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Bayesian inference



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a density pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution.

dΠ(θ|X) ∝ pθ(X) dΠ(θ)
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).

P(a ≤ Θ ≤ b) = b− a, 0 < a < b < 1,

P(X = x|Θ = θ) =

(

n

x

)

θx(1 − θ)n−x, x = 0, 1, . . . , n,

dΠ(θ|X) ∝ θX(1 − θ)n−X · 1.



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).
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Beta(X + 1, n−X + 1).
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3



Nonparametric Bayes
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Credibility bands

Posterior gives measure of uncertainty.
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Computation

Analytical computation of a posterior is rarely possible, but clever
algorithms allow to simulate from it.

Markov Chain Monte Carlo (MCMC) produces a Markov chain θ1, θ2, . . .
that has the posterior as its stationary distribution.

After discarding θ1, . . . , θk,

• the average of θk+1, . . . , θk+l is taken as estimate of the posterior
mean

• the fraction of θk+1, . . . , θk+l that falls in a set B is taken as estimate
of the posterior mass of B.



Computation

Analytical computation of a posterior is rarely possible, but clever
algorithms allow to simulate from it.

Markov Chain Monte Carlo (MCMC) produces a Markov chain θ1, θ2, . . .
that has the posterior as its stationary distribution.

After discarding θ1, . . . , θk,

• the average of θk+1, . . . , θk+l is taken as estimate of the posterior
mean

• the fraction of θk+1, . . . , θk+l that falls in a set B is taken as estimate
of the posterior mass of B.

Time-consuming, must be tuned properly, many short-cuts suggested, but
feasible (?).



Computation — hierarchical priors

Many priors are defined by a hierarchy of the type:

• α ∼ Πα

• β|α ∼ Πβ|α

• γ|α, β ∼ Πγ|α,β

• · · ·

• θ|α, β, · · · ∼ Πθ|α,β,···.

The prior for θ is a certain mixture of the priors Πθ|α,β,··· over α, β, . . ..

MCMC may simulate a Markov chain (α1, β1, . . . , θ1), (α2, β2, . . . , θ2), . . .,
and next forget the α’s, β’s, etc.



Computation — posterior mode

Computing the full posterior is the aim, but can be hard.

Finding the centre and/or spread of the posterior may be a substitute.

There are several general methods (e.g. expectation propagation,
Laplace expansion, ..) and many special ones.



Posterior mode — regularization

By Bayes’ rule the posterior corresponding to observing X ∼ pθ has
density

π(θ|X) ∝ pθ(X)π(θ).

The posterior mode maximizes

θ 7→ log pθ(X) + log π(θ).

The log prior acts as a regularization penalty attached to the log likelihood.

Bayesian thinking suggests penalties.



The Bayesian choice

A true Bayesian may view priors, and hierarchies of priors, as just a way
of modelling reality.

• α ∼ Πα

• β|α ∼ Πβ|α

• γ|α, β ∼ Πγ|α,β

• · · ·

• θ|α, β, · · · ∼ Πθ|α,β,···

• X| θ ∼ pθ
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The Bayesian choice

A true Bayesian may view priors, and hierarchies of priors, as just a way
of modelling reality.

• α ∼ Πα

• β|α ∼ Πβ|α

• γ|α, β ∼ Πγ|α,β

• · · ·

————————————- empirical Bayes

• θ|α, β, · · · ∼ Πθ|α,β,···

• X| θ ∼ pθ



The Bayesian choice

A true Bayesian may view priors, and hierarchies of priors, as just a way
of modelling reality.

Even a true non-Bayesian may like Bayesian methods, because:

• they are elegant

• they allow to incorporate prior information better

• they may be easier to implement

A true non-Bayesian would like to know their performance in a
non-Bayesian framework.



Frequentist Bayesian theory



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set, dependent on X.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set, dependent on X.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

Asymptotic setting: data Xn where the information increases as n→ ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.

