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A sparse model has many parameters, but most of them are thought to be

(nearly) zero.

We express this in the prior,

and apply the standard (full or empirical) Bayesian machine.

In the remainder of this talk consider two simple models:

• Sequence model. Data Y ∼ Nn(θ, I).
• Regression model. Data Y ∼ Nn(Xn×pθ, I).

In both cases θ is known to have many (almost) zero coordinates, and p and n
are large.
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Yi,j : RNA expression count of tag i = 1, . . . , p in tissue j = 1, . . . , n,

xj : covariates of tissue j.

Yi,j ∼ (zero-inflated) negative binomial, with

EYi,j = eαi+βixj , varYi,j = EYi,j
(

1 + EYi,je
−φi

)

.

Many tags i are thought to be unrelated to xj : βi = 0 for most i.

[Smyth & Robinson et al., van der Wiel & vdV et al., 12]
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Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior π on {0, 1, 2, . . . , p}.

(2) Choose S ⊂ {0, 1, . . . , p} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.
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Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior π on {0, 1, 2, . . . , p}.

(2) Choose S ⊂ {0, 1, . . . , p} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.

We are particularly interested in π.

EXAMPLE (Slab and spike)

• Choose θ1, . . . , θp i.i.d. from τδ0 + (1− τ)G.

• Put a prior on τ , e.g. Beta(1, p+ 1).

This gives binomial π and product densities gS = ⊗i∈Sg.

[Mitchell & Beachamp (88), George, George & McCulloch, Yuan, Berger, Johnstone & Silverman, Richardson et al., Johnson & Rossell,...]
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Rather than distribution with a point mass at zero, one may use a continuous

prior with a density that peaks near zero.

• Bayesian LASSO: θ1, . . . , θp iid from a mixture of Laplace (λ) distributions over

λ ∼
√

Γ(a, b)).

• Bayesian bridge: Same but with Laplace replaced with a density ∝ e−|λy|α
.

• Normal-Gamma: θ1, . . . , θp iid from a Gamma scale mixture of Gaussians. Correlated

multivariate normal-Gamma: θ = Cφ for a p× k-matrix C and φ with independent

normal-Gamma (ai, 1/2) coordinates.

• Horseshoe: Normal-Root Cauchy with Cauchy scale.

• Normal spike.

• Scalar multiple of Dirichlet.

• Nonparametric Dirichlet.

• ...

[Park & Casella 08, Polson & Scott, Griffin & Brown 10, 12, Carvalho & Polson & Scott, 10, George& Rockova 13, Bhattacharya et al. 12,...]
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argmin
θ

[

‖Y −Xθ‖2 + λ

p
∑

i=1

|θi|
]

.

The LASSO is the posterior mode for prior θi
iid∼Laplace(λ), but the

full posterior distribution is useless, even with hyperprior on λ.

Trouble:

λ must be large to shrink θi to 0, but small to model nonzero θi.
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Assume data Y follows a given parameter θ0 and consider

the posterior Π(θ ∈ ·|Y ) as a random measure on the parameter set.

We like Π(θ ∈ ·|Y ):

• to put “most” of its mass near θ0 for “most” Y .

• to have a spread that expresses “remaining uncertainty”.

• to select the model defined by the nonzero parameters of θ0.

We evaluate this by probabilities or expectations, given θ0.
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Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

‖θ‖0 = #(1 ≤ i ≤ n: θi 6= 0),

‖θ‖qq =
n
∑

i=1

|θi|q, 0 < q ≤ 2.
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Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

‖θ‖0 = #(1 ≤ i ≤ n: θi 6= 0),

‖θ‖qq =
n
∑

i=1

|θi|q, 0 < q ≤ 2.

Frequentist benchmarks: minimax rate relative to ‖ · ‖2 over:

• black bodies {θ: ‖θ‖0 ≤ sn}:

√

sn log(n/sn).

