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Sparsity — sequence model

A sparse model has many parameters, but most of them are (nearly) zero.



Sparsity — sequence model

A sparse model has many parameters, but most of them are (nearly) zero.

In this lecture, (Bayesian) theory for:

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

• n independent observations Y n
1 , . . . , Y

n
n .

• n unknowns θ1, . . . , θn.

• Y n
i = θi + εi, for standard normal noise εi.

• n is large.

• many of θ1, . . . , θn are (almost) zero.
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Given Y n| θ ∼ Nn(θ, I) the obvious estimator of θ is Y n.

ML, UMVU, best-equivariant, minimax
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Theorem [Stein, 1956]

If n ≥ 3, then there exists T such that ∀θ ∈ R
n,

Eθ‖T (Y n)− θ‖2 < Eθ‖Y n − θ‖2.
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If n ≥ 3, then there exists T such that ∀θ ∈ R
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Eθ‖T (Y n)− θ‖2 < Eθ‖Y n − θ‖2.

Empirical Bayes method [Robbins, 1960s]:

• Working hypothesis: θ1, . . . , θn
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• Estimate G using Y n, pretending this is true.

• T (Y n): = EĜ(Y n)(θ|Y n).



History

Given Y n| θ ∼ Nn(θ, I) the obvious estimator of θ is Y n.

ML, UMVU, best-equivariant, minimax , but inadmissible.

Theorem [Stein, 1956]

If n ≥ 3, then there exists T such that ∀θ ∈ R
n,

Eθ‖T (Y n)− θ‖2 < Eθ‖Y n − θ‖2.

Empirical Bayes method [Robbins, 1960s]:

• Working hypothesis: θ1, . . . , θn
iid∼G.

• Estimate G using Y n, pretending this is true.

• T (Y n): = EĜ(Y n)(θ|Y n).

For large n the gain can be substantial,

(“borrowing of strength”),

and be targeted to special subsets of Rn, e.g. sparse vectors.



Sparsity — regression

Y n| θ ∼ Nn(Xn×pθ, σ
2I), for θ = (θ1, . . . , θp) ∈ R

p

• Y n
i : measurement on individual i = 1, . . . , n.

• Xij score of individual i on feature j = 1, . . . p.
• θj effect of feature j.
• sparse if only few features matter.

If p > n, then sparsity is necessary to recover θ,
and X must be sparse-invertible, e.g.:

Compatibility: inf
θ:|Sθ |≤5sn

‖Xθ‖2
√

|Sθ|
‖X‖‖θ‖1

≫ 0.

Mutual coherence:
sn max

i 6=j

∣

∣cor(X.i, X.j)
∣

∣ ≪ 1.

sn = true number of nonzero coordinates.



Sparsity — RNA sequencing

• Yi,j : RNA expression count of tag j = 1, . . . , p in tissue i = 1, . . . , n,

• xi: covariate(s) of tissue i, e.g. 0 or 1 for normal or cancer.

• sparse if only few tags (genes) matter.

Yi,j ∼ (zero-inflated) negative binomial, with

EYi,j = eαj+βjxi , varYi,j = EYi,j
(

1 + EYi,je
−φj

)

.

distribution of βj ’s and φj ’s estimated by Empirical Bayes

[Smyth & Robinson et al., van der Wiel, Leday, van Wieringen, & vdV et al., 12]



Sparsity — Gaussian graphical model

Data n iid copies of Y p| θ ∼ Np(0, θ
−1)

• Y p
j = value of individual on feature j.

• precision matrix θ gives partial correlations:

cor(Y p
i , Y

p
j |Y

p
k : k 6= i, j) = − θi,j

√

θi,iθj,j
.

Apoptosis network

• nodes 1, 2, . . . , p
• edge (i, j) present iff θi,j 6= 0
• sparse if few edges
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Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

We express this in the prior, and

apply the standard (full or empirical) Bayesian machine.

Prior θ ∼ Π, and data Y n| θ ∼ p(·| θ), give posterior:

dΠ(θ|Y n) ∝ p(Y n| θ) dΠ(θ).



Bayesian sparsity — Gaussian graphical model

Apoptosis network

• nodes 1, 2, . . . , p
• edge (i, j) present iff θi,j 6= 0
• sparse if few edges

For given incidence matrix (Pi,j) use different priors for

(θi,j :Pi,j = 0) and (θi,j :Pi,j = 1).

[Leday, Kpogbezan, vdV, van Wieringen, van der Wiel (2016, 17).]



Model selection prior

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior on {0, 1, 2, . . . , p}.

