Bayesian Adaptation

Aad van der Vaart
http://www.math.vu.nl/ aad

Vrije Universiteit Amsterdam

Joint work with Jyri Lember

Adaptation

Given a collection of possible models find a single procedure that works well for all models

Adaptation

Given a collection of possible models find a single procedure that works well for all models
as well as a procedure specifically targetted to the correct model

Adaptation

Given a collection of possible models
find a single procedure that works well for all models
as well as a procedure specifically targetted to the correct model
correct model is the one that contains the true distribution of the data

Adaptation to Smoothness

Given a random sample of size n from a density p_{0} on \mathbb{R} that is known to have α derivatives,
there exist estimators \hat{p}_{n} with rate $\epsilon_{n, \alpha}=n^{-\alpha /(2 \alpha+1)}$

Adaptation to Smoothness

Given a random sample of size n from a density p_{0} on \mathbb{R} that is known to have α derivatives,
there exist estimators \hat{p}_{n} with rate $\epsilon_{n, \alpha}=n^{-\alpha /(2 \alpha+1)}$
i.e. $\mathrm{E}_{p_{0}} d^{2}\left(\hat{p}_{n}, p_{0}\right)^{2}=O\left(\epsilon_{n, \alpha}^{2}\right)$,
uniformly in p_{0} with $\int\left(p_{0}^{(\alpha)}\right)^{2} d \lambda$ bounded (if $d=\|\cdot\|_{2}$)

Distances

Global distances on densities
d can be one of:
Hellinger:

Total variation:

L_{2} :

$$
\begin{aligned}
& h(p, q)=\sqrt{\int|\sqrt{p}-\sqrt{q}|^{2} d \mu}, \\
& \|p-q\|_{1}=\int|p-q| d \mu, \\
& \|p-q\|_{2}=\sqrt{\int|p-q|^{2} d \mu} .
\end{aligned}
$$

Adaptation

Data
Models
Optimal rates
X_{1}, \ldots, X_{n} i.i.d. p_{0}
$\mathcal{P}_{n, \alpha}$ for $\alpha \in A$, countable
$\epsilon_{n, \alpha}$

Adaptation

Data
Models
X_{1}, \ldots, X_{n} i.i.d. p_{0}
$\mathcal{P}_{n, \alpha}$ for $\alpha \in A$, countable
Optimal rates
$\epsilon_{n, \alpha}$
p_{0} contained in or close to $\mathcal{P}_{n, \beta}$, some $\beta \in A$

Adaptation

Data Models X_{1}, \ldots, X_{n} i.i.d. p_{0} $\mathcal{P}_{n, \alpha}$ for $\alpha \in A$, countable
Optimal rates

p_{0} contained in or close to $\mathcal{P}_{n, \beta}$, some $\beta \in A$

We want procedures that (almost) attain rate $\epsilon_{n, \beta}$, but we do not know β

Adaptation-NonBayesian

Main methods:

- Penalization
- Cross validation

Adaptation-NonBayesian

Main methods:

- Penalization
- Cross validation

Penalization:
Minimize your favourite contrast function (MLE, LS, ..), but add a penalty for model complexity

Adaptation-NonBayesian

Main methods:

- Penalization
- Cross validation

Penalization:
Minimize your favourite contrast function (MLE, LS, ..),
but add a penalty for model complexity
Cross validation:
Split the sample
Use first half to select best estimator for each model Use second half to select best model

Adaptation-Penalization

Models
Estimator given model

$$
\begin{aligned}
& \mathcal{P}_{n, \alpha}, \quad \alpha \in A \\
& \hat{p}_{n, \alpha}=\underset{p \in \mathcal{P}_{n, \alpha}}{\operatorname{argmin}} M_{n}(p)
\end{aligned}
$$

Adaptation-Penalization

Models
Estimator given model
Estimator model

$$
\mathcal{P}_{n, \alpha}, \quad \alpha \in A
$$

$$
\hat{p}_{n, \alpha}=\underset{\mathbf{0}}{\operatorname{argmin}} M_{n}(p)
$$

$$
p \in \mathcal{P}_{n, \alpha}
$$

$$
\hat{\alpha}_{n}=\underset{\alpha \in A}{\operatorname{argmin}}\left(M_{n}\left(\hat{p}_{n, \alpha}\right)+\operatorname{pen}_{n}(\alpha)\right)
$$

$$
\alpha \in A
$$

Adaptation-Penalization

Models

$$
\begin{aligned}
& \mathcal{P}_{n, \alpha}, \quad \alpha \in A \\
& \hat{p}_{n, \alpha}=\underset{p \in \mathcal{P}_{n, \alpha}}{\operatorname{argmin}} M_{n}(p)
\end{aligned}
$$

Estimator given model
Estimator model

$$
\hat{\alpha}_{n}=\underset{\alpha \in A}{\operatorname{argmin}}\left(M_{n}\left(\hat{p}_{n, \alpha}\right)+\operatorname{pen}_{n}(\alpha)\right)
$$

Final estimator $\quad \hat{p}_{n}=\hat{p}_{n, \hat{\alpha}_{n}}$

Adaptation-Penalization

Models

$$
\begin{aligned}
& \mathcal{P}_{n, \alpha}, \quad \alpha \in A \\
& \hat{p}_{n, \alpha}=\underset{p \in \mathcal{P}_{n, \alpha}}{\operatorname{argmin}} M_{n}
\end{aligned}
$$

Estimator given model $\quad \hat{p}_{n, \alpha}=\underset{\sim}{\operatorname{argmin}} M_{n}(p)$
Estimator model
$\hat{\alpha}_{n}=\underset{\alpha \in A}{\operatorname{argmin}}\left(M_{n}\left(\hat{p}_{n, \alpha}\right)+\operatorname{pen}_{n}(\alpha)\right)$
Final estimator

$$
\hat{p}_{n}=\hat{p}_{n, \hat{\alpha}_{n}}
$$

If M_{n} is the \log likelihood, then \hat{p}_{n} is the posterior mode relative to prior $\pi_{n}(p, \alpha) \propto \exp \left(\operatorname{pen}_{n}(\alpha)\right)$

