Bayesian Statistics in High Dimensions

Lecture 2: Sparsity

Aad van der Vaart
Universiteit Leiden, Netherlands

47th John H. Barrett Memorial Lectures, Knoxville, Tenessee, May 2017

Contents

Sparsity
Bayesian Sparsity
Frequentist Bayes
Model Selection Prior
Horseshoe Prior

Sparsity

Sparsity - sequence model

A sparse model has many parameters, but most of them are (nearly) zero.

Sparsity - sequence model

A sparse model has many parameters, but most of them are (nearly) zero.

In this lecture, (Bayesian) theory for:

$$
Y^{n} \sim N_{n}(\theta, I), \quad \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

- n independent observations $Y_{1}^{n}, \ldots, Y_{n}^{n}$.
- n unknowns $\theta_{1}, \ldots, \theta_{n}$.
- $Y_{i}^{n}=\theta_{i}+\varepsilon_{i}$, for standard normal noise ε_{i}.
- n is large.
- many of $\theta_{1}, \ldots, \theta_{n}$ are (almost) zero.

History

Given $Y^{n} \mid \theta \sim N_{n}(\theta, I)$ the obvious estimator of θ is Y^{n}. ML, UMVU, best-equivariant, minimax

History

Given $Y^{n} \mid \theta \sim N_{n}(\theta, I)$ the obvious estimator of θ is Y^{n}. ML, UMVU, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]
If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^{n}$,

$$
\mathrm{E}_{\theta}\left\|T\left(Y^{n}\right)-\theta\right\|^{2}<\mathrm{E}_{\theta}\left\|Y^{n}-\theta\right\|^{2} .
$$

History

Given $Y^{n} \mid \theta \sim N_{n}(\theta, I)$ the obvious estimator of θ is Y^{n}. ML, UMVU, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]
If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^{n}$,

$$
\mathrm{E}_{\theta}\left\|T\left(Y^{n}\right)-\theta\right\|^{2}<\mathrm{E}_{\theta}\left\|Y^{n}-\theta\right\|^{2} .
$$

Empirical Bayes method [Robbins, 1960s]:

- Working hypothesis: $\theta_{1}, \ldots, \theta_{n} \stackrel{\text { iid }}{\sim} G$.
- Estimate G using Y^{n}, pretending this is true.
- $T\left(Y^{n}\right):=\mathrm{E}_{\hat{G}\left(Y^{n}\right)}\left(\theta \mid Y^{n}\right)$.

History

Given $Y^{n} \mid \theta \sim N_{n}(\theta, I)$ the obvious estimator of θ is Y^{n}. ML, UMVU, best-equivariant, minimax, but inadmissible.

Theorem [Stein, 1956]
If $n \geq 3$, then there exists T such that $\forall \theta \in \mathbb{R}^{n}$,

$$
\mathrm{E}_{\theta}\left\|T\left(Y^{n}\right)-\theta\right\|^{2}<\mathrm{E}_{\theta}\left\|Y^{n}-\theta\right\|^{2} .
$$

Empirical Bayes method [Robbins, 1960s]:

- Working hypothesis: $\theta_{1}, \ldots, \theta_{n} \stackrel{\text { iid }}{\sim} G$.
- Estimate G using Y^{n}, pretending this is true.
- $T\left(Y^{n}\right):=\mathrm{E}_{\hat{G}\left(Y^{n}\right)}\left(\theta \mid Y^{n}\right)$.

For large n the gain can be substantial, ("borrowing of strength"), and be targeted to special subsets of \mathbb{R}^{n}, e.g. sparse vectors.

Sparsity — regression

$$
Y^{n} \mid \theta \sim N_{n}\left(X_{n \times p} \theta, \sigma^{2} I\right), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}
$$

- Y_{i}^{n} : measurement on individual $i=1, \ldots, n$.
- $X_{i j}$ score of individual i on feature $j=1, \ldots p$.
- θ_{j} effect of feature j.
- sparse if only few features matter.

If $p>n$, then sparsity is necessary to recover θ, and X must be sparse-invertible, e.g.:

Compatibility:

Mutual coherence:

$$
\begin{aligned}
& \inf _{\theta:\left|S_{\theta}\right| \leq 5 s_{n}} \frac{\|X \theta\|_{2} \sqrt{\left|S_{\theta}\right|}}{\|X\|\|\theta\|_{1}} \gg 0 . \\
& s_{n} \max _{i \neq j}\left|\operatorname{cor}\left(X_{. i}, X_{. j}\right)\right| \ll 1 .
\end{aligned}
$$

$s_{n}=$ true number of nonzero coordinates.

