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Adaptation

Given a collection of possible models
find a single procedure
that works well for all models
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Adaptation

Given a collection of possible models
find a single procedure
that works well for all models

as well as a procedure specifically
targetted to the correct model

correct model is the one
that contains the true distribution of the data
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Adaptation to Smoothness

Given a random sample of size n from a density p0 on R

that is known to have α derivatives,

there exist estimators p̂n with rate ǫn,α = n−α/(2α+1)
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Adaptation to Smoothness

Given a random sample of size n from a density p0 on R

that is known to have α derivatives,

there exist estimators p̂n with rate ǫn,α = n−α/(2α+1)

i.e. Ep0
d2(p̂n, p0)

2 = O(ǫ2n,α),

uniformly in p0 with
∫

(p
(α)
0 )2 dλ bounded (if d = ‖ · ‖2)
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Distances

Global distances on densities

d can be one of:

Hellinger: h(p, q) =
√

∫

|√p −√
q|2 dµ,

Total variation: ‖p − q‖1 =
∫

|p − q| dµ,

L2: ‖p − q‖2 =
√

∫

|p − q|2 dµ.
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Adaptation

Data X1, . . . , Xn i.i.d. p0

Models Pn,α for α ∈ A, countable
Optimal rates ǫn,α
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Adaptation

Data X1, . . . , Xn i.i.d. p0

Models Pn,α for α ∈ A, countable
Optimal rates ǫn,α

p0 contained in or close to Pn,β, some β ∈ A

We want procedures that (almost) attain rate ǫn,β,
but we do not know β
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Adaptation-NonBayesian

Main methods:
• Penalization
• Cross validation
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Main methods:
• Penalization
• Cross validation

Penalization:
Minimize your favourite contrast function (MLE, LS, ..),
but add a penalty for model complexity
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Adaptation-NonBayesian

Main methods:
• Penalization
• Cross validation

Penalization:
Minimize your favourite contrast function (MLE, LS, ..),
but add a penalty for model complexity

Cross validation:
Split the sample
Use first half to select best estimator for each model
Use second half to select best model
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Adaptation-Penalization

Models Pn,α, α ∈ A
Estimator given model p̂n,α = argmin

p∈Pn,α

Mn(p)

Bayesian Adaptation – p. 8/42



Adaptation-Penalization

Models Pn,α, α ∈ A
Estimator given model p̂n,α = argmin

p∈Pn,α

Mn(p)

Estimator model α̂n = argmin
α∈A

(

Mn(p̂n,α) + penn(α)
)
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Adaptation-Penalization

Models Pn,α, α ∈ A
Estimator given model p̂n,α = argmin

p∈Pn,α

Mn(p)

Estimator model α̂n = argmin
α∈A

(

Mn(p̂n,α) + penn(α)
)

Final estimator p̂n = p̂n,α̂n
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Adaptation-Penalization

Models Pn,α, α ∈ A
Estimator given model p̂n,α = argmin

p∈Pn,α

Mn(p)

Estimator model α̂n = argmin
α∈A

(

Mn(p̂n,α) + penn(α)
)

Final estimator p̂n = p̂n,α̂n

If Mn is the log likelihood, then p̂n is the posterior mode
relative to prior πn(p, α) ∝ exp

(

penn(α)
)
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Adaptation-Bayesian

Models Pn,α, α ∈ A
Prior Πn,α on Pn,α

Prior (λn,α)α∈A on A

Overall Prior Πn =
∑

α∈A λn,αΠn,α

Bayesian Adaptation – p. 9/42



Adaptation-Bayesian

Models Pn,α, α ∈ A
Prior Πn,α on Pn,α

Prior (λn,α)α∈A on A

Overall Prior Πn =
∑

α∈A λn,αΠn,α

Posterior B 7→ Πn(B|X1, . . . , Xn),

Πn(B|X1, . . . , Xn) =

∫

B

∏n
i=1 p(Xi) dΠn(p)

∫
∏n

i=1 p(Xi) dΠn(p)

=

∑

α∈An
λn,α

∫

p∈Pn,α:p∈B

∏n
i=1 p(Xi) dΠn,α(p)