Adaptation-Bayesian

Models
Prior
Prior
Overall Prior
$\mathcal{P}_{n, \alpha}, \quad \alpha \in A$
$\Pi_{n, \alpha}$ on $\mathcal{P}_{n, \alpha}$
$\left(\lambda_{n, \alpha}\right)_{\alpha \in A}$ on A
$\Pi_{n}=\sum_{\alpha \in A} \lambda_{n, \alpha} \Pi_{n, \alpha}$

Adaptation-Bayesian

Models
Prior
Prior
Overall Prior

$$
\mathcal{P}_{n, \alpha}, \quad \alpha \in A
$$

$\Pi_{n, \alpha}$ on $\mathcal{P}_{n, \alpha}$
$\left(\lambda_{n, \alpha}\right)_{\alpha \in A}$ on A

$$
\Pi_{n}=\sum_{\alpha \in A} \lambda_{n, \alpha} \Pi_{n, \alpha}
$$

Posterior $\quad B \mapsto \Pi_{n}\left(B \mid X_{1}, \ldots, X_{n}\right)$,

$$
\begin{aligned}
\Pi_{n}\left(B \mid X_{1}, \ldots, X_{n}\right) & =\frac{\int_{B} \prod_{i=1}^{n} p\left(X_{i}\right) d \Pi_{n}(p)}{\int \prod_{i=1}^{n} p\left(X_{i}\right) d \Pi_{n}(p)} \\
& =\frac{\sum_{\alpha \in A_{n}} \lambda_{n, \alpha} \int_{p \in \mathcal{P}_{n, \alpha} ; p \in B} \prod_{i=1}^{n} p\left(X_{i}\right) d \Pi_{n, \alpha}(p)}{\sum_{\alpha \in A_{n}} \lambda_{n, \alpha} \int_{p \in \mathcal{P}_{n, \alpha}} \prod_{i=1}^{n} p\left(X_{i}\right) d \Pi_{n, \alpha}(p)} .
\end{aligned}
$$

Adaptation-Bayesian

Models
Prior
Prior
Overall Prior

$$
\mathcal{P}_{n, \alpha}, \quad \alpha \in A
$$

$\Pi_{n, \alpha}$ on $\mathcal{P}_{n, \alpha}$
$\left(\lambda_{n, \alpha}\right)_{\alpha \in A}$ on A
$\Pi_{n}=\sum_{\alpha \in A} \lambda_{n, \alpha} \Pi_{n, \alpha}$
Posterior $\quad B \mapsto \Pi_{n}\left(B \mid X_{1}, \ldots, X_{n}\right)$

Desired result:
If $p_{0} \in \mathcal{P}_{n, \beta}$ (or is close) then
$\mathrm{E}_{p_{0}} \Pi_{n}\left(p: d\left(p, p_{0}\right) \geq M_{n} \epsilon_{n, \beta} \mid X_{1}, \ldots, X_{n}\right) \rightarrow 0$ for every $M_{n} \rightarrow \infty$

Single Model

Model
Prior

$$
\mathcal{P}_{n, \beta}
$$

$\Pi_{n, \beta}$
THEOREM (GGvdV, 2000) If

$$
\begin{array}{rlrl}
\log N\left(\epsilon_{n, \beta}, \mathcal{P}_{n, \beta}, d\right) & \leq E n \epsilon_{n, \beta}^{2} & \text { entropy } \\
\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) & \geq e^{-F n \epsilon_{n, \beta}^{2}} \quad \text { prior mass }
\end{array}
$$

then the posterior rate of convergence is $\epsilon_{n, \beta}$

Single Model

Model
Prior

$$
\mathcal{P}_{n, \beta}
$$

$\Pi_{n, \beta}$
THEOREM (GGvdV, 2000) If

$$
\begin{array}{rlrl}
\log N\left(\epsilon_{n, \beta}, \mathcal{P}_{n, \beta}, d\right) & \leq E n \epsilon_{n, \beta}^{2} & \text { entropy } \\
\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) & \geq e^{-F n \epsilon_{n, \beta}^{2}} \quad \quad \text { prior mass }
\end{array}
$$

then the posterior rate of convergence is $\epsilon_{n, \beta}$

$B_{n, \alpha}(\epsilon)$ is a Kullback-Leibler ball around p_{0} :

$$
B_{n, \alpha}(\epsilon)=\left\{p \in \mathcal{P}_{n, \alpha}:-P_{0} \log \frac{p}{p_{0}} \leq \epsilon^{2}, P_{0}\left(\log \frac{p}{p_{0}}\right)^{2} \leq \epsilon^{2}\right\}
$$

Covering Numbers

DEFINITION

The covering number $N(\epsilon, \mathcal{P}, d)$ is the minimal number of balls of radius ϵ needed to cover the set \mathcal{P}.

Covering Numbers

DEFINITION

The covering number $N(\epsilon, \mathcal{P}, d)$ is the minimal number of balls of radius ϵ needed to cover the set \mathcal{P}.

Covering Numbers

DEFINITION

The covering number $N(\epsilon, \mathcal{P}, d)$ is the minimal number of balls of radius ϵ needed to cover the set \mathcal{P}.