Sparsity — RNA sequencing

- $Y_{i, j}$: RNA expression count of tag $j=1, \ldots, p$ in tissue $i=1, \ldots, n$,
- x_{i} : covariate(s) of tissue i, e.g. 0 or 1 for normal or cancer.
- sparse if only few tags (genes) matter.

$$
\begin{gathered}
Y_{i, j} \sim(\text { zero-inflated) negative binomial, with } \\
\mathrm{E} Y_{i, j}=e^{\alpha_{j}+\beta_{j} x_{i}}, \quad \operatorname{var} Y_{i, j}=\mathrm{E} Y_{i, j}\left(1+\mathrm{E} Y_{i, j} e^{-\phi_{j}}\right) .
\end{gathered}
$$

distribution of β_{j} 's and ϕ_{j} 's estimated by Empirical Bayes

Sparsity — Gaussian graphical model

Data n iid copies of $Y^{p} \mid \theta \sim N_{p}\left(0, \theta^{-1}\right)$

- $Y_{j}^{p}=$ value of individual on feature j.
- precision matrix θ gives partial correlations:

$$
\operatorname{cor}\left(Y_{i}^{p}, Y_{j}^{p} \mid Y_{k}^{p}: k \neq i, j\right)=-\frac{\theta_{i, j}}{\sqrt{\theta_{i, i} \theta_{j, j}}}
$$

- nodes $1,2, \ldots, p$
- edge (i, j) present iff $\theta_{i, j} \neq 0$
- sparse if few edges

Bayesian Sparsity

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

Bayesian sparsity

A sparse model has many parameters, but most of them are (nearly) zero.

We express this in the prior, and apply the standard (full or empirical) Bayesian machine.

$$
\begin{aligned}
& \text { Prior } \theta \sim \Pi \text {, and data } Y^{n} \mid \theta \sim p(\cdot \mid \theta) \text {, give posterior: } \\
& \qquad d \Pi\left(\theta \mid Y^{n}\right) \propto p\left(Y^{n} \mid \theta\right) d \Pi(\theta) .
\end{aligned}
$$

Bayesian sparsity — Gaussian graphical model

- nodes $1,2, \ldots, p$
- edge (i, j) present iff $\theta_{i, j} \neq 0$
- sparse if few edges

Apoptosis network

For given incidence matrix ($P_{i, j}$) use different priors for

$$
\left(\theta_{i, j}: P_{i, j}=0\right) \quad \text { and } \quad\left(\theta_{i, j}: P_{i, j}=1\right) .
$$

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, p\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right) \sim g_{S}$ and set $\theta_{S^{c}}=0$.

Model selection prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior on $\{0,1,2, \ldots, p\}$.
(2) Choose $S \subset\{0,1, \ldots, p\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right) \sim g_{S}$ and set $\theta_{S^{c}}=0$.

Example: spike and slab

- Choose $\theta_{1}, \ldots, \theta_{p}$ i.i.d. from $\tau \delta_{0}+(1-\tau) G$.
- Put a prior on τ, e.g. $\operatorname{Beta}(1, p+1)$.

Then $s \sim$ binomial and $g_{S}=\otimes_{i \in S} g$.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Generate $\tau \sim$ Cauchy $^{+}(0, \sigma)$ (?)
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{p}}$ iid from Cauchy ${ }^{+}(0, \tau)$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Generate $\tau \sim$ Cauchy $^{+}(0, \sigma)$ (?)
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{p}}$ iid from Cauchy ${ }^{+}(0, \tau)$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

Motivation
if $\theta \sim N(0, \psi)$ and $Y \mid \theta \sim N(\theta, 1)$, then $\theta \mid Y, \psi \sim N((1-\kappa) Y, 1-\kappa)$ for $\kappa=1 /(1+\psi)$.
This suggests a prior for κ that concentrates near 0 or 1.

