemma 5.33 the right side of this display changes at most on a null
set if we replace MTn by MTm . For m ≤ n we have Tm ∧ Tn = Tm and
hence the integrand is identical to 1[0,t∧Tm]X. If we make both changes,
then the right side becomes Ym,t. We conclude that Yn,Tm∧t = Ym,t almost
surely, for every fixed t and m ≤ n. This shows that the stopped martingale
Y Tmn is a version of the stopped martingale Y Tmm , for m ≤ n. Because both
martingales possess cadlag sample paths, the two stopped processes are
indistinguishable. This implies that Yn and Ym agree on the set [0, Tm]
except possibly for points (t, ω) with ω ranging over a null set. The union
of all null sets attached to some pair (m,n) is still a null set. Apart from
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points (t, ω) with ω contained in this null set, the limit Y as n → ∞ of
Yn,t(ω) exists and agrees with Ym,t(ω) on [0, Tm]. The latter implies that
it is cadlag, and Y Tm is indistinguishable of Ym. Furthermore, the jump
process of Y is indistinguishable of the jump process of Ym on the set
[0, Tm] and hence is equal to 1[0,Tm]X∆MTm = X∆M on the set [0, Tm],
by Theorem 5.26(iv).

By definition this limit Y is a version of X ·M .

The properties as in Lemmas 5.28 and 5.30 also extend to the present
more general integral. For instance, in a condensed notation we have, for T
a stopping time and for processes X, Y and M for which the expressions
are defined,

(5.37)

(X ·M)T = X ·MT = (1[0,T ]X) ·M,

X · (Y ·M) = (XY ) ·M,

∆(X ·M) = X∆M.

We shall formalize this later, after introducing the final extension of the
stochastic integral.

5.38 Example (Locally bounded integrators). The stochastic integral
X ·M is defined for every pair of a local L2-martingale M and a locally
bounded predictable process X.

Here “locally bounded” means that there exists a sequence of stopping
times 0 ≤ Tn ↑ ∞ such that XTn is uniformly bounded, for every n. We
can choose this sequence of stopping times to be the same as the localizing
sequence for M . (Otherwise, we use the minimum of the two localizing
sequences.) Then 1[0,Tn∧t]X is uniformly bounded and hence is contained

in L2

(
[0,∞)×Ω,P, µMTn

)
for every t and n. Thus Definition 5.25 applies.

5.39 EXERCISE. Show that the preceding example applies to every pair a
continuous process X and a continuous local martingale M . [Hint: consider
stopping times Tn = inf{t ≥ 0: |Xt| ≥ n, |Mt| ≥ n}.]

5.40 EXERCISE. Show that every left-continuous adapted process that is
0 at 0 is locally bounded.

5.41 EXERCISE. Show that the preceding example applies to every pair
of a left-continuous predictable process X with X0 = 0 and a cadlag local
martingale M with uniformly bounded jumps.
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* 5.5 Brownian Motion

The Doléans measure of Brownian motion is the product measure λ × P
and hence exists as a measure on the product σ-field B∞ × F , which is
bigger than the predictable σ-field. This can be used to define the stochastic
integral

∫
X dB relative to a Brownian motion B also for non-predictable

integrands. The main aim of this section is to define the stochastic integral∫ t
0
X dB for all measurable, adapted processes X such that

∫ t
0
X2
s ds is finite

almost surely.
Going from predictable to adapted measurable processes may appear

an important extension. However, it turns out that any measurable, adapted
process X is almost everywhere equal to a predictable process X̃, relative
to λ×P. Because we want to keep the isometry relationship of a stochastic
integral, then the only possibility is to define

∫ t
0
X dM as

∫ t
0
X̃ dM . From

this perspective we obtain little new.
The key in the construction is the following lemma.

5.42 Lemma. For every measurable, adapted process X: [0,∞) × Ω 7→ R
there exists a predictable process X̃ such that X = X̃ almost everywhere
under λ× P.

Proof. The proof is based on two facts:
(i) For every bounded, measurable process X there exists a bounded op-

tional process X̄ such that E(Xt| Ft) = X̄t almost surely, for every
t ≥ 0.

(ii) For every bounded, optional process X̄ there exists a predictable pro-
cess X̃ such that the set {X̄ 6= X̃} is contained in the union ∪n[Tn] of
the graphs of countably many stopping times.

If we accept (i)–(ii), then the lemma can be proved as follows. For every
bounded measurable process X, facts (i) and (ii) yield processes X̄ and X̃.
If X is adapted, then Xt = E(Xt| Ft) = X̄t almost surely for every t ≥ 0,
by (i). Consequently, by Fubini’s theorem

λ× P(X 6= X̄) =

∫
P
(
ω:Xt(ω) 6= X̄t(ω)

)
dλ(t) = 0.

Because the sections {t: (ω, t) ∈ G} of the set G = ∪n[Tn] contain at most
countably many points, they have Lebesgue measure zero and hence λ ×
P(X̄ 6= X̃) = 0, by another application of Fubini’s theorem. Combining
(i) and (ii), we see that λ × P(X 6= X̃) = 0. This proves the lemma for
bounded, measurable, adapted processes X. We can treat general processes
X by truncating and taking limits. Specifically, if Xn is X truncated to
[−n, n], then Xn → X on [0,∞) × Ω. If X̃n is predictable with X̃n = Xn

except on a null set Bn, then X̃n converges to a limit at least on the
complement of ∪nBn. We can define X̃ to be lim X̃n if this exists and 0
otherwise.
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We prove (i) by the monotone class theorem, Theorem 1.23. Let H
be the set of all bounded, measurable processes X for which there exists
an optional process X̄ as in (i). Then H is a vector space and contains the
constants. If Xn ∈ H with 0 ≤ Xn ↑ X for some bounded measurable X and
X̄n are the corresponding optional processes as in (i), then the process X̄
defined as lim inf X̄n if this liminf is finite, and as 0 if not, is optional. By
the monotone convergence theorem for conditional expectations (X̄n)t =
E((Xn)t| Ft) ↑ E(Xt| Ft) almost surely, for every t ≥ 0. Hence for each
t ≥ 0, we have that X̄t = E(Xt| Ft) almost surely.

In view of Theorem 1.23 it now suffices to show that the indicators of
the sets [0, s)× F , for s ≥ 0 and F ∈ F , which form an intersection stable
generator of B∞×F , are in H. By Example 2.6 there exists a cadlag process
Y such that Yt = E(1F | Ft) almost surely, for every t ≥ 0. Then X̄ = 1[0,s)Y
is right continuous and hence optional. It also satisfies X̄t = E(1[0,s)×F | Ft)
almost surely. The proof of (i) is complete.

To prove (ii) we apply the monotone class theorem another time, this
time with H equal to the set of bounded, optional processes X̄ for which
there exists a predictable process X̃ as in (ii). Then H is a vector space
that contains the constants. It is closed under taking bounded monotone
limits, because if X̄n = X̃n on Gn and X̄n → X̄, then lim X̃n must exist
at least on ∩nGn and be equal to X̄ there. We can define X̃ to be lim X̃n

if this exists and 0 otherwise. Because the stochastic integral (S, T ] for two
given stopping times S, T is predictable, H clearly contains all indicators
of stochastic intervals [S, T ), [S, T ], (S, T ] and (S, T ). These intervals form
an intersection stable generator of the optional σ-field by Lemma 5.9.

Let X be a measurable, adapted process for which there exists a se-
quence of stopping times 0 ≤ Tn ↑ ∞ such that, for every t ≥ 0 and n,

(5.43) 1[0,t∧Tn]X ∈ L2

(
[0,∞)× Ω,B∞ ×F , λ× P

)
.

By the preceding lemma there exists a predictable process X̃ such that
X = X̃ almost everywhere under λ×P. Relation (5.43) remains valid if we
replace X by X̃. Then we can define a stochastic integral

∫
1[0,t∧Tn]X̃ dB

as in Definition 5.25 and the discussion following it. We define
∫ t

0
X dB as

the almost sure limit of these variables as n→∞.

5.44 Definition. Given a measurable, adapted process X for which there
exists a localizing sequence Tn satisfying (5.43) the stochastic integral∫ t

0
X dB is defined as the almost sure limit of the sequence of cadlag pro-

cesses t 7→
∫

1[0,t∧Tn]X̃ dB.

The verification that this definition is well posed is identical to the
similar verification for stochastic integrals relative to local martingales.

Condition (5.43) is exactly what is needed, but it is of interest to have
a more readily verifiable condition for a process X to be a good integrand.
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5.45 Lemma. Let X be a measurable and adapted process.
(i) If

∫ t
0
X2
s ds < ∞ almost surely for every t ≥ 0, then there exists a

sequence of stopping times 0 ≤ Tn ↑ ∞ such that (5.43) is satisfied

and hence
∫ t

0
X dB can be defined as a continuous local martingale.

(ii) If
∫ t

0
EX2

s ds < ∞, then
∫ t

0
X dB can be defined as a continuous mar-

tingale in L2.

Proof. There exists a predictable process X̃ with X = X̃ almost every-
where under λ×P. By Fubini’s theorem the sections {t:Xt(ω) 6= X̃t(ω)} of
the set {X 6= X̃} are Lebesgue null sets for P-almost every ω. Therefore,
the conditions (i) or (ii) are also satisfied with X̃ replacing X.

Because X̃ is predictable, it is progressive. This means that X̃: [0, t]×
Ω 7→ R is a Bt × Ft-measurable map and so is X̃2. Consequently, by the
measurability part of Fubini’s theorem, the map ω 7→ Yt(ω): =

∫ t
0
X̃2
s (ω) ds

is Ft-measurable for every t ≥ 0, which means that the process Y is adapted.
The variables Tn = inf{t ≥ 0:Yt ≥ n} are stopping times, with 0 ≤ Tn ↑ ∞
on the event where Yt is finite for every t, by the continuity of the sample
paths of Y . This is a set of probability one by assumption (i), and hence
we can redefine Tn such that 0 ≤ Tn ↑ ∞ everywhere. Furthermore,∫

1[0,t∧Tn]X̃
2 d(λ× P) = EYTn∧t ≤ n.

Thus the process X̃ satisfies (5.43), concluding the proof of (i).
For (ii) it suffices to prove that 1[0,t]X ∈ L2

(
[0,∞)×Ω,B∞×F , λ×P

)
for every t ≥ 0. Then the same is true for X̃, and the result follows
from Theorem 5.26(iii). (The localization applied in Definition 5.44 is
unnecessary in this situation. Equivalently, we can put Tn ≡ ∞.) But∫

1[0,t]X
2 dλ× P =

∫ t
0

EX2
s ds, by Fubini’s theorem.

5.6 Martingales of Bounded Variation

A cadlag function A: [0,∞) 7→ R is said to be of locally bounded variation
if it can be written as the difference A = A1−A2 for cadlag, nondecreasing
functions A1, A2: [0,∞) 7→ R. The functions A1 and A2 then are “distribu-
tion functions” of finite Borel measures µ1 and µ2 on [0,∞) determined by
µi(a, b] = Ai(b)−Ai(a), for every a ≤ b, and A is the distribution function
of the signed measure µ = µ1−µ2 in the sense that µ(a, b] = A(b)−A(a) for
every a < b. (Because the measures are determined by differences, the val-
ues of A,A1, A2 at zero cannot be recovered from the measures, but these
do not play a role in the following.)
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The decomposition A = A1 − A2 or µ = µ1 − µ2 is not unique, but
there exists a “canonical” decomposition in which the two measures µ1 and
µ2 are orthogonal. This canonical decomposition is written A = A+ − A−
and µ = µ+ − µ−, where we can take A+(0) = A(0) and A−(0) = 0 for
definiteness. The functions A+ and A− or the corresponding measures µ+

and µ− are called the positive variation and negative variation of A, and
the function |A| = A+ + A− or the measure |µ| = µ+ + µ− is called the
total variation. The “total variation over the interval (a, b]” is written in
several different forms, as

|A|(b)− |A|(a) = |A|(a, b] =

∫ b

a

|dAs| =
∫

(a,b]

d|A|s.

It can be shown, but will not be needed in the following, that this quantity
is also equal to

sup
a=t0<t1<···<tk=b

k∑
i=1

|Ati −Ati−1
|,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tk = b
of the interval.

Warning. The total variation is denoted by the same symbol |A| as
the pointwise absolute value of A, and there is similar confusion in the
notations A− and A+. The notations used here are borrowed from viewing
the space of signed measures as an ordered space, where they are indeed
negative and positive parts and absolute value relative to the ordering.

Given two functions A and B of locally bounded variation, the partial
integration formula says that

(5.46) A(t)B(t)−A(0)B(0) =

∫
(0,t]

A(s−) dB(s) +

∫
(0,t]

B(s) dA(s).

The formula is best remembered in the differential form d(AB) = A− dB+
B dA. Note the left limit in A−!

5.47 EXERCISE. Prove the partial integration formula. [Hint: assume
A(0) = B(0) = 0 and use Fubini’s theorem to compute the measure of
the square (0, t] × (0, t] under the product of the measures corresponding
to A and B.]

If the sample paths of the martingale M are of bounded variation, then
we can define an integral

∫
X dM based on the usual Lebesgue-Stieltjes

integral. Specifically, if for a given ω ∈ Ω the variation
∫
|dMt|(ω) of the

function t 7→Mt(ω) is finite, then B 7→
∫
B
dMt(ω) defines a signed measure

on the Borel sets (a difference of two ordinary measures) and hence we can
define an integral ∫

Xt(ω) dMt(ω)
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for every process X and ω such that the function t 7→ Xt(ω) is Borel
measurable and integrable relative to the measure B 7→

∫
B
d|Mt|(ω). (All

integrals are relative to t, for fixed ω, although this is not easily seen from
the notation.)

If this is true for every ω, then we have two candidates for the integral∫
X dM , the “pathwise” Lebesgue-Stieltjes integral and the stochastic inte-

gral. These better be the same. Under some conditions they are indeed. For
clarity of the following theorem we denote the Lebesgue-Stieltjes integral
by
∫
Xs dMs and the stochastic integral by

∫
X dM .

A process X is said to be locally bounded if there exists a sequence
of stopping times 0 ≤ Tn ↑ ∞ such that XTn is uniformly bounded on
[0,∞)×Ω, for every n. A process X is said to be of locally bounded variation
if there exists a sequence of stopping times 0 ≤ Tn ↑ ∞ such that every of
the sample paths of XTn is of bounded variation on [0,∞), for every n. This
can be seen to be identical to the variation of every sample path of X on
every compact interval [0, t] being finite, which property is well described
as locally of bounded variation.

Warning. “Locally bounded” is defined to mean “locally uniformly
bounded”. This appears to be stronger than existence of a localizing se-
quence such that each of the sample paths of every of the stopped pro-
cesses is bounded. On the other hand, “locally of bounded variation” is to
be understood in a nonuniform way; it is weaker than existence of a se-
quence of stopping times such that all sample paths of XTn are of variation
bounded by a fixed constant, depending only on n. Perhaps “locally of finite
variation” would give a better description.

5.48 Theorem. Let M be a cadlag local L2-martingale of locally bounded
variation, and let X be a locally bounded predictable process. Then for
every t ≥ 0 the stochastic integral

∫ t
0
X dM and the Lebesgue-Stieltjes

integral
∫

(0,t]
Xs dMs are both well defined and agree almost surely.

Proof. If X is a measurable process, then the Lebesgue-Stieltjes integral∫
Xs dMs is well defined (up to integrability of the integrand s 7→ Xs rela-

tive to the measure s 7→ |Ms|), because the map t 7→ Xt(ω) is measurable
for every ω. The integral

∫
Xs dMs is then also measurable as a map on Ω.

This is clear if X is the indicator function of a product set in [0,∞) × Ω.
Next we can see it for a general X by an application of the monotone class
theorem, Theorem 1.23.

By assumption there exist sequences of stopping times 0 ≤ Tn ↑ ∞ such
that MTn is an L2-martingale and such that XTn is uniformly bounded,
for every n. It is not a loss of generality to choose these two sequences the
same; otherwise we use the minimum of the two sequences. We may also
assume that MTn is L2-bounded. If not, then we replace Tn by Tn ∧ n; the
martingale MTn∧n is bounded in L2, because EM2

Tn∧t∧n ≤ E(MTn)2
n <∞

for all t ≥ 0, by the submartingale property of (MTn)2.
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The process 1[0,Tn]X is uniformly bounded and hence is contained in

the Hilbert space L2

(
[0,∞)×Ω,P, µMTn

)
. Therefore, the stochastic integral∫ t

0
X dM is well defined according to Definition 5.25 as the almost sure limit

of the sequence
∫

1[0,Tn∧t]X dMTn .
Because

∫
(0,t]
|dMs| is finite for every t, and the process 1[0,t]X is uni-

formly bounded on the event An = {t ≤ Tn}, the Lebesgue-Stieltjes in-
tegral

∫
(0,t]
|Xs| |dMs| if finite on this event, and hence almost surely on

Ω = ∪nAn, for every given t. We conclude that
∫

(0,t]
Xs dMs is well de-

fined and finite, almost surely. By dominated convergence it is the limit as
n→∞ of the sequence

∫
1(0,Tn∧t](s)Xs dMs, almost surely.

We conclude that it suffices to show that
∫

1[0,Tn∧t]X dMTn and∫
1(0,Tn∧t](s)Xs dMs agree almost surely, for every n. For simplicity of no-

tation, we drop the localization and prove that for any L2-bounded martin-
gale M with

∫
|dMs| < ∞ almost surely, and every bounded, predictable

process X the stochastic integral
∫
X dM and Lebesgue-Stieltjes integral∫

Xs dMs are the same almost surely, where we interprete the mass that
s 7→Ms puts at 0 to be zero.

We apply the monotone class theorem, with H the set of all bounded
predictable X for which the integrals agree almost surely. Then H contains
all indicators of predictable rectangles, because both integrals agree with
the Riemann-Stieltjes integral for such integrands. Because both integrals
are linear, H is a vector space. Because µM

(
[0,∞)×Ω

)
= E(M∞−M0)2 <

∞, the Doléans measure of M is finite, and hence the constant functions are
integrable. If 0 ≤ Xn ↑ X for a bounded X and {Xn} ⊂ H, then Xn → X
in L2

(
[0,∞)×Ω,P, µM

)
by the dominated convergence theorem, and hence∫

Xn dM →
∫
X dM in L2. Furthermore,

∫
Xn,s dMs →

∫
Xs dMs point-

wise on Ω, by the dominated convergence theorem, because
∫
|dMs| < ∞.

Because L2-limits and pointwise limits must agree, it follows that the two
integrals agree almost surely. The unit function is a limit of a sequence of
indicators of predictable rectangles and hence we can infer that the con-
stant functions are in H. Next an application of Theorem 1.23 shows that
H contains all bounded predictable processes.

As a corollary of the preceding theorem we see that the Lebesgue-
Stieltjes integral of a locally bounded predictable process relative to a cad-
lag local L2-martingale of locally bounded variation is a local martingale.
Indeed, under these conditions the two types of integrals coincide and the
stochastic integral is a local martingale. In the next section we want to drop
the “L2” from the conditions and for this reason we now give a direct proof
of this martingale property for integrators that are only local martingales.

5.49 Lemma. If M is a cadlag local martingale of locally bounded vari-
ation and X is a locally bounded predictable process, then the Lebesgue-
Stieltjes integrals (X ·M)t: =

∫
(0,t]

Xs dMs define a cadlag local martingale



72 5: Stochastic Integrals

X ·M .

Proof. Write
∫ t

0
for
∫

(0,t]
. Let 0 ≤ Tn ↑ ∞ be a sequence of stopping times

such that MTn is a martingale and such that X1(0,Tn] is uniformly bounded,
for every n. Because

(X ·M)Tnt =

∫ t

0

Xs1s≤Tn dM
Tn
s ,

the lemma will follow if t 7→
∫ t

0
Xs dMs is a cadlag martingale for every

given pair of a bounded predictable process X and martingale of locally
bounded variation M .

This is clear if X is the indicator of a predictable rectangle. In that case
the Lebesgue-Stieltjes integral is a Riemann-Stieltjes integral, and coincides
with the elementary stochastic integral, which is a martingale. The set H
of all bounded predictable X for which X ·M is a martingale is a vector
space and contains the constants. If 0 ≤ Xn ↑ X for a uniformly bounded
process X, then

∫ t
0
Xn,s dMs →

∫ t
0
Xs dMs pointwise on Ω and in L1, for

every t ≥ 0, by two applications of the dominated convergence theorem.
We conclude that the set H is closed under bounded monotone limits.
It contains the constants and is a generator of the predictable processes.
Hence H contains all bounded predictable processes, by the monotone class
theorem, Theorem 1.23.

Warning. The predictability of the integrand is important. For in-
stance, if N is a standard Poisson process and T is the time of its first
jump, then the process M defined by Mt = Nt− t and the process MT are
martingales. The Lebesgue-Stieltjes integral

∫ t
0
Ns dM

T
s = 1t≥TNT = 1t≥T

is certainly not a martingale (as can be seen from the fact that E1{t ≥
T} = 1 − e−t is not constant) and hence this Lebesgue-Stieltjes integral
lacks the most striking property of the stochastic integral. In comparison
N− is a predictable process and

∫ t
0
Ns− dM

T
s = 0 is certainly a martingale.

Warning. The mere existence of the Lebesgue-Stieltjes integrals (i.e.∫ t
0
|Xs| |dMs| <∞ almost surely) is not enough to render

∫ t
0
Xs dMs a local

martingale. See the following example.

* 5.50 Example. Let T be a standard exponential variable and ∆ an inde-
pendent variable that is equal to 1 and −1 with probability 1/2, defined
on some probability space (Ω,F ,P), and consider the stochastic process
M = 1[T,∞)∆. The process M is a martingale relative to its natural filtra-

tion, and the LS-integral Yt =
∫ t

0
s−1 dMs is well defined, but E|YU | = ∞

for every stopping time U which is not identically zero, so that Y is not a
local martingale.

A typical sample path of the process M is zero on [0, T ) and has a
single jump to 1 or -1 at the time T . Until time T it is only known that
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T has not occurred yet, while from time T onward the values of both T
and ∆ are known. This explains that the natural filtration of M is given
by Ft = σ(T ∧ t, 1T≥t,∆1T≤t). The martingale property of M is evident
from the symmetry of M around zero, and the finiteness of the LS-integral∫ t

0
s−1 |dMs| and hence existence of Y is obvious.

If Y were a local martingale, then there would be a localizing sequence
0 ≤ Tn ↑ ∞ such that Y Tn were a martingale for every n. Then YTn∧n =
Y Tnn would be integrable, and P(Tn ∧ n ≥ T ) > 0 for sufficiently large n.
This would give a stopping time U as in the first paragraph.

However such U does not exist. Clearly Yt = 1t≥T∆/T and E|YU | =
E(1/T )1T≤U . Because E(1/T ) =∞, it suffices to show that E(1/T )1T>U <
∞ for any nontrivial stopping time U . For any stopping time U and number
u ≥ 0 there exists a measurable function fu:R× {0, 1}2 such that

1U>u = fu(T ∧ u, 1T≥u,∆1T≤u).

For an ω in the event {U < T} with u < T (ω) this shows that 1U(ω)>u =
fu(u, 1, 0). The indicator 1U(ω)>u is decreasing in u and takes the values 0
or 1 only. Thus the same is true for the function u 7→ fu(u, 1, 0) for every
ω ∈ {U < T} on the interval [0, T (ω)). If this function jumps from 1 to
0 at some point c ∈ (0, T (ω)), then this point is unique and U(ω) = c.
The location of this point depends on the map u 7→ fu(u, 1, 0) only and
not on ω. If the latter map did not have such a jump point, then it would
be either identically 1 or identically 0 on [0, T (ω)). The first would imply
that U(ω) ≥ T (ω), but this is excluded if ω ∈ {U < T}. The second would
imply that U(ω) = 0, but {U = 0} ∈ F0 is a trivial event and hence a null
set, since U is not identically zero by assumption. We conclude that either
P(U < T ) = 0 or U takes on a single positive value c on this event. Thus
E(1/T )1T>U ≤ 1/c <∞.

5.51 EXERCISE. Extend the preceding lemma as follows: If M is a cad-
lag local martingale of locally bounded variation and X is a predictable
process such that the Lebesgue-Stieltjes integrals

∫ t
0
|Xs| |dMs| are finite

and define a locally integrable process, then the Lebesgue-Stieltjes inte-
grals

∫ t
0
Xs dMs define a cadlag local martingale. (This is an extension,

because every local martingale of locally bounded variation is locally of in-
tegrable variation.) [Hint: using the dominated convergence theorem show

that
∫
Xs1s≤t∧Tn1|Xs|≤m dMs converges in L1 to

∫ t
0
Xs dMs as m → ∞,

for every fixed n and a suitable localizing sequence 0 ≤ Tn ↑ ∞.]

5.52 EXERCISE. A process X is said to be of locally integrable varia-
tion if there exists a sequence of stopping times 0 ≤ Tn ↑ ∞ such that
E
∫
|dXTn

s | < ∞, for every n. Show that any local martingale M that is
locally of bounded variation is in fact locally of integrable variation. [Hint:
choose localizing sequences for “local martingale” and “locally of bounded
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variation” and next defineRn to be the minimum of these two sequences and
n. Then, for each n, the process N = MRn is a uniformly integrable mar-
tingale of bounded variation. It now suffices to show that N can be further
localized to make it of locally integrable variation. Writing Vt =

∫ t
0
|dNs|

for the variation of N over [0, t], we have, for every t ≥ 0,

Vt = Vt− + |Nt −Nt−| ≤ 2Vt− + |Nt|.

The variables Sn = inf{t ≥ 0:Vt > n} are stopping times and VSn− ≤ n. It
follows that VSn ≤ 2n+ |NSn |. The variable on the right side is integrable
by the optional stopping theorem, because N is uniformly integrable.]

The most important example of a continuous martingale is Brownian
motion and this has sample paths of unbounded variation. The latter prop-
erty is not special to Brownian motion, but is shared by all continuous
martingales, or more generally all predictable local martingales. We can
prove this important and interesting result by a comparison of stochastic
and Lebesgue-Stieltjes integrals.

5.53 Theorem. Let M be a cadlag predictable process that is both a local
martingale and a process of locally bounded variation, and 0 at 0. Then
M = 0 up to indistinguishability.

Proof. First assume that M is continuous. By assumption there exists a
sequence 0 ≤ Tn ↑ ∞ of stopping times such that MTn is both a martingale
and of bounded variation. If necessary we can replace Tn by the minimum
of Tn and inf{t ≥ 0: |Mt| ≥ n} to ensure also that MTn is bounded, and
hence in L2. Because MTn is of bounded variation, the integration by parts
formula for Lebesgue-Stieltjes integrals yields (with

∫ t
0

denoting
∫

(0,t]
)

(MTn)2
t =

∫ t

0

MTn
− dMTn +

∫ t

0

MTn dMTn .

Under the present assumption that M is continuous, the integrands in these
integrals are continuous and hence predictable. (The two integrals are also
identical, but we write them differently because the identity is valid even for
discontinuous M , and we need it in the second part of the proof.) Therefore,
the integrals on the right can be viewed equivalently as Lebesgue-Stieltjes
or stochastic integrals, by Theorem 5.48. The interpretation as stochas-
tic integrals shows that the right side is a martingale. This implies that
EM2

Tn∧t = 0 and hence Mt = 0 almost surely, for every t.
The proof if M is not continuous is similar, but requires additional

steps, and should be skipped at first reading. A stopped predictable pro-
cess is automatically predictable. (This is easy to verify for indicators of
predictable rectangles and next can be extended to general predictable
processes by a monotone class argument.) Therefore, the integrands in
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the preceding display are predictable also if M is not continuous. On the
other hand, if M is not continuous, then MTn as constructed previously
is not necessarily bounded and we cannot apply Theorem 5.48 to con-
clude that the Lebesgue-Stieltjes integral

∫ t
0
MTn dMTn is a martingale.

We can solve this by “stopping earlier”, if necessary. The stopping time
Sn = inf{t ≥ 0: |Mt| ≥ n} is predictable, as [Sn] = [0, Sn] ∩M−1([−n, n]c)
is predictable. (See the last assertion of Lemma 5.8.) Thus Sn is the mono-
tone limit of a sequence of stopping times {Sm,n}∞m=1 strictly smaller than
Sn on {Sn > 0} = Ω. Then Rn = maxi,j≤n Si,j defines a sequence of stop-
ping times with 0 ≤ Rn ↑ ∞ and |MRn | ≤ n for every n by the definition of
Sn and the fact that Rn < Sn. Now we may replace the original sequence
of stopping times Tn by the minimum of Tn and Rn, and conclude the
argument as before.

5.54 EXERCISE. Show that a cadlag predictable process is locally bounded.
[See the preceding proof.]

5.7 Semimartingales

The next generalization of the stochastic integral uses “semimartingales”
as integrators. Because these are defined as sums of local martingales and
bounded variation processes, this does not add much to what we have al-
ready in place. However, the concept of a semimartingale does allow some
unification, for instance in the statement of Itô’s formula, and it is worth
introducing it.

5.55 Definition. A cadlag adapted stochastic process X is a semimartin-
gale if it has a representation of the form X = X0 +M+A for a cadlag local
martingale M and a cadlag adapted process of locally bounded variation
A.

The representation X = X0 + M + A of a semimartingale is non-
unique. It helps to require that M0 = A0 = 0, but this does not resolve
the nonuniqueness. This arises because there exist martingales that are
locally of bounded variation. The compensated Poisson process is a simple
example.

We would like to define a stochastic integral Y · X as Y · M + Y ·
A, where the first integral Y ·M is a stochastic integral and the second
integral Y · A can be interpreted as a Lebesgue-Stieltjes integral. If we
restrict the integrand Y to locally bounded, predictable processes, then
Y ·M is defined as soon as M is a local L2-martingale, by Definition 5.32
and Example 5.38. In the given decomposition X = X0 + M + A, the
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martingale is not required to be locally in L2, but one can always achieve
this by proper choice of M and A, in view of the following lemma. The
proof of this lemma is long and difficult and should be skipped at first
reading. It suffices to remember that “local martingale” in the preceding
definition may be read as “local L2-martingale”, without any consequence;
and that a continuous semimartingale can be decomposed into continuous
processes M and A. The latter means that a continuous semimartingale can
equivalently be defined as a process that is the sum of a continuous local
martingale and a continuous adapted process of locally bounded variation.

5.56 Lemma. For any cadlag semimartingale X there exists a decompo-
sition X = X0 + M + A such that M is a cadlag local L2-martingale and
A is a cadlag adapted process of locally bounded variation. Furthermore, if
X is continuous, then M and A can be chosen continuous.

* Proof. We may without loss of generality assume that X is a local martin-
gale. Define a process Z by Zt =

∑
s≤t ∆Xs1|∆Xs|>1. This is well defined,

because a cadlag function can have at most finitely many jumps of absolute
size bigger than some fixed constant on any given compact interval. We show
below that there exists a cadlag predictable process B of locally bounded
variation such that Z−B is a local martingale. Next we set A = Z−B and
M = X −X0 − A and show that |∆M | ≤ 2. Then M is a locally bounded
martingale and hence certainly a local L2-martingale, and hence the first
assertion of the lemma is proved.

In order to show the existence of the process B define a process Zu by
Zut =

∑
s≤t ∆Xs1∆Xs>1. This is clearly nondecreasing. We claim that it is

locally in L1 and hence a local submartingale. To see this, let 0 ≤ Sn ↑ ∞
be a sequence of stopping times such that XSn is a uniformly integrable
martingale, for every n, and define Tn = inf{t ≥ 0:Zut > n, |Xt| > n} ∧ Sn.
Then Zut ∨ |XTn | ≤ n on [0, Tn) and

0 ≤ ZuTn∧t ≤ Z
u
Tn ≤ n+ |∆XTn | ≤ 2n+ |XTn |.

The right side is integrable by the optional stopping theorem, because Tn ≤
Sn and XSn is uniformly integrable.

Being a local submartingale, the process Zu possesses a compensator
Bu by the Doob-Meyer decomposition, Lemma 5.105. We can apply a sim-
ilar argument to the process of cumulative jumps of X less than −1, and
take differences to construct a process B with the required properties.

The proof that |∆M | ≤ 2 is based on the following facts:
(i) For every cadlag predictable process X there exists a sequence of pre-

dictable times Tn such that {(t, ω): ∆Xt(ω) 6= 0} = ∪n[Tn]. (The
sequence Tn is said to exhaust the jumps of X. See e.g. Jacod and
Shiryaev, I2.24.)
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(ii) If X is a predictable process and T a stopping time, then XT is FT−-
measurable, where we define X∞ to be 0. (See e.g. Jacod and Shiryaev,
I2.4; and I1.11 for the definition of FT−.)

(iii) For any cadlag martingale X and predictable stopping time T we have
E(XT | FT−) = XT− almost surely on {T < ∞}. (See e.g. Jacod and
Shiryaev, I2.27.)

(iv) For any cadlag martingale X and predictable stopping time T we have
E(∆XT | FT−) = 0 almost surely on the set {T <∞}. This follows by
applying (ii) to the predictable process X− to see that XT− is FT−-
measurable and combining this with (iii) to compute the conditional
expectation of ∆XT = XT −XT−.

The processes X, A = Z−B and M = X−X0−A are local martingales. If
we can show that |∆MTn | ≤ 2 for every Tn in a localizing sequence 0 ≤ Tn ↑
∞, then it follows that |∆M | ≤ 2 and the proof is complete. For simplicity of
notation assume that X, M and A are martingales. The process Z has been
constructed so that |∆(X − Z)| ≤ 1 and hence

∣∣E(∆(X − Z)T | FT−
)∣∣ ≤ 1

almost surely, for every stopping time T . By (iv) E(∆MT | FT−) = 0 almost
surely on {T < ∞}, for every predictable time T . Because ∆M = ∆(X −
Z) + ∆B, it follows that

∣∣E(∆BT | FT−)
∣∣ ≤ 1 for every predictable time

T . Since B and B− are predictable, ∆BT is FT−-measurable by (ii) and
hence |∆BT | ≤ 1 almost surely. Consequently |∆B| ≤ 1 by (i), and hence
|∆M | ≤

∣∣∆(X − Z)
∣∣+ |∆B| ≤ 2.

This concludes the proof of the first assertion of the theorem. Next,
we prove that a continuous semimartingale X permits a decomposition
X = X0 +M +A such that M and A are continuous.

Suppose that X is continuous and let X = X0 + M + A be a given
decomposition in a local L2-martingale M and a process of locally bounded
variation A. Let 0 ≤ Sn ↑ ∞ be a sequence of stopping times such that MSn

is a martingale for every n and define

Tn = inf
{
t ≥ 0: |Mt| > n,

∫ t

0

|dAs| > n
}
∧ n ∧ Sn.

Then the process MTn is a uniformly integrable martingale, is bounded in
absolute value by n on [0, Tn), and∫ Tn

0

|dAs| =
∫

[0,Tn)

|dAs|+ |∆ATn | ≤ n+ |∆XTn |+ |∆MTn | ≤ 2n+ |MTn |.

The right side is integrable by the optional stopping theorem, Theorem 4.22,
whence the process A is locally integrable. We conclude that the positive
and negative variation processes corresponding to A are both locally in-
tegrable. Because they are nondecreasing, they are submartingales, and
permit Doob-Meyer decompositions as in Lemma 5.105. We conclude that
there exists a cadlag predictable process Ā such that A− Ā is a local mar-
tingale. Now X = X0 +(M+A−Ā)+Ā is a decomposition of X into a local
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martingale M̄ = M + A − Ā and a predictable process of locally bounded
variation Ā. We shall show that these processes are necessarily continuous.