Rate at which $N(\epsilon, \mathcal{P}, d)$ increases if $\epsilon \downarrow 0$ determines size of model
Parametric model $\quad(1 / \epsilon)^{d}$
Nonparametric model
$e^{(1 / \epsilon)^{1 / \alpha}}$
e.g. smoothness α

Motivation Entropy

Solution ϵ_{n} to

$$
\log N\left(\epsilon, \mathcal{P}_{n}, d\right) \propto n \epsilon^{2}
$$

gives optimal rate of convergence for model \mathcal{P}_{n} in minimax sense

Le Cam (1975, 1986), Birgé (1983), Barron and Yang (1999)

Single Model

Model
$\mathcal{P}_{n, \beta}$
Prior

$$
\Pi_{n, \beta}^{\prime}
$$

THEOREM (GGvdV, 2000) If

$$
\begin{aligned}
& \log N\left(\epsilon_{n, \beta}, \mathcal{P}_{n, \beta}, d\right) \leq E n \epsilon_{n, \beta}^{2} \\
& \Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) \geq e^{-F n \epsilon_{n, \beta}^{2}}
\end{aligned}
$$

entropy
prior mass
then the posterior rate of convergence is $\epsilon_{n, \beta}$

Motivation Prior Mass

$$
\Pi_{n}\left(B_{n}\left(\epsilon_{n}\right)\right) \geq e^{-n \epsilon_{n}^{2}} \quad \text { prior mass }
$$

Motivation Prior Mass

$$
\Pi_{n}\left(B_{n}\left(\epsilon_{n}\right)\right) \geq e^{-n \epsilon_{n}^{2}}
$$

Need $N(\epsilon, \mathcal{P}, d) \approx \exp \left(n \epsilon_{n}^{2}\right)$ balls

Motivation Prior Mass

$$
\Pi_{n}\left(B_{n}\left(\epsilon_{n}\right)\right) \geq e^{-n \epsilon_{n}^{2}}
$$

Need $N(\epsilon, \mathcal{P}, d) \approx \exp \left(n \epsilon_{n}^{2}\right)$ balls

Can place $\exp \left(C n \epsilon_{n}^{2}\right)$ balls

Motivation Prior Mass

$$
\Pi_{n}\left(B_{n}\left(\epsilon_{n}\right)\right) \geq e^{-n \epsilon_{n}^{2}}
$$

Need $N(\epsilon, \mathcal{P}, d) \approx \exp \left(n \epsilon_{n}^{2}\right)$ balls

Can place $\exp \left(C n \epsilon_{n}^{2}\right)$ balls

If Π_{n} "uniform", then each ball receives mass $\exp \left(-C n \epsilon_{n}^{2}\right)$

Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls, whereas the entropy condition uses d-balls

These are typically (almost) equivalent

Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls, whereas the entropy condition uses d-balls

These are typically (almost) equivalent

- If ratios p_{0} / p of densities are bounded, then fully equivalent

Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls, whereas the entropy condition uses d-balls

These are typically (almost) equivalent

- If ratios p_{0} / p of densities are bounded, then fully equivalent
- If $P_{0}\left(p_{0} / p\right)^{b}$ is bounded, some $b>0$, then equivalent up to logarithmic factors

Single Model

Model

$$
\mathcal{P}_{n, \beta}
$$

Prior
THEOREM (GGvdV, 2000) If

$$
\begin{array}{rlrl}
\log N\left(\epsilon_{n, \beta}, \mathcal{P}_{n, \beta}, d\right) & \leq E n \epsilon_{n, \beta}^{2} & \text { entropy } \\
\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) & \geq e^{-F n \epsilon_{n, \beta}^{2}} \quad \text { prior mass }
\end{array}
$$

then the posterior rate of convergence is $\epsilon_{n, \beta}$

Single Model

Model
Prior

$$
\mathcal{P}_{n, \beta} \Pi_{n, \beta}
$$

THEOREM (GGvdV, 2000) If

$$
\begin{array}{rlrl}
\log N\left(\epsilon_{n, \beta}, \mathcal{P}_{n, \beta}, d\right) & \leq E n \epsilon_{n, \beta}^{2} & \text { entropy } \\
\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) & \geq e^{-F n \epsilon_{n, \beta}^{2}} \quad \text { prior mass }
\end{array}
$$

then the posterior rate of convergence is $\epsilon_{n, \beta}$

Can actually replace entropy $\log N\left(\epsilon, \mathcal{P}_{n, \beta}, d\right)$ by Le Cam dimension $\sup _{\eta>\epsilon} \log N\left(\eta / 2, C_{n, \beta}(\eta), d\right)$
Can also refine the prior mass condition

Adaptation-Bayesian

Models
$\mathcal{P}_{n, \alpha}, \quad \alpha \in A$
Prior
Prior
$\Pi_{n, \alpha}$ on $\mathcal{P}_{n, \alpha}$
$\left(\lambda_{n, \alpha}\right)_{\alpha \in A}$ on A
Overall Prior
$\sum_{\alpha \in A} \lambda_{n, \alpha} \Pi_{n, \alpha}$

Posterior $\quad B \mapsto \Pi_{n}\left(B \mid X_{1}, \ldots, X_{n}\right)$

Desired result:
If $p_{0} \in \mathcal{P}_{n, \beta}$ (or is close) then
$\mathrm{E}_{p_{0}} \Pi_{n}\left(p: d\left(p, p_{0}\right) \geq M \epsilon_{n, \beta_{n}} \mid X_{1}, \ldots, X_{n}\right) \rightarrow 0$ for every sufficiently large M.

Adaptation (1)

A finite, ordered $\epsilon_{n, \alpha} \ll \epsilon_{n, \beta}$ if $\alpha \geq \beta$ $n \epsilon_{n, \beta}^{2} \rightarrow \infty$

Adaptation (1)

A finite, ordered $n \epsilon_{n, \beta}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$

$$
\epsilon_{n, \alpha} \ll \epsilon_{n, \beta} \text { if } \alpha \geq \beta
$$

Adaptation (1)

$$
\begin{aligned}
& A \text { finite, ordered } \quad \epsilon_{n, \alpha} \ll \epsilon_{n, \beta} \text { if } \alpha \geq \beta \\
& n \epsilon_{n, \beta}^{2} \rightarrow \infty \\
& \lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}
\end{aligned}
$$

Small models get big weights

Adaptation (1)

A finite, ordered

$$
\epsilon_{n, \alpha} \ll \epsilon_{n, \beta} \text { if } \alpha \geq \beta
$$

$n \epsilon_{n, \beta}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$

THEOREM

$$
\begin{aligned}
\log N\left(\epsilon_{n, \alpha}, \mathcal{P}_{n, \alpha}, d\right) & \leq E n \epsilon_{n, \alpha}^{2} \quad \text { entropy, } \forall \alpha . \\
\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right) & \geq e^{-F n \epsilon_{n, \beta}^{2}} \quad \text { prior mass }
\end{aligned}
$$

then posterior rate is $\epsilon_{n, \beta}$

Adaptation (2)

