
Frequentist properties of Bayesian
procedures

for infinite-dimensional parameters

Aad van der Vaart
Vrije Universiteit Amsterdam

Forum Lectures
European Meeting of Statisticians

Toulouse, 2009



Contents

LECTURE II: GAUSSIAN PROCESS PRIORS

Recap: frequentist Bayesian theory

Examples

Rescaling

Adaptation

General formulation of rates

Examples of settings

Reproducing kernel Hilbert space

Proof ingredients



Co-author

Harry van Zanten



Recap: frequentist Bayesian theory



Frequentist Bayesian

Given a collection of densities {pw:w ∈ W} indexed by a parameter w,
and a prior Π on W , the posterior is defined by

dΠ(w|X) ∝ pw(X) dΠ(w).
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Frequentist Bayesian

Given a collection of densities {pw:w ∈ W} indexed by a parameter w,
and a prior Π on W , the posterior is defined by

dΠ(w|X) ∝ pw(X) dΠ(w).

Assume that the data X is generated according to a given parameter w0

and consider the posterior Π(w ∈ ·|X) as a random measure on the
parameter set W .

We like the posterior to put “most” of its mass near w0 for “most” X.

Asymptotic setting: data Xn where the information increases as n→ ∞.
Three desirable properties:

• Contraction to {w0} at a fast rate

• Adaptation

• (Distributional convergence)



Rate of contraction

Assume Xn is generated according to a given parameter w0 where the
information increases as n→ ∞.

• Posterior is consistent if Ew0
Πn

(

w: d(w,w0) < ε|Xn
)

→ 1 for every
ε > 0.

• Posterior contracts at rate at least εn if
Ew0

Πn

(

w: d(w,w0) < εn|Xn
)

→ 1.



Adaptation

To a given class of parameters is attached an optimal rate of convergence
defined by the minimax criterion.

We like the posterior to contract at this rate.

Given a scale of regularity classes, indexed by a parameter α, we like the
posterior to adapt: if the true parameter has regularity α, then we like the
contraction rate to be the minimax rate for the α-class.



Adaptation

To a given class of parameters is attached an optimal rate of convergence
defined by the minimax criterion.

We like the posterior to contract at this rate.

Given a scale of regularity classes, indexed by a parameter α, we like the
posterior to adapt: if the true parameter has regularity α, then we like the
contraction rate to be the minimax rate for the α-class.

For instance, in typical examples n−α/(2α+d) if w0 is a function of d
arguments with partial derivatives of order α bounded by a constant.



General findings

If w is infinite-dimensional the prior is important.

• The posterior may be inconsistent.

• The rate of contraction often depends on the prior.

• For estimating a functional the prior is less critical, but still plays a
role.

The prior does not (completely) wash out as n→ ∞.



Examples



Gaussian process

The law of a stochastic process (Wt: t ∈ T ) is a prior distribution on the
space of functions w:T → R.

Gaussian processes have been found useful, because

• they offer great variety;

• they have a general index set T ;

• they are easy (?) to understand through their covariance function

(s, t) 7→ EWsWt;

• they can be computationally attractive .



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 e

Wy dy
.

[Leonard, Lenk, Tokdar & Ghosh]



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 e

Wy dy
.
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Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.



Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.

• This is optimal if and only if α = 1/2.

• Rate does not improve if α increases from 1/2.

• Consistency for any α > 0.

(The same result is true for w0 a regression or classification function.)
[vZanten, Castillo (2008)].



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 e

Wy dy
.
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Integrated Brownian motion

0 1 2 3 4 5
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0, 1, 2, 3 and 4 times integrated Brownian motion



Integrated Brownian motion: Riemann-Liouville process

(α− 1/2)-times integrated Brownian motion, released at 0

Wt =

∫ t

0
(t− s)α−1/2 dBs +

[α]+1
∑

k=0

Zkt
k.

[B Brownian motion, α > 0, (Zk) iid N(0, 1), “fractional integral”]

THEOREM
IBM gives appropriate model for α-smooth functions: consistency for any
true smoothness β > 0, but the optimal n−β/(2β+1) if and only if α = β.



Integrated Brownian motion — spline smoothing

Consider nonparametric regression Yi = w(xi) + ei with Gaussian errors,
and prior

Wt =
√
b

∫ t

0
(t− s)k dBs +

√
a

k
∑

j=0

Zjt
j .

THEOREM [Kimeldorf & Wahba (1970s)]
If a→ ∞ and b, n are fixed, then the posterior mean tends to the
minimizer of

w 7→ 1

n

n
∑

i=1

(

Yi − w(xi)
)2

+
1

nb

∫ 1

0
w(k)(t)2 dt.

