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Data Source

The data are from the Netherlands Twin Register
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Migraine
Questionnaires in 1991, 1993, 1995, 1997, 2000, 2002 among
Dutch twin pairs

In each questionnaire observed:

m ages of twins
m for both twins whether migraine had occurred

1. 3975 twin pairs
2. for 258 DZ twin pairs (partial) IBD-data at 63—-284 markers
per autosome

QUESTION: Which markers are linked to migraine?
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Variable of interest

Basic variable: age at onset of migraine

QUESTION: Which markers are linked to age at onset?
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Interval Censoring

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

bigger than age at last questionnaire, OR
fall into age intervals (U1, V1) and (Us, V) determined by
the questionnaire dates
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Interval Censoring

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

bigger than age at last questionnaire, OR
fall into age intervals (U1, V1) and (Us, V) determined by
the questionnaire dates
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y
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A
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Interval Censoring

QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

bigger than age at last questionnaire, OR
fall into age intervals (U1, V1) and (Us, V) determined by
the questionnaire dates

Vo = o0

Us

Uy

Vi
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Likelihood

Interval censoring determines the form of the likelihood

A pair of ages at onset (717, 7%) which is observed to fall into the
rectangle (U1, V1) x (Us, Va) contributes

the probability that it falls into this rectangle

to the likelihood

We assume:

m censoring is independent
m distribution of observation times uninformative

We need a model for the probabilities

P((Tl,TQ) - (Ul,Vl) X (UQ,VQ)‘[BD)
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Statistical Models
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Nonparametric

Model putative locus
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Vi |Va Vs|Vi

Vi = label of parental allele (1, 2, 3, or 4)

IBD = Ly,—vy + Lyy—y,
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Regression on IBD

The model for ages at onset (11,7T5) given I BD should satisfy

m  Marginally 71 and T5 are independent of IBD
m  Marginally T1 and T5 (given I BD) are equal in distribution
m  Jointly 17 and 15 are more alike if IBD is higher
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Regression on IBD

The model for ages at onset (11,7T5) given I BD should satisfy

m  Marginally 71 and T5 are independent of IBD
m  Marginally T1 and T5 (given I BD) are equal in distribution
m  Jointly 17 and 15 are more alike if IBD is higher

Examples:

Nonparametric
m  Copula
m  Frailty
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Nonparametric Model
Consider the distributions of (11,7%) given IBD =0, IBD =1
or IBD = 2 as completely unknown

There is a well defined nonparametric likelihood estimator of
these distributions based on a sample of interval-censored data

(Maathuis, 2006)

Disadvantage: we need very large samples to get reasonable
results
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Copulas

Let (Gy:0 > 0) be a one-parameter family of distributions on
[0, 00) x [0, 00) with

m for & = 0 the marginals are independent
m the dependence between the marginals increases with 6

Let (13,1%) given IBD = k be distributed according to G4 3%

Typically we must add a model for marginal distributions

Examples:

m  Clayton Gy(t1,t2) = (F(t1)? + F(t2)? — 1)1/9
m  Gaussian

m  Parametric Frailty

m  Frailty
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Hazards

Because 17,15 are event times, modelling in terms of hazards is

attractive

hazard function corresponding to a density f:

A(t)

f(t)

T 1-F(t)

=P = [ f)ds
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Hazards

Because 17,75 are event times, modelling in terms of hazards is

attractive

hazard function corresponding to a density f:

A(t) = 1if(1?(t)’ l—F(t):/O f(s)ds

1—F@t) = A@R) = / tx(s) ds
0

There are adapted formulas for distributions without density
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Frailty model

A frailty model is a random effects proportional hazards model

The random effects (“frailties” ) account for the dependence
between the twins (Vaupel et al. (1979), ABGK (1992))

11, I ages at onset
Z1, 2o “frailties”

m 77,75 independent given (21, Z>)
m with hazard functions t — Z1\(t) and t +— Z\(t)

Equivalently:

P(T) > t1,Ts > to| Z1, Zy) = e Z1A()=22A(t2)
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Frailty model

A frailty model is a random effects proportional hazards model

The random effects (“frailties” ) account for the dependence
between the twins (Vaupel et al. (1979), ABGK (1992))

11, I ages at onset
Z1, 2o “frailties”

m 77,75 independent given (21, Z>)
m with hazard functions t — Z1\(t) and t +— Z\(t)

Equivalently:

P(T) > t1,Ts > to| Z1, Zy) = e Z1A()=22A(t2)

m  Model A nonparametrically
m  Model (71, Z5) parametrically
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Gamma Frailties

Desirable properties of the model for the frailties:

Z1, Z9 positive variables
m Laplace transform v (u,v) = Ee 417922 is computable
m  Any correlation cor(Zy, Zs) is possible

The Gamma family has these properties: for Y, Y/, Y”
independent standard Gamma processes (Y5 ~ I'(s,1)):

( A ) N YTP+YT/(1—p)

2 Yop + Y7 (0p)

(Yashin, Vaupel, lachine (1995))
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Gamma Frailties

Desirable properties of the model for the frailties:

Z1, Z9 positive variables
m Laplace transform v (u,v) = Ee 417922 is computable
m  Any correlation cor(Zy, Zs) is possible

The Gamma family has these properties: for Y, Y/, Y”
independent standard Gamma processes (Y5 ~ I'(s,1)):

( A ) N YTP+YT/(1—p)