Three desirable properties:

• Consistency + rate

• Adaptation

• Distributional convergence



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by θ ∈ R

d.

THEOREM [Bernstein, von Mises, LeCam,..]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn) −Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0,

where θ̃n is any efficient estimator of θ.
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where θ̃n is any efficient estimator of θ.

The posterior distribution concentrates most of its mass on balls of radius
O(1/

√
n) around θ0, and the Bayesian credible interval is a standard

confidence interval.



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by θ ∈ R

d.

THEOREM [Bernstein, von Mises, LeCam,..]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn) −Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0,

where θ̃n is any efficient estimator of θ.

The posterior distribution concentrates most of its mass on balls of radius
O(1/

√
n) around θ0, and the Bayesian credible interval is a standard

confidence interval.

The prior washes out completely.

Similar results for nonregular models and non-iid data.



Complete class theorem

According to the complete class theorem [Le Cam (1964)] the set of
Bayes procedures is sufficiently rich to dominate every statistical
procedure.
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Complete class theorem

According to the complete class theorem [Le Cam (1964)] the set of all
limits of Bayes procedures is sufficiently rich to dominate every statistical
procedure.

Which priors?

Most priors do not work!

[Freedman and Diaconis (1980s)]



Rate of contraction

Assume Xn is generated according to a given parameter θ0 where the
information increases as n→ ∞.

• Posterior is consistent if Eθ0
Π

(

θ: d(θ, θ0) < ε|Xn
)

→ 1 for every
ε > 0.

• Posterior contracts at rate at least εn if
Eθ0

Π
(

θ: d(θ, θ0) < εn|Xn
)

→ 1.

Basic results on consistency were proved by Doob (1948) and Schwarz
(1965). Interest in rates is recent.



Minimaxity and adaptation

To a given model Θα is attached an optimal rate of convergence defined
by the minimax criterion

εn,α = inf
T

sup
θ∈Θα

Eθd
(

T (X), θ
)

.

This criterion has nothing to do with Bayes. A prior is good if the posterior
contracts at this rate.

Given a scale of regularity classes (Θα:α ∈ A), we like the posterior to
adapt: if the true parameter belongs to Θα, then we like the contraction
rate to be the minimax rate for the α-class.



Minimaxity and adaptation: regression

Consider estimating a function θ: [0, 1]d → R based on data
(x1, Y1), . . . , (xn, Yn), with

Yi = θ(xi) + ei, Eεi = 0, i = 1, . . . , n,

A standard scale of model classes are the Hölder spaces Cα[0, 1]d,
defined by the norms

‖θ‖Cα = sup
x

∣

∣θ(x)
∣

∣ + sup
x6=y

max
k=α

∣

∣Dkθ(x) −Dkθ(y)
∣

∣

|x− y|(α−α)
.

The square minimax rate in L2(0, 1) over these classes is given by

ε2n,α = inf
T

sup
‖θ‖Cα≤1

Eθ

∫

[0,1]d
|T (x1, Y1, . . . , xn, Yn)(s)−θ(s)

∣

∣

2
ds �

( 1

n

)2α/(2α+d)
.



Minimaxity and adaptation: other models

For other statistical models (density estimation, classification,...) and
types of data (dependence, stochastic processes,..) and other model
scales (Sobolev, Besov,..) and distances similar results are valid.

In many examples the minimax rate is n−α/(2α+d) if w0 is a function of d
arguments with partial derivatives of order α bounded by a constant.



Distributional convergence

The posterior of a “parameter” φ(θ) is obtained from the posterior for θ by
marginalization. For φ(θ) ∈ R we desire semiparametric Bernstein - von
Mises approximations:

Π
(

φ(θ) ∈ ·|X(n)
)

−N
(

φ̂n,
1

nĨφ

)

(·) P→ 0,

where φ̂n is a (semiparametrically) efficient estimator and Ĩφ the efficient
Fisher information.