By predictability the variable ∆ĀT is FT−-measurable for every stop-
ping T , by (ii). If M is integrable, then E(∆MT | FT−) = 0 for every pre-
dictable stopping time, by (iv) because M is a martingale. Since ∆X = 0,
it then follows that ∆ĀT = E(∆ĀT | FT−) = 0 for every predictable time
T , whence the process Ā and hence M are continuous, by (i). If ∆MT is
not integrable, we can first localize the processes and apply the argument
to stopped processes.

5.57 Definition. The integral Y · X of a locally bounded, predictable
process Y relative to a cadlag semimartingale X with decomposition
X = X0+M+A as in Lemma 5.56 is defined as Y ·M+Y ·A, where the first
integral Y ·M is a stochastic integral defined according to Definition 5.32
and the second integral Y ·A is a Lebesgue-Stieltjes integral.

We use the notations (Y ·X)t,
∫ t

0
Y dX or

∫
[0,t]

Y dX, for the stochastic

integral interchangeably. To stress that an integral is to be understood as
a Lebesgue-Stieltjes integral we indicate the integration variable explicitly,
as in

∫
Ys dAs.

Warning. Rather than “the integral” as in the definition, it is custom-
ary to say “the stochastic integral”. This is reasonable terminology if we
are integrating stochastic processes. However, in view of the mixed nature
of the integral in the preceding definition the “stochastic integral” in this
general sense may well be a Lebesgue-Stieltjes integral!

Because the decomposition of Lemma 5.56 is not unique, we must
verify that the preceding definition is well posed. This follows from the fact
that for any other decomposition X = X0 + M̄ + Ā as in Lemma 5.56 the
process M − M̄ = Ā − A is a cadlag local L2-martingale that is locally
of bounded variation. Therefore, the Lebesgue-Stieltjes integral and the
stochastic integral of a locally bounded predictable process Y relative to
this process coincide by Theorem 5.48 and hence Y ·M+Y ·A = Y ·M̄+Y ·Ā,
if the integrals Y ·M , Y ·A, Y · M̄ , and Y · Ā are interpreted as stochastic
or Lebesgue-Stieltjes integrals, as in the definition.

5.58 EXERCISE. Suppose that M is a cadlag local martingale that is lo-
cally of bounded variation, and Y is a locally bounded process. Show that
the integral Y ·M as defined by the preceding definition coincides with the
Lebesgue-Stieltjes integral

∫ t
0
Ys dMs. [Hint: this is a trivial consequence of

the fact that the definition is well posed. Don’t be confused by the fact that
M is a martingale.]

5.59 Theorem. If X is a cadlag semimartingale and Y is a predictable
locally bounded process, then:
(i) There exists a cadlag version of Y ·X.
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(ii) This version is a semimartingale.
(iii) If X is a local martingale, then this version is a local martingale.
(iv) If X is continuous, then there exists a continuous version of Y ·X.
(v) The processes ∆(Y · X), where Y · X is a cadlag version, and Y∆X

are indistinguishable.

Proof. Let X = X0 + M + A be an arbitrary decomposition in a cadlag
local L2-martingale M and a cadlag adapted process of locally bounded
variation A. By definition Y ·X = Y ·M+Y ·A, where the first is a stochastic
integral and the second a Lebesgue-Stieltjes integral. By Theorem 5.36 the
stochastic integral Y ·M permits a cadlag version and this is a local L2-
martingale; it permits a continuous version if M is continuous; and its
jump process is Y∆M . The Lebesgue-Stieltjes integral Y · A is of locally
bounded variation and cadlag; it is continuous if A is continuous; it is a
local martingale if A is a local martingale, by Lemma 5.49; and its jump
process is Y∆A. Finally, if X is continuous, then the processes M and A
can be chosen continuous.

Now that we have (almost) completely dressed up the definition of
the stochastic integral, it is useful to summarize some properties. The first
is a kind of dominated convergence theorem for stochastic integrals. The
localization technique is very helpful here.

5.60 Lemma. If X is a cadlag semimartingale, and Yn is a sequence of
predictable processes such that Yn → Y pointwise on [0,∞)×Ω and |Yn| ≤
K for a locally bounded predictable process K and every n, then the cadlag
versions of Yn ·X and Y ·X satisfy sups≤t

∣∣(Yn ·X)s − (Y ·X)s
∣∣ P→ 0, for

every t ≥ 0.

Proof. We can decompose X = X0+M+A for a cadlag local L2-martingale
M and a cadlag process of locally bounded variation A, 0 at 0.

That A is of locally bounded variation implies that
∫ t

0
|dAs|(ω) < ∞

and that K is locally bounded implies that sups≤tKs(ω) < ∞, both for
every fixed pair (t, ω). It follows that the Lebesgue-Stieltjes integral (relative

to s)
∫ t

0
Ks(ω) |dAs|(ω) is finite, for every (t, ω). Because, for fixed ω, the

map s 7→ Yn,s(ω) is dominated by the map s 7→ Ks(ω), the dominated

convergence theorem implies that
∫ t

0

∣∣Yn,s(ω) − Ys(ω)
∣∣ |dAs|(ω) → 0. This

being true for every ω, we conclude that sups≤t
∣∣(Yn·A)s−(Y ·A)s

∣∣ converges
to zero almost surely and hence in probability.

There exists a sequence of stopping times 0 ≤ Tm ↑ ∞ such that MTm

is an L2-bounded martingale and KTm is a uniformly bounded process, for
every m. Then, because 1[0,Tm∧t]|Yn| is bounded by KTm , the dominated
convergence theorem yields, as n→∞, for every fixed m,∫ (

1[0,Tm∧t]Yn − 1[0,Tm∧t]Y
)2
dµMTm → 0.
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On the set [0, Tm] the stochastic integral Yn ·M can be defined as s 7→∫
1[0,Tm∧s]Yn dM

Tm , and similarly with Y instead of Yn. (See Lemma 5.33
or the proof of Theorem 5.36.) For the cadlag versions of these processes,
the maximal inequality (4.40) yields, for every fixed m, as n→∞,

E sup
s≤t

∣∣(Yn ·M)s − (Y ·M)s
∣∣21t≤Tm

≤ E sup
s≤t

∣∣∣∫ 1[0,Tm∧s](Yn − Y ) dMTm
∣∣∣2

≤ 4E
∣∣∣∫ 1[0,Tm∧t](Yn − Y ) dMTm

∣∣∣2 → 0,

by the isometry and the preceding display. This being true for every m
implies that sups≤t

∣∣(Yn ·M)s− (Y ·M)s
∣∣ converges to zero in probability.

5.61 Lemma. For every locally bounded predictable processes X and Y ,
cadlag semimartingale Z and stopping time T , up to indistinguishability:
(i) (Y · Z)T = Y · ZT = (1[0,T ]Y ) · Z.

(ii) X · (Y · Z) = (XY ) · Z.
(iii) ∆(Y · Z) = Y∆Z, if Y · Z is chosen cadlag.
(iv) (V 1(S,T ]) ·Z = V (1(S,T ] ·Z) for every FS-measurable random variable

V .

Proof. The statements follow from the similar statements on stochastic
integrals, properties of Lebesgue-Stieltjes integrals, and localization argu-
ments. We omit the details.

5.8 Quadratic Variation

To every semimartingale or local L2-martingale X correspond processes
[X] and 〈X〉, which play an important role in stochastic calculus. They
are known as the “quadratic variation process” and “predictable quadratic
variation process”, and are also referred to as the square bracket process and
the angle bracket process. In this section we discuss the first of the two. In
Section 5.13 we shall see that the two processes are the same for continuous
L2-local martingales.

5.62 Definition. The quadratic covariation of two cadlag semimartingales
X and Y is a cadlag version of the process

(5.63) [X,Y ] = XY −X0Y0 −X− · Y − Y− ·X.
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The process [X,X], abbreviated to [X], is called the quadratic variation of
X.

As usual we need to check that the definition is well posed. In this case
this concerns the semimartingale integrals X− ·Y and Y− ·X; these are well
defined by Definition 5.57, because a left-continuous adapted process that
is 0 at 0 (such as X− and Y−) is predictable and locally bounded.

We refer to the formula (5.63) as the integration-by-parts formula.
The ordinary integration-by-parts formula for processes X and Y of locally
bounded variation, from Lebesgue-Stieltjes theory, asserts that

XtYt −X0Y0 =

∫
(0,t]

X− dY +

∫
(0,t]

Y− dX +
∑

0<s≤t

∆Xs∆Ys.

Comparing this to (5.63) we see that in this case the quadratic variation
[X,Y ] is the last term on the right. (Cf. Example 5.73 for more details.)
One way of looking at the quadratic variation process for general semi-
martingales is to view it as the process that “makes the integration-by-parts
formula true”. Many semimartingales are not locally of bounded variation,
and then the quadratic covariation does not reduce to a function of the
jump processes, as in the preceding display. In particular, the quadratic
covariation of a continuous semimartingale (for which the jump process is
zero) is typically nonzero.

The name “quadratic covariation” is better explained by the follow-
ing theorem, which may also be viewed as an alternative definition of this
process.

5.64 Theorem. For any pair of cadlag semimartingales X and Y , any
sequence of partitions 0 = tn0 < tn1 < · · · < tnkn = t of mesh widths tending
to zero, and any t ≥ 0, as n→∞,

(5.65)

kn∑
i=1

(Xtn
i
−Xtn

i−1
)(Ytn

i
− Ytn

i−1
) P→ [X,Y ]t.

Proof. Because 4xy = (x + y)2 − (x − y)2 for any numbers x, y, the case
of two semimartingales X and Y can be reduced to the case that X = Y .
For simplicity of notation we only consider the latter case. By the identity
(y − x)2 = y2 − x2 − 2x(y − x) we can write

kn∑
i=1

(Xtn
i
−Xtn

i−1
)2 =

kn∑
i=1

(X2
tn
i
−X2

tn
i−1

)− 2

kn∑
i=1

Xtn
i−1

(Xtn
i
−Xtn

i−1
)

= X2
t −X2

0 − 2(Xn ·X)t,(5.66)
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for Xn the simple predictable process defined by

Xn =

kn∑
i=1

Xtn
i−1

1(tn
i−1

,tn
i

].

The sequence of processes Xn converges pointwise on [0, t]×Ω to the process
X− (where X0− = 0). The process K defined by Kt = sups≤tXs− is
adapted and left continuous and hence predictable and locally bounded,
and it dominates Xn. Lemma 5.60 implies that the sequence (Xn · X)t
converges in probability to (X− ·X)t.

5.67 Example (Brownian motion). The quadratic variation process of
Brownian motion is computed in Theorem 4.29 and is given by [B]t = t.
This is special, because it is a deterministic process. We shall see later that
Brownian motion is the only continuous local martingale with quadratic
variation process the identity function.

In view of the representation in (5.63) and the continuity of Brownian
motion,

B2
t = 2

∫ t

0

B dB + t.

Compare this to the formula f2(t) = 2
∫ t

0
f(s) df(s) (where df(s) = f ′(s) ds)

for a continuously differentiable function f , and be at least a little bit
surprised. Itô’s formula in Section 5.9 is the generalization of this result
and has a similar “correction term” relative to ordinary calculus.

5.68 EXERCISE. Show that the quadratic variation process of both the
Poisson process N and the compensated Poisson process {Nt − t: t ≥ 0} is
N itself. [Hint: subtraction of the smooth function t does not change the
limit of the sum of squares; N is a jump process of jump sizes 1 = 12.]

5.69 EXERCISE. Show that 4[X,Y ] = [X + Y ]− [X − Y ].

5.70 Example (Multivariate Brownian motion). The quadratic co-
variation between the coordinates of a multivariate Brownian motion
(B1, . . . , Bd) is given by [Bi, Bj ]t = δijt, for δij = 0 or 1 if i = j or
i 6= j the Kronecker delta.

This can be seen in a variety of ways. For instance, the covariation
between two independent martingales is zero in general. A simple proof,
which makes use of the special properties of Brownian motion, is to note
that (Bi −Bj)/

√
2 and (Bi +Bj)/

√
2 are both Brownian motions in their

own right and hence [Bi − Bj ] = [Bi + Bj ], whence [Bi, Bj ] = 0 by Exer-
cise 5.69, for i 6= j.
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It is clear from relation (5.65) that the quadratic variation process [X]
can be chosen nondecreasing almost surely. By the “polarization identity”
of Exercise 5.69, the quadratic covariation process [X,Y ] is the difference
of two nondecreasing processes and hence is of locally bounded variation.
The following lemma lists some further properties.

5.71 Lemma. Let X and Y be cadlag semimartingales.
(i) [XT , Y ] = [X,Y ]T = [XT , Y T ] for every stopping time T .

(ii) If X and Y are local martingales, then XY − [X,Y ] is a local martin-
gale.

(iii) If X and Y are L2-martingales, then XY − [X,Y ] is a martingale.
(iv) If X and Y are L2-bounded martingales, then [X,Y ] is L1-bounded.
(v) If X or Y is continuous, then [X,Y ] is continuous.
(vi) The processes ∆[X,Y ] and ∆X∆Y are indistinguishable.

Proof. Assertion (i) can be proved using (5.63), or from (5.65) after verify-
ing that this relation remains true for partitions with a random endpoint.
Assertion (v) is a consequence of assertion (vi). Assertion (ii) is a conse-
quence of the representation (5.63) of XY −[X,Y ] in terms of the stochastic
integrals X− · Y and Y− ·X and Theorem 5.59(iii).

For statements (iii)–(iv) it suffices to consider the case that X = Y .
If X is a square-integrable martingale, then the term (Xn ·X)t in (5.66)

has mean zero by the orthogonality of the martingale increment Xtn
i
−Xtn

i−1

to Ftn
i−1

. Then, by Fatou’s lemma and (5.66),

E[X]t ≤ lim inf
n→∞

E

kn∑
i=1

(Xtn
i
−Xtn

i−1
)2 = E(X2

t −X2
0 ).

This proves (iv) and also that the process [X] is in L1 if X is in L2. To
see that in the latter case X2 − [X] is a martingale, as claimed in (iii), it
suffices to show that X− ·X is a martingale. By (ii) it is a local martingale.
If Tn is a localizing sequence, then, by (5.63) and (i),

2
∣∣∣(X− ·X)Tnt

∣∣∣ =
∣∣X2

Tn∧t −X
2
0 − [X]Tn∧t

∣∣ ≤ X2
Tn∧t +X2

0 + [X]t,

because [X] is nondecreasing. Because XTn∧t = E(Xt| FTn∧t) by the
optional stopping theorem, Jensen’s inequality yields that X2

Tn∧t ≤
E(X2

t | FTn∧t) and hence the sequence {X2
Tn∧t}

∞
n=1 is uniformly integrable,

for every fixed t ≥ 0. We conclude that the right side and hence the left
side of the preceding display is uniformly integrable, and the sequence of
processes (X− · X)Tn converges in L1 to the process X− · X, as n → ∞.
Then the martingale property of the processes (X− ·X)Tn carries over onto
the process X− ·X. This concludes the proof of (iii).

For assertion (vi) we write X = X− + ∆X and Y = Y− + ∆Y to see
that the jump process of the process XY is given by ∆(XY ) = X−∆Y +



84 5: Stochastic Integrals

Y−∆X + ∆X∆Y . Next we use (5.63) to see that ∆[X,Y ] = ∆(XY ) −
∆(X− · Y )−∆(Y− ·X), and conclude by applying Lemma 5.61(iii).

* 5.72 EXERCISE. Show that the square root
√

[M ] of the quadratic varia-
tion of a local martingale is locally integrable. [Hint: decompose M = N+A
for a local L2-martingale N and a local martingale of locally bounded vari-
ation A. A local L2-martingale is locally integrable by Lemma 5.71(iii).
Let Sn be a localizing sequence such that ASn is uniformly integrable (this
exists, cf. J&S I3.11) and set Tn = Sn ∧ inf{t > 0[A]t > n, |At| > n}.
Then [A]Tn ≤ n+ |∆ATn |2 and |∆ATn | ≤ n+ |ATn |, which is integrable by
optional stopping.]

5.73 Example (Bounded variation processes). The quadratic variation
process of a cadlag semimartingale X that is locally of bounded variation
is given by [X]t =

∑
0<s≤t(∆Xs)

2.
An intuitive explanation of the result is that for a process of locally

bounded variation the sums of infinitesimal absolute increments converges
to a finite limit. Therefore, for a continuous process of locally bounded
variation the sums of infinitesimal square increments, as in (5.65), converges
to zero. On the other hand, the squares of the jumps in the discrete part
of a process of locally bounded variation remain.

The claim can be proved directly from the definition of [X] as the sum
of infinitesimal square increments in equation (5.65) of Theorem 5.64, but
the following indirect proof is easier. The integration-by-parts formula for
cadlag functions of bounded variation shows that

X2
t −X2

0 = 2

∫
(0,t]

Xs− dXs +
∑

0<s≤t

(∆Xs)
2.

Here the integral on the right is to be understood as a pathwise
Lebesgue-Stieltjes integral, and is equal to the Lebesgue-Stieltjes integral∫

(0,t]
Xs− d(Xs − X0). Because the decomposition X = X0 + M + A of

the semimartingale X can be chosen with M = 0 and A = X − X0,
the latter Lebesgue-Stieltjes integral is by definition the semimartingale
integral (X− · X)t, as defined in Definition 5.57. Making this identifi-
cation and comparing the preceding display to (5.63) we conclude that
[X]t =

∑
0<s≤t(∆Xs)

2.

5.74 EXERCISE. Let X be a continuous semimartingale and Y a cadlag
semimartingale that is locally of bounded variation. Show that [X,Y ] = 0.
[Hint: one possibility is to use (5.65).]

5.75 EXERCISE. Show that for any cadlag semimartingales X and Y , al-
most surely:
(i) [X,Y ]2 ≤ [X][Y ].
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(ii)
√

[X + Y ] ≤
√

[X] +
√

[Y ].

(iii)
∣∣√[X]−

√
[Y ]
∣∣ ≤√[X − Y ].

5.76 EXERCISE. Let X be a cadlag semimartingale and Y a continuous
semimartingale of locally bounded variation. Show that [X,Y ] = 0. [Hint:
one possibility is to use the preceding exercise and [Y ] = 0.]

The quadratic variation process of a stochastic integral X · Y is the
limit in probability along a sequence of partitions of

kn∑
i=1

(∫ tni

tn
i−1

X dY
)2

.

For sufficiently regular X and Y it is clear that the terms of the sum are
close to X2

tn
i−1

(Ytn
i
−Ytn

i−1
)2 and hence we can expect that [X ·Y ] = X2 · [Y ],

where the right side is the pathwise Lebesgue-Stieltjes integral of s 7→ X2
s

with respect to the bounded variation function [Y ]. This turns out to be
true in complete generality.

5.77 Lemma. For every locally bounded predictable process X and cadlag
semimartingales Y and Z we have [X · Y,Z] = X · [Y,Z].

Proof. In view of Lemmas 5.61 and 5.71 if the result is true for stopped
processes XTn and Y Tn for a sequence of stopping times Tn ↑ ∞ and every
n, then it is true for X and Y . We can choose the localizing sequence such
that XTn is uniformly bounded and Y Tn is the sum of an L2-bounded
martingale and a process of bounded variation, for every n. For simplicity
of notation we assume that X and Y themselves have these properties.
Because the assertion is linear in Y , it also suffices to prove the lemma
separately under the assumptions that Y is an L2-bounded martingale or
a bounded varation process.

For X equal to an indicator of a predictable rectangle (u, v] × Fu we
may use (5.65) with a sequence of partitions that include u < v to see that
[X ·Y,Z] = 1Fu

(
[Y,Z]v− [Y,Z]u

)
. This is identical to the integral X · [Y,Z].

Thus the lemma is true for all indicators of predictable rectangles, and by
linearity also for all simple predictable processes.

For any sequence of processes Xn Exercise 5.75 gives that[
(Xn −X) · Y,Z

]2 ≤ [(Xn −X) · Y
]

[Z].

Therefore, if the lemma holds for every member Xn of a sequence and
[(Xn −X) · Y ] P→ 0, then the lemma is valid for X.

For a given bounded predictable process X we choose a uniformly
bounded sequence of predictable processes Xn that converge pointwise to



86 5: Stochastic Integrals

X. If Y is an L2-martingale, then by Lemma 5.71 the process ((Xn −X) ·
Y )2 − [(Xn −X) · Y ] is a martingale for every n, whence

E[(Xn −X) · Y ]t = E((Xn −X) · Y )2
t =

∫
1[0,t](Xn −X)2 dµY → 0,

by the L2-isometry and dominated convergence. If Y has bounded variation,
then X · Y is a Lebesgue-Stieltjes integral and for any partition 0 = t0 <
· · · < tk = t

k∑
i=1

(∫ ti

ti−1

(Xn −X)s dYs

)2

≤
k∑
i=1

∫ t

0

(Xn −X)2
s d|Y |s

∫ ti

ti−1

d|Y |s

=

∫ t

0

(Xn −X)2
s d|Y |s

∫ t

0

d|Y |s.

The right side converges to zero pointwise as n → ∞ by the dominated
convergence theorem. The quadratic variation [X · Y ]t is bounded above
by the supremum of the left side over all partitions, in view of (5.65), and
hence also converges to zero almost surely as n→∞.

For an L2-martingale M , the process M2 − [M ] is a martingale and
hence EM2

t = E[M ]t for every t. The Burkholder-Davis-Gundi inequality
extends this to a comparison of all moments of a martingale M and the
square root

√
[M ] of its quadratic variation process.

5.78 Lemma (Burkholder-Davis-Gundi). For every p ≥ 1 there exists
a positive constant Cp such that for any cadlag local martingale M with
M0 = 0,

C−1
p E[M ]p/2∞ ≤ E sup

t
|Mt|p ≤ CpE[M ]p/2∞ .

* Proof. IfM is a cadlag local martingale, thenM2−[M ] is a local martingale
by Lemma 5.71. Given a localizing sequence 0 ≤ Tn ↑ ∞ for both M and
M2 − [M ] we can apply the maximal inequality, Corollary 4.39, to see
that E supt(M

Tn
t )2 ≤ 4 supt E(MTn

t )2 = 4 supt E[MTn ]t = 4E[M ]Tn , for
every fixed n. By monotone convergence as n → ∞ we obtain the upper
inequality for p = 2 with Cp = 4. The lower bound for p = 2 follows similary,

because by reversing the preceding equalities E[M ]Tn = supt E(MTn
t )2 ≤

E supt(M
Tn
t )2, for every n.

We next consider the case p = 1. For general p see e.g. Kallenberg,
Theorem 26.12.

The process ∆M∗ with coordinates (∆M∗)t = sups≤t |∆Ms| is well

defined and satisfies ∆M∗ ≤
√

[M ]. Let ∆M∗− be its left-continuous version.
We can define a process Z by

Zt =
∑
s≤t

∆Ms1|∆Ms|>2∆M∗
s−
.
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This process is well defined, because for each s′ such that ∆M∗s′− > 0 there
are at most finitely many s ∈ [s′, t] with |∆Ms| > 2∆M∗s′− > 0 (for each
fixed ω). Consequently, the times s ∈ [0, t] giving a contribution to the
sum defining Zt can be ordered in a decreasing sequence s0 > s1 > · · ·
(for each fixed ω). By definition |∆Msi | ≤ 2−i|∆Ms0 | for every i and hence
the sum/series defining Zt is absolutely convergent. We also conclude that

the variation of the process Z satisfies
∫ t

0
|dZs| ≤

∑∞
i=0 2−i sups≤t |∆Ms| =

2∆M∗t , which is bounded above by 2
√

[M ]t.
For the proof of the right side of the inequality for p = 1 we may

assume that
√

[M ]∞ is integrable. Then it follows that the process Z is
of integrable variation. Its positive and negative variations Z+ and Z− are
submartingales, and hence possess compensators B+ and B−, by the Doob-
Meyer decomposition. The martingale properties of Z+−B+ and Z−−B−
imply that that the expected variations of B+ and B− are equal to the
variations of Z+ and Z−. Therefore the process Z−B for B = B+−B− is
a cadlag uniformly integrable martingale with E

∫
|d(Z −B)| ≤ 2E

∫
|dZs|.

Because Zt −Bt =
∫ t

0
d(Z −B)s for every t,

E sup
t
|(Z −B)t| ≤ E

∫ ∞
0

|d(Z −B)s| ≤ 2E

∫ ∞
0

|dZs| ≤ 4E
√

[M ]∞,

in view of the preceding paragraph.
We complement the latter by a bound on the cadlag martingale

N = M − (Z − B). Making use of the properties (ii)-(iv) in the proof
of Lemma 5.56 we see that, for every predictable time T ,

|∆BT | =
∣∣E(∆BT | FT−)

∣∣ ≤ ∣∣E(∆(Z −B)T | FT−
)∣∣+

∣∣E(∆ZT | FT−)
∣∣

≤ 0 + E
(
2∆M∗T−| FT−

)
,

by the definition of Z. The random variable in the conditional expectation
on the right is FT−-measurable, and hence the conditional expectation
is unnecessary. In view of property (i) in the proof of Lemma 5.56 the
jump process of B is completely determined by its values on the graphs of
predictable times, and hence we can conclude that |∆B| ≤ ∆M∗− up to an
evanescent set.

By the definition of Z the jump ∆(M−Z)t is 0 unless |∆Mt| ≤ 2∆M∗t−,
in which case ∆Zt = 0. Consequently, the process |∆(M − Z)| is also
bounded by 2∆M∗−.

Combining the two preceding paragraphs and the definition of N , we
see that |∆N | ≤ 4∆M∗− ≤ 4

√
[M ]− and hence [N ] ≤ [N ]− + 16[M ]−.

For fixed r consider the stopping time Tr = inf{t ≥ 0: [N ]t∨[M ]t > r2}.
If Tr = ∞, then the variable supt |Nt| is bounded above by supt≤Tr |Nt|,
while in the other case at least one of the processes [N ] or [M ] crosses the
level r2. This implies that

P
(

sup
t
|Nt| > r

)
≤ P

(
[N ]∞ > r2

)
+ P

(
[M ]∞ > r2

)
+ P

(
sup
t≤Tr
|Nt| > r

)
.
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Applying Markov’s inequality to the probability on the far right and next
taking the integral with respect to r ∈ [0,∞) shows that

E sup
t
|Nt| ≤ E[N ]1/2∞ + E[M ]1/2∞ +

∫ ∞
0

1

r2
E sup
t≤Tr

N2
t dr.

By the Burkholder-Davis-Gundi inequality for p = 2, we see that the in-
tegrand in the last term is bounded above by 4E[N ]Tr . If Tr < ∞, then
[N ]Tr ≤ [N ]Tr−+16[M ]Tr− ≤ 17r2, by the definition of Tr, whence [N ]Tr ≤
[N ]∞ ∧ (17r2) in every case. The expression obtained by inserting these
bounds in the integral can, after exchanging expectation and integral, be

computed explicitly as 8
√

17E[N ]
1/2
∞ . Finally [N ]1/2 ≤ [M ]1/2 + [Z−B]1/2,

where [Z − B]1/2 ≤
∫
|d(Z − B)s| and E

∫
|d(Z − B)s| was seen to be

bounded by a multiple of E[M ]1/2.
This concludes the proof of the upper inequality for p = 1. The lower

inequality is proved similarly, now using the stopping times Sr = inf{t ≥
0:N∗t ∨∆M∗t > r}. We have

P
(

[N ]∞ > r2
)
≤ P

(
N∗∞ > r

)
+ P

(
∆M∗∞ > r

)
+ P

(
[Nt]Sr > r

)
.

We bound the integrals over the first two terms using the inequalities N∗ ≤
M∗ +

∫
|d(Z − B)s|, where E

∫
|d(Z − B)s| ≤ 4E∆M∗∞ by the preceding

, and ∆M∗ ≤ 2M∗. By Markov’s inequality and the lower Burkholder-
Davis-Gundi inequality for p = 2 the last term is bounded by r−2 ≤ EN2

Sr
,

which can be further bounded using that N∗ ≤ N∗− + 4∆M∗−, so that
N∗Sr ≤ N

∗
∞ ∧ 5r.

5.9 Itô’s Formula for Continuous Processes

Itô’s formula is the cornerstone of stochastic calculus. In this section we
present it for continuous processes, which allows some simplification. In
the first statement we also keep the martingale and the bounded variation
process separated, which helps to understand the essence of the formula.
The formulas for general semimartingales are more symmetric, but also
more complicated at first.

For a given function f :Rd 7→ R write Dif for its ith partial derivative
and Di,jf for its (i, j)th second degree partial derivative.

5.79 Theorem (Itô’s formula). Let M be a continuous local martingale
and A a continuous process that is locally of bounded variation. Then, for
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every twice continuously differentiable function f :R2 7→ R,

f(Mt, At)− f(M0, A0) =

∫ t

0

D1f(M,A) dM +

∫ t

0

D2f(Ms, As) dAs

+ 1
2

∫ t

0

D11f(Ms, As) d[M ]s, a.s..

The special feature of Itô’s formula is that the martingale M gives two
contributions on the right hand side (the first and third terms). These result
from the linear and quadratic approximations to the function on the left.
An informal explanation of the formula is as follows. For a given partition
0 = t0 < t1 < · · · < tk = t, we can write the left side of the theorem as∑
i

(
f(Mti+1 , Ati+1)− f(Mti+1 , Ati)

)
+
∑
i

(
f(Mti+1 , Ati)− f(Mti , Ati)

)
≈
∑
i

D2f(Mti+1
, Ati)(Ati+1

−Ati)(5.80)

+
∑
i

D1f(Mti , Ati)(Mti+1 −Mti) + 1
2

∑
i

D11f(Mti , Ati)(Mti+1 −Mti)
2.

We have dropped the quadratic approximation involving the terms (Ati+1
−

Ati)
2 and all higher order terms, because these should be negligible in the

limit if the mesh width of the partition converges to zero. On the other
hand, the quadratic approximation coming from the martingale part, the
term on the far right, does give a contribution. This term is of magnitude
comparable to the quadratic variation process on the left side of (5.65).

5.81 EXERCISE. Apply Theorem 5.79 to the function f(m, a) = m2. Com-
pare the result to Theorem 5.64.

If we apply Theorem 5.79 with the function f(m, a) = g(m+ a), then
we find the formula

g(Mt+At)−g(M0+A0) =

∫ t

0

g′(M+A) d(M+A)+ 1
2

∫ t

0

g′′(Ms+As) d[M ]s.

Here X = M + A is a semimartingale. The quadratic variation [X] of
the continuous semimartingale X can be shown to be equal to [M ] (See
Exercise 5.84). Thus we can also write this as

(5.82) g(Xt)− g(X0) =

∫ t

0

g′(X) dX + 1
2

∫ t

0

g′′(Xs) d[X]s.

This pleasantly symmetric formula does not permit the study of transfor-
mations of pairs of processes (M,A), but this can be remedied by studying
functions g(X1,t, . . . , Xd,t) of several semimartingales Xi = {Xi,t: t ≥ 0}.
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In the present section we restrict ourselves to continuous semimartingales.
It was shown in Lemma 5.56 that the processes M and A in the decom-
position X = X0 + M + A of a continuous semimartingale can always be
chosen continuous. The following definition is therefore consistent with the
earlier definition of a semimartingale.

5.83 Definition. A continuous semimartingale X is a process that can be
written as the sum X = X0 + M + A of a continuous local martingale M
and a continuous process A of locally bounded variation, both 0 at 0.

The decomposition X = X0 +M+A of a continuous semimartingale in
its continuous martingale and bounded variation parts M and A is unique,
because a continuous local martingale that is of locally bounded variation
is necessarily constant, by Theorem 5.53.

5.84 EXERCISE. Show that the quadratic variation of a continuous semi-
martingale X = X0 + M + A, as defined in (5.65), is given by [M ], i.e.
the contributions of the bounded variation part is negligible. [Hint: the
continuity of the processes is essential; one method of proof is to use that
[M,A] = 0 = [A].]

5.85 Theorem (Itô’s formula). Let X = (X1, . . . , Xd) be a vector of con-
tinuous semimartingales. Then, for every twice continuously differentiable
function f :Rd 7→ R,

f(Xt)− f(X0) =

d∑
i=1

∫ t

0

Dif(X) dXi + 1
2

d∑
i=1

d∑
j=1

∫ t

0

Dijf(X) d[Xi, Xj ], a.s..

Proofs. For a proof of Theorem 5.79 based directly on the Taylor approx-
imation (5.80), see Chung and Williams, pp94–97. Here we give a proof of
the more general Theorem 5.85, but following the “convention” stated by
Rogers and Williams, p61: “Convention dictates that Itô’s formula should
only be proved for d = 1, the general case being left as an exercise, amid
bland assurances that only the notation is any more difficult.”

The proof proceeds by first establishing the formula for all polynomials
f and next generalization to general smooth functions by approximation.
The formula is trivially true for the polynomials f(x) = 1 and f(x) = x.
Next we show that the formula is correct for the function fg if it is correct
for the functions f and g. Because the set of functions for which it is correct
is also a vector space, we then can conclude that the formula is correct for
all polynomials.

An essential step in this argument is the defining equation (5.63) for
the quadratic variation process, which can be viewed as the Itô formula for
polynomials of degree 2 and can be written in the form

(5.86) XtYt −X0Y0 = (X · Y )t + (Y ·X)t + [X,Y ]t.
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Then suppose that Itô’s formula is correct for the functions f and g. This
means that (5.82) is valid for g (as it stands) and for f in the place of g.
The formula implies that the processes f(X) and g(X) are semimartingales.
For instance, if X = X0 +M +A then the process g(X) has decomposition
g(X) = g(X0) + M̄ + Ā given by

M̄t =

∫ t

0

g′(X) dM, Āt =

∫ t

0

g′(Xs) dAs + 1
2

∫ t

0

g′′(Xs) d[X]s.

In view of Exercise 5.84, the quadratic covariation [f(X), g(X)] is the
quadratic covariation between the martingale parts of f(X) and g(X), and
is equal to f ′(X)g′(X) · [X], by Lemma 5.114. Applying (5.86) with X and
Y there replaced by f(X) and g(X), we find

f(Xt)g(Xt)− f(X0)g(X0)

=
(
f(X) · g(X)

)
t

+
(
g(X) · f(X)

)
t

+
[
f(X), g(X)

]
t

=
(
f(X)g′(X) ·X

)
t

+ 1
2f(X)g′′(X) · [X]t

+
(
g(X)f ′(X) ·X

)
t

+ 1
2g(X)f ′′(X) · [X]t + f ′(X)g′(X) · [X]t,

where we have used (5.82) for f and g, and the substitution formula of
Lemma 5.61(ii). By regrouping the terms this can be seen to be the Itô
formula for the function fg.

Finally, we extend Itô’s formula to general functions f by approxima-
tion. Because f ′′ is continuous, there exists a sequence of polynomials fn
with f ′′n → f ′′, f ′n → f ′ and fn → f pointwise on R and uniformly on
compacta, by an extension of the Weierstrass approximation theorem. (See
Lemma 5.87 below.) Then the sequences fn(X), f ′n(X) and f ′′n (X) converge
pointwise on Ω× [0,∞) to f(X), f ′(X) and f ′′(X). The proof of the theo-
rem is complete, if we can show that all terms of Itô’s formula applied with
fn converge to the corresponding terms with f instead of fn, as n → ∞.
This convergence is clear for the left side of the formula. For the proof of the
convergence of the integral terms, we can assume without loss of generality
that the process X in the integrand satisfies X0 = 0; otherwise we replace
the integrand by X1(0,∞).

The process K = supn |f ′n(X)| is predictable and is bounded on sets
where |X| is bounded. If Tm = inf{t ≥ 0: |Xt| > m}, then, as we have as-
sumed that X0 = 0, |X| ≤ m on the set [0, Tm] and hence KTm is bounded.
We conclude that K is locally bounded, and hence, by Lemma 5.60,
f ′n(X) ·X P→ f ′(X) ·X, as n→∞.

