Statistical Inference for Some Network Models

Aad van der Vaart
Mathematical Institute
Leiden University

Conference on Probability and Statistics in High Dimensions
A Scientific Tribute to Evarist Giné
CRM, Barcelona, June 2016

Co-author

Fengnan Gao

Remco van der Hofstad

Rui Castro

Preferential Attachment

Start: complete graph with nodes 1, 2.

Preferential Attachment

Start: complete graph with nodes 1, 2 .

Recursions for $n=2,3, \ldots$:
given graph with nodes $1,2, \ldots, n$ with degrees $d_{1}^{(n)}, \ldots, d_{n}^{(n)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n)}\right)$.

Preferential Attachment

Start: complete graph with nodes 1, 2.

Recursions for $n=2,3, \ldots$:

given graph with nodes $1,2, \ldots, n$ with degrees $d_{1}^{(n)}, \ldots, d_{n}^{(n)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n)}\right)$.
$f(k)=k$

Preferential Attachment

Start: complete graph with nodes 1,2.

Recursions for $n=2,3, \ldots$:

given graph with nodes $1,2, \ldots, n$ with degrees $d_{1}^{(n)}, \ldots, d_{n}^{(n)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n)}\right)$.
$f(k)=k$

Preferential Attachment

Start: complete graph with nodes 1,2 .

Recursions for $n=2,3, \ldots$:

given graph with nodes $1,2, \ldots, n$ with degrees $d_{1}^{(n)}, \ldots, d_{n}^{(n)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n)}\right)$.
$f(k)=k$

Preferential Attachment

Start: complete graph with nodes $1,2$.

Recursions for $n=2,3, \ldots$:
given graph with nodes $1,2, \ldots, n$ with degrees $d_{1}^{(n)}, \ldots, d_{n}^{(n)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n)}\right)$.
$f(k)=k$

Estimate the attachment function $f: \mathbb{N} \rightarrow[0, \infty)$ from observed network

Preferential Attachment with Random Initial Degree

For i.i.d. m_{1}, m_{2}, \ldots, connect node n to m_{n} existing nodes.

Start: graph with nodes 1,2 and m_{1} edges.

Preferential Attachment with Random Initial Degree

For i.i.d. m_{1}, m_{2}, \ldots, connect node n to m_{n} existing nodes.

Start: graph with nodes 1,2 and m_{1} edges.

Recursions for $n=2,3, \ldots$:
for $i=1, \ldots, m_{n}$,
given graph with nodes $1,2, \ldots, n$ with current degrees $d_{1}^{(n, i-1)}, \ldots, d_{n}^{(n, i-1)}$, connect node $n+1$ to node $k \in\{1, \ldots, n\}$ with probability $\propto f\left(d_{k}^{(n, i-1)}\right)$.

Degree distribution

$$
p_{k}(n):=\frac{1}{n} \# \text { nodes } 1,2, \ldots, n \text { of degree } k
$$

Degree distribution

$$
p_{k}(n):=\frac{1}{n} \# \text { nodes } 1,2, \ldots, n \text { of degree } k .
$$

THEOREM [Barabasi-Albert, 2000; Mori 2002; Rudas, Toth, Valko, 2007]

$$
p_{k}(n) \rightarrow p_{k}:=\frac{\alpha}{\alpha+f(k)} \prod_{j=1}^{k-1} \frac{f(j)}{\alpha+f(j)}
$$

a.s..
(α makes $\left(p_{k}\right)$ a probability distribution on \mathbb{N}.)

EXAMPLE

$$
\begin{array}{lll}
f(k)=k & \text { [Barabasi, Albert, 99] } & p_{k}=4 /(k(k+1)(k+2)) . \\
f(k)=k+\delta & & p_{k} \sim k^{-3-\delta} \\
f(k)=k^{\beta}, \beta \in[1 / 2,1) & \text { [Krapivsk, Recher, 01] } & p_{k}=k^{c_{1}} e^{-c_{2} k^{1-\beta}}
\end{array}
$$

Preferential Attachment with $f(k)=k$

start movie

Preferential Attachment with $f(k)=k^{0.25}$ or $f(k)=k$ or $f(k)=k^{2}$

From movies by Matjaz Perc downloaded from Youtube

Empirical Estimator

$$
\hat{f}_{n}(k)=\frac{p_{>k}(n)}{p_{k}(n)}
$$

Motivation: \# nodes of degree $>k$ at time t
$=\#$ of times up to time t that the new node chose a node of degree k.

Empirical Estimator

$$
\hat{f}_{n}(k)=\frac{p_{>k}(n)}{p_{k}(n)}
$$

Motivation: \# nodes of degree $>k$ at time t
$=\#$ of times up to time t that the new node chose a node of degree k.

