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Preferential Attachment

Start: complete graph with nodes 1, 2.
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Preferential Attachment

Start: complete graph with nodes 1, 2.

O—0O

Recursions forn = 2,3, .. .
given graph with nodes 1, 2, . . ., n with degrees dgn), c.o.d
connect node n + 1tonode k € {1,...,n} with probability o< f(d,gn)).

o

Estimate the f:N — |0, 00) from observed network
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Preferential Attachment with Random Initial Degree

Fori.i.d. my, ma, ..., connect node n to m,, existing nodes.

Start: graph with nodes 1, 2 and m edges.
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Preferential Attachment with Random Initial Degree

Fori.i.d. my, ma, ..., connect node n to m,, existing nodes.

Start: graph with nodes 1, 2 and m edges.

C——=0

Recursions forn = 2,3, .. .

foreo =1,...,my,

given graph with nodes 1, 2, . . ., n with current degrees dgn’i_l), A dq(ln’i_l),

connect node n + 1 to node k € {1,...,n} with probability o f(d,gn’i_l)).
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Degree distribution

1
pr(n):= —#nodes 1,2, ...,n of degree k.
n
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Degree distribution

1
pr(n):= —#nodes 1,2, ...,n of degree k.
n

THEOREM  [Barabasi-Atbert, 2000; Mori 2002; Rudas, Toth, Valko, 2007]

I s it)
Pk(n)—>]9k:= Oé+f(k)j:1_[1a+f(j)’ a.s..

(oo makes (py ) a probability distribution on N.)

EXAMPLE
f(k) = k [Barabasi, Albert, 9] P = 4/(k(k + 1)(k + 2))
f(k) =k+0 pe ~ k7370

f(k) — kﬁ, /6 - [1/27 1) [Krapivsky, Redner, 01] P — kcl B_Cle_B.
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Preferential Attachment with f(k) = &

start movie

Movies by Matjaz Perc downloaded from Youtube
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Preferential Attachment with f (k) = k%* or f(k) = k or f(k) = k?

From movies by Matjaz Perc downloaded from Youtube
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Empirical Estimator

Motivation: # nodes of degree > k at time ¢
— # of times up to time ¢ that the new node chose a node of degree k.
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So, for large t:
p>k(n) ~ P(node t + 1 connects to node of degree k)
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Empirical Estimator

Motivation: # nodes of degree > k at time ¢
— # of times up to time ¢ that the new node chose a node of degree k.

So, for large t:
p>k(n) ~ P(node t + 1 connects to node of degree k)

oc f(k)pr(t) =~ f(k)pr(n).

THEOREM [caovdv
fu(k) — f(k)/ Zj f(3)p; a.s. as n — oo, for every fixed k.

Proof is based on LLN of supercritical branching processes by Jagers, 1975 and Nerman,
1981, along the lines of Rudas, Toth, Valko, 2008.
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Supercritical Branching

Individual & born at time o, has children at times of counting process
(‘fa:(t — 0-33): t > UCB)'
For given numerical time-dependent characteristic (¢, (t — 0,):t > 04):

thb: = Z G (t — 0z).

T <t

If (&, Ouy Vo) areiid. ~ (&, @, 1)) and suitably integrable, then

zp [e “Eg(t) dt
z¢ " [ e Ey(t) dt

a.s.,

for o the “Malthusian parameter”: [ e~ u(dt) = 1, for u(t) = EE(t).

In fact e =t Z converges to a random limit.

EXAMPLE  ¢(t) = 14>0 gives 7 = #(z:00 < 1), 10/ 15



Maximum Likelihood

Growing the graph is (nonstationary) Markowv.
The log likelihood for observing the full evolution up to time n is

dt; =) log f(k)Ns(n ZlogSf
k=1

where
d; = degree of the node to which node ¢ + 1 is attached,

Sp(#) =tf (1) + > _(f(di+1 Zf )tpi(t

11/15



Maximum Likelihood

Growing the graph is (nonstationary) Markowv.
The log likelihood for observing the full evolution up to time n is

dt; :Zlogf( )JN=r(n ZlogSf
k=1

where

d; = degree of the node to which node ¢ + 1 is attached,

Sp(#) =tf (1) + > _(f(di+1 Zf )tpi(t

The degree sequence d3, dy, . . ., d, is sufficient.
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Maximum Likelihood in the Affine Case fs(k) = k + ¢