For nonregular parameters we expect nonnormal distributions.



Examples



Priors on distributions: Polya trees

Given a sequence of binary partitions:

X = X0 ∪ X1 = (X00 ∪ X01) ∪ (X10 ∪ X11) = · · · ,

assign the total mass 1 by splitting it randomly over the partitioning sets
using independent Beta variables V0, V00, V10, · · · .

X

X0 X1

X00 X01 X10 X11

V0 V1

V00 V01 V10 V11

...
...

Parameters of Betas determine properties.



Dirichlet process

The Dirichlet process prior is the Polya tree prior with the parameters of Vε

equal to
(

α(Xε0), α(Xε1)
)

for a fixed measure α, the mean measure.

It puts mass on discrete measures only, and is a true nonparametric prior.

THEOREM
If X1, . . . , Xn iid P0 and the prior for P is Dirichlet (α), then, uniformly in
sets B,

Πn

(

P :P (B) ∈ ·|X1, . . . , Xn

)

−N
(

Pn(B),
P0(B)(1 − P0(B))

n

)

(·) P→ 0,

(The posterior is Dirichlet (α+ nPn).)

[Ferguson (1973, 74), Lo]



Priors on distributions: stick-breaking

A random discrete probability measure is obtained as

P =

∞
∑

i=1

WiδZi
, Wi = (1 − V1) · · · (1 − Vi−1)Vi,

for independent V1, V2, . . . in (0, 1) independent of iid Z1, Z2, . . . ,.

V1 1 − V1

(1 − V1)V2 (1 − V1)(1 − V2)

(1 − V1)(1 − V2)V3

?

?

(By making the Vi or Zi dependent on a covariate can model conditional
distributions.)



Priors on distributions: stick-breaking

A random discrete probability measure is obtained as

P =

∞
∑

i=1

WiδZi
, Wi = (1 − V1) · · · (1 − Vi−1)Vi,

for independent V1, V2, . . . in (0, 1) independent of iid Z1, Z2, . . . ,.

The Pitman-Yor process is the special case with Vi ∼ Beta(1 − α, θ + iα).
The Dirichlet the subcase with α = 0.

THEOREM [James (2008)]
The Bernstein-von Mises theorem holds only if α = 0.
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Dirichlet mixtures

A prior on densities can be obtained by putting the Dirichlet on the mixing
distribution P in

x 7→
∫

1

σ
φ
(x− z

σ

)

dP (z),

with φ e.g. the normal density. We can also put a prior on the scale σ.



Dirichlet mixtures — computation

• P ∼ Dirichlet(α).

• Z1, . . . , Zn|P ∼ iid P .

• ε1, . . . , εn|P,Z1, . . . Zn iid ∼ N(0, 1).

• Observations Xi = Zi + εi.

Then Zi|Zj : j 6= i,X1, . . . , Xn ∼ mixture of empirical of (Zj : j 6= i) and α.
“Gibbs sampler for simulating Z1, . . . , Zn|X1, . . . , Xn is partial bootstrap”.

Also P |Z1, . . . , Zn, Xn . . . , Zn ∼ Dirichlet (α+
∑

δZi
).

[Escobar & West (1995)]



Dirichlet mixtures of normal

pF,σ(x) =

∫

1

σ
φ
(x− z

σ

)

dF (z).

Observe a random sample of size n from density p0 on R. Put Dirichlet
prior on F , and positive prior on σ ∈ (a, b) ⊂ (0,∞).

THEOREM
If p0 = pF0,σ0

for F0 with subGaussian tails and σ0 ∈ (a, b), then the rate of
contraction relative to Hellinger distance is (logn)κ/

√
n.

THEOREM
If p0 is C2 and has subGaussian tails, and the prior on σ shrinks at rate
n−1/5, then the rate of contraction is (logn)λ/n−2/5.



Dirichlet mixtures of normal

pF,σ(x) =

∫

1

σ
φ
(x− z

σ

)

dF (z).