∑

α∈An
λn,α

∫

p∈Pn,α

∏n
i=1 p(Xi) dΠn,α(p)

.
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Adaptation-Bayesian

Models Pn,α, α ∈ A
Prior Πn,α on Pn,α

Prior (λn,α)α∈A on A

Overall Prior Πn =
∑

α∈A λn,αΠn,α

Posterior B 7→ Πn(B|X1, . . . , Xn)

Desired result:
If p0 ∈ Pn,β (or is close) then
Ep0

Πn

(

p : d(p, p0) ≥ Mn ǫn,β|X1, . . . , Xn

)

→ 0 for every
Mn → ∞
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Single Model

Model Pn,β

Prior Πn,β

THEOREM (GGvdV, 2000) If

log N(ǫn,β,Pn,β , d) ≤ Enǫ2n,β entropy

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then the posterior rate of convergence is ǫn,β
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Single Model

Model Pn,β

Prior Πn,β

THEOREM (GGvdV, 2000) If

log N(ǫn,β,Pn,β , d) ≤ Enǫ2n,β entropy

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then the posterior rate of convergence is ǫn,β

Bn,α(ǫ) is a Kullback-Leibler ball around p0:

Bn,α(ǫ) =
{

p ∈ Pn,α : −P0 log p
p0

≤ ǫ2, P0

(

log p
p0

)2
≤ ǫ2

}
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Covering Numbers

DEFINITION
The covering number N

(

ǫ,P , d
)

is the minimal number of
balls of radius ǫ needed to cover the set P.
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Covering Numbers

DEFINITION
The covering number N

(

ǫ,P , d
)

is the minimal number of
balls of radius ǫ needed to cover the set P.

Rate at which N
(

ǫ,P , d
)

increases if ǫ ↓ 0 determines size of
model

Parametric model (1/ǫ)d

Nonparametric model e(1/ǫ)1/α

e.g. smoothness α
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Motivation Entropy

Solution ǫn to

log N(ǫ,Pn, d) ∝ nǫ2

gives optimal rate of convergence for model Pn

in minimax sense

Le Cam (1975, 1986), Birgé (1983), Barron and Yang
(1999)
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Single Model

Model Pn,β

Prior Πn,β

THEOREM (GGvdV, 2000) If

log N(ǫn,β,Pn,β , d) ≤ Enǫ2n,β entropy

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then the posterior rate of convergence is ǫn,β
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Motivation Prior Mass

Πn

(

Bn(ǫn)
)

≥ e−nǫ2n prior mass
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Motivation Prior Mass

Πn

(

Bn(ǫn)
)

≥ e−nǫ2n prior mass

Need N(ǫ,P , d) ≈ exp(nǫ2n) balls
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Motivation Prior Mass

Πn

(

Bn(ǫn)
)

≥ e−nǫ2n prior mass

Need N(ǫ,P , d) ≈ exp(nǫ2n) balls

Can place exp(Cnǫ2n) balls
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Motivation Prior Mass

Πn

(

Bn(ǫn)
)

≥ e−nǫ2n prior mass

Need N(ǫ,P , d) ≈ exp(nǫ2n) balls

Can place exp(Cnǫ2n) balls

If Πn “uniform”, then each ball receives mass exp(−Cnǫ2n)
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Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent
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Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent

• If ratios p0/p of densities are bounded, then fully
equivalent
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Equivalence KL and Hellinger

The prior mass condition uses Kullback-Leibler balls,
whereas the entropy condition uses d-balls

These are typically (almost) equivalent

• If ratios p0/p of densities are bounded, then fully
equivalent

• If P0(p0/p)b is bounded, some b > 0, then equivalent up to
logarithmic factors
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Single Model

Model Pn,β

Prior Πn,β

THEOREM (GGvdV, 2000) If

log N(ǫn,β,Pn,β , d) ≤ Enǫ2n,β entropy

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then the posterior rate of convergence is ǫn,β
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Single Model

Model Pn,β

Prior Πn,β

THEOREM (GGvdV, 2000) If

log N(ǫn,β,Pn,β , d) ≤ Enǫ2n,β entropy

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then the posterior rate of convergence is ǫn,β

