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Bayes



The Bayesian paradigm

e The unknown 6 is generated according to a prior distribution II.
e Given 0 the data X is generated according to a measure F;.

This gives a joint distribution of (X,0): P(X € A,0 € B) = [5 Py(A) dII(6).

e The scientist updates II to the conditional distribution of 6 given X, the
posterior distribution:
[I(# € B| X)



The Bayesian paradigm

e The unknown 6 is generated according to a prior distribution II.
e Given 0 the data X is generated according to a measure F;.

This gives a joint distribution of (X,0): P(X € A,0 € B) = [5 Py(A) dII(6).

e The scientist updates II to the conditional distribution of 6 given X, the
posterior distribution:
I1(# € B| X)

If Py(A) = |, po(z) du(x), then Bayes’s rule gives

dIL(6| X) o< pg(X) dIL(0)

In general disintegration: P(X € A,6 € B) = [, II(6 € B|z)dP(z).



Thomas Bayes

Thomas Bayes (1702—1761) studied logic and theology in Edinburgh and
was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument
with 6 € [0, 1] uniformly distributed and X given 6 binomial (n,0).

dll(f) =1 - dé, 0<0<1,
p9<x>=P<X=x|e>=(

dII(0) X) oc X (1 — )" - 1 - db.

n
X

)9%‘(1-9)%%, r=01,...,n,



Thomas Bayes

Thomas Bayes (1702—1761) studied logic and theology in Edinburgh and
was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument
with 6 € [0, 1] uniformly distributed and X given 6 binomial (n,0).

prior posterior ( = 13, n = 20)
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Parametric Bayes
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Pierre-Simon Laplace (1749-1827) and Carl Friedrich Gauss
(1777-1855) rediscovered Bayes’s argument and applied it to general
parametric models: models smoothly indexed by a Euclidean vector 6.

Ronald Aylmer Fisher (1890—1962) did not buy into it, but advocated
maximum likelihood, with much success.



Parametric Bayes
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Pierre-Simon Laplace (1749-1827) and Carl Friedrich Gauss
(1777-1855) rediscovered Bayes’s argument and applied it to general
parametric models: models smoothly indexed by a Euclidean vector 6.

Ronald Aylmer Fisher (1890—1962) did not buy into it, but advocated
maximum likelihood, with much success.

The Bayesian method regained popularity following the development of
MCMC methods in the 1980/90s.

It is a method of choice for many applied scientists.



Nonparametric Bayes

In nonparametric statistics, the unknown 6 is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are
probability distributions on an infinite-dimensional space.

Bayes’s formalism does not change, and his rule remains:

dIL(0] X) o pe(X) dI1(6)



Nonparametric Bayes

In nonparametric statistics, the unknown 6 is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are
probability distributions on an infinite-dimensional space.

Bayes’s formalism does not change, and his rule remains:

dIL(0] X) o pe(X) dI1(6)

Nonparametric Bayesian statistics set off in the 1970/80/90s, but before
2000 it was thought not to work, except in very special cases.



Bayesian distribution estimation

Data: X;,..., X, P

An obvious nonparametric estimator is the empirical distribution
n — ni:l Xz'

Bayesian approach starts with a prior over the set of distributions.

For instance, a random discrete distribution




Bayesian distribution estimation — Dirichlet prior [Ferguson 1973]

Def P =)=, Widy, is Dirichlet processif W;=V;[[,_;,(1-V}),
where V; 19 Be(1, M), 6,9G

prior cdf posterior cdf
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Bayesian distribution estimation — Dirichlet prior [Ferguson 1973]

Def P =)=, Widy, is Dirichlet processif W;=V;[[,_;,(1-V}),
where V; 19 Be(1, M), 6,9G

prior and posterior cdf

00 02 04 06 08 1.0

4 ) 0 2 4

Sample of 100 from Cauchy (-2,1).