Observe a random sample of size n from density p0 on R. Put Dirichlet
prior on F , and positive prior on σ ∈ (a, b) ⊂ (0,∞).

THEOREM
If p0 = pF0,σ0

for F0 with subGaussian tails and σ0 ∈ (a, b), then the rate of
contraction relative to Hellinger distance is (logn)κ/

√
n.

THEOREM
If p0 is C2 and has subGaussian tails, and the prior on σ shrinks at rate
n−1/5, then the rate of contraction is (logn)λ/n−2/5.

Conjecture: if p0 ∈ Cα with small tails and the prior on σ is inverse
Gamma, then rate is (logn)λ/n−α/(2α+1). [Kruijer& Rousseau (2009)].

Bayes is smarter than kernel methods.



Dirichlet mixtures of Beta

For densities on [0, 1] it is natural to take mixtures of beta densities.

x 7→
∫

cα,β x
α(1 − x)β dF ◦ ψ(α, β).

Similar results hold. A reparameterization of (α, β) 7→ ψ(α, β) is
necessary for the best results.

[Petrone, Ghosal, Kruijer, Rousseau]



Gaussian priors

The law of a stochastic process (Wt: t ∈ T ) is a prior distribution on the
space of functions w:T → R.
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Gaussian processes have been found useful, because

• they offer great variety

• they are easy (?) to understand through their covariance function
(s, t) 7→ EWsWt

• they can be computationally attractive



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 e

Wy dy
.

[Leonard, Lenk, Tokdar & Ghosh]



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 e

Wy dy
.
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Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.



Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.

• This is optimal if and only if α = 1/2.

• Rate does not improve if α increases from 1/2.

• Consistency for any α > 0.

[vZanten, Castillo (2008)].



Integrated Brownian density estimation

Taking a primitive smoothes.
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Gaussian processes — Cox Model

• T ⊥ C|Z

• hazard function λT |Z(t) = λ(t)eθZ

• Observed X = (T ∧ C,Z,∆ = 1T≤C)

Prior on log λ the Riemann-Liouville process of order α (i.e. (α− 1/2)
times integrated Brownian motion).

THEOREM [Castillo (2008)]
If log λ0 ∈ Cβ[0, τ ] for β > 3/2 and γ0 ∈ C2β/3[0, τ ], then the Bernstein-von
Mises theorem for estimating θ holds for α ∈ (3/2, 4β/3 − 1/2).



Independent increment processes

A prior on monotone functions can be obtained by placing randomly
generated jumps at the event times of a Poisson process (a compound
Poisson process).

For nonparametric priors we need more jumps, as in Lévy processes or
general independent increment processes.
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Independent increments processes — survival analysis

As prior a cumulative hazard function, use an IIP with jump measure

ν(dt, dx) =
(κ(t)

x
+ ft(x)

)

dt dx, 0 ≤ t ≤ τ, 0 ≤ x ≤ 1.

THEOREM [Kim & Lee (2004)]
The Bernstein - von Mises theorem holds if 0 � κ� ∞ and

sup
x,t

∣

∣

∣

(1 − x)ft(x)

xβ

∣

∣

∣
<∞, β > 3/2.

Particular examples are Beta processes [Hjort (1990)] and Gamma
processes. For β ≤ 3/2 there are counterexamples.

This extends to the Cox model [Kim (2006)], under slightly stronger
assumptions.



Sparsity (1)

Observe independent X1, . . . , Xn, where Xi is N(θi, 1).

pn: = #(1 ≤ i ≤ n: θi 6= 0).

Prior on θ = (θ1, . . . , θn) constructed in three steps:

• Choose p from πn on {1, 2, . . . , n}.

• Given p choose S ⊂ {1, . . . , n} of size |S| = p at random.

• Given (p, S) choose (θi: i ∈ S) from density gS on R
p and set

(θi: i /∈ S) = 0.