If w0 ∈ Ck[0, 1] and b ∼ n−1/(2k+1), then the penalized least squares
estimator is rate optimal.



Brownian sheet

Brownian sheet (Wt: t ∈ [0, 1]d) has covariance function

cov(Ws,Wt) = (s1 ∧ t1) · · · (sd ∧ td).

BS gives rates of the order

n−1/4(logn)(2d−1)/4

for sufficiently smooth w0 (α ≥ d/2).



Fractional Brownian motion

W zero-mean Gaussian with (Hurst index 0 < α < 1)

cov(Ws,Wt) = s2α + t2α − |t− s|2α.

fBM is appropriate model for α-smooth functions. Integrate to cover α > 1.
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Series priors

Given a basis e1, e2, . . . put a Gaussian prior on the coefficients (θ1, θ2, . . .)
in an expansion

θ =
∑

i

θiei.

For instance: θ1, θ2, . . . independent with θi ∼ N(0, σ2
i ).

Appropriate decay of σi gives proper model for α-smooth functions.



Series priors — wavelets

For a wavelet basis (ψj,k) with good approximation properties for
Bβ

∞,∞[0, 1]d, and Zj,k iid standard normal variables,

W =

Jα
∑

j=1

2jd
∑

k=1

2−jc 2jd/2Zj,kψj,k, 2Jαd = nd/(2α+d).

THEOREM
If w0 ∈ Bβ

∞,∞[0, 1]d, the rate is

εn =























n−β/(2α+d) logn if c ≤ β ≤ α,

n−α/(2α+d) logn if c ≤ α ≤ β,

n−c/(2c+d)(logn)d/(2c+d) if α ≤ c ≤ β,

n−β/(2c+d)(logn)d/(2c+d) if α ≤ β ≤ c.

In particular, equal prior weight to all levels (c = 0) gives the optimal
weight if β = α (c = β is better).



Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws,Wt) =

∫

eiλT (s−t) dµ(λ).

Smoothness of t 7→Wt is controlled by the tails of µ. For instance,
exponentially small tails give infinitely smooth sample paths; Matérn gives
α-regular functions.
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Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws,Wt) =

∫

eiλT (s−t) dµ(λ).

Smoothness of t 7→Wt is controlled by the tails of µ. For instance,
exponentially small tails give infinitely smooth sample paths; Matérn gives
α-regular functions.

THEOREM If
∫

e‖λ‖|ŵ0(λ)|2 dλ <∞, then the Gaussian spectral
measure gives a near 1/

√
n-rate of contraction; it gives consistency but

suboptimal rates for Hölder smooth functions.

Conjecture: Matérn gives good results for Sobolev spaces.



Rescaling



Stretching or shrinking

Sample paths can be smoothed by stretching
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Stretching or shrinking

Sample paths can be smoothed by stretching
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Rescaled Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!.)
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Appropriate rescaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].



Rescaled Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!.)

Appropriate rescaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].

For α = k we find the optimal bandwidth for penalized regression as in
Kimeldorf and Wahba.



Rescaled smooth stationary process

A Gaussian field with infinitely-smooth sample paths is obtained with

EGsGt = ψ(s− t),

∫

e‖λ‖ψ̂(λ) dλ <∞.

THEOREM
The prior Wt = Gt/cn

for cn ∼ n−1/(2α+d) gives nearly optimal rate for
w0 ∈ Cα[0, 1], any α > 0.



Messages

• Scaling changes the properties of the prior and hence hyper
parameters are important.

A smooth prior process can be scaled to achieve any desired level of
“prior roughness”, but a rough process cannot be smoothed much and will
necessarily impose its roughness on the data.



Adaptation



Hierarchical priors

For each α > 0 there are several priors Πα (Riemann-Liouville, Fractional,
Series, Matern, rescaled processes,...) that are appropriate for estimating
α-smooth functions.

We can combine them into a mixture prior:

• Put a prior weight dρ(α) on α.

• Given α use an optimal prior Πα for that α.

This works (nearly), provided ρ is chosen with some (but not much) care.

The weights dρ(α) ∝ e−nε2
n,α dα always work.

[Lember, Szabo]



Adaptation by rescaling

• Choose Ad from a Gamma distribution.

• Choose (Gt: t > 0) centered Gaussian with
EGsGt = exp

(

−‖s− t‖2
)

.

• Set Wt ∼ GAt.

THEOREM

• if w0 ∈ Cα[0, 1]d, then the rate of contraction is nearly n−α/(2α+d).