Extension to countable A possible in two ways:

- truncation of weights $\lambda_{n, \alpha}$ to subsets $A_{n} \uparrow A$
- additional entropy control

Adaptation (2)

Extension to countable A possible in two ways:

- truncation of weights $\lambda_{n, \alpha}$ to subsets $A_{n} \uparrow A$
- additional entropy control

Also replace β by β_{n}

Adaptation (2)

Extension to countable A possible in two ways:

- truncation of weights $\lambda_{n, \alpha}$ to subsets $A_{n} \uparrow A$
- additional entropy control

Also replace β by β_{n}

Always assume
$\sum_{\alpha}\left(\lambda_{\alpha} / \lambda_{\beta_{n}}\right) \exp \left(-C \epsilon_{n, \alpha}^{2} / 4\right)=O(1)$

Adaptation (2a)-Truncation

$A_{n} \uparrow A, \quad \beta_{n} \in A_{n}, \quad \log \left(\# A_{n}\right) \leq n \epsilon_{n, \beta_{n}}^{2}$ $n \epsilon_{n, \beta_{n}}^{2} \rightarrow \infty$

Adaptation (2a)-Truncation

$A_{n} \uparrow A, \quad \beta_{n} \in A_{n}, \quad \log \left(\# A_{n}\right) \leq n \epsilon_{n, \beta_{n}}^{2}$
$n \epsilon_{n, \beta_{n}}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}} 1_{A_{n}}(\alpha)$

Adaptation (2a)-Truncation

$A_{n} \uparrow A, \quad \beta_{n} \in A_{n}, \quad \log \left(\# A_{n}\right) \leq n \epsilon_{n, \beta_{n}}^{2}$
$n \epsilon_{n, \beta_{n}}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}} 1_{A_{n}}(\alpha)$
$\max _{\alpha \in A_{n}: \epsilon_{n, \alpha}^{2} \leq H \epsilon_{n, \beta_{n}}^{2}} E_{\alpha} \frac{\epsilon_{n, \alpha}^{2}}{\epsilon_{n, \beta_{n}}^{2}}=O(1), \quad H \gg 1$

Adaptation (2a)-Truncation

$A_{n} \uparrow A, \quad \beta_{n} \in A_{n}, \quad \log \left(\# A_{n}\right) \leq n \epsilon_{n, \beta_{n}}^{2}$
$n \epsilon_{n, \beta_{n}}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}} 1_{A_{n}}(\alpha)$
$\max _{\alpha \in A_{n}: \epsilon_{n, \alpha}^{2} \leq H \epsilon_{n, \beta_{n}}^{2}} E_{\alpha} \frac{\epsilon_{n, \alpha}^{2}}{\epsilon_{n, \beta_{n}}^{2}}=O(1), \quad H \gg 1$
THEOREM If

$$
\begin{array}{rlr}
\log N\left(\epsilon_{n, \alpha}, \mathcal{P}_{n, \alpha}, d\right) & \leq E n \epsilon_{n, \alpha}^{2} & \text { entropy, } \forall \alpha . \\
\Pi_{n, \beta_{n}}\left(B_{n, \beta_{n}}\left(\epsilon_{n, \beta_{n}}\right)\right) & \geq e^{-F n \epsilon_{n, \beta_{n}}} \quad \text { prior mass }
\end{array}
$$

then posterior rate is $\epsilon_{n, \beta_{n}}$

Adaptation (2b)-Entropy control

A countable
$n \epsilon_{n, \beta}^{2} \rightarrow \infty$

Adaptation (2b)-Entropy control

A countable
$n \epsilon_{n, \beta}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$

Adaptation (2b)-Entropy control

A countable

$n \epsilon_{n, \beta}^{2} \rightarrow \infty$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$

THEOREM If $H \gg 1$ and

$$
\begin{align*}
& \log N\left(\epsilon_{n, \beta_{n}},\right.\left.\bigcup_{\alpha: \epsilon_{n, \alpha} \leq H \epsilon_{n, \beta}} \mathcal{P}_{n, \alpha}, d\right) \leq E n \epsilon_{n, \beta_{n}}^{2} \\
& \Pi_{n, \beta_{n}}\left(B_{n, \beta_{n}}\left(\epsilon_{n, \beta_{n}}\right)\right) \geq e^{-F n \epsilon_{n, \beta_{n}}^{2}},
\end{align*}
$$

then posterior rate is $\epsilon_{n, \beta_{n}}$

Discrete priors

Discrete priors that are uniform on specially constructed approximating sets are universal
in the sense that under abstract and mild conditions they give the desired result

To avoid unnecessary logarithmic factors we need to replace ordinary entropy by the slightly more restrictive bracketing entropy

Bracketing Numbers

Given $l, u: \mathcal{X} \rightarrow \mathbb{R}$ the bracket $[l, u]$ is the set of $p: \mathcal{X} \rightarrow \mathbb{R}$ with $l \leq p \leq u$.

An ϵ-bracket relative to d is a bracket $[l, u]$ with $d(u, l)<\epsilon$.

DEFINITION

The bracketing number $N_{[]}(\epsilon, \mathcal{P}, d)$ is the minimum number of ϵ-brackets needed to cover \mathcal{P}.