[(if sn → ∞ with sn/n → 0.) Donoho & Johnstone, Golubev, Johnstone and Silverman, Abramovich et al.,. . .]
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Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

‖θ‖0 = #(1 ≤ i ≤ n: θi 6= 0),

‖θ‖qq =
n
∑

i=1

|θi|q, 0 < q ≤ 2.

Frequentist benchmarks: minimax rate relative to ‖ · ‖q over:

• black bodies {θ: ‖θ‖0 ≤ sn}:

s1/qn

√

log(n/sn).

• weak ℓr-balls mr[sn]: = {θ: maxi i|θ[i]|r ≤ n(sn/n)
r}:

n1/q(sn/n)
r/q

√

log(n/sn)
1−r/q

.

[(if sn → ∞ with sn/n → 0.) Donoho & Johnstone, Golubev, Johnstone and Silverman, Abramovich et al.,. . .]
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Single data with θ0 = (0, . . . , 0, 5, . . . , 5) and n = 500 and ‖θ0‖0 = 100.

Red dots: marginal posterior medians

Orange: marginal credible intervals

Green dots: data points.



Sequence model

15 / 31



Model selection prior

16 / 31

Prior Πn on θ ∈ R
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Prior Πn on θ ∈ R
n:

(1) Choose s from prior πn on {0, 1, 2, . . . , n}.

(2) Choose S ⊂ {0, 1, . . . , n} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.

Assume

• πn(s) ≤ c πn(s− 1) for some c < 1, and every (large) s.

• gS is product of densities eh for uniformly Lipschitz h:R → R and with

finite second moment.

• sn, n→ ∞, sn/n→ 0.

EXAMPLES:

• complexity prior : πn(s) ∝ e−as log(bn/s).

• slab and spike: θi
iid∼ τδ0 + (1− τ)G with τ ∼ B(1, n+ 1).

Gaussian g is excluded. More general gS are possible, e.g. (weak) dependence or grouping of coordinates.
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There exists M such that THEOREM (black body)

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ‖0 ≥Msn|Y n
)

→ 0.

Outside the space in which θ0 lives, the posterior is concentrated in

low-dimensional subspaces along the coordinate axes.
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There exists M such that THEOREM (black body)

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ‖0 ≥Msn|Y n
)

→ 0.

Outside the space in which θ0 lives, the posterior is concentrated in

low-dimensional subspaces along the coordinate axes.

THEOREM (weak ball)

For complexity prior πn, any r ∈ (0, 2) and large M ,

sup
θ0∈mr[sn]

Eθ0 Πn

(

‖θ‖0 > Ms∗n|Y n
)

→ 0,

for “effective dimension”: s∗n: = n(sn/n)
r/ logr/2(n/sn).

[Assume sn not too small: s∗n & 1.]
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THEOREM (black body)

For every 0 < q ≤ 2 and large M ,

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ − θ0‖q > Mrns
1/q−1/2
n |Y n

)

→ 0,

for r2n = sn log(n/sn) ∨ log(1/πn(sn)).

If πn(sn) ≥ e−asn log(n/sn) minimax rate is attained.
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THEOREM (black body)

For every 0 < q ≤ 2 and large M ,

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ − θ0‖q > Mrns
1/q−1/2
n |Y n

)

→ 0,

for r2n = sn log(n/sn) ∨ log(1/πn(sn)).

If πn(sn) ≥ e−asn log(n/sn) minimax rate is attained.

THEOREM (weak ball)

For complexity prior πn, any r ∈ (0, 2), any q ∈ (r, 2), the minimax rate

µ∗n,r,q, and large M

sup
θ0∈mr [pn]

Eθ0 Πn

(

θ: ‖θ − θ0‖q > Mµ∗n,r,q|Y n
)

→ 0.



Illustration

19 / 31

Single data with θ0 = (0, . . . , 0, 5, . . . , 5) and n = 500 and ‖θ0‖0 = 100.

Red dots: marginal posterior medians

Orange: marginal credible intervals

Green dots: data points.

g standard Laplace density.