Horseshoe prior

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Generate $\tau \sim$ Cauchy $^{+}(0, \sigma)$ (?)
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{p}}$ iid from Cauchy ${ }^{+}(0, \tau)$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

Motivation
if $\theta \sim N(0, \psi)$ and $Y \mid \theta \sim N(\theta, 1)$, then $\theta \mid Y, \psi \sim N((1-\kappa) Y, 1-\kappa)$ for $\kappa=1 /(1+\psi)$.
This suggests a prior for κ that concentrates near 0 or 1.

prior shrinkage factor

prior of $\theta_{i} \quad$ posterior mean of θ_{i} as function of Y_{i}

Other sparsity priors

- Bayesian LASSO: $\theta_{1}, \ldots, \theta_{p}$ iid from a mixture of Laplace (λ) distributions over $\lambda \sim \sqrt{\Gamma(a, b)}$.
- Bayesian bridge: Same but with Laplace replaced with a density $\propto e^{-|\lambda y|^{\alpha}}$.
- Normal-Gamma: $\theta_{1}, \ldots, \theta_{p}$ iid from a Gamma scale mixture of Gaussians. Correlated multivariate normal-Gamma: $\theta=C \phi$ for a $p \times k$-matrix C and ϕ with independent normal-Gamma ($a_{i}, 1 / 2$) coordinates.
- Horseshoe.
- Horseshoe+.
- Normal spike.
- Scalar multiple of Dirichlet.
- Nonparametric Dirichlet.

LASSO is not Bayesian

$$
\hat{\theta}_{\mathrm{LASSO}}=\underset{\theta}{\operatorname{argmin}}\left[\left\|Y^{n}-X \theta\right\|^{2}+\lambda_{n} \sum_{i=1}^{p}\left|\theta_{i}\right|\right]
$$

posterior mode for prior $\theta_{i} \stackrel{\text { iid }}{\sim}$ Laplace $\left(\lambda_{n}\right)$, works great, but the full posterior distribution is useless.

LASSO is not Bayesian

$$
\hat{\theta}_{\mathrm{LASSO}}=\underset{\theta}{\operatorname{argmin}}\left[\left\|Y^{n}-X \theta\right\|^{2}+\lambda_{n} \sum_{i=1}^{p}\left|\theta_{i}\right|\right] .
$$

posterior mode for prior $\theta_{i} \stackrel{\text { id }}{\sim} \operatorname{Laplace}\left(\lambda_{n}\right)$, works great, but the full posterior distribution is useless.

Theorem If $\sqrt{n} / \lambda_{n} \rightarrow \infty$ then

$$
\mathrm{E}_{0} \Pi_{n}\left(\|\theta\|_{2} \lesssim \sqrt{n} / \lambda_{n} \mid Y^{n}\right) \rightarrow 0
$$

$\lambda_{n}=\sqrt{2 \log n}$ gives almost no "Bayesian shrinkage".

Trouble: λ_{n} must be large to shrink θ_{i} to 0 , but small to model nonzero θ_{i}.

Frequentist Bayes

Frequentist Bayes

Assume data Y^{n} follows a given parameter θ_{0}.
Consider posterior $\Pi\left(\theta \in \cdot \mid Y^{n}\right)$ as random measure on parameter set.

We like $\Pi\left(\theta \in \cdot \mid Y^{n}\right)$:

- to put "most" of its mass near θ_{0} for "most" Y^{n}.
- to have a spread that expresses "remaining uncertainty".
- to select the model defined by the nonzero parameters of θ_{0}.

We evaluate this by probabilities or expectations, given θ_{0}.

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{2}^{2}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{2} .
\end{aligned}
$$

Frequentist benchmark: minimax rate relative to $\|\cdot\|_{2}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
\sqrt{s_{n} \log \left(n / s_{n}\right)}
$$

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_{q}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
s_{n}^{1 / q} \sqrt{\log \left(n / s_{n}\right)}
$$

Benchmarks for recovery - sequence model

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

$$
\begin{aligned}
& \|\theta\|_{0}=\#\left(1 \leq i \leq n: \theta_{i} \neq 0\right), \\
& \|\theta\|_{q}^{q}=\sum_{i=1}^{n}\left|\theta_{i}\right|^{q}, \quad 0<q \leq 2 .
\end{aligned}
$$

Frequentist benchmarks: minimax rate relative to $\|\cdot\|_{q}$ over:

- black bodies $\left\{\theta:\|\theta\|_{0} \leq s_{n}\right\}$:

$$
s_{n}^{1 / q} \sqrt{\log \left(n / s_{n}\right)}
$$

- weak ℓ_{r}-balls $m_{r}\left[s_{n}\right]:=\left\{\theta: \max _{i} i\left|\theta_{[i]}\right|^{r} \leq n\left(s_{n} / n\right)^{r}\right\}:$

$$
n^{1 / q}\left(s_{n} / n\right)^{r / q}{\sqrt{\log \left(n / s_{n}\right)^{1-r / q}}}^{1-}
$$

Model Selection Prior

Model selection prior

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, n\}$.
(2) Choose $S \subset\{0,1, \ldots, n\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Model selection prior

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose s from prior π_{n} on $\{0,1,2, \ldots, n\}$.
(2) Choose $S \subset\{0,1, \ldots, n\}$ of size $|S|=s$ at random.
(3) Choose $\theta_{S}=\left(\theta_{i}: i \in S\right)$ from density g_{S} on \mathbb{R}^{S} and set $\theta_{S^{c}}=0$.

