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Introduction



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a probability
density pθ.

This gives a joint distribution of (X, Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x: the posterior distribution.

dΠ(θ|X) ∝ pθ(X) dΠ(θ)
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The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n − X + 1).

dΠn(θ|X) ∝
(

n

X

)

θX(1 − θ)n−X · 1.
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space.
So is the posterior, given the data. Bayes’ formula does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).
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If the parameter θ is a function, then the prior is a probability distribution
on an function space.
So is the posterior, given the data. Bayes’ formula does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space.
So is the posterior, given the data. Bayes’ formula does not change:
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Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0

and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set.
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We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0

and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

Asymptotic setting: data Xn where the information increases as n → ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.



Rate of contraction

Assume Xn is generated according to a given parameter θ0 where the
information increases as n → ∞.

• Posterior is consistent if, for every ε > 0,
Eθ0

Π
(

θ: d(θ, θ0) < ε|Xn
)

→ 1.

• Posterior contracts at rate at least εn if
Eθ0

Π
(

θ: d(θ, θ0) < εn|Xn
)

→ 1.

Basic results on consistency were proved by Doob (1948) and Schwarz
(1965). Interest in rates is recent.



Minimaxity

To a given model Θ is attached an optimal rate of convergence defined by
the minimax criterion

εn = inf
T

sup
θ∈Θ

Eθd
(

T (X), θ
)

.

This criterion has nothing to do with Bayes.
A prior is good if the posterior contracts at this rate. (?)



Adaptation

A model can be viewed as an instrument to test quality.

It makes sense to use a collection (Θα: α ∈ A) of models simultaneously,
e.g. a “scale” of regularity classes.

A posterior is good if it adapts: if the true parameter belongs to Θα, then
the contraction rate is at least the minimax rate for this model.



Bayesian perspective

Any prior (and hence posterior) is appropriate per se.

In complex situations subject knowledge can be and must be incorporated
in the prior.

Computational ease is important for prior choice as well.

Frequentist properties reveal key properties of priors of interest.



Abstract result



Entropy

The covering number N(ε, Θ, d) of a metric space (Θ, d) is the minimal
number of balls of radius ε needed to cover Θ.

ε big ε small

Entropy is its logarithm: log N(ε, Θ, d).



Rate theorem — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM [Ghosal+Ghosh+vdV, 2000]
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) log N(εn,Pn, h) ≤ nε2
n and Π(Pn) = 1 − o(e−3nε2

n). entropy.

(2) Π
(

BKL(p0, εn)
)

≥ e−nε2
n . prior mass.

h is the Hellinger distance : h2(p, q) =
∫

(
√

p −√
q)2 dµ.

BKL(p0, ε) is a Kullback-Leibler neighborhood of p0.



Rate theorem — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM [Ghosal+Ghosh+vdV, 2000]
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) log N(εn,Pn, h) ≤ nε2
n and Π(Pn) = 1 − o(e−3nε2

n). entropy.

(2) Π
(

BKL(p0, εn)
)

≥ e−nε2
n . prior mass.

The entropy condition ensures that the likelihood is not too variable, so
that it cannot be large at a wrong place by pure randomness.
Le Cam (1964) showed that it gives the minimax rate.



Rate theorem — general

Given data Xn following a model (Pn
θ : θ ∈ Θ) that satisfies Le Cam’s

testing criterion, and a prior Π, form posterior

dΠn(θ|Xn) ∝ pn
θ (Xn) dΠ(θ).

THEOREM
The rate of contraction is εn � 1/

√
n if there exist Θn ⊂ Θ such that

(1) Dn(εn, Θn, dn) ≤ nε2
n and Πn(Θ − Θn) = o(e−3nε2

n).

(2) Πn

(

Bn(θ0, εn; k)
)

≥ e−nε2
n .

Bn(θ0, ε; k) is Kullback-Leibler type neighbourhood of pn
θ0

.



Rate theorem — general

Given data Xn following a model (Pn
θ : θ ∈ Θ) that satisfies Le Cam’s

testing criterion, and a prior Π, form posterior

dΠn(θ|Xn) ∝ pn
θ (Xn) dΠ(θ).

THEOREM
The rate of contraction is εn � 1/

√
n if there exist Θn ⊂ Θ such that

(1) Dn(εn, Θn, dn) ≤ nε2
n and Πn(Θ − Θn) = o(e−3nε2

n).