Can actually replace entropy log N(ǫ,Pn,β, d) by Le Cam
dimension supη>ǫ log N

(

η/2, Cn,β(η), d
)

Can also refine the prior mass condition
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Adaptation-Bayesian

Models Pn,α, α ∈ A
Prior Πn,α on Pn,α

Prior (λn,α)α∈A on A

Overall Prior
∑

α∈A λn,αΠn,α

Posterior B 7→ Πn(B|X1, . . . , Xn)

Desired result:
If p0 ∈ Pn,β (or is close) then
Ep0

Πn

(

p : d(p, p0) ≥ Mǫn,βn
|X1, . . . , Xn

)

→ 0 for every
sufficiently large M .
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Adaptation (1)

A finite, ordered ǫn,α ≪ ǫn,β if α ≥ β

nǫ2n,β → ∞
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Adaptation (1)

A finite, ordered ǫn,α ≪ ǫn,β if α ≥ β

nǫ2n,β → ∞

λn,α ∝ λαe−Cnǫ2n,α
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Adaptation (1)

A finite, ordered ǫn,α ≪ ǫn,β if α ≥ β

nǫ2n,β → ∞

λn,α ∝ λαe−Cnǫ2n,α

Small models get big weights
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Adaptation (1)

A finite, ordered ǫn,α ≪ ǫn,β if α ≥ β

nǫ2n,β → ∞

λn,α ∝ λαe−Cnǫ2n,α

THEOREM If

log N(ǫn,α,Pn,α, d) ≤ Enǫ2n,α entropy,∀α.

Πn,β

(

Bn,β(ǫn,β)
)

≥ e−Fnǫ2n,β prior mass

then posterior rate is ǫn,β
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Adaptation (2)

Extension to countable A possible in two ways:
• truncation of weights λn,α to subsets An ↑ A
• additional entropy control
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• truncation of weights λn,α to subsets An ↑ A
• additional entropy control

Also replace β by βn

Bayesian Adaptation – p. 19/42



Adaptation (2)

Extension to countable A possible in two ways:
• truncation of weights λn,α to subsets An ↑ A
• additional entropy control

Also replace β by βn

Always assume
∑

α(λα/λβn
) exp(−Cǫ2n,α/4) = O(1)
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Adaptation (2a)-Truncation

An ↑ A, βn ∈ An, log(#An) ≤ nǫ2n,βn

nǫ2n,βn
→ ∞
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Adaptation (2a)-Truncation

An ↑ A, βn ∈ An, log(#An) ≤ nǫ2n,βn

nǫ2n,βn
→ ∞

λn,α ∝ λαe−Cnǫ2n,α1An
(α)
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Adaptation (2a)-Truncation

An ↑ A, βn ∈ An, log(#An) ≤ nǫ2n,βn

nǫ2n,βn
→ ∞

λn,α ∝ λαe−Cnǫ2n,α1An
(α)

max
α∈An:ǫ2n,α≤Hǫ2n,βn

Eα
ǫ2n,α

ǫ2n,βn

= O(1), H ≫ 1
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Adaptation (2a)-Truncation

An ↑ A, βn ∈ An, log(#An) ≤ nǫ2n,βn

nǫ2n,βn
→ ∞

λn,α ∝ λαe−Cnǫ2n,α1An
(α)

max
α∈An:ǫ2n,α≤Hǫ2n,βn

Eα
ǫ2n,α

ǫ2n,βn

= O(1), H ≫ 1

THEOREM If

log N(ǫn,α,Pn,α, d) ≤ Enǫ2n,α entropy,∀α.

Πn,βn

(

Bn,βn
(ǫn,βn

)
)

≥ e−Fnǫ2n,βn prior mass

then posterior rate is ǫn,βn
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Adaptation (2b)-Entropy control

A countable
nǫ2n,β → ∞
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Adaptation (2b)-Entropy control

A countable
nǫ2n,β → ∞

λn,α ∝ λαe−Cnǫ2n,α
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Adaptation (2b)-Entropy control

A countable
nǫ2n,β → ∞

λn,α ∝ λαe−Cnǫ2n,α

THEOREM If H ≫ 1 and

log N
(

ǫn,βn
,

⋃

α:ǫn,α≤Hǫn,βn

Pn,α, d
)