Special case: θ1, . . . , θn iid αnδ0 + (1 − αn)G.
[George, Johnstone& Silverman]



Sparsity (1)

Observe independent X1, . . . , Xn, where Xi is N(θi, 1).

pn: = #(1 ≤ i ≤ n: θi 6= 0).

Prior on θ = (θ1, . . . , θn) constructed in three steps:

• Choose p from πn on {1, 2, . . . , n}.

• Given p choose S ⊂ {1, . . . , n} of size |S| = p at random.

• Given (p, S) choose (θi: i ∈ S) from density gS on R
p and set

(θi: i /∈ S) = 0.

THEOREM
If πn(p) ∝ e−p log(n/p) and gS has heavy tails (e.g. Cauchy or Laplace),
then rate of “contraction” for Euclidean norm is pn log(n/pn). (Gaussian
priors shrink too much.)

[Castillo]



Sparsity (2)

We wish to build a prediction model for Y given X1, X2, . . . , Xp.
The number of predictors p is large, but only few should matter.

We place prior weights on models that include various sets of Xi.
We combine these with priors on the models into an overall prior.

Conjecture: In linear regression under RIP similar results hold.

[Jiang, Yuan&Li, Johnstone&Silverman, Abramovich et al,...]



Series priors

Given a basis e1, e2, . . . put a prior on the coefficients (θ1, θ2, . . .) in an
expansion

θ =
∑

i

θiei.

The θi should decrease as i→ ∞. The rate of decrease determines
behaviour of the posterior. Many results with Fourier series, wavelets,
splines,...



Adaptation

Given a countable collection of models indexed by α ∈ An, each with its
own rate εn,α and prior Πn,α, form the hierarchical prior:

• choose α with weights wn,α ∝ µαe
−Cnε2

n,α .

• choose parameter θ according to Πn,α.

THEOREM
Under general conditions the posterior rate is approximately εn,β if the
true parameter belongs to model β.

Under more complicated conditions or special models similar results hold
for more general weights wn,α. There are also elegant special
constructions [e.g. Lecture II.]

[Scriciollo, T. Huang, Belitser, Lember,...]



Misspecification

If the true parameter is outside the support of the prior, then the posterior
cannot contract to it.

THEOREM
Under general conditions the posterior contracts to the parameter “in the
support” at minimal Kullback-Leibler divergence to the true parameter, at
a rate as if it were “in the support”.

For example, a Bayesian may misrepresent the error in nonparametric
regression as Gaussian, but still get consistency for the regression
function.

[Klein (2006)]



Rates — iid



Entropy

The covering number N(ε,Θ, d) of a metric space (Θ, d) is the minimal
number of balls of radius ε needed to cover Θ.

ε big ε small

Entropy is the logarithm logN(ε,Θ, d)



Entropy

The covering number N(ε,Θ, d) of a metric space (Θ, d) is the minimal
number of balls of radius ε needed to cover Θ.

Entropy of a set of densities Θ relative to the Hellinger distance h
characterizes the minimax rate of convergence for density estimation
relative to h by the equation [Le Cam (73,75,86), Birgé (83,06)]

logN(εn,Θ, h) � nε2n.

h(p, q) =

√

∫

(
√
p−√

q)2 dµ.



Rate — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) logN(εn,Pn, h) ≤ nε2n and Π(Pn) = 1 − o(e−3nε2
n). entropy

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

BKL(p0, ε) is Kullback-Leibler neighborhood of p0.



Rate — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) logN(εn,Pn, h) ≤ nε2n and Π(Pn) = 1 − o(e−3nε2
n). entropy

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

We need N(εn,Pn, h) ≈ enε2
n balls to cover the model. If the mass is

uniformly spread, then every ball has mass

1

N(εn,Pn, h)
≈ e−nε2

n .



