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Bayesian inference



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X, Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution.

dΠ(θ|X) ∝ pθ(X) dΠ(θ)
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n − X + 1).

P(a ≤ Θ ≤ b) = b − a, 0 < a < b < 1,

P(X = x|Θ = θ) =

(

n

x

)

θx(1 − θ)n−x, x = 0, 1, . . . , n,

P(a ≤ Θ ≤ b|X = x) =

∫ b

a
θx(1 − θ)n−x dθ/B(x + 1, n − x + 1).
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n − X + 1).



Parametric Bayes

Pierre-Simon Laplace (1749-1827) rediscovered Bayes’ argument and
applied it to general parametric models: models smoothly indexed by a
Euclidean parameter θ.

For instance, the linear regression model, where one observes
(x1, Yn), . . . , (xn, Yn) following

Yi = θ0 + θ1xi + ei,

for e1, . . . , en independent normal errors with zero mean.



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.
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Credibility Bands

Posterior gives measure of uncertainty.



Subjectivism

A philosophical Bayesian statistician views the prior distribution as an
expression of his personal beliefs on the state of the world, before
gathering the data.

After seeing the data he updates his beliefs into the posterior distribution.

Most scientists do not like dependence on subjective priors.

• One can opt for objective or noninformative priors.

• One can also mathematically study the role of the prior, and hope to
find that it is small.



Frequentist Bayesian theory



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0

and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set dependent on X.

We like this random measure to put “most” of its mass near θ0 for “most”
X.

Asymptotic setting: data Xn where the information increases as n → ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.

Two desirable properties:

• Consistency + rate

• Adaptation



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector
θ ∈ R

d (e.g. θ 7→ √
pθ continuously differentiable as map in L2(µ)).

THEOREM [Laplace, Bernstein, von Mises, LeCam 1989]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn) − Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.

Here θ̃n is any efficient estimator of θ.
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Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector
θ ∈ R

d (e.g. θ 7→ √
pθ continuously differentiable as map in L2(µ)).

THEOREM [Laplace, Bernstein, von Mises, LeCam 1989]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn) − Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.

Here θ̃n is any efficient estimator of θ.

In particular, the posterior distribution concentrates most of its mass on
balls of radius O(1/

√
n) around θ0.

The prior washes out completely.



Rate of contraction

Assume Xn is generated according to a given parameter θ0 where the
information increases as n → ∞.

• Posterior is consistent if Eθ0
Π

(

θ: d(θ, θ0) < ε|Xn
)

→ 1 for every
ε > 0.

• Posterior contracts at rate at least εn if
Eθ0

Π
(

θ: d(θ, θ0) < εn|Xn
)

→ 1.

We like εn = εn(θ0) to tend to 0 fast, for every θ0 in some model Θ.



Minimaxity and adaptation

To a given model Θα is attached an optimal rate of convergence defined
by the minimax criterion

εn,α = inf
T

sup
θ∈Θα

Eθd
(

T (X), θ
)

.

This criterion has nothing to do with Bayes. For a good prior the posterior
contracts at this rate.

Given a scale of regularity classes (Θα: α ∈ A), we like the posterior to
adapt: if the true parameter belongs to Θα, then we like the contraction
rate to be the minimax rate for the α-class.



Minimaxity and adaptation: regression

Consider estimating a function θ: [0, 1] → R based on data
(x1, Y1), . . . , (xn, Yn), with

Yi = θ(xi) + ei, i = 1, . . . , n,

for e1, . . . , en independent “errors” drawn from a normal distribution with
mean zero.

A standard scale of model classes are the Hölder spaces Cα[0, 1], defined
by the norms

‖θ‖Cα
= sup

x

∣

∣θ(x)
∣

∣ + sup
x6=y

∣

∣θ(α−α)(x) − θ(α−α)(y)
∣

∣

|x − y|α .

The square minimax rate in L2(0, 1) over these classes is given by

ε2
n,α = inf

T
sup

‖θ‖Cα
≤1

Eθ

∫ 1

0
|T (x1, Y1, . . . , xn, Yn)(s)−θ(s)

∣

∣

2
ds �

( 1

n

)2α/(2α+1)
.



Minimaxity and adaptation: other models

For other statistical models (density estimation, classification,...) and
types of data (dependence, stochastic processes,..) and other distances
similar results are valid.



Gaussian process priors



Gaussian priors

A Gaussian random variable W with values in a (separable) Banach
space B is a Borel measurable map from some probability space into B

such that b∗W is normally distributed for every b∗ in the dual space B
∗.

