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Joint work with Jyri Lember



Adaptation
=

Given a collection of possible models
find a single procedure
that works well for all models
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Adaptation
=

Given a collection of possible models
find a single procedure
that works well for all models

as well as a procedure specifically
targetted to the correct model

correct model Is the one
that contains the of the data

o -
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Adaptation to Smoothness

-

Given a random sample of size n from a density py on R
that is known to have « derivatives,

=

there exist estimators p,, with rate ¢,, , = n~/(2e+1)

o -
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Adaptation to Smoothness

-

Given a random sample of size n from a density py on R
that is known to have « derivatives,

=

there exist estimators p,, with rate ¢,, , = n~/(2e+1)

.e. Epod2<ﬁnap0)2 — 0(6721 a)
uniformly in po with [ ( p(()a d)\ bounded

o -
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Distances

-

Global distances on densities

d can be one of:

hp.a) = /[ 1P = val* du.

lp—qlli= [ |p—aldy,

Ip—glla =/ Ip— al? dp.

o -
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Data
Models

Optimal rates

Adaptation

X1 .., X, iid. po
Pn.o for a € A, countable

€n,a



Adaptation

fData X1,..., X, 1L1.d. pg
Models Pn.o for a € A, countable
Optimal rates ¢, 4

po contained in or close to P, 3, some 3 € A

o -
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Adaptation
=

X1 X, id. po
Pn.o for a € A, countable

€n,a

po contained in or close to P, 3, some 3 € A

We want procedures that (almost) attain rate ¢, g,
but we do not know /3

o -
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Adaptation-NonBayesian

-

Main methods:
e Penalization
e Cross validation



Adaptation-NonBayesian

fMain methods:
e Penalization
e Cross validation

Penalization:
Minimize your favourite contrast function ,
but add a penalty for model complexity

o -
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Adaptation-NonBayesian

fMain methods:
e Penalization
e Cross validation

Penalization:
Minimize your favourite contrast function ,
but add a penalty for model complexity

Cross validation:

Split the sample

Use first half to select best estimator for each model
Use second half to select best model

o -
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Adaptation-Penalization

fI\/Ioolels Ph.as ac A

Estimator given model  py, o = argmin M, (p)
PEPn.a



Adaptation-Penalization

. .

odels Pr.as a€c A
Estimator given model  p, o = argmin My, (p)
PEPn.a
Estimator model Gy, = argmin( My, (Pn,o) + penp(@))
acA



Adaptation-Penalization

. .

Ode|S 7D’I’L,Ou @ E A
Estimator given model  py, o = argmin M, (p)
PEPn.a
Estimator model Gy, = argmin (M, (Pn.q) + penp(a))
aEA
Final estimator Pn = Pn.a,
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Adaptation-Penalization

=

Pn,ou @ E A

Pn.a = argmin M, (p)
PEPn

Gy, = argmin (M, (Pn.a) + penp())
acA

Final estimator Pn = Dn.a,

If M,, Is the log likelihood, then p,, Is the posterior mode
relative to prior m,(p, @) x exp(peny,(a))

o -
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fI\/Iodels

Prior
Prior
Overall Prior

Adaptation-Bayesian

Pr.a a€ A
1, o ON Py 4
()\n,oz)ozEA on A

11, = ZaGA )\n,oan,oz



Posterior

11, (B| X1, ...

Adaptation-Bayesian

Pn,cm 84 E A
Hn,a on 7Dn,oz
(An,a)aca ON A

Hn — ZC\(EA )\n,oan,oz

B IL,(B|X1,...,Xn),

fB 1= lp dH ()
) =T dH()

ZaEAn )\"%04 PEPp o:pEB Hf?zl p(XZ) dHn,O&(p)
S, Mo e, 1 X0 dlla(p)

-
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Adaptation-Bayesian
f P, T

ac A
1,0 ON Py 4
()\n,oz)ozeA on A
11, = ZQGA )\n,oan,oz

Posterior B — II,(B|X1,..., X,)