Thm [Ferguson, Lo 1983-86]

If P~ DP(MG) and X1,...,X,| P9 P, then
E(P|X,...,X,) =P, =0(1/n)
vn(P —-P,)| X1,...,X, ~ Brownian bridge

“Bayesian bootstrap”



Bayesian distribution estimation — Pitman-Yor prior

Def P =)=, Wid, is Pitman-Yor processif W;=V;[[,_,(1-V}),
where V; 19 Be(1—0, M+jo), 6,9 G

prior cdf posterior cdf
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Bayesian distribution estimation — Pitman-Yor prior

Def P =)=, Wid, is Pitman-Yor processif W;=V;[[,_,(1-V}),
where V; 19 Be(1—0, M+jo), 6,9 G

prior and posterior

00 02 04 06 08

Sample of 100 from Cauchy (-2,1).
Thm [James 2006, Franssen vdV 2022]
If P~ PY(MG,o)and X1,...,X,| PP, then
Pl X1, X~ 0(1_3) Pdgr(1—0) Pe+orG

oK,
n

\/E(P—Pn— (G—Pn))| X1,.... X, ~ Gaussian.



Bayesian regression

Data: Y; = 0(z;) +¢;,fori=1,..., n.

prior posterior
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Bayesian data assimilation [Stuart 2010, ....]

Data: Y; = ug(x;) + ¢;, for ug solution of a PDE with unknown 6




Bayesian data assimilation [Stuart 2010, ....]

Data: Y; = ug(x;) + ¢;, for ug solution of a PDE with unknown 6

Journal of Computational Physics
R Volume 296, 1 September 2015, Pages 348-368

V. -2n(u,n)é, — Ipl = pg in 2

Scalable and efficient algorithms for the v « 1 () In E ;’
propagation of uncertainty from data
through inference to prediction for large-
scale problems, with application to flow
of the Antarctic ice sheet
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Bayesian data assimilation [Stuart 2010, ....]

Data: Y; = ug(x;) + ¢;, for ug solution of a PDE with unknown 6

If e1,...,e, are i.i.d. Gaussian, then Bayes’s rule gives
dII(0] Y1, ..., Yy) o [[ e imuo@d)®/2e% ry(p).
1=1

Thm  [posterior mode]  wanhba 1978, Dashti et al 2013]
For Gaussian prior on 6 with RKHS norm || - ||

lim argmax IT(B(6, )| Y(”)) = argminZ(Yi — ue(xz'))z +0°10]?
el0 g "

Full posterior distribution quantifies uncertainty




Other settings
[
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Prior used to model sparsity or network structure or “to borrow strength”.

density estimation
high-dimensional inference
networks

deep learning

diffusion processes
hierarchical models

network of genes involved in lung cancer

[Kpogbezan et al. 2016]



Does it work?



Frequentist Bayes

Assume data X is generated according to a given parameter 6.
Consider the posterior I1(6 € -| X') as a given random measure.



Frequentist Bayes

Assume data X is generated according to a given parameter 6.
Consider the posterior I1(6 € -| X') as a given random measure.

Recovery
We like I1(0 € -| X) to put “most” of its mass near 6, for “most” X.

Uncertainty quantification
We like the “spread” of I1(6 € -| X) to indicate remaining uncertainty.

Asymptotic setting
Data X (™), with information increasing as n — cc.



Parametric Bayes [Laplace, Bernstein, von Mises, Le Cam 1986]

Data: X,..., X, i.i.d. sample from density x — pg(z)
that is smoothly and identifiably parametrized by 6§ € R¢.

Thm  For any prior with positive density,

~ 1. _
I, (| X1,. .., X,) — Ng (0, Ezeol)(.)H — 0.

Eg,
TV

Here 6,, = 0, (X1, ..., X,) satisfy \/n(6, — 6o) ~ Na(0,i,").

The prior washes out.



Nonparametric Bayes

For infinite-dimensional 6, the prior matters!
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Recovery



Rate of contraction

Data: X™ ~ P\ g€ (©,d)

Def Contraction rate at 0, is ¢, if, for large enough M,

Fg,IT,, (0: d(0,00) > Me,| X™) -0,  n— o0




Rate of contraction

Data: X™ ~ P\ g€ (©,d)

Def Contraction rate at 0, is ¢, if, for large enough M,

Fg,IT,, (0: d(0,00) > Me,| X™) -0,  n— o0

Benchmark rate for (inverse) curve fitting:
A function 6 of d variables with bounded derivatives of order 5 is
estimable based on n observations at rate

- —B/(2+d+2p)




Minimaxity and adaptation

Minimax rate
To model O3 is attached an optimal rate of recovery defined by
the minimax criterion

en,g = inf sup Epd(T(X),0).
T ISCF!

Adaptation
Given models (0©3: 5 € B), there often exists a single 7' that
attains the minimax rate for every S.