(2) Πn

(

Bn(θ0, εn; k)
)

≥ e−nε2
n .

The theorem can be refined in various ways.



Le Cam’s testing criterion

Statistical model (Pn
θ : θ ∈ Θ) indexed by metric space (Θ, d).

For all ε > 0: for all θ1 with d(θ1, θ0) > ε ∃ test φn with

Pn
θ0

φn ≤ e−nε2

, sup
θ∈Θ:d(θ,θ1)<ε/2

Pn
θ (1 − φn) ≤ e−nε2

. ..

θ0

θ1

> ε
radius ε/2

This applies to independent data, Markov chains, Gaussian time series,
ergodic diffusions, . . ..



Adaptation by hierarchical prior — i.i.d.

• Pn,α collection of densities with prior Πn,α, for α ∈ A.

• Prior “weights” λn = (λn,α: α ∈ A).

• Πn =
∑

α∈A λn,αΠn,α.

THEOREM
The Hellinger contraction rate is εn,β if the prior weights satisfies (*) below
and

(1) log N
(

εn,α,Pn,α, h
)

≤ nε2
n,α, every α ∈ A.

(2) Πn,β

(

Bn,β(p0, εn,β)
)

≥ e−nε2

n,β .

Bn,α(p0, ε) is Kullback-Leibler type neighbourhood of p0 within Pn,α.



Condition (*) on prior weights (simplified)

∑

α<β

√

λn,α

λn,β
e−nε2

n,α +
∑

α>β

√

λn,α

λn,β
≤ enε2

n,β ,

∑

α<β

λn,α

λn,β
Πn,α

(

Cn,α(p0, εn,α)
)

≤ e−4nε2

n,β .

α < β means εn,α & εn,β.
Cn,α(p0, ε) is Hellinger ball of radius ε around p0 in Pn,α.



Condition (*) on prior weights (simplified)

∑

α<β

√

λn,α

λn,β
e−nε2

n,α +
∑

α>β

√

λn,α

λn,β
≤ enε2

n,β ,

∑

α<β

λn,α

λn,β
Πn,α

(

Cn,α(p0, εn,α)
)

≤ e−4nε2

n,β .

α < β means εn,α & εn,β.
Cn,α(p0, ε) is Hellinger ball of radius ε around p0 in Pn,α.

In many situations there is much freedom in choice of weights.

The weights λn,α ∝ µαe−Cnε2
n,α always work.



Model selection

THEOREM
Under the conditions of the theorem

Πn

(

α: α < β|X1, · · · , Xn

)

P→ 0,

Πn

(

α: α & β, h(Pn,α, p0) & εn,β|X1, · · · , Xn

)

P→ 0.

Too “big” models do not get posterior weight. Neither do “small” models
that are “far” from the truth.



Examples of priors

• Dirichlet mixtures of normals.

• Discrete priors.

• Mixtures of betas.

• Series priors (splines, Fourier, wavelets, ...).

• Independent increment process priors.

• Sparse priors.

• ....

• ....

• Gaussian process priors.



Gaussian process priors



Gaussian process

The law of a stochastic process W = (Wt: t ∈ T ) is a prior distribution on
the space of functions w: T → R.

Gaussian processes have been found useful, because of their variety and
because of computational properties.

Every Gaussian prior is reasonable in some way. We shall study
performance with “smoothness” classes as test case.



Example: Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 eWy dy

.

[Leonard, Lenk, Tokdar & Ghosh]
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.
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Integrated Brownian motion
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0, 1, 2 and 3 times integrated Brownian motion



Stationary processes
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Other Gaussian processes

Brownian sheet
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Rates for Gaussian priors

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.
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• Both inequalities give lower bound on εn.
• The first depends on W and not on w0.
• If w0 ∈ H, then second inequality is satisfied for εn & 1/

√
n.
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Settings

Density estimation
X1, . . . , Xn iid in [0, 1],

pw(x) =
ewx

∫

1

0
ewt dt

.

• Distance on parameter: Hellinger on
pw.

• Norm on W : uniform.

Classification
(X1, Y1), . . . , (Xn, Yn) iid in [0, 1] × {0, 1}

Pw(Y = 1|X = x) =
1

1 + e−wx

.

