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PART I: Generalities



Bayesian inference



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a density pθ.

This gives a joint distribution of (X, Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution.

dΠ(θ|X) ∝ pθ(X) dΠ(θ)
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n − X + 1).
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dΠn(θ|X) ∝
(

n

X

)

θX(1 − θ)n−X · 1.
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).
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If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

prior



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

prior 3x



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

posterior



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

posterior 11x



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

posterior mean



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
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Computation

Analytical computation of a posterior is rarely possible, but clever
algorithms allow to simulate from it (MCMC, ...), or compute the centre
and spread (expectation propagation, Laplace expansion, ...).

Most research has focused on these algoritms.

In this talk we consider the properties of the posterior.



Frequentist Bayesian theory



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0

and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0

and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

Asymptotic setting: data Xn where the information increases as n → ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.

Two desirable properties:

• Consistency + rate

• Adaptation



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by θ ∈ R

d.

THEOREM [Bernstein, von Mises, ...]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Πn(·|X1, . . . , Xn) − Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0,

where θ̃n is any efficient estimator of θ.
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n) around θ0. The Bayesian credible interval is a standard

confidence interval.
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THEOREM [Bernstein, von Mises, ...]
Under Pn
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where θ̃n is any efficient estimator of θ.

The posterior distribution concentrates most of its mass on balls of radius
O(1/

√
n) around θ0. The Bayesian credible interval is a standard

confidence interval.

The prior washes out completely.

Similar results for nonregular models and non-iid data.



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by θ ∈ R

d. (DQM
with nonsingular Fisher information and existence of uniformly consistent
tests of θ0 versus {θ: ‖θ − θ0‖ > r} suffice.)

THEOREM [Bernstein, von Mises, Le Cam]
Under Pn

θ0
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∥
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where θ̃n is any efficient estimator of θ.



Nonparametric and semiparametric models

For infinite-dimensional parameters the situation is very different.



Nonparametric and semiparametric models

For infinite-dimensional parameters the situation is very different.

• Most priors are inconsistent. [Freedman and Diaconis (1980s)]

• The rate of contraction often depends on the prior.

• For estimating a functional the prior is less critical, but still plays a
role.

The prior does not (completely) wash out as n → ∞.



Rate of contraction

Assume Xn is generated according to a given parameter θ0 where the
information increases as n → ∞.

• Posterior is consistent if Eθ0
Π

(

θ: d(θ, θ0) < ε|Xn
)

→ 1 for every
ε > 0.

• Posterior contracts at rate at least εn if
Eθ0

Π
(

θ: d(θ, θ0) < εn|Xn
)

→ 1.

Basic results on consistency were proved by Doob (1948) and Schwarz
(1965). Interest in rates is recent.



Minimaxity and adaptation

To a given model Θα is attached an optimal rate of convergence defined
by the minimax criterion

εn,α = inf
T

sup
θ∈Θα

Eθd
(

T (X), θ
)

.

This criterion has nothing to do with Bayes. A prior is good if the posterior
contracts at this rate.
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Given a scale of regularity classes (Θα: α ∈ A), we like the posterior to
adapt: if the true parameter belongs to Θα, then we like the contraction
rate to be the minimax rate for the α-class.



Minimaxity and adaptation

To a given model Θα is attached an optimal rate of convergence defined
by the minimax criterion

εn,α = inf
T

sup
θ∈Θα

Eθd
(

T (X), θ
)

.

This criterion has nothing to do with Bayes. A prior is good if the posterior
contracts at this rate.

Given a scale of regularity classes (Θα: α ∈ A), we like the posterior to
adapt: if the true parameter belongs to Θα, then we like the contraction
rate to be the minimax rate for the α-class.

For instance, in typical examples n−α/(2α+d) if Θα is a set of functions of d
arguments with partial derivatives of order α bounded by a constant (i.e.
regularity α/d).



Rates



Entropy

The covering number N(ε, Θ, d) of a metric space (Θ, d) is the minimal
number of balls of radius ε needed to cover Θ.

ε big ε small

Entropy is the logarithm log N(ε, Θ, d).



Rate — iid observations

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) log N(εn,Pn, h) ≤ nε2
n and Π(Pn) = 1 − o(e−3nε2

n). entropy.

