Bayesian Statistics in High Dimensions

Lecture 2: Sparsity

Aad van der Vaart

Universiteit Leiden, Netherlands

47th John H. Barrett Memorial Lectures, Knoxville, Tenessee, May 2017

Contents

Sparsity

Bayesian Sparsity

Frequentist Bayes

Model Selection Prior

Horseshoe Prior

Sparsity

Sparsity — sequence model

A sparse model has many parameters, but most of them are (nearly) zero.

Sparsity — sequence model

A sparse model has many parameters, but most of them are (nearly) zero.

In this lecture, (Bayesian) theory for:

$$Y^n \sim N_n(\theta, I), \qquad \text{for } \theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n.$$

- n independent observations Y_1^n, \ldots, Y_n^n .
- n unknowns $\theta_1, \ldots, \theta_n$.
- $Y_i^n = \theta_i + \varepsilon_i$, for standard normal noise ε_i .
- *n* is large.
- many of $\theta_1, \ldots, \theta_n$ are (almost) zero.

Given $Y^n | \theta \sim N_n(\theta, I)$ the obvious estimator of θ is Y^n . *ML*, *UMVU*, best-equivariant, minimax

Given $Y^n | \theta \sim N_n(\theta, I)$ the obvious estimator of θ is Y^n . *ML*, *UMVU*, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]

If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^n$,

$$E_{\theta} ||T(Y^n) - \theta||^2 < E_{\theta} ||Y^n - \theta||^2.$$

Given $Y^n | \theta \sim N_n(\theta, I)$ the obvious estimator of θ is Y^n . *ML*, *UMVU*, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]

If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^n$,

$$E_{\theta} ||T(Y^n) - \theta||^2 < E_{\theta} ||Y^n - \theta||^2.$$

Empirical Bayes method [Robbins, 1960s]:

- Working hypothesis: $\theta_1, \ldots, \theta_n \stackrel{\text{iid}}{\sim} G$.
- Estimate G using Y^n , pretending this is true.
- $T(Y^n) := \mathcal{E}_{\hat{G}(Y^n)}(\theta | Y^n)$.

Given $Y^n | \theta \sim N_n(\theta, I)$ the obvious estimator of θ is Y^n . *ML*, *UMVU*, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]

If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^n$,

$$E_{\theta} ||T(Y^n) - \theta||^2 < E_{\theta} ||Y^n - \theta||^2.$$

Empirical Bayes method [Robbins, 1960s]:

- Working hypothesis: $\theta_1, \ldots, \theta_n \stackrel{\text{iid}}{\sim} G$.
- Estimate G using Y^n , pretending this is true.
- $T(Y^n) := \mathcal{E}_{\hat{G}(Y^n)}(\theta | Y^n)$.

For large n the gain can be substantial, ("borrowing of strength"),

and be targeted to special subsets of \mathbb{R}^n , e.g. sparse vectors.

Sparsity — regression

$$Y^n | \theta \sim N_n(X_{n \times p}\theta, \sigma^2 I)$$
, for $\theta = (\theta_1, \dots, \theta_p) \in \mathbb{R}^p$

- Y_i^n : measurement on individual $i=1,\ldots,n$.
- X_{ij} score of individual i on feature $j = 1, \dots p$.
- θ_i effect of feature j.
- sparse if only few features matter.

If p > n, then *sparsity is necessary* to recover θ , and X must be *sparse-invertible*, e.g.:

Compatibility:

$$\inf_{\theta:|S_{\theta}| \le 5s_n} \frac{\|X\theta\|_2 \sqrt{|S_{\theta}|}}{\|X\| \|\theta\|_1} \gg 0.$$

Mutual coherence:

$$s_n \max_{i \neq j} |\operatorname{cor}(X_{.i}, X_{.j})| \ll 1.$$

 $s_n =$ true number of nonzero coordinates.

Sparsity — RNA sequencing

- $Y_{i,j}$: RNA expression count of tag $j=1,\ldots,p$ in tissue $i=1,\ldots,n$,
- x_i : covariate(s) of tissue i, e.g. 0 or 1 for normal or cancer.
- sparse if only few tags (genes) matter.