Finally, for a fixed m on the event {t ≤ Tm}, the processes s 7→
f ′′n (X) are uniformly bounded on [0, t]. On this event

∫ t
0
f ′′n (Xs) d[X]s →∫ t

0
f ′′(Xs) d[X]s, as n → ∞, by the dominated convergence theorem, for

fixed m. Because the union over m of these events is Ω, the second terms
on the right in the Itô formula converge in probability.
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Itô’s formula is easiest to remember in terms of differentials. For in-
stance, the one-dimensional formula can be written as

df(Xt) = f ′(Xt) dXt + 1
2f
′′(Xt) d[X]t.

The definition of the quadratic variation process suggests to think of [X]t
as
∫

(dXt)
2. For this reason Itô’s rule is sometimes informally stated as

df(Xt) = f ′(Xt) dXt + 1
2f
′′(Xt) (dXt)

2.

Since the quadratic variation of a Brownian motion B is given by [B]t = t,
a Brownian motion then satisfies (dBt)

2 = dt. A further rule is that
(dBt)(dAt) = 0 for a process of bounded variation A, expressing that
[B,A]t = 0. In particular dBtdt = 0.

5.87 Lemma. For every twice continuously differentiable function f :R 7→
R there exist polynomials pn:R 7→ R such that sup|x|≤n

∣∣p(i)
n (x)−f (i)(x)

∣∣→
0 as n→∞, for i = 0, 1, 2.

Proof. For every n ∈ N the function gn: [0, 1] 7→ R defined by gn(x) =
f ′′(xn) is continuous and hence by Weierstrass’ theorem there exists a poly-
nomial rn such that the uniform distance on [−1, 1] between gn and rn is
smaller than n−3. This uniform distance is identical to the uniform distance
on [−n, n] between f ′′ and the polynomial qn defined by qn(x) = rn(x/n).
We now define pn to be the polynomial with pn(0) = f(0), p′n(0) = f ′(0)
and p′′n = qn. By integration of f ′′− p′′n it follows that the uniform distance
between f ′ and p′n on [−n, n] is smaller than n−2, and by a second inte-
gration it follows that the uniform distance between f and pn on [−n, n] is
bounded above by n−1.

* 5.10 The Ultimate Extension

. Definition 5.57 gives the “stochastic integral” Y ·X of a locally bounded,
predictable process Y relative to an arbitrary cadlag semimartingale X.
In this section we extend the definition to a larger class of predictable
processes, dependent on the semimartingale X.

The idea is simply that for any predictable process Y and every n the
truncated process Y 1|Y |≤n is bounded, and hence certainly locally bounded,
so that the integral (Y 1|Y |≤n) ·X is a well defined semimartingale by Def-
inition 5.57. If this sequence of semimartingales converges to a limit as
n → ∞, then this limit is defined to be the integral Y · X. Here the con-
vergence is understood with respect to the semimartingale topology. This
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is the topology generated by the semimetrics, for two semimartingales X
and Y ,

(5.88) dt(X,Y ) = sup
|G|≤1

E sup
s≤t

∣∣(G ·X)s − (G · Y )s
∣∣ ∧ 1, t > 0.

The supremum is taken over all predictable processes G with values in
[−1, 1]. The semimartingale topology is metrizable and the class of cad-
lag semimartingales can be shown to form a complete metric space. (See
Section 5.11.)

5.89 Definition. A predictable process Y is said to be X-integrable rela-
tive to a cadlag semimartingale X if the sequence of processes (Y 1|Y |≤n) ·X
converges as n → ∞ in the semimartingale topology to a limit. This limit
is called the stochastic integral and denoted Y ·X. The set of X-integrable
processes is denoted by L1,loc(X).

5.90 EXERCISE. Suppose that Y is a locally bounded, predictable process.
Show that the sequence (Y 1|Y |≤n)·X as defined by Definition 5.57 converges
in the semimartingale topology to the stochastic integral Y ·X as defined
in Definition 5.57. Conclude that the preceding definition is consistent with
the latter definition. [Hint: see the proof of Lemma 5.91.]

The semimartingale topology is relatively strong. Because G = 1 is
eligible in the suprema defining the semimartingale semimetrics, the topol-
ogy is stronger than the topology of uniform convergence in probability on
compacta, which is defined by the collection of semimetrics

dt(X,Y ) = E sup
s≤t
|Xs − Ys| ∧ 1, t > 0.

In particular, convergence Xn → X in the semimartingale topology implies
convergence in probability Xn,T → XT at every bounded stopping time.

The semimartingale topology is relatively complicated to work with.
Below it is related to simpler topologies in several ways. Using these re-
lations it is possible to prove the following “concrete” description of X-
integrable processes.

5.91 Lemma. A predictable process Y is X-integrable if and only if there
exists a decomposition X = X0 +M+A of X into a cadlag local martingale
M and a process of locally bounded variation A such that:
(i) the process

√
Y 2 · [M ] is finite and locally integrable.

(ii)
∫ t

0
|Ys| |dAs| <∞ almost surely for every t.

The integral Y ·X is then the sum Y ·M +Y ·A of a local martingale Y ·M
and a Lebesgue-Stieltjes integral Y ·A.

* Proof. The stochastic integral (Y 1|Y |≤n)·M as defined by Definition 5.57 is
a cadlag local martingale with quadratic variation process |Y |21|Y |≤n · [M ].
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By the Burkholder-Davis-Gundi inequality, Lemma 5.78, for every m < n
and every stopping time T ,

E sup
t≤T

∣∣(Y 1m<|Y |≤n) ·Mt

∣∣ . E

√∫ T

0

Y 2
t 1m<|Yt|≤n d[M ]t.

For every stopping time T such that E
√∫ T

0
Y 2
t d[M ]t < ∞ we can apply

the dominated convergence theorem to see that the right side tends to zero
as m,n→∞. Then so does the left side and hence the sequence of stopped
processes (Y 1|Y |≤n)·MT is Cauchy relative to uniform convergence in mean
on [0,∞). Consequently it has a uniform limit. Applying this argument with
T equal to the elements of a sequence 0 ≤ Tm ↑ ∞ that localizes the local
integrability of the process

√
Y 2 · [M ], we can construct a cadlag process Z

such that the sequence of processes (Y 1|Y |≤n) ·M converges to Z uniformly
on [0, Tm] in mean, as n → ∞, for every fixed m. Because convergence in
mean retains the martingale property, the process Z is a local martingale.

Thus under assumption (i) we can define a local martingale Z that is
a candidate for the integral Y ·M . Under assumption (ii) the Lebesgue-
Stieltjes integral Y · A exists. We finish the proof of sufficiency of a de-
composition X = X0 + M + A satisfying (i)-(ii) for existence of the inte-
gral in the sense of Definition 5.89 by showing that the sequence of pro-
cesses (Y 1|Y |≤n)·X converges in the semimartingale topology to the process
Z + Y ·A.

Now (Y 1|Y |≤n) ·X = (Y 1|Y |≤n) ·M + (Y 1|Y |≤n) ·A by linearity of the
stochastic integral as defined by Definition 5.57. Thus it suffices to show
separately that the sequence (Y 1|Y |≤n) ·M converges to Z and that the
sequence (Y 1|Y |≤n) ·A converges to Y ·A in the semimartingale topology.

For any bounded predictable process G the process G · (Y 1|Y |≤n) ·M−
G ·Z is a local martingale, with quadratic variation process G2 · [(Y 1|Y |≤n) ·
M−Z]. By the Burkholder-Davis-Gundi inequality, for every stopping time
T ,

E sup
t≤T

∣∣(GY 1|Y |≤n) ·Mt −G · Zt
∣∣ . E

√∫ T

0

G2
t d
[
Y 1|Y |≤n ·M − Z

]
t

≤ E
√[

Y 1|Y |≤n ·M − Z
]
T
,

if G takes its values in [−1, 1], By the uniform convergence in mean of
Y 1|Y |≤n ·M − Z to zero, the right side tends to zero as n→∞, for every
stopping time Tm in a localizing sequence, by the Burkholder-Davis-Gundi
inequality in the reverse direction. This implies that Y 1|Y |≤n ·M tends to
Z in the semimartingale topology.
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For any predictable process G with values in [−1, 1], the difference
|GY 1|Y |≤n −GY | is bounded by |Y |1|Y |>n. It follows that

dt(Y 1|Y |≤n ·A, Y ·A) ≤ E

∫ t

0

|Ys|1|Ys|>n |dAs| ∧ 1.

The right side tends to zero as n → ∞ by the dominated convergence
theorem.

Finally we prove that convergence as n→∞ of the processes Y 1|Y |≤n ·
X in the semimartingale topology implies existence of a decomposition
X = X0 + M + A as in (i)-(ii). Because both X and Y · X are cadlag
semimartingales, each sample path of X or Y ·X has at most finitely many
jumps of absolute value bigger than 1. The jumps of Y · X are Y ∆X, as
convergence in the semimartingale topology implies convergence of jumps
(cf. Lemma 5.93(v)). Thus we can define the process of “big jumps”

(5.92) Zt =
∑
s≤t

∆Xs1|∆Xs|>1 or |Ys ∆Xs|>1.

Because this is a finite sum, the integral Y · Z exists (e.g. because of the
first part of the lemma applied with the decomposition Z = 0 + 0 + Z),
and hence so does the integral Y · (X − Z), in the sense of being the limit
of the sequence of processes Un = Y 1|Y |≤n · (X −Z) in the semimartingale
topology. Because X − Z is a semimartingale with jumps bounded by 1, it
is special and possesses a decomposition X − Z = X0 + M + A in a local
martingale M and a predictable process of locally bounded variation A. The
decomposition Un = Y 1|Y |≤n ·M+Y 1|Y |≤n ·A is the special decomposition
of Un. (The Lebesgue-Stieltjes integral of a predictable process relative to
a predictable process is predictable.) By construction of Z the jumps of
Un are uniformly bounded by 1. Hence by Lemma 5.99 convergence of the
sequence Un in the semimartingale topology implies existence of a localizing
sequence 0 ≤ Tk ↑ ∞ such that, for every k, the process UTkn has finite norm
(5.96) and the sequence UTkn is Cauchy relative to this norm. This implies
that, inite, for every fixed k,

E
√[

Y ·M
]
Tk
<∞ and E

∫
(0,Tk]

|Ys| |dAs| <∞.

We conclude that X = X0 + M + (A + Z) is a decomposition where M
satisfies (i) and A+ Z satisfies (ii).

Extending the domain of the integral is nice. However, the ultimate ex-
tension has a number of unpleasant (and unexpected) properties, indicated
in the following warnings.

Warning. The (proof of the) preceding lemma shows that the integral
Y ·X is equal to Y ·M + Y · A for Y ·M a local martingale and Y · A a
Lebesgue-Stieltjes integral. Any decomposition X = X0 +M +A satisfying
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(i) and (ii) can be used. However, the decomposition is allowed to depend on
the process Y , and different Y may indeed need different decompositions.
It follows from the proof of the lemma that a decomposition such that A
contains all jumps of X with |∆X| > 1 or |Y ∆X| > 1 always works. In
particular, if X is continuous, then we can always use X = X0 + M + A
with M continuous.†

Warning. If X is a local martingale, then we cannot necessarily use
the decomposition X = X0 + (X − X0) + 0. Given Y there may be a
decomposition X = X0 +M + A such that (i)-(ii) hold, giving an integral
Y · X, which is the sum of a stochastic and a Lebesgue-Stieltjes integral,
whereas Y · X may not exist as a stochastic integral. Similarly, if X is of
locally bounded variation, then we cannot necessarily use X = X0 + 0 +
(X −X0).

Warning. If X is a local martingale, then Y · X is not necessarily a
local martingale. This is because the Lebesgue-Stieltjes integral Y ·A for a
local martingale of locally bounded variation A (as in (ii)) is not necessar-
ily a local martingale. The Lebesgue-Stieltjes integral is defined pathwise,
whereas the (local) martingale property requires some integrability. The
stochastic integral Y ·M for M as in (i) is always a local martingale.

Warning. If Gt is a filtration with Ft ⊂ Gt, X is a semimartingale
relative to Ft (and hence Gt) and Y is predictable relative to Ft, then it
may happen that Y ·X exists relative to Ft, but not relative to the filtration
Gt. (Conversely, if it exists for Gt, then also for Ft.)

On the other hand, other standard properties of the stochastic integral
do remain valid for the extension.

5.93 Lemma. Let G,H be predictable processes and X and Y be cadlag
semimartingales.
(i) If H is both X- and Y -integrable, then H is X + Y -integrable and

H · (X + Y ) = H ·X +H · Y .
(ii) If both G and H are X-integrable, then so is G+H and (G+H) ·X =

G ·X +H ·X.
(iii) If H is X-integrable, then G is H ·X-integrable if and only if GH is

X-integrable, and in that case G · (H ·X) = (GH) ·X.

(iv) If H is X-integrable, then
∫ t

0
|Hs| |d[X,Y ]|s is finite almost surely and

[H ·X,Y ] = H · [X,Y ].
(v) If H is X-integrable, then ∆(H ·X) = H ∆X.

5.94 Lemma (Dominated convergence). Let X be a semimartingale and
Hn a sequence of predictable processes Hn that converges pointwise to a
process H. If |Hn| ≤ K for an X-integrable process K, then Hn ·X tends
to H ·X in the semimartingale topology.

† Also, if both X and Y ·X are special, then we can always use the canonical decomposition
of X.
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The integral Y ·M for M as in (i) of Lemma 5.91 is always a local
martingale. Thus failure of Y ·X to be a local martingale if X = X0+M+A
is a local martingale results from failure of the Lebesgue-Stieltjes integral
Y ·A as in (ii) to be local martingale. The following lemma shows that this
cannot happen if the jumps of the integral Y · X are bounded above (or
below) by an integrable variable.

5.95 Lemma. If Y is X-integrable for a local martingale X and there
exists a localizing sequence 0 ≤ Tn ↑ ∞ such that inft≤Tn Yt∆Xt is bounded
below by an integrable variable, for every fixed n, then Y · X is a local
martingale.

* Proof. If the process Z is defined by (5.92), then X−Z has jumps bounded
in absolute value by 1, whence this process is special and can be decomposed
as X − Z = X0 + M + A for a local martingale M and a predictable
process of locally bounded variation A. It is shown in the last part of the
proof of Lemma 5.91, that X = X0 + M + (Z + A) is a decomposition
in which M satisfies (i) of the lemma and Z + A satisfies (ii), whence∫ t

0
|Ys| |d(Z + A)s| < ∞ almost surely for every t. The lemma shows that

Y ·X = Y ·M + Y · (Z +A) for Y ·M a local martingale and Y · (Z +A) a
Lebesgue-Stieltjes integral. It suffices to show that in the present case the
latter Lebesgue-Stieltjes integral

∫ t
0
Ys d(Z +A)s is also a local martingale.

We employ the following result. If Un is a cadlag martingale for every n
such that supt |Un,t−Ut| → 0 in probability fora cadlag process U such that
|∆Un| ≤ |∆U | and E supt |Ut| < ∞, then U is a martingale. To prove this
claim, define stopping times Tn = inf{t ≥ 0: |Un,t−Ut| > 1}. Then Tn →∞
in probability, and supt≤Tn |Un,t−Ut| ≤ 1 + |∆(Un−U)Tn | ≤ 1 + 2|∆UTn |,
which is integrable by assumption. By dominated convergence the left side
tends to zero in L1. Combined with the convergence of |Ut∧Tn −Ut| to zero
in L1, we see that UTnn is a sequence of martingales that converges in L1 to
U , whence U is a martingale.

Because Z + A = X − X0 −M is a local martingale, there exists a
localizing sequence 0 ≤ Sm ↑ ∞ such that (Z + A)Sm is a martingale, for

every m. Then the Lebesque-Stieltjes integral Vn,t =
∫ t

0
Ys1|Ys|≤n d(Z +

A)s stopped at Sm is a martingale for every m and n, by Lemma 5.49. It

converges uniformly on bounded time intervals to Vt =
∫ t

0
Ys d(Z + A)s,

almost surely as n → ∞. The absolute jump process of Vn is equal to
|Y |1|Y |≤n |∆(Z+A)|, which is bounded by the absolute jump process of V .
We shall show that there exists a localizing sequence 0 ≤ Tm ↑ ∞ such that
E supt≤Tm |Vt| <∞, for every fixedm. By applying the preceding paragraph
with Un and U equal to the processes Vn and V stopped at a suitable
localizing sequence, we can then conclude that V is a local martingale.

For any predictable time T we have YT∆AT = YTE(∆AT | FT−) =
E
(
YT∆(X −Z)T | FT−

)
, because E(∆MT | FT−) = 0. (Need to stop first to

make MT integrable??) By construction of Z the jump process Y∆(X−Z)
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is bounded in absolute value by 1. It follows that |Y∆A| ≤ 1 and hence
|Y∆M | = |Y∆(X − Z)− Y∆A| ≤ 2.

Let Tm = m∧Sm∧ inf{t ≥ 0:
∫ t

0
|Ys| |d(Z+A)s| ≥ m}. By assumption

there exists an integrable, nonnegative variable L such that Y∆X ≥ −L.
Then

Vn,Tm =

∫
(0,Tm)

Ys1|Ys|≤n d(Z +A)s + YTm1|YTm |≤n∆(X −M)Tm

≥ −m− L− 2.

Because V Smn is a martingale starting at 0 and Tm ≤ Sm, we have EVn,Tm =
0, and hence E|Vn,Tm | ≤ 2EV −n,Tm , which is bounded uniformly in n by the
integrable variable m+L+ 2, by the preceding display. By Fatou’s lemma
E|VTm | ≤ E(m+L+ 2). Finally supt≤Tm |Vt| ≤ m∨ |Vn,Tm | is integrable.

* 5.11 Semimartingale Topologies

The semimartingale topology is used to construct the “ultimate” extension
of the stochastic integral in Section 5.10. It is generated by the semimetrics
dt given by (5.88) and metrizable by the overall metric d =

∑∞
n=1 2−ndn.

In this section we show that the collection of semimartingales is complete
and derive a number of other properties.

Because the semimartingale metric is not easy to work with, it is useful
to relate it to a number of other metrics. A simple metric results from the
seminorms

‖|X|‖t = E[X]
1/2
t .

The Burkholder-Davis-Gundi inequality shows that for local martingales
X convergence in this norm is equivalent to uniform convergence in mean.
Unfortunately for general semimartingales this seminorm is insufficient. In
particular, the quadratic variation [A] of a process A of locally bounded
variation is equal to the sum of square jumps, and hence ‖|A|‖t measures
the jumps only.

A natural seminorm on a process of locally bounded variation is the
mean total variation E

∫ t
0
|dAs|. For general semimartingales it would be

natural to measure the martingale part by the norm ‖|·|‖t and the bounded
variation part by the mean total variation norm, and next define the norm
of the semimartingale itself by the sum of these norms. Because the de-
composition X = X0 +M +A of a semimartingale into a local martingale
part M and bounded variation part A is not unique, it is necessary to
specify which decomposition to use. One possibility is to define the norm
as the minimum of the norms obtained from all possible decompositions.
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For simplicity we restrict ourselves to special semimartingales, which have
a “canonical” decomposition. A semimartingale X is special if it possesses
a decomposition X = X0 + M + A with M a local martingale and A a
predictable process of locally bounded variation. This canonical decompo-
sition, with A predictable, is unique. We define seminorms on the set of
special semimartingales by

(5.96) ‖X‖t = E
(√

[M ]t +

∫ t

0

|dAs|
)
.

Of course, the right side is not necessarily finite, and hence the norm can
only be defined on a subset of special semimartingales. Because the the
square root of the quadratic variation process of a local martingale and the
variation of a predictable process of locally bounded variation are always
locally integrable, the norm can always be applied to suitably localized
special semimartingales.

The norm ‖ · ‖t is stronger than ‖| · |‖t, and also generates a stronger
topology than the semimartingale topology. However, the difference is small
if the jumps are bounded and one allows localization, or a change of
measure.‡

5.97 Lemma. If Xn and X are special semimartingales with ‖Xn−X‖t →
0, then dt(Xn, X)→ 0.

Proof. Let Xn = Xn,0 +Mn +An and X = X0 +A+M be the canonical
decompositions of the semimartingales. For any bounded predictable pro-
cess G the integrals G ·Xn and G ·X are defined as the sum of the integrals
relative to the martingale and bounded variation parts, by Definition 5.57.
It suffices to show that Gn ·Mn−Gn ·M → 0 and Gn ·An−Gn ·A→ 0 with
respect to uniform convergence in probability, for any uniformly bounded
sequence of predictable processes Gn. The first sequence are local martin-
gales and we can apply the Burkholder-Davis-Gundi inequality. The sec-
ond sequence are Lebesgue-Stieltjes integrals, and the result follows by the
domimated convergence theorem.

5.98 EXERCISE. Suppose that Xn and X are semimartingales such that
XTk tends to XTk in the semimartingale topology for each element of a
localizing sequence 0 ≤ Tk ↑ ∞. Show that Xn tends to X in the semi-
martingale topology.

5.99 Lemma. Suppose Xn is a sequence of cadlag semimartingales that is
Cauchy for the semimartingale metric dt.

‡ For a proof of the following lemma, see M. Emery, Une topologie sur l’espace des semi-
martingales. Lecture Notes in Mathematics 721, 260–279, 1979, and J. Memin, Espaces de
martingales et changement de probabilité, Z. Wahrscheinlichkeitstheorie unt Verwante Gebi-
ete 52, 9–39, 1980. Convergence in the sense of assertion (iii) is called convergence prelocally.
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(i) If the absolute jump processes |∆Xn| are uniformly, then there exists
stopping times 0 ≤ Tm ↑ ∞ and a subsequence such that XTm

n is
Cauchy with respect to the norm (5.96).

(ii) There exists a probability measure P̃ with a bounded positive density
relative to P and a subsequence such that Xn is Cauchy relative to the
norm (5.96) evaluated under expectation under P̃.

(iii) There exists stopping times 0 ≤ Tm ↑ ∞ and a subsequence such that
XTm−
n is Cauchy with respect to the norm (5.96).

(iv) There exists a subsequence that is Cauchy for the quasinorm E[X]
1/2
t ∧

1.

Using this characterization it is easy to prove the completeness of the
set of all semimartingales and the set of stochastic integrals Y · X with
respect to a fixed process X under the semimartingale metric. The com-
pleteness of the set of integrals Y · X can be viewed as a proof that the
integral as defined in Section 5.10 is indeed “ultimate”.

5.100 Lemma. The space of all cadlag semimartingales is complete under
the semimartingale metric.

5.101 Lemma. The set of stochastic integrals Y ·X for Y varying over all
X-integrable processes for a fixed semimartingale X is complete under the
semimartingale metric.

Proofs. (Sketch.) A Cauchy sequence Xn for the semimartingale metric dt
possesses a subsequence that is Cauchy for the norm ‖ · ‖t computed for a
suitable equivalent probability measure P̃. The latter norm is complete and
hence the subsequence converges to a limit in this norm. This can be seen
to imply convergence in the semimartingale metric to the same limit. The
original Cauchy sequence converges to the same limit.

If Un = Yn · X converges in the semimartingale to a limit U , then it
possesses a subsequence that converges to a limit with respect to the norm
‖ · ‖t. Consequently, the sequence of processes Yn is Cauchy for

‖|Y |‖t = Ẽ
√
Y 2 · [M ]t + Ẽ

∫
|Ys||dAs|.

The completeness of this norm shows that the sequence converges to a limit
Y . The original sequence can be seen to converge to Y ·X.

5.102 Lemma. If X is a cadlag special semimartingale with canonical de-
composition X = X0 +M +A, then, for every p ≥ 1 there exists a constant
such that E[M ]p/2 + E[A]p/2 ≤ CpE[X]p/2.

Proof. We give the proof only for p = 1 and p = 2.
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For p = 2 the inequality can be obtained from the fact that [X] = [M ]+
2[M,A]+[A], where E[M,A] = E

∑
∆M∆A = 0, because E(∆MT | FT−) =

0 and ∆AT is predictable for every predictable time T .
To handle the case p = 1 let 0 < T1 < · · · < Tk be any sequence of pre-

dictable stopping times. Because ∆AT = E(∆AT | FT−) = E(∆XT | FT−),

E
∑
i

∆A2
Ti = E

∑
i

E(∆XTi | FTi−)2 = sup
(Hi)

∑
i

E(∆XTi | FTi−)Hi,

where the supremum is taken over all sequences of random variables Hi

with
∑
iH

2
i ≤ 1 almost surely. Setting [X]i =

∑i
j=1 ∆X2

Tj
, we can rewrite

the series in the form∑
i

E∆XTiE(Hi| FTi−) ≤

√√√√E
∑
i

∆X2
Ti√

[X]i

√
E
∑
i

E(Hi| FTi−)2
√

[X]i,

by the Cauchy-Schwarz inequality. The first expectation on the right can
be rewritten as

E
∑
i

[X]i − [X]i−1√
[X]i

≤ 2E
∑
i

(√
[X]i −

√
[X]i−1

)
= 2E

√
[X]∞.

In the first inequality we use that [X]i is increasing in i. With the notation

〈H〉i =
∑i
j=1 E(∆HTj | FTj−)2, the second expectation on the right of the

second last display can be rewritten as

E
∑
i

(
〈H〉∞ − 〈H〉i−1

)(√
[X]i −

√
[X]i−1

)
.

In this sum we can replace 〈H〉∞−〈H〉i−1 by its condition expectation given
FTi , which is equal to E(H2

i | FTi−) +
∑
j>i E(H2

j | FTi). This is bounded
by 2 almost surely for every sequence (Hi) under consideration. Thus the
expectation is bounded by 2E

√
[X]∞.

The preceding is true for any sequence of predictable stopping times.
Because the jumps of A are exhausted by the graphs of a countable sequence
of predictable times, the process [A]∞ =

∑
t ∆A2

t is the limit of sums of

the types considered. Consequently, E[A]
1/2
∞ ≤ 2E[X]

1/2
∞ . Also [M ]1/2 ≤

[X]1/2 + [A]1/2, by the triangle inequality.

* 5.12 Multivariate Integrals
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5.13 Predictable Quadratic Variation

In this section we define the “angle bracket process” 〈M〉. This process is
defined for the smaller class of local L2-martingales M , unlike the square
bracket process, which is defined for general semimartingales. If M is con-
tinuous, we can define 〈M〉 simply to be identical to [M ]. For general lo-
cal L2-martingales, we define the angle bracket process by reference to the
Doob-Meyer decomposition. This decomposition, given in Lemma 5.105, im-
plies that for any local L2-martingale M there exists a unique predictable
process A such that M2 − A is a local martingale. We define this process
as the predictable quadratic variation of M .

5.103 Definition. The predictable quadratic variation of a cadlag local L2-
martingale M is the unique cadlag nondecreasing predictable process 〈M〉,
0 at 0, such that M2−〈M〉 is a local martingale. The predictable quadratic
covariation of a pair of cadlag local L2-martingales M and N is the process
〈M,N〉 defined by 4〈M,N〉 = 〈M +N〉 − 〈M −N〉.

5.104 EXERCISE. Show that MN − 〈M,N〉 is a local martingale.

If M is a local martingale, then the process M2− [M ] is a local martin-
gale, by Lemma 5.71(ii). Consequently, if [M ] is predictable, in particular if
M is continuous, then 〈M〉 = [M ]. However, the process [M ] is not always
predictable, and hence is not always equal to the process 〈M〉.

To see that Definition 5.103 is well posed, we use the Doob-Meyer
decomposition. The square of a local martingale is a local submartingale,
by Jensen’s inequality, and hence existence and uniqueness of 〈M〉 follows
from (ii) of the following lemma.

A process Z is said to be of class D, if the collection of all random
variable ZT with T ranging over all finite stopping times, is uniformly in-
tegrable.

5.105 Lemma (Doob-Meyer).
(i) Any cadlag submartingale Z of class D can be written uniquely in the

form Z = Z0 + M + A for a cadlag uniformly integrable martingale
M and a cadlag predictable nondecreasing process A with EA∞ <∞,
both 0 at 0. The process A is continuous if and only if EZT− = EZT
for every finite predictable time T .

(ii) Any cadlag local submartingale Z can be written uniquely in the form
Z = Z0 + M + A for a cadlag local martingale M and a cadlag pre-
dictable nondecreasing process A, both 0 at 0.

Proof. For a proof of (i) see e.g. Rogers and Williams, VI-29.7 and VI-
31.1. The uniqueness of the decomposition follows also from Theorem 5.53,
because given two decompositions Z = Z0 +M + A = Z0 + M̄ + Ā of the
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given form, the process M − M̄ = Ā−A is a cadlag predictable process of
bounded variation, 0 at 0, and hence is 0.

Given (i) we can prove (ii) by localization as follows. Suppose 0 ≤ Tn ↑
∞ is a sequence of stopping times such that ZTn is a submartingale of class
D for every n. Then by (i) it can be written as ZTn = Z0 +Mn +An for a
uniformly integrable martingale Mn and a cadlag, nondecreasing integrable
predictable process An. For m ≤ n we have ZTm = (ZTn)Tm = Z0 +MTm

n +
ATmn . By uniqueness of the decomposition it follows that MTm

n = Mm and
ATmn = Am. This allows us to define processes M and A in a consistent
manner by specifying their values on the set [0, Tm] to be Mm and Am,
for every m. Then MTn = Mn and hence M is a local martingale. Also
Z = Z0 +M +A on [0, Tm] for every m and hence on [0,∞)× Ω.

We still need to show the existence of the stopping times Tn. By as-
sumption there are stopping times 0 ≤ Sn ↑ ∞ such that ZSn is a sub-
martingale. Define

Tn = Sn ∧ n ∧ inf{t ≥ 0: |ZSnt | ≥ n}.

Then |ZSnt | ≤ |Z
Sn
Tn
|∨n for t ∈ [0, Tn] and hence |ZTnT | ≤ |Z

Sn
Tn
|∨n for every

stopping time T . The right side is integrable because Tn is bounded and
ZSn is a submartingale (and hence is in L1) by Theorem 4.21.

The nondecreasing, predictable process A in the Doob-Meyer decom-
position given by Lemma 5.105(i)–(ii) is called the compensator or “dual
predictable projection” of the submartingale Z.

5.106 Example (Poisson process). The standard Poisson process is non-
decreasing and integrable and hence trivially a local submartingale. The
process M defined by Mt = Nt−t is a martingale, and the identity function
t 7→ t, being a deterministic process, is certainly predictable. We conclude
that the compensator of N is the identity function.

The process t 7→ M2
t − t is also a martingale. By the same reasoning

we find that the predictable quadratic variation of M is given by 〈M〉t = t.
In contrast, the quadratic variation is [M ] = N . (See Exercise 5.68.)

5.107 EXERCISE. Show that the compensator of [M ] is given by 〈M〉.

5.108 EXERCISE. Show that 〈MT 〉 = 〈M〉T for every stopping time T .
[Hint: a stopped predictable process is predictable.]

* 5.109 EXERCISE. Show that M2 − 〈M〉 is a martingale if M is an L2-
martingale. [Hint: if M is L2-bounded, then M2 is of class D and we can
apply (i) of the Doob-Meyer lemma; a general M can be stopped.]

Both quadratic variation processes are closely related to the Doléans
measure. The following lemma shows that the Doléans measure can be
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disintegrated as,

dµM (s, ω) = d[M ]s(ω) dP(ω) = d〈M〉s(ω) dP(ω).

Here d[M ]s(ω) denotes the measure on [0,∞) corresponding to the non-
decreasing, cadlag function t 7→ [M ]s(ω), for given ω, and similarly for
d〈M〉s(ω). The three measures in the display agree on the predictable σ-
field, where the Doléans measure was first defined. (See (5.15)). Off the
predictable σ-field the two disintegrations offer possible extensions, which
may be different.

5.110 Lemma. If M is an L2-martingale, then, for all A ∈ P,

µM (A) =

∫ ∫ ∞
0

1A(s, ω) d[M ]s(ω) dP(ω) =

∫ ∫ ∞
0

1A(s, ω) d〈M〉s(ω) dP(ω).

Proof. Because the predictable rectangles form an intersection stable gen-
erator of the predictable σ-field, it suffices to verify the identity for every
set of the form A = (s, t]× Fs with Fs ∈ Fs. Now

E

∫ ∞
0

1(s,t]×Fs(u, ω) d[M ]u = E1Fs
(
[M ]t − [M ]s

)
.

Because M2− [M ] is a martingale, by Lemma 5.71(iii), the variable (M2
t −

[M ]t)− (M2
s − [M ]s) is orthogonal to Fs. This implies that we may replace

[M ]t− [M ]s in the display by M2
t −M2

s . The resulting expression is exactly
µM
(
(s, t]× Fs

)
.

The argument for 〈M〉 is identical, if we note that M2 − 〈M〉 is a
martingale if M is in L2. (Cf. Exercise 5.109.)

5.111 EXERCISE. Consider the compensated Poisson process. Show that
the three measures in Lemma 5.110 are given by dsdP(ω), dNs(ω)dP(ω)
and dsdP(ω). Show by direct calculation that they are the same on the
predictable σ-field. Are they the same on the optional s-field or the product
σ-field?

5.112 EXERCISE (Integration with Continuous Integrators). A con-
tinuous local martingale M , 0 at 0, is a local L2-martingale. Show that any
predictable process X with

∫ t
0
X2
s d[M ]s < ∞ almost surely, for every t, is

contained in L2,loc(M), i.e. there exists a localizing sequence 0 ≤ Tn ↑ ∞
for the pair (X,M) and Definition 5.32 of the stochastic integral applies.

[Hint: try Tn = inf
{
t ≥ 0: |Mt| > n,

∫ t
0
X2
s d[M ]s > n

}
.]

We have seen that the square and angle bracket processes coincide for
continuous local L2-martingales. In the noncontinuous case they may differ,
because the square bracket process is not necessarily predictable. The fol-
lowing lemma characterizes the square bracket process as a “nonpredictable
compensator” of M2 with jumps (∆M)2.
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5.113 Lemma. The quadratic variation process of a cadlag local martin-
gale M is the unique adapted process A of locally bounded variation, 0 at
0, such that M2 −A is a local martingale and ∆A = (∆M)2.

Proof. The quadratic variation process [M ] possesses the listed properties,
by Lemma 5.71(ii) and (vi). Given another process A with these properties
the process [M ]− A is the difference of two local martingales and hence a
local martingale. It is also of locally bounded variation and 0 at 0. Moreover,
it is continuous, because ∆[M ] = (∆M)2 = ∆A. Theorem 5.53 shows that
[M ]−A = 0.

Because the quadratic covariation process [X,Y ] is of locally bounded

variation, integrals of the type
∫ t

0
Zs d[X,Y ]s can be defined as Lebesgue-

Stieltjes integrals, for every measurable (integrable) process Z. (The s in
the notation is to indicate that the integral is a Lebesgue-Stieltjes integral
relative to s, for every fixed pair of sample paths of Z and [X,Y ].) The
integrals in the following lemmas can be understood in this way.

5.114 Lemma. Let M and N be local L2-martingales and let X and Y be
locally bounded predictable processes.
(i) [X ·M,Y ·N ]t =

∫ t
0
XsYs d[M,N ]s.

(ii) 〈X ·M,Y ·N〉t =
∫ t

0
XsYs d〈M,N〉s.

Proof. Assertion (i) is already proved in Lemma 5.77 (in greater general-
ity). It is proved here in a different way in parallel to the proof of (ii). For
simplicity of notation we give the proof in the case that X = Y and M = N .
Furthermore, we abbreviate the process t 7→

∫ t
0
X2
s d〈M〉s to X2 · 〈M〉, and

define X2 · [M ] similarly.
Because a compensator of a local submartingale is unique, for (ii) it

suffices to show that the process X2 ·〈M〉 is predictable and that the process
(X ·M)2 − X2 · 〈M〉 is a local martingale. Similarly, for (i) it suffices to
show that the process (X ·M)2 −X2 · [M ] is a local martingale and that
∆(X2 · [M ]) =

(
∆(X ·M)

)
2.

