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Start: complete graph with nodes 1, 2.

Recursions for n = 2, 3, . . .:
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(n)
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n ,
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Estimate the attachment function f :N → [0,∞) from observed network
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For i.i.d. m1,m2, . . ., connect node n to mn existing nodes.

Start: graph with nodes 1, 2 and m1 edges.

Recursions for n = 2, 3, . . .:
for i = 1, . . . ,mn,

given graph with nodes 1, 2, . . . , n with current degrees d
(n,i−1)
1 , . . . , d

(n,i−1)
n ,

connect node n+ 1 to node k ∈ {1, . . . , n} with probability ∝ f(d
(n,i−1)
k ).
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pk(n): =
1

n
#nodes 1, 2, . . . , n of degree k.

THEOREM [Barabasi-Albert, 2000; Mori 2002; Rudas, Toth, Valko, 2007]

pk(n) → pk: =
α

α+ f(k)

k−1
∏

j=1

f(j)

α+ f(j)
, a.s..

(α makes (pk) a probability distribution on N.)

EXAMPLE
f(k) = k [Barabasi, Albert, 99] pk = 4/(k(k + 1)(k + 2)).
f(k) = k + δ pk ∼ k−3−δ.

f(k) = kβ , β ∈ [1/2, 1) [Krapivsky, Redner, 01] pk = kc1e−c2k
1−β

.
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start movie

Movies by Matjaz Perc downloaded from Youtube
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From movies by Matjaz Perc downloaded from Youtube



Empirical Estimator

9 / 15

f̂n(k) =
p>k(n)

pk(n)

Motivation: # nodes of degree > k at time t
= # of times up to time t that the new node chose a node of degree k.



Empirical Estimator

9 / 15

f̂n(k) =
p>k(n)

pk(n)

Motivation: # nodes of degree > k at time t
= # of times up to time t that the new node chose a node of degree k.

So, for large t:

p>k(n) ≈ P(node t+ 1 connects to node of degree k)

∝ f(k)pk(t) ≈ f(k)pk(n).



Empirical Estimator

9 / 15

f̂n(k) =
p>k(n)

pk(n)

Motivation: # nodes of degree > k at time t
= # of times up to time t that the new node chose a node of degree k.

So, for large t:

p>k(n) ≈ P(node t+ 1 connects to node of degree k)

∝ f(k)pk(t) ≈ f(k)pk(n).

THEOREM [Gao,vdV]

f̂n(k) → f(k)/
∑

j f(j)pj a.s. as n→ ∞, for every fixed k.

Proof is based on LLN of supercritical branching processes by Jagers, 1975 and Nerman,

1981, along the lines of Rudas, Toth, Valko, 2008.
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Individual x born at time σx has children at times of counting process

(ξx(t− σx): t ≥ σx).
For given numerical time-dependent characteristic (φx(t− σx): t ≥ σx):

Zφt : =
∑

x:σx≤t

φx(t− σx).

If (ξx, φx, ψx) are i.i.d. ∼ (ξ, φ, ψ) and suitably integrable, then

Zφt

Zψt
→

∫

e−αtEφ(t) dt
∫

e−αtEψ(t) dt
, a.s.,

for α the “Malthusian parameter”:
∫

e−αt µ(dt) = 1, for µ(t) = Eξ(t).

In fact e−αtZφ
t converges to a random limit.

EXAMPLE φ(t) = 1t≥0 gives Zφt = #(x:σx ≤ t).
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Growing the graph is (nonstationary) Markov.

The log likelihood for observing the full evolution up to time n is

f 7→ log
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∏

t=3

f(dt)

Sf (t)
=

∞
∑
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log f(k)N>k(n)−
n
∑

t=3

logSf (t),

where

dt = degree of the node to which node t+ 1 is attached,

Sf (t) = tf(1) +

t−1
∑

i=2

(

f(di + 1)− f(di)
)

=

∞
∑

k=1

f(k)tpk(t).
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Growing the graph is (nonstationary) Markov.

The log likelihood for observing the full evolution up to time n is

f 7→ log
n
∏

t=3

f(dt)

Sf (t)
=

∞
∑

k=1

log f(k)N>k(n)−
n
∑

t=3

logSf (t),

where

dt = degree of the node to which node t+ 1 is attached,

Sf (t) = tf(1) +

t−1
∑

i=2

(

f(di + 1)− f(di)
)

=

∞
∑

k=1

f(k)tpk(t).

The degree sequence d3, d4, . . . , dn is sufficient.
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Sfδ(t) =
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∑
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(k + δ)tpk(t) = 2t+ tδ

The log likelihood for observing the full evolution up to time n is

δ 7→ log

n
∏
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fδ(dt)

Sfδ(t)
=

∞
∑

k=1

log(k + δ)N>k(n)−
n
∑

t=3

log(2t+ tδ),

Observation of the graph at time n is sufficient for the full evolution.
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Sfδ(t) =
∞
∑

k=1

(k + δ)tpk(t) = 2t+ tδ

The log likelihood for observing the full evolution up to time n is

δ 7→ log

n
∏

t=3

fδ(dt)

Sfδ(t)
=

∞
∑

k=1

log(k + δ)N>k(n)−
n
∑

t=3

log(2t+ tδ),

THEOREM [Gao, vdV]

The model is locally asymptotically normal in parameter δ and

√
n(δ̂n − δ) N(0, i−1

δ ), iδ =
∞
∑

k=1

µ(k + δ)pδ,k
(k + δ)2(2µ+ δ)

− µ

(2µ+ δ)2
.

µ = mean initial degree distribution

Proof uses the martingale central limit theorem.
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log pk(n) (vertical) versus log k for single realization with n = 150000 and m = 5.

pk ∼ k−3−δ, k → ∞.
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The log likelihood for observing the full evolution up to time n is

θ 7→ log
n
∏

t=3

fθ(dt)

Sfθ(t)
=

∞
∑

k=1

log fθ(k)N>k(n)−
n
∑

t=3

logSfθ(t),

THEOREM

Under general conditions on fθ the model of observing the full evolution up to time n is

locally asymptotically normal with respect to θ and

√
n(θ̂n − θ) N(0, i−1

θ ), iθ =

∞
∑

k=1

ḟθ
fθ

(k)pθ,>k −
∑∞

k=1 ḟθ(k)pθ,k
∑∞

k=1 fθ(k)pθ,k
.

Proof uses the martingale central limit theorem and the LLN for supercritical branching

processes.
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The log likelihood for observing the full evolution up to time n is

θ 7→ log
n
∏

t=3

fθ(dt)

Sfθ(t)
=

∞
∑

k=1

log fθ(k)N>k(n)−
n
∑

t=3

logSfθ(t),

THEOREM

Under general conditions on fθ the model of observing the full evolution up to time n is

locally asymptotically normal with respect to θ and

√
n(θ̂n − θ) N(0, i−1

θ ), iθ =

∞
∑

k=1

ḟθ
fθ

(k)pθ,>k −
∑∞

k=1 ḟθ(k)pθ,k
∑∞

k=1 fθ(k)pθ,k
.

Proof uses the martingale central limit theorem and the LLN for supercritical branching

processes.

EXAMPLE ?? fθ(k) = (k + δ)β , for θ = (δ, β).
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Is observing the graph at time n asymptotically sufficient for observing the full evolution

up to time n?

Does the maximum likelihood estimator based on observing the graph at time n
behave the same as the maximum likelihood estimator based on the full evolution?

Is the empirical estimator asymptotically normal?

Can we estimate f under nonparametric shape constraints?
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