Assume

- $\pi_{n}(s) \leq c \pi_{n}(s-1)$, for some $c<1$ and every s.
- $g_{S}=\otimes_{i \in S} e^{h}$, for uniformly Lipschitz $h: \mathbb{R} \rightarrow \mathbb{R}$.
- $s_{n}:=\left\|\theta_{0}\right\|_{0} \rightarrow \infty, n \rightarrow \infty, s_{n} / n \rightarrow 0$.

Examples:

- complexity prior: $\pi_{n}(s) \propto e^{-a s \log (b n / s)}$.
- spike and slab: $\theta_{i} \stackrel{\text { iid }}{\sim} \tau \delta_{0}+(1-\tau)$ Lap with $\tau \sim B(1, n+1)$.

Numbers

Single data with $\theta_{0}=(0, \ldots, 0,5, \ldots, 5)$ and $n=500$ and $\left\|\theta_{0}\right\|_{0}=100$. Red dots: marginal posterior medians
Orange: marginal credible intervals

Green dots: data points.

g standard Laplace density.

$$
\pi_{n}(k) \propto\binom{2 n-k}{n}^{0.1}(\text { left }) \text { and } \pi_{n}(k) \propto\binom{2 n-k}{n} \text { (right). }
$$

Dimensionality of posterior distribution

Theorem [black body]
There exists M such that

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\|\theta\|_{0} \geq M s_{n} \mid Y^{n}\right) \rightarrow 0 .
$$

Outside the space in which θ_{0} lives, the posterior is concentrated in low-dimensional subspaces along the coordinate axes.

Recovery

Theorem [black body]
For every $0<q \leq 2$ and large M,

$$
\sup _{\theta_{0} \|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta:\left\|\theta-\theta_{0}\right\|_{q}>M r_{n} s_{n}^{1 / q-1 / 2} \mid Y^{n}\right) \rightarrow 0
$$

for $r_{n}^{2}=s_{n} \log \left(n / s_{n}\right) \vee \log \left(1 / \pi_{n}\left(s_{n}\right)\right)$.
If $\pi_{n}\left(s_{n}\right) \geq e^{-a s_{n} \log \left(n / s_{n}\right)}$ minimax rate is attained.

Selection

$S_{\theta}:=\left\{1 \leq i \leq n: \theta_{i} \neq 0\right\}$.
Theorem [No supersets]

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

Selection

$S_{\theta}:=\left\{1 \leq i \leq n: \theta_{i} \neq 0\right\}$.
Theorem [No supersets]

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

Theorem [Finds big signals]

$$
\inf _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset\left\{i:\left|\theta_{0, i}\right| \gtrsim \sqrt{\log n}\right\} \mid Y^{n}\right) \rightarrow 1
$$

Selection

$S_{\theta}:=\left\{1 \leq i \leq n: \theta_{i} \neq 0\right\}$.
Theorem [No supersets]

$$
\sup _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset S_{\theta_{0}}, S_{\theta} \neq S_{\theta_{0}} \mid Y^{n}\right) \rightarrow 0
$$

Theorem [Finds big signals]

$$
\inf _{\left\|\theta_{0}\right\|_{0} \leq s_{n}} \mathrm{E}_{\theta_{0}} \Pi_{n}\left(\theta: S_{\theta} \supset\left\{i:\left|\theta_{0, i}\right| \gtrsim \sqrt{\log n}\right\} \mid Y^{n}\right) \rightarrow 1
$$

Corollary: if all nonzero $\left|\theta_{0, i}\right|$ are suitably big, then posterior probability of true model $S_{\theta_{0}}$ tends to 1.