Discrete priors

$\mathcal{Q}_{n, \alpha}$ collection of nonnegative functions with

$$
\log N_{\mathrm{j}}\left(\epsilon_{n, \alpha}, \mathcal{Q}_{n, \alpha}, h\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}
$$

u_{1}, \ldots, u_{N} minimal set of $\epsilon_{n, \alpha}$-upper brackets $\tilde{u}_{1}, \ldots, \tilde{u}_{N}$ normalized functions

Discrete priors

$\mathcal{Q}_{n, \alpha}$ collection of nonnegative functions with

$$
\log N_{\mathrm{l}}\left(\epsilon_{n, \alpha}, \mathcal{Q}_{n, \alpha}, h\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}
$$

u_{1}, \ldots, u_{N} minimal set of $\epsilon_{n, \alpha}$-upper brackets $\tilde{u}_{1}, \ldots, \tilde{u}_{N}$ normalized functions

Prior
$\Pi_{n, \alpha}$ uniform on $\tilde{u}_{1}, \ldots, \tilde{u}_{N}$
Model
$\cup_{M>0} M \mathcal{Q}_{n, \alpha}$

Discrete priors

$\mathcal{Q}_{n, \alpha}$ collection of nonnegative functions with

$$
\log N_{\mathrm{l}}\left(\epsilon_{n, \alpha}, \mathcal{Q}_{n, \alpha}, h\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}
$$

u_{1}, \ldots, u_{N} minimal set of $\epsilon_{n, \alpha}$-upper brackets
$\tilde{u}_{1}, \ldots, \tilde{u}_{N}$ normalized functions
Prior $\quad \Pi_{n, \alpha}$ uniform on $\tilde{u}_{1}, \ldots, \tilde{u}_{N}$
Model $\quad \cup_{M>0} M \mathcal{Q}_{n, \alpha}$

THEOREM
If $\lambda_{n, \alpha}$ and $A_{n} \uparrow A$ are as before, and $p_{0} \in M_{0} \mathcal{Q}_{n, \beta}$
then posterior rate is $\epsilon_{n, \beta}$, relative to the Hellinger distance.

Smoothness Spaces

\mathbb{B}_{1}^{α} unit ball in a Banach \mathbb{B}^{α} of functions
$\log N_{\mathrm{j}}\left(\epsilon_{n, \alpha}, \mathbb{B}_{1}^{\alpha},\|\cdot\|_{2}\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}$
Model $\quad \sqrt{p} \in \mathbb{B}^{\alpha}$

Smoothness Spaces

\mathbb{B}_{1}^{α} unit ball in a Banach \mathbb{B}^{α} of functions
$\log N_{\mathrm{j}}\left(\epsilon_{n, \alpha}, \mathbb{B}_{1}^{\alpha},\|\cdot\|_{2}\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}$
Model $\quad \sqrt{p} \in \mathbb{B}^{\alpha}$
THEOREM
There exists a prior such that the posterior rate is $\epsilon_{n, \beta}$
whenever $\sqrt{p_{0}} \in \mathbb{B}^{\beta}$ for some $\beta>0$.

Smoothness Spaces

\mathbb{B}_{1}^{α} unit ball in a Banach \mathbb{B}^{α} of functions
$\log N_{\mathrm{J}}\left(\epsilon_{n, \alpha}, \mathbb{B}_{1}^{\alpha},\|\cdot\|_{2}\right) \leq E_{\alpha} n \epsilon_{n, \alpha}^{2}$
Model $\quad \sqrt{p} \in \mathbb{B}^{\alpha}$
THEOREM
There exists a prior such that the posterior rate is $\epsilon_{n, \beta}$ whenever $\sqrt{p_{0}} \in \mathbb{B}^{\beta}$ for some $\beta>0$.

EXAMPLE

- Hölder spaces and Sobolev spaces of α-smooth functions, with $\epsilon_{n, \alpha}=n^{-\alpha /(2 \alpha+1)}$.
- Besov spaces (in progress)

Finite-Dimensional Models

Model
\mathcal{P}_{J} of dimension J

Finite-Dimensional Models

Model
Bias
Variance
\mathcal{P}_{J} of dimension J
$p_{0} \beta$-regular if $\quad d\left(p_{0}, \mathcal{P}_{J}\right) \lesssim(1 / J)^{\beta}$
Precision when estimating J parameters J / n

Finite-Dimensional Models

Model
Bias
Variance
\mathcal{P}_{J} of dimension J
$p_{0} \beta$-regular if $\quad d\left(p_{0}, \mathcal{P}_{J}\right) \lesssim(1 / J)^{\beta}$
Precision when estimating J parameters J / n

Bias-variance trade-off

$$
(1 / J)^{2 \beta} \sim J / n
$$

Optimal dimension

$$
\begin{gathered}
J \sim n^{1 /(2 \beta+1)} \\
\epsilon_{n, J} \sim n^{-\beta /(2 \beta+1)}
\end{gathered}
$$

Rate

Finite-Dimensional Models

Model
Bias
Variance
\mathcal{P}_{J} of dimension J
$p_{0} \beta$-regular if $\quad d\left(p_{0}, \mathcal{P}_{J}\right) \lesssim(1 / J)^{\beta}$
Precision when estimating J parameters J / n

Bias-variance trade-off

$$
(1 / J)^{2 \beta} \sim J / n
$$

Optimal dimension
Rate

$$
\begin{aligned}
J & \sim n^{1 /(2 \beta+1)} \\
\epsilon_{n, J} & \sim n^{-\beta /(2 \beta+1)} \text { We want to adapt }
\end{aligned}
$$

to β by putting weights on J

Finite-Dimensional Models

Model
$\mathcal{P}_{J} \quad$ of dimension J
Model dimension can be taken as Le Cam dimension

$$
J \sim \sup _{\eta>\epsilon} \log N\left(\eta / 2,\left\{p \in \mathcal{P}_{J}: d\left(p, p_{0}\right)<\eta\right\}, d\right)
$$

dimension 2

Finite-Dimensional Models

Models $\quad \mathcal{P}_{J, M}$ of Le Cam dimension $A_{M} J, J \in \mathbb{N}, M \in \mathcal{M}$,
Prior $\quad \Pi_{J, M}\left(B_{J, M}(\epsilon)\right) \geq\left(B_{J} C_{M} \epsilon\right)^{J}, \quad \epsilon>D_{M} d\left(p_{0}, \mathcal{P}_{J, M}\right)$

Finite-Dimensional Models

Models $\quad \mathcal{P}_{J, M}$ of Le Cam dimension $A_{M} J, J \in \mathbb{N}, M \in \mathcal{M}$,
Prior $\quad \Pi_{J, M}\left(B_{J, M}(\epsilon)\right) \geq\left(B_{J} C_{M} \epsilon\right)^{J}, \quad \epsilon>D_{M} d\left(p_{0}, \mathcal{P}_{J, M}\right)$
This correspond to a smooth prior on the J-dimensional model