Rate — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) logN(εn,Pn, h) ≤ nε2n and Π(Pn) = 1 − o(e−3nε2
n). entropy
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n balls to cover the model. If the mass is

uniformly spread, then every ball has mass

1

N(εn,Pn, h)
≈ e−nε2
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Other results

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) logN(εn,Pn, h) ≤ nε2n and Π(Pn) = 1 − o(e−3nε2
n). entropy

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

The entropy condition ensures that the likelihood is not too variable, so
that it cannot be large by pure randomness.

In the Bayesian set-up the likelihood is downweighted by the prior, and a
more refined trade-off can be made between prior and complexity. There
are several versions of more refined trade-offs. [Ghosal& vdV, Zhang,
Xing (2009)].

There are also results only in terms of the prior, but these require stronger
conditions ([Lijoi, Pruenster, Walker]).



Rates — general



Setting

For n = 1, 2, . . .

• (Pn
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• Xn observation, law Pn
θ0

Given prior Πn on Θn form posterior

dΠn(θ|Xn) ∝ pn
θ (Xn) dΠn(θ)



Setting

For n = 1, 2, . . .

• (Pn
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• Xn observation, law Pn
θ0

Given prior Πn on Θn form posterior

dΠn(θ|Xn) ∝ pn
θ (Xn) dΠn(θ)

Rate of contraction is at least εn if ∀Mn → ∞

Pn
θ0

Πn(θ ∈ Θn: dn(θ, θ0) ≥Mnεn|Xn) → 0



Setting — Le Cam’s testing criterion

For n = 1, 2, . . .

• (Pn
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• Xn observation, law Pn
θ0

Assume ∀n ∃ metric d̄n ≥ dn such that ∀ε > 0:

∀θ1 ∈ Θn with dn(θ1, θ0) > ε ∃ test φn with

Pn
θ0
φn ≤ e−nε2

, sup
θ∈Θn:d̄n(θ,θ1)<ε/2

Pn
θ (1 − φn) ≤ e−nε2

. ..

θ0
θ1

> ε
radius ξε



Le Cam dimension = local entropy

N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ



Le Cam dimension = local entropy

N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ

Dn(ε,Θ, dn, d̄n) = sup
η>ε

logN
(

η/2, {θ ∈ Θn: dn(θ, θ0) ≤ η}, d̄n

)

.



Le Cam dimension = local entropy

N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ

Dn(ε,Θ, dn, d̄n) = sup
η>ε

logN
(

η/2, {θ ∈ Θn: dn(θ, θ0) ≤ η}, d̄n

)

.

THEOREM [Le Cam (73,75,86), Birgé (83,06)]
There exist estimators θ̂n with dn(θ̂n, θ0) = OP (εn) if

Dn(εn,Θn, dn, d̄n) ≤ nε2n.



Rate theorem

THEOREM
The rate of contraction is εn � 1/

√
n if there exist Θ̃n ⊂ Θn such that

(1) Dn(εn, Θ̃n, dn, d̄n) ≤ nε2n and Πn(Θn − Θ̃n) = o(e−3nε2
n).

(2) Πn(Bn(θ0, εn; k)) ≥ e−nε2
n .

Bn(θ0, ε; k) =
{

θ ∈ Θn:K(pn
θ0
, pn

θ ) ≤ nε2, Vk(p
n
θ0
, pn

θ ) ≤ nk/2εk
}

(Kullback-Leibler neighborhood)

K(p, q) = P log(p/q) Vk(p, q) = P
∣

∣log(p/q) −K(p, q)
∣

∣

k



Sketch of proof

STEP 1: With high probability
∫

pn
θ /p

n
θ0
dΠn(θ) ≥ e−nε2

nΠn

(

Bn(θ0, εn)
)

.

STEP 2: There exist tests φn = 1Kn with

Pn
θ (Kn) → 0, sup

θ:dn(θ,θ0)>εn

Pn
θ (Kc

n) ≤ e−nε2
n .