Desired result:
If po € P,, 5 (Or is close) then

Ep. 1, (p :d(p,po) > My en 5/ X1, ... ,Xn) — 0 for every
M, — oo

o -
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Single M od€l
- o

Pn.s
NP

THEOREM (GGvdV, 2000) If

log N (€3, Png,d) < Ene%ﬁ entropy

I, 5 (ang(en,g)) > e~ Fnens prior mass

then the posterior rate of convergence is ¢, 3

o -
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Single M od€l

fl\/lodel Pr.g
Prior I, 5

THEOREM (GGvdV, 2000) If

log N (€3, Png,d) < Eneiﬁ entropy

I, 3 (Bnﬁ(en,g)) > e~ e, prior mass

then the posterior rate of convergence is ¢, 3

By« (€) 1s a Kullback-Leibler ball around py:

2
vl ={p € Pua: ~Rlogf < R(lg ) <@f
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Covering Numbers

-

DEFINITION
The covering number N (e, P, d) is the minimal number of

balls of radius ¢ needed to cover the set P.

=

o -
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Covering Numbers

-

DEFINITION
The covering number N (e, P, d) is the minimal number of

balls of radius ¢ needed to cover the set P.

=
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Covering Numbers

- .

DEFINITION
The covering number N (e, P, d) is the minimal number of

balls of radius ¢ needed to cover the set P.

Rate at which N(e, P, d) Increases if ¢ | 0 determines size of
model

| -
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Motivation Entropy
-

Solution ¢, to

log N (€, Py, d) o< ne

gives optimal rate of convergence for model 7,
IN Minimax sense

o -
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Single M od€l
- o

Pn.s
NP

THEOREM (GGvdV, 2000) If

log N (€3, Png,d) < Ene%ﬂ entropy

I, 5 (ang(en,g)) > e~ Fnens prior mass

then the posterior rate of convergence is ¢, 3

o -
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Motivation Prior M ass

2

I1,, (Bn(en)) > e en prior mass



Motivation Prior M ass

> ¢ Men prior mass

Need N (e, P, d) ~ exp(ne?) balls

o -
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M otivation Prior Mass

> ¢ Men prior mass

Need N (e, P, d) ~ exp(ne?) balls

Can place exp(Cne?) balls

o -
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Motivation Prior M ass

> ¢ Men prior mass

Need N (e, P, d) ~ exp(ne?) balls

Can place exp(Cne?) balls

Llf IT,, “uniform”, then each ball receives mass exp(—Cne?) J
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Equivalence KL and Hellinger

=

fThe prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent

o -
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Equivalence KL and Hellinger

=

fThe prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent

e If ratios pg/p of densities are bounded, then fully
equivalent

o -

Bayesian Adaptation — p. 15/



Equivalence KL and Hellinger

fThe prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent

e If ratios pg/p of densities are bounded, then fully
equivalent

o If Py(po/p)° is bounded, some b > 0, then equivalent up to
logarithmic factors

o -
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Single M od€l
- o

Pn.s
NP

THEOREM (GGvdV, 2000) If

log N(€n. 3, Pn g, d) < Ene%ﬂ entropy

I, 5 (Bn,g(enﬂ)) > e~ Fnens prior mass

then the posterior rate of convergence is ¢, 3

o -
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Single M od€l
- o

Pn.s
NP

THEOREM (GGvdV, 2000) If

log N(€n. 3, Pn g, d) < Ene%ﬂ entropy

I, 5 (Bn,g(enﬂ)) > e~ Fnens prior mass

then the posterior rate of convergence is ¢, 3

Can actually replace entropy log N (e, P, g, d) by Le Cam
dimension sup, ... log N (1/2, Cp, g(n), d)
LCan also refine the prior mass condition J
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Adaptation-Bayesian
|7 Pr.as ac A T

1,0 ON Py o
()\n,oz)ozeA on A
ZO&EA )\n,oan,oz

Posterior B — II,(B|X1,...,X,)

Desired result:
If po € P,, 5 (Or is close) then

Ep. I, (p :d(p,po) > Mepp,| X1, ... ,Xn) — 0 for every
sufficiently large M.

o -
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Adaptation (1)
=

A finite, ordered €na L €epplfa>p

2
n€n’6 — OO



Adaptation (1)
=

A finite, ordered €na L €epplfa>p

2
TLEn’ﬁ — OO

2
)\n’oé X )\Oée_cnen’a



Adaptation (1)
=

A finite, ordered €na L €epplfa>p

2
n&nﬁ — OO

2
)\fn/)& X )\Cke_cnen’a

Small models get big weights



Adaptation (1)