Now any integral relative to a predictable process of locally bounded
variation is predictable, as can be seen by approximation by integrals of
simple integrands. Furthermore, by properties of the Lebesgue-Stieltjes in-
tegral ∆(X2 · [M ]) = X2 ∆[M ] = X2(∆M)2, by Lemma 5.71(vi), while(
∆(X ·M)

)
2 = (X∆M)2, by Lemma 5.61. We are left with showing that

the processes (X ·M)2 −X2 · 〈M〉 and (X ·M)2 −X2 · [M ] are local mar-
tingales.

Suppose first that M is L2-bounded and that X is a predictable process
with

∫
X2 dµM < ∞. Then X ·M is an L2-bounded martingale, and for
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every stopping time T , by Lemma 5.61(i),

E(X ·M)2
T = E

(∫
X1[0,T ] dM

)2

=

∫
X21[0,T ] dµM

= E

∫ T

0

X2
s d[M ]s = E(X2 · [M ])T ,

where we use Lemma 5.110 for the first equality on the second line of the
display. We can conclude that the process (X ·M)2−X2 ·[M ] is a martingale
by Lemma 4.23.

For a general local L2-martingale we can find a sequence of stopping
times 0 ≤ Tn ↑ ∞ such that MTn is L2-bounded and such that 1[0,Tn]X ∈
L2

(
[0,∞)×Ω,P, µMTn

)
for every n. By the preceding argument the process

(1[0,Tn]X ·MTn)2 − 1[0,Tn]X
2 · [MTn ] is a martingale for every n. But this

is the process (X ·M)2 −X2 · [M ] stopped at Tn and hence this process is
a local martingale.

The proof for the process (X ·M)2 −X2 · 〈M〉 is similar.

5.115 Example (Counting processes). A counting process is a stochastic
process N with cadlag, nondecreasing sample paths t 7→ Nt that increase
by jumps of size 1 only starting from N0 = 0. Thus Nt can be thought of
as the “number of events” in the interval [0, t].

If the sample paths of N are bounded on bounded intervals, then N
is a process of locally bounded variation. Consequently, it is a semimartin-
gale relative to any filtration to which it is adapted. By Example 5.73 its
quadratic variation process is given by its cumulative square jump pro-
cess [N ]t =

∑
s≤t(∆Ns)

2. Because the jump sizes are 0 or 1, the square is
superfluous and hence we obtain that [N ] = N .

For t ≥ s the monotonicity of the sample paths yields E(Nt| Fs) ≥
E(Ns| Fs) = Ns, for any filtration to which N is adapted, provided the con-
ditional expectations are defined. Thus a counting process with ENt < ∞
for every t is trivially a submartingale, and hence possesses a compensator
A, by the Doob-Meyer decomposition, Lemma 5.105.

If the sample paths of N are bounded on bounded intervals, then the
stopping times Tn = inf{t ≥ 0:Nt = n} (where the infimum over the empty
set is ∞) increase to infinity, and the stopped process NTn is uniformly
bounded by n. Because the stopped processes are also counting processes,
they are submartingales by the preceding argument. Hence N is a local sub-
martingale and possesses a compensator, also under the weaker condition
that the number of events in finite intervals is finite.

The processN−A is a local L2-martingale of locally bounded variation.
By Example 5.73 its square bracket process is given by

[N −A]t =
∑
s≤t

(
∆(N −A)s

)2
= Nt − 2

∫
[0,t]

∆As dNs +

∫
[0,t]

∆As dAs.
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The predictable quadratic variation process 〈N − A〉 is the compensator
of [N − A]. The third term on the far right in the preceding display is
predictable and hence its own compensator, whereas the compensators of
the first two terms are obtained by replacing N by its compensator A. Thus
we obtain

〈N −A〉t = At −
∫

[0,t]

∆As dAs =

∫
[0,t]

(
1−A{s}

)
dAs.

If A is continuous, then this reduces to A and hence in this case the pre-
dictable quadratic variation of N −A is simply the compensator of N .

A multivariate counting process is a vector (N1, . . . , Nk) of counting
processes Ni with the property that at most one of the processes Ni can
jump at every given time point: (∆Ni)t(∆Nj)t = 0 for every i 6= j and
every t.

An immediate consequence of the latter restriction on the jump times
is that [Ni, Nj ] = 0 if i 6= j.

The vector (A1, . . . , Ak) of compensators of the processes Ni, relative
to a filtration to which all Ni are adapted, is called the compensator of the
multivariate counting process. By similar arguments as previously we see
that [Ni −Ai, Nj −Aj ] = −∆Ai ◦Nj −∆Aj ◦Ni + ∆Ai ◦Aj , for i 6= j. As
before the the angle bracket process is obtained by replacing the counting
processes Ni in this expression by their compensators. Consequently, the
predictable cross variation process can be expressed in the compensators
as d〈Ni, Nj〉 = −δi,j∆Ai∆Aj . If the compensators are continuous, then
〈Ni, Nj〉 = 0 for every i 6= j.

5.116 EXERCISE. Let (M,N) be a multivariate counting process with
compensator (A,B). Find the predictable covariation processes of M + N
and M −N . [Warning: the process M +N is a counting process and hence
the answer is obvious from the preceding; the case of M − N appears to
require a calculation.]

The quadratic variation process [M,N ] of two martingales is of locally
bounded variation and hence defines a random measure on (0,∞). The
following lemma, which will not be used in the remainder, bounds the total
variation of this measure.

* 5.117 Lemma (Kunita-Watanabe). If M and N are cadlag local mar-
tingales and X and Y are predictable processes, then(∫ t

s

|d[M,N ]u|
)2

≤
∫ t

s

d[M ]u

∫ t

s

d[N ]u, a.s.,(
E

∫
|XuYu| |d[M,N ]|u

)2

≤
∫
X2 dµM

∫
Y 2 dµN .
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Proof. For s < t abbreviate [M,N ]t − [M,N ]s to [M,N ]ts. Let s = tn0 <
tn1 < · · · < tnkn = t be a sequence of partitions of [s, t] of mesh widths
tending to zero as n→∞. Then, by Theorem 5.64 and the Cauchy-Schwarz
inequality,

∣∣[M,N ]ts
∣∣2 = lim

n→∞

∣∣∣ kn∑
i=1

(Mtn
i
−Mtn

i−1
)(Ntn

i
−Ntn

i−1
)
∣∣∣2

≤ lim
n→∞

kn∑
i=1

(Mtn
i
−Mtn

i−1
)2

kn∑
i=1

(Ntn
i
−Ntn

i−1
)2 = [M ]ts[N ]ts.

Here the limits may be interpreted as limits in probability, or, by choosing
an appropriate subsequence of {n}, as almost sure limits. By applying this
inequality to every partitioning interval (ti−1, ti) in a given partition s =
t0 < t1 < · · · < tk = t of [s, t], we obtain

k∑
i=1

∣∣[M,N ]titi−1

∣∣ ≤ k∑
i=1

√
[M ]titi−1

[N ]titi−1
≤

√√√√ k∑
i=1

[M ]titi−1

k∑
i=1

[N ]titi−1
,

by the Cauchy-Schwarz inequality. The right side is exactly the square root
of
∫ t
s
d[M ]u

∫ t
s
d[N ]u. The supremum of the left side over all partitions of the

interval [s, t] is
∫ t
s
|d[M,N ]u|. This concludes the proof of the first inequality

in Lemma 5.117.
To prove the second assertion we first note that by the first, for any

measurable processes X and Y ,(∫
|Xu||Yu| |d[M,N ]|u

)2

≤
∫
|Xu|2 d[M ]u

∫
|Yu|2 d[N ]u, a.s..

Next we take expectations, use the Cauchy-Schwarz inequality on the right
side, and finally rewrite the resulting expression in terms of the Doléans
measures, as in Lemma 5.110.

* 5.14 Space of Square-integrable Martingales

Recall that we call a martingale M square-integrable if EM2
t < ∞ for ev-

ery t ≥ 0 and L2-bounded if supt≥0 EM2
t < ∞. We denote the set of all

cadlag L2-bounded martingales by H2, and the subset of all continuous
L2-bounded martingales by H2

c .
By Theorem 4.11 every L2-bounded martingale M = {Mt: t ≥ 0}

converges almost surely and in L2 to a “terminal variable” M∞ and
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Mt = E(M∞| Ft) almost surely for all t ≥ 0. If we require the martin-
gale to be cadlag, then it is completely determined by the terminal variable
(and the filtration, up to indistinguishability). This permits us to identify
a martingale M with its terminal variable M∞, and to make H2 into a
Hilbert space, with inner product and norm

(M,N) = EM∞N∞, ‖M‖ =
√

EM2
∞.

The set of continuous martingales H2
c is closed in H2 relative to this

norm. This follows by the maximal inequality (4.40), which shows that
Mn
∞ →M∞ in L2 implies the convergence of supt |Mn

t −Mt| in L2, so that
continuity is retained when taking limits in H2. We denote the orthocom-
plement of H2

c in H2 by H2
d, so that

H2 = H2
c +H2

d, H2
c ⊥ H2

d.

The elements of H2
d are referred to as the purely discontinuous martingales

bounded in L2.
Warning. The sample paths of a purely discontinuous martingale are

not “purely discontinuous”, as is clear from the fact that they are cadlag by
definition. Nor is it true that they change by jumps only. The compensated
Poisson process (stopped at a finite time to make it L2-bounded) is an
example of a purely discontinuous martingale. (See Example 5.120.)

5.118 EXERCISE. Show that ‖M‖2 = E[M ]∞ + EM2
0 ≤ 2‖M‖2.

The quadratic covariation processes [M,N ] and 〈M,N〉 offer another
method of defining two martingales to be “orthogonal”: by requiring that
their covariation process is zero. For the decomposition of a martingale in
its continuous and purely discontinuous part this type of orthogonality is
equivalent to orthogonality in the inner product (·, ·).

5.119 Lemma. For every M ∈ H2 the following statements are equivalent.
(i) M ∈ H2

d.
(ii) M0 = 0 almost surely and MN is a uniformly integrable martingale

for every N ∈ H2
c .

(iii) M0 = 0 almost surely and MN is a local martingale for every contin-
uous local martingale N .

(iv) M0 = 0 almost surely and [M,N ] = 0 for every continuous local mar-
tingale N .

(v) M0 = 0 almost surely and 〈M,N〉 = 0 for every N ∈ H2
c .

Furthermore, statements (iii) and (iv) are equivalent for every local mar-
tingale M .

Proof. If M and N are both in H2, then |MtNt| ≤ M2
t + N2

t ≤
supt(M

2
t + N2

t ), which is integrable by (4.40). Consequently, the process
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MN is dominated and hence uniformly integrable. If it is a local martingale,
then it is automatically a martingale. Thus (iii) implies (ii). Also, that (ii) is
equivalent to (v) is now immediate from the the definition of the predictable
covariation. That (iv) implies (v) is a consequence of Lemma 5.71(ii) and
the fact that the zero process is predictable. That (iv) implies (iii) is im-
mediate from Lemma 5.71(ii).

(ii) ⇒ (i). If MN is a uniformly integrable martingale, then (M,N) ≡
EM∞N∞ = EM0N0 and this is zero if M0 = 0.

(i) ⇒ (ii). Fix M ∈ H2
d, so that EM∞N∞ = 0 for every N ∈ H2

c . The
choice N ≡ 1F for a set F ∈ F0 yields, by the martingale property of M
that EM01F = EM∞1F = EM∞N∞ = 0. We conclude that M0 = 0 almost
surely.

For an arbitrary N ∈ H2
c and an arbitrary stopping time T , the

process NT is also contained in H2
c and hence, again by the martingale

property of M combined with the optional stopping theorem, EMTNT =
EM∞NT = EM∞(NT )∞ = 0. Thus MN is a uniformly integrable martin-
gale by Lemma 4.23.

(i)+(ii) ⇒ (iii). A continuous local martingale N is automatically lo-
cally L2-bounded and hence there exists a sequence of stopping times
0 ≤ Tn ↑ ∞ such that NTn is an L2-bounded continuous martingale, for
every n. If M is purely discontinuous, then 0 = [NTn ,M ] = [NTn ,MTn ].
Hence (MN)Tn = MTnNTn is a martingale by Lemma 5.71(ii), so that
MN is a local martingale.

(iii) ⇒ (iv) By Lemma 5.71(ii) the process MN − [M,N ] is always a
local martingale. If MN is a local martingale, then [M,N ] is also a local
martingale. The process [M,N ] is always locally of bounded variation. If
N is continuous this process is also continuous in view of Lemma 5.71(vi).
Therefore [M,N ] = 0 by Theorem 5.53.

The quadratic covariation process [M,N ] is defined for processes that
are not necessarily L2-bounded, or even square-integrable. It offers a way
of extending the decomposition of a martingale into a continuous and a
purely discontinuous part to general local martingales. A local martingale
M is said to be purely discontinuous if M0 = 0 and [M,N ] = 0 for every
continuous local martingale N . By the preceding lemma it is equivalent to
say that M is purely discontinuous if and only if MN is a local martingale
for every continuous local martingale N , and hence the definition agrees
with the defintion given earlier in the case of L2-bounded martingales.

5.120 Example (Bounded variation martingales). Every local martin-
gale that is of locally bounded variation is purely discontinuous.

To see this, note that if N is a continuous process, 0 at 0, then
maxi |Ntn

i
− Ntn

i−1
| → 0 almost surely, for every sequence of partitions as

in Theorem 5.64. If M is a process whose sample paths are of bounded
variation on compacta, it follows that the left side in the definition (5.65)
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of the quadratic covariation process converges to zero, almost surely. Thus
[M,N ] = 0 and MN is a local martingale by Lemma 5.71(ii).

The definition of H2
d as the orthocomplement of H2

c combined with the
projection theorem in Hilbert spaces shows that any L2-bounded martingale
M can be written uniquely as M = M c + Md for M c ∈ H2

c and Md ∈
H2
d. This decomposition can be extended to local martingales, using the

extended definition of orthogonality.

5.121 Lemma. Any cadlag local martingale M possesses a unique decom-
position M = M0 +M c +Md into a continuous local martingale M c and a
purely discontinuous local martingale Md, both 0 at 0. (The uniqueness is
up to indistinguishability.)

Proof. In view of Lemma 5.56 we can decompose M as M = M0 + N +
A for a cadlag local L2-martingale N and a cadlag local martingale A
of locally bounded variation, both 0 at 0. By Example 5.120 A is purely
discontinuous. Thus to prove existence of the decomposition it suffices to
decompose N . If 0 ≤ Tn ↑ ∞ is a sequence of stopping times such that NTn

is an L2-martingale for every n, then we can decompose NTn = N c
n + Nd

n

in H2 for every n. Because this decomposition is unique and both H2
c and

H2
d are closed under stopping (because [MT , N ] = [M,N ]T ), and NTm =

(NTn)Tm = (N c
n)Tm +(Nd

n)Tm for m ≤ n, it follows that (N c
n)Tm = N c

m and
(Nd

n)Tm = Nd
m. This implies that we can define N c and Nd consistently as

N c
m and Nd

m on [0, Tm]. The resulting processes satisfy (N c)Tm = N c
m and

(Nd)Tm = Nd
m. The first relation shows immediately that N c is continuous,

while the second shows that Nd is purely discontinuous, in view of the fact
[Nd,K]Tm = [(Nd)Tm ,K] = 0 for every continuous K ∈ H2.

Given two decompositions M = M0 +M c +Md = M0 +N c +Nd, the
process X = M c −N c = Nd −Md is a continuous local martingale that is
purely discontinuous, 0 at 0. By the definition of “purely discontinuous” it
follows that X2 is a local martingale as well. Therefore there exist sequences
of stopping times 0 ≤ Tn ↑ ∞ such that Y = XTn and Y 2 = (X2)Tn are
uniformly integrable martingales, for every n. It follows that t 7→ EY 2

t is
constant on [0,∞] and at the same time Yt = E(Y∞| Ft) almost surely,
for every t. Because a projection decreases norm, this is possible only if
Yt = Y∞ almost surely for every t. Thus X is constant.

Warning. For a martingale M of locally bounded variation the de-
composition M = M0 +M c +Md is not the same as the decomposition of
M in its continuous and jump parts in the “ordinary” sense of variation,
i.e. Md

t is not equal to
∑
s≤t ∆Ms. For instance, the compensated Poisson

process is purely discontinuous and hence has continuous part zero. Many
(or “most”) purely discontinuous martingales contain a nontrivial contin-
uous part in the sense of variation. Below the decomposition of a purely
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discontinuous martingale into its continuous and jump parts is shown to
correspond to a decomposition as a “compensated sum of jumps”.

The local martingale M in the decomposition X = X0 + M + A of
a given semimartingale X can be split in its continuous and purely dis-
continuous parts M c and Md. Even though the decomposition of X is not
unique, the continuous martingale part M c is the same for every decompo-
sition. This is true because the difference M−M̄ = Ā−A resulting from the
given decomposition and another decomposition X = X0 +M̄+ Ā is a local
martingale of locally bounded variation, whence it is purely discontinuous
by Example 5.120. The process M c is called the continuous martingale part
of the semimartingale X, and denoted by Xc.

The decomposition of a semimartingale in its continuous martingale
and remaining (purely discontinuous and bounded variation) parts makes
it possible to describe the relationship between the two quadratic variation
processes.

5.122 Theorem. For any semimartingales X and Y and t ≥ 0,

[X,Y ]t = 〈Xc, Y c〉t +
∑
s≤t

∆Xs∆Ys.

Proof. For simplicity we give the proof only in the case that X = Y . The
general case can be handled by the polarization identities.

We can decompose the semimartingale as X = Xc + M + A, where
M is a purely discontinuous local martingale and the process A is cad-
lag, adapted and locally of bounded variation. By the bilinearity of the
quadratic variation process, this decomposition implies that [X] = [Xc] +
[M ] + 2[M,A] + [A] + 2[Xc,M ] + 2[Xc, A]. The first term on the right is
equal to 〈Xc〉. The last two terms on the right are zero, because Xc is con-
tinuous, M is purely discontinuous, and A is of locally bounded variation.
We need to show that the process [M ]+2[M,A]+ [A] is equal to the square
jump process∑

s≤t

(∆Xs)
2 =

∑
s≤t

(∆Ms)
2 + 2

∑
s≤t

∆Ms∆As +
∑
s≤t

(∆As)
2.

We shall prove that the three corresponding terms in the two sums are
identical.

If f is a cadlag function andA is a cadlag function of bounded variation,
then, for any partition of the interval [0, t] with meshwidth tending to zero,∑

i

f(tni+1)
(
A(tni+1)−A(tni )

)
→
∫

[0,t]

fs dAs,

∑
i

f(tni )
(
A(tni+1)−A(tni )

)
→
∫

[0,t]

fs− dAs.
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Consequently, the difference of the left sides tends to
∫
s≤t ∆fs dAs =∑

s≤t ∆fs∆As. This observation applied in turn with f = M and f = A
shows that [M,A] and [A] possess the forms as claimed, in view of Theo-
rem 5.64.

Finally, we show that [M ]t =
∑
s≤t(∆Ms)

2 for every purely discontin-
uous local martingale M . By localization it suffices to show this for every
M ∈ H2

d. If M is of locally bounded variation, then the equality is imme-
diate from Example 5.73. The space H2

d is the closure in H2 relative to the
norm induced by the inner product (·, ·) of the set of all M ∈ H2 that are
of locally bounded variation, by Theorem 5.125. This implies that for any
given M ∈ H2

d there exists a sequence of cadlag bounded variation martin-
gales Mn such that E|Mn,∞ −M∞|2 = E[Mn −M ]∞ → 0. By the triangle
inequality (Exercise 5.75),

sup
t

∣∣√[Mn]t −
√

[M ]t
∣∣ ≤√[Mn −M ]∞.

The right and hence the left side converges to zero in L2, whence the se-
quence of processes [Mn] converges, uniformly in t, to the process [M ] in
L1.

Because ∆[M ] = (∆M)2, it follows that
∑
t(∆Mt)

2 ≤ [M ]∞, and
similarly for Mn and Mn −M . For Mn the inequality is even an equality,
by Example 5.73. By Cauchy-Schwarz’ inequality,

(
E
∑
t

∣∣(∆Mn,t)
2−(∆Mt)

2
∣∣)2

≤ E
∑
t

(
∆(Mn−M)t

)2
E
∑
t

(
∆(Mn+M)t

)2
.

The right side is bounded by E[Mn−M ]∞2(E[Mn]∞+ E[M ]∞) and hence
converges to zero. We conclude that the sequence of processes [Mn]t =∑
t(∆Mn,t)

2 converges in L1 to the corresponding square jump process
of M . Combination with the result of the preceding paragraph gives the
desired representation of the process [M ].[

5.123 EXERCISE. If M is a local martingale and H is a locally bounded
predictable process, then H ◦M is a local martingale by Theorem 5.59.
Show that H ◦M is purely continuous if M is purely discontinuous. [Hint:
by the preceding theorem the angle bracket process of (H ◦M)c is given
by [H ◦M ] −

∑
∆(H ◦M)2 = H2 ◦ [M ] −

∑
H2∆M2. Use the preceding

theorem again to see that this is zero.]

[ For another proof see Rogers and Williams, pp384–385, in particular the proof of The-
orem 36.5.
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5.14.1 Compensated Jump Martingales

If M and N are both contained in H2
d and possess the same jump process

∆M = ∆N , then M − N is contained in both H2
d and H2

c and hence
is zero (up to evanescence). This remains true if M and N are purely
discontinuous local martingales. We can paraphrase this by saying that a
purely discontinuous local martingale is completely determined by its jump
process. This property can be given a more concrete expression as follows.

If M is a martingale of integrable variation (i.e. E
∫
|dM | <∞), then

it is purely discontinuous by Example 5.120. Its cumulative jump process
Nt =

∑
s≤t ∆Ms is well defined and integrable, and hence possesses a

compensator A, by the Doob-Meyer decomposition. The process M − (N −
A) is the difference of two martingales and hence is a martingale itself,
which is predictable, because M − N is continuous and A is predictable.
By Theorem 5.53 the process M − (N − A) is zero. We conclude that any
martingale M of integrable variation can be written as

M = N −A, Nt =
∑
s≤t

∆Ms,

with A the compensator of N . Thus M is a “compensated sum of jumps”
or compensated jump martingale. Because the compensator A = N −M
is continuous, the decomposition M = N − A is at the same time the
decomposition of M into its jump and continuous parts (in the ordinary
measure-theoretic sense). The compensated Poisson process is an example
of this type of martingale, with N the “original” Poisson process and A its
(deterministic!) compensator.

5.124 EXERCISE. The process Mt = 1T≤t−Λ(T ∧ t) for T a nonnegative
random variable with cumulative hazard function Λ is a martingale rela-
tive to the natural filtration. Find the decomposition as in the preceding
paragraph. [Warning: if Λ possesses jumps, then Nt 6= 1T≤t.]

General elements of H2
d are more complicated than the “compensated

jump martingales” of the preceding paragraph, but can be written as limits
of sequences of such simple martingales. The following theorem gives a
representation as an infinite series of compensated jump martingales, each
of which jumps at most one time.

We shall say that a sequence of stopping times Tn covers the jumps of
a process M if {∆M 6= 0} ⊂ ∪n[Tn].]

5.125 Theorem. For every M ∈ H2
d there exists a sequence of stopping

times Tn with disjoint graphs that covers the jumps of M such that
(i) each process t 7→ Nn,t: = ∆MTn1Tn≤t is bounded and possesses a con-

tinuous compensator An.

] It is said to exhaust the jumps of M if the graphs are disjoint and {∆M 6= 0} = ∪n[Tn].
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(ii) M = M0 +
∑
n(Nn −An).

Proof. For simplicity assume that M0 = 0. Suppose first that there exists a
sequence of stopping times as claimed. The variation of the process Nn−An
is equal to |∆MTn |1Tn<∞, which is bounded by the root of

∑
s(∆Ms)

2 ≤
[M ]∞ and hence is integrable. It follows that each process Nn − An is a
martingale of integrable variation (which ostensibly is already written in
the compensated jump form as in the preceding discussion) and hence so
are the partial sums Mn =

∑
k≤n(Nk −Ak) and the differences Mn −Mm.

By Example 5.73 (or Theorem 5.122) the quadratic variation process of
Mn −Mm is given by, for m ≤ n,

[Mn −Mm]t =
∑
s≤t

(
∆(Mn −Mm)s

)2
=

∑
k:m<k≤n,Tk≤t

(∆MTk)2,

because the processes Ak are continuous and the graphs [Tk] are dis-
joint. For every m ≤ n and t > 0 this process is bounded by the se-
ries

∑
k(∆MTk)2 =

∑
s(∆Ms)

2 ≤ [M ]∞, which is integrable. Invoking
the dominated convergence theorem we see that E[Mn − Mm]∞ → 0 as
n ≥ m → ∞, and hence the sequence Mn is a Cauchy sequence in H2.
By completeness of this Hilbert space there exists M ′ ∈ H2 such that
E(Mn−M ′)2

∞ = E[Mn−M ′]∞ → 0. This implies that E supt(Mn−M ′)2
t →

0, and hence that supt
∣∣∆Mn,t − ∆M ′t

∣∣ → 0 almost surely along some se-
quence. By construction the jump process of Mn is equal to the jump pro-
cess of t 7→

∑
k≤n ∆MTk1Tk≤t and converges to the jump process of M as

n→∞. We conclude that ∆M ′ = ∆M up to evanescence, whence M ′−M
is a continuous martingale. Because this process is purely discontinuous by
construction and assumption, this implies that M ′ = M and consequently
the sequence Mn converges in H2 to M .

A suitable sequence of stopping times Tn can be constructed to be a
sequence of stopping times with disjoint graphs that covers the jumps of M
such that every Tn is either predictable or totally inaccessible.† That the
corresponding processes Nn possess continuous compensators can be seen
as follows.

If Tn is a predictable time, then E(∆MTn | FTn−) = 0 (e.g. Jacod and
Shiryaev, 2.27) and hence ENn,T = E∆MTn1Tn≤T = 0 for every stopping
time T , as {Tn ≤ T} ∈ FTn− (easy, Jacod and Shiryaev, 1.17). Thus the
process Nn is a martingale by Lemma 4.23, and hence possesses compen-
sator An = 0, which is certainly continuous.

If Tn is totally inaccessible, then by definition the graph of Tn is dis-
joint with the graph of any predictable time T and hence ∆Nn,T 1T<∞ = 0
(“Nn is quasi left-continuous”). Then 0 = E∆Nn,T 1T<∞ = E

∫
1[T ] dNn =

† A stopping time T is called totally inaccessible if P(S = T < ∞) = 0 for every pre-
dictable time S.
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E
∫

1[T ] dAn = E∆An,T 1T<∞, where the second last equality follows be-
cause the process 1[T ] ◦ (Nn − An) is a martingale. Because ∆An is a pre-
dictable process, the equality E∆An,T 1T<∞ = 0 for every predictable time
T implies that ∆An = 0, by the section theorem, whence An is continuous.

Finally, we prove the existence of the stopping times. The points in
[0,∞) where a given cadlag function jumps more than a given positive
number ε are isolated. Thus, given a sequence ε0 = ∞ > ε1 > ε2 · · · ↓ 0
and given n, k ∈ N, we can define Tn,k to be the kth jump of M of size in
[εn, εn−1). We can write these times also in the form

Tn,0 = 0, Tn,k = inf
{
t > 0: |∆Mt|1t>Tn,k−1

∈ [εn, εn−1)
}
.

Because the process ∆M is progressively measurable and Tn,k is the hitting
time of the interval [εn, εn−1) by the process |∆M |1(Tn,k−1,∞), it follows
that the Tn,k are stopping times. Their graphs are disjoint and exhaust the
jump times of M .

The next step is to decompose each Tn,k into a predictable and a
totally inaccessible part. Drop the index (n, k) and consider a fixed stopping
time T . For a given predictable time S, set FS = {S = T < ∞}, an
event contained in FT . Let p = supP(∪iFSi), where the supremum is taken
over all countable unions of sets FSi for predictable times Si. There exists
a sequence of predictable times Sn,i with P(∪iFSn,i) ↑ p as n → ∞. If
S1, S2, . . . is the collection of all Sn,i and F = ∪iFSi , then P(F ) = p, which
implies that FS ⊂ F up to a null set, for every predictable time S. For any
stopping time T and A ∈ FT , the random variable TA: = T1A +∞1Ac is
a stopping time. Using this notation, we can partition [T ] = [TF ] ∪ [TF c ].
Because P(S = TF c < ∞) = P(FS ∩ F c) = 0 for every predictable time S,
the stopping time TF c is totally inaccessible. By construction [TF ] ⊂ ∪i[Si].

The graphs of the predictable times Si thus obtained are not necessarily
disjoint. Furthermore, it appears that in general we cannot arrange it so
that [TF ] = ∪i[Si], so that the graphs of Si corresponding to different
stopping times Tn,k may overlap. The last step is to replace the collection
of all predictable times associated through the preceding construction to
some Tn,k by a sequence of predictable times with disjoint graphs. For any
pair of predictable stopping times S, S′ the set {S 6= S′} is contained in
FS− and SF is predictable for every F ∈ FS−. Thus given a sequence of
predictable times Si, we can replace Si by (Si)Fi for Fi = ∩j<i{Si 6= Sj}
to obtain a sequence of predictable times with disjoint graphs.

Finally, the jumps ∆MT at the totally inaccessible times are bounded
in view of the construction of the stopping times Tn,k. The graphs of the
predictable times S can be split further, if necessary, to ensure boundedness
of the associated jumps ∆MS : replace S by the sequence SGn for Gn =
{|∆MS | ∈ [εn, εn−1)}.
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* 5.15 Itô’s Formula

The change of variables formula extends to arbitrary semimartingales. The
difference with Itô’s formula for continuous semimartingales is, of course,
caused by the presence of the purely discontinuous martingale part and pos-
sible jumps in the bounded variation process. In Theorem 5.122 the purely
discontinuous martingale was seen to contribute to the quadratic process
only through its jumps. It is the same for the second order (quadratic)
term in Itô’s formula. Thus the additional complication in Itô’s formula
is no greater than the complication that already arises in the change of
variables formula for deterministic processes of bounded variation. Taking
into account that the latter type of formula is rarely included in a course
on measure theory, we may consider the following theorem a little esoteric.
However, in siutations where processes with jumps arise together with con-
tinuous semimartingales, the unification offered by the theorem is impor-
tant. Such situations arise for instance in limiting theory, where processes
with jump may have continuous approximations.

5.126 Theorem (Itô’s formula). For any vector X = (X1, . . . , Xd) of
cadlag semimartingales and every twice continuously differentiable function
f :Rd 7→ R,

f(Xt)− f(X0) =

d∑
i=1

∫ t

0

Dif(X−) dXi + 1
2

d∑
i=1

d∑
j=1

∫ t

0

Dijf(Xs−) d[Xc
i , X

c
j ]s

+
∑
s≤t

(
∆
(
f(Xs)

)
−

d∑
i=1

Dif(Xs−)∆Xi,s

)
, a.s..



6
Stochastic Calculus

In this chapter we discuss some examples of “stochastic calculus”, the ma-
nipulation of stochastic integrals, mainly by the use of the Itô formula. The
more substantial application to stochastic differential equations is discussed
in Chapter 7.

We recall the differential notation for stochastic integrals. For processes
X,Y, Z we write

dX = Y dZ, iff X = X0 + Y · Z.

In particular d(Y ·Z) = Y dZ. By the substitution rule, Lemma 5.61(ii), it
follows that dZ = Y −1 dX if dX = Y dZ for a strictly positive process Y ,
provided the stochastic integrals are well defined.

For notational convenience we use complex-valued processes in some
of the proofs. A complex-valued random variable Z on a probability space
(Ω,F ,P) is a function Z: Ω 7→ C of the form Z = U + iV for ordi-
nary, real-valued random variables U and V . Its expectation is defined
as EZ = EU + iEV , if U and V are integrable. Conditional expectations
E(Z| F0) are defined similarly from the conditional expectations of the real
and imaginary parts of Z. A complex-valued stochastic process is a collec-
tion Z = {Zt: t ≥ 0} of complex-valued random variables. A complex-valued
martingale Z is a complex-valued process whose real and imaginary parts
are martingales. Given the preceding definitions of (conditional) expecta-
tions, this is equivalent to the process satisfying the martingale property
E(Zt| Fs) = Zs for s ≤ t.

With these definitions it can be verified that Itô’s formula extends to
twice continuously differentiable complex-valued functions f :Rd 7→ C. We
simply apply the formula to the real and imaginary parts of f and next
combine.
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6.1 Lévy’s Theorem

The (predictable) quadratic variation process of a Brownian motion is the
identity function. Lévy’s theorem asserts that Brownian motion is the only
continuous local martingale with this quadratic variation process. It is a
useful tool to show that a given process is a Brownian motion. The con-
tinuity is essential, because the compensated Poisson process is another
example of a martingale with predictable quadratic variation process equal
to the identity.

6.1 Theorem (Lévy). LetM be a continuous local martingale, 0 at 0, such
that [M ] is the identity function. Then M is a Brownian motion process.

Proof. For a fixed real number θ consider the complex-valued stochastic
process

Xt = eiθMt+
1
2 θ

2t.

By application of Itô’s formula to Xt = f(Mt, t) with the complex-valued
function f(m, t) = exp(iθm+ 1

2θ
2t), we find

dXt = Xtiθ dMt + 1
2Xt(iθ)

2 d[M ]t +Xt
1
2θ

2dt = Xtiθ dMt,

since [M ]t = t by assumption. It follows that X = X0 + iθX ·M and hence
X is a (complex-valued) local martingale. Because |Xt| is actually bounded
for every fixed t, X is a martingale. The martingale relation E(Xt| Fs) = Xs

can be rewritten in the form

E
(
eiθ(Mt−Ms)| Fs

)
= e−

1
2 θ

2(t−s), a.s., s < t.

This implies that Mt −Ms is independent of Fs and possesses the normal
distribution with mean zero and variance t− s. (Cf. Exercise 6.2.)

6.2 EXERCISE. Let X be a random variable on the probability space
(Ω,F ,P) and F0 ⊂ F a sub σ-field such that E(eiθX | F0) is equal to a
constant c(θ) for every θ ∈ R. Show that X is independent of F0.

Lévy’s theorem may be interpreted in the sense that among the contin-
uous local martingales Brownian motion is determined by its quadratic vari-
ation process. Actually, every continuous local martingale is “determined”
by its quadratic variation process, in a certain sense. The following theorem
shows that we can generate an arbitrary continuous local martingale from a
Brownian motion by transforming the time scale using the inverse process
of the quadratic variation. In the words of Rogers and Williams, p64, any
such continuous local martingale “has delusions of grandeur: it thinks it is
a Brownian motion” running on a different clock.
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6.3 Theorem. Let M be a continuous local martingale relative to a filtra-
tion {Ft} such that [M ]t ↑ ∞ almost surely, as t ↑ ∞. Let Tt = inf{s ≥
0: [M ]s > t}. Then the process Bt = MTt is a Brownian motion relative to
the filtration {FTt} and Mt = B[M ]t .

Proof. For every fixed t the variable Tt is a stopping time relative to the
filtration {Ft}, and the maps t 7→ Tt are right continuous. It follows from
this that {FTt} is a right continuous filtration. Indeed, if A ∈ FTq for every
rational number q > t, then A ∩ {Tq < u} ∈ Fu for every u ≥ 0, by the
definition of FTq . Hence A ∩ {Tt < u} = ∪q>tA ∩ {Tq < u} ∈ Fu for every
u ≥ 0, whence A ∈ FTt . The filtration {FTt} is complete, because FTt ⊃ F0

for every t.
For simplicity assume first that the sample paths s 7→ [M ]s of [M ] are

strictly increasing. Then the maps t 7→ Tt are their true inverses and, for
every s, t ≥ 0,

(6.4) Tt∧[M ]s = Tt ∧ s.