≤ Enǫ2n,βn
, entropy,

Πn,βn

(

Bn,βn
(ǫn,βn

)
)

≥ e−Fnǫ2n,βn , prior mass

then posterior rate is ǫn,βn
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Discrete priors

Discrete priors that are uniform on
specially constructed approximating sets
are universal
in the sense that under abstract and mild conditions
they give the desired result

To avoid unnecessary logarithmic factors we need to
replace ordinary entropy by the slightly more restrictive
bracketing entropy
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Bracketing Numbers

Given l, u : X → R the bracket [l, u] is the set of p : X → R

with l ≤ p ≤ u.

0 2 4 6 8

0
1

2
3

4
5

6

An ǫ-bracket relative to d is a bracket [l, u] with d(u, l) < ǫ.

DEFINITION
The bracketing number N[ ]

(

ǫ,P , d
)

is the minimum number
of ǫ-brackets needed to cover P.
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Discrete priors

Qn,α collection of nonnegative functions with

log N](ǫn,α,Qn,α, h) ≤ Eαnǫ2n,α

u1, . . . , uN minimal set of ǫn,α-upper brackets
ũ1, . . . , ũN normalized functions
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Discrete priors

Qn,α collection of nonnegative functions with

log N](ǫn,α,Qn,α, h) ≤ Eαnǫ2n,α

u1, . . . , uN minimal set of ǫn,α-upper brackets
ũ1, . . . , ũN normalized functions

Prior Πn,α uniform on ũ1, . . . , ũN

Model ∪M>0MQn,α
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Discrete priors

Qn,α collection of nonnegative functions with

log N](ǫn,α,Qn,α, h) ≤ Eαnǫ2n,α

u1, . . . , uN minimal set of ǫn,α-upper brackets
ũ1, . . . , ũN normalized functions

Prior Πn,α uniform on ũ1, . . . , ũN

Model ∪M>0MQn,α

THEOREM
If λn,α and An ↑ A are as before, and p0 ∈ M0Qn,β

then posterior rate is ǫn,β, relative to the Hellinger distance.
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Smoothness Spaces

B
α
1 unit ball in a Banach B

α of functions
log N]

(

ǫn,α, Bα
1 , ‖ · ‖2

)

≤ Eαnǫ2n,α

Model
√

p ∈ B
α
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Smoothness Spaces

B
α
1 unit ball in a Banach B

α of functions
log N]

(

ǫn,α, Bα
1 , ‖ · ‖2

)

≤ Eαnǫ2n,α

Model
√

p ∈ B
α

THEOREM
There exists a prior such that the posterior rate is ǫn,β

whenever
√

p0 ∈ B
β for some β > 0.
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Smoothness Spaces

B
α
1 unit ball in a Banach B

α of functions
log N]

(

ǫn,α, Bα
1 , ‖ · ‖2

)

≤ Eαnǫ2n,α

Model
√

p ∈ B
α

THEOREM
There exists a prior such that the posterior rate is ǫn,β

whenever
√

p0 ∈ B
β for some β > 0.

EXAMPLE
• Hölder spaces and Sobolev spaces of α-smooth
functions, with ǫn,α = n−α/(2α+1).
• Besov spaces (in progress)
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Finite-Dimensional Models

Model PJ of dimension J
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Finite-Dimensional Models

Model PJ of dimension J

Bias p0 β-regular if d(p0,PJ) . (1/J)β

Variance Precision when estimating J parameters J/n
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Finite-Dimensional Models

Model PJ of dimension J

Bias p0 β-regular if d(p0,PJ) . (1/J)β

Variance Precision when estimating J parameters J/n

Bias-variance trade-off (1/J)2β ∼ J/n

Optimal dimension J ∼ n1/(2β+1)

Rate ǫn,J ∼ n−β/(2β+1)
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Finite-Dimensional Models

Model PJ of dimension J

Bias p0 β-regular if d(p0,PJ) . (1/J)β

Variance Precision when estimating J parameters J/n

Bias-variance trade-off (1/J)2β ∼ J/n

Optimal dimension J ∼ n1/(2β+1)

Rate ǫn,J ∼ n−β/(2β+1) We want to adapt

to β by putting weights on J
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Finite-Dimensional Models