2 Yop + Y7 (0p)

m 7 is shape of marginal frailty (also variance, but scale is

irrelevant)
m p=cor(Zy,2Zs)
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Genetic Gamma Frailties

The assumption T 1| T5|(Z1, Z2) and the “usual assumptions”
imply that (Tl,TQ) 11 IBD‘ (Zl, ZQ)

To model (T71,T3)| IBD we therefore model (71, Z5)| IBD

Bivariate Gamma model:

/
YT:Ok: + YT(l—pk)

/!
YT:Ok: + YT(l—pk)

pr = o+ Bk
(Yashin, lachine, Li, Zhong, lachine, Korsgaard (1998-))
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P(T1 > t, 15 > tQ‘[BD — k)

Statistical Models

Frailty Model — E(P(Tl > t1,15 > to| Z1, Z2)| IBD = k)

ety model = BE(e”2M)=2200) TBD = k)

Gamma Frailties —pT

Framies = (S(t) 7T+ S(t) 7T 1) T S() S (t2)

Survival Function

Genetic Gamma

Aellico (2 S marginal survival function: S(t) = P(7; > t)

eritability

Estimation and Lo ; ) . . .

Testing Explicit formula is essential (?) to implement likelihood-based
Migraine Data methods

Concluding Remarks
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Genetic Gamma Frailties (2)

The bivariate Gamma can be motivated by the usual variance
components models
12 () 3l

v1|vgd> d}vgw

Single locus additive model:

Al _ AV1—|—AV2—|—C—|—E1
/9 AV3+AV4—|-C—|—E2

m Ay,....A4,C FE1,Ey, Vi, ...,V independent
u Al,AQ,Ag,A4 ~ F(M, 1), C ~ F(V, 1), El,EQ ~ F(ﬂ',l)

Suggests extensions to other pedigrees (e.g. multiple sibs) or
genetic models (e.g. dominance)

20 / 33



Tim Sn e mm T T

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards
Frailty model

Gamma Frailties
Genetic Gamma
Frailties

Survival Function
Genetic Gamma
Frailties (2)
Heritability

Estimation and
Testing

Migraine Data

Concluding Remarks

Genetic Gamma Frailties (2)

The bivariate Gamma can be motivated by the usual variance

components models

12 () 3l

v1|vgd> d}vgw

Multiple locus additive model :

( 7 ) _ ( Yo i(Ajvi, +Ajv,) +C+ By )
Zy Y i(Ajvs +Ajv,) +C+ B

[When conditioned on IBD at a single locus this gives a mixture

of Gammas rather than the bivariate Gamma]
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Heritability

Define heritability by decomposing the frailties into a genetic and
an environmental part: Z = G + C' + E and setting

P2 _ var G

var Z

This definition is as usual, except that the frailties are viewed as
the (latent) phenotype

We can use the usual estimates after estimating the correlation
matrices of the frailties
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Concluding Remarks Q, 6, 7 unknown
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Likelihood

2
L(cv, B, 7, A)[twin pair] = Y “Pr(IBD = k| M D)

k=0

X (Sk(Vl, Vo) — Sk(Ur, Va) — Sk (U2, V1) + Sk(Un, Uz))

Si(ti,t2) =

pr = a+ Pk,

P(T1 > 11,1y > t2|IBD = k’)

(S(tl)_l/T 4 S(ty) YT - 1)

«, B, 7, S unknown

—PET

S(tl)l_PkS(tZ)l_sz
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Maximum Likelihood

A

MLEs Gy, Bn, 71, Sy, maximize the likelihood
Optimization is not straightforward

General theory on semiparametric models suggests that for n
twin pairs, and n — o0

s nl/3 (S’n(t) — S(t)) converges in distribution
O \/ﬁ(ﬁn — () converges in distribution to a normal distribution

(Groeneboom and Wellner (1992), Van der Vaart (1998))
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Likelihood Ratio Test

We test Hy: 3 = 0 versus Hy: 3 > 0 by the likelihood ratio

statistic

Sup,, g.+.A Lo, 8,7, A)

SUpPg, A L(c, 0,7, A)
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;mb% Likelihood Ratio Test

Hetena B We test Hy: 8 = 0 versus Hy: 3 > 0 by the likelihood ratio
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General theory on semiparametric models suggests that the LRS
is asymptotically distributed as a 1/2 — 1/2-mixture of 0 and a
X3 (Murphy and Van der Vaart (1999, 2000))
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Figure 1: The NPMLE of the survival functions Sar and SF (step-functions) and the estimated
survival functions in the parametric model (smooth curves). Males: upper two curves. Femalea:
lower two curves. The NPMLEs are based on interval censored survival data of mono- and
dizygotic twins and the sibs in our dataset. The estimated survival functions in the paprametric
model are based on data of dizygotic twins of whom estimated TBD numhbers are available.
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Heritability

Heritability is estimated between 0.32 and 0.41 at 95%
confidence level
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Figure 2: Lod-scores for testing linkage for the markers at chromosome 19. The solid curve
corresponds with the parametric model and the dashed curve with the semi-parametric model.
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Frailty Shape

Estimates of 7 range from 1 to 0.01 to 0.001, approximately
constant across chromosomes
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Open Problems

Data Quality and Quantity
Goodness-of-fit and robustness
Multi-locus modelling
Interpretation frailty shape
Selection

Rigorous asymptotic theory
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