Asymptotic analysis of Bayesian methods for sparse regression

Aad van der Vaart
Universiteit Leiden
O'Bayes, December 2013

Contents

Sparsity

Frequentist Bayes
Sequence model
Sequence model II
Regression

Co-authors

RNA sequencing

Sequence model \& Regression

Regression

Horsehoe

Ismael Castillo

Johannes Schmidt-Hieber

Stéphanie van der Pas, Bas Kleijn

Sparsity

4131

Bayesian sparsity

A sparse model has many parameters, but most of them are thought to be (nearly) zero.

Bayesian sparsity

A sparse model has many parameters, but most of them are thought to be (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

Bayesian sparsity

A sparse model has many parameters, but most of them are thought to be (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

In the remainder of this talk consider two simple models:

- Sequence model. Data $Y \sim N_{n}(\theta, I)$.
- Regression model. Data $Y \sim N_{n}\left(X_{n \times p} \theta, I\right)$.

In both cases θ is known to have many (almost) zero coordinates, and p and n are large.

Bayesian sparsity - RNA sequencing

$Y_{i, j}$: RNA expression count of $\operatorname{tag} i=1, \ldots, p$ in tissue $j=1, \ldots, n$, x_{j} : covariates of tissue j.

$$
\begin{gathered}
Y_{i, j} \sim \text { (zero-inflated) negative binomial, with } \\
\mathrm{E} Y_{i, j}=e^{\alpha_{i}+\beta_{i} x_{j}}, \quad \operatorname{var} Y_{i, j}=\mathrm{E} Y_{i, j}\left(1+\mathrm{E} Y_{i, j} e^{-\phi_{i}}\right) .
\end{gathered}
$$

Many tags i are thought to be unrelated to $x_{j}: \beta_{i}=0$ for most i.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, p\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, p\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

We are particularly interested in π.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, p\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

We are particularly interested in π.

EXAMPLE (Slab and spike)

- Choose $\theta_{1}, \ldots, \theta_{p}$ i.i.d. from $\tau \delta_{0}+(1-\tau) G$.
- Put a prior on τ, e.g. $\operatorname{Beta}(1, p+1)$.

This gives binomial π and product densities $g_{S}=\otimes_{i \in S} g$.

Other sparsity priors

Rather than distribution with a point mass at zero, one may use a continuous prior with a density that peaks near zero.

Other sparsity priors

Rather than distribution with a point mass at zero, one may use a continuous prior with a density that peaks near zero.

- Bayesian LASSO: $\theta_{1}, \ldots, \theta_{p}$ iid from a mixture of Laplace (λ) distributions over $\lambda \sim \sqrt{\Gamma(a, b))}$.
- Bayesian bridge: Same but with Laplace replaced with a density $\propto e^{-|\lambda y|^{\alpha}}$.
- Normal-Gamma: $\theta_{1}, \ldots, \theta_{p}$ iid from a Gamma scale mixture of Gaussians. Correlated multivariate normal-Gamma: $\theta=C \phi$ for a $p \times k$-matrix C and ϕ with independent normal-Gamma ($a_{i}, 1 / 2$) coordinates.
- Horseshoe: Normal-Root Cauchy with Cauchy scale.
- Normal spike.
- Scalar multiple of Dirichlet.
- Nonparametric Dirichlet.
- ...
[Park \& Casella 08, Polson \& Scott, Griffin \& Brown 10, 12, Carvalho \& Polson \& Scott, 10, George\& Rockova 13, Bhattacharya et al. 12,...]

LASSO is not Bayesian!

$$
\underset{\theta}{\operatorname{argmin}}\left[\|Y-X \theta\|^{2}+\lambda \sum_{i=1}^{p}\left|\theta_{i}\right|\right] .
$$

The LASSO is the posterior mode for prior $\theta_{i} \stackrel{\text { iid }}{\sim}$ Laplace (λ), but the full posterior distribution is useless, even with hyperprior on λ.
Trouble:
λ must be large to shrink θ_{i} to 0 , but small to model nonzero θ_{i}.

Frequentist Bayes

Frequentist Bayes

Assume data Y follows a given parameter θ_{0} and consider the posterior $\Pi(\theta \in \cdot \mid Y)$ as a random measure on the parameter set.

Frequentist Bayes

Assume data Y follows a given parameter θ_{0} and consider the posterior $\Pi(\theta \in \cdot \mid Y)$ as a random measure on the parameter set.