Bernstein-von Mises theorem

Theorem
For spike-and-Laplace $\left(\lambda_{n}\right)$-slab prior with $\lambda_{n} \sqrt{\log n} / s_{n} \rightarrow 0$, there are random weights \hat{w}_{S},

$$
\mathrm{E}_{\theta_{0}}\left\|\Pi_{n}\left(\cdot \mid Y^{n}\right)-\sum_{S} \hat{w}_{S} N_{|S|}\left(Y_{S}^{n}, I\right) \otimes \delta_{S^{c}}\right\| \rightarrow 0 .
$$

Theorem
Given consistent model selection, mixture can be replaced by $N_{\left|S_{0}\right|}\left(Y_{S_{\theta_{0}}}, I\right) \otimes \delta_{S_{\theta_{0}}^{c}}$.

Corollary: Given consistent model selection, credible sets for individual parameters are asymptotic confidence sets.

Numbers: mean square errors

p_{n}	25			50			100		
A	3	4	5	3	4	5	3	4	5
PM1	111	96	94	176	165	154	267	302	307
PM2	106	92	82	169	165	152	269	280	274
EBM	103	96	93	166	177	174	271	312	319
PMed1	129	83	73	205	149	130	255	279	283
PMed2	125	86	68	187	148	129	273	254	245
EBMed	110	81	72	162	148	142	255	294	300
HT	175	142	70	339	284	135	676	564	252
HTO	136	92	84	206	159	139	306	261	245

Average $\|\hat{\theta}-\theta\|^{2}$ over 100 data experiments.

$$
n=500 ; \theta_{0}=(0, \ldots, 0, A, \ldots, A)
$$

PM1, PM2: posterior means for priors $\pi_{n}(k) \propto e^{-k \log (3 n / k) / 10},\binom{2 n-k}{n}^{0.1}$.
PMed1, PMed2 marginal posterior medians for the same priors
EBM, EBMed: empirical Bayes mean, median for Laplace prior (Johnstone et al.)
HT, HTO: thresholding at $\sqrt{2 \log n}, \sqrt{2 \log \left(n /\left\|\theta_{0}\right\|_{0}\right)}$.

Short Summary: Bayesian method is neither better nor worse.

Horseshoe Prior

Horseshoe prior

$$
Y^{n} \sim N_{n}(\theta, I), \text { for } \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} .
$$

Constructive definition of prior Π for $\theta \in \mathbb{R}^{p}$:
(1) Choose "sparsity level" $\hat{\tau}$.
(2) Generate $\sqrt{\psi_{1}}, \ldots, \sqrt{\psi_{n}}$ iid from Cauchy ${ }^{+}(0, \hat{\tau})$.
(3) Generate independent $\theta_{i} \sim N\left(0, \psi_{i}\right)$.

prior shrinkage factor

prior of $\theta_{i} \quad$ posterior mean of θ_{i} as function of Y_{i}

Estimating τ

Ad-hoc:

$$
\hat{\tau}_{n}=\frac{\#\left\{\left|Y_{i}^{n}\right| \geq \sqrt{2 \log n}\right\}}{1.1 n}
$$

Empirical Bayes: For g_{τ} the prior of θ_{i},

$$
\hat{\tau}_{n}=\underset{\tau \in[1 / n, 1]}{\operatorname{argmax}} \prod_{i=1}^{n} \int \phi\left(y_{i}-\theta\right) g_{\tau}(\theta) d \theta
$$

Full Bayes: τ set by a "hyper prior" (supported on $[1 / n, 1]$).

Numbers

estimating τ

Estimate of τ

$$
\begin{array}{ll}
A=7 \Leftrightarrow & \text { MMLE }= \\
A=4 \Leftrightarrow & \text { Simple }
\end{array}
$$ A $=4$ - \because Simple -.

$$
s_{n} \longrightarrow
$$

$n=100, s_{n}$ coordinates from $N(0,1 / 4)$,

$$
n-s_{n} \text { coordinates from } N(A, 1)
$$

MSE of posterior mean

 as function of nonzero parameter

Short summary:
 Empirical Bayes and Full Bayes outperform ad-hoc estimator.

Recovery

Horseshoe prior gives similar recovery as model selection prior.

Recovery

Horseshoe prior gives similar recovery as model selection prior.
τ can be interpreted as $\left(s_{n} / n\right) \sqrt{\log \left(n / s_{n}\right)}$.