 $Y_{i,j} \sim$ (zero-inflated) *negative binomial*, with

$$EY_{i,j} = e^{\alpha_j + \beta_j x_i}, \quad var Y_{i,j} = EY_{i,j} (1 + EY_{i,j} e^{-\phi_j}).$$

distribution of β_j 's and ϕ_j 's estimated by Empirical Bayes

Sparsity — Gaussian graphical model

Data
$$n$$
 iid copies of $Y^p | \theta \sim N_p(0, \theta^{-1})$

- Y_i^p = value of individual on feature j.
- precision matrix θ gives partial correlations:

$$\operatorname{cor}(Y_i^p, Y_j^p | Y_k^p : k \neq i, j) = -\frac{\theta_{i,j}}{\sqrt{\theta_{i,i}\theta_{j,j}}}.$$

Apoptosis network

- nodes 1, 2, ..., p
- edge (i,j) present iff $\theta_{i,j} \neq 0$
- sparse if few edges

Bayesian Sparsity

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

Prior $\theta \sim \Pi$, and data $Y^n | \theta \sim p(\cdot | \theta)$, give posterior:

$$d\Pi(\theta|Y^n) \propto p(Y^n|\theta) d\Pi(\theta).$$

Bayesian sparsity — Gaussian graphical model

- nodes 1, 2, ..., p
- edge (i,j) present iff $\theta_{i,j} \neq 0$
- sparse if few edges

Apoptosis network

For given *incidence matrix* $(P_{i,j})$ use different priors for

$$(\theta_{i,j}: P_{i,j} = 0)$$
 and $(\theta_{i,j}: P_{i,j} = 1)$.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Choose s from prior on $\{0, 1, 2, \ldots, p\}$.
- (2) Choose $S \subset \{0, 1, \dots, p\}$ of size |S| = s at random.
- (3) Choose $\theta_S = (\theta_i : i \in S) \sim g_S$ and set $\theta_{S^c} = 0$.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Choose s from prior on $\{0, 1, 2, \ldots, p\}$.
- (2) Choose $S \subset \{0, 1, \dots, p\}$ of size |S| = s at random.
- (3) Choose $\theta_S = (\theta_i : i \in S) \sim g_S$ and set $\theta_{S^c} = 0$.

Example: spike and slab

- Choose $\theta_1, \ldots, \theta_p$ i.i.d. from $\tau \delta_0 + (1 \tau)G$.
- Put a prior on τ , e.g. Beta(1, p + 1).

Then $s \sim \text{binomial}$ and $g_S = \otimes_{i \in S} g$.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Generate $\tau \sim \text{Cauchy}^+(0, \sigma)$ (?)
- (2) Generate $\sqrt{\psi_1}, \ldots, \sqrt{\psi_p}$ iid from $\operatorname{Cauchy}^+(0, \tau)$.
- (3) Generate independent $\theta_i \sim N(0, \psi_i)$.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Generate $\tau \sim \text{Cauchy}^+(0, \sigma)$ (?)
- (2) Generate $\sqrt{\psi_1}, \ldots, \sqrt{\psi_p}$ iid from $\operatorname{Cauchy}^+(0, \tau)$.
- (3) Generate independent $\theta_i \sim N(0, \psi_i)$.

Motivation

if $\theta \sim N(0,\psi)$ and $Y|\theta \sim N(\theta,1)$, then $\theta|Y,\psi \sim N\big((1-\kappa)Y,1-\kappa\big)$ for $\kappa=1/(1+\psi)$. This suggests a prior for κ that concentrates near 0 or 1.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Generate $\tau \sim \text{Cauchy}^+(0, \sigma)$ (?)
- (2) Generate $\sqrt{\psi_1}, \ldots, \sqrt{\psi_p}$ iid from $\operatorname{Cauchy}^+(0, \tau)$.
- (3) Generate independent $\theta_i \sim N(0, \psi_i)$.

