Linkage Analysis with Interval Censored Data

Marianne JonkerSandjai BhulaiAad van der VaartLannie LigthartDaniëlle PosthumaDorret BoomsmaVrije Universiteit Amsterdam

February 2007

Motivating Data

Data Source

Migraine

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Motivating Data

Data Source

Motivating Data

Data Source

Migraine

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Migraine

Motivating Data Data Source

Migraine

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Questionnaires in 1991, 1993, 1995, 1997, 2000, 2002 among Dutch twin pairs

In each questionnaire observed:

ages of twins

(.....)

I for both twins whether migraine had occurred

1. 3975 twin pairs

2. for 258 DZ twin pairs (partial) IBD-data at 63–284 markers per autosome

QUESTION: Which markers are linked to migraine?

Motivating Data

Interval Censoring

Variable of interest Interval Censoring Likelihood

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Interval Censoring

Variable of interest

Motivating	Data
------------	------

Interval Censoring

Variable of interest

Interval Censoring Likelihood

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Basic variable: age at onset of migraine

QUESTION: Which markers are linked to age at onset?

(.....)

Interval Censoring

Motivating Data

Interval Censoring Variable of interest

Interval Censoring

Likelihood

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

- I bigger than age at last questionnaire, OR
 - fall into age intervals (U_1, V_1) and (U_2, V_2) determined by the questionnaire dates

(.....)

Interval Censoring

Motivating Data

Interval Censoring Variable of interest

Interval Censoring

Likelihood

Statistical Models

(.....)

Frailty Model

Estimation and Testing

Migraine Data

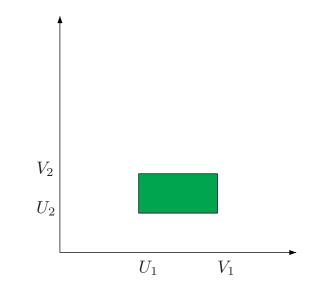
Concluding Remarks

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

I bigger than age at last questionnaire, OR

fall into age intervals (U_1, V_1) and (U_2, V_2) determined by the questionnaire dates



Interval Censoring

Motivating Data

Interval Censoring Variable of interest

Interval Censoring

Likelihood

Statistical Models

(.....)

Frailty Model

Estimation and Testing

Migraine Data

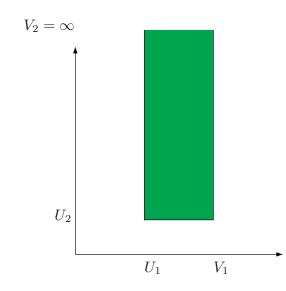
Concluding Remarks

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

I bigger than age at last questionnaire, OR

fall into age intervals (U_1, V_1) and (U_2, V_2) determined by the questionnaire dates



Likelihood

Motivating Data	
Interval Concering	
Interval Censoring	
Variable of interest	
Interval Censoring	
Likelihood	
Statistical Models	
Frailty Model	
Estimation and	

Testing

Migraine Data

Concluding Remarks

Interval censoring determines the form of the likelihood

A pair of ages at onset (T_1, T_2) which is observed to fall into the rectangle $(U_1, V_1) \times (U_2, V_2)$ contributes the probability that it falls into this rectangle to the likelihood

We assume:

- censoring is independent
- distribution of observation times uninformative

We need a model for the probabilities

 $P((T_1, T_2) \in (U_1, V_1) \times (U_2, V_2) | IBD)$

Motivating Data

Interval Censoring

Statistical Models

Identity by Descent Regression on IBD Nonparametric

Model

Copulas

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Statistical Models

Identity by Descent

Motivating Data

Interval Censoring

Statistical Models

Identity by Descent

Regression on IBD Nonparametric

Model

Copulas

Frailty Model

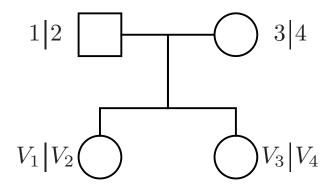
Estimation and Testing

Migraine Data

Concluding Remarks

We want to build a regression model for ages at onset $\left(T_{1},T_{2}\right)$ on IBD

IBD refers to twin pairs as sibs in a nuclear family, at a fixed putative locus



 $V_i =$ label of parental allele (1, 2, 3, or 4)

$$IBD = 1_{V_1 = V_3} + 1_{V_2 = V_4}$$

Regression on IBD

Motivating Data	
Interval Censoring	
Statistical Models	
Identity by Descent	
Regression on IBD	
Nonparametric	
Model Copulas	
Frailty Model	

