Statistical Inference for Some Network Models

Aad van der Vaart Mathematical Institute Leiden University

Conference on Probability and Statistics in High Dimensions A Scientific Tribute to Evarist Giné CRM, Barcelona, June 2016

Co-author

Fengnan Gao

Remco van der Hofstad

Start: complete graph with nodes 1, 2.

Start: complete graph with nodes 1, 2.

 $\bigcirc \longrightarrow \bigcirc$

Recursions for $n = 2, 3, \ldots$

given graph with nodes $1, 2, \ldots, n$ with degrees $d_1^{(n)}, \ldots, d_n^{(n)}$, connect node n + 1 to node $k \in \{1, \ldots, n\}$ with probability $\propto f(d_k^{(n)})$.

Start: complete graph with nodes 1, 2.

 $\bigcirc \longrightarrow \bigcirc$

Recursions for $n = 2, 3, \ldots$: given graph with nodes $1, 2, \ldots, n$ with degrees $d_1^{(n)}, \ldots, d_n^{(n)}$, connect node n + 1 to node $k \in \{1, \ldots, n\}$ with probability $\propto f(d_k^{(n)})$.

Start: complete graph with nodes 1, 2.

 $\bigcirc \longrightarrow \bigcirc$

Recursions for $n = 2, 3, \ldots$: given graph with nodes $1, 2, \ldots, n$ with degrees $d_1^{(n)}, \ldots, d_n^{(n)}$, connect node n + 1 to node $k \in \{1, \ldots, n\}$ with probability $\propto f(d_k^{(n)})$.

Start: complete graph with nodes 1, 2.

 $\bigcirc \longrightarrow \bigcirc$

Recursions for $n = 2, 3, \ldots$: given graph with nodes $1, 2, \ldots, n$ with degrees $d_1^{(n)}, \ldots, d_n^{(n)}$, connect node n + 1 to node $k \in \{1, \ldots, n\}$ with probability $\propto f(d_k^{(n)})$.

Start: complete graph with nodes 1, 2.

 $\bigcirc \longrightarrow \bigcirc$

Recursions for $n = 2, 3, \ldots$: given graph with nodes $1, 2, \ldots, n$ with degrees $d_1^{(n)}, \ldots, d_n^{(n)}$, connect node n + 1 to node $k \in \{1, \ldots, n\}$ with probability $\propto f(d_k^{(n)})$.

Estimate the attachment function $f: \mathbb{N} \to [0, \infty)$ from observed network

Preferential Attachment with Random Initial Degree

For i.i.d. m_1, m_2, \ldots , connect node n to m_n existing nodes.

Start: graph with nodes 1, 2 and m_1 edges.

Preferential Attachment with Random Initial Degree

For i.i.d. m_1, m_2, \ldots , connect node n to m_n existing nodes.

Start: graph with nodes 1, 2 and m_1 edges.

Recursions for n = 2, 3, ...: for $i = 1, ..., m_n$, given graph with nodes 1, 2, ..., n with current degrees $d_1^{(n,i-1)}, ..., d_n^{(n,i-1)}$, connect node n + 1 to node $k \in \{1, ..., n\}$ with probability $\propto f(d_k^{(n,i-1)})$.

Degree distribution

$$p_k(n) := \frac{1}{n} \#$$
nodes $1, 2, \dots, n$ of degree k .

Degree distribution

$$p_k(n) := rac{1}{n} \#$$
nodes $1, 2, \dots, n$ of degree k .

[Barabasi-Albert, 2000; Mori 2002; Rudas, Toth, Valko, 2007]

$$p_k(n) \rightarrow p_k := \frac{\alpha}{\alpha + f(k)} \prod_{j=1}^{k-1} \frac{f(j)}{\alpha + f(j)},$$
 a.s.

(α makes (p_k) a probability distribution on \mathbb{N} .)

EXAMPLE

$$f(k) = k$$

$$f(k) = k + \delta$$

$$f(k) = k^{\beta}, \beta \in [1/2, 1]$$

[Barabasi, Albert, 99]

[Krapivsky, Redner, 01]

$$p_{k} = 4/(k(k+1)(k+2)).$$

$$p_{k} \sim k^{-3-\delta}.$$

$$p_{k} = k^{c_{1}}e^{-c_{2}k^{1-\beta}}.$$

Preferential Attachment with f(k) = k

start movie

Movies by Matjaz Perc downloaded from Youtube

Preferential Attachment with $f(k) = k^{0.25}$ or f(k) = k or $f(k) = k^2$

From movies by Matjaz Perc downloaded from Youtube

Empirical Estimator

$$\hat{f}_n(k) = \frac{p_{>k}(n)}{p_k(n)}$$

Motivation: # nodes of degree > k at time t

= # of times up to time t that the new node chose a node of degree k.

