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Introduction



The Bayesian paradigm

• A parameter θ is generated according to a prior distribution Π.

• Given θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X, θ).

• Given observed data x the statistician computes the conditional

distribution of θ given X = x, the posterior distribution:

Π(θ ∈ B|X).



The Bayesian paradigm

• A parameter θ is generated according to a prior distribution Π.

• Given θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X, θ).

• Given observed data x the statistician computes the conditional

distribution of θ given X = x, the posterior distribution:

Π(θ ∈ B|X).

If Pθ is given by a density x 7→ pθ(x), then Bayes’s rule gives

dΠ(θ|X) ∝ pθ(X) dΠ(θ).



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then

Beta(X + 1, n−X + 1).

P(a ≤ Θ ≤ b) = b− a, 0 < a < b < 1,

P(X = x|Θ = θ) =

(
n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n,

dΠ(θ|X) = θX(1− θ)n−X · 1.
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution

on an function space. So is the posterior, given the data.

Bayes’s formula does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are

simulated from these distributions.
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Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the

parameter set dependent on X.

RECOVERY

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.
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RECOVERY
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Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the

parameter set dependent on X.

RECOVERY

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

UNCERTAINTY QUANTIFICATION

We like the “spread” of Π(θ ∈ ·|X) to indicate remaining uncertainty.
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Asymptotic setting: data X(n) where the information increases as n → ∞.

• We want Πn(·|X(n)) δθ0 , at a good rate.

• We like the coverage of a set of large posterior mass to be large.



Parametric models Laplace, Bernstein, von Mises, Le Cam 1989

Suppose the data are a random sample X1, . . . , Xn from a density

x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector

θ ∈ R
d (e.g. θ 7→ √

pθ continuously differentiable as map in L2(µ)).

Theorem. Under Pn
θ0

, for any prior with positive density,

∥
∥
∥Π(·|X1, . . . , Xn)−Nd

(
θ̃n,

1

n
I−1
θ0

)
(·)

∥
∥
∥ → 0.

Here θ̃n are estimators with
√
n(θ̃n − θ0) N(0, I−1

θ0
).
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Parametric models Laplace, Bernstein, von Mises, Le Cam 1989

Suppose the data are a random sample X1, . . . , Xn from a density

x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector

θ ∈ R
d (e.g. θ 7→ √

pθ continuously differentiable as map in L2(µ)).

Theorem. Under Pn
θ0

, for any prior with positive density,

∥
∥
∥Π(·|X1, . . . , Xn)−Nd

(
θ̃n,

1

n
I−1
θ0

)
(·)

∥
∥
∥ → 0.

Here θ̃n are estimators with
√
n(θ̃n − θ0) N(0, I−1

θ0
).

RECOVERY:

The posterior distribution concentrates most of its mass on balls of radius

O(1/
√
n) around θ0.

UNCERTAINTY QUANTIFICATION:

A central set of posterior probability 95 % is equivalent to the usual Wald

confidence set
{
θ:n(θ − θ̃n)

T Iθ̃n(θ − θ̃n) ≤ χ2
d,1−α

}
.



These lectures

Recovery and uncertainty quantification for nonparametric models.

LECTURE 1: Curve fitting.

LECTURE 2: High dimensional inference and sparsity.

Point of view:

How does the posterior distribution for natural priors behave, in

particular for priors that adapt to complexity in the data.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3



Recovery



Consistency

• X(n) observation in sample space (X(n),X (n)) with distribution P
(n)
θ .

• θ belongs to metric space (Θ, d).

Definition. Posterior consistency at θ0 means that for every ǫ > 0,

Eθ0Πn

(
θ: d(θ, θ0) > ǫ|X(n)

)
→ 0, n → ∞.

The main result on consistency is Schwartz’s theorem (1965).

This was adapted to nonparametric estimation in the 1990s.



Rate of contraction

• X(n) observation in sample space (X(n),X (n)) with distribution P
(n)
θ .

• θ belongs to metric space (Θ, d).

Definition. The posterior contraction rate at θ0 is ǫn → 0 such that, for

every Mn → ∞,

Eθ0Πn

(
θ: d(θ, θ0) > Mnǫn|X(n)

)
→ 0, n → ∞.



Rate of contraction

• X(n) observation in sample space (X(n),X (n)) with distribution P
(n)
θ .