If the Banach space is a space of functions w: T → R, then W is usually
written W = (Wt: t ∈ T ) and the map is often determined by the
distributions of all vectors (Wt1 , . . . , Wtk), for t1, . . . , tk ∈ T . These are
determined by their mean vectors and the covariance function

K(s, t) = EWsWt, s, t ∈ T.

Gaussian priors have been found useful, because

• they offer great variety

• they are easy (?) to understand through their covariance function

• they can be computationally attractive (e.g.
www.gaussianprocess.org)



Example: Brownian motion

EWsWt = s ∧ t, 0 ≤ s, t ≤ 1.
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Brownian motion is usually viewed as map in C[0, 1].
It can be constructed so that it takes values in Cα[0, 1] for every α < 1/2

and also in B
1/2
1,∞[0, 1].



Brownian motion—5 realizations



Brownian regression

Consider estimating a function θ: [0, 1] → R based on data
(x1, Y1), . . . , (xn, Yn), with

Yi = w0(xi) + ei, i = 1, . . . , n,

for e1, . . . , en independent “errors” drawn from a normal distribution with
mean zero.

THEOREM
If w0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.



Brownian regression

Consider estimating a function θ: [0, 1] → R based on data
(x1, Y1), . . . , (xn, Yn), with

Yi = w0(xi) + ei, i = 1, . . . , n,

for e1, . . . , en independent “errors” drawn from a normal distribution with
mean zero.

THEOREM
If w0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.

• This is optimal if and only if α = 1/2.

• Rate does not improve if α increases from 1/2.

• Consistency for any α > 0.



Integrated Brownian motion — 5 realizations



Integrated Brownian motion: Riemann-Liouville process

α − 1/2 times integrated Brownian motion, released at 0

Wt =

∫ t

0
(t − s)α−1/2 dBs +

[α]+1
∑

k=0

Zkt
k

[B Brownian motion, α > 0, (Zk) iid N(0, 1), “fractional integral”]

THEOREM
If w0 ∈ Cβ[0, 1], then L2-rate is: n−α/(2α+1) if β ≥ α;

n−β/(2α+1) if β ≤ α.

• This is optimal if and only if α = β.

• Rate does not improve if β increases from α.

• Consistency for any α > 0.



Other priors

Fractional Brownian motion [Hurst index 0 < α < 1]:

cov(Ws, Wt) = s2α + t2α − |t − s|2α.

Series priors: Given a basis e1, e2, . . . put a Gaussian prior on the
coefficients (θ1, θ2, . . .) in an expansion

θ =
∑

i

θiei.

Stationary processes: For a given “spectral measure” µ

cov(Ws, Wt) =

∫

e−iλ(s−t) dµ(λ).

Smoothness of t 7→ Wt can be controlled by the tails of µ. For instance,
exponentially small tails give analytic sample paths.



Adaptation



Two methods for adaptation

The Gaussian priors considered so far possess itself a certain regularity,
and are optimal iff this matches the regularity of the true regression
function.

To obtain a prior that is suitable for estimating a function of unknown
regularity α > 0, there are two methods:

• Hierarchical prior

• Rescaling



Hierarchical priors

For each α > 0 there are several good priors Πα (Riemann-Liouville,
Fractional, Series,...).

• Put a prior weight dw(α) on α.

• Given α use an optimal prior Πα for that α.

This gives a mixture prior

Π =

∫

Πα dw(α).

Disadvantage: computations are expensive.



Rescaling

Sample paths can be smoothed by stretching
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Rescaling

Sample paths can be smoothed by stretching
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and roughened by shrinking
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Rescaling (2)

It turns out that one can rescale k times integrated Brownian motion in
such a way that it gives an appropriate prior for α-smooth functions, for
any α ∈ (0, k + 1/2].

Similarly one any rescale (shrink) an analytic stationary Gaussian
process, so that it becomes appropriate for α-smooth functions, for any
α > 0.

Unfortunately, the rescaling rate depends on α.



Adaptation by rescaling

• Choose c from a Gamma distribution

• Choose (Gt: t > 0) centered Gaussian with EGsGt = exp
(

−(s − t)2
)

• Set Wt ∼ Gt/c

THEOREM

• if w0 ∈ Cα[0, 1], then the rate of contraction is nearly n−α/(2α+1).

• if w0 is supersmooth, then the rate is nearly n−1/2.

Reverend Thomas solved the bandwidth problem!?



Determination of Rates



Two ingredients

Two ingredients:

• RKHS

• Small ball exponent



Reproducing kernel Hilbert space

W zero-mean Gaussian in (B, ‖ · ‖).
S: B∗ → B, Sb∗ = EWb∗(W ).