So, for large t :

$$
\begin{aligned}
p_{>k}(n) & \approx \mathrm{P}(\text { node } t+1 \text { connects to node of degree } k) \\
& \propto f(k) p_{k}(t) \approx f(k) p_{k}(n) .
\end{aligned}
$$

Empirical Estimator

$$
\hat{f}_{n}(k)=\frac{p_{>k}(n)}{p_{k}(n)}
$$

Motivation: \# nodes of degree $>k$ at time t
$=\#$ of times up to time t that the new node chose a node of degree k.

So, for large t :

$$
\begin{aligned}
p_{>k}(n) & \approx \mathrm{P}(\text { node } t+1 \text { connects to node of degree } k) \\
& \propto f(k) p_{k}(t) \approx f(k) p_{k}(n) .
\end{aligned}
$$

THEOREM [Gaovav]
$\hat{f}_{n}(k) \rightarrow f(k) / \sum_{j} f(j) p_{j}$ a.s. as $n \rightarrow \infty$, for every fixed k.
Proof is based on LLN of supercritical branching processes by Jagers, 1975 and Nerman, 1981, along the lines of Rudas, Toth, Valko, 2008.

Supercritical Branching

Individual x born at time σ_{x} has children at times of counting process $\left(\xi_{x}\left(t-\sigma_{x}\right): t \geq \sigma_{x}\right)$.
For given numerical time-dependent characteristic $\left(\phi_{x}\left(t-\sigma_{x}\right): t \geq \sigma_{x}\right)$:

$$
Z_{t}^{\phi}:=\sum_{x: \sigma_{x} \leq t} \phi_{x}\left(t-\sigma_{x}\right)
$$

$$
\begin{aligned}
& \text { If }\left(\xi_{x}, \phi_{x}, \psi_{x}\right) \text { are i.i.d. } \sim(\xi, \phi, \psi) \text { and suitably integrable, then } \\
& \qquad \frac{Z_{t}^{\phi}}{Z_{t}^{\psi}} \rightarrow \frac{\int e^{-\alpha t} \mathrm{E} \phi(t) d t}{\int e^{-\alpha t} \mathrm{E} \psi(t) d t}, \quad \text { a.s., } \\
& \text { for } \alpha \text { the "Malthusian parameter": } \int e^{-\alpha t} \mu(d t)=1 \text {, for } \mu(t)=\mathrm{E} \xi(t) .
\end{aligned}
$$

In fact $e^{-\alpha t} Z_{t}^{\phi}$ converges to a random limit.
EXAMPLE $\quad \phi(t)=1_{t \geq 0}$ gives $Z_{t}^{\phi}=\#\left(x: \sigma_{x} \leq t\right)$.

Maximum Likelihood

Growing the graph is (nonstationary) Markov. The log likelihood for observing the full evolution up to time n is

$$
f \mapsto \log \prod_{t=3}^{n} \frac{f\left(d_{t}\right)}{S_{f}(t)}=\sum_{k=1}^{\infty} \log f(k) N_{>k}(n)-\sum_{t=3}^{n} \log S_{f}(t)
$$

where

$$
d_{t}=\text { degree of the node to which node } t+1 \text { is attached, }
$$

$$
S_{f}(t)=t f(1)+\sum_{i=2}^{t-1}\left(f\left(d_{i}+1\right)-f\left(d_{i}\right)\right)=\sum_{k=1}^{\infty} f(k) t p_{k}(t)
$$

Maximum Likelihood

Growing the graph is (nonstationary) Markov.
The log likelihood for observing the full evolution up to time n is

$$
f \mapsto \log \prod_{t=3}^{n} \frac{f\left(d_{t}\right)}{S_{f}(t)}=\sum_{k=1}^{\infty} \log f(k) N_{>k}(n)-\sum_{t=3}^{n} \log S_{f}(t)
$$

where

$$
d_{t}=\text { degree of the node to which node } t+1 \text { is attached, }
$$

$$
S_{f}(t)=t f(1)+\sum_{i=2}^{t-1}\left(f\left(d_{i}+1\right)-f\left(d_{i}\right)\right)=\sum_{k=1}^{\infty} f(k) t p_{k}(t)
$$

Maximum Likelihood in the Affine Case $f_{\delta}(k)=k+\delta$

$$
S_{f_{\delta}}(t)=\sum_{k=1}^{\infty}(k+\delta) t p_{k}(t)=2 t+t \delta
$$

The log likelihood for observing the full evolution up to time n is

$$
\delta \mapsto \log \prod_{t=3}^{n} \frac{f_{\delta}\left(d_{t}\right)}{S_{f_{\delta}}(t)}=\sum_{k=1}^{\infty} \log (k+\delta) N_{>k}(n)-\sum_{t=3}^{n} \log (2 t+t \delta)
$$

Maximum Likelihood in the Affine Case $f_{\delta}(k)=k+\delta$

$$
S_{f_{\delta}}(t)=\sum_{k=1}^{\infty}(k+\delta) t p_{k}(t)=2 t+t \delta
$$

The log likelihood for observing the full evolution up to time n is

$$
\delta \mapsto \log \prod_{t=3}^{n} \frac{f_{\delta}\left(d_{t}\right)}{S_{f_{\delta}}(t)}=\sum_{k=1}^{\infty} \log (k+\delta) N_{>k}(n)-\sum_{t=3}^{n} \log (2 t+t \delta)
$$

Observation of the graph at time n is sufficient for the full evolution.