πn(k) ∝
(

2n−k
n

)κ
for κ1 = 0.1 (left) and κ1 = 1 (right).
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Prior Πn on R
n:

(1) Choose “sparsity level” τ : empirical Bayes or τ ∼ Cauchy+(0, 1).
(2) Generate

√
ψ1, . . . ,

√
ψn iid from Cauchy+(0, τ).

(3) Generate independent θi ∼ N(0, ψi).
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Prior Πn on R
n:

(1) Choose “sparsity level” τ : empirical Bayes or τ ∼ Cauchy+(0, 1).
(2) Generate

√
ψ1, . . . ,

√
ψn iid from Cauchy+(0, τ).

(3) Generate independent θi ∼ N(0, ψi).

MOTIVATION: if θ ∼ N(0, ψ) and Y | θ ∼ N(θ, 1),
then θ|Y ∼ N

(

(1− κ)Y, 1− κ
)

for κ = 1/(1 + ψ).
This suggests a prior for κ that concentrates near 0 or 1.

[Carvalho & Polson & Scott, 10.]
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THEOREM (black body)

If (sn/n)
c ≤ τ̂n ≤ Csn/n for some c, C > 0, then for every Mn → ∞,

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ − θ0‖2 > Mnsn log(n/sn)|Y n
)

→ 0.

Minimax rate sn log(n/pn) is attained,

τ can be interpreted as sparsity level.
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THEOREM (black body)

If (sn/n)
c ≤ τ̂n ≤ Csn/n for some c, C > 0, then for every Mn → ∞,

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ − θ0‖2 > Mnsn log(n/sn)|Y n
)

→ 0.

Minimax rate sn log(n/pn) is attained,

τ can be interpreted as sparsity level.

• Posterior spread is (nearly?) of the same order.

• Easy to construct some τ̂ .

• Hierarchical choice of τ not considered.
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Y n ∼ Nn(Xn×pθ, I) for X known, θ = (θ1, . . . , θp) ∈ R
p, p ≥ n.

Summary of next 7 slides:

• similar results as in sequence model,

under sparse identifiability conditions on the regression matrix.

• allow scaling of prior on zero elements.
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‖X‖: = max
j

‖X.,j‖.

Compatibility number φ(S) for S ⊂ {1, . . . , p} is: inf
‖θSc‖1≤7‖θ‖1

‖Xθ‖2
√

|S|
‖X‖‖θS‖1

.

Compatibility in sn-sparse vectors means: inf
θ:‖θ‖0≤5sn

‖Xθ‖2
√

|Sθ|
‖X‖‖θ‖1

≫ 0.

Strong compatibility in sn-sparse vectors means: inf
θ:‖θ‖0≤5sn

‖Xθ‖2
‖X‖‖θ‖2

≫ 0.

Mutual coherence means: sn max
i 6=j

∣

∣cor(X.i, X.j)
∣

∣ ≪ 1.

Write φ(θ) = φ(Sθ) for the set Sθ = {i: θi 6= 0}.
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(2) Choose S ⊂ {0, 1, . . . , s} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.
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Prior Πn for θ ∈ R
p:

(1) Choose s from prior πn on {0, 1, 2, . . . , p}.

(2) Choose S ⊂ {0, 1, . . . , s} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.

Assume

• πp(s) ≤ p−2πn(s− 1) and πn(s) ≥ c−se−as log(bp).

• gS is product of Laplace (λ) densities.

• p−1 ≤ λ/‖X‖ ≤ 2
√
log p, for ‖X‖: = maxj ‖X.,j‖.

λ can be fixed or even λ→ 0.

Scenario 1: sequence model: ‖X‖ = 1, λ ≥ p−1.

Scenario 2: each (Yi, Xi.) instance of fixed equation: ‖X‖∼√n, λ &
√
n/p.