0. @)

Sps(t) =Y (k+ 8)tpp(t) =2t + 16
k=1

The log likelihood for observing the full evolution up to time n is

©. @)

0 — log H S Zlog k4 0)Nsi(n Zlog 2t + t0),
f5 t=3
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Maximum Likelihood in the Affine Case fs(k) = k + ¢

0. @)

Sps(t) =Y (k+ 8)tpp(t) =2t + 16
k=1

The log likelihood for observing the full evolution up to time n is

0 — log H S Zlog k4 0)Nsi(n Zlog 2t + t0),
f5 t=3

Observation of the graph at time n is sufficient for the full evolution.
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Maximum Likelihood in the Affine Case fs(k) = k + ¢

0. @)

Sps(t) =Y (k+ 8)tpp(t) =2t + 16
k=1

The log likelihood for observing the full evolution up to time n is

0 — log H S Zlog k4 0)Nsi(n Zlog 2t + t0),
f5 t=3

THEOREM [Gao, vav]
The model is locally asymptotically normal in parameter 0 and

) 3 R k + 0)ps k H
b ) w N0 _ i k .
Y U TE NRETE L

= mean initial degree distribution

Proof uses the martingale central limit theorem. 12/15



Preferential Attachment in the Affine Case f(k) =k + 0

loglog Plat of empr. dagrea distrl. of ane linear PA graph

X Empl. Dey. Distr.
—— stralgt [Ine with sbpe -3

100 200 &00 1000 2000 &000

Depteez

log py. (n) (vertical) versus log k for single realization with n = 150000 and m = 5.

pr~ k370 k— oo
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Maximum Likelihood in the General Parametric Case fy, for 0 € R

The log likelihood for observing the full evolution up to time n is

0. @)

0 — log HSf Zlogfg )N~ k(n ZlogSﬁ9
9

THEOREM
Under general conditions on fy the model of observing the full evolution up to time n is
locally asymptotically normal with respect to 6 and

0,, — 0) ~ —1 = _9 B D ke Jée(k)pe,k.
. ' A kz for 0 > req Jo(K)pa k

Proof uses the martingale central limit theorem and the LLN for supercritical branching
processes.
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Maximum Likelihood in the General Parametric Case fy, for 0 € R

The log likelihood for observing the full evolution up to time n is

0. @)

0 — log HSf Zlogfg )N~ k(n ZlogSﬁ9
9

THEOREM
Under general conditions on fy the model of observing the full evolution up to time n is
locally asymptotically normal with respect to 6 and

0,, — 0) ~ —1 = _9 B D ke Jée(k)pe,k.
. ' A kz for 0 > req Jo(K)pa k

Proof uses the martingale central limit theorem and the LLN for supercritical branching
processes.

EXAMPLE ?? fo(k) = (k + 6)P, for 8 = (4, B).
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Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution
up to time n?
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Some Open Questions

Is observing the graph at time n asymptotically sufficient for observing the full evolution
up to time n?

Does the maximum likelihood estimator based on observing the graph at time n
behave the same as the maximum likelihood estimator based on the full evolution?

|s the empirical estimator asymptotically normal?

Can we estimate f under nonparametric shape constraints?

15/15



	Co-author
	Preferential Attachment
	Preferential Attachment
	Preferential Attachment with Random Initial Degree
	Degree distribution
	Preferential Attachment with f(k)=k
	Preferential Attachment with f(k)=k0.25 or f(k)=k or f(k)=k2
	Empirical Estimator
	Supercritical Branching
	Maximum Likelihood
	Maximum Likelihood in the Affine Case f(k)=k+
	Preferential Attachment in the Affine Case f(k)=k+
	Maximum Likelihood in the General Parametric Case f, for Rd
	Some Open Questions