In the case that t < [M ]s, which is equivalent to Tt < s, this is true because
both sides reduce to Tt. In the other case, that t ≥ [M ]s, the identity reduces
to T[M ]s = s, which is correct because T is the inverse of [M ].

The continuous local martingale M can be localized by the stopping
times Sn = inf{s ≥ 0: |Ms| ≥ n}. The stopped process MSn is a bounded
martingale, for every n. By the definition Bt = MTt and (6.4),

Bt∧[M ]Sn
= MTt∧Sn ,

B2
t∧[M ]Sn

− t ∧ [M ]Sn = M2
Tt∧Sn − [M ]Tt∧Sn ,

where we also use the identity t = [M ]Tt . The variable Rn = [M ]Sn is an
FTt-stopping time, because, for every t ≥ 0,

{[M ]Sn > t} = {Sn > Tt} ∈ FTt .

The last inclusion follows from the fact that for any pair of stopping times
S, T the event {T < S} is contained in FT , because its intersection with
{T < t} can be written in the form ∪q<t{T < q ≤ t < S} ∈ Ft, where the
union is restricted to rational numbers q ≥ 0.

By the optional stopping theorem the processes t 7→ MTt∧Sn and t 7→
M2
Tt∧Sn− [M ]Tt∧Sn are martingales relative to the filtration {FTt}. Because

they are identical to the processes t 7→ Bt and t 7→ B2
t − t stopped at Rn,

we conclude that the latter two processes are local martingales. From the
local martingale property of the process t 7→ B2

t − t it follows that 〈B〉 is
the identity process. Because M and T are continuous, so is B. By Lévy’s
theorem, Theorem 6.1, we conclude that B is a Brownian motion. This
concludes the proof if [M ] is strictly increasing.

For the proof in the general case we may still assume that the sample
paths of [M ] are continuous and nondecreasing, but we must allow them to
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possess intervals of constant value, which we shall refer to as “flats”. The
maps t 7→ Tt are “generalized inverses” of the maps s 7→ [M ]s and map a
value t to the largest time s with [M ]s = t, i.e. the right end point of the
flat at height t. The function s 7→ [M ]s is constant on each interval of the
form [s, T[M ]s ], the time T[M ]s being the right end point of the flat at height
[M ]s. The inverse maps t 7→ Tt are cadlag with jumps at the values t that
are heights of flats of nonzero length. For every s, t ≥ 0,

Tt < s iff t < [M ]s,

[M ]Tt = t,

T[M ]s ≥ s,

with, in the last line, equality unless s is in the interior or on the left side
of a flat of nonzero length.

These facts show that (6.4) is still valid for every s that is not in the
interior or on the left side of a flat. Then the proof can be completed as
before provided that the stopping time Sn is never in the interior or on the
left of a flat and the sample paths of B are continuous.

Both properties follow if M is constant on every flat. (Then Sn cannot
be in the interior or on the left of a flat, because by its definition M increases
immediately after Sn.) It is sufficient to show that the stopped process MSn

has this property, for every n. By the martingale relation, for every stopping
time T ≥ s,

E
(
(MSn

T −M
Sn
s )2| Fs

)
= E

(
M2
Sn∧T −M

2
Sn∧s| Fs

)
= E

(
[M ]Sn∧T − [M ]Sn∧s| Fs

)
.

For T equal to the stopping time inf{t ≥ s: [M ]Sn∧t > [M ]Sn∧s}, the right
side vanishes. We conclude that for every s ≥ 0, the process M takes the
same value at s as at the right end point of the flat containing s, almost
surely. For ω not contained in the union of the null sets attached to some
rational s, the corresponding sample path of M is constant on the flats of
[M ].

The filtration {FTt} may be bigger than the completed natural filtra-
tion generated by B and the variables [M ]t may not be stopping times
for the filtration generated by B. This hampers the interpretation of M as
a time-changed Brownian motion, and the Brownian motion may need to
have special properties. The theorem is still a wonderful tool to derive prop-
erties of general continuous local martingales from properties of Brownian
motion.

The condition that [M ]t ↑ ∞ cannot be dispensed of in the preceding
theorem, because if [M ]t remains bounded, then the process B is not defined
on the full time scale [0,∞). However, the theorem may be adapted to cover
more general local martingales, by piecing B as defined together with an
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additional independent Brownian motion that starts at time [M ]∞. For
this, see Chung and Williams, p??, or Rogers and Williams, p64-67.

Both theorems allow extension to multidimensional processes. The
multivariate version of Lévy’s theorem can be proved in exactly the same
way. We leave this as an exercise. Extension of the time-change theorem is
harder.

6.5 EXERCISE. For i = 1, . . . , d let Mi be a continuous local martingale,
0 at 0, such that [Mi,Mj ]t = δijt almost surely for every t ≥ 0. Show that
M = (M1, . . . ,Md) is a vector-valued Brownian motion, i.e. for every s < t
the random vector Mt−Ms is independent of Fs and normally distributed
with mean zero and covariance matrix (t− s) times the identity matrix.

6.2 Brownian Martingales

Let B be a Brownian motion on a given probability space (Ω,F ,P), and
denote the completion of the natural filtration generated by B by {Ft}.
Stochastic processes on the filtered space (Ω,F , {Ft},P) that are martin-
gales are referred to as Brownian martingales. Brownian motion itself is an
example, and so are all stochastic integrals X ·B for predictable processes
X that are appropriately integrable to make the stochastic integral well
defined.

The following theorem shows that these are the only Brownian mar-
tingales.

One interesting corollary is that every Brownian martingale can be
chosen continuous, because all stochastic integrals relative to Brownian
motion have a continuous version.

6.6 Theorem. Let {Ft} be the completion of the natural filtration of a
Brownian motion process B. If M is a cadlag local martingale relative to
{Ft}, then there exists a predictable process X with

∫ t
0
X2
s ds <∞ almost

surely for every t ≥ 0 such that M = M0 +X ·B, up to indistinguishability.

Proof. We can assume without loss of generality that M0 = 0.
First suppose that M is an L2-bounded martingale, so that Mt =

E(M∞| Ft) almost surely, for every t ≥ 0, for some square-integrable vari-
able M∞. For a given process X ∈ L2

(
[0,∞)×Ω,P, µM

)
the stochastic in-

tegral X ·B is an L2-bounded martingale with L2-limit (X ·B)∞ =
∫
X dB,

because
∫

(X1[0,t]−X)2 dµM → 0 as t→∞. The map I:X 7→ (X ·B)∞ is an

isometry from L2

(
[0,∞)×Ω,P, µM

)
into L2(Ω,F ,P). If M∞ is contained in

the range range(I) of this map, then Mt = E(M∞| Ft) = E
(
(X ·B)∞| Ft) =
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(X ·B)t, almost surely, because X ·B is a martingale. Therefore, it suffices to
show that range(I) contains all square-integrable variables M∞ with mean
zero.

Because the map I is an isometry on a Hilbert space, its range is a
closed linear subspace of L2(Ω,F ,P). It suffices to show that 0 is the only
element of mean zero that is orthogonal to range(I).

Given some process X ∈ L2

(
[0,∞) × Ω,P, µM

)
and a stopping time

T , the process X1[0,T ] is also an element of L2

(
[0,∞) × Ω,P, µM

)
and

(X1[0,T ] ·B)∞ = (X ·B)T , by Lemma 5.28(iii). If M∞ ⊥ range(I), then it
is orthogonal to (X1[0,T ]·B)∞ and hence 0 = EM∞(X·B)T = EMT (X·B)T ,
because M is a martingale and (X ·B)T is FT -measurable. By Lemma 4.23
we conclude that the process M(X ·B) is a uniformly integrable martingale.

The process Xt = exp(iθBt + 1
2θ

2t) satisfies dXt = iθXt dBt, by Itô’s
formula (cf. the proof of Theorem 6.1), and hence X = 1 + iθX · B. The
processX is not uniformly bounded and hence is not an eligible choice in the
preceding paragraph. However, the process X1[0,T ] is uniformly bounded for
every fixed constant T ≥ 0 and hence the preceding shows that the process
MXT = M + iθM(X1[0,T ] · B) is a uniformly integrable martingale. This
being true for every T ≥ 0 implies that MX is a martingale. The martingale
relation for the process MX can be written in the form

E
(
Mte

iθ(Bt−Bs)| Fs
)

= Mse
− 1

2 θ
2(t−s), a.s., s ≤ t.

Multiplying this equation by exp(iθ′(Bs − Bu)) for u ≤ s and taking con-
ditional expectation relative to Fu, we find, for u ≤ s ≤ t,

E
(
Mte

iθ(Bt−Bs)+iθ′(Bs−Bu)| Fu
)

= Mue
− 1

2 θ
2(t−s)− 1

2 θ
′2(u−s), a.s..

Repeating this operation finitely many times, we find that for an arbitrary
partition 0 = t0 ≤ t1 ≤ · · · ≤ tk = t and arbitrary numbers θ1, . . . , θk,

EE
(
Mte

i
∑

j
θj(Btj−Btj−1

)| F0

)
= EM0e

− 1
2

∑
j
θ2j (tj−tj−1)

= 0.

We claim that this shows that M = 0, concluding the proof in the case that
M is L2-bounded.

The claim follows essentially by the uniqueness theorem for character-
istic functions. In view of the preceding display the measures µ+

t1,...,tk
and

µ−t1,...,tk on Rk defined by

µ±t1,...,tk(A) = EM±t 1A(Bt1−t0 , . . . , Btk−tk−1
),

possess identical characteristic functions and hence are identical. This shows
that the measures µ+ and µ− on (Ω,F) defined by µ±(F ) = EM±t 1F agree
on the σ-field generated by Bt1−t0 , . . . , Btk−tk−1

. This being true for every
partition of [0, t] shows that µ+ and µ− also agree on the algebra generated
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by {Bs: 0 ≤ s ≤ t} and hence, by Carathéodory’s theorem, also on the
σ-field generated by these variables. Thus EMt1F = 0 for every F in this
σ-field, whence Mt = 0 almost surely, because Mt is measurable in this
σ-field.

Next we show that any local martingale M as in the statement of
the theorem possesses a continuous version. Because we can localize M , it
suffices to prove this in the case thatM is a uniformly integrable martingale.
Then Mt = E(M∞| Ft) for an integrable variable M∞. If we let Mn

∞ be
M∞ truncated to the interval [−n, n], then Mn

t : = E(Mn
∞| Ft) defines a

bounded and hence L2-bounded martingale, for every n. By the preceding
paragraph this can be represented as a stochastic integral with respect to
Brownian motion and hence it possesses a continuous version. The process
|Mn −M | is a cadlag submartingale, whence by the maximal inequality
given by Lemma 4.38,

P
(

sup
t
|Mn

t −Mt| ≥ ε
)
≤ 1

ε
E|Mn

∞ −M∞|.

The right side converges to zero as n → ∞, by construction, whence the
sequence of suprema in the left side converges to zero in probability. There
exists a subsequence which converges to zero almost surely, and hence the
continuity of the processes Mn carries over onto the continuity of M .

Every continuous local martingale M is locally L2-bounded. Let 0 ≤
Tn ↑ ∞ be a sequence of stopping times such that MTn is an L2-bounded
martingale, for every n. By the preceding we can represent MTn as MTn =
Xn · B for a predictable process Xn ∈ L2

(
[0,∞) × Ω,P, µM

)
, for every n.

For m ≤ n,

Xm ·B = MTm = (MTn)Tm = (Xn ·B)Tm = Xn1[0,Tm] ·B,

by Lemma 5.28(iii) or Lemma 5.61. By the isometry this implies that, for
every t ≥ 0,

0 = E
(
Xm ·B −Xn1[0,Tm] ·B)2

t = E

∫ t

0

(Xm −Xn1[0,Tm])
2 dλ.

We conclude that Xm = Xn on the set [0, Tm] almost everywhere under
λ × P. This enables to define a process X on [0,∞) × Ω in a consistent
way, up to a λ × P-null set, by setting X = Xm on the set [0, Tm]. Then
(X ·B)Tm = X1[0,Tm] ·B = Xm ·B = MTm for every m and hence M = X ·B.

The finiteness of E
∫
X2
m dλ for every m implies that

∫ t
0
X2 dλ <∞ almost

surely, for every t ≥ 0.

The preceding theorem concerns processes that are local martingales
relative to a filtration generated by a Brownian motion. This is restrictive
in terms of the local martingales it can be applied to, but at the same time
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determines the strength of the theorem, which gives a representation as a
stochastic integral relative to the given Brownian motion.

If we are just interested in representing a local martingale as a stochas-
tic integral relative to some Brownian motion, then we need not restrict the
filtration to a special form. Then we can define a Brownian motion in terms
of the martingale, and actually the proof of the representation can be much
simpler. We leave one result of this type as an exercise. See e.g. Karatzas
and Shreve, p170–173 for slightly more general results.

6.7 EXERCISE. Let M be a continuous local martingale with quadratic
variation process [M ] of the form [M ]t =

∫ t
0
λs ds for a continuous, strictly

positive stochastic process λ. Show that B = λ−1/2 · M is a Brownian
motion, and M =

√
λ ·B. [Hint: don’t use the preceding theorem!]

For an intuitive understanding of the meaning of Theorem 6.6 it
helps to think in terms of differentials. The martingale representation says
that the infinitesimal increments of any Brownian local martingale M sat-
isfy dMt = Xt dBt for some predictable process X. In terms of differen-
tials the (local) martingale property could be interpreted as saying that
E(dMt| Ft) = 0. This is pure intuition, as we have not agreed on a formal-
ism to interpret this type of statement concerning differentials. Continuing
in this fashion we see that for a predictable process X the value Xt is
“known just before t” and hence E

(
Xt dBt| Ft

)
= XtE(dBt| Ft) = 0, by

the martingale property of B. Theorem 6.6 says that the increments of
any Brownian martingale are constructed in this way: the increment dBt
of Brownian motion times a quantity that can be considered a “known
constant” at time t. Thus a Brownian local martingale M is built up of
infinitesimal increments dMt, which all are “deterministic multiples” of the
increments of the underlying Brownian motion. The requirements that the
increments of M are both mean zero given the past and adapted to the
filtration generated by B apparently leave no other choice but the trivial
one of multiples of the increments of B. It is clear that the requirement of
being adapted to the filtration of B is crucial, because given a much bigger
filtration it would be easy to find other ways of extending the sample paths
of M through martingale increments dMt.

6.3 Exponential Processes

The exponential process corresponding to a continuous semimartingale X
is the process E(X) defined by

E(X)t = eXt−
1
2 [X]t .
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The name “exponential process” would perhaps suggest the process eX

rather than the process E(X) as defined here. The additional term 1
2 [X] in

the exponent of E(X) is motivated by the extra term in the Itô formula. An
application of this formula to the right side of the preceding display yields

(6.8) dE(X)t = E(X)t dXt.

(Cf. the proof of the following theorem.) If we consider the differential
equation df(x) = f(x) dx as the true definition of the exponential function
f(x) = ex, then E(X) is the “true” exponential process of X, not eX .

Besides that, the exponentiation as defined here has the nice property
of turning local martingales into local martingales.

6.9 Theorem. The exponential process E(X) of a continuous local mar-
tingale X with X0 = 0 is a local martingale. Furthermore,

(i) If Ee
1
2 [X]t <∞ for every t ≥ 0, then E(X) is a martingale.

(ii) If X is an L2-martingale and E
∫ t

0
E(X)2

s d[X]s < ∞ for every t ≥ 0,
then E(X) is an L2-martingale.

Proof. By Itô’s formula applied to the function f(Xt, [X]t) = E(X)t, we
find that

dE(X)t = E(X)t dXt + 1
2E(X)t d[X]t + E(X)t (− 1

2 ) d[X]t.

This simplifies to (6.8) and hence E(X) = 1+E(X)·X is a stochastic integral
relative to X. If X is a local martingale, then so is E(X). Furthermore, if
X is an L2-martingale and

∫
1[0,t]E(X)2 dµX < ∞ for every t ≥ 0, then

E(X) is an L2-martingale, by Theorem 5.26. This condition reduces to the
condition in (ii), in view of Lemma 5.110.

The proof of (i) should be skipped at first reading. If 0 ≤ Tn ↑ ∞ is a
localizing sequence for E(X), then Fatou’s lemma gives

E
(
E(X)t| Fs

)
≤ lim inf

n→∞
E(E(X)t∧Tn | Fs

)
= lim inf

n→∞
E(X)s∧Tn = E(X)s.

Therefore, the process E(X) is a supermartingale. It is a martingale if and
only if its mean is constant, where the constant must be EE(X)0 = 1.

In view of Theorem 6.3 we may assume that the local martingale X
takes the form Xt = B[X]t for a process B that is a Brownian motion
relative to a certain filtration. For every fixed t the random variable [X]t is a
stopping time relative to this filtration. We conclude that it suffices to prove:
if B is a Brownian motion and T a stopping time with E exp( 1

2T ) < ∞,
then E exp(BT − 1

2T ) = 1.
Because 2Bs is normally distributed with mean zero and variance 4s,

E

∫ t

0

E(B)2
s ds =

∫ t

0

Ee2Bse−s ds =

∫ t

0

es ds <∞
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By (ii) it follows that E(B) is an L2-martingale. For given a < 0 define
Sa = inf{t ≥ 0:Bt − t = a}. Then Sa is a stopping time, so that E(B)Sa is
a martingale, whence EE(B)Sa∧t = 1 for every t. It can be shown that Sa
is finite almost surely and

EE(B)Sa = EeBSa−
1
2Sa = 1.

(The distribution of Sa is known in closed form. See e.g. Rogers and
Williams I.9, p18-19; because BSa = Sa + a, the right side is the expec-
tation of exp(a + 1

2Sa).) With the help of Lemma 1.22 we conclude that
E(B)Sa∧t → E(B)Sa in L1 as t → ∞, and hence E(B)Sa is uniformly inte-
grable. By the optional stopping theorem, for any stopping time T ,

1 = EE(B)SaT = E1T<Sae
BT−

1
2T + E1T≥Sae

BSa−
1
2Sa .

Because the sample paths of the process t 7→ Bt−t are bounded on compact
time intervals, Sa ↑ ∞ if a ↓ −∞. Therefore, the first term on the right
converges to E exp(BT − 1

2T ), by the monotone convergence theorem. The
second term is equal to

E1T≥Sae
Sa+a− 1

2Sa ≤ eaEe
1
2T .

If E exp( 1
2T ) <∞, then this converges to zero as a→ −∞.

In applications it is important to determine whether the process E(X)
is a martingale, rather than just a local martingale. No simple necessary
and sufficient condition appears to be known, although the condition in
(i), which is known as Novikov’s condition, is optimal in the sense that
the factor 1

2 in the exponent cannot be replaced by a smaller constant, in
general.

6.10 EXERCISE. Let X be a continuous semimartingale with X0 = 0.
Show that Y = E(X) is the unique solution to the pair of equations dY =
Y dX and Y0 = 1. [Hint: using Itô’s formula show that d

(
Y E(X)−1

)
= 0

for every solution Y , so that Y E(X)−1 ≡ Y0E(X)−1
0 = 1.]

6.11 EXERCISE. Show that E(X)T = E(XT ) for every stopping time T .

6.4 Cameron-Martin-Girsanov Theorem

Given a filtered probability space (Ω,F , {Ft},P) and a probability measure
P̃ that is absolutely continuous relatively to P, let dP̃/dP be a version of
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the Radon-Nikodym density of P̃ relative to P. The process L defined by

Lt = E
(dP̃
dP
| Ft
)

is a nonnegative, uniformly integrable martingale with mean ELt = 1. Con-
versely, every nonnegative, uniformly integrable martingale L with mean 1
possesses a terminal variable L∞, and can be used to define a probability
measure P̃ by dP̃ = L∞ dP. Thus there is a one-to-one relationship be-
tween “absolutely continuous changes of measure” and certain uniformly
integrable martingales.

If the restrictions of P̃ and P to the σ-field Ft are denoted by Pt and
Pt, then, for every F ∈ Ft, by the martingale property of L,

P̃t(F ) = P̃(F ) = EL∞1F = ELt1F =

∫
F

Lt dPt.

This shows that the measure P̃t is absolutely continuous with respect to
the measure Pt, with density

dP̃t
dPt

= Lt.

For this reason the martingale L is also referred to as the density process.
Its value at t gives insight in the “change of measure” of events up till time
t.

It may happen that the measure P̃t is absolutely continuous relative
to the measure Pt for every t ≥ 0, but P̃ is not absolutely continuous
relatively to P. To cover this situation it is useful to introduce a concept
of “local absolute continuity”. A measure P̃ is locally absolutely continuous
relatively to a measure P if P̃t � Pt for every t ∈ [0,∞). In this case we can
define a process L through the corresponding Radon-Nikodym densities,
as in the preceding display. Then ELt1F = P̃t(F ) = P̃s(F ) = ELs1F ,
for every F ∈ Fs and s < t, and hence the process L is a martingale,
with mean ELt = 1. If this (generalized) density process were uniformly
integrable, then it would have a terminal variable, and we would be back in
the situation as previously. Thus the difference between absolute continuity
and local absolute continuity is precisely the uniform integrability of the
density process.

By Theorem 4.6 the martingale L possesses a cadlag version, which
we use throughout this section. In the following lemma we collect some
properties. Call P̃ and P locally equivalent if the pair of measures is locally
absolutely continuous in both directions.

6.12 Lemma. If the measure P̃ is locally absolutely continuous relative
to the measure P, and L is a cadlag version of the corresponding density
process, then:
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(i) P̃(F ∩{T <∞}) = ELT 1F 1T<∞, for every F ∈ FT and every stopping
time T .

(ii) If Tn ↑ ∞ P-almost surely, then Tn ↑ ∞ P̃-almost surely, for any
increasing sequence of stopping times T1 ≤ T2 ≤ · · ·.

(iii) L > 0 up to P̃-evanescence; and also up to P-evanescence if P̃ and P
are locally equivalent.

(iv) There exists a stopping time T such that L > 0 on [0, T ) and L = 0
on [T,∞) up to P-evanescence.

Proof. (i). For every n ∈ N the optional stopping theorem applied to the
uniformly integrable martingale Ln yields LT∧n = E(Ln| FT ), P-almost
surely. For a given F ∈ FT the set F ∩ {T ≤ n} is contained in both FT
and Fn. We conclude that ELT 1F 1T≤n = ELT∧n1F 1T≤n = ELn1F 1T≤n =

Ẽ1F 1T≤n. Finally, we let n ↑ ∞.
(ii). Because T = limTn defines a stopping time, assertion (i) yields

that P̃(T <∞) = ELT 1T<∞. If P(T =∞) = 1, then the right side is 0 and
hence P̃(T =∞) = 1.

(iii). For n ∈ N define a stopping time by Tn = inf{t > 0:Lt <
n−1}. By right continuity LTn ≤ n−1 on the event Tn < ∞. Consequently
property (i) gives P̃(Tn < ∞) = ELTn1Tn<∞ ≤ n−1. We conclude that
P̃(inft Lt = 0) ≤ n−1 for every n, and hence L > 0 almost surely under
P̃. Equivalently, Tn ↑ ∞ almost surely under P̃. If P̃ and P are locally
equivalent, then (ii) implies that Tn ↑ ∞ also P-almost surely, and hence
L > 0 up to P-evanescence.

(iv). The stopping times Tn defined in the proof of (iii) are strictly in-
creasing and hence possess a limit T . By definition of Tn we have Lt ≥ n−1

on [0, Tn), whence Lt > 0 on [0, T ). For any m the optional stopping theo-
rem gives E(LT∧m| FTn∧m) = LTn∧m ≤ n−1 on the event Tn ≤ m. We can
conclude that ELT∧m1T≤m ≤ ELT∧m1Tn≤m = 0 for every m, and hence
LT = 0 on the event T < ∞. For any stopping time S ≥ T another appli-
cation of the optional stopping theorem gives E(LS∧m| FT∧m) = LT∧m = 0
on the event T ≤ m. We conclude that LS = 0 on the event S < ∞. This
is true in particular for S = inf{t > T :Lt > ε}, for any ε > 0, and hence
L = 0 on (T,∞).

If M is a local martingale on the filtered space (Ω,F , {Ft},P), then it
typically looses the local martingale property if we use another measure P̃.
The Cameron-Martin-Girsanov theorem shows that M is still a semimartin-
gale under P̃, and gives an explicit decomposition of M in its martingale
and bounded variation parts.

We start with a general lemma on the martingale property under a
“change of measure”. We refer to a process that is a local martingale under
P as a P-local martingale. For simplicity we restrict ourselves to the case
that P̃ and P are locally equivalent, i.e. the restrictions P̃t and Pt are locally
absolutely continuous for every t.
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6.13 Lemma. Let P̃ and P be locally equivalent probability measures on
(Ω,F) and let L be the corresponding density process. Then a stochastic
process M is a P̃-local martingale if and only if the process LM is a P-local
martingale.

Proof. We first prove the theorem without “local”. If M is an adapted
P̃-integrable process, then, for every s < t and F ∈ Fs,

ẼMt1F = ELtMt1F ,

ẼMs1F = ELsMs1F ,

The two left sides are identical for every F ∈ Fs and s < t if and only if M
is a P̃-martingale. Similarly, the two right sides are identical if and only if
LM is a P-martingale. We conclude that M is a P̃-martingale if and only
if LM is a P-martingale.

If M is a P̃-local martingale and 0 ≤ Tn ↑ ∞ is a localizing sequence,
then the preceding shows that the process LMTn is a P-martingale, for
every n. Then so is the stopped process (LMTn)Tn = (LM)Tn . Because Tn
is also a localizing sequence under P, we can conclude that LM is a P-local
martingale.

Because P̃ and P are locally equivalent, we can select a version of L that
is strictly positive. Then dPt/dP̃t = L−1

t and we can use the argument of
the preceding paragraph in the other direction to see that M = L−1(LM)
is a P̃-local martingale if LM is a P-local martingale.

Warning. A sequence of stopping times is defined to be a “localizing
sequence” if it is increasing everywhere and has almost sure limit ∞. The
latter “almost sure” depends on the underlying probability measure. Thus
a localizing sequence for a measure P need not be localizing for a measure
P̃. In view of Lemma 6.12(ii) this problem does not arise if the measures P̃
and P are locally equivalent. In the preceding lemma the implication that
LM is a P-local martingale if M is a P̃ local martingale can be false if P̃ is
locally absolutely continuous relative to P, but not the other way around.

If M itself is a P-local martingale, then generally the process LM will
not be a P-local martingale, and hence the process M will not be a P̃-local
martingale. We can correct for this by subtracting an appropriate process.
We restrict ourselves to continuous local martingales M . Then a P-local
martingale becomes a P̃ local martingale plus a “drift” (L−1

− ) · [L,M ], which
is of locally bounded variation.

6.14 Theorem (Girsanov). Let P̃ and P be locally equivalent probability
measures on (Ω,F , {Ft}) and let L be the density process of P̃ relative to P.
If M is a continuous P-local martingale, then M −L−1

− · [L,M ] is a P̃-local
martingale.

Proof. By Lemma 6.12(ii) the process L− is strictly positive under both P̃
and P, whence the process L−1

− is well defined. Because it is left-continuous,
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it is locally bounded, so that the integral L−1
− · [L,M ] is well defined. We

claim that the processes

LM − [L,M ]

L(L−1
− · [L,M ])− [L,M ]

are both P-local martingales. Then, taking the difference, we see that the
process LM −LL−1

− · [L,M ]) is a P-local martingale and hence the theorem
is a consequence of Lemma 6.13.

That the first process in the display is a P-local martingale is an
immediate consequence of Lemma 5.71(ii). For the second we apply the
integration-by-parts (or Itô’s) formula to see that

d
(
L(L−1

− · [L,M ])
)

= (L−1
− · [L,M ]) dL+ L− d(L−1

− · [L,M ]).

No “correction term” appears at the end of the display, because the
quadratic covariation between the process L and the continuous process
of locally bounded variation L−1

− · [L,M ] is zero. The integral of the first

term on the right is a stochastic integral (of L−1
− · [L,M ]) relative to the

P-martingale L and hence is a P-local martingale. The integral of the sec-
ond term is [L,M ]. It follows that the process L(L−1

− · [L,M ])− [L,M ] is a
local martingale.

* 6.15 EXERCISE. In the preceding theorem suppose that M is not neces-
sarily continuous, but the predictable quadratic covariation 〈L,M〉 is well
defined. Show that M − L−1

− · 〈L,M〉 is a P̃-local martingale.

The quadratic covariation process [L,M ] in the preceding theorem was
meant to be the quadratic covariation process under the orginal measure P.
Because P̃ and P are locally equivalent and a quadratic covariation process
can be defined as a limit of inner products of increments, as in (5.65), it is
actually also the quadratic variation under P̃.

Because L−1
− · [L,M ] is continuous and of locally bounded variation,

the process M−L−1
− · [L,M ] possesses the same quadratic variation process

[M ] as M , where again it does not matter if we use P or P̃ as the reference
measure. Thus even after correcting the “drift” due to a change of measure,
the quadratic variation remains the same.

The latter remark is particularly interesting if M is a P-Brownian
motion process. Then both M and M − L−1

− · [L,M ] possess quadratic

variation process the identity. Because M−L−1
− ·[L,M ] is a continuous local

martingale under P̃, it is a Brownian motion under P̃ by Lévy’s theorem.
This proves the following corollary.
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6.16 Corollary. Let P̃ and P be locally equivalent probability measures
on (Ω,F{Ft}) and let L be the corresponding density process. If B is a
P-Brownian motion, then B − L−1

− · [L,B] is a P̃-Brownian motion.

Many density processes L arise as exponential processes. In fact, given
a strictly positive, continuous martingale L, the process X = L−1

− · L is
well defined and satisfies L− dX = dL. The exponential process is the
unique solution to this equation, whence L = L0E(X). (See Section 6.3 for
continuous L and Section ?? for the general case.) Girsanov’s theorem takes
a particularly simple form if formulated in terms of the process X.

6.17 Corollary. Let P̃ and P be locally equivalent probability measures
on (Ω,F , {Ft}) and let the corresponding density process L take the form
L = E(X) for a continuous local martingale X, 0 at 0. If M is a continuous
P-local martingale, then M − [X,M ] is a P̃-local martingale.

Proof. The exponential process L = E(X) satisfies dL = L− dX, or equiv-
alently, L = 1 + L− ·X. Hence L−1

− · [L,M ] = L−1
− · [L− ·X,M ] = [X,M ],

by Lemma 5.114(i). The corollary follows from Theorem 6.14.

A special case arises if L = E(X) for X equal to the stochastic integral

X = Y ·B of a process Y relative to Brownian motion. Then [X]t =
∫ t

0
Y 2
s ds

and

(6.18)
dP̃t
dPt

= e

∫ t
0
Ys dBs−

1
2

∫ t
0
Y 2
s ds a.s..

By the preceding corollaries the process

t 7→ Bt −
∫ t

0

Ys ds

is a Brownian motion under P̃. This is the original form of Girsanov’s the-
orem.

It is a fair question why we would be interested in “changes of measure”
of the form (6.18). We shall see some reasons when discussing stochastic
differential equations or option pricing in later chapters. For now we can
note that in the situation that the filtration is the completion of the filtra-
tion generated by a Brownian motion any change to an equivalent measure
is of the form (6.18).

6.19 Lemma. Let {Ft} be the completion of the natural filtration of a
Brownian motion process B defined on (Ω,F ,P). If P̃ is a probability mea-
sure on (Ω,F) that is equivalent to P, then there exists a predictable process

Y with
∫ t

0
Y 2
s ds <∞ almost surely for every t ≥ 0 such that the restrictions

P̃t and Pt of P̃ and P to Ft satisfy (6.18).
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Proof. The density process L is a martingale relative to the filtration {Ft}.
Because this is a Brownian filtration, Theorem 6.6 implies that L permits
a continuous version. Because L is positive the process L−1 is well defined,
predictable and locally bounded. Hence the stochastic integral Z = L−1 ·L
is a well-defined local martingale, relative to the Brownian filtration {Ft}.
By Theorem 6.6 it can be represented as Z = Y ·B for a predictable process
Y as in the statement of the lemma. The definition Z = L−1 · L implies
dL = LdZ. Because F0 is trivial, the density at zero can be taken equal
to L0 = 1. This pair of equations is solved uniquely by L = E(Z). (Cf.
Exercise 6.10.)

6.20 Example. For a given measurable, adapted process Y and constant
T > 0 assume that

Ee
1
2

∫ T
0
Y 2
s ds <∞.

Then the process Y 1[0,T ] ·B = (Y ·B)T satisfies Novikov’s condition, as its
quadratic variation is given by

[Y 1[0,T ] ·B]t =

∫ T∧t

0

Y 2
s ds.

By Theorem 6.9 the process E((Y ·B)T ) is a martingale. Because it is con-
stant on [T,∞), it is uniformly integrable. Thus according to the discussion
at the beginning of this section, we can define a probability measure P̃ on
F by dP̃ = E(Y ·B)T dP.

Then the corresponding density process is given by (6.18) with Y 1[0,T ]

replacing Y . We conclude that the process {Bt −
∫ T∧t

0
Ys ds: t ≥ 0} is a

Brownian motion under the measure P̃. In particular, the process Bt −∫ t
0
Ys ds is a Brownian motion on the restricted time interval [0, T ] relative

to the measure P̃T with density E(Y ·B)T relative to P.

If a probability measure P̃ is locally absolutely continuous relative to
a probability measure P, then the corresponding density process is a non-
negative P-martingale with mean 1. We may ask if, conversely, every non-
negative martingale L with mean 1 on a given filtered probability space
(Ω,F , {Ft},P) arises as the density process of a measure P̃ relative to P.
In the introduction of this section we have seen that the answer to this
question is postive if the martingale is uniformly integrable, but the answer
is negative in general.

Given a martingale L and a measure P we can define for each t ≥ 0 a
measure P̃t on the σ-field Ft by

dP̃t
dPt

= Lt.

If the martingale is nonnegative with mean value 1, then this defines a
probability measure for every t. The martingale property ensures that the
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collection of measures P̃t is consistent in the sense that P̃s is the restriction
of P̃t to Fs, for every s < t. The remaining question is whether we can find
a measure P̃ on F∞ for which P̃t is its restriction to Ft.

Such a “projective limit” of the system (P̃t,Ft) does not necessarily
exist under just the condition that the process L is a martingale. A sufficient
condition is that the filtration be generated by some appropriate process.
Then we can essentially use Kolmogorov’s consistency theorem to construct
P̃.

6.21 Theorem. Let L be a nonnegative martingale with mean 1 on the
filtered space (Ω,F , {Ft},P). If Ft is the filtration σ(Zs: s ≤ t) generated
by some stochastic process Z on (Ω,F) with values in a Polish space, then
there exists a probability measure P̃ on F∞ whose restriction to Ft possesses
density Lt relative to P.

Proof. Define a probability measure P̃t on F∞ by its density Lt relative to
P, as before. For 0 ≤ t1 < t2 < · · · < tk let Rt1,...,tk be the distribution of
the vector (Zt1 , . . . , Ztk) on the Borel σ-field Dk of the space Dk if (Ω,F∞)
is equipped with P̃tk . This system of distributions is consistent in the sense
of Kolmogorov and hence there exists a probability measure R on the space
(D[0,∞),D[0,∞)) whose marginal distributions are equal to the measures
Rt1,...,tk .

For a measurable set B ∈ D[0,∞) now define P̃
(
Z−1(B)

)
= R(B). If

this is well defined, then it is not difficult to verify that P̃ is a probability
measure on F∞ = Z−1(D[0,∞)) with the desired properties.