We like $\Pi(\theta \in \cdot \mid Y)$:

- to put "most" of its mass near θ_{0} for "most" Y.
- to have a spread that expresses "remaining uncertainty".
- to select the model defined by the nonzero parameters of θ_{0}.

Frequentist Bayes

Assume data Y follows a given parameter θ_{0} and consider the posterior $\Pi(\theta \in \cdot \mid Y)$ as a random measure on the parameter set.

We like $\Pi(\theta \in \cdot \mid Y)$:

- to put "most" of its mass near θ_{0} for "most" Y.
- to have a spread that expresses "remaining uncertainty".
- to select the model defined by the nonzero parameters of θ_{0}.

We evaluate this by probabilities or expectations, given θ_{0}.

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I) \text {, for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_{2}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
\sqrt{s_{n} \log \left(n / s_{n}\right)} .
$$

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I) \text {, for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_{q}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
s_{n}^{1 / q} \sqrt{\log \left(n / s_{n}\right)}
$$

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I) \text {, for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_{q}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
s_{n}^{1 / q} \sqrt{\log \left(n / s_{n}\right)}
$$

- weak ℓ_{r}-balls $m_{r}\left[s_{n}\right]:=\left\{\theta: \max _{i} i\left|\theta_{[i]}\right|^{r} \leq n\left(s_{n} / n\right)^{r}\right\}:$

$$
n^{1 / q}\left(s_{n} / n\right)^{r / q}{\sqrt{\log \left(n / s_{n}\right)}}^{1-r / q}
$$

[(if $s_{n} \rightarrow \infty$ with $s_{n} / n \rightarrow 0$.) Donoho \& Johnstone, Golubev, Johnstone and Silverman, Abramovich et al.,. . .]

Uncertainty quantification

Single data with $\theta_{0}=(0, \ldots, 0,5, \ldots, 5)$ and $n=500$ and $\left\|\theta_{0}\right\|_{0}=100$.
Red dots: marginal posterior medians
Orange: marginal credible intervals
Green dots: data points.

Sequence model

Model selection prior

Prior Π_{n} on $\theta \in \mathbb{R}^{n}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, n\}$.
(2) Choose $S \subset\{0,1, \ldots, n\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Model selection prior

Prior Π_{n} on $\theta \in \mathbb{R}^{n}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, n\}$.
(2) Choose $S \subset\{0,1, \ldots, n\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Assume

- $\pi_{n}(s) \leq c \pi_{n}(s-1)$ for some $c<1$, and every (large) s.
- g_{S} is product of densities e^{h} for uniformly Lipschitz $h: \mathbb{R} \rightarrow \mathbb{R}$ and with finite second moment.
- $s_{n}, n \rightarrow \infty, s_{n} / n \rightarrow 0$.

EXAMPLES:

- complexity prior: $\pi_{n}(s) \propto e^{-a s \log (b n / s)}$.
- slab and spike: $\theta_{i} \stackrel{\text { iid }}{\sim} \tau \delta_{0}+(1-\tau) G$ with $\tau \sim B(1, n+1)$.

Dimensionality

There exists M such that THEOREM (black body)

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\|\theta\|_{0} \geq M s_{n} \mid Y^{n}\right) \rightarrow 0
$$

Outside the space in which θ_{0} lives, the posterior is concentrated in low-dimensional subspaces along the coordinate axes.

Dimensionality

There exists M such that THEOREM (black body)

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\|\theta\|_{0} \geq M s_{n} \mid Y^{n}\right) \rightarrow 0
$$

Outside the space in which θ_{0} lives, the posterior is concentrated in low-dimensional subspaces along the coordinate axes.

THEOREM (weak ball)
For complexity prior π_{n}, any $r \in(0,2)$ and large M,

$$
\sup _{\in m_{r}\left[s_{n}\right]} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\|\theta\|_{0}>M s_{n}^{*} \mid Y^{n}\right) \rightarrow 0,
$$

for "effective dimension": $s_{n}^{*}:=n\left(s_{n} / n\right)^{r} / \log ^{r / 2}\left(n / s_{n}\right)$.