Motivation

if $\theta \sim N(0,\psi)$ and $Y|\theta \sim N(\theta,1)$, then $\theta|Y,\psi \sim N\big((1-\kappa)Y,1-\kappa\big)$ for $\kappa=1/(1+\psi)$. This suggests a prior for κ that concentrates near 0 or 1.

prior shrinkage factor

prior of θ_i

posterior mean of θ_i as function of Y_i

Other sparsity priors

- Bayesian LASSO: $\theta_1, \ldots, \theta_p$ iid from a mixture of Laplace (λ) distributions over $\lambda \sim \sqrt{\Gamma(a,b)}$.
- Bayesian bridge: Same but with Laplace replaced with a density $\propto e^{-|\lambda y|^{\alpha}}$.
- Normal-Gamma: $\theta_1, \ldots, \theta_p$ iid from a Gamma scale mixture of Gaussians. Correlated multivariate normal-Gamma: $\theta = C\phi$ for a $p \times k$ -matrix C and ϕ with independent normal-Gamma $(a_i, 1/2)$ coordinates.
- Horseshoe.
- Horseshoe+.
- Normal spike.
- Scalar multiple of Dirichlet.
- Nonparametric Dirichlet.
- ...

LASSO is not Bayesian

$$\hat{\theta}_{\mathsf{LASSO}} = \underset{\theta}{\operatorname{argmin}} \Big[\|Y^n - X\theta\|^2 + \lambda_n \sum_{i=1}^p |\theta_i| \Big].$$

posterior mode for prior $\theta_i \stackrel{\text{iid}}{\sim} \text{Laplace}(\lambda_n)$, works great, but the full posterior distribution is useless.

LASSO is not Bayesian

$$\hat{\theta}_{\mathsf{LASSO}} = \underset{\theta}{\operatorname{argmin}} \Big[\|Y^n - X\theta\|^2 + \lambda_n \sum_{i=1}^p |\theta_i| \Big].$$

posterior mode for prior $\theta_i \stackrel{\text{iid}}{\sim} \text{Laplace}(\lambda_n)$, works great, but the full posterior distribution is useless.

Theorem If $\sqrt{n}/\lambda_n \to \infty$ then

$$E_0\Pi_n(\|\theta\|_2 \lesssim \sqrt{n}/\lambda_n|Y^n) \to 0.$$

 $\lambda_n = \sqrt{2 \log n}$ gives almost no "Bayesian shrinkage".

Trouble: λ_n must be large to shrink θ_i to 0, but small to model nonzero θ_i .

Frequentist Bayes

Frequentist Bayes

Assume data Y^n follows a given parameter θ_0 . Consider posterior $\Pi(\theta \in \cdot | Y^n)$ as random measure on parameter set.

We like $\Pi(\theta \in \cdot | Y^n)$:

- to put "most" of its mass near θ_0 for "most" Y^n .
- to have a spread that expresses "remaining uncertainty".
- to select the model defined by the nonzero parameters of θ_0 .

We evaluate this by probabilities or expectations, given θ_0 .

Benchmarks for recovery — sequence model

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

$$\|\theta\|_0 = \#(1 \le i \le n : \theta_i \ne 0),$$

$$\|\theta\|_2^2 = \sum_{i=1}^n |\theta_i|^2.$$

Frequentist benchmark: minimax rate relative to $\|\cdot\|_2$ over:

• black bodies $\{\theta: \|\theta\|_0 \leq s_n\}$:

$$\sqrt{s_n \log(n/s_n)}$$
.

Benchmarks for recovery — sequence model

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

$$\|\theta\|_0 = \#(1 \le i \le n : \theta_i \ne 0),$$

 $\|\theta\|_q^q = \sum_{i=1}^n |\theta_i|^q, \quad 0 < q \le 2.$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_q$ over:

• black bodies $\{\theta: \|\theta\|_0 \leq s_n\}$:

$$s_n^{1/q} \sqrt{\log(n/s_n)}.$$

Benchmarks for recovery — sequence model

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

$$\|\theta\|_0 = \#(1 \le i \le n : \theta_i \ne 0),$$

 $\|\theta\|_q^q = \sum_{i=1}^n |\theta_i|^q, \quad 0 < q \le 2.$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_q$ over:

• black bodies $\{\theta: \|\theta\|_0 \leq s_n\}$:

$$s_n^{1/q} \sqrt{\log(n/s_n)}$$
.