-

2
n€n’6 — OO

2
)\n’oé X )\Oée_cnen’a

THEOREM If

Ene

n,Qo

log N(€n.as Pr.avs d)
5 (Bn.s(€n,s))

then posterior rate Is ¢, 3

o

I

—FTLE%’B

[V

€

A finite, ordered €na L €epplfa>p

entropy, Va.

prior mass

-
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Adaptation (2)

fExtens.ion to countable A possible in two ways:
e truncation of weights \,, , to subsets A4, T A
e additional entropy control

o -
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Adaptation (2)

fExtens.ion to countable A possible in two ways:
e truncation of weights \,, , to subsets A4, T A
e additional entropy control

Also replace 3 by g,

o -
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Adaptation (2)

fExtens.ion to countable A possible in two ways: T
e truncation of weights \,, , to subsets A4, T A
e additional entropy control

Also replace 3 by g,

Always assume
>a(Aa/Ag,) exp(=Ce; . /4) = O(1)

o -
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Adaptation (2a)-Truncation

- .

Ag 1A, Bo€ Ay, log(#4,) <né

2
—>
TLEnﬂn 0.9



Adaptation (2a)-Truncation

- .

Ag 1A, Bo€ Ay, log(#4,) <né

2
—>
TLEnﬁn 0.9

—Cne

An.a X A€ na 14, ()



Adaptation (2a)-Truncation

- .

Ag 1A, Bo€ Ay, log(#4,) <né

2
—
nén’ﬁn 0.9

—Cne

An.a X A€ na 14, ()

2
N n,x - O(l), H>>1



Adaptation (2a)-Truncation

- .

Ag 1A, Bo€ Ay, log(#4,) <né

2
—>
nenﬁn O

—Cne

An.a X A€ na 14, ()

THEOREM If

log N(€én.a, Pra, d) < Ene?

n,qo

entropy, Va.

11, 3, (Bn,ﬁn(En,ﬂn)) > e_F”Giﬁn prior mass

Lthen posterior rate Is €, g, J



Adaptation (2b)-Entropy control
=

A countable

2
n€n’6 — OO

=



Adaptation (2b)-Entropy control
=

A countable

2
TLEn’ﬁ — OO

-

2
)\n,Oé X )\Oée_cnen’a



Adaptation (2b)-Entropy control
B

countable

A
nefw — 00

2
)\n’oé X )\Oée_cnen’a

THEOREM If H > 1 and

log N(en,gn, U Ph.a; d) < ETLG?L,gna entropy,

a€n.o<Hey, s,

I, 3, (Bn,ﬁn(en,ﬁn)) > e_F"Eiﬁn, prior mass

then posterior rate Is ¢, 3,

o -
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Discretepriors

-

Discrete priors that are uniform on

specially constructed approximating sets

are universal

In the sense that under abstract and mild conditions
they give the desired result

To avoid unnecessary logarithmic factors we need to
replace ordinary entropy by the slightly more restrictive
bracketing entropy

o -
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Bracketing Numbers
5

Given [,u : X — R the bracket [[,u] iIsthe setofp: X — R T
with [ < p <.

Ny
]
]
. ||||||||| |||l||| |||
]
T T T T T
0 2 4 6 8

An e-bracket relative to d is a bracket [I, u] with d(u, 1) < e.

DEFINITION
The bracketing number Ny (e, P, d) is the minimum number

of e-brackets needed to cover P.

o -
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Discretepriors

-

On.« COllection of nonnegative functions with
log N](en,a, On.ash) < Eane%,a

ut, ..., uy minimal set of ¢, o-upper brackets
u1,...,uy normalized functions

o -
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Discretepriors

-

On.« COllection of nonnegative functions with

log ]\f] (€n7og7 Qn,om h) S EO&nE?%,Oé

ut, ..., uy minimal set of ¢, o-upper brackets
u1,...,uy normalized functions
II, o Uniform on g, ..., uyN
UM>OMQn,a

o -
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Discretepriors

-

On.« COllection of nonnegative functions with

log ]\f] (€n7o¢7 Qn,om h) S EO&nE?%,Oé

ut, ..., uy minimal set of ¢, o-upper brackets
u1,...,uy normalized functions
II, o Uniform on g, ..., uyN
UM>OMQn,a
THEOREM