Credible intervals

Credible interval:

$$
\hat{C}_{n i}(L)=\left\{\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq L \hat{r}_{i}\right\}
$$

$$
\begin{gathered}
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right) \\
\Pi\left(\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq \hat{r}_{i} \mid Y^{n}\right)=0.95 \\
\hline
\end{gathered}
$$

Credible intervals

Credible interval:

$$
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right)
$$

$$
\begin{aligned}
\hat{C}_{n i}(L) & =\left\{\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq L \hat{r}_{i}\right\} \quad \Pi\left(\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq \hat{r}_{i} \mid Y^{n}\right)=0.95 \\
\mathbf{S}_{a} & :=\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \leq 1 / n\right\}, \\
\mathbb{M}_{a} & :=\left\{1 \leq i \leq n:\left(s_{n} / n\right) \sqrt{\log \left(n / s_{n}\right)} \ll\left|\theta_{0, i}\right| \leq 0.99 \sqrt{2 \log \left(n / s_{n}\right)}\right\} . \\
\mathbb{L}_{a} & :=\left\{1 \leq i \leq n: 1.001 \sqrt{2 \log n} \leq\left|\theta_{0, i}\right|\right\} .
\end{aligned}
$$

Credible intervals

Credible interval:

$$
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right)
$$

$$
\begin{aligned}
\hat{C}_{n i}(L) & =\left\{\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq L \hat{r_{i}}\right\} \quad \Pi\left(\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq \hat{r}_{i} \mid Y^{n}\right)=0.95 \\
\mathbf{S}_{a} & :=\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \leq 1 / n\right\}, \\
\mathbf{M}_{a} & :=\left\{1 \leq i \leq n:\left(s_{n} / n\right) \sqrt{\log \left(n / s_{n}\right)} \ll\left|\theta_{0, i}\right| \leq 0.99 \sqrt{2 \log \left(n / s_{n}\right)}\right\} . \\
\mathbb{L}_{a} & :=\left\{1 \leq i \leq n: 1.001 \sqrt{2 \log n} \leq\left|\theta_{0, i}\right|\right\} .
\end{aligned}
$$

Marginal 95\% credible sets, empirical Bayes with MMLE

marginal credible intervals for a single Y^{n} with $n=200$ and $s_{n}=10$.
$\theta_{1}=\cdots=\theta_{5}=7, \theta_{6}=\cdots=\theta_{10}=1.5$. Insert: credible sets 5 to 13.

Credible intervals

Credible interval:

$$
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right)
$$

$$
\begin{aligned}
\hat{C}_{n i}(L) & =\left\{\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq L \hat{r_{i}}\right\} \quad \Pi\left(\theta_{i}:\left|\theta_{i}-\hat{\theta}_{i}\right| \leq \hat{r}_{i} \mid Y^{n}\right)=0.95 \\
\mathbf{S}_{a} & :=\left\{1 \leq i \leq n:\left|\theta_{0, i}\right| \leq 1 / n\right\}, \\
\mathbf{M}_{a} & :=\left\{1 \leq i \leq n:\left(s_{n} / n\right) \sqrt{\log \left(n / s_{n}\right)} \ll\left|\theta_{0, i}\right| \leq 0.99 \sqrt{2 \log \left(n / s_{n}\right)}\right\} . \\
\mathbb{L}_{a} & :=\left\{1 \leq i \leq n: 1.001 \sqrt{2 \log n} \leq\left|\theta_{0, i}\right|\right\} .
\end{aligned}
$$

Theorem For any $\gamma>0$ and $\left\|\theta_{0}\right\|_{0} \leq s_{n}$,

$$
\begin{aligned}
& P_{\theta_{0}}\left(\frac{1}{\# \mathbf{S}_{a}} \#\left\{i \in \mathbf{S}_{a}: \theta_{0, i} \in \hat{C}_{n i}\left(L_{S, \gamma}\right)\right\} \geq 1-\gamma\right) \rightarrow 1, \\
& \quad P_{\theta_{0}}\left(\theta_{0, i} \notin \hat{C}_{n i}(L)\right) \rightarrow 1, \quad \text { for any } L>0 \text { and } i \in \mathbb{M}_{a}, \\
& P_{\theta_{0}}\left(\frac{1}{\# \mathrm{~L}_{\mathrm{a}}} \#\left\{i \in \mathrm{~L}_{a}: \theta_{0, i} \in \hat{C}_{n i}\left(L_{L, \gamma}\right)\right\} \geq 1-\gamma\right) \rightarrow 1 .
\end{aligned}
$$

Few false discoveries; most easy discoveries made. Intermediate discoveries not made.