Scenario 3: sequence model with N(0, σ2n) errors: λ & σ−1
n /n.
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THEOREM

For any sn, c0 > 0

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖θ‖0 > 4sn|Y n) → 0.

Outside the space in which θ0 lives, the posterior is concentrated in

low-dimensional subspaces along the coordinate axes.
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THEOREM (black body)

Given compatibility of sn-sparse vectors, for every c0 > 0,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖X(θ − θ0)‖2 &
√

sn log p|Y n) → 0,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖θ − θ0‖1 & sn
√

log p/‖X‖|Y n) → 0.
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√

sn log p|Y n) → 0,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖θ − θ0‖1 & sn
√

log p/‖X‖|Y n) → 0.

Minimax rates (almost) attained.
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THEOREM (black body)

Given compatibility of sn-sparse vectors, for every c0 > 0,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖X(θ − θ0)‖2 &
√

sn log p|Y n) → 0,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ: ‖θ − θ0‖1 & sn
√

log p/‖X‖|Y n) → 0.

Minimax rates (almost) attained.

THEOREM (oracle, weak norms)

Under same conditions

sup
‖θ0‖0≤sn,φ(θ0)≥c0
‖θ∗‖0≤s∗,φ(θ∗)≥c0

Eθ0Πn(θ: ‖X(θ − θ0)‖22 +
√

log p‖X‖‖θ − θ0‖1

& ‖X(θ∗ − θ0)‖22 + s∗ log p|Y n) → 0.
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THEOREM (No supersets)

Given strong compatibility of sn sparse vectors,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.
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THEOREM (No supersets)

Given strong compatibility of sn sparse vectors,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.
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• Given compatibility of sn sparse vectors,

inf
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(

θ:Sθ ⊃ {i: |θ0,i| & sn
√

log p/‖X‖}|Y n
)

→ 1.
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Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.

THEOREM (Finds big signals)

• Given compatibility of sn sparse vectors,

inf
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn

(

θ:Sθ ⊃ {i: |θ0,i| & sn
√

log p/‖X‖}|Y n
)

→ 1.

• Under strong compatibility sn can be replaced by
√
sn.

• Under mutual coherence sn can be replaced by a constant.
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THEOREM (No supersets)

Given strong compatibility of sn sparse vectors,

sup
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.

THEOREM (Finds big signals)

• Given compatibility of sn sparse vectors,

inf
‖θ0‖0≤sn,φ(θ0)≥c0

Eθ0Πn

(

θ:Sθ ⊃ {i: |θ0,i| & sn
√

log p/‖X‖}|Y n
)

→ 1.

• Under strong compatibility sn can be replaced by
√
sn.

• Under mutual coherence sn can be replaced by a constant.

Corollary: if all nonzero |θ0,i| are suitably big, then posterior proba-

bility of true model Sθ0 tends to 1.
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log p→ 0.
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Assume ‘flat priors’:
λ

‖X‖sn
√

log p→ 0.

THEOREM

Given compatibility of sn-sparse vectors,

Eθ0

∥

∥

∥
Πn(·|Y n)−

∑

S

ŵSN(θ̂(S),Γ
−1
S )⊗ δSc

∥

∥

∥
→ 0,

for θ̂(S) the LS estimator for model S, Γ−1
S its covariance, and

ŵS ∝
πp(s)
(

p
s

)

(

λ
√

2π
2

)s
|ΓS |

−1/2e
1
2
‖XS θ̂(S)‖221|S|≤4sn,‖θ0,Sc‖1.sn

√
log p/‖X‖.

THEOREM

Given consistent model selection, mixture can be replaced by N(θ̂(Sθ0
),Γ

−1
Sθ0

).
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THEOREM

Given consistent model selection, credible sets for individual parameters are

asymptotic confidence sets.
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THEOREM

Given consistent model selection, credible sets for individual parameters are

asymptotic confidence sets.

Open questions:

• What if true model is not consistently selected?

• Do credible sets for multiple parameters control for multiplicity correction?
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