Maximum Likelihood in the Affine Case $f_{\delta}(k)=k+\delta$

$$
S_{f_{\delta}}(t)=\sum_{k=1}^{\infty}(k+\delta) t p_{k}(t)=2 t+t \delta
$$

The log likelihood for observing the full evolution up to time n is

$$
\delta \mapsto \log \prod_{t=3}^{n} \frac{f_{\delta}\left(d_{t}\right)}{S_{f_{\delta}}(t)}=\sum_{k=1}^{\infty} \log (k+\delta) N_{>k}(n)-\sum_{t=3}^{n} \log (2 t+t \delta)
$$

THEOREM [Gao, vov]
The model is locally asymptotically normal in parameter δ and

$$
\sqrt{n}\left(\hat{\delta}_{n}-\delta\right) \rightsquigarrow N\left(0, i_{\delta}^{-1}\right), \quad i_{\delta}=\sum_{k=1}^{\infty} \frac{\mu(k+\delta) p_{\delta, k}}{(k+\delta)^{2}(2 \mu+\delta)}-\frac{\mu}{(2 \mu+\delta)^{2}}
$$

$\mu=$ mean initial degree distribution

Preferential Attachment in the Affine Case $f(k)=k+\delta$

$\log p_{k}(n)$ (vertical) versus $\log k$ for single realization with $n=150000$ and $m=5$.

$$
p_{k} \sim k^{-3-\delta}, \quad k \rightarrow \infty .
$$

Maximum Likelihood in the General Parametric Case f_{θ}, for $\theta \in \mathbb{R}^{d}$

The log likelihood for observing the full evolution up to time n is

$$
\theta \mapsto \log \prod_{t=3}^{n} \frac{f_{\theta}\left(d_{t}\right)}{S_{f_{\theta}}(t)}=\sum_{k=1}^{\infty} \log f_{\theta}(k) N_{>k}(n)-\sum_{t=3}^{n} \log S_{f_{\theta}}(t),
$$

THEOREM

Under general conditions on f_{θ} the model of observing the full evolution up to time n is locally asymptotically normal with respect to θ and

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightsquigarrow N\left(0, i_{\theta}^{-1}\right), \quad i_{\theta}=\sum_{k=1}^{\infty} \frac{\dot{f}_{\theta}}{f_{\theta}}(k) p_{\theta,>k}-\frac{\sum_{k=1}^{\infty} \dot{f}_{\theta}(k) p_{\theta, k}}{\sum_{k=1}^{\infty} f_{\theta}(k) p_{\theta, k}} .
$$

Proof uses the martingale central limit theorem and the LLN for supercritical branching processes.

Maximum Likelihood in the General Parametric Case f_{θ}, for $\theta \in \mathbb{R}^{d}$

The log likelihood for observing the full evolution up to time n is

$$
\theta \mapsto \log \prod_{t=3}^{n} \frac{f_{\theta}\left(d_{t}\right)}{S_{f_{\theta}}(t)}=\sum_{k=1}^{\infty} \log f_{\theta}(k) N_{>k}(n)-\sum_{t=3}^{n} \log S_{f_{\theta}}(t),
$$

THEOREM

Under general conditions on f_{θ} the model of observing the full evolution up to time n is locally asymptotically normal with respect to θ and

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightsquigarrow N\left(0, i_{\theta}^{-1}\right), \quad i_{\theta}=\sum_{k=1}^{\infty} \frac{\dot{f}_{\theta}}{f_{\theta}}(k) p_{\theta,>k}-\frac{\sum_{k=1}^{\infty} \dot{f}_{\theta}(k) p_{\theta, k}}{\sum_{k=1}^{\infty} f_{\theta}(k) p_{\theta, k}} .
$$

Proof uses the martingale central limit theorem and the LLN for supercritical branching processes.
EXAMPLE ?? $\quad f_{\theta}(k)=(k+\delta)^{\beta}$, for $\theta=(\delta, \beta)$.

Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n ?

Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n ?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n ?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Is the empirical estimator asymptotically normal?

Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n ?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Is the empirical estimator asymptotically normal?

Can we estimate f under nonparametric shape constraints?