DEFINITION RKHS (H, ‖ · ‖H) is the completion of SB
∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W ).

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.



Reproducing kernel Hilbert space (2)

Any Gaussian random element in a separable Banach space can be
represented as

W =
∞
∑

i=1

µiZieifor
• µi ↓ 0

• Z1, Z2, . . . i.i.d. N(0, 1)

• ‖e1‖ = ‖e2‖ = · · · = 1

The RKHS consists of all elements h: =
∑

i hiei with

‖h‖2
H
: =

∑

i

h2
i

µ2
i

< ∞.



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε)

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε)

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).
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Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε)

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).

Computable for many examples, by probabilistic arguments, or using:

THEOREM [Kuelbs & Li 93]

φ0(ε) � log N
( ε

√

φ0(ε)
, H1, ‖ · ‖

)

N
(

ε, B, ‖ · ‖
)

is the minimal number of balls of radius ε needed to cover B.



Basic result

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
The posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2

• Both inequalities give lower bound on εn.

• The first depends on W and not on w0.



Example — Brownian motion

One-dimensional Brownian motion is a map in C[0, 1].

• RKHS H = {h:
∫

h′(t)2 dt < ∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) � (1/ε)2.



Example — Brownian motion

One-dimensional Brownian motion is a map in C[0, 1].

• RKHS H = {h:
∫

h′(t)2 dt < ∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) � (1/ε)2.

CONSEQUENCE:
The rate is never faster than the solution of

(1/εn)2 ≤ nε2
n

It also depends on the approximation of w0 in uniform norm by functions
from the first order Sobolev space, through

inf
h:‖w0−h‖∞<εn

‖h′‖2
2 ≤ nε2

n.



Proof

General results by Ghosal and vdV (2000, 2006) show that the rate of
posterior contraction is εn if there exist sets Bn such that

(1) log N
(

εn, Bn, ‖ · ‖
)

≤ nε2
n entropy

(2) Πn(Bn) = 1 − o(e−3nε2
n)

(3) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n prior mass

N
(

ε, B, ‖ · ‖
)

is the minimal number of balls of radius ε needed to cover B.



Proof

General results by Ghosal and vdV (2000, 2006) show that the rate of
posterior contraction is εn if there exist sets Bn such that

(1) log N
(

εn, Bn, ‖ · ‖
)

≤ nε2
n entropy

(2) Πn(Bn) = 1 − o(e−3nε2
n)

(3) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n prior mass

N
(

ε, B, ‖ · ‖
)

is the minimal number of balls of radius ε needed to cover B.

The interpretation of these conditions is that the prior should be “flat”. By
(1) we need N

(

εn, Bn, ‖ · ‖
)

≈ enε2
n balls to cover the model. If the mass is

“uniformly spread” then every ball has mass as required by (3):

1

N(εn, Bn, h)
≈ e−nε2

n .



Proof

General results by Ghosal and vdV (2000, 2006) show that the rate of
posterior contraction is εn if there exist sets Bn such that

(1) log N
(

εn, Bn, ‖ · ‖
)

≤ nε2
n entropy

(2) Πn(Bn) = 1 − o(e−3nε2
n)

(3) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n prior mass

N
(

ε, B, ‖ · ‖
)

is the minimal number of balls of radius ε needed to cover B.

Existence of sets Bn can be verified using characterizations of the
geometry of Gaussian measures.



Geometry

RKHS gives the “geometry of the support of W ”.

THEOREM [Borell 75]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) + M
)

.



Geometry

RKHS gives the “geometry of the support of W ”.

THEOREM [Borell 75]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) + M
)

.

EXAMPLE: One-dimensional Brownian motion is a map in C[0, 1].

• RKHS H = {h:
∫

h′(t)2 dt < ∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) � (1/ε)2.

P
(

‖W − {h: ‖h′‖2 ≤ M}‖∞ > ε
)

≤ 1 − Φ
(

Φ−1(e−1/ε2

) + M
)

.
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RKHS gives the “geometry of the support of W ”.

THEOREM [Borell 75]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
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.
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log P
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)

� log P
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(up to factors 2)



Geometry

RKHS gives the “geometry of the support of W ”.

THEOREM [Borell 75]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) + M
)

.

THEOREM [Kuelbs & Li 93]

log P
(

‖W − w0‖ < ε
)

� log P
(

‖W‖ < ε
)

− inf
h∈H:‖h−w0‖<ε

‖h‖2
H
.

(up to factors 2)
For Brownian motion this is a consequence of Girsanov’s formula

dPW+h

dPW
(W ) = e

∫

h′ dW−‖h′‖2

2
/2.
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