Simultaneous credible balls - impossibility of adaptation

General principle:
size of honest confidence set is determined by biggest model.

Simultaneous credible balls - impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.
Theorem [Li, 1987]
If $P_{\theta_{0}}\left(C_{n}\left(Y^{n}\right) \ni \theta_{0}\right) \geq 0.95$, all $\theta_{0} \in \mathbb{R}^{n}$, then $\operatorname{diam}\left(C_{n}\left(Y^{n}\right)\right) \gtrsim n^{-1 / 4}$, some θ_{0}.

Simultaneous credible balls - impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.
Theorem [Li, 1987]
If $P_{\theta_{0}}\left(C_{n}\left(Y^{n}\right) \ni \theta_{0}\right) \geq 0.95$, all $\theta_{0} \in \mathbb{R}^{n}$, then $\operatorname{diam}\left(C_{n}\left(Y^{n}\right)\right) \gtrsim n^{-1 / 4}$, some θ_{0}.

Theorem [Nickk, van de Geer, 2013]
If $s_{1, n} \ll s_{2, n}$ and
$\operatorname{diam}\left(C_{n}\left(Y^{n}\right)\right)$ is of optimal size, uniformly in $\left\|\theta_{0}\right\|_{0} \leq s_{i, n}$ for $i=1,2$, then $C_{n}\left(Y^{n}\right)$ cannot have uniform coverage over $\left\{\theta_{0}:\left\|\theta_{0}\right\|_{0} \leq s_{2, n}\right\}$.

Simultaneous credible balls - impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model.
Theorem [Li, 1987]
If $P_{\theta_{0}}\left(C_{n}\left(Y^{n}\right) \ni \theta_{0}\right) \geq 0.95$, all $\theta_{0} \in \mathbb{R}^{n}$, then $\operatorname{diam}\left(C_{n}\left(Y^{n}\right)\right) \gtrsim n^{-1 / 4}$, some θ_{0}.

Theorem [Nick, van de Geer, 2013]
If $s_{1, n} \ll s_{2, n}$ and
$\operatorname{diam}\left(C_{n}\left(Y^{n}\right)\right)$ is of optimal size, uniformly in $\left\|\theta_{0}\right\|_{0} \leq s_{i, n}$ for $i=1,2$, then $C_{n}\left(Y^{n}\right)$ cannot have uniform coverage over $\left\{\theta_{0}:\left\|\theta_{0}\right\|_{0} \leq s_{2, n}\right\}$.

Since the Bayesian procedure adapts to sparsity, its credible sets cannot be honest confidence sets.
[Optimal size is $\left(\left(s_{i, n} / n\right) \log \left(n / s_{i, n}\right)\right)^{1 / 2}$.]

Simultaneous credible balls - impossibility of adaptation restricting the parameter

Coverage only when θ_{0} does not cause too much shrinkage.
DEFINITION [self-similarity]
For $s=\left\|\theta_{0}\right\|_{0}$ at least $0.001 s$ coordinates of θ_{0} satisfy

$$
\left|\theta_{0, i}\right| \geq 1.001 \sqrt{2 \log (n / s)}
$$

Simultaneous credible balls - impossibility of adaptation restricting the parameter

Coverage only when θ_{0} does not cause too much shrinkage.
DEFINITION [self-similarity]
For $s=\left\|\theta_{0}\right\|_{0}$ at least $0.001 s$ coordinates of θ_{0} satisfy

$$
\left|\theta_{0, i}\right| \geq 1.001 \sqrt{2 \log (n / s)}
$$

DEFINITION [excessive-bias restriction, Belitser \& Nurushev, 2015] $\|\theta\|_{0} \leq s$ and $\exists \tilde{s}$ with $\tilde{s} \asymp \#\left(i:\left|\theta_{0, i}\right| \geq 1.001 \sqrt{2 \log (n / \tilde{s})}\right)$ and

$$
\sum_{i:\left|\theta_{0, i}\right| \leq 1.001 \sqrt{2 \log (n / \tilde{s})}} \theta_{0, i}^{2} \lesssim \tilde{s} \log (n / \tilde{s})
$$

Excessive-bias restriction implies self-similarity. (Self-similarity allows to tighten up the sets S, M, L.)