• Distance on parameter: L2(G) on
Pw. (G marginal of Xi.)

• Norm on W : L2(G).

Regression
Y1, . . . , Yn independent N(w(xi), σ

2), for
fixed design points x1, . . . , xn.

• Distance on parameter: empirical
L2-distance on w.

• Norm on W : empirical L2-distance.

Ergodic diffusions
(Xt: t ∈ [0, n]), ergodic, recurrent:

dXt = w(Xt) dt + σ(Xt) dBt.

• Distance on parameter: random
Hellinger hn (≈ ‖ · /σ‖µ0,2).

• Norm on W : L2(µ0).
(µ0 stationary measure.)



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

DEFINITION
For S: B∗ → B defined by

Sb∗ = EWb∗(W ),

the RKHS is the completion of SB
∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W ).



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

DEFINITION
For a process W = (Wx: x ∈ X ) with bounded sample paths and
covariance function K(x, y) = EWxWy, the RKHS is the completion of the
set of functions

x 7→
∑

i

αiK(yi, x),

under
〈

∑

i

αiK(yi, ·),
∑

j

βjK(zj, ·)
〉

H

=
∑

i

∑

j

αiβjK(yi, zj).



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
If W is multivariate normal Nd(0, Σ), then the RKHS is R

d with norm

‖h‖H =
√

htΣ−1h



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
Any W can be represented as

W =
∞

∑

i=1

µiZiei,

for numbers µi ↓ 0, iid standard normal Z1, Z2, . . ., and e1, e2, . . . ∈ B with
‖e1‖ = ‖e2‖ = · · · = 1. The RKHS consists of all h: =

∑

i hiei with

‖h‖2
H
: =

∑

i

h2
i

µ2
i

< ∞.



Reproducing kernel Hilbert space

To every Gaussian random element with values in a Banach space
(B, ‖ · ‖) is attached a certain Hilbert space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
Brownian motion is a random element in C[0, 1].
Its RKHS is H = {h:

∫

h′(t)2 dt < ∞} with norm ‖h‖H = ‖h′‖2.



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent φ0(ε) is minus the logarithm of this.

0.0 0.2 0.4 0.6 0.8 1.0

−1.
0

−0.
8

−0.
6

−0.
4

−0.
2

0.0
0.2

small ball for uniform norm



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent φ0(ε) is minus the logarithm of this.

It can be computed either by probabilistic arguments, or analytically from
the RKHS.

THEOREM [Kuelbs & Li (93)]
For H1 the unit ball of the RKHS (up to constants),

φ0(ε) � log N
( ε

√

φ0(ε)
, H1, ‖ · ‖

)

.

There is a big literature. (In July 2009 243 entries in database maintained
by Michael Lifshits.)



Rates for Gaussian priors — proof

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.



Rates for Gaussian priors — proof

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.

PROOF
The posterior rate is εn if there exist sets Bn such that

(1) log N(εn, Bn, d) ≤ nε2
n and P(W ∈ Bn) = 1− o(e−3nε2

n). entropy.

(2) P
(

‖W − w0‖ < εn

)

≥ e−nε2
n . prior mass.
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If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.

PROOF
The posterior rate is εn if there exist sets Bn such that

(1) log N(εn, Bn, d) ≤ nε2
n and P(W ∈ Bn) = 1− o(e−3nε2

n). entropy.

(2) P
(

‖W − w0‖ < εn

)

≥ e−nε2
n . prior mass.

Take Bn = MnH1 + εnB1 for large Mn (H1, B1 the unit balls of H, B).



Proof (2) — key results

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H
.

THEOREM [Kuelbs & Li (93)]
Concentration function measures concentration around w0 (up to factors
2):

P(‖W − w0‖ < ε) � e−φw0
(ε).

THEOREM [Borell (75)]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) + M
)

.



(Integrated) Brownian Motion

THEOREM
If w0 ∈ Cβ[0, 1], then the rate for Brownian motion is: n−1/4 if β ≥ 1/2;

n−β/2 if β ≤ 1/2.

The small ball exponent of Brownian motion is φ0(ε) � (1/ε)2 as ε ↓ 0.
This gives the n−1/4-rate, even for very smooth truths.

Truths with β ≤ 1/2 are “far from” the RKHS, giving the rate n−β/2.