Empirical Estimator

$$\hat{f}_n(k) = \frac{p_{>k}(n)}{p_k(n)}$$

Motivation: # nodes of degree > k at time t

= # of times up to time t that the new node chose a node of degree k.

So, for large *t*:

 $p_{>k}(n) \approx P(\text{node } t+1 \text{ connects to node of degree } k)$ $\propto f(k)p_k(t) \approx f(k)p_k(n).$

Empirical Estimator

$$\hat{f}_n(k) = \frac{p_{>k}(n)}{p_k(n)}$$

Motivation: # nodes of degree > k at time t

= # of times up to time t that the new node chose a node of degree k.

So, for large *t*:

 $p_{>k}(n) \approx P(\text{node } t+1 \text{ connects to node of degree } k)$ $\propto f(k)p_k(t) \approx f(k)p_k(n).$

THEOREM [Gao,vdV] $\hat{f}_n(k) \to f(k) / \sum_j f(j) p_j$ a.s. as $n \to \infty$, for every fixed k.

Proof is based on LLN of supercritical branching processes by Jagers, 1975 and Nerman, 1981, along the lines of Rudas, Toth, Valko, 2008.

Supercritical Branching

Individual x born at time σ_x has children at times of counting process $(\xi_x(t - \sigma_x): t \ge \sigma_x).$

For given numerical time-dependent characteristic $(\phi_x(t - \sigma_x): t \ge \sigma_x):$

$$Z_t^{\phi} := \sum_{x:\sigma_x \le t} \phi_x(t - \sigma_x).$$

If
$$(\xi_x, \phi_x, \psi_x)$$
 are i.i.d. $\sim (\xi, \phi, \psi)$ and suitably integrable, then

$$\frac{Z_t^{\phi}}{Z_t^{\psi}} \rightarrow \frac{\int e^{-\alpha t} E\phi(t) dt}{\int e^{-\alpha t} E\psi(t) dt}, \quad \text{a.s.},$$
for α the "Malthusian parameter": $\int e^{-\alpha t} \mu(dt) = 1$, for $\mu(t) = E\xi(t)$.

In fact $e^{-\alpha t}Z_t^{\phi}$ converges to a random limit.

EXAMPLE $\phi(t) = 1_{t \ge 0}$ gives $Z_t^{\phi} = \#(x: \sigma_x \le t)$.

10 / 15

Maximum Likelihood

Growing the graph is (nonstationary) Markov.

The log likelihood for observing the full evolution up to time n is

$$f \mapsto \log \prod_{t=3}^{n} \frac{f(d_t)}{S_f(t)} = \sum_{k=1}^{\infty} \log f(k) N_{>k}(n) - \sum_{t=3}^{n} \log S_f(t),$$

where

 $d_t =$ degree of the node to which node t + 1 is attached,

$$S_f(t) = tf(1) + \sum_{i=2}^{t-1} \left(f(d_i + 1) - f(d_i) \right) = \sum_{k=1}^{\infty} f(k) tp_k(t).$$

Maximum Likelihood

Growing the graph is (nonstationary) Markov.

The log likelihood for observing the full evolution up to time n is

$$f \mapsto \log \prod_{t=3}^{n} \frac{f(d_t)}{S_f(t)} = \sum_{k=1}^{\infty} \log f(k) N_{>k}(n) - \sum_{t=3}^{n} \log S_f(t),$$

where

 $d_t =$ degree of the node to which node t + 1 is attached,

$$S_f(t) = tf(1) + \sum_{i=2}^{t-1} \left(f(d_i + 1) - f(d_i) \right) = \sum_{k=1}^{\infty} f(k) tp_k(t).$$

The degree sequence d_3, d_4, \ldots, d_n is sufficient.

Maximum Likelihood in the Affine Case $f_{\delta}(k) = k + \delta$

$$S_{f_{\delta}}(t) = \sum_{k=1}^{\infty} (k+\delta)tp_k(t) = 2t + t\delta$$

The log likelihood for observing the full evolution up to time n is

$$\delta \mapsto \log \prod_{t=3}^n \frac{f_{\delta}(d_t)}{S_{f_{\delta}}(t)} = \sum_{k=1}^\infty \log(k+\delta) N_{>k}(n) - \sum_{t=3}^n \log(2t+t\delta),$$

Maximum Likelihood in the Affine Case $f_{\delta}(k) = k + \delta$

$$S_{f_{\delta}}(t) = \sum_{k=1}^{\infty} (k+\delta)tp_k(t) = 2t + t\delta$$

The log likelihood for observing the full evolution up to time n is

$$\delta \mapsto \log \prod_{t=3}^n \frac{f_{\delta}(d_t)}{S_{f_{\delta}}(t)} = \sum_{k=1}^\infty \log(k+\delta) N_{>k}(n) - \sum_{t=3}^n \log(2t+t\delta),$$

Observation of the graph at time n is sufficient for the full evolution.