Recovery

THEOREM (black body)

For every $0<q \leq 2$ and large M,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{q}>M r_{n} s_{n}^{1 / q-1 / 2} \mid Y^{n}\right) \rightarrow 0
$$

for $r_{n}^{2}=s_{n} \log \left(n / s_{n}\right) \vee \log \left(1 / \pi_{n}\left(s_{n}\right)\right)$.

$$
\text { If } \pi_{n}\left(s_{n}\right) \geq e^{-a s_{n} \log \left(n / s_{n}\right)} \text { minimax rate is attained. }
$$

Recovery

THEOREM (black body)

For every $0<q \leq 2$ and large M,

$$
\sup _{\theta_{0} \|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{q}>M r_{n} s_{n}^{1 / q-1 / 2} \mid Y^{n}\right) \rightarrow 0
$$

for $r_{n}^{2}=s_{n} \log \left(n / s_{n}\right) \vee \log \left(1 / \pi_{n}\left(s_{n}\right)\right)$.

$$
\text { If } \pi_{n}\left(s_{n}\right) \geq e^{-a s_{n} \log \left(n / s_{n}\right)} \text { minimax rate is attained. }
$$

THEOREM (weak ball)
For complexity prior π_{n}, any $r \in(0,2)$, any $q \in(r, 2)$, the minimax rate $\mu_{n, r, q}^{*}$, and large M

$$
\sup _{\theta_{0} \in m_{r}\left[p_{n}\right]} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{q}>M \mu_{n, r, q}^{*} \mid Y^{n}\right) \rightarrow 0
$$

Illustration

Single data with $\theta_{0}=(0, \ldots, 0,5, \ldots, 5)$ and $n=500$ and $\left\|\theta_{0}\right\|_{0}=100$.
Red dots: marginal posterior medians
Orange: marginal credible intervals
Green dots: data points.
g standard Laplace density.

$$
\pi_{n}(k) \propto\binom{2 n-k}{n}^{\kappa} \text { for } \kappa_{1}=0.1 \text { (left) and } \kappa_{1}=1 \text { (right). }
$$

Sequence model II

Horseshoe prior

Prior Π_{n} on \mathbb{R}^{n} :
(1) Choose "sparsity level" τ : empirical Bayes or $\tau \sim$ Cauchy $^{+}(0,1)$.
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{n}}$ iid from Cauchy ${ }^{+}(0, \tau)$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

Horseshoe prior

Prior Π_{n} on \mathbb{R}^{n} :
(1) Choose "sparsity level" τ : empirical Bayes or $\tau \sim$ Cauchy $^{+}(0,1)$.
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{n}}$ iid from Cauchy ${ }^{+}(0, \tau)$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

MOTIVATION: if $\theta \sim N(0, \psi)$ and $Y \mid \theta \sim N(\theta, 1)$, then $\theta \mid Y \sim N((1-\kappa) Y, 1-\kappa)$ for $\kappa=1 /(1+\psi)$.
This suggests a prior for κ that concentrates near 0 or 1 .

Recovery

THEOREM (black body)
If $\left(s_{n} / n\right)^{c} \leq \hat{\tau}_{n} \leq C s_{n} / n$ for some $c, C>0$, then for every $M_{n} \rightarrow \infty$,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{2}>M_{n} s_{n} \log \left(n / s_{n}\right) \mid Y^{n}\right) \rightarrow 0
$$

> Minimax rate $s_{n} \log \left(n / p_{n}\right)$ is attained, τ can be interpreted as sparsity level.

Recovery

THEOREM (black body)
If $\left(s_{n} / n\right)^{c} \leq \hat{\tau}_{n} \leq C s_{n} / n$ for some $c, C>0$, then for every $M_{n} \rightarrow \infty$,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{2}>M_{n} s_{n} \log \left(n / s_{n}\right) \mid Y^{n}\right) \rightarrow 0 .
$$

> Minimax rate $s_{n} \log \left(n / p_{n}\right)$ is attained, τ can be interpreted as sparsity level.

- Posterior spread is (nearly?) of the same order.
- Easy to construct some $\hat{\tau}$.
- Hierarchical choice of τ not considered.

Regression

Regression model

$$
Y^{n} \sim N_{n}\left(X_{n \times p} \theta, I\right) \text { for } X \text { known, } \theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}, p \geq n \text {. }
$$

Regression model

$$
Y^{n} \sim N_{n}\left(X_{n \times p} \theta, I\right) \text { for } X \text { known, } \theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}, p \geq n
$$

Summary of next 7 slides:

- similar results as in sequence model, under sparse identifiability conditions on the regression matrix.
- allow scaling of prior on zero elements.