• weak ℓ_r -balls $m_r[s_n] := \{\theta : \max_i i |\theta_{[i]}|^r \le n(s_n/n)^r\}$:

$$n^{1/q}(s_n/n)^{r/q}\sqrt{\log(n/s_n)}^{1-r/q}.$$

Model Selection Prior

Model selection prior

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Choose s from prior π_n on $\{0, 1, 2, \dots, n\}$.
- (2) Choose $S \subset \{0, 1, \dots, n\}$ of size |S| = s at random.
- (3) Choose $\theta_S = (\theta_i : i \in S)$ from density g_S on \mathbb{R}^S and set $\theta_{S^c} = 0$.

Model selection prior

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Choose s from prior π_n on $\{0, 1, 2, \dots, n\}$.
- (2) Choose $S \subset \{0, 1, ..., n\}$ of size |S| = s at random.
- (3) Choose $\theta_S = (\theta_i : i \in S)$ from density g_S on \mathbb{R}^S and set $\theta_{S^c} = 0$.

Assume

- $\pi_n(s) \le c \pi_n(s-1)$, for some c < 1 and every s.
- $g_S = \otimes_{i \in S} e^h$, for uniformly Lipschitz $h: \mathbb{R} \to \mathbb{R}$.
- $s_n := \|\theta_0\|_0 \to \infty, n \to \infty, s_n/n \to 0.$

Examples:

- complexity prior: $\pi_n(s) \propto e^{-as\log(bn/s)}$.
- spike and slab: $\theta_i \stackrel{\text{iid}}{\sim} \tau \delta_0 + (1-\tau) \text{Lap with } \tau \sim B(1, n+1)$.

Numbers

Single data with $\theta_0=(0,\ldots,0,5,\ldots,5)$ and n=500 and $\|\theta_0\|_0=100$.

Red dots: marginal posterior medians Orange: marginal credible intervals Green dots: data points.

g standard Laplace density.

$$\pi_n(k) \propto \binom{2n-k}{n}^{0.1}$$
 (left) and $\pi_n(k) \propto \binom{2n-k}{n}$ (right).

Dimensionality of posterior distribution

Theorem [black body]
There exists M such that

$$\sup_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n \left(\theta : \|\theta\|_0 \ge M s_n | Y^n \right) \to 0.$$

Outside the space in which θ_0 lives, the posterior is concentrated in low-dimensional subspaces along the coordinate axes.

Recovery

Theorem [black body]

For every $0 < q \le 2$ and large M,

$$\sup_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n (\theta: \|\theta - \theta_0\|_q > M r_n s_n^{1/q - 1/2} |Y^n) \to 0,$$

for
$$r_n^2 = s_n \log(n/s_n) \vee \log(1/\pi_n(s_n))$$
.

If $\pi_n(s_n) \ge e^{-as_n \log(n/s_n)}$ minimax rate is attained.

Selection

$$S_{\theta} := \{1 \le i \le n : \theta_i \ne 0\}.$$

Theorem [No supersets]

$$\sup_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n(\theta; S_\theta \supset S_{\theta_0}, S_\theta \ne S_{\theta_0} | Y^n) \to 0.$$

Selection

$$S_{\theta} := \{1 \le i \le n : \theta_i \ne 0\}.$$

Theorem [No supersets]

$$\sup_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n(\theta; S_\theta \supset S_{\theta_0}, S_\theta \ne S_{\theta_0} | Y^n) \to 0.$$

Theorem [Finds big signals]

$$\inf_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n \left(\theta : S_\theta \supset \{i : |\theta_{0,i}| \gtrsim \sqrt{\log n}\} | Y^n \right) \to 1.$$

Selection

$$S_{\theta} := \{1 \le i \le n : \theta_i \ne 0\}.$$

Theorem [No supersets]

$$\sup_{\|\theta_0\|_0 \le s_n} \mathcal{E}_{\theta_0} \Pi_n(\theta; S_\theta \supset S_{\theta_0}, S_\theta \ne S_{\theta_0} | Y^n) \to 0.$$