If \,o and A,, T A are as before, and py € MyQ,, 3
then posterior rate Is ¢, 3, relative to the Hellinger distance.

o -
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Smoothness Spaces

-

B¢ unit ball in a Banach B* of functions
log Ny (€n.a, BY, || - l2) < Eaney

/D € B®



Smoothness Spaces

-

B¢ unit ball in a Banach B* of functions
log Ny (€n.a, BY, || - l2) < Eaney

/D € B®

THEOREM
There exists a prior such that the posterior rate Is ¢, g

whenever ,/pg € BY for some 8 > 0.

o -
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Smoothness Spaces

-

B¢ unit ball in a Banach B* of functions
log Ny (€n.a, BY, || - l2) < Eaney

/D € B®

THEOREM
There exists a prior such that the posterior rate Is ¢, g

whenever ,/pg € BY for some 8 > 0.

EXAMPLE
e HOlder spaces and Sobolev spaces of a-smooth
functions, with ¢, , = n=/(2e+1),

L‘ Besov spaces (in progress)

-
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Finite-Dimensional M odels

Model P; of dimension J



Finite-Dimensional M odels

-

P, of dimension J

po f-regularif  d(po,Ps) S (1/J)°
Precision when estimating J parameters J/n



Finite-Dimensional M odels

-

P, of dimension J

po f-regularif  d(po,Ps) S (1/J)°
Precision when estimating J parameters J/n

Bias-variance trade-off (1/J)% ~ J/n

Optimal dimension J ~ nl/(26+1)

o -
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Finite-Dimensional M odels

-

Model P; of dimension J

-

Bias po B-regularif  d(po,Ps) < (1/J)°
Variance Precision when estimating J parameters J/n

Bias-variance trade-off (1/J)% ~ J/n
Optimal dimension  J ~ n1/(26+1)
Rate en.g ~ n~ P20+ We want to adapt

to 5 by putting weights on J

o -
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Finite-Dimensional M odels

-

Model dimension can be taken as Le Cam dimension

P; of dimension J

J ~ sup log N'(n/2,{p € Py :d(p,po) < n},d)
77 €

D A AT A A AR AR A,




Finite-Dimensional M odels

o .

Pjar of Le Cam dimension A,,J, J € N, M € M,
J
Ly p (Bya(e)) > (BsCre)”, €> Dard(po, Pi)



Finite-Dimensional M odels
N o

Models  Pjr of Le Cam dimension Ay J, J € N, M € M,
| J
Prior HJ’M(BJ’M(G)) > (BJOME) , €> Dy d(pQ,PJ7M)

This correspond to a smooth prior on the J-dimensional
model

o -
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Finite-Dimensional M odels

=

P of Le Cam dimension Ay J, J € N, M € M,

J
Ly p (Bya(e)) > (BsCre)”, €> Dard(po, Pi)
g o< €= Cmenaarl g (J, M)



Finite-Dimensional M odels

f Py of Le Cam dimension Ay, J, J € N, M € M, T

J
Ly p (Bya(e)) > (BsCre)”, €> Dard(po, Pi)
g o< €= Cmenaarl g (J, M)

(log Cpr)Apr > 1, By 2 J_k, ZMEM e AN < oo

Jlogn
€n,J,M \/ ng Ay

THEOREM
If there exist J,, € J,, with J,, < n and
d(po, Pn.J, My) S €n.J,.M,» then posterior rate is €, j, s,

Y

o -
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Finite-Dimensional M odels. Examples

- .

If po € Py, 1, fOr some Jy, then rate /(logn)/n.




Finite-Dimensional M odels. Examples

- .

If po € Py, 1, fOr some Jy, then rate /(logn)/n.

If d(po, Prar,) < J7° for every J, rate (n/logn) =7/ (20+1),



Finite-Dimensional M odels. Examples

- .

If po € Py, 1, fOr some Jy, then rate /(logn)/n.

If d(po, Prar,) < J7° for every J, rate (n/logn) =7/ (20+1),

If d(po, Pras,) S e=7" for every J, then rate
(logn)/IH2 [ /.

o -
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Finite-Dimensional M odels. Examples

- .

If po € Py, 1, fOr some Jy, then rate /(logn)/n.

If d(po, Prar,) < J7° for every J, rate (n/logn) =7/ (20+1),

If d(po, Pras,) S e=7" for every J, then rate
(logn)/IH2 [ /.