Compatibility and coherence

$$
\|X\|:=\max _{j}\left\|X_{., j}\right\|
$$

Compatibility number $\phi(S)$ for $S \subset\{1, \ldots, p\}$ is: $\inf _{\left\|\theta_{S^{c}}\right\|_{1} \leq 7\|\theta\|_{1}} \frac{\|X \theta\|_{2} \sqrt{|S|}}{\|X\|\left\|\theta_{S}\right\|_{1}}$.

Compatibility in s_{n}-sparse vectors means:

$$
\inf _{\theta:\|\theta\|_{0} \leq 5 s_{n}} \frac{\|X \theta\|_{2} \sqrt{\left|S_{\theta}\right|}}{\|X\|\|\theta\|_{1}} \gg 0
$$

Strong compatibility in s_{n}-sparse vectors means: $\inf _{\theta:\|\theta\|_{0} \leq 5 s_{n}} \frac{\|X \theta\|_{2}}{\|X\|\|\theta\|_{2}} \gg 0$.

Mutual coherence means:

$$
s_{n} \max _{i \neq j}\left|\operatorname{cor}\left(X_{. i}, X_{. j}\right)\right| \ll 1
$$

Write $\phi(\theta)=\phi\left(S_{\theta}\right)$ for the set $S_{\theta}=\left\{i: \theta_{i} \neq 0\right\}$.

Model selection prior

Prior Π_{n} for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, s\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Model selection prior

Prior Π_{n} for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, s\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Assume

- $\pi_{p}(s) \leq p^{-2} \pi_{n}(s-1)$ and $\pi_{n}(s) \geq c^{-s} e^{-a s \log (b p)}$.
- g_{S} is product of Laplace (λ) densities.
- $p^{-1} \leq \lambda /\|X\| \leq 2 \sqrt{\log p}$, for $\|X\|:=\max _{j}\left\|X_{,, j}\right\|$.
λ can be fixed or even $\lambda \rightarrow 0$.
Scenario 1: sequence model: $\|X\|=1, \lambda \geq p^{-1}$.
Scenario 2: each (Y_{i}, X_{i}) instance of fixed equation: $\|X\| \sim \sqrt{n}, \lambda \gtrsim \sqrt{n} / p$. Scenario 3: sequence model with $N\left(0, \sigma_{n}^{2}\right)$ errors: $\lambda \gtrsim \sigma_{n}^{-1} / n$.

Dimensionality

THEOREM

For any $s_{n}, c_{0}>0$

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\|\theta\|_{0}>4 s_{n} \mid Y^{n}\right) \rightarrow 0
$$

Outside the space in which θ_{0} lives, the posterior is concentrated in low-dimensional subspaces along the coordinate axes.

Recovery

THEOREM (black body)
Given compatibility of s_{n}-sparse vectors, for every $c_{0}>0$,

$$
\begin{aligned}
& \sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|X\left(\theta-\theta_{0}\right)\right\|_{2} \gtrsim \sqrt{s_{n} \log p} \mid Y^{n}\right) \rightarrow 0, \\
& \sup _{\theta_{0} \|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{1} \gtrsim s_{n} \sqrt{\log p} /\|X\| Y^{n}\right) \rightarrow 0 .
\end{aligned}
$$

Recovery

THEOREM (black body)
Given compatibility of s_{n}-sparse vectors, for every $c_{0}>0$,

$$
\begin{array}{r}
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|X\left(\theta-\theta_{0}\right)\right\|_{2} \gtrsim \sqrt{s_{n} \log p} \mid Y^{n}\right) \rightarrow 0, \\
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{1} \gtrsim s_{n} \sqrt{\log p} /\|X\| Y^{n}\right) \rightarrow 0 .
\end{array}
$$

Minimax rates (almost) attained.

Recovery

THEOREM (black body)
Given compatibility of s_{n}-sparse vectors, for every $c_{0}>0$,

$$
\begin{aligned}
& \sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|X\left(\theta-\theta_{0}\right)\right\|_{2} \gtrsim \sqrt{s_{n} \log p} \mid Y^{n}\right) \rightarrow 0, \\
& \sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{1} \gtrsim s_{n} \sqrt{\log p} /\|X\| Y^{n}\right) \rightarrow 0 .
\end{aligned}
$$

Minimax rates (almost) attained.