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

h is the Hellinger distance : h2(p, q) =
∫

(
√

p −√
q)2 dµ.

BKL(p0, ε) is a Kullback-Leibler neighborhood of p0.
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Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏
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The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) log N(εn,Pn, h) ≤ nε2
n and Π(Pn) = 1 − o(e−3nε2

n). entropy.

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

We need N(εn,Pn, h) ≈ enε2
n balls to cover the model. If the mass is

uniformly spread, then every ball has mass

1

N(εn,Pn, h)
≈ e−nε2

n .
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on the subject [...] However it is awfully long, and minor corrections would
make it easier to read. (Anonymous referee of Ghosal, Ghosh, vdVaart
(2000).)
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Entropy

Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a
set P of densities consider the posterior

dΠn(p|X1, . . . , Xn) ∝
n

∏

i=1

p(Xi) dΠ(p).

THEOREM
The Hellinger contraction rate is εn if there exist Pn ⊂ P such that

(1) log N(εn,Pn, h) ≤ nε2
n and Π(Pn) = 1 − o(e−3nε2

n). entropy.

(2) Π(BKL(p0, εn)) ≥ e−nε2
n . prior mass.

The entropy condition ensures that the likelihood is not too variable, so
that it cannot be large by pure randomness.

Its root is in the testing condition of Le Cam (1964).



Le Cam’s testing criterion

Data Xn following statistical model (Pn
θ : θ ∈ Θn), metric space (Θn, dn).

Assume for all e > 0: for all θ1 with dn(θ1, θ0) > ε ∃ test φn with

Pn
θ0

φn ≤ e−nε2

, sup
θ∈Θn:d̄n(θ,θ1)<ε/2

Pn
θ (1 − φn) ≤ e−nε2

. ..

θ0

θ1

> ε
radius ε/2



Le Cam’s testing criterion

Data Xn following statistical model (Pn
θ : θ ∈ Θn), metric space (Θn, dn).

Assume for all e > 0: for all θ1 with dn(θ1, θ0) > ε ∃ test φn with

Pn
θ0

φn ≤ e−nε2

, sup
θ∈Θn:d̄n(θ,θ1)<ε/2

Pn
θ (1 − φn) ≤ e−nε2

. ..

θ0

θ1

> ε
radius ε/2

THEOREM [Le Cam (73,75,86), Birgé (83,06)]
There exist estimators θ̂n with dn(θ̂n, θ0) = OP (εn) if

log N(εn, Θn, dn) ≤ nε2
n.



Le Cam dimension = local entropy

Instead of entropy log N(ε, Θn, dn)



Le Cam dimension = local entropy

Instead of entropy log N(ε, Θn, dn)

we can use Le Cam dimension:

Dn(ε, Θ, dn) = sup
η>ε

log N
(η

2
,
{

θ ∈ Θn: dn(θ, θ0) ≤ η
}

, dn

)

.



Rate theorem — general

Given data Xn following Pn
θ from a model (Pn

θ : θ ∈ Θn) that satisfies Le
Cam’s testing criterion, and a prior Π, form posterior

dΠn(θ|Xn) ∝ pn
θ (Xn) dΠ(θ).

THEOREM
The rate of contraction is εn � 1/

√
n if there exist Θ̃n ⊂ Θn such that

(1) Dn(εn, Θ̃n, dn) ≤ nε2
n and Πn(Θn − Θ̃n) = o(e−3nε2

n).

(2) Πn(Bn(θ0, εn; k)) ≥ e−nε2
n .

Bn(θ0, ε; k) is Kullback-Leibler neighbourhood of pn
θ0

.

The theorem can be refined in various ways. For instance, only relative
prior masses matter; a further trade-off between complexity and prior
mass is possible.



Settings

• iid observations (Hellinger).

• independent observations (root average square Hellinger).

• Markov chains (Hellinger transition density).

• Gaussian time series (L2-spectral density).

• ergodic diffusions (L2-drift/root diffusion).

• ...



Examples

• Dirichlet mixtures of normals.

• Discrete priors.

• Mixtures of betas.

• Series priors (splines, Fourier, wavelets, ...).

• Independent increment process priors.

• Sparse priors.

• ....

• ....

• Gaussian process priors.