Estimation and Testing

Migraine Data

Concluding Remarks

The model for ages at onset (T_1, T_2) given IBD should satisfy

- Marginally T_1 and T_2 are independent of IBD
- Marginally T_1 and T_2 (given IBD) are equal in distribution
- Jointly T_1 and T_2 are more alike if IBD is higher

Regression on IBD

Motivating Data		
Interval Censoring		
Statistical Models		
Identity by Descent		
Regression on IBD		
Nonparametric Model		
Copulas		
Frailty Model		
Estimation and Testing		

Migraine Data

Concluding Remarks

The model for ages at onset (T_1, T_2) given IBD should satisfy

- Marginally T_1 and T_2 are independent of IBD
- Marginally T_1 and T_2 (given IBD) are equal in distribution
- Jointly T_1 and T_2 are more alike if IBD is higher

Examples:

- Nonparametric
- Copula
- Frailty

Nonparametric Model

Motivating Data	
Interval Censoring	
Statistical Models	
Identity by Descent	
Regression on IBD	
Nonparametric Model	
Copulas	

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Consider the distributions of (T_1, T_2) given IBD = 0, IBD = 1or IBD = 2 as completely unknown

There is a well defined nonparametric likelihood estimator of these distributions based on a sample of interval-censored data (Maathuis, 2006)

Disadvantage: we need very large samples to get reasonable results

Copulas

Motivating Data Interval Censoring

Statistical Models Identity by Descent Regression on IBD Nonparametric Model

Copulas

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks

Let $(G_{\theta}: \theta \ge 0)$ be a one-parameter family of distributions on $[0,\infty) \times [0,\infty)$ with

for $\theta = 0$ the marginals are independent the dependence between the marginals increases with θ

Let (T_1, T_2) given IBD = k be distributed according to $G_{\alpha+\beta k}$

Typically we must add a model for marginal distributions

Examples:

- Clayton $G_{\theta}(t_1, t_2) = \left(F(t_1)^{\theta} + F(t_2)^{\theta} 1\right)^{1/\theta}$
- Gaussian
- Parametric Frailty
- Frailty

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma

Frailties (2)

 ${\sf Heritability}$

Estimation and Testing

Migraine Data

Concluding Remarks

Frailty Model

Hazards

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2)

Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

Because T_1, T_2 are event times, modelling in terms of hazards is attractive

hazard function corresponding to a density f:

$$\lambda(t) = \frac{f(t)}{1 - F(t)}, \qquad 1 - F(t) = \int_0^t f(s) \, ds$$

Hazards

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2)

Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

Because T_1, T_2 are event times, modelling in terms of hazards is attractive

hazard function corresponding to a density f:

$$\lambda(t) = \frac{f(t)}{1 - F(t)}, \qquad 1 - F(t) = \int_0^t f(s) \, ds$$

$$1 - F(t) = e^{-\Lambda(t)}, \qquad \Lambda(t) = \int_0^t \lambda(s) \, ds$$

There are adapted formulas for distributions without density

Frailty model

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2) Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

A frailty model is a random effects proportional hazards model The random effects ("frailties") account for the dependence between the twins (Vaupel et al. (1979), ABGK (1992))

 T_1 , T_2 ages at onset Z_1, Z_2 "frailties"

- T_1, T_2 independent given (Z_1, Z_2)
- with hazard functions $t \mapsto Z_1\lambda(t)$ and $t \mapsto Z_2\lambda(t)$

Equivalently:

$$P(T_1 > t_1, T_2 > t_2 | Z_1, Z_2) = e^{-Z_1 \Lambda(t_1) - Z_2 \Lambda(t_2)}$$

Frailty model

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2) Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

A frailty model is a random effects proportional hazards model The random effects ("frailties") account for the dependence between the twins (Vaupel et al. (1979), ABGK (1992))

 T_1 , T_2 ages at onset Z_1, Z_2 "frailties"

- T_1, T_2 independent given (Z_1, Z_2)
- with hazard functions $t \mapsto Z_1\lambda(t)$ and $t \mapsto Z_2\lambda(t)$

Equivalently:

$$P(T_1 > t_1, T_2 > t_2 | Z_1, Z_2) = e^{-Z_1 \Lambda(t_1) - Z_2 \Lambda(t_2)}$$

Model Λ nonparametrically

• Model (Z_1, Z_2) parametrically

Gamma Frailties

Motivating	Data
------------	------

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties

Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2) Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