(2) Choose S ⊂ {0, 1, . . . , p} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) ∼ gS and set θSc = 0.

[Mitchell & Beachamp (88), George, George & McCulloch, Yuan, Berger, Johnstone & Silverman, Richardson et al., Johnson & Rossell,

Chao Gao, ...]



Model selection prior

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior on {0, 1, 2, . . . , p}.

(2) Choose S ⊂ {0, 1, . . . , p} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) ∼ gS and set θSc = 0.

Example: spike and slab

• Choose θ1, . . . , θp i.i.d. from τδ0 + (1− τ)G.

• Put a prior on τ , e.g. Beta(1, p+ 1).

Then s ∼ binomial and gS = ⊗i∈Sg.

[Mitchell & Beachamp (88), George, George & McCulloch, Yuan, Berger, Johnstone & Silverman, Richardson et al., Johnson & Rossell,

Chao Gao, ...]



Horseshoe prior

Constructive definition of prior Π for θ ∈ R
p:

(1) Generate τ ∼ Cauchy+(0, σ) (?)

(2) Generate
√
ψ1, . . . ,

√

ψp iid from Cauchy+(0, τ).
(3) Generate independent θi ∼ N(0, ψi).
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for κ = 1/(1 + ψ).
This suggests a prior for κ that concentrates near 0 or 1.

[Carvalho & Polson & Scott, 10.]



Horseshoe prior

Constructive definition of prior Π for θ ∈ R
p:

(1) Generate τ ∼ Cauchy+(0, σ) (?)

(2) Generate
√
ψ1, . . . ,

√

ψp iid from Cauchy+(0, τ).
(3) Generate independent θi ∼ N(0, ψi).

Motivation

if θ ∼ N(0, ψ) and Y | θ ∼ N(θ, 1),
then θ|Y, ψ ∼ N

(

(1− κ)Y, 1− κ
)

for κ = 1/(1 + ψ).
This suggests a prior for κ that concentrates near 0 or 1.

prior shrinkage factor prior of θi posterior mean of θi as function of Yi

[Carvalho & Polson & Scott, 10.]



Other sparsity priors

• Bayesian LASSO: θ1, . . . , θp iid from a mixture of Laplace (λ) distributions over

λ ∼
√

Γ(a, b).

• Bayesian bridge: Same but with Laplace replaced with a density ∝ e−|λy|α .

• Normal-Gamma: θ1, . . . , θp iid from a Gamma scale mixture of Gaussians. Correlated

multivariate normal-Gamma: θ = Cφ for a p× k-matrix C and φ with independent

normal-Gamma (ai, 1/2) coordinates.

• Horseshoe.

• Horseshoe+.

• Normal spike.

• Scalar multiple of Dirichlet.

• Nonparametric Dirichlet.

• ...

[Park & Casella 08, Polson & Scott, Griffin & Brown 10, 12, Carvalho & Polson & Scott, 10, George& Rockova 13, Bhattacharya et al.

12,...]



LASSO is not Bayesian

θ̂LASSO = argmin
θ

[

‖Y n −Xθ‖2 + λn

p
∑

i=1

|θi|
]

.

posterior mode for prior θi
iid∼Laplace(λn),

works great,

but the full posterior distribution is useless.



LASSO is not Bayesian

θ̂LASSO = argmin
θ

[

‖Y n −Xθ‖2 + λn

p
∑

i=1

|θi|
]

.

posterior mode for prior θi
iid∼Laplace(λn),

works great,

but the full posterior distribution is useless.

Theorem If
√
n/λn → ∞ then

E0Πn

(

‖θ‖2 .
√
n/λn|Y n

)

→ 0.

λn =
√
2 logn gives almost no “Bayesian shrinkage”.

Trouble: λn must be large to shrink θi to 0, but small to model nonzero θi.



Frequentist Bayes



Frequentist Bayes

Assume data Y n follows a given parameter θ0.
Consider posterior Π(θ ∈ ·|Y n) as random measure on parameter set.

We like Π(θ ∈ ·|Y n):

• to put “most” of its mass near θ0 for “most” Y n.

• to have a spread that expresses “remaining uncertainty”.

• to select the model defined by the nonzero parameters of θ0.

We evaluate this by probabilities or expectations, given θ0.



Benchmarks for recovery — sequence model

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

‖θ‖0 = #(1 ≤ i ≤ n: θi 6= 0),

‖θ‖22 =
n
∑

i=1

|θi|2.