The definition of P̃ is well posed if Z−1(B) = Z−1(B′) for a pair of
sets B,B′ ∈ D[0,∞) implies that R(B) = R(B′). Actually, it suffices to
show that this is true for every pair of sets B,B′ in the union A of all
cylinder σ-fields in D[0,∞) (the collection of all measurable sets depending
on only finitely many coordinates). Then P̃ is well defined and σ-additive on
∪tFt = Z−1(A), which is an algeba, and hence possesses a unique extension
to the σ-field F∞, by Carathéodory’s theorem.

The algebra A consists of all sets B of the form B =
{
z ∈

D[0,∞): (zt1 , . . . , ztk) ∈ Bk
}

for a Borel set Bk in Rk. If Z−1(B) = Z−1(B′)
for sets B,B ∈ A, then there exist k, coordinates t1, . . . , tk, and Borel sets
Bk, B

′
k such that {(Zt1 , . . . , Ztk) ∈ Bk} = {(Zt1 , . . . , Ztk) ∈ B′k} and hence

Rt1,...,tk(Bk) = Rt1,...,tk(B′k), by the definition of Rt1,...,tk .

The condition of the preceding lemma that the filtration be the natural
filtration generated by a process Z does not permit that the filtration is
complete under P. In fact, completion may cause problems, because, in
general, the measure P̃ will not be absolutely continuous relative to P. This
is illustrated in the following simple problem.
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* 6.22 Example (Brownian motion with linear drift). Let B be a Brown-
ian motion on the filtered space (Ω,F , {Ft},P), which is assumed to satisfy
the usual conditions. For a given constant µ > 0 consider the process L
defined by

Lt = eµBt−
1
2µ

2t.

The process L can be seen to be a P-martingale, either by direct calculation
or by Novikov’s condition, and it is nonnegative with mean 1. Therefore,
for every t ≥ 0 we can define a probability measure P̃t on Ft by dP̃t =
Lt dP. Because by assumption the Brownian motion B is adapted to the
given filtration, the natural filtration Fot generated by B is contained in the
filtration Ft. The measures P̃t are also defined on the filtration Fot . By the
preceding lemma there exists a probability measure P̃ on (Ω,Fo∞) whose
restriction to Fot is P̃t, for every t.

We shall now show that:
(i) There is no probability measure P̃ on (Ω,F∞) whose restriction to Ft

is equal to P̃t.
(ii) The process Bt − µt is a Brownian motion on (Ω,Fo∞, {Fot }, P̃) (and

hence also on the completion of this filtered space).
Claim (ii) is a consequence of Girsanov’s theorem. In Example 6.20

this theorem was seen to imply that the process {Bt − µt: 0εt ≤ T} is a
Brownian motion on the “truncated” filtered space (Ω,FT , {Ft ∩FT }, P̃T ),
for every T > 0. Because the process is adapted to the smaller filtration
Fot , it is also a Brownian motion on the space (Ω,FoT , {Fot ∩FoT }, P̃T ). This
being true for every T > 0 implies (ii).

If there were a probability measure P̃ on (Ω,F∞) as in (i), then
the process Bt − µt would be a Brownian motion on the filtered space
(Ω,F∞, {Ft}, P̃), by Girsanov’s theorem. We shall show that this leads to
a contradiction. For n ∈ R define the event

Fν =
{
ω ∈ Ω: lim

t→∞

Bt(ω)

t
= ν

}
.

Then Fν ∈ Fo∞ and Fν ∩ Fν′ = ∅ for ν 6= ν′. Furthermore, by the ergodic
theorem for Brownian motion, P(F0) = 1 and hence P(Fµ) = 0. Because

Bt−µt is a Brownian motion under P̃, also P̃(Fµ) = 1 and hence P̃(F0) = 0.
Every subset F of Fµ possesses P(F ) = 0 and hence is contained in F0, by
the (assumed) completeness of the filtration {Ft}. If Bt − µt would be a
Brownian motion on (Ω,F∞, {Ft}, P̃), then Bt − µt would be independent
(relative to P̃) of F0. In particular, Bt would be independent of the event
{Bt ∈ C} ∩ Fµ for every Borel set C. Because P̃(Fµ) = 1, the variable Bt
would also be independent of the event {Bt ∈ C}. This is only possible if
Bt is degenerate, which contradicts the fact that Bt−µt possesses a normal
distribution with positive variance. We conclude that P̃ does not exist on
F∞.
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The problem in this example is caused by the fact that the projective
limit of the measures P̃t, which exists on the smaller σ-field Fo∞, is orthog-
onal to the measure P. In such a situation completion of a filtration under
one of the two measures effectively adds all events that are nontrivial under
the other measure to the filtration at time zero. This is clearly undesirable
if we wish to study a process under both probability measures.



7
Stochastic
Differential Equations

In this chapter we consider stochastic differential equations of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt.

Here µ and σ are given functions and B is a Brownian motion process.
The equation may be thought of as a randomly perturbed version of the
first order differential equation dXt = µ(t,Xt) dt. Brownian motion is often
viewed as an appropriate “driving force” for such a noisy perturbation.

The stochastic differential equation is to be understood in the sense
that we look for a continuous stochastic process X such that, for every
t ≥ 0,

(7.1) Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, a.s..

Usually, we add an initial condition X0 = ξ, for a given random variable ξ,
or require that X0 possesses a given law.

It is useful to discern two ways of posing the problem, the strong and
the weak one, differing mostly in the specification of what is being given
a-priori and of which further properties the solution X must satisfy. The
functions µ and σ are fixed throughout, and are referred to as the “drift”
and “diffusion coefficients” of the equation.

In the “strong setting” we are given a particular filtered probability
space (Ω,F , {Ft},P), a Brownian motion B and an initial random variable
ξ, both defined on the given filtered space, and we search for a continuous
adapted process X, also defined on the given filtered space, which satisfies
the stochastic differential equation with X0 = ξ. It is usually assumed here
that the filtration {Ft} is the smallest one to which B is adapted and for
which ξ is F0-measurable, and which satisfies the usual conditions. The
requirement that the solution X be adapted then implies that it can be
expressed as X = F (ξ,B) for a suitably measurable map F , and the precise
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definition of a strong solution could include certain properties of F , such as
appropriate measurability, or the requirement that F (x,B′) is a solution of
the stochastic differential equation with initial variable x ∈ R, for every x
and every Brownian motion B′ defined on some filtered probability space.
Different authors make this precise in different ways; we shall not add to
this confusion here.

For a weak solution of the stochastic differential equation we search
for a filtered probability space, as well as a Brownian motion and an ini-
tial random variable ξ, and a continuous adapted process X satisfying the
stochastic differential equation, all defined on the given filtered space. The
initial variable X0 is usually required to possess a given law. The filtration
is required to satisfy the usual conditions only, so that a weak solution X
is not necessarily a function of the pair (X0, B).

Clearly a strong solution in a given setting provides a weak solution,
but the converse is false. The existence of a weak solution does not even
imply the existence of a strong solution (depending on the measurability
assumptions we impose). In particular, there exist examples of weak so-
lutions, for which it can be shown that the filtration must necessarily be
bigger than the filtration generated by the driving Brownian motion, so
that the solution X cannot be a function of (ξ,B) alone. (For instance,
Tanaka’s example, see Chung and Williams, pages 248–250.)

For X to solve the stochastic differential equation, the integrals in (7.1)
must be well defined. This is certainly the case if µ and σ are measurable
functions and, for every t ≥ 0,∫ t

0

|µ(s,Xs)| ds <∞, a.s.,∫ t

0

|σ2(s,Xs)| ds <∞, a.s..

Throughout we shall silently understand that it is included in the require-
ments for “X to solve the stochastic differential equation” that these con-
ditions are satisfied.

7.2 EXERCISE. Show that t 7→ σ(t,Xt) is a predictable process if σ:R2 7→
R is measurable and X is predictable. [Hint: consider the map (t, ω) 7→(
t,Xt(ω)

)
on [0,∞)× Ω equipped with the predictable σ-field.]

The case that µ and σ depend on X only is of special interest. The
stochastic differential equation

(7.3) dXt = µ(Xt) dt+ σ(Xt) dBt

is known as a diffusion equation. Under some conditions the solution X of
a diffusion equation is a time-homogeneous Markov process. Some authors
use the term diffusion process to denote any time-homogeneous (strong)
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Markov process, while other authors reserve the term for solutions of diffu-
sion equations only, sometimes imposing additional conditions of a some-
what technical nature, or relaxing the differential equation to a statement
concerning first and second infinitesimal moments of the type

E(Xt+h −Xt| Ft) = µ(Xt)h+ o(h), a.s.

var(Xt+h −Xt| Ft) = σ2(Xt)h+ o(h), a.s., h ↓ 0.

These infinitesimal conditions give an important interpretation to the func-
tions µ and σ, and can be extended to the more general equation (7.1).
Apparently, stochastic differential equations were invented, by Itô in the
1940s, to construct processes that are “diffusions” in this vaguer sense.

7.4 EXERCISE. Derive the approximations in the preceding display if µ
and σ are bounded functions. [Hint: Use the fact that the process Nh =

Xt+h −Xt −
∫ t+h
t

µ(Xs) ds is a (local) martingale relative to the filtration
Gh = Ft+h, and a similar property for the process h 7→ (Xt+h−Xt)

2−[N ]h.]

Rather than simplifying the stochastic differential equation, we can
also make it more general, by allowing the functions µ and σ to depend not
only on (t,Xt), but on t and the sample path of X until t. The resulting
stochastic differential equations can be treated by similar methods. (See
e.g. pages 122–124 of Rogers and Williams.)

Another generalization is to multi-dimensional equations, driven by a
multivariate Brownian motion B = (B1, . . . , Bl) and involving a vector-
valued function µ: [0,∞) × Rk 7→ Rk and a function σ: [0,∞) × Rk 7→ Rkl
with values in the k × l-matrices. Then we search for a continuous vector-
valued process X = (X1, . . . , Xk) satisfying, for i = 1, . . . , k,

Xt,i = X0,i +

∫ t

0

µi(s,Xs) ds+

l∑
j=1

∫ t

0

σi,j(s,Xs) dBj,s.

Multivariate stochastic differential equations of this type are not essentially
more difficult to handle than the one-dimensional equation (7.1). For sim-
plicity we consider the one-dimensional equation (7.1), or at least shall view
the equation (7.1) as an abbreviation for the multivariate equation in the
preceding display.

We close this section by showing that Girsanov’s theorem may be used
to construct a weak solution of a special type of stochastic differential equa-
tion, under a mild condition. This illustrates that special approaches to
special equations can be more powerful than the general results obtained
in this chapter.
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7.5 Example. Let ξ be an F0-measurable random variable and let X − ξ
be a Brownian motion on a filtered probability space (Ω,F , {Ft},P). For a
given measurable function µ define a process Y by Yt = µ(t,Xt), and assume
that the exponential process E(Y ·X) is a uniformly integrable martingale.
Then dP̃ = E(Y ·X)∞ defines a probability measure and, by Corollary 6.16

the process B defined by Bt = Xt − ξ −
∫ t

0
Ys ds is a P̃-Brownian motion

process. (Note that Y ·X = Y · (X − ξ).) It follows that X together with
the filtered probability space (Ω,F , {Ft}, P̃) provides a weak solution of the

stochastic differential equation Xt = ξ +
∫ t

0
µ(s,Xs) ds+Bt.

The main condition to make this work is that the exponential process
of Y · X is a uniformly integrable martingale. This is easy to achieve on
compact time intervals by Novikov’s condition.

7.1 Strong Solutions

Following Itô’s original approach we construct in this section strong solu-
tions under Lipschitz and growth conditions on the functions µ and σ. We
assume that for every t ≥ 0 there exists a constant Ct such that, for all
s ∈ [0, t] and for all x, y ∈ [−t, t],

(7.6)

∣∣µ(s, x)− µ(s, y)
∣∣ ≤ Ct|x− y|,∣∣σ(s, x)− σ(s, y)
∣∣ ≤ Ct|x− y|.

Furthermore, we assume that for every t ≥ 0 there exists a constant Ct
such that, for all s ∈ [0, t] and x ∈ R,

(7.7)

∣∣µ(s, x)
∣∣ ≤ Ct(1 + |x|),∣∣σ(s, x)
∣∣ ≤ Ct(1 + |x|).

Then the stochastic differential equation (7.1) possesses a strong solution in
every possible setting. The proof of this is based on an iterative construction
of processes that converge to a solution, much like the Picard iteration
scheme for solving a deterministic differential equation.

Let (Ω,F , {Ft},P) be an arbitrary filtered probability space, and let
B be a Brownian motion and ξ an F0-measurable random variable defined
on it.

7.8 Theorem. Let µ and σ be measurable functions that satisfy (7.6)–
(7.7). Then there exists a continuous, adapted process X on (Ω,F , {Ft},P)
with X0 = ξ that satisfies (7.1). This process is unique up to indistin-
guishability, and its distribution is uniquely determined by the distribution
of ξ.
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Proof. For a given process X let LX denote the process on the right of
(7.1), i.e.

(LX)t = ξ +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs.

We wish to prove that the equation LX = X possesses a unique continuous
adapted solution X. By assumption (7.7) the absolute values of the inte-
grands are bounded above by Ct

(
1 + |Xs|) and hence the integrals in the

definition of LX are well defined for every continuous adapted process X.
First assume that ξ is square-integrable and the Lipschitz condition

(7.6) is valid for every x, y ∈ R (and not just for x, y ∈ [−t, t]). We may
assume without of loss of generality that the constants Ct are nondecreasing
in t.

By the triangle inequality, the maximal inequality (4.40), the Cauchy-
Schwarz inequality, and the defining isometry of stochastic integrals,

E sup
s≤t

∣∣(LX)s − (LY )s
∣∣2

≤ 2E
∣∣∣∫ t

0

∣∣µ(s,Xs)− µ(s, Ys)
∣∣ ds∣∣∣2 + 8E

∣∣∣∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)
dBs

∣∣∣2
≤ 2tE

∫ t

0

∣∣µ(s,Xs)− µ(s, Ys)
∣∣2 ds+ 8E

∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)2
ds

≤ 8(t+ 1)C2
t E

∫ t

0

|Xs − Ys|2 ds.

The use of the maximal inequality (in the first .) is justified as soon as

the process t 7→
∫ t

0

(
σ(s,Xs) − σ(s, Ys)

)
dBs is an L2-martingale, which is

certainly the case if the final upper bound is finite.
Define processes X(n) by X(0) = ξ and, recursively, X(n) = LX(n−1),

for n ≥ 1. In particular,

X
(1)
t = ξ +

∫ t

0

µ(s, ξ) ds+

∫ t

0

σ(s, ξ) dBs.

By similar arguments as previously, but now using the growth condition
(7.7), we obtain

E sup
s≤t
|X(1)

s −X(0)
s |2 ≤ 2tE

∫ t

0

µ2(s, ξ) ds+ 8E

∫ t

0

σ2(s, ξ) ds

≤ 8(t+ 1)2C2
t E(1 + ξ2).

Furthermore, for n ≥ 1, since X(n+1) −X(n) = LX(n) − LX(n−1),

E sup
s≤t
|X(n+1)

s −X(n)
s |2 ≤ 8(t+ 1)C2

t E

∫ t

0

|X(n)
s −X(n−1)

s |2 ds.
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Iterating this last inequality and using the initial bound for n = 0 of the
preceding display, we find that, with M = E(1 + ξ2),

E sup
s≤t
|X(n)

s −X(n−1)
s |2 ≤ 8n

(t+ 1)2nC2n
t M

n!
.

We conclude that, for m ≤ n, by the triangle inequality, for t > 1,

εm,n: =
∥∥∥sup
s≤t
|X(n)

s −X(m)
s |

∥∥∥
2
≤

n∑
i=m+1

4i
(t+ 1)i√

i!
Cit
√
M.

For fixed t, we have that εm,n → 0 as m,n → ∞. We conclude that the
variables in the left side of the last display converge to zero in quadratic
mean and hence in probability as m,n→∞. In other words, the sequence of
processes X(n) forms a Cauchy sequence in probability in the space C[0, t]
of continuous functions, equipped with the uniform norm. Since this space
is complete there exists a process X such that, as n→∞,

sup
s≤t
|X(n)

s −Xs| P→ 0.

Being a uniform limit of continuous processes, the process X must be con-
tinuous. By Fatou’s lemma

εm: =
∥∥∥sup
s≤t
|Xs −X(m)

s |
∥∥∥

2
≤ lim
n→∞

εm,n.

Because LX(n) = X(n+1), the triangle inequality gives that∥∥∥sup
s≤t
|(LX)s −Xs|

∥∥∥
2

.
∥∥∥sup
s≤t
|(LX)s − (LX(n))s|

∥∥∥
2

+
∥∥∥sup
s≤t
|X(n+1)

s −Xs|
∥∥∥

2

.
√
t+ 1Ct

√
E

∫ t

0

|Xs −X(n)
s |2 ds+ εn+1

.
√
t+ 1

√
t Ct εn + εn+1.

The right side converges to zero as n → ∞, for fixed t, and hence the left
side must be identically zero. This shows that LX = X, so that X solves
the stochastic differential equation, at least on the interval [0, t].

If Y is another solution, then, since in that case X − Y = LX − LY ,

E sup
s≤t
|Xs − Ys|2 . (t+ 1)C2

t

∫ t

0

E sup
u≤s
|Xu − Yu|2 ds.

By Gronwall’s lemma, Lemma 7.11, applied to the function on the left side
and with A = 0, it follows that the left side must vanish and hence X = Y .
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By going through the preceding for every t ∈ N we can consistently
construct a solution on [0,∞), and conclude that this is unique.

By the measurability of µ and σ the processes t 7→ µ(t,Xt) and
t 7→ σ(t,Xt) are predictable, and hence progressively measurable, for ev-
ery predictable process X. (Cf. Exercise 7.2.) By Fubini’s theorem the

process t 7→
∫ t

0
µ(s,Xs) ds is adapted, while the stochastic integral t 7→∫ t

0
σ(s,Xs) dBs is a local martingale and hence certainly adapted. Because

the processes are also continuous, they are predictable. The process X(0) is
certainly predictable and hence by induction the process X(n) is predictable
for every n. The solution to the stochastic differential equation is indistin-
guishable from lim infn→∞X(n) and hence is predictable and adapted.

The remainder of the proof should be skipped at first reading. It con-
sists of proving the theorem without the additional conditions on the func-
tions µ and σ and the variable ξ, and is based on the identification lemma
given as Lemma 7.12 below. First assume that µ and σ only satisfy (7.6)
and (7.7), but ξ is still square-integrable.

For n ∈ N let χn:R 7→ R be continuously differentiable with compact
support and be equal to the unit function on [−n, n]. Then the functions
µn and σn defined by µn(t, x) = µ(t, x)χn(x) and σn(t, x) = σ(t, x)χn(x)
satisfy the conditions of the first part of the proof. Hence there exists, for
every n, a continuous adapted process Xn such that

(7.9) Xn,t = ξ +

∫ t

0

µn(s,Xn,s) ds+

∫ t

0

σn(s,Xn,s) dBs.

For fixed m ≤ n the functions µm and µn, and σm and σn agree on the in-
terval [−m,m], whence by Lemma 7.12 the process Xm and Xn are indistin-
guishable on the set [0, Tm] for Tm = inf{t ≥ 0: |Xm,t| ≥ m or |Xn,t| ≥ m}.

In particular, the first times that Xm or Xn leave the interval [−m,m]
are identical and hence the possibility “|Xn,t| > m” in the definition of Tm
is superfluous. If 0 ≤ Tn ↑ ∞, then we can consistently define a process X
by setting it equal to Xn on [0, Tn], for every n. Then XTn = XTn

n and, by
the preceding display and Lemma 5.61(i),
(7.10)

XTn
t = ξ +

∫ t

0

1(0,Tn](s)µn(s,Xn,s) ds+

∫ t

0

1(0,Tn](s)σn(s,Xn,s) dBs.

By the definitions of Tn, µn, σn and X the integrands do not change if we
delete the subscript n from µn, σn and Xn. We conclude that

XTn
t = ξ +

∫ Tn∧t

0

µ(s,Xs) ds+

∫ Tn∧t

0

σ(s,Xs) dBs.

This being true for every n implies that X is a solution of the stochastic
differential equation (7.1).
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We must still show that 0 ≤ Tn ↑ ∞. By the integration-by-parts
formula and (7.9)

X2
n,t −X2

n,0 = 2

∫ t

0

Xn,sµn(s,Xn,s) ds+ 2

∫ t

0

Xn,sσn(s,Xn,s) dBs

+

∫ t

0

σ2
n(s,Xn,s) ds.

The process 1(0,Tn]Xn,sσn(s,Xn,s) is bounded on [0, t] and hence the process

t 7→
∫ Tn∧t

0
Xn,sσn(s,Xn,s) dBs is a martingale. Replacing t by Tn ∧ t in the

preceding display and next taking expectations we obtain

1 + EX2
n,Tn∧t = 1 + Eξ2 + 2E

∫ Tn∧t

0

Xn,sµn(s,Xn,s) ds

+ E

∫ Tn∧t

0

σ2
n(s,Xn,s) ds

. 1 + Eξ2 + (Ct + C2
t ) E

∫ Tn∧t

0

(1 +X2
n,s) ds

. 1 + Eξ2 + (Ct + C2
t )

∫ t

0

(1 + EX2
n,Tn∧s) ds.

We can apply Gronwall’s lemma, Lemma 7.11, to the function on the far
left of the display to conclude that this is bounded on [0, t], uniformly in n,
for every fixed t. By the definition of Tn

P(0 < Tn ≤ t)n2 ≤ EX2
n,Tn∧t.

Hence P(0 < Tn ≤ t) = O(n−2)→ 0 as n→∞, for every fixed t. Combined
with the fact that P(Tn = 0) = P

(
|ξ| > n

)
→ 0, this proves that 0 ≤ Tn ↑

∞.
Finally, we drop the condition that ξ is square-integrable. By the pre-

ceding there exists, for every n ∈ N, a solution Xn to the stochastic differen-
tial equation (7.1) with initial value ξ1|ξ|≤n. By Lemma 7.12 the processes
Xm and Xn are indistibguishable on the event {|ξ| ≤ m} for every n ≥ m.
Thus limn→∞Xn exists almost surely and solves the stochastic differential
equation with initial value ξ.

The last assertion of the theorem is a consequence of Lemma 7.13
below, or can be argued along the following lines. The distribution of the
triple (ξ,B,X(n)) on R×C[0,∞)×C[0,∞) is determined by the distribution
of (ξ,B,X(n−1)) and hence ultimately by the distribution of (ξ,B,X(0)),
which is determined by the distribution of ξ, the distribution of B being
fixed as that of a Brownian motion. Therefore the distribution of X is
determined by the distribution of ξ as well. (Even though believable this
argument needs to be given in more detail to be really convincing.)



7.1: Strong Solutions 145

7.11 Lemma (Gronwall). Let f : [0, T ] 7→ R be an integrable function

such that f(t) ≤ A+ B
∫ t

0
f(s) ds for every t ∈ [0, T ] and constants A and

B > 0. Then f(t) ≤ AeBt on [0, T ].

Proof. We can write the inequality in the form F ′(t)− BF (t) ≤ A, for F

the primitive function of f with F (0) = 0. This implies that
(
F (t)e−Bt

)′ ≤
Ae−Bt. By integrating and rearranging we find that F (t) ≤ (A/B)(eBt−1).
The lemma follows upon reinserting this in the given inequality.

* 7.1.1 Auxiliary Results

The remainder of this section should be skipped at first reading.
The following lemma is used in the proof of Theorem 7.8, but is also

of independent interest. It shows that given two pairs of functions (µi, σi)
that agree on [0,∞)×[−n, n], the solutions Xi of the corresponding stochas-
tic differential equations (of the type (7.1)) agree as long as they remain
within [−n, n]. Furthermore, given two initial variables ξi the corresponding
solutions Xi are indistinguishable on the event {ξ1 = ξ2}.

7.12 Lemma. For i = 1, 2 let µi, σi: [0,∞) × R 7→ R be measurable
functions that satisfy (7.6)–(7.7), let ξi be F0-measurable random vari-
ables, and let Xi be continuous, adapted processes that satisfy (7.1) with
(ξi, µi, σi) replacing (ξ, µ, σ). If µ1 = µ2 and σ1 = σ2 on [0,∞) × [−n, n]
and T = inf{t ≥ 0: |X1,t| > n, or |X2,t| > n}, then XT

1 = XT
2 on the event

{ξ1 = ξ2}.

Proof. By subtracting the stochastic differential equations (7.1) with
(ξi, µi, σi, Xi) replacing (ξ, µ, σ,X), and evaluating at T ∧ t instead of t,
we obtain

XT
1,t −XT

2,t = ξ1 − ξ2 +

∫ T∧t

0

(
µ1(s,X1,s)− µ2(s,X2,s)

)
ds

+

∫ T∧t

0

(
σ1(s,X1,s)− σ2(s,X2,s)

)
dBs.

On the event F = {ξ1 = ξ2} ∈ F0 the first term on the right vanishes.
On the set (0, T ] the processes X1 and X2 are bounded in absolute value
by n. Hence the functions µ1 and µ2, and σ1 and σ2, agree on the domain
involved in the integrands and hence can be replaced by their common
values µ1 = µ2 and σ1 = σ2. Then we can use the Lipschitz properties of
µ1 and σ1, and obtain, by similar arguments as in the proof of Theorem 7.8,
that

E sup
s≤t
|XT

1,s −XT
2,s|21F . (t+ 1)C2

t E

∫ T∧t

0

|X1,s −X2,s|2 ds1F .
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(Note that given an event F ∈ F0 the process Y 1F is a martingale whenever
the process Y is a martingale.) By Gronwall’s lemma the left side of the
last display must vanish and hence XT

1 = XT
2 on F .

The next lemma gives a strengthening of the last assertion of The-
orem 7.8. The lemma shows that, under the conditions of the theorem,
solutions to the stochastic differential equation (7.1) can be constructed in
a canonical way as X = F (ξ,B) for a fixed map F in any strong setting
consisting of an initial variable ξ and a Brownian motion B defined on some
filtered probability space. Because the map F is measurable, it follows in
particular that the law of X is uniquely determined by the law of ξ.

The sense of the measurability of F is slightly involved. The map F is
defined as a map F :R×C[0,∞) 7→ C[0,∞). Here C[0,∞) is the collection of
all continuous functions x: [0,∞) 7→ R. The projection σ-field Π∞ on this
space is the smallest σ-field making all evaluation maps (“projections”)
πt:x 7→ x(t) measurable. The projection filtration {Πt} is defined by Πt =
σ(πs: s ≤ t). (The projection σ-field can be shown to be the Borel σ-field
for the topology of uniform convergence on compacta.) A Brownian motion
process induces a law on the measurable space

(
C[0,∞),Π∞

)
. This is called

the Wiener measure. We denote the completion of the projection filtration
under the Wiener measure by {Π̄t}.

For a proof of the following lemma, see e.g. Rogers and Williams, pages
125–127 and 136–138.

7.13 Lemma. Under the conditions of Theorem 7.8 there exists a map
F :R × C[0,∞) 7→ C[0,∞) such that, given any filtered probability space
(Ω,F , {Ft},P) with a Brownian motion B and an F0-measurable random
variable ξ defined on it X = F (ξ,B) is a solution to the stochastic differen-
tial equation (7.1). This map can be chosen such that the map ξ 7→ F (ξ, x)
is continuous for every x ∈ C[0,∞) and such that the map x 7→ F (ξ, x) is
Π̄t − Πt-measurable for every t ≥ 0 and every ξ ∈ R. In particular, it can
be chosen B × Π̄∞ −Π∞-measurable.

Because the solution to the stochastic differential equation in a given
setting (Ω,F , {Ft},P) is unique, it follows that any solution takes the form
F (ξ,B) and hence induces the same law on C[0,∞). The latter property is
known as weak uniqueness.

The preceding lemma gives much more information than weak unique-
ness. Weak uniqueness can also be derived as a direct consequence of the
uniqueness of the solution asserted in Theorem 7.8 (known as “pathwise
uniqueness”). A famous result by Watanabe asserts that pathwise unique-
ness always implies weak uniqueness.
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7.2 Martingale Problem and Weak Solutions

If X is a continuous solution to the diffusion equation (7.3), defined on
some filtered probability space, and f :R 7→ R is a twice continuously dif-
ferentiable function, then Itô’s formula yields that

df(Xt) = f ′(Xt)σ(Xt) dBt + f ′(Xt)µ(Xt) dt+ 1
2f
′′(Xt)σ

2(Xt) dt.

Defining the differential operator A by

Af = µf ′ + 1
2σ

2f ′′,

we conclude that the process

(7.14) t 7→ f(Xt)− f(X0)−
∫ t

0

Af(Xs) ds

is identical to the stochastic integral (f ′σ)(X) · B, and hence is a local
martingale. If f has compact support, in addition to being twice continu-
ously differentiable, and σ is bounded on compacta, then the function f ′σ
is bounded and the process in (7.14) is also a martingale. It is said that
X is a solution to the (local) martingale problem. This martingale problem
can be used to characterize, study and construct solutions of the diffusion
equation: instead of constructing a solution directly, we search for a solution
to the martingale problem. The following theorem shows the feasibility of
this approach.

7.15 Theorem. Let X be a continuous adapted process on a given filtered
space such that the process in (7.14) is a local martingale for every twice
continuously differentiable function with compact support. Then there ex-
ists a weak solution to the diffusion equation (7.3) with the law of X0 as
the initial law.

Proof. For given n ∈ N let Tn = inf{t ≥ 0: |Xt| ≥ n}, so that |XTn | ≤ n
on (0, Tn]. Furthermore, let f and g be twice continuously differentiable
functions with compact supports that coincide with the functions x 7→ x
and x 7→ x2 on the set [−n, n]. By assumption the processes (7.14) obtained
by setting the function f in this equation equal to the present f and to g
are local martingales. On the set (0, Tn] they coincide with the processes
M and N defined by

Mt = Xt −X0 −
∫ t

0

µ(Xs) ds

Nt = X2
t −X2

0 −
∫ t

0

(
2Xsµ(Xs) + σ2(Xs)

)
ds.



148 7: Stochastic Differential Equations

At time 0 the processes M and N vanish and so do the processes of the
type (7.14). We conclude that the correspondence extends to [0, Tn] and
hence the processes M and N are local martingales. By simple algebra

M2
t = X2

t − 2XtX0 +X2
0 − 2(Xt −X0)

∫ t

0

µ(Xs) ds+
(∫ t

0

µ(Xs) ds
)2

= Nt +At +

∫ t

0

σ2(Xs) ds,

for the process A defined by

At = −2(Xt−X0)
(
X0+

∫ t

0

µ(Xs) ds
)

+
(∫ t

0

µ(Xs) ds
)2

+

∫ t

0

2Xsµ(Xs) ds.

By Itô’s formula

dAt = −2(Xt −X0)µ(Xt) dt− 2dXt

(
X0 +

∫ t

0

µ(Xs) ds
)

+ 2

∫ t

0

µ(Xs) ds µ(Xt) dt+ 2µ(Xt)Xt dt

= −2
(
X0 +

∫ t

0

µ(Xs) ds
)
dMt.

We conclude that the process A is a local martingale and hence so is the
process t 7→M2

t −
∫ t

0
σ2(Xs) ds. This implies that [M ]t =

∫ t
0
σ2(Xs) ds.

Define a function σ̃:R 7→ R by setting σ̃ equal to 1/σ if σ 6= 0 and
equal to 0 otherwise, so that σ̃σ = 1σ 6=0. Furthermore, given a Brownian

motion process B̃ define

B = σ̃(X) ·M + 1σ(X)=0 · B̃.

Being the sum of two stochastic integrals relative to continuous martingales,
the process B possesses a continuous version that is a local martingale. Its
quadratic variation process is given by

[B]t = σ̃2(X) · [M ]t + 2(σ̃(X)1σ(X)=0) · [M, B̃]t + 1σ(X)=0 · [B̃]t.

Here we have linearly expanded [B] = [B,B] and used Lemma 5.114. The
middle term vanishes by the definition of σ̃, while the sum of the first and
third terms on the right is equal to

∫ t
0
(σ̃2σ2(Xs) + 1σ(Xs)=0) ds = t. By

Lévy’s theorem, Theorem 6.1, the process B is a Brownian motion process.
By our definitions σ(X) ·B = 1σ(X)6=0 ·M = M , because [1σ(X)=0 ·M ] = 0
whence 1σ(X)=0 ·M = 0. We conclude that

Xt = X0 +Mt +

∫ t

0

µ(Xs) ds = X0 +

∫ t

0

σ(Xs) dBs +

∫ t

0

µ(Xs) ds.

Thus we have found a solution to the diffusion equation (7.3).
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In the preceding we have implicitly assumed that the process X and the
Brownian motion B̃ are defined on the same filtered probability space, but
this may not be possible on the filtered space (Ω,F , {Ft},P) on which X is
given originally. However, we can always construct a Brownian motion B̃
on some filtered space (Ω̃, F̃ , {F̃t}, P̃) and next consider the product space

(Ω× Ω̃,F × F̃ , {Ft × F̃t},P× P̃),

with the maps

(ω, ω̃) 7→ X(ω),

(ω, ω̃) 7→ B̃(ω̃).

The latter processes are exactly as the original processes X and B̃ and
hence the first process solves the martingale problem and the second is
a Brownian motion. The enlarged filtered probability space may not be
complete and satisfy the usual conditions, but this may be remedied by
completion and replacing the product filtration Ft × F̃t by its completed
right-continuous version.

It follows from the proof of the preceding theorem, that a solution
X to the martingale problem together with the filtered probability space
on which it is defined yields a weak solution of the diffusion equation if
σ is never zero. If σ can assume the value zero, then the proof proceeds
by extending the given probability space, and X, suitably defined on the
extension, again yields a weak solution. The extension may be necessary,
because the given filtered probability space may not be rich enough to carry
a suitable Brownian motion process.

It is interesting that the proof of Theorem 7.15 proceeds in the opposite
direction of the proof of Theorem 7.8. In the latter theorem the solution X
is constructed from the given Brownian motion, whereas in Theorem 7.15
the Brownian motion is constructed out of the given X. This is a good
illustration of the difference between strong and weak solutions.

Now that it is established that solving the martingale problem and
solving the stochastic differential equation in the weak sense are equivalent,
we can prove existence of weak solutions for the diffusion equation from
consideration of the martingale problem. The advantage of this approach
is the availability of additional technical tools to handle martingales.

7.16 Theorem. If µ, σ:R 7→ R are bounded and continuous and ν is a
probability measure on R, then there exists a filtered probability space
(Ω,F , {Ft},P) with a Brownian motion and a continuous adapted process
X satisfying the diffusion equation (7.3) and such that X0 has law ν.

Proof. Let (B, ξ) be a pair of a Brownian motion and an F0-measurable
random variable with law ν, defined on some filtered probability space. For
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every n ∈ N define a process X(n) by

X
(n)
0 = ξ,

X
(n)
t = X

(n)
k2−n + µ(X

(n)
k2−n)(t− k2−n) + σ(X

(n)
k2−n)(Bt −Bk2−n),

k2−n < t ≤ (k + 1)2−n, k = 0, 1, 2, . . . .

Then, for every n, the process X(n) is a continuous solution of the stochastic
differential equation

(7.17) X
(n)
t = ξ +

∫ t

0

µn(s) ds+

∫ t

0

σn(s) dBs,

for the processes µn and σn defined by

µn(t) = µ(X
(n)
k2−n), σn(t) = σ(X

(n)
k2−n), k2−n < t ≤ (k + 1)2−n.

By Lemma 5.114 the quadratic variation of the process M defined by
Mt = (σn · B)s+t − (σn · B)s is given by [M ]t =

∫ s+t
s

σ2
n(u) du. For s ≤ t

we obtain, by the triangle inequality and the Burkholder-Davis-Gundy in-
equality, Lemma 7.19,

E|X(n)
s −X(n)

t |4 . E
∣∣∣∫ t

s

µn(u) du
∣∣∣4 + E

∣∣∣∫ t

s

σ2
n(u) dBu

∣∣∣2
. ‖µ‖4∞|s− t|4 + ‖σ‖4∞|s− t|2.