The minimax rate is attained iff β = 1/2.



(Integrated) Brownian Motion

THEOREM
If w0 ∈ Cβ[0, 1], then the rate for Brownian motion is: n−1/4 if β ≥ 1/2;

n−β/2 if β ≤ 1/2.

The small ball exponent of Brownian motion is φ0(ε) � (1/ε)2 as ε ↓ 0.
This gives the n−1/4-rate, even for very smooth truths.

Truths with β ≤ 1/2 are “far from” the RKHS, giving the rate n−β/2.

The minimax rate is attained iff β = 1/2.

THEOREM
If w0 ∈ Cβ[0, 1], then the rate for (α − 1/2)-times integrated Brownian is
n−(β∧α)/(2α+d) .

The minimax rate is attained iff β = α.



Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws, Wt) =

∫

eiλT (s−t) dµ(λ).
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A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws, Wt) =

∫

eiλT (s−t) dµ(λ).

THEOREM
Suppose that µ is Gaussian. Let ŵ0 be the Fourier transform of
w0: [0, 1]d → R.

• If
∫

e‖λ‖|ŵ0(λ)|2 dλ < ∞, then rate of contraction is near 1/
√

n.

• If
∫

(1 + ‖λ‖2)β|ŵ0(λ)|2 dλ < ∞, then rate is (1/ log n)κβ .



Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws, Wt) =

∫

eiλT (s−t) dµ(λ).

THEOREM
Suppose that µ is Gaussian. Let ŵ0 be the Fourier transform of
w0: [0, 1]d → R.

• If
∫

e‖λ‖|ŵ0(λ)|2 dλ < ∞, then rate of contraction is near 1/
√

n.

• If
∫

(1 + ‖λ‖2)β|ŵ0(λ)|2 dλ < ∞, then rate is (1/ log n)κβ .

THEOREM
Suppose that dµ(λ) = (1 + ‖λ‖2)−(α−d/2) dλ.

• If w0 ∈ Cβ[0, 1]d, then rate of contraction is n−(α∧β)/(2α+d).



Adaptation

Every Gaussian prior is good for some regularity class, but may be very
bad for another.

This can be alleviated by putting a prior on the regularity of the process.

An alternative, more attractive approach is scaling.



Stretching or shrinking

Sample paths can be smoothed by stretching
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Sample paths can be smoothed by stretching
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Scaled (integrated) Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].
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THEOREM
Appropriate scaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].



Scaled (integrated) Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].

THEOREM
Appropriate scaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].

Stretching helps a little, shrinking helps a lot.



Scaled smooth stationary process

A Gaussian field with infinitely-smooth sample paths is obtained for

EGsGt = exp(−‖s − t‖2).

THEOREM
The prior Wt = Gt/cn

for cn ∼ n−1/(2α+d) gives nearly optimal rate for
w0 ∈ Cα[0, 1], any α > 0.



Adaptation by random scaling

• Choose Ad from a Gamma distribution.

• Choose (Gt: t > 0) centered Gaussian with
EGsGt = exp

(

−‖s − t‖2
)

.

• Set Wt ∼ GAt.

THEOREM

• if w0 ∈ Cα[0, 1]d, then the rate of contraction is nearly n−α/(2α+d).

• if w0 is supersmooth, then the rate is nearly n−1/2.



Adaptation by random scaling

• Choose Ad from a Gamma distribution.

• Choose (Gt: t > 0) centered Gaussian with
EGsGt = exp

(

−‖s − t‖2
)

.

• Set Wt ∼ GAt.

THEOREM

• if w0 ∈ Cα[0, 1]d, then the rate of contraction is nearly n−α/(2α+d).

• if w0 is supersmooth, then the rate is nearly n−1/2.

The first result is also true for randomly scaled k-times integrated
Brownian motion and α ≤ k + 1.



Conclusion



Conclusion and final remark

There exist natural (fixed) priors that yield fully automatic smoothing at the
“correct” bandwidth. (For instance, randomly scaled Gaussian processes.)



Conclusion and final remark

There exist natural (fixed) priors that yield fully automatic smoothing at the
“correct” bandwidth. (For instance, randomly scaled Gaussian processes.)

Similar statements are true for adaptation to the scale of models
described by sparsity (research in progress).
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