• θ belongs to metric space (Θ, d).

Definition. The posterior contraction rate at θ0 is ǫn → 0 such that, for

every Mn → ∞,

Eθ0Πn

(
θ: d(θ, θ0) > Mnǫn|X(n)

)
→ 0, n → ∞.

Benchmark rate for curve fitting: A function θ of d variables that

has bounded derivatives of order β is estimable based on n ob-

servations at rate

n−β/(2β+d).

Proposition. If the contraction rate at θ0 is ǫn, then the center θ̂n of a

(nearly) smallest ball of posterior mass ≥ 1/2 satisfies d(θ̂n, θ0) = OP (ǫn).



Basic contraction theorem (Ghosal, Ghosh, vdV 2000)

• p ∼ Π, prior on set of densities P.

• X1, . . . , Xn| p iid∼ p.

K(p0; p) = P0 log
p0
p
, V (p0; p) = P0

(

log
p0
p

)2
.

Theorem. Let d convex metric bounded above by Hellinger metric such

that that there exist Pn ⊂ P and C > 0 with

(i) Πn

(
p:K(p0; p) < ǫ2n, V (p0; p) < ǫ2n

)
≥ e−Cnǫ2n , (prior mass)

(ii) logN
(
ǫn,Pn, d

)
≤ nǫ2n. (complexity)

(iii) Πn(Pc
n) ≤ e−(C+4)nǫ2n.

Then the posterior rate of contraction is ǫn ∨ n−1/2.

The covering number N(ǫ,P, d) is the minimal number of d-balls

of radius ǫ needed to cover P.



Interpretation

Let p1, . . . , pN in P be a maximal set with d(pi, pj) ≥ ǫn.

Hence, under the complexity bound,

N ≍ N(ǫn,P, d) ≥ ecnǫ
2
n .

If prior mass were evenly distributed, then each ball of radius εn/2 would

have mass of order

1/N ≤ e−cnǫ2n .

This is the order of the prior mass bound.

Suggestion:

The conditions can be satisfied for every p0 ∈ P if the prior

“distributes its mass uniformly over P, at discretization level ǫn”.



Gaussian process priors



Gaussian process prior

The law of a stochastic process W = (Wt: t ∈ T ) is a prior distribution on

the space of functions θ:T → R.
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W is a Gaussian process if

(Wt1 , . . . ,Wtk) is multivariate Gaussian, for every t1, . . . , tk.

Mean and covariance function:

t 7→ EWt, and (s, t) 7→ cov(Ws,Wt), s, t ∈ T.



Brownian motion and its primitives
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0, 1, 2 and 3 times integrated Brownian motion



Posterior contraction rates for Gaussian priors vdV+van Zanten, 2007-2011

View Gaussian process W as map into Banach space (B, ‖ · ‖).
Theorem. If statistical distances on the model combine appropriately

with the norm ‖ · ‖ of B, then the posterior rate is εn if

P
(
‖W − w0‖ < εn

)
≥ e−nε2n .



Posterior contraction rates for Gaussian priors vdV+van Zanten, 2007-2011

View Gaussian process W as map into Banach space (B, ‖ · ‖).
Theorem. If statistical distances on the model combine appropriately

with the norm ‖ · ‖ of B, then the posterior rate is εn if

P
(
‖W − w0‖ < εn

)
≥ e−nε2n .

Proof.

• The stated condition is prior mass.

• Complexity can be shown automatic due to concentration of

Gaussian processes.



Posterior contraction rates for Gaussian priors vdV+van Zanten, 2007-2011

View Gaussian process W as map into Banach space (B, ‖ · ‖).
Theorem. If statistical distances on the model combine appropriately

with the norm ‖ · ‖ of B, then the posterior rate is εn if

P
(
‖W − w0‖ < εn

)
≥ e−nε2n .

An equivalent condition is, for (H, ‖ · ‖H) the RKHS,

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn
‖h‖2H ≤ nεn

2,

where φ0(ε) = − log Π(‖W‖ < ε) is the small ball exponent.

• Both inequalities give lower bound on εn.

• The first depends on W and not on w0.



Settings

Density estimation

X1, . . . , Xn iid in [0, 1],

pθ(x) =
eθ(x)

∫ 1

0
eθ(t) dt

.

• Distance on parameter: Hellinger

on pθ.