By Kolmogorov’s criterion (e.g. Van der Vaart and Wellner, page 104) it
follows that the sequence of processes X(n) is uniformly tight in the met-
ric space C[0,∞), equipped with the topology of uniform convergence on
compacta. By Prohorov’s theorem it contains a weakly converging subse-
quence. For simplicity of notation we assume that the whole sequence X(n)

converges in distribution in C[0,∞) to a process X. We shall show that X
solves the martingale problem, and then can complete the proof by applying
Theorem 7.15.

The variable X0 is the limit in law of the sequence X
(n)
0 and hence is

equal in law to ξ.
For a twice continuously differentiable function f :R 7→ R with compact

support, an application of Itô’s formula and (7.17) shows that the process

(7.18) f(X
(n)
t )− f(X

(n)
0 )−

∫ t

0

(
µn(s)f ′(X(n)

s ) + 1
2σ

2
n(s)f ′′(X(n)

s )
)
ds

is a martingale. (Cf. the discussion before the statement of Theorem 7.15.)
By assumption the functions µ and σ are uniformly continuous on com-
pacta. Hence for every fixed M the moduli of continuity

m(δ) = sup
|x−y|≤δ
|x|∨|y|≤M

∣∣µ(x)− µ(y)
∣∣, s(δ) = sup

|x−y|≤δ
|x|∨|y|≤M

∣∣σ(x)− σ(y)
∣∣
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converge to zero as δ ↓ 0. The weak convergence of the sequence X(n)

implies the weak convergence of the sequence sups≤t |X
(n)
s |, for every

fixed t ≥ 0. Therefore, we can choose M such that the events Fn =

{sups≤t |X
(n)
s | ≤M} possess probability arbitrarily close to one, uniformly

in n. The weak convergence also implies that, for every fixed t ≥ 0,

∆n: = sup
|u−v|<2−n,u≤v≤t

|X(n)
u −X(n)

v | P→ 0.

On the event Fn∣∣∣∫ t

0

(
µn(s)− µ(X(n)

s )
)
f ′(X(n)

s ) ds
∣∣∣ ≤ tm(∆n)‖f ′‖∞ P→ 0.

Combining this with a similar argument for σ2
n we conclude that the se-

quence of processes in (7.18) is asymptotically equivalent to the sequence
of processes

Mn
t : = f(X

(n)
t )− f(X

(n)
0 )−

∫ t

0

Af(X(n)
s ) ds.

These processes are also uniformly bounded on compacta. The martingale

property of the processes in (7.18) now yields that EMn
t g(X

(n)
u :u ≤ s)→ 0

for every bounded, continuous function g:C[0, s] 7→ R. Because the map

x 7→ f(xt)− f(x0)−
∫ t

0
Af(xs) ds is also continuous and bounded as a map

from C[0,∞) to R, this implies that

E
(
f(Xt)− f(Xs)−

∫ t

s

Af(Xu) du
)
g(Xu:u ≤ s) = 0.

We conclude that X is a martingale relative to its natural filtration. It is
automatically also a martingale relative to the completion of its natural
filtration. Because X is right continuous, it is again a martingale relative
to the right-continuous version of its completed natural filtration, by The-
orem 4.6.

Thus X solves the martingale problem, and there exists a weak solution
to the diffusion equation with initial law the law of X0, by Theorem 7.15.

7.19 Lemma (Burkholder-Davis-Gundy). For every p ≥ 2 there exists a

constant Cp such that E|Mt|p ≤ CpE[M ]
p/2
t for every continuous martingale

M , 0 at 0, and every t ≥ 0.

Proof. Define m = p/2 and Yt = cM2
t + [M ]t for a constant c > 0 to be

determined later. By Itô’s formula applied with the functions x 7→ x2m and
(x, y) 7→ (cx2 + y)m we have that

dM2m
t = 2mM2m−1

t dMt + 1
22m(2m− 1)M2m−2

t d[M ]t,

dY mt = mY m−1
t 2cMt dMt +mY m−1

t d[M ]t

+ 1
2

(
m(m− 1)Y m−2

t 4c2M2
t +mY m−1

t 2c
)
d[M ]t.
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Assume first that the process Y is bounded. Then the integrals of the
two first terms on the right are martingales. Taking the integrals and next
expectations we conclude that

EM2m
t = E

∫ t

0

1
22m(2m− 1)M2m−2

s d[M ]s,

EY mt = E

∫ t

0

mY m−1
s d[M ]s + E

∫ t

0

1
2m(m− 1)Y m−2

s

+ 4c2M2
s d[M ]s + E

∫ t

0

1
2mY

m−1
s 2c d[M ]s.

The middle term in the second equation is nonnegative, so that the sum of
the first and third terms is bounded above by EY mt . Because M2

t ≤ Yt/c,
we can bound the right side of the first equation by a multiple of this sum.
Thus we can bound the left side EM2m

t of the first equation by a multiple
of the left side EY mt of the second equation. Using the inequality |x+y|m ≤
2m−1(xm + ym) we can bound EY mt by a multipe of cmEM2m

t + E[M ]mt .
Putting this together, we obtain the desired inequality after rearranging
and choosing c > 0 sufficiently close to 0.

If Y is not uniformly bounded, then we stop M at the time Tn =
inf{t ≥ 0: |Yt| > n}. Then Y Tn relates to MTn in the same way as Y to
M and is uniformly bounded. We can apply the preceding to find that the
desired inequality is valid for the stopped process M . Next we let n → ∞
and use Fatou’s lemma on the left side and the monotone convergence
theorem on the right side of the inequality to see that it is valid for M as
well.

Within the context of weak solutions to stochastic differential equa-
tions “uniqueness” of a solution should not refer to the underlying filtered
probability space, but it does make sense to speak of “uniqueness in law”.
Any solution X in a given setting induces a probability distribution on the
metric space C[0,∞). A solution X is called unique-in-law if any other solu-
tion X̃, possibly defined in a different setting, induces the same distribution
on C[0,∞). Here X and X̃ are understood to possess the same distribution
if the vectors (Xt1 , . . . , Xtk) and (X̃t1 , . . . , X̃tk) are equal in distribution for
every 0 ≤ t1 ≤ · · · ≤ tk. (This corresponds to using on C[0,∞) the σ-field
of all Borel sets of the topology of uniform convergence on compacta.)

The last assertion of Theorem 7.8 is exactly that, under the conditions
imposed there, that the solution of the stochastic differential equation is
unique-in-law. Alternatively, there is an interesting sufficient condition for
uniqueness in law in terms of the Cauchy problem accompanying the differ-
ential operator A. The Cauchy problem is to find, for a given initial function
f , a solution u: [0,∞)× R 7→ R to the partial differential equation

∂u

∂t
= Au, u(0, ·) = f.



7.3: Markov Property 153

Here ∂u/∂t is the partial derivative relative to the first argument of u,
whereas the operator A on the right works on the function x 7→ u(t, x) for
fixed t. We make it part of the requirements for solving the Cauchy problem
that the partial derivatives ∂u/∂t and ∂2u/∂x2 exist on (0,∞) × R and
possess continuous extensions to [0,∞)× R.

A sufficient condition for solvability of the Cauchy problem, where the
solution also satisfies the condition in the next theorem, is that the functions
µ and σ2 are Hölder continuous and that σ2 is bounded away from zero.
See Stroock and Varadhan, Theorem 3.2.1.

For a proof of the following theorem, see Karatzas and Shreve, pages
325–427 or Stroock and Varadhan.

7.20 Theorem. Suppose that the accompanying Cauchy problem admits
for every twice continuous differentiable function f with compact support
a solution u which is bounded and continuous on the strips [0, t] × R, for
every t ≥ 0. Then for any x ∈ R the solution X to the diffusion equation
with initial law X0 = x is unique.

7.3 Markov Property

In this section we consider the diffusion equation

Xt = X0 +

∫ t

0

µ(Xu) du+

∫ t

0

σ(Xu) dBu.

Evaluating this equation at the time points t+s and s, taking the difference,
and making the change of variables u = v + s in the integrals, we obtain

Xs+t = Xs +

∫ t

0

µ(Xs+v) dv +

∫ t

0

σ(Xs+v) dBs+v.

Because the stochastic integral depends only on the increments of the inte-
grator, the process Bs+v can be replaced by the process B̃v = Bs+v − Bs,
which is a Brownian motion itself and is independent of Fs. The resulting
equation suggests that conditionally on Fs (and hence given Xs) the pro-
cess {Xs+t: t ≥ 0} relates to the initial value Xs and the Brownian motion
B̃ in the same way as the process X relates to the pair (Xs, B) (with Xs

fixed). In particular, the conditional law of the process {Xs+t: t ≥ 0} given
Fs should be the same as the law of X given the initial value Xs (considered
fixed).

This expresses that a solution of the diffusion equation is a time-
homogeneous Markov process: at any time the process will given its past
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evolve from its present according to the same probability law that deter-
mines its evolvement from time zero. This is indeed true, even though a
proper mathematical formulation is slightly involved.

A Markov kernel from R into R is a map (x,B) 7→ Q(x,B) such that
(i) the map x 7→ Q(x,B) is measurable, for every Borel set B;

(ii) the map B 7→ Q(x,B) is a Borel measure, for every x ∈ R.
A general process X is called a time-homogeneous Markov process if for
every t ≥ 0 there exists a Markov kernel Qt such that, for every Borel set
B and every s ≥ 0,

P(Xs+t ∈ B|Xu:u ≤ s) = Qt(Xs, B), a.s..

By the towering property of a conditional expectation the common value
in the display is then automatically also a version of P(Xs+t ∈ B|Xs). The
property expresses that the distribution of X at the future time s+ t given
the “past” up till time s is dependent on its value at the “present” time s
only. The Markov kernels Qt are called the transition kernels of the process.

Suppose that the functions µ and σ satisfy the conditions of Theo-
rem 7.8. In the present situation these can be simplified to the existence,
for every t ≥ 0 of a constant Ct such that, for all x, y ∈ [−t, t],

(7.21)

∣∣µ(x)− µ(y)
∣∣ ≤ Ct|x− y|,∣∣σ(x)− σ(y)
∣∣ ≤ Ct|x− y|,

and the existence of a constant C such that, for all x ∈ R,

(7.22)

∣∣µ(x)
∣∣ ≤ C(1 + |x|),∣∣σ(x)
∣∣ ≤ C(1 + |x|).

Under these conditions Theorem 7.8 guarantees the existence of a solution
Xx to the diffusion equation with initial value Xx

0 = x, for every x ∈ R,
and this solution is unique in law. The following theorem asserts that the
distribution Qt(x, ·) of Xx

t defines a Markov kernel, and any solution to the
diffusion equation is a Markov process with Qt as its transition kernels.

Informally, given Fs and Xs = x the distribution of Xs+t is the same
as the distribution of Xx

t .

7.23 Theorem. Assume that the functions µ, σ:R 7→ R satisfy (7.21)–
(7.22). Then any solution X to the diffusion equation (7.3) is a Markov
process with transition kernels Qt defined by Qt(x,B) = P(Xx

t ∈ B).

Proof. See Chung and Williams, pages 235–243. These authors (and most
authors) work within the canonical set-up where the process is (re)defined
as the identity map on the space C[0,∞) equipped with the distribution in-
duced by Xx. This is immaterial, as the Markov property is a distributional
property; it can be written as

E1Xs+t∈Bg(Xu:u ≤ s) = EQt(Xs, B)g(Xu:u ≤ s),
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for every measurable set B and bounded measurable function g:C[0, s] 7→
R. This identity depends on the law of X only, as does the definition of Qt.

The map x 7→
∫
f(y)Qt(x, dy) is shown to be continuous for every

bounded continuous function f :R 7→ R in Lemma 10.9 of Chung and
Williams. In particular, it is measurable. By a monotone class argument
this can be seen to imply that the map x 7→ Qt(x,B) is measurable for
every Borel set B.



8
Option Pricing
in Continuous Time

In this chapter we discuss the Black-Scholes model for the pricing of deriva-
tives. Given the tools developed in the preceding chapters it is relatively
straightforward to obtain analogues in continuous time of the discrete time
results for the Cox-Ross-Rubinstein model of Chapter 3. The model can be
set up for portfolios consisting of several risky assets, but for simplicity we
restrict to one such asset.

We suppose that the price St of a stock at time t ≥ 0 satisfies a
stochastic differential equation of the form

(8.1) dSt = µtSt dt+ σtSt dWt.

Here W is a Brownian motion process on a given filtered probability space
(Ω,F , {Ft},P), and {µt: t ≥ 0} and {σt: t ≥ 0} are predictable processes.
The filtration {Ft} is the completed natural filtration generated by W ,
and it is assumed that S is continuous and adapted to this filtration. The
choices µt = µ and σt = σ, for constants µ and σ, give the original Black-
Scholes model. These choices yield a stochastic differential equation of the
type considered in Chapter 7, and Theorem 7.8 guarantees the existence
of a solution S in this case. (The solution can also be explicitly written
as an exponential of Brownian motion with drift. See later.) For many
other choices the existence of a solution is guaranteed as well. For our
present purpose it is enough to assume that there exist a continuous adapted
solution S.

The process σ is called the volatility of the stock. It determines how
variable or “volatile” the movements of the stock are. We assume that this
process is strictly positive. The process µ gives the drift of the stock. It is
responsible for the exponential growth of a typical stock price.

Next to stocks our model allows for bonds, which in the simplest case
are riskless assets with a predetermined yield, much as money in a savings
account. More generally, we assume that the price Rt of a bond at time t
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satisfies the differential equation

dRt = rtRt dt, R0 = 1.

Here rt is some continuous adapted process called the interest rate pro-
cess. (Warning: r is not the derivative of R, as might be suggested by the
notation.) The differential equation can be solved to give

Rt = e

∫ t
0
rs ds.

This is the “continuously compounded interest” over the interval [0, t]. In
the special case of a constant interest rate rt = r this reduces to Rt = ert.

A portfolio (A,B) is defined to be a pair of predictable processes A
and B. The pair (At, Bt) gives the numbers of bonds and stocks owned at
time t, giving the portfolio value

(8.2) Vt = AtRt +BtSt.

The predictable processes A and B can depend on the past until “just
before t” and we may think of changes in the content of the portfolio as
a reallocation of bonds and stock that takes place just before time t. A
portfolio is “self-financing” if such reshuffling can be carried out without
import or export of money, whence changes in the value of the portfolio are
due only to changes in the values of the underlying assets. More precisely,
we call the portfolio (A,B) self-financing if

(8.3) dVt = At dRt +Bt dSt.

This is to be interpreted in the sense that V must be a semimartingale
satisfying V = V0 +A ·R+B ·S. It is implicitly required that A and B are
suitable integrands relative to R and S.

A contingent claim with expiry time T > 0 is defined to be an FT -
measurable random variable. It is interpreted as the value at the expiry
time of a “derivative”, a contract based on the stock. The European call
option, considered in Chapter 3, is an important example, but there are
many other contracts. Some examples of contingent claims are:
(i) European call option: (ST −K)+.

(ii) European put option: (K − ST )+.

(iii) Asian call option:
(∫ T

0
St dt−K

)+
.

(iv) lookback call option: ST −min0≤t≤T St,
(v) down and out barrier option: (ST −K)+1{min0≤t≤T St ≥ H}.
The constants K and H and the expiry time T are fixed in the contract.
There are many more possibilities; the more complicated contracts are re-
ferred to as exotic options. Note that in (iii)–(v) the claim depends on the
history of the stock price throughout the period [0, T ]. All contingent claims
can be priced following the same no-arbitrage approach that we outline be-
low.
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A popular option that is not covered in the following is the American
put option. This is a contract giving the right to sell a stock at any time in
[0, T ] for a fixed price K. The value of this contract cannot be expressed in a
contingent claim, because its value depends on an optimization of the time
to exercise the contract (i.e. sell the stock). Pricing an American put option
involves optimal stopping theory, in addition to the risk-neutral pricing we
discuss below. A bit surprising is that a similar complication does not arise
with the American call option, which gives the right to buy a stock at any
time until expiry time. It can be shown that it is never advantageous to
exercise a call option before the expiry time and hence the American call
option is equivalent to the European call option.

Because the claims we wish to evaluate always have a finite term T ,
all the processes in our model matter only on the interval [0, T ]. We may
or must understand the assumptions and assertions accordingly.

In the discrete time setting of Chapter 3 claims are priced by reference
to a “martingale measure”, defined as the unique measure that turns the
“discounted stock process” into a martingale. In the present setting the
discounted stock price is the process S̃ defined by S̃t = R−1

t St. By Itô’s
formula and (8.1),

(8.4) dS̃t = − St
R2
t

dRt +
1

Rt
dSt =

µt − rt
σt

σt
Rt
St dt+

σt
Rt
St dWt.

Here and in the following we apply Itô’s formula with the function r 7→
1/r, which does not satisfy the conditions of Itô’s theorem as we stated
it. However, the derivations are correct, as can be seen by substituting the
explicit form for Rt as an exponential and next applying Itô’s formula with
the exponential function.

Under the true measure P governing the Black-Scholes stochastic dif-
ferential equation (8.1) the process W is a Brownian motion and hence S̃
is a local martingale if its drift component vanishes, i.e. if µt ≡ rt. This
will rarely be the case in the real world. Girsanov’s theorem allows us to
eliminate the drift part by a change of measure and hence provides the
martingale measure that we are looking for. The process

θt =
µt − rt
σt

is called the market price of risk. If it is zero, then the real world is already
“risk-neutral”; if not, then the process θ measures the deviation from a
risk-neutral market relative to the volatility process.

Let Z = E(−θ ·W ) be the exponential process of −θ · Z, i.e.

Zt = e
−
∫ t
0
θs dWs−

1
2

∫ t
0
θ2s ds.

We assume that the process θ is such that the process Z is a martingale (on
[0, T ]). For instance, this is true under Novikov’s condition. We can next



8: Option Pricing in Continuous Time 159

define a measure P̃ on (Ω,F ,P) by its density dP̃ = ZT dP relative to P.
Then the process W̃ defined by

W̃t = Wt +

∫ t

0

θs ds

is a Brownian motion under P̃, by Corollary 6.16, and, by the preceding
calculations,

(8.5) dS̃t =
σt
Rt
St dW̃t.

It follows that S̃ is a P̃-local martingale. As in the discrete time setting the
“reasonable price” at time 0 for a contingent claim with pay-off X is the
expectation under the martingale measure of the discounted value of the
claim at time T , i.e.

V0 = ẼR−1
T X,

where Ẽ denotes the expectation under P̃. This is a consequence of eco-
nomic, no-arbitrage reasoning, as in Chapter 3, and the following theorem.

8.6 Theorem. Suppose that the process E(θ · Q)T is a martingale and
define dP̃ = E(θ · Q)T dP. Let X be a nonnegative contingent claim with
ẼR−1

T |X| < ∞. Then there exists a self-financing strategy with value pro-
cess V such that
(i) V ≥ 0 up to indistinguishability.

(ii) VT = X almost surely.
(iii) V0 = ẼR−1

T X.

Proof. The process S̃ = R−1S is a continuous semimartingale under P and
a continuous local martingale under P̃, in view of (8.5). Let Ṽ be a cadlag
version of the martingale

Ṽt = Ẽ
(
R−1
T X| Ft

)
.

Suppose that there exists a predictable process B such that

dṼt = Bt dS̃t.

Then Ṽ is continuous, because S̃ is continuous, and hence predictable.
Define

A = Ṽ −BS̃.
Then A is predictable, because Ṽ , B and S̃ are predictable. The value of
the portfolio (A,B) is given by V = AR + BS = (Ṽ − BS̃)R + BS = RṼ
and hence, by Itô’s formula and (8.4),

dVt = Ṽt dRt +Rt dṼt = (At +BtS̃t) dRt +RtBt dS̃t

= (At +BtR
−1
t St) dRt +RtBt

(
−StR−2

t dRt +R−1
t dSt

)
= At dRt +Bt dSt.
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Thus the portfolio (A,B) is self-financing. Statements (i)–(iii) of the theo-
rem are clear from the definition of Ṽ and the relation V = RṼ .

We must still prove the existence of the process B. In view of (8.5) we
need to determine this process B such that

dṼt = Bt
σtSt
Rt

dW̃t.

The process W̃ is a P̃-Brownian motion and Ṽ is a P̃-martingale. If the un-
derlying filtration would be the completion of the natural filtration gener-
ated by W̃ , then the representation theorem for Brownian local martingales,
Theorem 6.6, and the fact that σtSt is strictly positive would immediately
imply the result. By assumption the underlying filtration is the comple-
tion of the natural filtration generated by W . Because W and W̃ differ by
the process

∫ t
0
θs ds, it appears that the two filtrations are not identical

and hence this argument fails in general. (In the special case in which µt,
σt and rt and hence θt are deterministic functions the two filtrations are
clearly the same and hence the proof is complete at this point.) We can
still prove the desired representation by a detour. We first write the P̃-local
martingale Ṽ in terms of P-local martingales through

Ṽt =
E(R−1

T XZT | Ft)
E(ZT | Ft)

=
Ut
Zt
, a.s..

Here U , defined as the numerator in the preceding display, is a P-martingale
relative to {Ft}. By the representation theorem for Brownian martingales
the process U possesses a continuous version and there exists a predictable
process C such that U = U0+C ·W . The exponential process Z = E(−θ ·W )
satisfies dZ = Z d(−θ ·W ) = −Zθ dW and hence d[Z]t = Z2

t θ
2
t dt. Careful

application of Itô’s formula gives that

dṼt = −Ut
Z2
t

dZt +
dUt
Zt

+ 1
2

2Ut
Z3
t

d[Z]t −
1

Z2
t

d[U,Z]t

= −Ut
Z2
t

(−Ztθt) dWt +
Ct dWt

Zt
+
Ut
Z3
t

Z2
t θ

2
t dt+

1

Z2
t

CtZtθt dt

=
Utθt + Ct

Zt
dW̃t.

This gives the desired representation of Ṽ in terms of W̃ .

We interpret the preceding theorem economically as saying that V0 =
ẼR−1

T X is the just price for the contingent claim X. In general it is not
easy to evaluate this explicitly, but for Black-Scholes option pricing it is.

First the stock price can be solved explicitly from (8.1) to give

St = S0e

∫ t
0

(µs−
1
2σ

2
s) ds+

∫ t
0
σs dWs .
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Because we are interested in this process under the martingale measure P̃,
it is useful to write it in terms of W̃ as

St = S0e

∫ t
0

(rs−
1
2σ

2
s) ds+

∫ t
0
σs dW̃s .

Note that the drift process µ does not make part of this equation: it plays
no role in the pricing formula. Apparently the systematic part of the stock
price diffusion can be completely hedged away. If the volatility σ and the
interest rate r are constant in time, then this can be further evaluated, and
we find that, under P̃,

log
St
S0
∼ N

(
(r − 1

2σ
2)t, σ2t

)
.

This is exactly as in the limiting case for the discrete time situation in
Chapter 3. The price of a European call option can be written as, with Z
a standard normal variable,

e−rTE
(
S0e

(r− 1
2σ

2)T+σ
√
TZ −K

)+

.

It is straightforward calculus to evaluate this explicitly, and the result is
given already in Chapter 3.

The exact values of most of the other option contracts mentioned pre-
viously can also be evaluated explicitly in the Black-Scholes model. This is
more difficult, because the corresponding contingent claims involve the full
history of the process S, not just the marginal distribution at some fixed
time point.

If the processes σ and r are not constant, then the explicit evaluation
may be impossible. In some cases the problem can be reduced to a partial
differential equation, which can next be solved numerically.

Assume that the value process V of the replicating portfolio as in
Theorem 8.6 can be written as Vt = f(t, St) for some twice differentiable
function f .‡ Then, by Itô’s formula and (8.1),

dVt = D1f(t, St) dt+D2f(t, St) dSt + 1
2D22f(t, St)σ

2
tS

2
t dt.

By the self-financing equation and the definition of V = AR+BS, we have
that

dVt = At dRt +Bt dSt = (Vt −BtSt)rt dt+Bt dSt.

The right sides of these two equations are identical if

D1f(t, St) + 1
2D22f(t, St)σ

2
tS

2
t =

(
Vt −BtSt

)
rt,

D2f(t, St) = Bt.

‡ I do not know in what situations this is a reasonable assumption.
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We can substitute Vt = f(t, St) in the right side of the first equation,
and replace Bt by the expression given in the second. If we assume that
σt = σ(t, St) and rt = r(t, St), then the resulting equation can be written
in the form

ft + 1
2fssσ

2s2 = fr − fssr,

where we have omitted the arguments (t, s) from the functions ft, fss, σ,
f , fs and r, and the indices t and s denote partial derivatives relative
to t or s of the function (t, s) 7→ f(t, s). We can now try and solve this
partial differential equation, under a boundary condition that results from
the pay-off equation. For instance, for a European call option the equation
f(T, ST ) = VT = (ST −K)+ yields the boundary condition

f(T, s) = (s−K)+.

8.7 EXERCISE. Show by an economic argument that the value of a call
option at time t is always at least (St− e−r(T−t)K)+, where r is the (fixed)
interest rate. [Hint: if not, show that any owner of a stock would gain
riskless profit by: selling the stock, buying the option and putting e−rtK
in a savings account, sitting still until expiry and hence owning an option
and money K at time T , which is worth at least ST .]

8.8 EXERCISE. Show, by “economic reasoning”, that the early exercise of
an American call option never pays. [Hint: if exercised at time t, then the
value at time t is (St −K)+. This is less than (St − e−r(T−t)K)+.]

8.9 EXERCISE. The put-call parity for European options asserts that the
values Pt of a put and Ct of a call option at t with strike price K and expiry
time T based on the stock S are related as St + Pt = Ct + Ke−r(T−t),
where r is the (fixed) interest rate. Derive this by an economic argument,
e.g. comparing portfolios consisting of one stock and one put option, or one
call option and an amount Ke−rT in a savings account. Which one of the
two portfolios would you prefer?
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Random Measures

A random measure is a map from a probability space into the collection of
measures on a given measurable space. In this chapter the latter measurable
space is the space [0,∞) × D for a given metric space D. Then we obtain
stochastic processes in “time” if we view the random measure as a function
of the first coordinate. In particular, we are interested in integer-valued
random measures, with as special example marked point processes.

9.1 Compensators

Let (Ω,F , {Ft}, P ) be a filtered probability space and let (D,D) be a com-
plete separable metric space with its Borel σ-field D. We think of a map
X: [0,∞)×Ω×D→ R as a stochastic process (Xt: t ≥ 0) indexed by time
and taking values in the space D, or alternatively as a stochastic process(
Xt,y: (t, y) ∈ [0,∞)× D

)
indexed by [0,∞)× D and taking values in R.

We call P̃ = P×D and Õ = O×D the predictable σ-field and optional
σ-field on the space [0,∞)×Ω×D, respectively, and call a map X: [0,∞)×
Ω×D→ R predictable or optional if it is measurable relative to the σ-field
P̃ or Õ.

9.1 Definition. A random measure on [0,∞) × D is a map (ω,B) 7→
µ(ω,B) from Ω× (B∞ ×D) 7→ R such that:
(i) The map ω 7→ µ(ω,B) is measurable for every B ∈ B∞ ×D.

(ii) The map B 7→ µ(ω,B) is a measure for every ω ∈ Ω.
(iii) µ(ω, {0} × D) = 0 for every ω ∈ Ω.

The first two requirements characterize a random measure as a tran-
sition kernel from Ω into [0,∞) × D. If the total mass µ

(
ω, [0,∞) × D

)
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were equal to 1 for every ω, then µ would be a Markov kernel from Ω into
[0,∞)×D, but in many examples the total mass will not be finite. The third
requirement corresponds to the usual convention that “nothing happens at
time zero”.

We might think of a random measure as the collection of stochastic
processes (t, ω) 7→ µ

(
ω, [0, t]×D), for D ranging over D. If these processes

are finite for sufficiently many measurable sets D, then they give a complete
description of the random measure. This requirement is not included in
the definition of a random measure, but appears to be satisfied in many
examples. We can consider more generally, for a jointly measurable map
X: [0,∞) × Ω × D 7→ R, the stochastic process X ∗ µ: [0,∞) × Ω 7→ R
defined by the Lebesgue integrals (if they exist)

(X ∗ µ)t(ω) =

∫
[0,t]

∫
D
X(s, ω, y)µ(ω, ds, dy).

The positioning of the differential symbol ”d” in such expressions as
µ(ω, ds, dy) is to indicate the arguments over which integration is carried
out. As before, we often leave out the argument ω and write the preceding
integral as

∫ t
0

∫
Xs,y dµs,y. The expectation of the process X ∗ µ can be

written in the form

E(X ∗ µ)t =

∫
X1[0,t] d(µ⊗ P ),

for µ⊗P the measure on the measurable space
(
[0,∞)×Ω×D,B∞×F×D

)
given by

d(µ⊗ P )(t, ω, y) = µ(ω, dt, dy) dP (ω).

This is to say that (µ⊗ P )([0, t]× F ×D) =
∫
F
µ(ω, [0, t]×D

)
dP (ω), for

every t ≥ 0 and measurable sets F ∈ F and D ∈ D.
The process X ∗ µ has cadlag sample paths t 7→ (X ∗ µ)t. We shall be

interested in random measures such that this process is adapted for optional
processes X, in which case the measure is called optional. Furthermore,
there is a special role for random measures such that the process X ∗ µ is
predictable for predictable processes X.

9.2 Definition. The random measure µ is called:
(i) predictable if the process X ∗ µ is predictable for every nonnegative

predictable process X.
(ii) optional if the process X ∗µ is optional for every nonnegative optional

process X.
(iii) σ-finite if there exists a strictly positive, predictable process V with

EV ∗ µ∞ <∞.
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9.3 EXERCISE. Suppose that the process t 7→ µ
(
ω, [0, t] × D

)
is finite

for a countable collection of sets D whose union is D. Show that a random
measure is predictable or optional if and only if the process t 7→ µ

(
ω, [0, t]×

D
)

is predictable or optional for every D ∈ D. [Hint: for a predictable X
of the form X = 1[0,T ]×D for a stopping time T and D ∈ D the process

(X ∗ µ)t = ZTt , for Zt = µ
(
[0, t] × D

)
, is predictable, because a stopped

predictable process is predictable. Similarly, for an optional process of the
type X = 1[T,∞)×D the process (X ∗ µ)t = 1[T,∞)(Zt − ZT−) is optional.
Extend by monotone class arguments.]

We shall only deal with σ-finite random measures. An equivalent de-
scription of σ-finiteness is that the measure µ⊗P on the measurable space(
[0,∞)× Ω× D, P̃

)
is σ-finite in the usual sense.

Warning. The requirement that V in (iii) be predictable or the restric-
tion of µ⊗P to the predictable σ-field P̃ in the preceding remark make the
requirement of σ-finiteness stronger. For this reason other authors use the
phrase “predictable σ-finite”. Because we shall not consider other types of
σ-finiteness, the abbreviation to “σ-finite” will not cause confusion.

If the process Z = X ∗ µ is optional and locally integrable, then it
possesses a compensator A by the Doob-Meyer theorem: a predictable pro-
cess A such that X ∗ µ − A is a local martingale. The following theorem
shows that this compensator can be written in the form A = X ∗ ν for a
predictable random measure ν. This is called the predictable projection or
compensator of µ.

9.4 Theorem. For every optional, σ-finite random measure µ there exists
a predictable random measure ν such that X ∗µ−X ∗ν is a local martingale
for every optional process X such that |X| ∗ µ is locally integrable.

Proof. Let V be a strictly positive, predictable process such that V ∗ µ is
integrable, and let A be the compensator of the process V ∗ µ. For every
bounded measurable process X on [0,∞)×Ω×D the expectation m(X): =
E
(
(XV ) ∗ µ

)
∞ = (µ⊗ P )(XV ) is well defined and defines a measure m on

([0,∞)×Ω×D,B∞ ×F ×D). The martingale property of V ∗ µ−A gives
that, for every s < t and Fs ∈ Fs,

m
(
(s, t]× Fs × D

)
= E1Fs

[
(V ∗ µ)t − (V ∗ µ)s

]
= E1Fs(At −As).

The sets {0}×F0 and the sets of the form (s, t]×Fs generate the predictable
σ-field P. By assumption m

(
{0}×Ω×D

)
= 0. Therefore the display shows

that the restriction of the marginal of m on [0,∞)×Ω to P is given by the
measure m1 defined by dm1(t, ω) = dAt(ω) dP (ω). Let

dm(t, ω, y) = dm2(y| t, ω) dAt(ω) dP (ω)

be a disintegration of the restriction of m to P ×D relative to its marginal
m1. Next define ν(ω, dt, dy) = V (ω, t, y)−1dm2(y| t, ω) dAt(ω).??
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9.5 Example (Increasing process). A cadlag nondecreasing process A
with A0 = 0 defines a random measure on [0,∞)×{1} through µ

(
ω, [0, t]×

{1}
)

= At(ω). That this defines a random measure for every fixed ω is a fact

from measure theory; the measurability of ω 7→ µ
(
ω,B × {1}

)
is obvious

for B = [0, t], and follows by a monotone class argument for general Borel
sets B ⊂ [0,∞).

The random measure µ is optional or predictable if and only if the
process A is optional or predictable.

If the process A is locally integrable, then the random measure µ is σ-
finite. If B is the compensator of A, then X ∗B is the compensator of X ∗A
for every sufficiently regular process X. It follows that the compensator of
µ is attached to the process B in the same way as µ is attached to A.

Warning. It is not included in the definition of a random measure
µ that the process (t, ω) 7→ µ(ω, [0, t] × D), for a fixed measurable set D,
is finite-valued. Not even σ-finiteness need assure this. Thus we cannot
in general identify these processes resulting from a random measure with
increasing processes. In that sense the random measures in the preceding
example are rather special. The jump measure of a semimartingale (see??)
provides an example that motivates to work with random measures in the
present generality.

9.2 Marked Point Processes

Random measures with values in the integers form a special class of random
measures, which includes point processes and marked point processes. We
deal only with σ-finite, integer-valued random measures. These correspond
to random measures that, for each ω, are a counting measure on a countable
set of points (which often will depend on ω). Here a “counting measure” is
a discrete measure with atoms of probability one (or zero) only.

9.6 Definition. A σ-finite random measure µ is called integer-valued if
for almost every ω the measure B 7→ µ(ω,B) is a counting measure on a
countable set of points in (0,∞) × D that intersects each set of the form
{t} × D in at most one point.

* 9.7 EXERCISE. Show that a σ-finite random measure µ is integer-valued
iff µ(ω,B) ∈ N̄ and µ(ω, {t}×D) ∈ {0, 1} for every B ∈ B∞ ×D and every
(ω, t) ∈ Ω × [0,∞). [Hint: For a σ-finite, integer-valued random measure
µ there exists a (predictable) strictly positive map V such that V ∗ µ∞
is finite almost surely. This implies that for almost every ω the measure
B 7→ µ(ω,B) can have at most countably many atoms.]
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Another way of defining a σ-finite integer-valued random measure is to
say that it is a point process on [0,∞)×D satisfying the further requirement
that each set {t} × D contain at most one point. The latter restriction is
somewhat odd. If t is interpreted as a “time” parameter, the property can
be paraphrased by saying that “at most one event can happen at each time
point”.

For a σ-finite integer-valued measure µ there exists for almost every ω
at most countable many values t = t(ω) > 0 such that µ(ω, {t} × D) > 0.
For each such t the measure of the set {t}×D is exactly 1, and there exists a
unique point Zt(ω) ∈ D such that µ(ω, {t}×{Zt(ω)}) = 1. This explains the
following representation, which shows that the points t(ω) can be chosen
to be given by a sequence of stopping times if the random measure µ is
optional.