Can logarithmic factors be avoided?
By using different weights and/or different model priors?

o -
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Splines
- o

[Ov 1) — Ué(zl [(k o 1)/K7 k/K)

Spline of order ¢ is continuous function f : [0, 1] — R with
e ¢ — 2 times differentiable on [0, 1)

e restriction to every |(k —1)/K, k/K) is a polynomial of
degree < g.

w
=

e

=i

w

o

o -
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Splines
- o

[Ov 1) — Ué(—l [(k o 1)/K7 k/K)

Spline of order ¢ is continuous function f : [0, 1] — R with
e ¢ — 2 times differentiable on [0, 1)

e restriction to every |(k —1)/K, k/K) is a polynomial of
degree < g.

w
=

e

=i

w

o

Splines form a J = ¢ + K — 1-dimensional vector space J
L(:onvenient basis B-splines By1,..., B
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Splines-Properties
- o

0,1) =Uf  [(k—1)/K,k/K)
0'B; =3 .0;iBy, h R, J=K+q—1

Approximation of smooth functions

If ¢ > a>0and fin C%0,1], then

o 1 <
QleanJHHTBJ — fHOO < Cq,a(j) 1 flla

Equivalence of norms
For any § € R/,

101l S 1167 Bylloo < [16]]c:

| 16112 < VT 167 Byll2 < 62 -
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L og Spline M odels
=

0,1) =Uf  [(k—1)/K,k/K)
QTBJ:ZJ-(QJ’BJ’]’, J=K+qg—1

1
prp(z) =/ Bi@=es0)  pes0) / NTB (@) g
0



L og Spline M odels
- o

0,1) =Uf  [(k—1)/K,k/K)
@TBJ:ZJ-HJ’BJ’]’, J=K+qg—1

1
pro(x) = " Bo@)=es0) - geal0) / "B gy
| 0

prior on 6 induces prior on py for fixed J
prior on J give model weights \,, ;

o -
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L og Spline M odels
- o

0,1) =Uf  [(k—1)/K,k/K)
QTBJ:Zj(ngJ’j, J=K+qg—1

1
prola) = BRSO, 0 [T g,
| 0

prior on 6 induces prior on py for fixed J
prior on J give model weights \,, ;

flat prior on # and model weights ), ; as before gives

adaptation to smoothness classes
up to logarithmic factor

o -
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L og Spline M odels
- o

0,1) =Uf  [(k—1)/K,k/K)
QTBJ:Zj(ngJ’j, J=K+qg—1

1
prola) = BRSO, 0 [T g,
| 0

prior on 6 induces prior on py for fixed J
prior on J give model weights \,, ;

flat prior on # and model weights ), ; as before gives

adaptation to smoothness classes
up to logarithmic factor

LCan do better? J
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Adaptation (3)
=

A finite, ordered €na < €npglfa>p
ne; , — oo for every o
THEOREM If
sup log N (e/2, Cy (), d) < Ene%,a, a € A,
€2€n,a
)\naﬂna CnaBna —One2
) ) ( ) ( € ) )) :0(8 2??,6”,5)7 a<6’
Ang o (Bn,p(ens))
)\n,oz Hn,a (Cn,oz(ien,a))

< €i2n(e%,QVG%,B ) |
A8 T (Bng(€ns))

then posterior rate Is ¢, 3

L



L og Spline Models

fConsider four combinations of
priors II,, , oNn 6
weights A\, , on J, ,
to adapt to smoothness classes

T, o~ pl/(2a+1)

En o = n_a/(2a+1)

Assume pq IS g-smooth and sufficiently regular

o -
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Flat prior, uniform weights

=

[T, “uniform” on [— M, M]/me, M large

Uniform weights A\, » = A\,



Flat prior, uniform weights

-

[T, “uniform” on [— M, M]/me, M large
Uniform weights A\, » = A\,

THEOREM Posterior rate is €, gv/logn



Flat prior, decreasing weights

-

[T, “uniform” on [— M, M]/me, M large
)\’I’L,Oé X H7<Oé(06n7’7)t]n”y’ C > 1

THEOREM Posterior rate Is €, g



Flat prior, decreasing weights

-

[T, “uniform” on [— M, M]/me, M large
)\’I’L,CV X H7<Oé(06n7’7)t]n’fy’ C > 1

THEOREM Posterior rate Is €, g

Small models get small weight!
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Discrete priors, increasing weights