STEP 3: For B = {θ: dn(θ, θ0) ≥ εn}:

Pn
θ0

∫

B
pn

θ /p
n
θ0
dΠn(θ)1Kc

n
≤

∫

B
Pn

θ (Kc
n) dΠn(θ) ≤ sup

θ∈B
Pn

θ (Kc
n).



Rate theorem — refined

THEOREM
The rate of contraction is εn if there exist Θ̃n ⊂ Θn such that

(1) Dn(εn, Θ̃n, dn, d̄n) ≤ nε2n and
Πn(Θn − Θ̃n)

Πn(Bn(θ0, εn; k))
= o(e−2nε2

n).

(2)
Πn(θ ∈ Θn: dn(θ, θ0) ≤ 2jεn)

Πn(Bn(θ0, εn; k))
≤ eKnε2

nj2/2 ∀j.

Further trade-off between complexity and prior mass possible.



I.i.d. observations

Data X1, . . . , Xn, iid with density pθ.

MAIN RESULT HOLDS WITH

• dn Hellinger distance h (or L1 or L2)

• Bn(θ0, ε; 2) = {θ:K(θ0, θ) ≤ ε2, V2(θ0, θ) ≤ ε2}

h(θ, θ′)2 =
∫ (√

pθ −
√
pθ′

)2
dµ

K(θ, θ′) = Pθ log(pθ/pθ′)

V2(θ, θ
′) = Pθ

(

log(pθ/pθ′)
)2



Independent observations

Data X1, . . . , Xn, independent with Xi ∼ pθ,i.

MAIN RESULT HOLDS WITH

• d2
n(θ, θ′) = 1

n

∑n
i=1hi(θ, θ

′)2

• Bn(θ0, ε; 2) = {θ: 1
n

∑n
i=1Ki(θ0, θ) ∨ 1

n

∑n
i=1V2,i(θ0, θ) ≤ ε2}

hi, Ki and V2,i computed for ith observation



Markov chains

Data (X0, X1, . . . , Xn) for · · · , X0, X1, X2, · · · stationary Markov chain with
initial density qθ and transition density pθ(·|·).

Assume ∃ integrable r, constants 0 < c < C and k > 2:

1. c r(y) ≤ pθ(y|x) ≤ C r(y),

2. α-mixing,
∑∞

h=0 α
1−1/k
h <∞

MAIN RESULT HOLDS WITH

• d2
n(θ, θ′) =

∫∫

[

√

pθ(y|x) −
√

pθ′(y|x)
]2
dµ(y) r(x) dµ(x)

• Bn(θ0, ε; k) =
{

θ:Pθ0
log

pθ0

pθ
(X1|X0) ≤ ε2, Pθ0

∣

∣

∣
log

pθ0

pθ
(X1|X0)

∣

∣

∣

k
≤ εk

}



Gaussian time series

Data (X0, X1, . . . , Xn) for · · · , X0, X1, X2, · · · stationary mean zero
Gaussian process with spectral density θ ∈ Θ.

Assume

1. supθ∈Θ ‖ log θ‖∞ <∞

2. supθ∈Θ

∑∞
h=−∞ |h|(EθXhX0)

2 <∞

MAIN RESULT HOLDS WITH

• dn: L2-norm, d̄n: supremum-norm,

• Bn(θ0, ε; 2): L2-ball.



Ergodic diffusions

Data (Xt: 0 ≤ t ≤ n) for X solution to dXt = θ(Xt) dt+ σ(Xt) dBt, where
B is Brownian motion.

Assume

1. stationary ergodic, state space I,

2. stationary measure µθ0
.

MAIN RESULT HOLDS WITH

• d(θ, θ′) = ‖(θ − θ′)1J/σ‖µθ0
,2 J ⊂ I

• d̄(θ, θ′) = ‖(θ − θ′)/σ‖µθ0
,2

• B(θ0, ε; 2) ‖ · /σ‖µθ0
,2-ball



Gaussian process priors

End Lecture 1

Lecture 2 (Thursday): Gaussian priors
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