Finite-Dimensional Models

Models $\quad \mathcal{P}_{J, M}$ of Le Cam dimension $A_{M} J, J \in \mathbb{N}, M \in \mathcal{M}$, Prior $\quad \Pi_{J, M}\left(B_{J, M}(\epsilon)\right) \geq\left(B_{J} C_{M} \epsilon\right)^{J}, \quad \epsilon>D_{M} d\left(p_{0}, \mathcal{P}_{J, M}\right)$
Weights $\quad \lambda_{n, J, M} \propto e^{-C n \epsilon_{n, J, M}^{2}} 1_{\mathcal{J}_{n} \times \mathcal{M}_{n}}(J, M)$

Finite-Dimensional Models

Models $\quad \mathcal{P}_{J, M}$ of Le Cam dimension $A_{M} J, J \in \mathbb{N}, M \in \mathcal{M}$,
Prior $\quad \Pi_{J, M}\left(B_{J, M}(\epsilon)\right) \geq\left(B_{J} C_{M} \epsilon\right)^{J}, \quad \epsilon>D_{M} d\left(p_{0}, \mathcal{P}_{J, M}\right)$
Weights $\quad \lambda_{n, J, M} \propto e^{-C n \epsilon_{n, J, M}^{2}} 1_{\mathcal{J}_{n} \times \mathcal{M}_{n}}(J, M)$
$\left(\log C_{M}\right) A_{M} \gg 1, B_{J} \gtrsim J^{-k}, \sum_{M \in \mathcal{M}} e^{-H A_{M}}<\infty$
$\epsilon_{n, J, M}=\sqrt{\frac{J \log n}{n} A_{M}}$

THEOREM

If there exist $J_{n} \in \mathcal{J}_{n}$ with $J_{n} \leq n$ and
$d\left(p_{0}, \mathcal{P}_{n, J_{n}, M_{0}}\right) \lesssim \epsilon_{n, J_{n}, M_{0}}$, then posterior rate is $\epsilon_{n, J_{n}, M_{0}}$

Finite-Dimensional Models: Examples

If $p_{0} \in \mathcal{P}_{J_{0}, M_{0}}$ for some J_{0}, then rate $\sqrt{(\log n) / n}$.

Finite-Dimensional Models: Examples

If $p_{0} \in \mathcal{P}_{J_{0}, M_{0}}$ for some J_{0}, then rate $\sqrt{(\log n) / n}$.
If $d\left(p_{0}, \mathcal{P}_{J, M_{0}}\right) \lesssim J^{-\beta}$ for every J, rate $(n / \log n)^{-\beta /(2 \beta+1)}$.

Finite-Dimensional Models: Examples

If $p_{0} \in \mathcal{P}_{J_{0}, M_{0}}$ for some J_{0}, then rate $\sqrt{(\log n) / n}$.
If $d\left(p_{0}, \mathcal{P}_{J, M_{0}}\right) \lesssim J^{-\beta}$ for every J, rate $(n / \log n)^{-\beta /(2 \beta+1)}$.
If $d\left(p_{0}, \mathcal{P}_{J, M_{0}}\right) \lesssim e^{-J^{\beta}}$ for every J, then rate
$(\log n)^{1 / \beta+1 / 2} / \sqrt{n}$.

Finite-Dimensional Models: Examples

If $p_{0} \in \mathcal{P}_{J_{0}, M_{0}}$ for some J_{0}, then rate $\sqrt{(\log n) / n}$.
If $d\left(p_{0}, \mathcal{P}_{J, M_{0}}\right) \lesssim J^{-\beta}$ for every J, rate $(n / \log n)^{-\beta /(2 \beta+1)}$.
If $d\left(p_{0}, \mathcal{P}_{J, M_{0}}\right) \lesssim e^{-J^{\beta}}$ for every J, then rate
$(\log n)^{1 / \beta+1 / 2} / \sqrt{n}$.

Can logarithmic factors be avoided?
By using different weights and/or different model priors?

Splines

$$
[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)
$$

Spline of order q is continuous function $f:[0,1] \rightarrow \mathbb{R}$ with

- $q-2$ times differentiable on $[0,1)$
- restriction to every $[(k-1) / K, k / K)$ is a polynomial of degree $<q$.

linear spine

Splines

$$
[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)
$$

Spline of order q is continuous function $f:[0,1] \rightarrow \mathbb{R}$ with

- $q-2$ times differentiable on $[0,1)$
- restriction to every $[(k-1) / K, k / K)$ is a polynomial of degree $<q$.

linear spine

Splines form a $J=q+K$ - 1-dimensional vector space Convenient basis B-splines $B_{J, 1}, \ldots, B_{J, J}$

Splines-Properties

$$
\begin{aligned}
& {[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)} \\
& \theta^{T} B_{J}=\sum_{j} \theta_{j} B_{J, j} \quad \theta \in \mathbb{R}^{J}, \quad J=K+q-1
\end{aligned}
$$

Approximation of smooth functions
If $q \geq \alpha>0$ and f in $C^{\alpha}[0,1]$, then

$$
\inf _{\theta \in \mathbb{R}^{J}}\left\|\theta^{T} B_{J}-f\right\|_{\infty} \leq C_{q, \alpha}\left(\frac{1}{J}\right)^{\alpha}\|f\|_{\alpha}
$$

Equivalence of norms
For any $\theta \in \mathbb{R}^{J}$,

$$
\begin{aligned}
\|\theta\|_{\infty} & \lesssim\left\|\theta^{T} B_{J}\right\|_{\infty} \leq\|\theta\|_{\infty} \\
\|\theta\|_{2} & \lesssim \sqrt{J}\left\|\theta^{T} B_{J}\right\|_{2} \lesssim\|\theta\|_{2}
\end{aligned}
$$