• Norm on W : uniform.

Classification

(X1, Y1), . . . , (Xn, Yn) iid in [0, 1]× {0, 1}

Pθ(Y = 1|X = x) =
1

1 + e−θ(x)
.

• Distance on parameter: L2(G) on

Pθ. (G marginal of Xi.)

• Norm on W : L2(G).

Regression

Y1, . . . , Yn independent N(θ(xi), σ
2), for

fixed design points x1, . . . , xn.

• Distance on parameter: empirical

L2-distance on θ.

• Norm on W : empirical L2-distance.

Ergodic diffusions

(Xt: t ∈ [0, n]), ergodic, recurrent:

dXt = θ(Xt) dt+ σ(Xt) dBt.

• Distance on parameter: random

Hellinger hn (≈ ‖ · /σ‖µ0,2).

• Norm on W : L2(µ0).
(µ0 stationary measure.)



Brownian Motion prior

Theorem. If θ0 ∈ Cβ[0, 1], then the rate for Brownian motion is n−β/2 if

β ≤ 1/2 and n−1/4 for every β ≥ 1/2.

The rate is n−β/(2β+1) iff β = 1/2.



Brownian Motion prior

Theorem. If θ0 ∈ Cβ[0, 1], then the rate for Brownian motion is n−β/2 if

β ≤ 1/2 and n−1/4 for every β ≥ 1/2.

The rate is n−β/(2β+1) iff β = 1/2.

The small ball probability of Brownian motion is

P
(
‖W‖∞ < ε

)
∼ e−(1/ε)2 , ε ↓ 0.

This causes a n−1/4-rate even for very smooth truths.



Integrated Brownian Motion prior

Theorem.

If θ0 ∈ Cβ[0, 1], then the rate for (α− 1/2)-times integrated Brownian is

n−(α∧β)/(2α+d) .

The rate is n−β/(2β+1) iff β = α.

The small ball probability of integrated Brownian motion is much bigger



Integrated Brownian motion prior — adaptation by random scaling

• 1/c ∼ Γ(a, b).
• (Gt: t > 0) k-times integrated Brownian motion “released at zero”,

• Wt ∼
√
cGt.

Theorem. The prior W = (
√
cGt: 0 ≤ t ≤ 1) gives contraction rate

n−β/(2β+1) for θ0 ∈ Cβ[0, 1], for any β ∈ (0, k + 1].

Bayes solves the bandwidth problem.



Square exponential prior

cov(Gs, Gt) = e−‖s−t‖2 , s, t ∈ R
d.
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Theorem. The prior G gives a rate (logn)γ/
√
n if θ0 is analytic, but may

give a rate (logn)−γ′

if θ0 is only ordinary smooth.



Square exponential prior — adaptation by random time scaling

• cd ∼ Γ(a, b).
• (Gt: t > 0) square exponential process.

• Wt ∼ Gct.

Theorem.

• if θ0 ∈ Cβ[0, 1]d, then the rate of contraction is nearly n−β/(2β+d).

• if θ0 is supersmooth, then the rate is nearly n−1/2.
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Gaussian processes: summary

• Recovery is best if prior ‘matches’ truth.

• Mismatch slows down, but does not prevent, recovery.

• Mismatch can be prevented by using hyperparameters.



Dirichlet process mixtures



Dirichlet process [Ferguson 1973]

Definition. A Dirichlet process is a random measure P on (X,X ) such

that for every partition A1, . . . , Ak of X,

(
P (A1), . . . , P (Ak)

)
∼ Dir

(
k;α(A1), . . . , α(Ak)

)
.
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Draws from Dirichlet prior (black) and posterior based on random sample from P (red).



Dirichlet normal mixtures [Ghosal, vdV, Rousseau, Kruijer, Tokdar, Shen, 2001–2013]

• F ∼ Dirichlet process (α), independent of 1/c ∼ Γ(a, b).

• Data: X1, . . . , Xn|F, c iid∼ pF,c, for

pF,c(x) =

∫
1

c
φ
(x− z

c

)

dF (z).

Posterior mean (solid black) and 10 draws of the posterior distribution

for a sample of size 50 from a mixture of two normals (red).



Dirichlet normal mixtures [Ghosal, vdV, Rousseau, Kruijer, Tokdar, Shen, 2001–2013]

• F ∼ Dirichlet process (α), independent of 1/c ∼ Γ(a, b).