PART II: Gaussian process priors



Examples



Gaussian process

The law of a stochastic process (Wt: t ∈ T ) is a prior distribution on the
space of functions w: T → R.

Gaussian processes have been found useful, because

• they offer great variety.

• they have a general index set T .

• they are easy (?) to understand through their covariance function

(s, t) 7→ EWsWt.

• they can be computationally attractive.



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 eWy dy

.

[Leonard, Lenk, Tokdar & Ghosh]



Brownian density estimation

For W Brownian motion use as prior on a density p on [0, 1]:

x 7→ eWx

∫ 1
0 eWy dy

.
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Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 eWy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.



Brownian density estimation

Let X1, . . . , Xn be iid p0 on [0, 1] and let W Brownian motion. Let the prior
be

x 7→ eWx

∫ 1
0 eWy dy

THEOREM
If w0: = log p0 ∈ Cα[0, 1], then L2-rate is: n−1/4 if α ≥ 1/2;

n−α/2 if α ≤ 1/2.

• This is optimal if and only if α = 1/2.

• Rate does not improve if α increases from 1/2.

• Consistency for any α > 0.

(Lower bound: Castillo (2008).)
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Integrated Brownian motion

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0, 1, 2 and 3 times integrated Brownian motion



Integrated Brownian motion: Riemann-Liouville process

(α − 1/2)-times integrated Brownian motion, released at 0

Wt =

∫ t

0
(t − s)α−1/2 dBs +

[α]+1
∑

k=0

Zkt
k.

[B Brownian motion, α > 0, (Zk) iid N(0, 1), “fractional integral”]

THEOREM
IBM gives appropriate model for α-smooth functions: consistency for any
true smoothness β > 0, but the optimal n−β/(2β+1) if and only if α = β.

(Kimeldorf & Wahba (1970s) showed that the posterior mean for this prior
on a regression function is (asymptotically) a regression spline.)



Brownian sheet

Brownian sheet (Wt: t ∈ [0, 1]d) has covariance function

cov(Ws, Wt) = (s1 ∧ t1) · · · (sd ∧ td).

BS gives rates of the order

n−1/4(log n)(2d−1)/4

for sufficiently smooth w0 (α ≥ d/2).



Fractional Brownian motion

W zero-mean Gaussian with (Hurst index 0 < α < 1)

cov(Ws, Wt) = s2α + t2α − |t − s|2α.

fBM is appropriate model for α-smooth functions. Integrate to cover α > 1.
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Series priors

Given a basis e1, e2, . . . put a Gaussian prior on the coefficients (θ1, θ2, . . .)
in an expansion

θ =
∑

i

θiei.

For instance: θ1, θ2, . . . independent with θi ∼ N(0, σ2
i ).

Appropriate decay of σi gives proper model for α-smooth functions.(E.g.
with wavelets put fixed, equal prior variance on levels up to usual
truncation level.)



Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws, Wt) =

∫

eiλT (s−t) dµ(λ).

Smoothness of t 7→ Wt is controlled by the tails of µ. For instance,
exponentially small tails give infinitely smooth sample paths; Matérn gives
α-regular functions.
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Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws, Wt) =

∫

eiλT (s−t) dµ(λ).

Smoothness of t 7→ Wt is controlled by the tails of µ. For instance,
exponentially small tails give infinitely smooth sample paths; Matérn gives
α-regular functions.

THEOREM If
∫

e‖λ‖|ŵ0(λ)|2 dλ < ∞, then the Gaussian spectral
measure gives a near 1/

√
n-rate of contraction; it gives consistency but

suboptimal rates for Hölder smooth functions.

Conjecture: Matérn gives good results for Sobolev spaces.



Rescaling



Stretching or shrinking

Sample paths can be smoothed by stretching
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Stretching or shrinking

Sample paths can be smoothed by stretching
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and roughened by shrinking

0 1 2 3 4 5

−4
−2

0
2

4



Rescaled Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!.)



Rescaled Brownian motion

Wt = Bt/cn
for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink).

• α ∈ (1/2, 1]: cn → ∞ (stretch).

THEOREM
The prior Wt = Bt/cn

gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!.)

Appropriate rescaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].



Rescaled smooth stationary process

A Gaussian field with infinitely-smooth sample paths is obtained for

EGsGt = exp(−‖s − t‖2).