Desirable properties of the model for the frailties:

- \blacksquare Z_1, Z_2 positive variables
- Laplace transform $\psi(u, v) = \mathbf{E}e^{-uZ_1 vZ_2}$ is computable
 - Any correlation $cor(Z_1, Z_2)$ is possible

The Gamma family has these properties: for Y, Y', Y'' independent standard Gamma processes $(Y_s \sim \Gamma(s, 1))$:

$$\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \sim \left(\begin{array}{c} Y_{\tau\rho} + Y'_{\tau(1-\rho)} \\ Y_{\tau\rho} + Y''_{\tau(1-\rho)} \end{array} \right)$$

(Yashin, Vaupel, Iachine (1995))

Gamma Frailties

Motivating	Data
------------	------

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties

Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2) Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

Desirable properties of the model for the frailties:

- Z_1, Z_2 positive variables
- Laplace transform $\psi(u, v) = \mathbf{E}e^{-uZ_1 vZ_2}$ is computable
 - Any correlation $cor(Z_1, Z_2)$ is possible

The Gamma family has these properties: for Y, Y', Y'' independent standard Gamma processes $(Y_s \sim \Gamma(s, 1))$:

$$\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \sim \left(\begin{array}{c} Y_{\tau\rho} + Y'_{\tau(1-\rho)} \\ Y_{\tau\rho} + Y''_{\tau(1-\rho)} \end{array} \right)$$

• τ is shape of marginal frailty (also variance, but scale is irrelevant)

$$\rho = \operatorname{cor}(Z_1, Z_2)$$

Genetic Gamma Frailties

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2) Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

The assumption $T_1 \perp \perp T_2 | (Z_1, Z_2)$ and the "usual assumptions" imply that $(T_1, T_2) \perp \perp IBD | (Z_1, Z_2)$ To model $(T_1, T_2) | IBD$ we therefore model $(Z_1, Z_2) | IBD$ Bivariate Gamma model:

 $\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} | IBD = k \sim \begin{pmatrix} Y_{\tau\rho_k} + Y'_{\tau(1-\rho_k)} \\ Y_{\tau\rho_k} + Y''_{\tau(1-\rho_k)} \end{pmatrix}$

 $\rho_k = \alpha + \beta k$

(Yashin, Iachine, Li, Zhong, Iachine, Korsgaard (1998–))

Survival Function

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function

Genetic Gamma Frailties (2)

Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

$$P(T_1 > t_1, T_2 > t_2 | IBD = k)$$

= $E(P(T_1 > t_1, T_2 > t_2 | Z_1, Z_2) | IBD = k)$
= $E(e^{-Z_1 \Lambda(t_1) - Z_2 \Lambda(t_2)} | IBD = k)$
= $(S(t_1)^{-1/\tau} + S(t_2)^{-1/\tau} - 1)^{-\rho_k \tau} S(t_1)^{1-\rho_k} S(t_2)^{1-\rho_k}$

S marginal survival function: $S(t) = P(T_i > t)$

Explicit formula is essential (?) to implement likelihood-based methods

Genetic Gamma Frailties (2)

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

 ${\sf Hazards}$

Frailty model

Gamma Frailties Genetic Gamma Frailties

```
Survival Function
Genetic Gamma
```

Frailties (2)

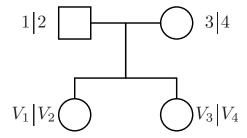
Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

The bivariate Gamma can be motivated by the usual variance components models



Single locus additive model:

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} A_{V_1} + A_{V_2} + C + E_1 \\ A_{V_3} + A_{V_4} + C + E_2 \end{pmatrix}$$

 $A_1, \dots, A_4, C, E_1, E_2, V_1, \dots, V_4 \text{ independent} A_1, A_2, A_3, A_4 \sim \Gamma(\mu, 1), C \sim \Gamma(\nu, 1), E_1, E_2 \sim \Gamma(\pi, 1)$

Suggests extensions to other pedigrees (e.g. multiple sibs) or genetic models (e.g. dominance)

Genetic Gamma Frailties (2)

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

 ${\sf Hazards}$

Frailty model

Gamma Frailties Genetic Gamma Frailties

```
Survival Function
Genetic Gamma
```

Frailties (2)

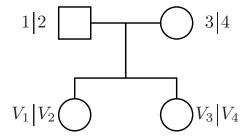
Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

The bivariate Gamma can be motivated by the usual variance components models



Multiple locus additive model :