• Data: X1, . . . , Xn|F, c iid∼ pF,c, for

pF,c(x) =

∫
1

c
φ
(x− z

c

)

dF (z).

Theorem. Hellinger rate of contraction for X1, . . . , Xn
iid∼ p0 is

• nearly n−1/2 if p0 = pF0,c0 , some F0, c0.
• nearly n−β/(2β+1) if p0 has β derivatives and exponentially small tails.



Dirichlet normal mixtures [Ghosal, vdV, Rousseau, Kruijer, Tokdar, Shen, 2001–2013]

• F ∼ Dirichlet process (α), independent of 1/c ∼ Γ(a, b).

• Data: X1, . . . , Xn|F, c iid∼ pF,c, for

pF,c(x) =

∫
1

c
φ
(x− z

c

)

dF (z).

Theorem. Hellinger rate of contraction for X1, . . . , Xn
iid∼ p0 is

• nearly n−1/2 if p0 = pF0,c0 , some F0, c0.
• nearly n−β/(2β+1) if p0 has β derivatives and exponentially small tails.

Adaptation to any smoothness with a Gaussian kernel!

Kernel density estimation needs higher order kernels.

1

nc

n∑

i=1

φ
(x−Xi

c

)

= pFn,c(x).



Uncertainty quantification



Credible sets

• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional

distribution of Θ given X = x, the posterior distribution:

Π(θ ∈ B|X).

A credible set is a data-dependent set C(X) with

Π
(
θ ∈ C(X)|X) = 0.95.



Nonparametric credible sets

Nonparametric credible sets are sets in function space.

They can take many forms:

• Plots of realizations from the posterior distribution.

• Credible bands.

• Credible balls.

They are routinely produced from MCMC output.

20 realizations from the posterior.



Do credible sets correctly quantify remaining uncertainty?

Is a credible set a confidence set?

Does

Πn

(
θ ∈ C(X)|X) = 0.95.

imply

Pθ0

(
θ0 ∈ Cn(X)

)
= 0.95?



Do credible sets correctly quantify remaining uncertainty?

Is a credible set a confidence set?

Does

Πn

(
θ ∈ C(X)|X) = 0.95.

imply

Pθ0

(
θ0 ∈ Cn(X)

)
= 0.95?

Rarely!

Only if some version of the Bernstein-von Mises theorem holds.

[ Cox (1993), Freedman (2000), Leahu (2012), Castillo & Nickl (2013), Ray (2014).]



Do credible sets correctly quantify remaining uncertainty?

Does the spread in the posterior give the correct order

of the discrepancy between θ0 and the posterior mean?

20 realizations from the posterior.

Is this picture interesting?



History

Wahba, 1975 Cox, 1993

Works great! Fails miserably!



Priors of fixed regularity



Coverage requires undersmoothing

In nonparametric statistics:

oversmoothing gives big bias and small variance and hence no coverage.
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this occurs if the prior produces too smooth functions.



Coverage requires undersmoothing

In nonparametric statistics:

oversmoothing gives big bias and small variance and hence no coverage.

In nonparametric Bayesian statistics:

this occurs if the prior produces too smooth functions.

EXAMPLE

Truth: θ0(x) =
∞∑

i=1

θ0,iei(x), θ0,i ≍ i−1−2β.

Prior: x 7→
∞∑

i=1

θiei(x), θi
ind∼ N(0, i−1−2α).

Interpretation:

α = β: prior and truth match.

α > β: prior oversmoothes.

α < β: prior undersmoothes.



Example: heat equation (n=10 000)

True θ0 (black), posterior mean (red), 20 realizations from the posterior (dashed black), and posterior credible bands (green).

Left: n = 104; right: n = 108. Top to bottom: prior of increasing smoothness.

[Knapik, vdV and Van Zanten, 2013.]



Priors of flexible regularity



Bayesian adaptation

Family of priors Πc of varying smoothness; posteriors Πn,c(·|Yn).

Empirical Bayes:

• ĉn some “estimator”.

• Plug-in posterior Πn,ĉn(·|Yn).
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• Plug-in posterior Πn,ĉn(·|Yn).

Hierarchical Bayes:

• Full Bayes, with prior π on c.
• Posterior

∫
Πn,c(·|Yn)πn(c|Yn) dc.