Frequentist benchmark: minimax rate relative to ‖ · ‖2 over:

• black bodies {θ: ‖θ‖0 ≤ sn}:

√

sn log(n/sn).

[(if sn → ∞ with sn/n → 0.) Donoho & Johnstone, Golubev, Johnstone and Silverman, Abramovich et al.,. . .]
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Benchmarks for recovery — sequence model

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

‖θ‖0 = #(1 ≤ i ≤ n: θi 6= 0),

‖θ‖qq =
n
∑

i=1

|θi|q, 0 < q ≤ 2.

Frequentist benchmarks: minimax rate relative to ‖ · ‖q over:

• black bodies {θ: ‖θ‖0 ≤ sn}:

s1/qn

√

log(n/sn).

• weak ℓr-balls mr[sn]: = {θ: maxi i|θ[i]|r ≤ n(sn/n)
r}:

n1/q(sn/n)
r/q

√

log(n/sn)
1−r/q

.

[(if sn → ∞ with sn/n → 0.) Donoho & Johnstone, Golubev, Johnstone and Silverman, Abramovich et al.,. . .]
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Model selection prior

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior πn on {0, 1, 2, . . . , n}.

(2) Choose S ⊂ {0, 1, . . . , n} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.



Model selection prior

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose s from prior πn on {0, 1, 2, . . . , n}.

(2) Choose S ⊂ {0, 1, . . . , n} of size |S| = s at random.

(3) Choose θS = (θi: i ∈ S) from density gS on R
S and set θSc = 0.

Assume

• πn(s) ≤ c πn(s− 1), for some c < 1 and every s.
• gS = ⊗i∈Se

h, for uniformly Lipschitz h:R → R.

• sn: = ‖θ0‖0 → ∞, n→ ∞, sn/n→ 0.

Examples:

• complexity prior : πn(s) ∝ e−as log(bn/s).

• spike and slab: θi
iid∼ τδ0 + (1− τ)Lap with τ ∼ B(1, n+ 1).



Numbers

Single data with θ0 = (0, . . . , 0, 5, . . . , 5) and n = 500 and ‖θ0‖0 = 100.

Red dots: marginal posterior medians

Orange: marginal credible intervals

Green dots: data points.
g standard Laplace density.

πn(k) ∝
(

2n−k
n

)0.1
(left) and πn(k) ∝

(

2n−k
n

)

(right).



Dimensionality of posterior distribution

Theorem [black body]

There exists M such that

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ‖0 ≥Msn|Y n
)

→ 0.

Outside the space in which θ0 lives,

the posterior is concentrated

in low-dimensional subspaces along the coordinate axes.



Recovery

Theorem [black body]

For every 0 < q ≤ 2 and large M ,

sup
‖θ0‖0≤sn

Eθ0 Πn

(

θ: ‖θ − θ0‖q > Mrns
1/q−1/2
n |Y n

)

→ 0,

for r2n = sn log(n/sn) ∨ log(1/πn(sn)).

If πn(sn) ≥ e−asn log(n/sn) minimax rate is attained.



Selection

Sθ: = {1 ≤ i ≤ n: θi 6= 0}.

Theorem [No supersets]

sup
‖θ0‖0≤sn

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.
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Theorem [No supersets]

sup
‖θ0‖0≤sn

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.

Theorem [Finds big signals]

inf
‖θ0‖0≤sn

Eθ0Πn

(

θ:Sθ ⊃ {i: |θ0,i| &
√

logn}|Y n
)

→ 1.



Selection

Sθ: = {1 ≤ i ≤ n: θi 6= 0}.

Theorem [No supersets]

sup
‖θ0‖0≤sn

Eθ0Πn(θ:Sθ ⊃ Sθ0 , Sθ 6= Sθ0 |Y n) → 0.

Theorem [Finds big signals]

inf
‖θ0‖0≤sn

Eθ0Πn

(

θ:Sθ ⊃ {i: |θ0,i| &
√

logn}|Y n
)

→ 1.

Corollary: if all nonzero |θ0,i| are suitably big,

then posterior probability of true model Sθ0 tends to 1.



Bernstein-von Mises theorem

Theorem

For spike-and-Laplace(λn)-slab prior with λn
√
logn/sn → 0, there are

random weights ŵS ,

Eθ0

∥

∥

∥
Πn(·|Y n)−

∑

S

ŵSN|S|(Y
n
S , I)⊗ δSc

∥

∥

∥
→ 0.

Theorem

Given consistent model selection, mixture can be replaced by

N|S0|(YSθ0
, I)⊗ δSc

θ0
.