 $\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} \sum_{j} (A_{j,V_{j,1}} + A_{j,V_{j,2}}) + C + E_1 \\ \sum_{j} (A_{j,V_{j,3}} + A_{j,V_{j,4}}) + C + E_2 \end{pmatrix}$

[When conditioned on IBD at a single locus this gives a mixture of Gammas rather than the bivariate Gamma]

Heritability

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

 ${\sf Hazards}$

Frailty model

Gamma Frailties Genetic Gamma Frailties

Survival Function Genetic Gamma Frailties (2)

Heritability

Estimation and Testing

Migraine Data

Concluding Remarks

Define heritability by decomposing the frailties into a genetic and an environmental part: Z = G + C + E and setting

 $h^2 = \frac{\operatorname{var} G}{\operatorname{var} Z}$

This definition is as usual, except that the frailties are viewed as the (latent) phenotype

We can use the usual estimates after estimating the correlation matrices of the frailties

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Model

Likelihood

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

Estimation and Testing

Model

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Model

Likelihood

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

- $P(T_1 > t_1, T_2 > t_2 | Z_1, Z_2) = e^{-Z_1 \Lambda(t_1) Z_2 \Lambda(t_2)}$ ■ $(T_1, T_2) \perp \perp IBD | (Z_1, Z_2)$ ■ $(Z_1, Z_2) | IBD = k$ bivariate Gamma with correl
 - $(Z_1, Z_2)|IBD = k$ bivariate Gamma with correlation ρ_k and shape τ

$$\rho_k = \alpha + \beta k$$

 Λ completely unknown α , β , τ unknown

Likelihood

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and

Testing

Model

Likelihood

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

$$L(\alpha, \beta, \tau, \Lambda)[\text{twin pair}] = \sum_{k=0}^{2} \Pr(IBD = k | MD) \\ \times \left(S_k(V_1, V_2) - S_k(U_1, V_2) - S_k(U_2, V_1) + S_k(U_1, U_2) \right)$$

$$S_k(t_1, t_2) = P(T_1 > t_1, T_2 > t_2 | IBD = k)$$

= $\left(S(t_1)^{-1/\tau} + S(t_2)^{-1/\tau} - 1 \right)^{-\rho_k \tau} S(t_1)^{1-\rho_k} S(t_2)^{1-\rho_k}$

 $\rho_k = \alpha + \beta k,$ $\alpha, \beta, \tau, S \text{ unknown}$

Maximum Likelihood

Interval Censoring		
Statistical Models		
Frailty Model		
Estimation and Testing		
Model		
Likelihood		
A A A A A A A A A A A A A A A A A A A		

Motivating Data

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

MLEs $\hat{\alpha}_n$, $\hat{\beta}_n$, $\hat{\tau}_n$, \hat{S}_n , maximize the likelihood

Optimization is not straightforward

Motivating Data

Maximum Likelihood

Interval Censoring	
Statistical Models	
Frailty Model	
Estimation and Testing	
Model	
Likelihood	
Maximum Likelihood	
Likelihood Ratio	

Migraine Data

Test

Concluding Remarks

MLEs $\hat{\alpha}_n$, $\hat{\beta}_n$, $\hat{\tau}_n$, \hat{S}_n , maximize the likelihood

Optimization is not straightforward

General theory on semiparametric models suggests that for n twin pairs, and $n \to \infty$

■ $n^{1/3}(\hat{S}_n(t) - S(t))$ converges in distribution ■ $\sqrt{n}(\hat{\beta}_n - \beta)$ converges in distribution to a normal distribution (Groeneboom and Wellner (1992), Van der Vaart (1998))

Likelihood Ratio Test

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and

Testing

Model

Likelihood

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

We test $H_0: \beta = 0$ versus $H_1: \beta > 0$ by the likelihood ratio statistic

$$\frac{\sup_{\alpha,\beta,\tau,\Lambda} L(\alpha,\beta,\tau,\Lambda)}{\sup_{\alpha,\tau,\Lambda} L(\alpha,0,\tau,\Lambda)}$$

Likelihood Ratio Test

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and

Testing

Model

Likelihood

Maximum Likelihood Likelihood Ratio Test

Migraine Data

Concluding Remarks

We test $H_0: \beta = 0$ versus $H_1: \beta > 0$ by the likelihood ratio statistic

$$\frac{\sup_{\alpha,\beta,\tau,\Lambda} L(\alpha,\beta,\tau,\Lambda)}{\sup_{\alpha,\tau,\Lambda} L(\alpha,0,\tau,\Lambda)}$$