Both methods (in particular Hierarchical Bayes) are known to give

adaptive reconstructions in some generality:

if the true function is smoother, then the reconstruction is better.



Bayesian adaptation

Family of priors Πc of varying smoothness; posteriors Πn,c(·|Yn).

Empirical Bayes:

• ĉn some “estimator”.

• Plug-in posterior Πn,ĉn(·|Yn).

Hierarchical Bayes:

• Full Bayes, with prior π on c.
• Posterior

∫
Πn,c(·|Yn)πn(c|Yn) dc.

Both methods (in particular Hierarchical Bayes) are known to give

adaptive reconstructions in some generality:

if the true function is smoother, then the reconstruction is better.

This implies that they cannot give honest confidence sets.



Honesty and impossibility of adaptation [Low, Cai & Low, Lepski, Juditzky et al.,

Robins&vdV, Bull& Nickl]

Definition. Cn(X
(n)) is an honest confidence set over a model Θ if

Pθ0

(
Cn(X

(n)) ∋ θ0
)
≥ 0.95, for all θ0 ∈ Θ.



Honesty and impossibility of adaptation [Low, Cai & Low, Lepski, Juditzky et al.,

Robins&vdV, Bull& Nickl]

Definition. Cn(X
(n)) is an honest confidence set over a model Θ if

Pθ0

(
Cn(X

(n)) ∋ θ0
)
≥ 0.95, for all θ0 ∈ Θ.

Theorem. For any Θ1 ⊂ Θ the diameter of honest Cn(X
(n)) cannot be

smaller, uniformly over Θ1, than:

(a) εn such that, for any Tn,

lim inf
n→∞

sup
θ∈Θ1

Pθ

(
d(Tn, θ) ≥ εn

)
> 0.501.

(b) rate εn of minimax testing of H0: θ ∈ Θ′
1 versus

H1: θ ∈ Θ, d(θ,Θ′
1) > εn, for any given Θ′

1 ⊂ Θ1.

(a) typically gives minimax rate of estimation for model Θ1.

(b) is determined by biggest model Θ rather than Θ1.



Credible balls — counter example — reconstructing a derivative

n = 103 n = 104 n = 106 n = 108

Gaussian prior in white noise model of smoothness determined by empirical Bayes.

Black: true curve. Blue: posterior mean. Grey: draws from posterior.

The pictures show an “inconvenient” truth.

For some (most?) truths the results are good.

[Szabo, vdV, van Zanten, 2016.]

[Not “asymptotical”: for still bigger n it can become good and bad again!]



Credible balls — counter example — reconstructing a derivative

Theorem. For n1 ≥ 2 and nj ≥ n4
j−1 for every j, and β > 0, define

θ = (θ1, θ2, ...) by

θ2i =







n
− 1+2β

1+2β+2p

j , if n
1

1+2β+2p

j ≤ i < 2n
1

1+2β+2p

j , j = 1, 2, . . . ,

0, otherwise.

Then
∑

j j
2βθ2j ≤ 1, but the 95%-credible ball Ĉn centered at posterior

mean and radius blown up by Ln ≪ nδ satisfies

lim inf Pθ

(
θ ∈ Ĉn

)
= 0.
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2βθ2j ≤ 1, but the 95%-credible ball Ĉn centered at posterior

mean and radius blown up by Ln ≪ nδ satisfies

lim inf Pθ

(
θ ∈ Ĉn

)
= 0.

• Data allows inference on θ1, . . . , θN for an effective dimen-

sion N = Nn.

• Trouble if θ1, . . . , θN does not resemble θ1, θ2, . . ..
• Example θ has repeated runs of 0s of increasing lengths.



Estimation versus uncertainty quantification

Adaptive estimation:

• Estimators can be simultaneously optimal for multiple regularities.

• (Bayesian procedures are natural.)

Uncertainty quantification:

• The size of an honest confidence set is determined by the smallest

possible regularity level.

• (Bayesian constructions can be misleading.)
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Adaptive estimation:

• Estimators can be simultaneously optimal for multiple regularities.

• (Bayesian procedures are natural.)

Uncertainty quantification:

• The size of an honest confidence set is determined by the smallest

possible regularity level.

• (Bayesian constructions can be misleading.)

SOLUTION 1: be honest ; only make conditional confidence

statements.