Model PJ of dimension J

Model dimension can be taken as Le Cam dimension

J ∼ sup
η>ǫ

log N
(

η/2, {p ∈ PJ : d(p, p0) < η}, d
)

dimension 2
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Finite-Dimensional Models

Models PJ,M of Le Cam dimension AMJ , J ∈ N, M ∈ M,

Prior ΠJ,M

(

BJ,M (ǫ)
)

≥
(

BJCM ǫ
)J , ǫ > DM d(p0,PJ,M )
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Finite-Dimensional Models

Models PJ,M of Le Cam dimension AMJ , J ∈ N, M ∈ M,

Prior ΠJ,M

(

BJ,M (ǫ)
)

≥
(

BJCM ǫ
)J , ǫ > DM d(p0,PJ,M )

This correspond to a smooth prior on the J-dimensional
model
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Finite-Dimensional Models

Models PJ,M of Le Cam dimension AMJ , J ∈ N, M ∈ M,

Prior ΠJ,M

(

BJ,M (ǫ)
)

≥
(

BJCM ǫ
)J , ǫ > DM d(p0,PJ,M )

Weights λn,J,M ∝ e−Cnǫ2n,J,M 1Jn×Mn
(J,M)
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Finite-Dimensional Models

Models PJ,M of Le Cam dimension AMJ , J ∈ N, M ∈ M,

Prior ΠJ,M

(

BJ,M (ǫ)
)

≥
(

BJCM ǫ
)J , ǫ > DM d(p0,PJ,M )

Weights λn,J,M ∝ e−Cnǫ2n,J,M 1Jn×Mn
(J,M)

(log CM )AM ≫ 1, BJ & J−k,
∑

M∈M e−HAM < ∞

ǫn,J,M =

√

J log n

n
AM

THEOREM
If there exist Jn ∈ Jn with Jn ≤ n and
d(p0,Pn,Jn,M0

) . ǫn,Jn,M0
, then posterior rate is ǫn,Jn,M0
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Finite-Dimensional Models: Examples

If p0 ∈ PJ0,M0
for some J0, then rate

√

(log n)/n.
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Finite-Dimensional Models: Examples

If p0 ∈ PJ0,M0
for some J0, then rate

√

(log n)/n.

If d(p0,PJ,M0
) . J−β for every J , rate (n/ log n)−β/(2β+1).
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Finite-Dimensional Models: Examples

If p0 ∈ PJ0,M0
for some J0, then rate

√

(log n)/n.

If d(p0,PJ,M0
) . J−β for every J , rate (n/ log n)−β/(2β+1).

If d(p0,PJ,M0
) . e−Jβ

for every J , then rate
(log n)1/β+1/2/

√
n.
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Finite-Dimensional Models: Examples

If p0 ∈ PJ0,M0
for some J0, then rate

√

(log n)/n.

If d(p0,PJ,M0
) . J−β for every J , rate (n/ log n)−β/(2β+1).

If d(p0,PJ,M0
) . e−Jβ

for every J , then rate
(log n)1/β+1/2/

√
n.

Can logarithmic factors be avoided?
By using different weights and/or different model priors?
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Splines

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

Spline of order q is continuous function f : [0, 1] → R with
• q − 2 times differentiable on [0, 1)

• restriction to every
[

(k − 1)/K, k/K
)

is a polynomial of
degree < q.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

linear spine

Bayesian Adaptation – p. 30/42



Splines

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

Spline of order q is continuous function f : [0, 1] → R with
• q − 2 times differentiable on [0, 1)

• restriction to every
[

(k − 1)/K, k/K
)

is a polynomial of
degree < q.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

linear spine

Splines form a J = q + K − 1-dimensional vector space
Convenient basis B-splines BJ,1, . . . , BJ,J
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Splines-Properties

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

θT BJ =
∑

j θjBJ,j θ ∈ R
J , J = K + q − 1

Approximation of smooth functions
If q ≥ α > 0 and f in Cα[0, 1], then

inf
θ∈RJ

∥

∥θT BJ − f
∥

∥

∞
≤ Cq,α

( 1

J

)α
‖f‖α

Equivalence of norms
For any θ ∈ R

J ,

‖θ‖∞ . ‖θT BJ‖∞ ≤ ‖θ‖∞,

‖θ‖2 .
√

J ‖θT BJ‖2 . ‖θ‖2.
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Log Spline Models