THEOREM (oracle, weak norms)
Under same conditions

$$
\begin{array}{r}
\sup _{\substack{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0} \\
\left\|\theta_{*}\right\|_{0} \leq s_{*}, \phi\left(\theta_{*}\right) \geq c_{0}}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|X\left(\theta-\theta_{0}\right)\right\|_{2}^{2}+\sqrt{\log p}\|X\|\left\|\theta-\theta_{0}\right\|_{1}\right. \\
\\
\left.\gtrsim\left\|X\left(\theta_{*}-\theta_{0}\right)\right\|_{2}^{2}+s_{*} \log p \mid Y^{n}\right) \rightarrow 0
\end{array}
$$

Selection

THEOREM (No supersets)
Given strong compatibility of s_{n} sparse vectors,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0 .
$$

Selection

THEOREM (No supersets)

Given strong compatibility of s_{n} sparse vectors,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

THEOREM (Finds big signals)

- Given compatibility of s_{n} sparse vectors,

$$
\inf _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset\left\{i:\left|\theta_{0, i}\right| \gtrsim s_{n} \sqrt{\log p} /\|X\|\right\} \mid Y^{n}\right) \rightarrow 1
$$

Selection

THEOREM (No supersets)

Given strong compatibility of s_{n} sparse vectors,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

THEOREM (Finds big signals)

- Given compatibility of s_{n} sparse vectors,

$$
\inf _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset\left\{i:\left|\theta_{0, i}\right| \gtrsim s_{n} \sqrt{\log p} /\|X\|\right\} \mid Y^{n}\right) \rightarrow 1
$$

- Under strong compatibility s_{n} can be replaced by $\sqrt{s_{n}}$.
- Under mutual coherence s_{n} can be replaced by a constant.

Selection

THEOREM (No supersets)

Given strong compatibility of s_{n} sparse vectors,

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

THEOREM (Finds big signals)

- Given compatibility of s_{n} sparse vectors,

$$
\inf _{\left\|\theta_{0}\right\|_{0} \leq s_{n}, \phi\left(\theta_{0}\right) \geq c_{0}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset\left\{i:\left|\theta_{0, i}\right| \gtrsim s_{n} \sqrt{\log p} /\|X\|\right\} \mid Y^{n}\right) \rightarrow 1
$$

- Under strong compatibility s_{n} can be replaced by $\sqrt{s_{n}}$.
- Under mutual coherence s_{n} can be replaced by a constant.

Corollary: if all nonzero $\left|\theta_{0, i}\right|$ are suitably big, then posterior probability of true model $S_{\theta_{0}}$ tends to 1 .

Bernstein-von Mises theorem

Assume 'flat priors':

$$
\frac{\lambda}{\|X\|} s_{n} \sqrt{\log p} \rightarrow 0
$$

Bernstein-von Mises theorem

Assume 'flat priors':

$$
\frac{\lambda}{\|X\|} s_{n} \sqrt{\log p} \rightarrow 0
$$

THEOREM

Given compatibility of s_{n}-sparse vectors,

$$
\mathrm{E}_{\theta_{0}}\left\|\Pi_{n}\left(\cdot \mid Y^{n}\right)-\sum_{S} \hat{w}_{S} N\left(\hat{\theta}_{(S)}, \Gamma_{S}^{-1}\right) \otimes \delta_{S^{c}}\right\| \rightarrow 0
$$

for $\hat{\theta}_{(S)}$ the LS estimator for model S, Γ_{S}^{-1} its covariance, and

$$
\hat{w}_{S} \propto \frac{\pi_{p}(s)}{\binom{p}{s}}\left(\frac{\lambda \sqrt{2 \pi}}{2}\right)^{s}\left|\Gamma_{S}\right|^{-1 / 2} e^{\frac{1}{2}\left\|X_{S} \widehat{\theta}_{(S)}\right\|_{2}^{2}} 1_{|S| \leq 4 s_{n},\left\|\theta_{0, S^{C}}\right\|_{1} \lesssim s_{n} \sqrt{\log p} /\|X\|} .
$$

THEOREM

Given consistent model selection, mixture can be replaced by $N\left(\hat{\theta}_{\left(S_{\theta_{0}}\right)}, \Gamma_{S_{\theta_{0}}}^{-1}\right)$.

Credible set

THEOREM

Given consistent model selection, credible sets for individual parameters are asymptotic confidence sets.

Credible set

THEOREM

Given consistent model selection, credible sets for individual parameters are asymptotic confidence sets.

Open questions:

- What if true model is not consistently selected?
- Do credible sets for multiple parameters control for multiplicity correction?