Corollary: Given consistent model selection, credible sets for

individual parameters are asymptotic confidence sets.



Numbers: mean square errors

pn 25 50 100

A 3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307

PM2 106 92 82 169 165 152 269 280 274

EBM 103 96 93 166 177 174 271 312 319

PMed1 129 83 73 205 149 130 255 279 283

PMed2 125 86 68 187 148 129 273 254 245

EBMed 110 81 72 162 148 142 255 294 300

HT 175 142 70 339 284 135 676 564 252

HTO 136 92 84 206 159 139 306 261 245

Average ‖θ̂ − θ‖2 over 100 data experiments.
n = 500; θ0 = (0, . . . , 0, A, . . . , A).

PM1, PM2: posterior means for priors πn(k) ∝ e−k log(3n/k)/10,
(

2n−k
n

)0.1
.

PMed1, PMed2 marginal posterior medians for the same priors
EBM, EBMed: empirical Bayes mean, median for Laplace prior (Johnstone et al.)

HT, HTO: thresholding at
√

2 logn,
√

2 log(n/‖θ0‖0).

Short Summary: Bayesian method is neither better nor worse.
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Horseshoe prior

Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n.

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose “sparsity level” τ̂ .

(2) Generate
√
ψ1, . . . ,

√
ψn iid from Cauchy+(0, τ̂).

(3) Generate independent θi ∼ N(0, ψi).

prior shrinkage factor prior of θi posterior mean of θi as function of Yi

[Carvalho & Polson & Scott, 10.]



Estimating τ

Ad-hoc:

τ̂n =
#{|Y n

i | ≥
√
2 logn}

1.1n
.

Empirical Bayes: For gτ the prior of θi,

τ̂n = argmax
τ∈[1/n,1]

n
∏

i=1

∫

φ(yi − θ)gτ (θ) dθ.

Full Bayes: τ set by a “hyper prior” (supported on [1/n, 1]).



Numbers

estimating τ

sn →
n = 100, sn coordinates from N(0, 1/4),

n − sn coordinates from N(A, 1).

MSE of posterior mean

as function of nonzero parameter

“pn = sn”

Short summary:

Empirical Bayes and Full Bayes outperform ad-hoc estimator.



Recovery

Horseshoe prior gives similar recovery as model selection prior.



Recovery

Horseshoe prior gives similar recovery as model selection prior.

τ can be interpreted as (sn/n)
√

log(n/sn).



Credible intervals

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95



Credible intervals

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

,

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

.

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}

.



Credible intervals

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

,

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

.

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}

.

marginal credible intervals for a single Y n with n = 200 and sn = 10.

θ1 = · · · = θ5 = 7, θ6 = · · · = θ10 = 1.5. Insert: credible sets 5 to 13.



Credible intervals

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

,

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

.

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}

.

Theorem For any γ > 0 and ‖θ0‖0 ≤ sn,

Pθ0

( 1

#Sa
#{i ∈ Sa: θ0,i ∈ Ĉni(LS,γ)} ≥ 1− γ

)

→ 1,

Pθ0

(

θ0,i /∈ Ĉni(L)) → 1, for any L > 0 and i ∈ Ma,

Pθ0

( 1

#La

#{i ∈ La: θ0,i ∈ Ĉni(LL,γ)} ≥ 1− γ
)

→ 1.

Few false discoveries; most easy discoveries made.

Intermediate discoveries not made.



Simultaneous credible balls — impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.



Simultaneous credible balls — impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If Pθ0(Cn(Y
n)∋θ0) ≥ 0.95, all θ0 ∈ R

n, then diam(Cn(Y
n)) & n−1/4, some

θ0.



Simultaneous credible balls — impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If Pθ0(Cn(Y
n)∋θ0) ≥ 0.95, all θ0 ∈ R

n, then diam(Cn(Y
n)) & n−1/4, some

θ0.

Theorem [Nickl, van de Geer, 2013]

If s1,n ≪ s2,n and

diam(Cn(Y
n)) is of optimal size, uniformly in ‖θ0‖0 ≤ si,n for i = 1, 2,

then Cn(Y
n) cannot have uniform coverage over {θ0: ‖θ0‖0 ≤ s2,n}.



Simultaneous credible balls — impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.

Theorem [Li, 1987]

If Pθ0(Cn(Y
n)∋θ0) ≥ 0.95, all θ0 ∈ R

n, then diam(Cn(Y
n)) & n−1/4, some

θ0.