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

θTBJ =
∑

j θjBJ,j, J = K + q − 1

pJ,θ(x) = eθT BJ(x)−cJ(θ), ecJ(θ) =

∫ 1

0
eθT BJ(x) dx.
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Log Spline Models

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

θTBJ =
∑

j θjBJ,j, J = K + q − 1

pJ,θ(x) = eθT BJ(x)−cJ(θ), ecJ(θ) =

∫ 1

0
eθT BJ(x) dx.

prior on θ induces prior on pJ,θ for fixed J

prior on J give model weights λn,J
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Log Spline Models

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

θTBJ =
∑

j θjBJ,j, J = K + q − 1

pJ,θ(x) = eθT BJ(x)−cJ(θ), ecJ(θ) =

∫ 1

0
eθT BJ(x) dx.

prior on θ induces prior on pJ,θ for fixed J

prior on J give model weights λn,J

flat prior on θ and model weights λn,J as before gives
adaptation to smoothness classes
up to logarithmic factor
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Log Spline Models

[0, 1) = ∪K
k=1

[

(k − 1)/K, k/K
)

θTBJ =
∑

j θjBJ,j, J = K + q − 1

pJ,θ(x) = eθT BJ(x)−cJ(θ), ecJ(θ) =

∫ 1

0
eθT BJ(x) dx.

prior on θ induces prior on pJ,θ for fixed J

prior on J give model weights λn,J

flat prior on θ and model weights λn,J as before gives
adaptation to smoothness classes
up to logarithmic factor

Can do better?

Bayesian Adaptation – p. 32/42



Adaptation (3)

A finite, ordered ǫn,α < ǫn,β if α > β

nǫ2n,α → ∞ for every α

THEOREM If

sup
ǫ≥ǫn,α

log N
(

ǫ/2, Cn,α(ǫ), d
)

≤ Enǫ2n,α, α ∈ A,

λn,α

λn,β

Πn,α

(

Cn,α(Bǫn,α)
)

Πn,β

(

Bn,β(ǫn,β)
) = o

(

e−2nǫ2n,β
)

, α < β,

λn,α

λn,β

Πn,α

(

Cn,α(iǫn,α)
)

Πn,β

(

Bn,β(ǫn,β)
) ≤ ei2n(ǫ2n,α∨ǫ2n,β),

then posterior rate is ǫn,β

Bn,α(ǫ) and Cn,α(ǫ) are KL-ball and d-ball in Pn,α around p0
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Log Spline Models

Consider four combinations of
priors Π̄n,α on θ
weights λn,α on Jn,α

to adapt to smoothness classes

Jn,α ∼ n1/(2α+1)

ǫn,α = n−α/(2α+1)

Assume p0 is β-smooth and sufficiently regular
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Flat prior, uniform weights

Π̄n,α “uniform” on [−M,M ]Jn,α, M large

Uniform weights λn,α = λα
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Flat prior, uniform weights

Π̄n,α “uniform” on [−M,M ]Jn,α, M large

Uniform weights λn,α = λα

THEOREM Posterior rate is ǫn,β
√

log n
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Flat prior, decreasing weights

Π̄n,α “uniform” on [−M,M ]Jn,α, M large
λn,α ∝

∏

γ<α(Cǫn,γ)Jn,γ , C > 1

THEOREM Posterior rate is ǫn,β
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Flat prior, decreasing weights

Π̄n,α “uniform” on [−M,M ]Jn,α, M large
λn,α ∝

∏

γ<α(Cǫn,γ)Jn,γ , C > 1

THEOREM Posterior rate is ǫn,β

Small models get small weight!
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Discrete priors, increasing weights

Π̄n,α discrete on R
J with minimal number of support points

to obtain approximation error ǫn,α

λn,α ∝ λαe−Cnǫ2n,α

THEOREM Posterior rate is ǫn,β
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Discrete priors, increasing weights