THEOREM
The prior Wt = Gt/cn

for cn ∼ n−1/(2α+d) gives nearly optimal rate for
w0 ∈ Cα[0, 1], any α > 0.



Messages

• Scaling changes the properties of the prior.

• Hyper parameters are important.

A smooth prior process can be scaled to achieve any desired level of
“prior roughness”, but a rough process cannot be smoothed much and will
necessarily impose its roughness on the data.



Adaptation



Hierarchical priors

For each α > 0 there are several priors Πα (Riemann-Liouville, Fractional,
Series, Matérn, rescaled processes,...) that are appropriate for estimating
α-smooth functions.

We can combine them into a mixture prior:

• Put a prior weight dρ(α) on α.

• Given α use an optimal prior Πα for that α.

This works (nearly), provided ρ is chosen with some (but not much) care.

The weights dρ(α) ∝ e−nε2
n,α dα always work.

[Lember, Szabo]



Adaptation by rescaling

• Choose Ad from a Gamma distribution.

• Choose (Gt: t > 0) centered Gaussian with
EGsGt = exp

(

−‖s − t‖2
)

.

• Set Wt ∼ GAt.

THEOREM

• if w0 ∈ Cα[0, 1]d, then the rate of contraction is nearly n−α/(2α+d).

• if w0 is supersmooth, then the rate is nearly n−1/2.

Reverend Thomas solved the bandwidth problem!?



General formulation of rates



Two ingredients

Two ingredients:

• RKHS

• Small ball exponent



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

DEFINITION
For S: B∗ → B defined by

Sb∗ = EWb∗(W ),

the RKHS is the completion of SB
∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W ).



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

DEFINITION
For a process W = (Wx: x ∈ X ) with bounded sample paths and
covariance function K(x, y) = EWxWy, the RKHS is the completion of the
set of functions

x 7→
∑

i

αiK(yi, x),

under
〈

∑

i

αiK(yi, ·),
∑

j

βjK(zj, ·)
〉

H

=
∑

i

∑

j

αiβjK(yi, zj).



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
If W is multivariate normal Nd(0, Σ), then the RKHS is R

d with norm

‖h‖H =
√

htΣ−1h



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
Any W can be represented as

W =
∞

∑

i=1

µiZiei,

for numbers µi ↓ 0, iid standard normal Z1, Z2, . . ., and e1, e2, . . . ∈ B with
‖e1‖ = ‖e2‖ = · · · = 1. The RKHS consists of all h: =

∑

i hiei with

‖h‖2
H
: =

∑

i

h2
i

µ2
i

< ∞.



Reproducing kernel Hilbert space

Think of the Gaussian process as a random element in a Banach space
(B, ‖ · ‖).

To every such Gaussian random element is attached a certain Hilbert
space (H, ‖ · ‖H), called the RKHS.

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B.

EXAMPLE
Brownian motion is a random element in C[0, 1].
Its RKHS is H = {h:

∫

h′(t)2 dt < ∞} with norm ‖h‖H = ‖h′‖2.



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).



Small ball probability

The small ball probability of a Gaussian random element W in (B, ‖ · ‖) is

P(‖W‖ < ε),

and the small ball exponent is

φ0(ε) = − log P(‖W‖ < ε).

EXAMPLE
For Brownian motion φ0(ε) � (1/ε)2 as ε ↓ 0.
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Small ball probability

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.



Small ball probability

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.

N(ε, B, d) = # ε-balls

THEOREM [Kuelbs & Li (93)]
For H1 the unit ball of the RKHS (up to constants),

φ0(ε) � log N
( ε

√

φ0(ε)
, H1, ‖ · ‖

)

.

There is a big literature on small ball probabilities. (In July 2009 243
entries in database maintained by Michael Lifshits.)



Rates for Gaussian priors

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε) = − log P(‖W‖ < ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.

• Both inequalities give lower bound on εn.

• The first depends on W and not on w0.

• If w0 ∈ H, then second inequality is satisfied.



Example — Brownian motion

W one-dimensional Brownian motion on [0, 1].

• RKHS H = {h:
∫

h′(t)2 dt < ∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) . (1/ε)2.

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h′‖2
2 .

(1

ε

)(2−2α)/α
.



Example — Brownian motion

W one-dimensional Brownian motion on [0, 1].