Theorem [Finds big signals]

$$\inf_{\|\theta_0\|_0 \le s_n} \mathbb{E}_{\theta_0} \Pi_n \left(\theta : S_\theta \supset \{i : |\theta_{0,i}| \gtrsim \sqrt{\log n}\} | Y^n \right) \to 1.$$

Corollary: if *all* nonzero $|\theta_{0,i}|$ are suitably big, then posterior probability of true model S_{θ_0} tends to 1.

Bernstein-von Mises theorem

Theorem

For spike-and-Laplace(λ_n)-slab prior with $\lambda_n \sqrt{\log n}/s_n \to 0$, there are random weights \hat{w}_S ,

$$\mathbb{E}_{\theta_0} \left\| \Pi_n(\cdot | Y^n) - \sum_{S} \hat{w}_S N_{|S|}(Y_S^n, I) \otimes \delta_{S^c} \right\| \to 0.$$

Theorem

Given consistent model selection, mixture can be replaced by $N_{|S_0|}(Y_{S_{\theta_0}},I)\otimes \delta_{S_{\theta_0}^c}$.

Corollary: Given consistent model selection, credible sets for individual parameters are asymptotic confidence sets.

Numbers: mean square errors

$\overline{p_n}$		25			50			100	
A	3	4	5	3	4	5	3	4	5
PM1	111	96	94	176	165	154	267	302	307
PM2	106	92	82	169	165	152	269	280	274
EBM	103	96	93	166	177	174	271	312	319
PMed1	129	83	73	205	149	130	255	279	283
PMed2	125	86	68	187	148	129	273	254	245
EBMed	110	81	72	162	148	142	255	294	300
HT	175	142	70	339	284	135	676	564	252
НТО	136	92	84	206	159	139	306	261	245

Average $\|\hat{\theta} - \theta\|^2$ over 100 data experiments. n = 500; $\theta_0 = (0, \dots, 0, A, \dots, A)$.

PM1, *PM2*: posterior means for priors $\pi_n(k) \propto e^{-k\log(3n/k)/10}, \binom{2n-k}{n}^{0.1}$.

PMed1, *PMed2* marginal posterior medians for the same priors *EBM*, *EBMed*: empirical Bayes mean, median for Laplace prior (Johnstone et al.) *HT*, *HTO*: thresholding at $\sqrt{2 \log n}$, $\sqrt{2 \log (n/\|\theta_0\|_0)}$.

Short Summary: Bayesian method is neither better nor worse.

Horseshoe Prior

Horseshoe prior

$$Y^n \sim N_n(\theta, I)$$
, for $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$.

Constructive definition of prior Π for $\theta \in \mathbb{R}^p$:

- (1) Choose "sparsity level" $\hat{\tau}$.
- (2) Generate $\sqrt{\psi_1}, \ldots, \sqrt{\psi_n}$ iid from $\operatorname{Cauchy}^+(0, \hat{\tau})$.
- (3) Generate independent $\theta_i \sim N(0, \psi_i)$.

prior shrinkage factor

prior of θ_i

posterior mean of θ_i as function of Y_i

Estimating τ

Ad-hoc:

$$\hat{\tau}_n = \frac{\#\{|Y_i^n| \ge \sqrt{2\log n}\}}{1.1n}.$$

Empirical Bayes: For g_{τ} the prior of θ_i ,

$$\hat{\tau}_n = \underset{\tau \in [1/n,1]}{\operatorname{argmax}} \prod_{i=1}^n \int \phi(y_i - \theta) g_{\tau}(\theta) d\theta.$$

Full Bayes: τ set by a "hyper prior" (supported on [1/n, 1]).

Numbers

estimating τ

 $n=100,\,s_n$ coordinates from N(0,1/4), $n-s_n$ coordinates from N(A,1).

MSE of posterior mean as function of nonzero parameter

"
$$p_n = s_n$$
"

Short summary:

Empirical Bayes and Full Bayes outperform ad-hoc estimator.