Π̄n,α discrete on R
J with minimal number of support points

to obtain approximation error ǫn,α

λn,α ∝ λαe−Cnǫ2n,α

THEOREM Posterior rate is ǫn,β

Small models get big weight!
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Discrete priors, increasing weights

Π̄n,α discrete on R
J with minimal number of support points

to obtain approximation error ǫn,α

λn,α ∝ λαe−Cnǫ2n,α

THEOREM Posterior rate is ǫn,β

Splines of dimension Jn,α give approximation error ǫn,α.
A uniform grid on coefficients in dimension Jn,α that gives
approximation error ǫn,α is too large. Need sparse subset.
Similarly a smooth prior on coefficients in dimension Jn,α is
too rich.
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Special smooth prior, increasing weights

Π̄n,α continuous and uniform on minimal subset of R
J that

allows approximation with error ǫn,α

Special, increasing weights λn,α

THEOREM (Huang, 2002) Posterior rate is ǫn,β

Huang obtains this result for the full scale of regularity
spaces in a general finite-dimensional setting
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Conclusion

There is a range of weights λn,α that works

Which weights λn,α work depends on the fine properties of
the priors on the models Pn,α
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Gaussian mixtures

Model pF,σ(x) =
∫

φσ(x − z) dF (z)

Prior F ∼ Dirichlet(α), σ ∼ πn, independent
(α Gaussian, πn smooth)
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Gaussian mixtures

Model pF,σ(x) =
∫

φσ(x − z) dF (z)

Prior F ∼ Dirichlet(α), σ ∼ πn, independent
(α Gaussian, πn smooth)

CASE ss: πn fixed
CASE s : πn shrinks at rate n−1/5
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Gaussian mixtures

Model pF,σ(x) =
∫

φσ(x − z) dF (z)

Prior F ∼ Dirichlet(α), σ ∼ πn, independent
(α Gaussian, πn smooth)

CASE ss: πn fixed
CASE s : πn shrinks at rate n−1/5

THEOREM (Ghosal,vdV) Rate of convergence relative
to (truncated) Hellinger distance is
• CASE ss: if p0 = pσ0,F0

, then (log n)k/
√

n

• CASE s: if p0 is 2-smooth, then n−2/5(log n)2

Assume p0 subGaussian
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Gaussian mixtures

Model pF,σ(x) =
∫

φσ(x − z) dF (z)

Prior F ∼ Dirichlet(α), σ ∼ πn, independent
(α Gaussian, πn smooth)

CASE ss: πn fixed
CASE s : πn shrinks at rate n−1/5

THEOREM (Ghosal,vdV) Rate of convergence relative
to (truncated) Hellinger distance is
• CASE ss: if p0 = pσ0,F0

, then (log n)k/
√

n

• CASE s: if p0 is 2-smooth, then n−2/5(log n)2

Can we adapt to the two cases?
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Gaussian mixtures

Weights λn,s et λn,ss
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Gaussian mixtures

Weights λn,s et λn,ss

THEOREM
Adaptation up to logarithmic factors if

exp
(

c(log n)k
)

<
λn,ss

λn,s
< exp

(

Cn1/5(log n)k
)
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Gaussian mixtures

Weights λn,s et λn,ss

THEOREM
Adaptation up to logarithmic factors if

exp
(

c(log n)k
)

<
λn,ss

λn,s
< exp

(

Cn1/5(log n)k
)

We believe this works already if

exp
(

−c(log n)k
)

<
λn,ss

λn,s
< exp

(

Cn1/5(log n)k
)

In particular: equal weights.
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Conclusion

There is a range of weights λn,α that works

Which weights λn,α work depends on the fine properties of
the priors on the models Pn,α
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Conclusion

There is a range of weights λn,α that works

Which weights λn,α work depends on the fine properties of
the priors on the models Pn,α

This interaction makes comparison with penalized minimum
contrast estimation difficult

Need refined asymptotics and numerical implementation for
further understanding
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Conclusion

There is a range of weights λn,α that works

Which weights λn,α work depends on the fine properties of
the priors on the models Pn,α

This interaction makes comparison with penalized minimum
contrast estimation difficult

Need refined asymptotics and numerical implementation for
further understanding

Bayesian density estimation is 10 years behind?
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