Maximum Likelihood in the Affine Case $f_{\delta}(k) = k + \delta$

$$S_{f_{\delta}}(t) = \sum_{k=1}^{\infty} (k+\delta)tp_k(t) = 2t + t\delta$$

The log likelihood for observing the full evolution up to time n is

$$\delta \mapsto \log \prod_{t=3}^n \frac{f_{\delta}(d_t)}{S_{f_{\delta}}(t)} = \sum_{k=1}^\infty \log(k+\delta) N_{>k}(n) - \sum_{t=3}^n \log(2t+t\delta),$$

THEOREM [Gao, vdV]

The model is locally asymptotically normal in parameter δ and

$$\sqrt{n}(\hat{\delta}_n - \delta) \rightsquigarrow N(0, i_{\delta}^{-1}), \qquad i_{\delta} = \sum_{k=1}^{\infty} \frac{\mu(k+\delta)p_{\delta,k}}{(k+\delta)^2(2\mu+\delta)} - \frac{\mu}{(2\mu+\delta)^2}.$$

 $\mu\,=$ mean initial degree distribution

Proof uses the martingale central limit theorem.

Preferential Attachment in the Affine Case $f(k) = k + \delta$

 $\log p_k(n)$ (vertical) versus $\log k$ for single realization with n=150000 and m=5.

$$p_k \sim k^{-3-\delta}, \qquad k \to \infty.$$

Maximum Likelihood in the General Parametric Case $f_{ heta}$, for $heta \in \mathbb{R}^d$

The log likelihood for observing the full evolution up to time n is

$$\theta \mapsto \log \prod_{t=3}^{n} \frac{f_{\theta}(d_t)}{S_{f_{\theta}}(t)} = \sum_{k=1}^{\infty} \log f_{\theta}(k) N_{>k}(n) - \sum_{t=3}^{n} \log S_{f_{\theta}}(t),$$

THEOREM

Under general conditions on f_{θ} the model of observing the full evolution up to time n is locally asymptotically normal with respect to θ and

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, i_{\theta}^{-1}), \qquad i_{\theta} = \sum_{k=1}^{\infty} \frac{\dot{f}_{\theta}}{f_{\theta}}(k) p_{\theta, > k} - \frac{\sum_{k=1}^{\infty} \dot{f}_{\theta}(k) p_{\theta, k}}{\sum_{k=1}^{\infty} f_{\theta}(k) p_{\theta, k}}.$$

Proof uses the martingale central limit theorem and the LLN for supercritical branching processes.

Maximum Likelihood in the General Parametric Case $f_{ heta}$, for $heta \in \mathbb{R}^d$

The log likelihood for observing the full evolution up to time n is

$$\theta \mapsto \log \prod_{t=3}^{n} \frac{f_{\theta}(d_t)}{S_{f_{\theta}}(t)} = \sum_{k=1}^{\infty} \log f_{\theta}(k) N_{>k}(n) - \sum_{t=3}^{n} \log S_{f_{\theta}}(t),$$

THEOREM

Under general conditions on f_{θ} the model of observing the full evolution up to time n is locally asymptotically normal with respect to θ and

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, i_{\theta}^{-1}), \qquad i_{\theta} = \sum_{k=1}^{\infty} \frac{\dot{f}_{\theta}}{f_{\theta}}(k) p_{\theta, > k} - \frac{\sum_{k=1}^{\infty} \dot{f}_{\theta}(k) p_{\theta, k}}{\sum_{k=1}^{\infty} f_{\theta}(k) p_{\theta, k}}.$$

Proof uses the martingale central limit theorem and the LLN for supercritical branching processes.

EXAMPLE ??
$$f_{\theta}(k) = (k + \delta)^{\beta}$$
, for $\theta = (\delta, \beta)$.

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n?

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Is the empirical estimator asymptotically normal?

Is observing the graph at time n asymptotically sufficient for observing the full evolution up to time n?

Does the maximum likelihood estimator based on observing the graph at time n behave the same as the maximum likelihood estimator based on the full evolution?

Is the empirical estimator asymptotically normal?

Can we estimate f under nonparametric shape constraints?