SOLUTION 2: determine which θ cause the trouble; argue that

these are implausible.
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Nonparametric regression

• θ:X → R; design points x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .
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• θ:X → R; design points x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

• Posterior: ~θn|Yn ∼ Nn

(
θ̂n,c, I − Σ−1

n,c

)
.

θ̂n,c = (I − Σ−1

n,c
)Yn,

Σn,c = I + cCov( ~Wn).

Examples of processes W :

• Brownian motion

• discrete Laplacian (n2L)−α ~Wn ∼ Nn(0, I), for

Lf(i) =
∑

j:j∼i

[
f(j)− f(i)

]
. [Kirichenko & van Zanten, 2015.]

• Brownian sheet

• eigenfunctions as Brownian sheet but “Sobolev eigenvalues”.



Empirical Bayes and hierarchical Bayes

• θ:X → R; x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

• Posterior: ~θn|Yn ∼ Nn

(
θ̂n,c, I − Σ−1

n,c

)
.

RISK-BASED EMPIRICAL BAYES [Wahba, 1975]: plug in:

ĉn = argmin
c

[

tr
(
(I − Σ−1

n,c)
2
)
− tr(Σ−2

n,c) +
~Y T
n Σ−2

n,c
~Yn

]

︸ ︷︷ ︸

unbiased estimate of Eθ‖θ̂n,c−~θn‖2

.
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• Marginal distribution: Yn| c ∼ Nn(0,Σn,c), Σn,c = I + cCov( ~Wn).

LIKELIHOOD-BASED EMPIRICAL BAYES: plug in MLE:

ĉn = argmin
c

[

log detΣn,c + ~Y T
n Σ−1

n,c
~Yn

]

.
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.

• Marginal distribution: Yn| c ∼ Nn(0,Σn,c), Σn,c = I + cCov( ~Wn).

LIKELIHOOD-BASED EMPIRICAL BAYES: plug in MLE:

ĉn = argmin
c

[

log detΣn,c + ~Y T
n Σ−1

n,c
~Yn

]

.

HIERARCHICAL BAYES:

• Prior: c−1 ∼ Γ(a, b).



Polished tail sequences

Definition. θ ∈ ℓ2 satisfies the polished tail condition if

1000N∑

i=N

θ2i ≥ 0.001

∞∑

i=N

θ2i , ∀ large N.

Interpretation:

every block of frequencies (N, 1000N) contains a fraction of the

total energy above frequency N .
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Polished tail sequences

Definition. θ ∈ ℓ2 satisfies the polished tail condition if

1000N∑

i=N

θ2i ≥ 0.001

∞∑

i=N

θ2i , ∀ large N.

“Everything” is polished tail..:

• For the topologist [Giné+Nickl, 2010]:

Non polished tail sequences are meagre in a natural topology.

• For the minimax expert:

Intersecting the usual models with polished tail sequences

decreases the minimax risk by at most a logarithmic factor.

• For the Bayesian:

Almost every parameter generated from a prior θi
ind∼ N(0, ci−α−1/2) is

polished tail.



Polished tail arrays

• θ1,n, . . . , θn,n coefficients of ~θn =
(
θ(x1,n), . . . , θ(xn,n)

)T
in eigenbasis

of Cov( ~Wn).
• λ1,n, . . . , λn,n eigenvalues of Cov( ~Wn).

Definition. θ satisfies the discrete polished tail condition if

∑

i:0.001≤cλi,n≤1

θ2i,n ≥ 0.001
∑

i:cλi,n≤1

θ2i,n, ∀c > 0.

In the special case that λi,n ≍ Kn/i
k this is close to polished tail.



Credible balls are honest over polished tail functions

• θ:X → R; x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

θ̂n,c(x) = E
[
θ(x)|Yn, c

]
, s2n(c) = E

[
‖~θn − θ̂n,c‖2|Yn, c

]
.

CREDIBLE BALL:

Ĉn,M =
{
θ: ‖~θn − θ̂n,ĉn‖ < Msn(ĉn)

}
,

and similar for hierarchical Bayes.

Theorem. For not too small M , uniformly in discrete polished tail

functions θ,

Pθ(θ ∈ Ĉn,M ) → 1.



Credible intervals are honest over polished tail functions

• θ:X → R; x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

θ̂n,c(x) = E
[
θ(x)|Yn, c

]
, s2n(c, x) = E

[
|θ(x)− θ̂n,c(x)|2| ~Yn, c

]
.