I1,, ., discrete on R/ with minimal number of support points
to obtain approximation error e,

2
)\n)a 0. )\ae_cnen’a

THEOREM Posterior rate Is €, g

o -
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Discrete priors, increasing weights

I1,, ., discrete on R/ with minimal number of support points
to obtain approximation error e,

2
)\n)a XX )\ae_cnen’a

THEOREM Posterior rate Is €, g

Small models get big weight!

o -
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Discrete priors, increasing weights

I1,, ., discrete on R/ with minimal number of support points
to obtain approximation error e,

2
)\n’a XX )\ae_cnen’a

THEOREM Posterior rate Is €, g

Splines of dimension J,, , give approximation error e, .

A uniform grid on coefficients in dimension .J, ., that gives
approximation error e, ,, IS too large. Need sparse subset.
Similarly a smooth prior on coefficients in dimension .J,, , IS
too rich.
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Special smooth prior, increasing weights

-

[T, ., continuous and uniform on minimal subset of R that
allows approximation with error ¢, ,,

Special, increasing weights ),

THEOREM (Huang, 2002) Posterior rate Is €, g

Huang obtains this result for the full scale of regularity
spaces in a general finite-dimensional setting

o -
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Conclusion

-

There is a range of weights )\, ,, that works

=

Which weights \,, , work depends on the fine properties of
the priors on the models P, ,

o -
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Gaussian mixtures

-

Model Pro(x) = [ ¢o(z — 2)dF(2)
Prior F' ~ Dirichlet(«), o ~ m,, INndependent
(o Gaussian, m,, sSmooth)



Gaussian mixtures

-

pro(z) = [ ¢o(r — 2)dF(2)
F' ~ Dirichlet(«), o ~ m,, INndependent

CASE ss: 7, fixed
CASE s : r, shrinks at rate n—1/?



Gaussian mixtures

. .

pro(z) = [ ¢o(r — 2)dF(2)
F' ~ Dirichlet(«), o ~ m,, INndependent

CASE ss: 7, fixed
CASE s : r, shrinks at rate n—1/?

THEOREM Rate of convergence relative
to (truncated) Hellinger distance is

e CASE ss: if py = poy 1, then (logn)¥/y/n
e CASE s: if pg is 2-smooth, then n=2/%(log n)?

o -
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Gaussian mixtures

. .

pro(z) = [ ¢o(r — 2)dF(2)
F' ~ Dirichlet(«), o ~ m,, INndependent

CASE ss: 7, fixed
CASE s : r, shrinks at rate n—1/?

THEOREM Rate of convergence relative
to (truncated) Hellinger distance is

e CASE ss: if py = poy 1, then (logn)¥/y/n
e CASE s: if pg is 2-smooth, then n=2/%(log n)?

Can we adapt to the two cases?

-
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Gaussian mixtures

-

Welights A, s et A\, s



Gaussian mixtures
W

THEOREM
Adaptation up to logarithmic factors if

eights A, s et A\, ss

exp(c(logn)®) < );\n’ss < exp(C’nl/5(log n)*)

o -
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Gaussian mixtures
W

THEOREM
Adaptation up to logarithmic factors if

eights A, s et A\, ss

exp (c(log n)k) < );\n’ss < exp(C’nl/5(log n)k)

We believe this works already if

)\n,ss
)\n S

Y

exp(—c(log n)k) < < exp(Cn1/5(log n)k)

Lln particular: equal weights. J
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Conclusion

-

There is a range of weights )\, ., that works

=

Which weights \,, , work depends on the fine properties of
the priors on the models P, ,

o -
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Conclusion

-

There is a range of weights )\, ., that works

=

Which weights \,, , work depends on the fine properties of
the priors on the models P, ,

This interaction makes comparison with penalized minimum
contrast estimation difficult

Need refined asymptotics and numerical implementation for
further understanding

o -
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Conclusion

-

There is a range of weights )\, ., that works

=

Which weights \,, , work depends on the fine properties of
the priors on the models P, ,

This interaction makes comparison with penalized minimum
contrast estimation difficult

Need refined asymptotics and numerical implementation for
further understanding

o -
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