Log Spline Models

$$
\begin{aligned}
& {[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)} \\
& \theta^{T} B_{J}=\sum_{j} \theta_{j} B_{J, j}, \quad J=K+q-1 \\
& \quad p_{J, \theta}(x)=e^{\theta^{T} B_{J}(x)-c_{J}(\theta)}, \quad e^{c_{J}(\theta)}=\int_{0}^{1} e^{\theta^{T} B_{J}(x)} d x .
\end{aligned}
$$

Log Spline Models

$$
\begin{aligned}
& {[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)} \\
& \theta^{T} B_{J}=\sum_{j} \theta_{j} B_{J, j}, \quad J=K+q-1 \\
& \quad p_{J, \theta}(x)=e^{\theta^{T} B_{J}(x)-c_{J}(\theta)}, \quad e^{c_{J}(\theta)}=\int_{0}^{1} e^{\theta^{T} B_{J}(x)} d x .
\end{aligned}
$$

prior on θ induces prior on $p_{J, \theta}$ for fixed J prior on J give model weights $\lambda_{n, J}$

Log Spline Models

$$
\begin{aligned}
& {[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)} \\
& \theta^{T} B_{J}=\sum_{j} \theta_{j} B_{J, j}, \quad J=K+q-1 \\
& \quad p_{J, \theta}(x)=e^{\theta^{T} B_{J}(x)-c_{J}(\theta)}, \quad e^{c_{J}(\theta)}=\int_{0}^{1} e^{\theta^{T} B_{J}(x)} d x .
\end{aligned}
$$

prior on θ induces prior on $p_{J, \theta}$ for fixed J prior on J give model weights $\lambda_{n, J}$
flat prior on θ and model weights $\lambda_{n, J}$ as before gives adaptation to smoothness classes up to logarithmic factor

Log Spline Models

$$
\begin{aligned}
& {[0,1)=\cup_{k=1}^{K}[(k-1) / K, k / K)} \\
& \theta^{T} B_{J}=\sum_{j} \theta_{j} B_{J, j}, \quad J=K+q-1 \\
& \quad p_{J, \theta}(x)=e^{\theta^{T} B_{J}(x)-c_{J}(\theta)}, \quad e^{c_{J}(\theta)}=\int_{0}^{1} e^{\theta^{T} B_{J}(x)} d x .
\end{aligned}
$$

prior on θ induces prior on $p_{J, \theta}$ for fixed J prior on J give model weights $\lambda_{n, J}$
flat prior on θ and model weights $\lambda_{n, J}$ as before gives adaptation to smoothness classes up to logarithmic factor

Can do better?

Adaptation (3)

A finite, ordered $\quad \epsilon_{n, \alpha}<\epsilon_{n, \beta}$ if $\alpha>\beta$ $n \epsilon_{n, \alpha}^{2} \rightarrow \infty$ for every α

THEOREM If

$$
\begin{aligned}
& \epsilon \geq \epsilon_{n, \alpha} \\
& \qquad \frac{\lambda_{n, \alpha}}{\lambda_{n, \beta}} \frac{\Pi_{n, \alpha}\left(C_{n, \alpha}\left(B \epsilon_{n, \alpha}\right)\right)}{\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right)}=o\left(e^{-2 n \epsilon_{n, \beta}^{2}}\right), \quad \alpha<\beta \\
& \frac{\lambda_{n, \alpha}}{\lambda_{n, \beta}} \frac{\Pi_{n, \alpha}\left(C_{n, \alpha}\left(i \epsilon_{n, \alpha}\right)\right)}{\Pi_{n, \beta}\left(B_{n, \beta}\left(\epsilon_{n, \beta}\right)\right)} \leq e^{i^{2} n\left(\epsilon_{n, \alpha}^{2} \vee \epsilon_{n, \beta}^{2}\right)}
\end{aligned}
$$

then posterior rate is $\epsilon_{n, \beta}$
$B_{n, \alpha}(\epsilon)$ and $C_{n, \alpha}(\epsilon)$ are KL-ball and d-ball in $\mathcal{P}_{n, \alpha}$ around p_{0}

Log Spline Models

Consider four combinations of priors $\bar{\Pi}_{n, \alpha}$ on θ
weights $\lambda_{n, \alpha}$ on $J_{n, \alpha}$
to adapt to smoothness classes
$J_{n, \alpha} \sim n^{1 /(2 \alpha+1)}$
$\epsilon_{n, \alpha}=n^{-\alpha /(2 \alpha+1)}$

Assume p_{0} is β-smooth and sufficiently regular

Flat prior, uniform weights

$\bar{\Pi}_{n, \alpha}$ "uniform" on $[-M, M]^{J_{n, \alpha}}$,
M large
Uniform weights $\lambda_{n, \alpha}=\lambda_{\alpha}$

Flat prior, uniform weights

$\bar{\Pi}_{n, \alpha}$ "uniform" on $[-M, M]^{J_{n, \alpha}}, \quad M$ large
Uniform weights $\lambda_{n, \alpha}=\lambda_{\alpha}$
THEOREM Posterior rate is $\epsilon_{n, \beta} \sqrt{\log n}$

Flat prior, decreasing weights

$\bar{\Pi}_{n, \alpha}$ "uniform" on $[-M, M]^{J_{n, \alpha}}, \quad M$ large $\lambda_{n, \alpha} \propto \prod_{\gamma<\alpha}\left(C \epsilon_{n, \gamma}\right)^{J_{n, \gamma}}, \quad C>1$

THEOREM Posterior rate is $\epsilon_{n, \beta}$

Flat prior, decreasing weights

$\bar{\Pi}_{n, \alpha}$ "uniform" on $[-M, M]^{J_{n, \alpha}}, \quad M$ large $\lambda_{n, \alpha} \propto \prod_{\gamma<\alpha}\left(C \epsilon_{n, \gamma}\right)^{J_{n, \gamma}}, \quad C>1$

THEOREM Posterior rate is $\epsilon_{n, \beta}$

Small models get small weight!