Recovery

Horseshoe prior gives similar recovery as model selection prior.

Recovery

Horseshoe prior gives similar recovery as model selection prior.

$$au$$
 can be interpreted as $(s_n/n)\sqrt{\log(n/s_n)}$.

Credible interval:

$$\hat{C}_{ni}(L) = \left\{ \theta_i : \left| \theta_i - \frac{\hat{\theta}_i}{\ell} \right| \le L \hat{r}_i \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta_i: |\theta_i - \hat{\theta_i}| \le \hat{r_i} | Y^n) = 0.95$$

Credible interval:

$$\hat{C}_{ni}(L) = \left\{ \theta_i : \left| \theta_i - \hat{\theta}_i \right| \le L \hat{r}_i \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta_i: |\theta_i - \hat{\theta_i}| \le \hat{r_i} | Y^n) = 0.95$$

$$\mathbf{S}_{a} := \left\{ 1 \le i \le n : |\theta_{0,i}| \le 1/n \right\},$$

$$\mathbf{M}_{a} := \left\{ 1 \le i \le n : (s_{n}/n) \sqrt{\log(n/s_{n})} \ll |\theta_{0,i}| \le 0.99 \sqrt{2 \log(n/s_{n})} \right\}.$$

$$\mathbf{L}_{a} := \left\{ 1 \le i \le n : 1.001 \sqrt{2 \log n} \le |\theta_{0,i}| \right\}.$$

Credible interval:

$$\hat{C}_{ni}(L) = \left\{ \theta_i : \left| \theta_i - \hat{\theta}_i \right| \le L \hat{r}_i \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta_i: |\theta_i - \hat{\theta_i}| \le \hat{r_i} | Y^n) = 0.95$$

$$\mathbf{S}_{a} := \left\{ 1 \le i \le n : |\theta_{0,i}| \le 1/n \right\},$$

$$\mathbf{M}_{a} := \left\{ 1 \le i \le n : (s_{n}/n)\sqrt{\log(n/s_{n})} \ll |\theta_{0,i}| \le 0.99\sqrt{2\log(n/s_{n})} \right\}.$$

$$\mathbf{L}_{a} := \left\{ 1 \le i \le n : 1.001\sqrt{2\log n} \le |\theta_{0,i}| \right\}.$$

marginal credible intervals for a single Y^n with n=200 and $s_n=10$.

 $\theta_1 = \cdots = \theta_5 = 7, \theta_6 = \cdots = \theta_{10} = 1.5$. Insert: credible sets 5 to 13.

Credible interval:

$$\hat{C}_{ni}(L) = \left\{ \theta_i : \left| \theta_i - \frac{\hat{\theta}_i}{\ell} \right| \le L \hat{r}_i \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta_i: |\theta_i - \frac{\hat{\theta}_i}{\theta_i}| \le \hat{r}_i | Y^n) = 0.95$$

$$\mathbf{S}_{a} := \left\{ 1 \le i \le n : |\theta_{0,i}| \le 1/n \right\},$$

$$\mathbf{M}_{a} := \left\{ 1 \le i \le n : (s_{n}/n) \sqrt{\log(n/s_{n})} \ll |\theta_{0,i}| \le 0.99 \sqrt{2 \log(n/s_{n})} \right\}.$$

$$\mathbf{L}_{a} := \left\{ 1 \le i \le n : 1.001 \sqrt{2 \log n} \le |\theta_{0,i}| \right\}.$$

Theorem For any $\gamma > 0$ and $\|\theta_0\|_0 \le s_n$,

$$P_{\theta_0}\left(\frac{1}{\#\mathbf{S}_a}\#\{i\in\mathbf{S}_a:\theta_{0,i}\in\hat{C}_{ni}(L_{S,\gamma})\}\geq 1-\gamma\right)\to 1,$$

$$P_{\theta_0}\left(\theta_{0,i}\notin\hat{C}_{ni}(L)\right)\to 1,\quad\text{for any }L>0\text{ and }i\in\mathbf{M}_a,$$

$$P_{\theta_0}\left(\frac{1}{\#\mathbf{L}_a}\#\{i\in\mathbf{L}_a:\theta_{0,i}\in\hat{C}_{ni}(L_{L,\gamma})\}\geq 1-\gamma\right)\to 1.$$

Few false discoveries; most easy discoveries made. Intermediate discoveries not made.