• if w0 is supersmooth, then the rate is nearly n−1/2.

Reverend Thomas solved the bandwidth problem!?



Adaptation by rescaling (2)

Gaussian regression with Brownian motion rescaled by a Gamma
variable.
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Conjecture: this (nearly) gives the optimal rate n−α/(2α+1) if true
regression function is in Cα[0, 1] for α ∈ (0, 1].
Integrating BM extends this to higher α.



General formulation of rates



Two ingredients

Two ingredients:

• RKHS

• Small ball exponent



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.
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To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
If W is multivariate normal Nd(0,Σ), then the RKHS is R

d with norm

‖h‖H =
√
htΣ−1h



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
Brownian motion is a random element in C[0, 1].
Its RKHS is H = {h:

∫

h′(t)2 dt <∞} with norm ‖h‖H = ‖h′‖2.



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).

EXAMPLE
For Brownian motion φ0(ε) � (1/ε)2 as ε ↓ 0.
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Small ball probability

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.



Small ball probability

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.

N(ε,B, d) = # ε-balls

THEOREM [Kuelbs & Li 93]
For H1 the unit ball of the RKHS (up to constants),

φ0(ε) � logN
( ε

√

φ0(ε)
,H1, ‖ · ‖

)

.

There is a big literature on small ball probabilities. (In July 2009 243
entries in database maintained by Michael Lifshits.)



Basic rate result

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.

• Both inequalities give lower bound on εn.

• The first depends on W and not on w0.

• If w0 ∈ H, then second inequality is satisfied.



Example — Brownian motion

W one-dimensional Brownian motion on [0, 1].

• RKHS H = {h:
∫

h′(t)2 dt <∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) . (1/ε)2.

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h′‖2
2 .

(1

ε

)(2−2α)/α
.



Example — Brownian motion

W one-dimensional Brownian motion on [0, 1].

• RKHS H = {h:
∫

h′(t)2 dt <∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) . (1/ε)2.

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h′‖2
2 .

(1

ε

)(2−2α)/α
.

CONSEQUENCE:
Rate is εn if (1/εn)2 ≤ nε2n AND (1/εn)(2−2α)/α ≤ nε2n.

• First implies εn ≥ n−1/4 for any w0.

• Second implies εn ≥ n−α/2 for w0 ∈ Cα[0, 1].



Examples of settings



Basic rate result

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.



Density estimation

Data X1, . . . , Xn iid from density on [0, 1],

pw(x) =
ewx

∫ 1
0 e

wt dt
.

• Distance on parameter: Hellinger on pw.

• Norm on W : uniform.



Density estimation

Data X1, . . . , Xn iid from density on [0, 1],

pw(x) =
ewx

∫ 1
0 e

wt dt
.

• Distance on parameter: Hellinger on pw.

• Norm on W : uniform.

LEMMA ∀v, w

• h(pv, pw) ≤ ‖v − w‖∞ e‖v−w‖∞/2.

• K(pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞).

• V (pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞)2.



Classification

Data (X1, Y1), . . . , (Xn, Yn) iid in [0, 1] × {0, 1}

Pw(Y = 1|X = x) = Ψ(wx),

for Ψ the logistic or probit link function.

• Distance on parameter: L2-norm on Ψ(w).

• Norm on W for logistic: L2(G), G marginal of Xi.

Norm on W for probit: combination of L2(G) and L4(G).



Regression

Data Y1, . . . , Yn, fixed design points x1, . . . , xn

Yi = w(xi) + ei,

for e1, . . . , en iid Gaussian mean-zero errors.

• Distance on parameter: empirical L2-distance on w.

• Norm on W : uniform.



Ergodic diffusions

Data (Xt: t ∈ [0, n])

dXt = w(Xt) dt+ σ(Xt) dBt.

Ergodic, recurrent on R, stationary measure µ0, “usual” conditions.

• Distance on parameter: random Hellinger hn.

• Norm on W : L2(µ0).

h2
n(w1, w2) =

∫ n

0

(w1(Xt) − w2(Xt)

σ(Xt)

)2
dt ≈ ‖(w1 − w2)/σ‖2

µ0,2.

[ van der Meulen & vZ & vdV, Panzar & vZ]



Reproducing kernel Hilbert space



Definition

For a zero-mean Gaussian W in Banach space (B, ‖ · ‖), define S: B∗ → B

by
Sb∗ = EWb∗(W ).

DEFINITION
The RKHS (H, ‖ · ‖H) is the completion of SB

∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W ).