Discrete priors, increasing weights

$\bar{\Pi}_{n, \alpha}$ discrete on \mathbb{R}^{J} with minimal number of support points to obtain approximation error $\epsilon_{n, \alpha}$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$
THEOREM Posterior rate is $\epsilon_{n, \beta}$

Discrete priors, increasing weights

$\bar{\Pi}_{n, \alpha}$ discrete on \mathbb{R}^{J} with minimal number of support points to obtain approximation error $\epsilon_{n, \alpha}$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$
THEOREM Posterior rate is $\epsilon_{n, \beta}$
Small models get big weight!

Discrete priors, increasing weights

$\bar{\Pi}_{n, \alpha}$ discrete on \mathbb{R}^{J} with minimal number of support points to obtain approximation error $\epsilon_{n, \alpha}$
$\lambda_{n, \alpha} \propto \lambda_{\alpha} e^{-C n \epsilon_{n, \alpha}^{2}}$
THEOREM Posterior rate is $\epsilon_{n, \beta}$

Splines of dimension $J_{n, \alpha}$ give approximation error $\epsilon_{n, \alpha}$. A uniform grid on coefficients in dimension $J_{n, \alpha}$ that gives approximation error $\epsilon_{n, \alpha}$ is too large. Need sparse subset. Similarly a smooth prior on coefficients in dimension $J_{n, \alpha}$ is too rich.

Special smooth prior, increasing weights

$\bar{\Pi}_{n, \alpha}$ continuous and uniform on minimal subset of \mathbb{R}^{J} that allows approximation with error $\epsilon_{n, \alpha}$

Special, increasing weights $\lambda_{n, \alpha}$
THEOREM (Huang, 2002) Posterior rate is $\epsilon_{n, \beta}$

Huang obtains this result for the full scale of regularity spaces in a general finite-dimensional setting

Conclusion

There is a range of weights $\lambda_{n, \alpha}$ that works
Which weights $\lambda_{n, \alpha}$ work depends on the fine properties of the priors on the models $\mathcal{P}_{n, \alpha}$

Gaussian mixtures

Model

$$
p_{F, \sigma}(x)=\int \phi_{\sigma}(x-z) d F(z)
$$

Prior
$F \sim \operatorname{Dirichlet}(\alpha), \sigma \sim \pi_{n}$, independent
(α Gaussian, π_{n} smooth)

Gaussian mixtures

Model

$$
p_{F, \sigma}(x)=\int \phi_{\sigma}(x-z) d F(z)
$$

Prior
$F \sim \operatorname{Dirichlet}(\alpha), \sigma \sim \pi_{n}$, independent (α Gaussian, π_{n} smooth)

CASE ss: π_{n} fixed
CASE s : π_{n} shrinks at rate $n^{-1 / 5}$

Gaussian mixtures

Model
$p_{F, \sigma}(x)=\int \phi_{\sigma}(x-z) d F(z)$
Prior $F \sim \operatorname{Dirichlet}(\alpha), \sigma \sim \pi_{n}$, independent (α Gaussian, π_{n} smooth)

CASE ss: π_{n} fixed
CASE s : π_{n} shrinks at rate $n^{-1 / 5}$
THEOREM (Ghosal,vdV) Rate of convergence relative to (truncated) Hellinger distance is

- CASE ss: if $p_{0}=p_{\sigma_{0}, F_{0}}$, then $(\log n)^{k} / \sqrt{n}$
- CASE s: if p_{0} is 2-smooth, then $n^{-2 / 5}(\log n)^{2}$

Assume p_{0} subGaussian

Gaussian mixtures

Model

$$
p_{F, \sigma}(x)=\int \phi_{\sigma}(x-z) d F(z)
$$

Prior

CASE ss: π_{n} fixed
CASE s : π_{n} shrinks at rate $n^{-1 / 5}$
THEOREM (Ghosal,vdV) Rate of convergence relative to (truncated) Hellinger distance is

- CASE ss: if $p_{0}=p_{\sigma_{0}, F_{0}}$, then $(\log n)^{k} / \sqrt{n}$
- CASE s: if p_{0} is 2-smooth, then $n^{-2 / 5}(\log n)^{2}$

Can we adapt to the two cases?

Gaussian mixtures

Weights $\lambda_{n, s}$ et $\lambda_{n, s s}$

Gaussian mixtures

Weights $\lambda_{n, s}$ et $\lambda_{n, s s}$
THEOREM
Adaptation up to logarithmic factors if

$$
\exp \left(c(\log n)^{k}\right)<\frac{\lambda_{n, s s}}{\lambda_{n, s}}<\exp \left(C n^{1 / 5}(\log n)^{k}\right)
$$

Gaussian mixtures

Weights $\lambda_{n, s}$ et $\lambda_{n, s s}$
THEOREM
Adaptation up to logarithmic factors if

$$
\exp \left(c(\log n)^{k}\right)<\frac{\lambda_{n, s s}}{\lambda_{n, s}}<\exp \left(C n^{1 / 5}(\log n)^{k}\right)
$$

We believe this works already if

$$
\exp \left(-c(\log n)^{k}\right)<\frac{\lambda_{n, s s}}{\lambda_{n, s}}<\exp \left(C n^{1 / 5}(\log n)^{k}\right)
$$

In particular: equal weights.

Conclusion

There is a range of weights $\lambda_{n, \alpha}$ that works
Which weights $\lambda_{n, \alpha}$ work depends on the fine properties of the priors on the models $\mathcal{P}_{n, \alpha}$

Conclusion

There is a range of weights $\lambda_{n, \alpha}$ that works
Which weights $\lambda_{n, \alpha}$ work depends on the fine properties of the priors on the models $\mathcal{P}_{n, \alpha}$

This interaction makes comparison with penalized minimum contrast estimation difficult

Need refined asymptotics and numerical implementation for further understanding

Conclusion

There is a range of weights $\lambda_{n, \alpha}$ that works
Which weights $\lambda_{n, \alpha}$ work depends on the fine properties of the priors on the models $\mathcal{P}_{n, \alpha}$

This interaction makes comparison with penalized minimum contrast estimation difficult

Need refined asymptotics and numerical implementation for further understanding

Bayesian density estimation is 10 years behind?