General principle:

size of honest confidence set is determined by biggest model.

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If $P_{\theta_0}(C_n(Y^n)\ni\theta_0)\geq 0.95$, all $\theta_0\in\mathbb{R}^n$, then $\operatorname{diam}(C_n(Y^n))\gtrsim n^{-1/4}$, some θ_0 .

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If $P_{\theta_0}(C_n(Y^n)\ni\theta_0)\geq 0.95$, all $\theta_0\in\mathbb{R}^n$, then $\operatorname{diam}(C_n(Y^n))\gtrsim n^{-1/4}$, some θ_0 .

Theorem [Nickl, van de Geer, 2013]

If $s_{1,n} \ll s_{2,n}$ and

 $diam(C_n(Y^n))$ is of optimal size, uniformly in $\|\theta_0\|_0 \le s_{i,n}$ for i = 1, 2, then $C_n(Y^n)$ cannot have uniform coverage over $\{\theta_0: \|\theta_0\|_0 \le s_{2,n}\}$.

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If $P_{\theta_0}(C_n(Y^n)\ni\theta_0)\geq 0.95$, all $\theta_0\in\mathbb{R}^n$, then $\operatorname{diam}(C_n(Y^n))\gtrsim n^{-1/4}$, some θ_0 .

Theorem [Nickl, van de Geer, 2013]

If $s_{1,n} \ll s_{2,n}$ and

 $\operatorname{diam}(C_n(Y^n))$ is of optimal size, uniformly in $\|\theta_0\|_0 \leq s_{i,n}$ for i = 1, 2, then $C_n(Y^n)$ cannot have uniform coverage over $\{\theta_0: \|\theta_0\|_0 \leq s_{2,n}\}$.

Since the Bayesian procedure adapts to sparsity, its credible sets *cannot* be honest confidence sets.

[Optimal size is $((s_{i,n}/n)\log(n/s_{i,n}))^{1/2}$.]

Simultaneous credible balls — impossibility of adaptation — restricting the parameter

Coverage only when θ_0 does not cause too much shrinkage.

DEFINITION [self-similarity]

For $s = \|\theta_0\|_0$ at least 0.001s coordinates of θ_0 satisfy

$$|\theta_{0,i}| \ge 1.001\sqrt{2\log(n/s)}.$$

Simultaneous credible balls — impossibility of adaptation — restricting the parameter

Coverage only when θ_0 does not cause too much shrinkage.

DEFINITION [self-similarity]

For $s = \|\theta_0\|_0$ at least 0.001s coordinates of θ_0 satisfy

$$|\theta_{0,i}| \ge 1.001\sqrt{2\log(n/s)}.$$

DEFINITION [excessive-bias restriction, Belitser & Nurushev, 2015]

 $\|\theta\|_0 \le s$ and $\exists \tilde{s}$ with $\tilde{s} \asymp \# \left(i: |\theta_{0,i}| \ge 1.001 \sqrt{2 \log(n/\tilde{s})}\right)$ and

$$\sum_{i:|\theta_{0,i}|\leq 1.001\sqrt{2\log(n/\tilde{s})}} \theta_{0,i}^2 \lesssim \tilde{s}\log(n/\tilde{s}).$$

Excessive-bias restriction implies self-similarity. (Self-similarity allows to tighten up the sets S, M, L.)