Simultaneous credible balls

Credible ball:

$$
\hat{C}_{n}(L)=\{\theta:\|\theta-\hat{\theta}\| \leq L \hat{r}\}
$$

$$
\begin{gathered}
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right) \\
\Pi\left(\theta:\|\theta-\hat{\theta}\| \leq \hat{r} \mid Y^{n}\right)=0.95
\end{gathered}
$$

Simultaneous credible balls

Credible ball:

$$
\hat{C}_{n}(L)=\{\theta:\|\theta-\hat{\theta}\| \leq L \hat{r}\}
$$

$$
\begin{gathered}
\hat{\theta}=\mathrm{E}\left(\theta \mid Y^{n}\right) \\
\Pi\left(\theta:\|\theta-\hat{\theta}\| \leq \hat{r} \mid Y^{n}\right)=0.95
\end{gathered}
$$

Theorem
If $s_{n} / n \rightarrow 0$, for sufficiently large L,

$$
\liminf _{n \rightarrow \infty} \inf _{\theta_{0} \in E B R\left[s_{n}\right]} P_{\theta_{0}}\left(\theta_{0} \in \hat{C}_{n}(L)\right) \geq 1-\alpha
$$

Numbers

coverage

$n=400 . s_{n}("=p$ ") nonzero means from $\mathcal{N}(A, 1)$.
average interval length

$n=400 . s_{n}("=p$ ") nonzero means from $\mathcal{N}(A, 1)$.

Short summary: empirical and full Bayes work well

Conclusions

(1)

Bayesian sparse estimation gives excellent recovery.
For valid simultaneous credible sets need a fraction of nonzero parameters above the "universal threshold".

The danger of failing uncertainty quantification is not finding nonzero coordinates.

Discoveries are real.

Co-authors

Subhashis Ghoshal
I Ismael Castillo

Bartek Knapik

Suzanne Sniekers

Mark van de Wiel

Harry van Zanten

Botond Szabo

 Rengnan Gao

Gino Kpogbezan

Wessel van Wieringen

Compatibility and coherence

$$
\|X\|:=\max _{j}\left\|X_{., j}\right\|
$$

Compatibility number $\phi(S)$ for $S \subset\{1, \ldots, p\}$ is: $\inf _{\left\|\theta_{S^{c}}\right\|_{1} \leq 7\|\theta\|_{1}} \frac{\|X \theta\|_{2} \sqrt{|S|}}{\|X\|\left\|\theta_{S}\right\|_{1}}$.
Compatibility in s_{n}-sparse vectors means: $\quad \inf _{\theta:\|\theta\|_{0} \leq 5 s_{n}} \frac{\|X \theta\|_{2} \sqrt{\left|S_{\theta}\right|}}{\|X\|\|\theta\|_{1}} \gg 0$.
Strong compatibility in s_{n}-sparse vectors means: $\inf _{\theta:\|\theta\|_{0} \leq 5 s_{n}} \frac{\|X \theta\|_{2}}{\|X\|\|\theta\|_{2}} \gg 0$.

Mutual coherence means:

$$
s_{n} \max _{i \neq j}\left|\operatorname{cor}\left(X_{. i}, X_{. j}\right)\right| \ll 1
$$

Compatibility and coherence - examples

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.
Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Compatibility and coherence - examples

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.
Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:
Completely compatible, with zero mutual coherence number.

Compatibility and coherence - examples

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.
Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:
Completely compatible, with zero mutual coherence number.
Response model:
If $X_{i, j}$ are i.i.d. random variables, then coherence if $s_{n} \lesssim \sqrt{n / \log p}$.

- if $\log p=o(n)$ and $X_{i, j}$ are bounded.
- if $\log p=o\left(n^{\alpha /(4+\alpha)}\right)$ and $\mathrm{E}^{t X_{i, n}^{\alpha}}<\infty$.

Compatibility and coherence - examples

Mutual coherence \Rightarrow Strong compatibility \Rightarrow Compatibility.

> Mutual coherence is easy to understand and gives best recovery results, but is very restrictive.

Sequence model:
Completely compatible, with zero mutual coherence number.
Response model:
If $X_{i, j}$ are i.i.d. random variables, then coherence if $s_{n} \lesssim \sqrt{n / \log p}$.

- if $\log p=o(n)$ and $X_{i, j}$ are bounded.
- if $\log p=o\left(n^{\alpha /(4+\alpha)}\right)$ and $\mathrm{E}^{t X_{i, n}^{\alpha}}<\infty$.
$C=X^{T} X / n$: Compatibility, but no coherence if
- $C_{i, j}=\rho^{|i-j|}$, for $0<\rho<1$, and $p=n$.
- C is block diagonal with fixed block sizes.