Minimaxity and adaptation

Minimax rate
To model O3 is attached an optimal rate of recovery defined by
the minimax criterion

en,g = inf sup Epd(T(X),0).
T ISCF!

Adaptation
Given models (0©3: 5 € B), there often exists a single 7' that
attains the minimax rate for every S.

A good prior gives a posterior such that

VB: VO € Qg Ey, I, (0:d(0,00) > Me, 5| X™) — 0.



Basic contraction theorem — direct problem [Ghosal, Ghosh, vdV, 2000]

Data: Sample of size n from density p.

Prior 11, on set of densities P, with convex metric d, d < Hellinger.

Kolmogorov entropy

N (e, P, d) is the minimal number
of d-balls of radius ¢ needed to cover P.

\ SO
N K ¢ ,@i.i\‘""'
RS s
LR PSS
AT
SR E NS

AN

3

WSS AL

Thm If

2
n

H(p: Py <log @> < 5%) > e n, (prior mass)
p
P, log N (€, Pn,d) < ne-  and II(PS) < e~ 4, (complexity)

then posterior rate of contraction at pg Is ¢,.

[Hellinger metric: h(p, q) = ||v/P — v/4ll2.]



*Interpretation

Let p1,...,pNn € P be maximal Set with d(pz,p]) > €, N < N(ep, P,d)

The complexity bound says
N = N(en, P, d) < "
A “uniform prior” would give each ball of radius ¢,, mass

2
n

> e—ne

=zl -

H(B(pj,an)) =
This is the prior mass bound.

Suggestion:
Contraction rate is ¢,, at every pg € P for priors that
“distribute mass uniformly over P, at discretization level ¢,,”.



Gaussian process prior

Stochastic process W = (W;:t € T') gives prior on functions 6: T" — R.

W is a Gaussian process If
SF ;W is Gaussian, for every ay, ..., ag,t1,. .., L.

For every positive-definite c: T' x T' — R, there exists W with

c(s,t) = EW Wy, s,teT.




Example: Brownian motion and its primitives

0, 1, 2 and 3 times integrated Brownian motion



Posterior contraction rates for Gaussian priors [vdV-+van Zanten, 2007-2011]

View Gaussian process W as map into Banach space (B, || - |).
It comes with a RKHS H.

Thm  If statistical distances combine appropriately with || - ||, then
contraction rate is ¢,, if both

P(|IW]| < ¢ > ¢~ Nen and inf hllI2 < ne?
(1wl < e0) > it Al < ne?



Posterior contraction rates for Gaussian priors [vdV-+van Zanten, 2007-2011]

View Gaussian process W as map into Banach space (B, || - |).
It comes with a RKHS H.

Thm  If statistical distances combine appropriately with || - ||, then
contraction rate is ¢,, if both

P(|IW]| < ¢ > ¢~ Nen and inf hllI2 < ne?
(1wl < e0) > it Al < ne?

Example Integrated Brownian motion viewed as map in C'|0, 1] has

H=H"" = {h:[|h]lm: = |[A**V]|2 < oo} ﬁ;””"'“'w"’\”‘ww

—log P(||[W]leo < €) < (1/6)%/F+D)
Contraction rate n~(8/\(k+1/2))/(2k+2) it g, ¢ OB, Optimal if k + 1/2 = 8.

=20 0 00




Regression with square exponential prior

Data: Sample of size n in regression model or from density

/H27_2

Prior Gaussian with cov(0,4, 0,,/) = e~ 172

P(sup |0(z)| <¢e) 2 g=Clloge™)1Te/2.
0<z<1

27_:13

Thm If 7 fixed,
e if §y analytic, then contraction rate nearly n—1/2.
e if §y only ordinary smooth, then contraction rate (logn)~*.



Regression with square exponential prior

Data: Sample of size n in regression model or from density

/H27_2

Prior Gaussian with cov(0,4, 0,,/) = e~ 172

|

!

409
I I I |

CT=1 ' ’ > 1

Thm If 7 fixed,
e if 6y analytic, then contraction rate nearly n—1/2.
e if §y only ordinary smooth, then contraction rate (logn)~*.

Thm If 7% ~ T'(a,b),
e if 6y € CP[0,1]¢, then contraction rate nearly n—53/(26+d),
e if 6y is analytic, then contraction rate nearly n~1/2.