• RKHS H = {h:
∫

h′(t)2 dt < ∞}, ‖h‖H = ‖h′‖2.

• Small ball exponent φ0(ε) . (1/ε)2.

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h′‖2
2 .

(1

ε

)(2−2α)/α
.

CONSEQUENCE:
Rate is εn if (1/εn)2 ≤ nε2

n AND (1/εn)(2−2α)/α ≤ nε2
n.

• First implies εn ≥ n−1/4 for any w0.

• Second implies εn ≥ n−α/2 for w0 ∈ Cα[0, 1].



Examples of settings



Basic rate result

Prior W is Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

THEOREM
If statistical distances on the model combine appropriately with the norm
‖ · ‖ of B, then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H
≤ nεn

2.



Density estimation

Data X1, . . . , Xn iid from density on [0, 1],

pw(x) =
ewx

∫ 1
0 ewt dt

.

• Distance on parameter: Hellinger on pw.

• Norm on W : uniform.



Density estimation

Data X1, . . . , Xn iid from density on [0, 1],

pw(x) =
ewx

∫ 1
0 ewt dt

.

• Distance on parameter: Hellinger on pw.

• Norm on W : uniform.

LEMMA ∀v, w

• h(pv, pw) ≤ ‖v − w‖∞ e‖v−w‖∞/2.

• K(pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞).

• V (pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞)2.



Classification

Data (X1, Y1), . . . , (Xn, Yn) iid in [0, 1] × {0, 1}

Pw(Y = 1|X = x) = Ψ(wx),

for Ψ the logistic or probit link function.

• Distance on parameter: L2-norm on Ψ(w).

• Norm on W for logistic: L2(G), G marginal of Xi.

Norm on W for probit: combination of L2(G) and L4(G).



Regression

Data Y1, . . . , Yn, fixed design points x1, . . . , xn,

Yi = w(xi) + ei,

for e1, . . . , en iid Gaussian mean-zero errors.

• Distance on parameter: empirical L2-distance on w.

• Norm on W : uniform.



Ergodic diffusions

Data (Xt: t ∈ [0, n])

dXt = w(Xt) dt + σ(Xt) dBt.

Ergodic, recurrent on R, stationary measure µ0, “usual” conditions.

• Distance on parameter: random Hellinger hn.

• Norm on W : L2(µ0).

h2
n(w1, w2) =

∫ n

0

(w1(Xt) − w2(Xt)

σ(Xt)

)2
dt ≈ ‖(w1 − w2)/σ‖2

µ0,2.

[ van der Meulen & vZ & vdV, Panzar & vZ]



Proof ingredients



Proof

Given that the relevant statistical distances translate into the Banach
space norm, it follows that the posterior rate is εn if there exist sets Bn

such that

(1) log N(εn, Bn, d) ≤ nε2
n and Πn(Bn) = 1 − o(e−3nε2

n). entropy.

(2) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n . prior mass.

The second condition actually implies the first.



Prior mass

W a Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H.



Prior mass

W a Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small ball
exponent φ0(ε).

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H.

THEOREM [Kuelbs & Li (93)]
Concentration function measures concentration around w0:

P(‖W − w0‖ < ε) � e−φw0
(ε).

(up to factors 2)



Complexity

RKHS gives the “geometry of the support of W ”.

THEOREM
The closure of H in B is support of the Gaussian measure (and hence
posterior inconsistent if ‖w0 − H‖ > 0).

THEOREM [Borell (75)]
For H1 and B1 the unit balls of RKHS and B

P(W /∈ MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) + M
)

.



Proof

Given that the relevant statistical distances translate into the Banach
space norm, it follows that the posterior rate is εn if there exist sets Bn

such that

(1) log N(εn, Bn, d) ≤ nε2
n and Πn(Bn) = 1 − o(e−3nε2

n). entropy.

(2) Πn

(

w: ‖w − w0‖ < εn

)

≥ e−nε2
n . prior

mass.

Take Bn = MnH1 + εnB1 for appropriate Mn.



Conclusion



Conclusion

Bayesian inference with Gaussian processes is flexible and elegant.
However, priors must be chosen with some care: eye-balling pictures of

sample paths or staring at the covariance function does not reveal the fine
properties [David Freedman] that matter for posterior performance.
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