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The data are from the Netherlands Twin Register
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Questionnaires in 1991, 1993, 1995, 1997, 2000, 2002 among
Dutch twin pairs

In each questionnaire observed:

■ ages of twins
■ for both twins whether migraine had occurred

(.......)

1. 3975 twin pairs
2. for 258 DZ twin pairs (partial) IBD-data at 63–284 markers

per autosome

QUESTION: Which markers are linked to migraine?
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Basic variable: age at onset of migraine

QUESTION: Which markers are linked to age at onset?

(.......)
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QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

■ bigger than age at last questionnaire, OR
■ fall into age intervals (U1, V1) and (U2, V2) determined by

the questionnaire dates

(......)
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QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

■ bigger than age at last questionnaire, OR
■ fall into age intervals (U1, V1) and (U2, V2) determined by

the questionnaire dates

(......)

U1 V1

U2

V2
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QUESTION: Which markers are linked to age at onset?

Age at onset is never observed, but is only known to be

■ bigger than age at last questionnaire, OR
■ fall into age intervals (U1, V1) and (U2, V2) determined by

the questionnaire dates

(......)

U1 V1

U2

V2 = ∞
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Interval censoring determines the form of the likelihood

A pair of ages at onset (T1, T2) which is observed to fall into the
rectangle (U1, V1) × (U2, V2) contributes

the probability that it falls into this rectangle

to the likelihood

We assume:

■ censoring is independent
■ distribution of observation times uninformative

We need a model for the probabilities

P
(

(T1, T2) ∈ (U1, V1) × (U2, V2)| IBD
)
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We want to build a regression model for ages at onset (T1, T2)
on IBD

IBD refers to twin pairs as sibs in a nuclear family, at a fixed
putative locus

1 2 3 4

V1 V2 V3 V4

Vi = label of parental allele (1, 2, 3, or 4)

IBD = 1V1=V3
+ 1V2=V4



Regression on IBD

Motivating Data

Interval Censoring

Statistical Models

Identity by Descent

Regression on IBD

Nonparametric
Model

Copulas

Frailty Model

Estimation and
Testing

Migraine Data

Concluding Remarks

11 / 33

The model for ages at onset (T1, T2) given IBD should satisfy

■ Marginally T1 and T2 are independent of IBD
■ Marginally T1 and T2 (given IBD) are equal in distribution
■ Jointly T1 and T2 are more alike if IBD is higher
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The model for ages at onset (T1, T2) given IBD should satisfy

■ Marginally T1 and T2 are independent of IBD
■ Marginally T1 and T2 (given IBD) are equal in distribution
■ Jointly T1 and T2 are more alike if IBD is higher

Examples:

■ Nonparametric
■ Copula
■ Frailty
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Consider the distributions of (T1, T2) given IBD = 0, IBD = 1
or IBD = 2 as completely unknown

There is a well defined nonparametric likelihood estimator of
these distributions based on a sample of interval-censored data
(Maathuis, 2006)

Disadvantage: we need very large samples to get reasonable
results
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Let (Gθ: θ ≥ 0) be a one-parameter family of distributions on
[0,∞) × [0,∞) with

■ for θ = 0 the marginals are independent
■ the dependence between the marginals increases with θ

Let (T1, T2) given IBD = k be distributed according to Gα+βk

Typically we must add a model for marginal distributions

Examples:

■ Clayton Gθ(t1, t2) =
(

F (t1)
θ + F (t2)

θ − 1
)1/θ

■ Gaussian
■ Parametric Frailty
■ Frailty
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Because T1, T2 are event times, modelling in terms of hazards is
attractive

hazard function corresponding to a density f :

λ(t) =
f(t)

1 − F (t)
, 1 − F (t) =

∫ t

0
f(s) ds
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Because T1, T2 are event times, modelling in terms of hazards is
attractive

hazard function corresponding to a density f :

λ(t) =
f(t)

1 − F (t)
, 1 − F (t) =

∫ t

0
f(s) ds

1 − F (t) = e−Λ(t), Λ(t) =

∫ t

0
λ(s) ds

There are adapted formulas for distributions without density
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A frailty model is a random effects proportional hazards model