Simultaneous credible balls

Credible ball:

$$\hat{C}_n(L) = \left\{ \theta : \left\| \theta - \hat{\theta} \right\| \le L \hat{r} \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta: \|\theta - \hat{\theta}\| \le \hat{r} | Y^n) = 0.95$$

Simultaneous credible balls

Credible ball:

$$\hat{C}_n(L) = \left\{ \theta : \left\| \theta - \frac{\hat{\theta}}{\theta} \right\| \le L\hat{r} \right\}$$

$$\hat{\theta} = E(\theta | Y^n)$$

$$\Pi(\theta: \|\theta - \frac{\hat{\theta}}{\theta}\| \le \hat{r} | Y^n) = 0.95$$

Theorem

If $s_n/n \to 0$, for sufficiently large L,

$$\liminf_{n\to\infty} \inf_{\theta_0\in\mathsf{EBR}[s_n]} P_{\theta_0}\Big(\theta_0\in\hat{C}_n(L)\Big) \geq 1-\alpha.$$

EBR[s]: vectors θ_0 that satisfy excessive bias restriction.

Numbers

coverage

n=400. s_n ("= p") nonzero means from $\mathcal{N}(A,1).$

average interval length

 $n=400.\ s_n$ ("= p") nonzero means from $\mathcal{N}(A,1).$

Short summary: empirical and full Bayes work well

Conclusions

Bayesian sparse estimation gives excellent recovery.

For valid simultaneous credible sets need a fraction of nonzero parameters above the "universal threshold".

The danger of failing uncertainty quantification is not finding nonzero coordinates. Discoveries are real.

Co-authors

Subhashis Ghoshal

Ismael Castillo

Stéphanie van der Pas

Willem Kruijer

Bartek Knapik

Gwenael Leday

Harry van Zanten

Johannes Schmidt-Hieber

Botond Szabo

Magnus Münch

Bas Kleijn

Fengnan Gao

Gino Kpogbezan

Wessel van Wieringen

Compatibility and coherence

$$||X|| := \max_{j} ||X_{.,j}||.$$

Compatibility number $\phi(S)$ for $S \subset \{1, \dots, p\}$ is: $\inf_{\|\theta_{S^c}\|_1 \le 7\|\theta\|_1} \frac{\|X\theta\|_2 \sqrt{|S|}}{\|X\|\|\theta_S\|_1}$.

$$\inf_{\|\theta_{S^c}\|_1 \le 7\|\theta\|_1} \frac{\|X\theta\|_2 \sqrt{|S|}}{\|X\| \|\theta_S\|_1}.$$

Compatibility in s_n -sparse vectors means:

$$\inf_{\theta: \|\theta\|_0 \le 5s_n} \frac{\|X\theta\|_2 \sqrt{|S_{\theta}|}}{\|X\| \|\theta\|_1} \gg 0.$$

Strong compatibility in s_n -sparse vectors means: $\inf_{\theta \cdot ||\theta||_0 < 5s_n} \frac{||X\theta||_2}{||X|| ||\theta||_2} \gg 0.$

s:
$$\inf_{\theta: \|\theta\|_0 \le 5s_n} \frac{\|X\theta\|_2}{\|X\| \|\theta\|_2} \gg 0.$$

Mutual coherence means:

$$s_n \max_{i \neq j} |\operatorname{cor}(X_{.i}, X_{.j})| \ll 1.$$

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.

Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.

Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:

Completely compatible, with zero mutual coherence number.

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.

Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:

Completely compatible, with zero mutual coherence number.

Response model:

If $X_{i,j}$ are i.i.d. random variables, then coherence if $s_n \lesssim \sqrt{n/\log p}$.

- if $\log p = o(n)$ and $X_{i,j}$ are bounded.
- if $\log p = o(n^{\alpha/(4+\alpha)})$ and $E^{tX_{i,n}^{\alpha}} < \infty$.

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.

Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:

Completely compatible, with zero mutual coherence number.

Response model:

If $X_{i,j}$ are i.i.d. random variables, then coherence if $s_n \lesssim \sqrt{n/\log p}$.

- if $\log p = o(n)$ and $X_{i,j}$ are bounded.
- if $\log p = o(n^{\alpha/(4+\alpha)})$ and $E^{tX_{i,n}^{\alpha}} < \infty$.

 $C = X^T X/n$: Compatibility, but no coherence if

- $C_{i,j} = \rho^{|i-j|}$, for $0 < \rho < 1$, and p = n.
- C is block diagonal with fixed block sizes.