9.8 Lemma. A random measure µ is optional, σ-finite and integer-valued
if and only if there exists a sequence of strictly positive stopping times Tn
with disjoint graphs and an optional process Z: [0,∞)× Ω 7→ D such that,
up to evanescence,

µ(ω, [0, t]×D) =
∑
n

1Tn(ω)≤t1D
(
ZTn(ω)(ω)

)
.

The optionality of the process Z in the preceding lemma implies that
the variable ZTn is FTn -measurable for every stopping time Tn. This sug-
gests an interpretation of a “mark” ZTn being generated at the “event time”
Tn. The random measure µ is the sum of the Dirac measures at all points
(Tn, ZTn) ∈ (0,∞)× D.

The stopping times in the lemma cannot necessarily be ordered in a
sequence T1 ≤ T2 ≤ · · ·. There may not be a smallest time Tn and the values
Tn may accumulate at several, even infinitely many, points. Integer-valued
random measures for which the sequence Tn can be ordered in a sequence
are of special interest. We call an integer-valued random measure µ a marked
point process if it possesses a representation as in the preceding lemma for
a strictly increasing sequence of stopping times 0 < T1 < T2 < · · ·. We
may then think of these stopping times as the times of a sequence of events
and of ZT1

, ZT2
, . . . as “marks” that are generated at the consecutive event

times.
A multivariate point process is the further specialization of a marked

point process with a finite mark space. If the mark space is D = {1, . . . , k}
and the number of events in finite intervals is finite, then we may identify the
marked point process with the vector (N1, . . . , Nk) of processes (Ni)t(ω) =
µ
(
ω, [0, t]× {i}

)
.

Even if the times T1 < T2 < · · · can be ordered in a sequence, the
general definition of an integer-valued random measure does not imply that
this sequence increases indefinitely. If Tn ↑ T for a finite limit T , then
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the corresponding marked point process is said to be explosive. A simple
example is a process N ◦ Φ for N a Poisson process and Φ an increasing
map of [0, 1] onto [0,∞]. Because a Poisson process possesses infinitely many
events in (0,∞), the process N ◦ Φ explodes on (0, 1).

Warning. Some authors restrict the term “multivariate point process”
to point processes without explosion.

The compensator ν of an integer-valued random measure is typically
not integer-valued, and may even have no atoms at all. In the proof of the
following lemma we establish the following identity, which characterizes
the atoms in the compensator as probabilities of “immediate” jumps in the
random measure. For every predictable time T :

(9.9) P
(
µ
(
{T} × D

)
= 1| FT−

)
= ν

(
{T} × D

)
.

The lemma shows that a compensator can always be chosen such that
ν(ω, {t} × D) ≤ 1 identically, mimicking this property of µ.

9.10 Lemma. Every integer-valued random measure possesses a compen-
sator ν with ν(ω, {t} × D) ≤ 1 for every (t, ω).

Proof. Given a predictable time T the process (t, ω, y) 7→ 1[T ](t, ω) is
predictable and hence the process M = 1[T ] ∗ (µ− ν) is a local martingale,
and even a martingale, because the process 1[T ] ∗ µ is bounded (by 1). The

process M can be alternatively described as Mt = (µ − ν)
(
{T} × D

)
1T≤t

and hence its jump process at T is given by ∆MT = (µ−ν)
(
{T}×D

)
. The

martingale property gives that E
(
∆MT | FT−

)
= 0 almost surely. This can

be written in the form (9.9).
It follows that ν(ω, {T} × D) ≤ 1 almost surely, for every predictable

time T . If ν
(
[0, t]×D

)
<∞ for all t, then the set

{
(t, ω): ν(ω, {t}×D) > 0

}
where the compensator possesses atoms are the locations of the jumps of the
predictable process t 7→ ν

(
ω, [0, t]×D

)
and hence is exhausted by a sequence

of predictable stopping times. Thus if we redefine the compensator on the
set where ν(ω, {t} × D) > 1, then we redefine it at most on the union of
countably many graphs of predictable times and on each graph at most
on a null set. Thus this gives another predictable measure that differs by
evanescence and possesses the property as in the lemma.

If the process ν
(
[0, t] × D

)
< ∞ is not finite, then we apply a similar

argument with the process V ∗ µt for a suitably strictly positive V .??

9.3 Change of Measure

An optional random measure µ defined on a filtered probability space
(Ω,F , {Ft},P) is obviously still an optional random measure on the same
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filtered space (Ω,F , {Ft}, P̃), but equipped with another probability mea-
sure P̃. In this section we show that if P̃ is absolutely continuous relative
to P, then the compensator νP̃ of µ relative to P̃ is absolutely continuous
relative to its compensator νP relative to P, and characterize the density
dνP̃/dνP as a conditional expectation of the density process of P̃ relative to
P.

If P̃t and Pt denote the restrictions of P̃ and P to Ft, the density process
of P̃ relatively to P is the process L with

Lt =
dP̃t
dPt

.

If P̃ � P, then the process L is a uniformly integrable P-martingale. The
definition as a Radon-Nikodym density for every t does define the process
L only up to a null set for every t, but L is unique up to evanescence if we
use the cadlag version of this martingale, as we will.

For a measurable process Y : [0,∞)×Ω×D 7→ [0,∞] let Y ν denote the
random measure

(Y ν)
(
ω, [0, t]× D

)
=

∫
[0,t]×D

Y (s, ω, z) ν(ω, ds, dz).

If Y is a predictable process and ν a predictable random measure, then
Y ν is a predictable random measure. The predictable measure Y ν is the
P̃-compensator of µ if and only if the process X ∗ µ − X ∗ (Y ν) is a P̃-
local martingale for every sufficiently integrable, predictable process X. By
Lemma 6.13 the latter is the case if the process L

(
X ∗ µ −X ∗ (Y ν)

)
is a

P-local martingale. We shall show that the appropriate process Y is

(9.11) Y =
Eµ⊗P(L| P̃)

L−
1L−>0.

Here Eµ⊗P(L| P̃) is a generalized conditional expectation of the random vari-
able L defined on the measure space

(
[0,∞)×Ω×D,B∞ ×F ×D, µ⊗ P

)
.

If the measure µ ⊗ P were a probability measure, then Eµ⊗P(L| P̃) would
be the ordinary conditional expectation. The “generalized” is because the
measure µ⊗ P may be σ-finite only.

For a process L ≥ 0 the conditional expectation L′ = Eµ⊗P(L| P̃) is

defined to be a P̃-measurable process such that, for every P̃-measurable,
nonnegative process X,

(µ⊗ P)L′X = (µ⊗ P)LX.

The existence of this generalized conditional expectation follows from the
Radon-Nikodym theorem, applied to the measure B 7→ (µ ⊗ P)L1B on
([0,∞)×Ω×D, P̃), provided that this measure is σ-finite. This measure is
well defined on the larger σ-field B∞×F ×D. The σ-finiteness refers to its
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restriction to the predictable σ-field P̃, and is not an automatic consequence
of the σ-finiteness of µP, which we assume throughout, as L is typically not
predictable. If it defined, then the conditional expectation is unique and
finite-valued up to µ⊗P-null sets. For a general, not necessarily nonnegative,
process L the conditional expectation E⊗P(LP̃) can be defined by taking
differences, provided the measure B 7→ (µ⊗ P)|L|1B is σ-finite on P̃.

Warning. In the present case the variable L depends on the first two
arguments of (t, ω, z) only, but Eµ⊗P(L| P̃) is by definition a function of all
three.

9.12 Theorem. If µ is a P-σ-finite, optional random measure with com-
pensator ν and P̃ � P, then µ is a P̃-σ-finite, optional random measure
with compensator Y ν, for the process Y given by (9.11).

Proof. As explained, it suffices to prove that the process L
(
X ∗ µ − X ∗

(Y ν)
)

is a P-local martingale, for a sufficiently large collection of predictable
processes X. This follows by taking differences if we can show that the
following two processes are P-local martingales:

L(X ∗ µ)− L− ·
(
X ∗ (Y ν)

)
,

L
(
X ∗ (Y ν)

)
− L− ·

(
X ∗ (Y ν)

)
.

The definition of the quadratic variation process, or Itô’s formula, allows
to rewrite the second process as(

X ∗ (Y ν)
)
− · L+

[
L,X ∗ (Y ν)

]
=
(
X ∗ (Y ν)

)
· L,

because the process X∗(Y ν) is predictable and of locally bounded variation.
(Cf. Exercise 9.13.) In view of the predictability of the process X ∗ (Y ν)
the right side is a P-local martingale.

By the same arguments,

L(X ∗ µ) = (X ∗ µ)− · L+ L · (X ∗ µ).

The first term on the right is a P-local martingale. To conclude the proof we
show that the second process, which of locally bounded variation, possesses
compensator L− ·

(
X ∗ (Y ν)

)
. For any X ≥ 0 and stopping time T ,

E
(
L · (X ∗ µ)

)
T

= EµP1[0,T ]LX = EµP1[0,T ]EµP(L| P̃)X.

By Lemma 6.12 the sample paths of L remain at zero if they ever reach
zero. In particular L− = 0 implies that L = 0 and hence we may restrict
the integral to the set L− > 0. Then the definition of Y allows to rewrite
the expectation as

EµP1[0,T ]Y L−X = E
[
L− ·

(
(XY ) ∗ µ

)]
T

= E
[
L− ·

(
(XY ) ∗ ν

)]
T

= E
[
L− ·

(
X ∗ (Y ν)

)]
T
.
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In the one before last step we use that the process Z ∗µ−Z ∗ ν, and hence
the process Z ′ · (Z ∗ µ− Z ∗ ν) is a local martingale, for every predictable
processes Z and Z ′. [Need integrability??] We conclude that the process
L · (X ∗ µ)− L− ·

(
X ∗ (Y ν)

)
is a local martingale.

9.13 EXERCISE. Let X be a cadlag predictable process of locally bounded
variation and M a martingale. Show that X · M = X− · M + [X,M ],
provided that the stochastic integrals exist. [Hint: Show that [X,M ] =∑
s(∆Xs)(∆Ms) = ∆X ·M and use the linearity of the integral.]

9.4 Reduction of Flow

Let µ be a σ-finite, optional random measure on a filtered probability space
(Ω,F , {Ft},P) with compensator ν. If the processes t 7→ µ

(
[0, t] ×D

)
, for

D ∈ D, are adapted to a smaller filtration Gt ⊂ Ft, then µ is also an optional
random measure relative to the filtration Gt. Unless the compensator ν is
predictable relative to the smaller filtration, it cannot be the compensator
of µ relative to Gt. In this section we show that it can be obtained as
a conditional expectation. In the general case, this relationship remains
somewhat abstract, but the formula takes a simple and intuitive form if ν
possesses a density relative to a fixed measure.

9.14 Theorem. Let µ be a σ-finite random measure on the filtered space
(Ω,F , {Ft},P) with compensator ν such that ν(ω, dt, dy) = at,y(ω) dλ(t, y)
for a nonrandom σ-finite Borel measure λ on [0,∞) × D. If the process b
is nonnegative and predictable relative to the filtration Gt ⊂ Ft, then the
measure π given by π(ω, dt, dy) = bt,y(ω) dλ(t, y) is the compensator of µ
on the filtered space (Ω,F , {Gt},P) if and only if and E(at,y| Gt−) = bt,y for
λ-almost every pair (t, y),.

Proof. The measure π is a predictable random measure.
For any Gt-optional process X the difference M = X ∗ µ − X ∗ ν is

an Ft-local martingale and hence E(Mt −Ms| Gs) = 0 for every s < t. It
suffices to show that X ∗ ν −X ∗ π is an Gt-local martingale, i.e. π is the
compensator of ν relative to the filtration Gt.

For any Gt-predictable process X, the variable Xt,y is Gt−-measurable,
for every (t, y). Therefore, by Fubini’s theorem, for every sufficiently inte-
grable Gt-predictable process X.

E(X ∗ ν −X ∗ π)∞ =

∫ ∞
0

∫
D

EXt,y(at,y − bt,y) dλ(t, y)

=

∫ ∞
0

∫
D

EXt,y

(
E(at,y| Gt−)− bt,y

)
dλ(t, y).
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If b satisfies the condition of the theorem, then the right side vanishes. If
π′ is the Gt-compensator of ν, then X ∗ ν − X ∗ π′ is a martingale with
mean zero and hence we conclude that E(X ∗ π′ −X ∗ π)∞ = 0 for every
Gt-predictable process X. In view of the predictability of π′−π, this implies
that π′ = π.

Conversely, if π is the compensator of ν, then the left side of the pre-
ceding display vanishes for every Gt-predictable X. Choosing X equal to the
process (s, y) 7→ h(s, y)1G1[t,∞)(s) for measurable functions h: [0,∞)×D 7→
R and events G ∈ Gt−, we conclude that E1G

(
E(at,y| Gt−) − bt,y

)
= 0 for

λ-almost every (t, y), and every G ∈ Gt−. This implies that b satisfies the
condition of the theorem.

The assertion of the theorem is particularly intuitive in the case of
multivariate counting processes. Suppose that N is a nonexplosive counting
processes with compensator A relative to the filtration Ft of the form At =∫ t

0
as ds for a predictable “intensity process” a. Then the intensity process

of N relative to a smaller filtration Gt satisfies, for Lebesgue almost every
t,

bt = E(at| Gt−), a.s..

Because the intensity at can be interpreted as the conditional infinitesimal
probability of a jump at t given the past Ft−, this expresses the Gt-intensity
as the expected value of the intensity given the “smaller past” Gt−.

A predictable process b as in the preceding display always exists (up to
integrability?). Indeed, the predictable projection of the process a relative
to the filtration Gt is a Gt-predictable process b such that, for every Gt-
predictable time T ,

bT = E(aT | GT−), a.s..

Because the constant stopping time T = t is predictable this strength-
ens the preceding display. The last display determines the process b up to
evanescence.

These observations extend to multivariate, nonexplosive counting pro-
cesses N = (N1, . . . , Nk) in an obvious way.

9.5 Stochastic Integrals

For sufficiently regular processes X the processes X ∗ µ and X ∗ ν are
defined as Lebesgue-Stieltjes integrals (as previously) and hence so is their
difference

X ∗ (µ− ν)t =

∫
[0,t]

∫
D
Xs,y d(µs,y − νs,y).

It is sometimes useful to define “integrals” X ∗ (µ − ν) relative to a com-
pensated random measure for a slightly larger class of predictable processes
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X. By the definition of ν as a compensator, the process X ∗ µ − X ∗ ν is
a local martingale for every predictable process X: [0,∞) × Ω × D 7→ R.
It is of locally bounded variation and hence is a purely discontinuous lo-
cal martingale. Because the difference of two purely discontinuous local
martingales with the same jump process is a local martingale that is both
continuous and purely discontinuous, it is constant. Hence a purely dis-
continuous local martingale is completely determined by its jump process
(Cf. Section 5.14.) Therefore, within the class of purely discontinuous local
martingales the process X ∗ µ−X ∗ ν is uniquely determined by its jump
process

∆(X ∗ µ−X ∗ ν)t(ω) =

∫
D
X(t, ω, y) (µ− ν)(ω, {t} × dy) =: X̃t(ω).

The integral in the right side of this display is with respect to the space
variable only, for fixed times t, and may be well defined (as Lebesgue inte-
gral, for each fixed ω) even if the Lebesgue-Stieltjes integrals defining X ∗µ
and X ∗ ν are not. This observation can be used to extend the definition of
the integral X ∗ (µ− ν).

9.15 Definition. Given a predictable process X such that the right side
X̃t of the preceding display is well defined and finite for every t and such
that the process

(∑
s≤t X̃

2
s

)
1/2 is locally integrable, the stochastic integral

X ∗ (µ − ν) is defined to be the purely discontinuous local martingale M
with jump process ∆M equal to X̃t.

To justify this complicated definition it must be shown that a purely
discontinuous local martingale as in the definition exists and is unique. The
uniqueness is clear from the fact that purely discontinuous local martingales
are uniquely determined by their jump processes. Existence is a more com-
plicated matter and requires a construction. The condition on the process X̃
comes from the fact that the cumulative square jump process

∑
s≤t(∆Ys)

2

of a local martingale Y is bounded above by the quadratic variation process
[Y ]t. The square root of the quadratic variation process can be shown to be
locally integrable. (See Exercise 5.72.) Thus the definition goes as far and
abstract as possible in terms of relaxing the requirement of integrability of
∆X relative to µ− ν.

It is good to know the extent to which definitions can be pushed. How-
ever, in the following we shall only encounter integrals where the existence
follows from the context, so that it is not a serious omission to accept
without proof that the definition is well posed.[

The stochastic integral X ∗ (µ − ν) is completely determined by its
jump process. The following lemma makes this explicit for integer-valued
random measures. [Is X well defined??]

[ See e.g. Jacod and Shiryaev, II and I .
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9.16 Lemma. If a local martingale M can be written in the form M =
X ∗ (µ − ν) for a predictable process X and an integer-valued random
measure µ with compensator ν, then it can be written in this form for

X(t, ω, y) = EµP(∆M | P̃)(t, ω, y) +

∫
EµP(∆M | P̃)(t, ω, z) ν

(
ω, {t} × dz

)
1− ν

(
ω, {t} × D

) .

Proof. Define U = EµP(∆M | P̃) and set

X ′t,y = Ut,y +

∫
Ut,z ν

(
{t} × dz

)
1− ν

(
{t} × D

) =:Ut,y +
Ût

1− at
,

(say.) Straightforward algebra shows that the jump process of the process
X ′ ∗ (µ− ν) is given by∫

Xt,y (µ− ν)
(
{t} × dy

)
=

∫
Xt,y µ

(
{t} × dy

)
− Ût +

Ût
1− at

(µ− ν)
(
{t} × D

)
=

∫
Xt,y µ

(
{t} × dy

)
− Ût

1− at
[
1− µ

(
{t} × D

)]
.

For a fixed ω the measure B 7→ µ(ω,B) is a counting measure on a countable
set of points

(
t, Zt(ω)

)
. For every fixed ω the variable 1− µ

(
ω, {t} × D

)
is

0 almost surely under this measure and the process Ut,y is equal to Ut,Zt
almost surely. If follows that under the measure ⊗P the right side of the
preceding display is almost surely equal to the process Ut,Zt . It follows that
the jump process of M − X ′ ∗ (µ − ν) = (X − X ′) ∗ (µ − ν) is given by
∆Mt −Ut,Zt . Taking again the support of the measure µ⊗ P into account,
we see that, if considered a function on [0,∞)×Ω×D, this process is µ⊗P-
almost surely equal to the process (t, ω, y) 7→ ∆Mt(ω)−Ut,y(ω), and hence

Eµ⊗P
(
∆(M − X ′ ∗ (µ − ν))| P̃

)
= Eµ⊗P

(
∆M − U | P̃

)
= 0 almost surely

under µ⊗ P.
The proof is complete if it can be shown that any martingale of the

form N = X ∗ (µ − ν) with Eµ⊗P(∆N | P̃) = 0 is evanescent. Because N
is purely discontinuous, it suffices to show that its jump process ∆N is
evanescent. This jump process is given by

∆Nt = Xt,Ztµ
(
{t} × D

)
− X̂t.

Under the measure µ⊗ P the process Xt,Zt , if seen as function on [0,∞)×
Ω × D, is almost surely equal to the process Xt,y, which is predictable by

assumption. It follows that ∆Nt = Xt,y − X̂t almost surely under µ ⊗ P
and hence Xt,y − X̂t is a version of Eµ⊗P(∆N | P̃) = 0. Therefore for P-

almost every ω we have that Xt,Zt(ω)(ω)− X̂t(ω) = 0 for every t such that



9.5: Stochastic Integrals 175

µ
(
ω, {t} × D

)
> 0. Because µ

(
ω, {t} × D

)
= 0 for other values of t we can

conclude that ∆Nt(ω) = X̂t(ω)
[
1− µ

(
ω, {t} × D

)
] for P-almost every ω.

As N is a martingale, we have that E(∆NT | FT−) = 0 for every
predictable time T . Combined with the preceding identity this gives that
X̂t(1− at) = 0 almost surely and hence ∆Nt1at<1 = 0 almost surely.

Finally it suffices to show that ∆Nt1at=1 = 0. Now the set {a = 1} =
{(t, ω): at(ω) = 1} is a subset of {a > 0}, which is union of the graphs
of countable many predictable times. For any predictable time T () gives
Eµ
(
{T}×D

)
1aT=1 = EaT 1aT=1 > 0 unless {aT ≥ 1} is a null set. It follows

that the set {a = 1} is contained in the set {(t, ω):µ
(
ω, {t} × D

)
= 1}.

Warning. The preceding lemma does not claim that a process X sat-
isfying M = X ∗ (µ− ν) is uniquely determined.

As indicated before the definition, if X ∗ µ and X ∗ ν are well defined
as Lebesgue-Stieltjes integrals, then X ∗(µ−ν) is the same as X ∗µ−X ∗ν.
Some well-known properties of ordinary integrals also generalize.

9.17 Lemma. If X is a predictable process such that X ∗ (µ − ν) is well
defined, then:

(i) (X1[0,T ]) ∗ (µ− ν) =
(
X ∗ (µ− ν)

)T
for every stopping time T .

(ii) (Y X)∗(µ−ν) = Y ·(X ∗
(
µ−ν)

)
for every bounded predictable process

Y .



10
Stochastic Calculus

In this chapter we continue the calculus for stochastic processes, extending
this to general semimartingales.

10.1 Jump Measure

Every cadlag function jumps at most a countable number of times, and
hence the jumps of a cadlag stochastic process X occur at most at a count-
able number of “random times”. The lemma below shows that for a cadlag,
adapted process X these times are given by a sequence of stopping times:
there exist stopping times S1, S2, . . . such that

{
(t, ω): ∆X(t, ω) 6= 0

}
=
⋃
n

[Sn].

It is said that the stopping times S1, S2, . . . exhaust the jumps of the process
X. Because stopping times may take the value ∞ and the event on which
a stopping time is infinite does not contribute to the graph, the stopping
times can be chosen without loss of generality to have disjoint graphs. This
allows to define an integer-valued random measure on [0,∞)×R by, for D
a Borel set in R,

µX(ω, [0, t]×D) =
∑
n

1Sn(ω)≤t1D
(
∆XSn(ω)(ω)

)
.

This is called the jump measure of X. (By convention there is no jump at
time 0.)
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10.1 Lemma. For every cadlag adapted process X there exists a countable
sequence of stopping times that exhausts the jumps of X. The correspond-
ing jump measure µX is σ-finite.

Proof. To construct the stopping times, fix a sequence of numbers ε0 =
∞ > ε1 > ε2 · · · ↓ 0. Because the points in [0,∞) where a given cadlag
function jumps more than a given positive number ε are isolated, we can
define, for given n, k ∈ N, a variable Sn,k as the kth jump of X of size in
[εn, εn−1). We can write these variables also in the form: for every n ∈ N
and k = 1, 2, . . .,

Sn,0 = 0, Sn,k = inf
{
t > 0: |∆Xt|1t>Sn,k−1

∈ [εn, εn−1)
}
.

Because the process ∆X is progressively measurable and Sn,k is the hitting
time of the interval [εn, εn−1) by the process |∆X|1(Sn,k−1,∞), it follows
that the Sn,k are stopping times. Their graphs are disjoint and exhaust the
jump times of X.

The sets Bn,k = [0, Sn,k]×
(
[εn, εn−1)∪ (−εn−1,−εn]

]
are predictable,

and cover [0,∞) × Ω × (R − {0}) if k, n range over N. By construction
µX(Bn,k) ≤ k for every n, k. Thus the function V =

∑
n,k 2−n−k1Bn,k is

strictly positive and (V ∗ µX)∞ ≤
∑
n,k k2−n−k < ∞. It follows that the

jump measure µX is σ-finite.

A cadlag process X is called quasi left-continuous if for every increasing
sequence of stopping times 0 ≤ Tn ↑ T we have that XTn → XT almost
surely on the event {T <∞}. Because fixed times are stopping times, this
requirement includes in particular that Xtn → Xt almost surely for every
deterministic sequence tn ↑ t and every t. However, the exceptional null set
where convergence fails may depend on t and hence quasi left-continuous
can be far from “left-continuous”. It can be characterized by the continuity
of the compensator of the jump measure of X. This can be derived from the
identity (9.9), which in the present case takes the form: for every predictable
time T ,

νX
(
{T} × D

)
= P

(
∆XT 6= 0| FT−

)
.

10.2 Lemma. A cadlag, adapted process X is quasi left-continuous if and
only if there exists a version of the compensator νX of µX such that
νX
(
ω, {t} × R

)
= 0 for all t ∈ [0,∞) and ω ∈ Ω.

Proof. The identity stated before the lemma implies that EνX
(
{T}×D

)
=

P(∆XT 6= 0) for every predictable time T . It follows that the variable
νX
(
{T} × D

)
is zero almost surely if and only if this is the case for the

variable ∆XT .
We conclude the proof by showing that a process X is quasi left-

continuous if and only if ∆XT 1T<∞ = 0 for every predictable time T .
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For any predictable time T there exists a sequence of stopping times
Tn ↑ T with Tn < T whenever T > 0. If X is quasi left-continuous, then
XT = limXTn = XT− almost surely on {T <∞} and hence ∆XT = 0.

Conversely, if Tn are stopping times with Tn ↑ T , then Sn = Tn1Tn<T +
∞1Tn=T are stopping times with Sn ↑ S = T1F +∞1F c , for F = ∩n{Tn <
T}. The stopping times Sn ∧ n also increase to S and satisfy Sn < S.
It follows that S is a predictable time. If XTn does not converge to XT ,
then clearly Tn < T for all n and hence XSn = XTn does not converge to
XT = XS , whence ∆XS1S<∞ 6= 0.

10.2 Characteristics

Because the jump process ∆X of a cadlag, adapted process is optional, the
jump measure µX is an optional random measure, by Lemma 9.8. As it is
also σ-finite it possesses a compensator νX .

The compensator νX of the jump process of a semimartingale X
is called the third characteristic of X. The second characteristic is the
quadratic variation process [Xc] = 〈Xc〉 of the continuous martingale part
Xc of X. The purpose of this section is to define also the first characteristic
and to establish a “canonical representation” of a semimartingale.

This canonical representation is dependent on a “truncation function”
h that will be fixed throughout. Let h:R 7→ R be a function with compact
support which agrees with the identity in a neighbourhood of zero, and set
h̄(y) = y − h(y). The classical choice of truncation function is

h(y) = y1|y|≤1, h̄(y) = y1|y|>1.

Every cadlag function possesses at most finitely many jumps of absolute
size bigger than a given positive number on every given finite interval.
Therefore, the process

(h̄ ∗ µX)t =
∑
s≤t

h̄(∆Xs)

is well defined. For the classical truncation function it is the cumulative
sum of the “big” jumps of the process X. (Here and in the following h and
h̄ are considered functions on the jump space R, and an expression such as
h ∗ µt is understood to mean

∫ ∫
1[0,t](s)h(y)µ(ds, dy).)

The cumulative sum of the remaining, “small” jumps are given, in prin-
ciple, by the process h∗µX . However, for a general semimartingale the series∑
s≤t |∆Xs| need not converge, and hence we cannot speak about a process

h ∗µX in general. This may be accomodated by first compensating µX and
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using the abstract definition of an integral relative to a compensated point
process, Definition 9.15, to define the “compensated cumulative small jump
process” h ∗ (µX − νX). The following theorem implicitly asserts that the
integral h ∗ (µX − νX) is always well defined in the sense of Definition 9.15.

10.3 Theorem. For every semimartingale X there exists a (unique) pre-
dictable process B with B0 = 0 such that X = X0 +Xc + h ∗ (µX − νX) +
h̄ ∗ µX +B.

Proof. The uniqueness of B is clear from the fact that the other terms of
the decomposition have a clear meaning.

The process Y = X −X0 − h̄ ∗ µX is a semimartingale with uniformly
bounded jumps. As seen in the proof of Lemma 5.56 the martingale M in
a decomposition Y = M +A of Y into a martingale and bounded variation
part possesses uniformly bounded jumps as well and hence so does the
process A. If Vt =

∫
[0,t]
|dAs| is the variation of A and Sn = inf{t >

0:Vt− > n}, then VSn ≤ n+ |∆As|, which is bounded by n plus a constant.
It follows that the process V is locally bounded and hence the process A
possesses locally integrable variation. By the Doob-Meyer decomposition
there exists a predictable process B such that A−B is a local martingale.

This gives the decomposition X = X0 +M+(A−B)+ h̄∗µX +B. The
local martingale A−B is of locally bounded variation and hence is purely
discontinuous. It follows that the continuous martingale parts of M and
X coincide. We can conclude the proof by showing that Md + (A − B) =
h ∗ (µX − νX).

By definition h ∗ (µX − νX) is the unique purely discontinuous local
martingale with jump process

∫
D h(y) (µX − νX)({t} × dy) = h(∆Xt) −∫

D h(y) νX({t}× dy) (see Definition 9.15). The process N = Md + (A−B)
is a purely discontinuous local martingale and hence it suffices to verify that
it possesses the same jump process. The jump process of N = X − X0 −
Xc − h̄ ∗ µX −B is ∆N = ∆X − h̄(∆X)−∆B = h(∆X)−∆B. It suffices
to show that ∆B =

∫
D h(y) νX({t} × dy). Because both these processes

are predictable, it suffices to show that they agree at all predictable times
T . The predictability of ∆B also gives that ∆BT is FT− measurable (for
every stopping time T ). Combined with the fact that E(∆NT | FT−) = 0 for
every predictable time T , because N is a local martingale, this gives that
∆BT = E

(
h(∆XT )| FT−

)
for every predictable time T . The predictability

of the map Z: (t, ω, y) 7→ h(y)1[T ](t, ω), for a predictable time T , yields
that the process K = Z ∗ (µX − νX) is a local martingale. Its jump process
is ∆Kt =

∫
h(y)1[T ](t) (mX − νX)({t} × dy), which is equal to ∆KT =∫

h(y) (mX − νX)({T}×dy) = h(∆XT )−
∫
h(y) νX({T}×dy) if evaluated

at T . By the martingale property we have E(∆KT | FT−) = 0, so that finally
we obtain that ∆BT = E

(
h(∆XT )| FT−

)
=
∫
h(y) νX({T} × dy).

The predictable process B in the decomposition given by the preceding
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theorem is called the first characteristic of the semimartingale X. Thus we
obtain a triplet (B, 〈Xc〉, νX) of characteristics of a semimartingale, each
of which is a predictable process.

In general these “predictable characteristics” do not uniquely deter-
mine the semimartingale X, or its distribution, and hence are not true
characteristics, for instance in the sense that the characteristic function of
a probability distribution determines this distribution. However, for sev-
eral subclasses of semimartingales, including diffusions and counting pro-
cesses, the characteristics do have this determining property. Furthermore,
the characteristics play an important role in formulas for density processes
and weak convergence theory for semimartingales. The following examples
show that the characteristics are particularly simple for the basic examples
of semimartingales.

10.4 Example (Brownian motion). Because a Brownian motion X is
a continuous martingale, its “canonical decomposition” possesses only one
term and takes the form X = Xc. The predictable quadratic variation is the
identity. Thus the triple of characteristics of Brownian motion is (0, id, 0).

10.5 Example (Poisson process). The jump measure µN of a standard
Poisson process N satisfies µX([0, t]×D) = Nt1D({1}). Because the com-
pensated Poisson process t 7→ Nt − t is a martingale, the compensator of
µN is the measure νX([0, t] × D) = t1D({1}), i.e. the deterministic mea-
sure λ⊗ δ1. If we use the canonical truncation function h, then the process
of “big” jumps (strictly bigger than 1) is zero, and the process of “small”
jumps is h ∗ µN = N . It follows that the canonical decomposition is given
by Nt = (Nt−t)+t. Thus the triple of characteristics of the Poisson process
is (id, 0, λ× δ1).

The second and third of the characteristics of a semimartingale are in-
dependent of the choice of truncation function, but the first characteristic is
not. This first characteristic is also somewhat unsatisfactory as it is depen-
dent on the different treatment of small and big jumps in the decomposition
X = X0 +Xc+h∗ (µX −νX)+ h̄∗µX +B. In this decomposition the small
jumps are compensated, whereas the big jumps are not. A decomposition
of the type X = X0 +Xc + id ∗ (µX − νX) +B′, with id the identity func-
tion on the jump space, would have been more natural, but this is not well
defined in general, because the cumulative big jump process h̄ ∗ µX may
not have a compensator. The point here is that the Doob-Meyer decom-
position guarantees the existence of a compensator only for processes that
are locally of integrable variation. Even though the process h̄ ∗ µX is well
defined and of locally bounded variation, it may lack (local) integrability. If
the process h̄ ∗ µX is of locally integrable variation, then the more natural
decomposition is possible. Semimartingales for which this is true are called
“special”.
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More formally a semimartingale X is called special if it possesses a
decomposition X = X0 +M +A into a local martingale M and a process A
of locally integrable variation. The following theorem shows that this boils
down to the same.

10.6 Theorem. A semimartingale X is special if and only if there exists a
(unique) predictable process B′ such that X = X0+Xc+id∗(µX−νX)+B′.

Proof. It was seen in the proof of Theorem 10.3 that any semimartingale
can be decomposed as X = X0 + M ′ + A′ + h̄ ∗ µX for a local martingale
M ′ and a process A′ that is locally of integrable variation. If X is special
and X = X0 + M + A is a decomposition in a local martingale M and
process A of locally integrable variation, then M −M ′ = h̄ ∗ µX + A′ −
A is a local martingale of locally bounded variation, and hence is locally
of integrable variation. We conclude that the process h̄ ∗ µX is of locally
integrable variation and hence possesses compensator h̄ ∗ νX . We can now
reorganize the decomposition given by Theorem 10.3 as X = X0 + Xc +
h ∗ (µX − νX) + h̄ ∗ (µX − νX) + h̄ ∗ νX +B. Because h+ h̄ = id and the
compensated jump integral given by Definition 9.15 is linear, this gives a
decomposition as desired, with B′ = h̄ ∗ νX +B.

A decomposition as claimed can be written as X = X0 + M + B′ for
a local martingale M and predictable process B′. Because a predictable
process is automatically locally of integrable variation, it follows that X is
special.

10.3 Change of Measure

Consider a filtered space (Ω,F , {Ft}) equipped with two probability mea-
sures P and P̃ such that P̃ � P. Girsanov’s theorem, Theorem 6.14 in
Section 6.4, shows that a continuous P-local martingale is a P̃-local martin-
gale plus drift. It can be described as a change of the first characteristic. In
Section 9.3 it was seen how the compensator of a random measure changes
under a change of measure. When applied to the jump measure of a semi-
martingale this implies a change of the third characteristic. Combining these
two yields the following theorem.

Let L be the density process of P̃ relative to P.

10.7 Theorem. If X is a semimartingale on (Ω,F , {Ft},P) with char-
acteristic triplet (B,C, ν) and P̃ � P, then X is a semimartingale on
(Ω,F , {Ft}, P̃) with characteristic triplet(

B + L−1
− · 〈Lc, Xc〉+

(
h(Y − 1)

)
∗ ν, C, Y ν

)
.
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Proof. The decomposition X = X0 +Xc + h ∗ (µX − νX) + h̄ ∗ µX +B of
X under P can formally be rewritten as

X = X0+Xc−L−1
− ·[L,Xc]+h∗(µX−Y νX)+h̄∗µX+B+L−1

− ·[L,Xc]+
(
h(Y−1)

)
∗νX .

The process Xc − L−1
− · [L,Xc] is a P̃-local martingale by Theorem Thm-

Girsanov?? It suffices to show that the term
(
h(Y − 1)

)
∗ νX is well defined

and that h ∗ (µX − Y νX) +
(
h(Y − 1)

)
∗ νX = h ∗ (µX − νX)??