The random effects (“frailties”) account for the dependence
between the twins (Vaupel et al. (1979), ABGK (1992))

T1, T2 ages at onset
Z1, Z2 “frailties”

■ T1, T2 independent given (Z1, Z2)
■ with hazard functions t 7→ Z1λ(t) and t 7→ Z2λ(t)

Equivalently:

P(T1 > t1, T2 > t2|Z1, Z2) = e−Z1Λ(t1)−Z2Λ(t2)



Frailty model

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties
Genetic Gamma
Frailties

Survival Function
Genetic Gamma
Frailties (2)

Heritability

Estimation and
Testing

Migraine Data

Concluding Remarks

16 / 33

A frailty model is a random effects proportional hazards model

The random effects (“frailties”) account for the dependence
between the twins (Vaupel et al. (1979), ABGK (1992))

T1, T2 ages at onset
Z1, Z2 “frailties”

■ T1, T2 independent given (Z1, Z2)
■ with hazard functions t 7→ Z1λ(t) and t 7→ Z2λ(t)

Equivalently:

P(T1 > t1, T2 > t2|Z1, Z2) = e−Z1Λ(t1)−Z2Λ(t2)

■ Model Λ nonparametrically
■ Model (Z1, Z2) parametrically
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Desirable properties of the model for the frailties:

■ Z1, Z2 positive variables
■ Laplace transform ψ(u, v) = Ee−uZ1−vZ2 is computable
■ Any correlation cor(Z1, Z2) is possible

The Gamma family has these properties: for Y , Y ′, Y ′′

independent standard Gamma processes (Ys ∼ Γ(s, 1)):

(

Z1

Z2

)

∼
(

Yτρ + Y ′

τ(1−ρ)

Yτρ + Y ′′

τ(1−ρ)

)

(Yashin, Vaupel, Iachine (1995))
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Desirable properties of the model for the frailties:

■ Z1, Z2 positive variables
■ Laplace transform ψ(u, v) = Ee−uZ1−vZ2 is computable
■ Any correlation cor(Z1, Z2) is possible

The Gamma family has these properties: for Y , Y ′, Y ′′

independent standard Gamma processes (Ys ∼ Γ(s, 1)):

(

Z1

Z2

)

∼
(

Yτρ + Y ′

τ(1−ρ)

Yτρ + Y ′′

τ(1−ρ)

)

■ τ is shape of marginal frailty (also variance, but scale is
irrelevant)

■ ρ = cor(Z1, Z2)
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The assumption T1 ⊥⊥ T2| (Z1, Z2) and the “usual assumptions”
imply that (T1, T2) ⊥⊥ IBD| (Z1, Z2)

To model (T1, T2)| IBD we therefore model (Z1, Z2)| IBD

Bivariate Gamma model:

(

Z1

Z2

)

∣

∣

∣
IBD = k ∼

(

Yτρk
+ Y ′

τ(1−ρk)

Yτρk
+ Y ′′

τ(1−ρk)

)

ρk = α+ βk

(Yashin, Iachine, Li, Zhong, Iachine, Korsgaard (1998–))
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P(T1 > t1, T2 > t2|IBD = k)

= E
(

P(T1 > t1, T2 > t2|Z1, Z2)| IBD = k
)

= E
(

e−Z1Λ(t1)−Z2Λ(t2)| IBD = k
)

=
(

S(t1)
−1/τ + S(t2)

−1/τ − 1
)

−ρkτ
S(t1)

1−ρkS(t2)
1−ρk

S marginal survival function: S(t) = P(Ti > t)

Explicit formula is essential (?) to implement likelihood-based
methods
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The bivariate Gamma can be motivated by the usual variance
components models

1 2 3 4

V1 V2 V3 V4

Single locus additive model:

(

Z1

Z2

)

=

(

AV1
+AV2

+ C + E1

AV3
+AV4

+ C + E2

)