Definition (2)

Let W = (Wx:x ∈ X ) be a Gaussian process with bounded sample paths
and covariance function

K(x, y) = EWxWy.

DEFINITION
The RKHS is the completion of the set of functions

x 7→
∑

i

αiK(yi, x),

relative to inner product
〈

∑

i

αiK(yi, ·),
∑

j

βjK(zj, ·)
〉

H

=
∑

i

∑

j

αiβjK(yi, zj).



Definition (3)

Any Gaussian random element in a separable Banach space can be
represented as

W =
∞

∑

i=1

µiZiei,
for • µi ↓ 0

• Z1, Z2, . . . iid N(0, 1)

• ‖e1‖ = ‖e2‖ = · · · = 1

The RKHS consists of all elements h: =
∑

i hiei with

‖h‖2
H
: =

∑

i

h2
i

µ2
i

<∞.



Useful properties

THEOREM
The RKHS of TW for a 1-1 operator T : B → B

′ between Banach spaces is
TH, and T : H → H

′ is an isometry.

EXAMPLE
The integration operator

Tαw(t) =

∫ t

0
(t− s)α−1w(s) ds

applied to Brownian motion gives the (α+ 1/2)-Riemann-Liouville process
TαW . Its RKHS is H = Tα+1(L2[0, 1]) with norm

‖Tα+1h‖H = ‖h‖2.



Useful properties

THEOREM
The RKHS of TW for a 1-1 operator T : B → B

′ between Banach spaces is
TH, and T : H → H

′ is an isometry.

THEOREM
The RKHS of the sum V +W of independent Gaussian variables is
H

V + H
W with norm

‖hV + hW ‖2
HV +W = ‖hV ‖2

HV + ‖hW ‖2
HW ,

whenever the supports of V and W have trivial intersection (and are
complemented).



Example — stationary processes

A stationary Gaussian process (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws,Wt) =

∫

eiλT (s−t) dµ(λ).

LEMMA
The RKHS of (Wt: t ∈ T ) is the set of real parts of the functions

t 7→
∫

eiλT tψ(λ) dµ(λ), ψ ∈ L2(µ),

with RKHS-norm equal to the infimum of ‖ψ‖2 over all ψ. If T has
nonempty interior and

∫

e‖λ‖ µ(dλ) <∞, then ψ is unique.
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cov(Ws,Wt) =

∫

eiλT (s−t) dµ(λ).

LEMMA
The RKHS of (Wt: t ∈ T ) is the set of real parts of the functions

t 7→
∫

eiλT tψ(λ) dµ(λ), ψ ∈ L2(µ),

with RKHS-norm equal to the infimum of ‖ψ‖2 over all ψ. If T has
nonempty interior and

∫

e‖λ‖ µ(dλ) <∞, then ψ is unique.

To compute rate must approximate w0 by an element of RKHS. If
dµ(λ) = m(λ)dλ, then

w0(t) =

∫

eitT λŵ0(λ) dλ =

∫

eitT λŵ0(λ)
1

m(λ)
dµ(λ).



Proof ingredients



Proof

Given that the relevant statistical distances translate into the Banach
space norm, it follows from general results that the posterior rate is εn if
there exist sets Bn such that

(1) logN(εn,Bn, d) ≤ nε2n and Πn(Bn) = 1 − o(e−3nε2
n). entropy.

(2) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n . prior mass.

The second condition actually implies the first.



Prior mass

W a Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H.



Prior mass

W a Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H.

THEOREM [Kuelbs & Li 93)]
Concentration function measures concentration around w0:

P(‖W − w0‖ < ε) � e−φw0
(ε).

up to factors 2



Complexity

RKHS gives the “geometry of the support of W ”.

THEOREM
The closure of H in B is support of the Gaussian measure (and hence
posterior inconsistent if ‖w0 − H‖ > 0).

THEOREM [Borell 75]
For H1 and B1 the unit balls of RKHS and B

P(W /∈MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) +M
)

.



Proof

Given that the relevant statistical distances translate into the Banach
space norm, it follows from general results that the posterior rate is εn if
there exist sets Bn such that

(1) logN(εn,Bn, d) ≤ nε2n and Πn(Bn) = 1 − o(e−3nε2
n). entropy.

(2) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n prior mass

Take Bn = MnH1 + εnB1 for appropriate Mn.



Conclusion



Conclusion

Bayesian inference with Gaussian processes is flexible and elegant.
However, priors must be chosen with some care: eye-balling pictures of
sample paths does not reveal the fine properties that matter for posterior
performance.
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