CREDIBLE INTERVALS:

Ĉn,M (x) =
{
θ: |θ(x)− θ̂n,ĉn(x)| < Msn(ĉn, x)},

and similar for hierarchical Bayes.

Theorem. If xj,n “uniformly spread relative to the prior”, then for not too

small M and all γ < 1, uniformly in discrete polished tail functions θ

Pθ

( 1

n

n∑

i=1

1
{
θ ∈ Ĉn,M (xi,n)

}
≥ γ

)

→ 1.



Credible bands are honest for Bayesians

• θ:X → R; x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

θ̂n,c(x) = E
[
θ(x)|Yn, c

]
, s̃2n(c) = E

[
sup
x

|θ(x)− θ̂n,c(x)|2| ~Yn, c
]
.

CREDIBLE BAND:

C̃n,M =
⋂

x

{
θ: |θ(x)− θ̂n,ĉn(x)| < M s̃n(ĉn)},

and similar for hierarchical Bayes.

Theorem. For almost any realization θ from a Gaussian process prior

and not too small M ,

Pθ

(

θ ∈ C̃n,M

)

→ 1.



Self-similarity [after Giné+Nickl, Hoffmann+Nickl, Bull, 2010-12]

Definition. A parameter θ ∈ ℓ2 is self-similar of order β if

sup
i

i2β+1θ2i ≤ M,

1000N∑

i=N

θ2i ≥ 0.001MN−2β, ∀N.

Interpretation:

θ has some energy at any frequency N relative to the total en-

ergy above N .



Credible bands can be honest for non-Bayesians

• θ:X → R; x1,n, . . . , xn,n ∈ X.

• Data: Yn| θ ∼ Nn(~θn, I), for ~θn: =
(
θ(x1,n), . . . , θ(xn,n)

)T
.

• Prior: θ ∼ √
cW , for Gaussian process W .

θ̂n,c(x) = E
[
θ(x)|Yn, c

]
, s̃2n(c, x) = E

[
sup
x

|θ(x)− θ̂n,c(x)|2| ~Yn, c
]
.

CREDIBLE BAND:

C̃n,M =
⋂

x

{
θ: |θ(x)− θ̂n,ĉn(x)| < M s̃n(ĉn)},

and similar for hierarchical Bayes.

Theorem. If θ is self-similar and Hölder of the same order, then for not

too small M ,

Pθ

(

θ ∈ C̃n,M

)

→ 1.



Closing remarks



Work in progress

Story appears to be generic, but conditions for good behaviour depend on

prior and model.

There is further work [e.g. by Szabó et al.], but much is unknown.

Posterior mean (solid black) and 10 draws of the posterior distribution

for a sample of size 50 from a mixture of two normals (red).



Summary

In nonparametric statistics uncertainty quantification is problematic for

both Bayesian and non-Bayesian methods.

It necessarily extrapolates into features of the world that cannot

be seen in the data.

Bayesians are perhaps more easily misled as they trust their

priors. In nonparametrics they should not, as the fine details of

a prior are not obvious.
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Example: heat equation

For given initial heat curve θ: [0, 1] → R let Kθ = u(·, 1) be the final curve:

for u: [0, 1]× [0, 1] → R,

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(·, 0) = θ, u(0, t) = u(1, t) = 0.

We observe a noisy version of the final curve: for Z white noise:

Yn = Kθ + n−1/2Z.

very ill-posed inverse problem: Yn,i| θi ∼ N(κiθi, n
−1) for

κi = e−i2π2
ei =

√
2 sin(iπx),

(i = 1, 2, . . .).



Credible balls — counter example — reconstructing a derivative

The Volterra operator K:L2[0, 1] → L2[0, 1] is given by

Kθ(x) =

∫ x

0
θ(s) ds.

We observe
(
Yn(x):x ∈ [0, 1]

)
, for W Brownian motion,

dYn(x) = Kθ(x) dx+
1√
n
dW (x), x ∈ [0, 1].

mildly ill-posed inverse problem: Yn,i| θi ∼ N(κiθi, n
−1) for

κi =
1

(i− 1/2)π
ei(x) =

√
2 cos

(
(i− 1/2)πx

)
,

(i = 0, 1, 2, . . .).
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