*Rates in sequence space

Data: X = 9 4+ n=1/2W

Prior 6,9 N(0,72i—2>~1) on coefficients on orthonormal basis

Lem Forall s < «, prior concentrates on

G* ={0 € ly: Yy 67 < o0}
1=1

Thm 7 fixed
If 6, € GP, then contraction rate n—(e/8)/(1+2a)

Thm 7! ~T(c,d)
If 6o € G and B < o + 1/2, then contraction rate n =3/ (1+25),



*Dirichlet normal mixtures [Ghosal vdV Rousseau Kruijer Tokdar Shen 2001—-2013]

Data: Xy,..., X, 9

Prioron p
e F' ~ Dirichlet process.
e 1/7 ~T(c,d), independent of F.

o prr(z) = [ 16(22) dF ().

Thm  Hellinger contraction rate is
e nearly n='/2if py = pr, -,, SOMe Fy, 7o.
e nearly n=8/(28+d) jf »» has 3 derivatives and small tails.



Recovery: summary

Recovery is best if prior matches truth.
Mismatch slows down, but does not prevent, recovery.
Mismatch can be prevented by using a hyperparameter.




Uncertainty quantification



Credible sets

Def A credible setis a data-dependent set C'(X) with
I1(6 € C(X)| X) > 0.95.

gana DDB2 mANA

B=2T123

credible bands C'(X)
are natural

Estimated abundance of a transcription factor as function of time:
posterior mean curve and 95% credible bands
(Gao et al. Bioinformatics 2008)



Are credible sets confidence sets?

credible set confidence set

I1(6 € C(X)| X) > 0.95 V0o: Py, (0o € C(X)) > 0.95

e Finite-dimensional 0: yes (by Bernstein-von Mises)
e Smooth projections of infinite-dimensional 9: yes
e Truly nonparametric #: no

Does spread of posterior give correct order of uncertainty?
Different answers for deterministic bandwidth and data-driven bandwidth



Deterministic bandwidth: coverage requires undersmoothing

e Prior:
0; " N (0,3~ 12)

Top to bottom:
increasing «

Black: truth

T T T T L]
oo o.. o= o=

Green: bands

True 0¢ (black), posterior mean (red)



Deterministic bandwidth: coverage requires undersmoothing

o 0 =737, bie
o [ruth:

. : 438 = = > Op; =i~
)

1-28

e Prior:
0; " N (0,3~ 12)

/b\_‘s/ Top to bottom:

£.3 ' = 8.2 5 = increasing «

True 0¢ (black), posterior mean (red)



**Deterministic bandwidth: coverage requires undersmoothing

Data: X = 9 4+ n=1/2W

Prior ;"9 N(0,i-2~1) for coefficients on orthonormal basis

©.@)

161[E: =) %67

1=1

Thm 0, =E(@|X™) )
o Ifa <, thenE([|0 —6,]2| X™) > ||E, — 60|17, all 6y € G°.
o If o> B, then E([|0 — 0,2 | X)) < ||EO, — 6|12 , some 0 € GP.

Cor ForC, = {6:]|0 — 0,||s, < Ry}, for II(C,| X(™) = 0.95.
o If v < 5, then PQO(HO c Cn) — 1, all 8y € Gﬁ.
o If a > 3, then Py, (0 € C,) — 0, some 6y € G°.



Data-driven bandwidth

Family of priors IL. of varying smoothness 7.

Examples
e t — W4, for Gaussian process W
o [ +— Z?il (9@'61'(15), for 0, ifn\gi N(O, 7_22-—1—204)
o t— [771p(r71(t — 2)) dF(z), with F' ~ Dirichlet process




Data-driven bandwidth

Family of priors IL. of varying smoothness 7.

Prior on bandwidth 7 gives adaptive recovery:
for smoother true function better reconstruction



Data-driven bandwidth

Family of priors 1L of varying smoothness 7.

Prior on bandwidth 7 gives adaptive recovery:
for smoother true function better reconstruction

This implies that data-driven posteriors must be tricked by
some inconvenient truths and sometimes be misleading
In their uncertainty quantification

e Estimation: VB: VO € Og: rate ¢, g.
e Uncertainty: V8 € UgOs:Py( € C(X)) > 0.95.

“We may know that a given statistical procedures is optimal in many settings
simultaneously, but we cannot know how good it is” [Lucien Birgé]



Inconvenient truths

01,0, ... 05,1 0,0, ..., 0,00, Oty ooy 0Ny 0,0, .30, 00 O, O, . ..