■ A1, . . . , A4, C,E1, E2, V1, . . . , V4 independent
■ A1, A2, A3, A4 ∼ Γ(µ, 1), C ∼ Γ(ν, 1), E1, E2 ∼ Γ(π, 1)

Suggests extensions to other pedigrees (e.g. multiple sibs) or
genetic models (e.g. dominance)



Genetic Gamma Frailties (2)

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Hazards

Frailty model

Gamma Frailties
Genetic Gamma
Frailties

Survival Function
Genetic Gamma
Frailties (2)

Heritability

Estimation and
Testing

Migraine Data

Concluding Remarks

20 / 33

The bivariate Gamma can be motivated by the usual variance
components models

1 2 3 4

V1 V2 V3 V4

Multiple locus additive model :

(

Z1

Z2

)

=

( ∑

j(Aj,Vj,1
+Aj,Vj,2

) + C + E1
∑

j(Aj,Vj,3
+Aj,Vj,4

) + C + E2

)

[When conditioned on IBD at a single locus this gives a mixture
of Gammas rather than the bivariate Gamma]
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Define heritability by decomposing the frailties into a genetic and
an environmental part: Z = G+ C +E and setting

h2 =
varG

varZ

This definition is as usual, except that the frailties are viewed as
the (latent) phenotype

We can use the usual estimates after estimating the correlation
matrices of the frailties
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■ P(T1 > t1, T2 > t2|Z1, Z2) = e−Z1Λ(t1)−Z2Λ(t2)

■ (T1, T2) ⊥⊥ IBD| (Z1, Z2)
■ (Z1, Z2)| IBD = k bivariate Gamma with correlation ρk and

shape τ
■ ρk = α+ βk

Λ completely unknown
α, β, τ unknown
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L(α, β, τ,Λ)[twin pair] =
2
∑

k=0

Pr(IBD = k|MD)

×
(

Sk(V1, V2) − Sk(U1, V2) − Sk(U2, V1) + Sk(U1, U2)
)

Sk(t1, t2) = P(T1 > t1, T2 > t2|IBD = k)

=
(

S(t1)
−1/τ + S(t2)

−1/τ − 1
)

−ρkτ
S(t1)

1−ρkS(t2)
1−ρk

ρk = α+ βk,
α, β, τ , S unknown
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MLEs α̂n, β̂n, τ̂n, Ŝn, maximize the likelihood

Optimization is not straightforward
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MLEs α̂n, β̂n, τ̂n, Ŝn, maximize the likelihood

Optimization is not straightforward

General theory on semiparametric models suggests that for n
twin pairs, and n→ ∞
■ n1/3

(

Ŝn(t) − S(t)
)

converges in distribution

■
√
n(β̂n −β) converges in distribution to a normal distribution

(Groeneboom and Wellner (1992), Van der Vaart (1998))
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We test H0:β = 0 versus H1:β > 0 by the likelihood ratio
statistic

supα,β,τ,Λ L(α, β, τ,Λ)

supα,τ,Λ L(α, 0, τ,Λ)
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We test H0:β = 0 versus H1:β > 0 by the likelihood ratio
statistic

supα,β,τ,Λ L(α, β, τ,Λ)

supα,τ,Λ L(α, 0, τ,Λ)

General theory on semiparametric models suggests that the LRS
is asymptotically distributed as a 1/2 − 1/2-mixture of 0 and a
χ2

1 (Murphy and Van der Vaart (1999, 2000))
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Heritability is estimated between 0.32 and 0.41 at 95%
confidence level
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Estimates of τ range from 1 to 0.01 to 0.001, approximately
constant across chromosomes



Concluding Remarks

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and
Testing

Migraine Data

Concluding Remarks

O

32 / 33



Open Problems

Motivating Data

Interval Censoring

Statistical Models

Frailty Model

Estimation and
Testing

Migraine Data

Concluding Remarks

O

33 / 33

■ Data Quality and Quantity
■ Goodness-of-fit and robustness
■ Multi-locus modelling
■ Interpretation frailty shape
■ Selection
■ Rigorous asymptotic theory
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