Theorem [Nickl, van de Geer, 2013]

If s1,n ≪ s2,n and

diam(Cn(Y
n)) is of optimal size, uniformly in ‖θ0‖0 ≤ si,n for i = 1, 2,

then Cn(Y
n) cannot have uniform coverage over {θ0: ‖θ0‖0 ≤ s2,n}.

Since the Bayesian procedure adapts to sparsity,

its credible sets cannot be honest confidence sets.

[Optimal size is
(

(si,n/n) log(n/si,n)
)1/2

.]



Simultaneous credible balls — impossibility of adaptation —

restricting the parameter

Coverage only when θ0 does not cause too much shrinkage.

DEFINITION [self-similarity]

For s = ‖θ0‖0 at least 0.001s coordinates of θ0 satisfy

|θ0,i| ≥ 1.001
√

2 log(n/s).



Simultaneous credible balls — impossibility of adaptation —

restricting the parameter

Coverage only when θ0 does not cause too much shrinkage.

DEFINITION [self-similarity]

For s = ‖θ0‖0 at least 0.001s coordinates of θ0 satisfy

|θ0,i| ≥ 1.001
√

2 log(n/s).

DEFINITION [excessive-bias restriction, Belitser & Nurushev, 2015]

‖θ‖0 ≤ s and ∃s̃ with s̃ ≍ #
(

i: |θ0,i| ≥ 1.001
√

2 log(n/s̃)
)

and

∑

i:|θ0,i|≤1.001
√

2 log(n/s̃)

θ20,i . s̃ log(n/s̃).

Excessive-bias restriction implies self-similarity.

(Self-similarity allows to tighten up the sets S,M,L.)



Simultaneous credible balls

Credible ball:

Ĉn(L) =
{

θ:
∥

∥θ − θ̂
∥

∥≤ Lr̂
}

θ̂ = E(θ|Y n)
Π
(

θ: ‖θ − θ̂‖ ≤ r̂|Y n
)

= 0.95



Simultaneous credible balls

Credible ball:

Ĉn(L) =
{

θ:
∥

∥θ − θ̂
∥

∥≤ Lr̂
}

θ̂ = E(θ|Y n)
Π
(

θ: ‖θ − θ̂‖ ≤ r̂|Y n
)

= 0.95

Theorem

If sn/n→ 0, for sufficiently large L,

lim inf
n→∞

inf
θ0∈EBR[sn]

Pθ0

(

θ0 ∈ Ĉn(L)
)

≥ 1− α.

EBR[s]: vectors θ0 that satisfy excessive bias restriction.



Numbers

coverage

n = 400. sn (“= p”) nonzero means from

N (A, 1).

average interval length

n = 400. sn (“= p”) nonzero means from

N (A, 1).

Short summary:

empirical and full Bayes work well



Conclusions

Bayesian sparse estimation gives excellent recovery.

For valid simultaneous credible sets need

a fraction of nonzero parameters above the “universal threshold”.

The danger of failing uncertainty quantification is

not finding nonzero coordinates.

Discoveries are real.
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Compatibility and coherence

‖X‖: = max
j

‖X.,j‖.

Compatibility number φ(S) for S ⊂ {1, . . . , p} is: inf
‖θSc‖1≤7‖θ‖1

‖Xθ‖2
√

|S|
‖X‖‖θS‖1

.

Compatibility in sn-sparse vectors means: inf
θ:‖θ‖0≤5sn

‖Xθ‖2
√

|Sθ|
‖X‖‖θ‖1

≫ 0.

Strong compatibility in sn-sparse vectors means: inf
θ:‖θ‖0≤5sn

‖Xθ‖2
‖X‖‖θ‖2

≫ 0.

Mutual coherence means: sn max
i 6=j

∣

∣cor(X.i, X.j)
∣

∣ ≪ 1.
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Mutual coherence ⇒ Strong compatibility ⇒ Compatibility.

Mutual coherence is easy to understand and gives best recovery

results, but is very restrictive.
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n/ log p.
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Compatibility and coherence — examples

Mutual coherence ⇒ Strong compatibility ⇒ Compatibility.

Mutual coherence is easy to understand and gives best recovery

results, but is very restrictive.

Sequence model:

Completely compatible, with zero mutual coherence number.

Response model:

If Xi,j are i.i.d. random variables, then coherence if sn .
√

n/ log p.
• if log p = o(n) and Xi,j are bounded.

• if log p = o(nα/(4+α)) and EtXα
i,n <∞.

C = XTX/n: Compatibility, but no coherence if

• Ci,j = ρ|i−j|, for 0 < ρ < 1, and p = n.

• C is block diagonal with fixed block sizes.
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