Length of zero runs increasing.



Convenient truths [Szab6 et al 2015]

Def 0 < /¢, satisfies the polished tail condition if

1000N 00
> 607>0001) 67, Viarge N
i=N i=N



Convenient truths [Szab6 et al 2015]

Def 0 < /¢, satisfies the polished tail condition if

1000N 00
> 607>0001) 67, Viarge N
i=N i=N

“Everything” is polished talil...:

e For the topologist  (GineNicki 2010]
Non polished tail sequences are meagre in a natural topology
e For the minimax expert.
Intersecting the usual models with polished tail sequences
decreases the minimax risk by at most a logarithmic factor
e For the Bayesian:
Almost every 0 from a prior 6; "9 N (0, ci—*~/2) is polished tail




Data-driven bandwidth — credible balls [Szabo et al 2015, Sniekers et al 2020]

Data: X(™ = 9 + n=Y/2W, for white noise W

o Prior 6 = S°%°, fie;, with 6;] 9 N(0, i—22-1)
e Prioron «

A ) énA: E(6) X(n))
Cnari=10:0 = 0n|| < MR} T1(6: |0 — 6] < R| X™) = 0.95

Thm  For not too small M, uniformly in polished tail functions 6,

P90 ((90 c CA'n’M) — 1



Inverse problems



Inverse problems

Data: Y () = yy + n=1/2W, for uy solution to a PDE

Estimation of uy is ordinary regression problem
However, contraction rate for uy does not imply rate for ¢

The prior must regularize both uy and the inverse ugy — 6.



Linear inverse problems [Ray 2017, Knapik Salomond 2018, vdV&Yan 2020]

Data: Y™ = K0 + n~1/2W, for white noise W

Smoothness scale  ||0]|%. = S22, i2%/902 for = > 2, b;e;.

Smoothing property K:G" — L, Hilbert space, with
[ E0|| L = |10]|g-»-

Galerkin reconstruction 6UY) = K=1Q; K0, for Q;: L — Klin (ey, ..., e;).

Thm  1f 35, < ne2 and n, > enj? V jn " with
(0: || K0 — Kbl < €,) = e "n,
I1(0: |09 — 0| o > 1) < e~ 4nen,

then contraction rate for 6, € GV is n,,.



Linear Gaussian inverse problems [vdV&Yan 2020, Koers Szabé vdV 2023]

Data: Y™ = K0 + n~1/2W, for white noise W

e Prior §;'"d N (0, 72i—2/d-1)
e Prior 771 ~ I'(c,d)

Smoothness scale ||6]|%, = Y22, i25/90% for 0 = 32 ;e

Smoothing property K:G° — L, Hilbert space, with

KO =< (|18l —»-

Thm For§ < 8 < a + 1/2, contraction rate for 6, € G° is
1—(B—8)/(28+2p+d)



Inverse problems from PDEs [Stuart 2010, Nickl,...]

Data: Y () =y, + n=1/2W, for white noise W

Forward map ug solves a PDE that depends on 6.

Examples

° SChr('jdinger [Nickl 2020] %Au = Ou.
Heat with absorption kekkonen 20221 dyu — 5 Au = Gu.
Non-abelian X-ray transform vonard Nick Paternain 2019, 2021]
Divergence/Darcy (aoraham Nicki 2019, Bohr 20221 V - (V1) = g.
Navier-Stokes [nicki Titi 2023]



Linear methods for nonlinear PDE inverse problems (koers szabo vdv 2023]

Data: Y () =y, + n=1/2W, for white noise W

Lug = c(6,ug), on ,
Ug = g, onI' C ofL.

L linear and rich enough so that there exists (Lipschitz) e with

0 =e(Luyg).

Data: Y = K Lug +n 1/2W, for K = £~}

e Put prior on uy, equivalently on v = Luyg .
e Obtain posterior for v from Y (") = Kv 4+ n=1/2W
e Map to posterior of = e(v).

Thm If e Lipschitz on set of posterior mass tending to 1, then
contraction rate and uncertainty quantification inherited from linear
problem



Schroedinger equation

Ugp = ¢, on o).

Lower credible band Upper credible band
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Outlook



Contraction rates in direct problems understood
Uncertainty quantification much less understood
Growing insight in Bayesian methods for inverse problems
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