General theory on semiparametric models suggests that the LRS is asymptotically distributed as a 1/2 - 1/2-mixture of 0 and a χ_1^2 (Murphy and Van der Vaart (1999, 2000))

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Marginal Survival Functions Heritability

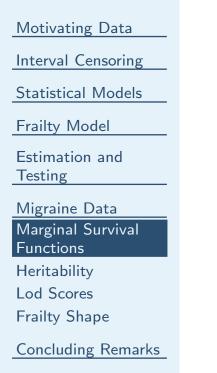
Lod Scores

Frailty Shape

Concluding Remarks

Migraine Data

Marginal Survival Functions



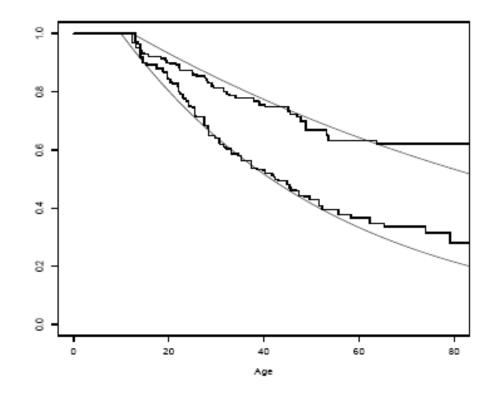


Figure 1: The NPMLE of the survival functions S_M and S_F (step-functions) and the estimated survival functions in the parametric model (smooth curves). Males: upper two curves. Females: lower two curves. The NPMLEs are based on interval censored survival data of mono- and dizygotic twins and the sibs in our dataset. The estimated survival functions in the paprametric model are based on data of dizygotic twins of whom estimated IBD numbers are available.

Heritability

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data Marginal Survival Functions

Heritability

Lod Scores

Frailty Shape

Concluding Remarks

Heritability is estimated between $0.32~{\rm and}~0.41~{\rm at}~95\%$ confidence level

Lod Scores

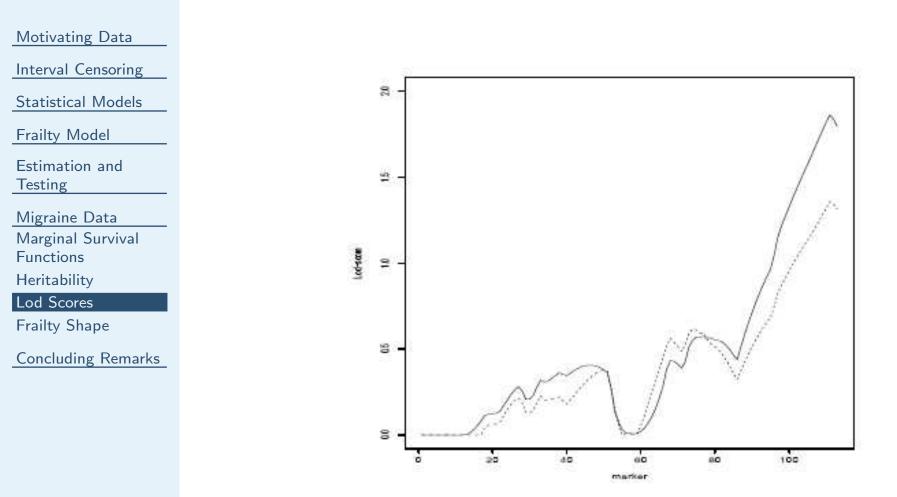


Figure 2: Lod-scores for testing linkage for the markers at chromosome 19. The solid curve corresponds with the parametric model and the dashed curve with the semi-parametric model.

Frailty Shape

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data Marginal Survival Functions

Heritability

Lod Scores

Frailty Shape

Concluding Remarks

Estimates of τ range from 1 to 0.01 to 0.001, approximately constant across chromosomes

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and Testing

Migraine Data

Concluding Remarks O

Concluding Remarks

0

Open Problems

Motivating Data		Da
Interval Censoring		Gc
Statistical Models		M
Frailty Model		Int
Estimation and Testing	1.2	Se
Migraine Data		00
Concluding Remarks		Ri
Concluding Remarks		

- Data Quality and Quantity
- Goodness-of-fit and robustness
- Multi-locus modelling
- Interpretation frailty shape
- I Selection
- Rigorous asymptotic theory