Bayesian inference in infinite dimensions

Aad van der Vaart

TU Delft, Netherlands

Mordell Lecture, Cambridge, May 4, 2023

Bayes Does it work? Recovery Uncertainty quantification Inverse problems Outlook

The Bayesian paradigm

- The unknown θ is generated according to a prior distribution Π .
- Given θ the data X is generated according to a measure P_{θ} .

This gives a joint distribution of (X, θ) : $P(X \in A, \theta \in B) = \int_B P_{\theta}(A) d\Pi(\theta)$.

• The scientist updates Π to the conditional distribution of θ given X, the posterior distribution:

 $\Pi(\theta \in B | X)$

The Bayesian paradigm

- The unknown θ is generated according to a prior distribution Π .
- Given θ the data X is generated according to a measure P_{θ} .

This gives a joint distribution of (X, θ) : $P(X \in A, \theta \in B) = \int_B P_{\theta}(A) d\Pi(\theta)$.

• The scientist updates Π to the conditional distribution of θ given X, the posterior distribution:

 $\Pi(\theta \in B | X)$

If $P_{\theta}(A) = \int_{A} p_{\theta}(x) d\mu(x)$, then **Bayes's rule** gives

 $d\Pi(\theta|X) \propto p_{\theta}(X) d\Pi(\theta)$

In general *disintegration*: $P(X \in A, \theta \in B) = \int_A \Pi(\theta \in B | x) dP(x).$

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh and was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument with $\theta \in [0, 1]$ uniformly distributed and X given θ binomial (n, θ) .

$$d\Pi(\theta) = 1 \cdot d\theta, \qquad 0 < \theta < 1,$$

$$p_{\theta}(x) = P(X = x | \theta) = {\binom{n}{x}} \theta^{x} (1 - \theta)^{n - x}, \qquad x = 0, 1, \dots, n,$$

$$d\Pi(\theta | X) \propto \theta^{X} (1 - \theta)^{n - X} \cdot 1 \cdot d\theta.$$

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh and was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument with $\theta \in [0, 1]$ uniformly distributed and X given θ binomial (n, θ) .

Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss (1777–1855) rediscovered Bayes's argument and applied it to general parametric models: models smoothly indexed by a Euclidean vector θ .

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocated maximum likelihood, with much success.

Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss (1777–1855) rediscovered Bayes's argument and applied it to general parametric models: models smoothly indexed by a Euclidean vector θ .

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocated maximum likelihood, with much success.

The Bayesian method regained popularity following the development of MCMC methods in the 1980/90s.

It is a method of choice for many applied scientists.

Nonparametric Bayes

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are probability distributions on an infinite-dimensional space.

Bayes's formalism does not change, and his rule remains:

 $d\Pi(\theta|X) \propto p_{\theta}(X) d\Pi(\theta)$

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are probability distributions on an infinite-dimensional space.

Bayes's formalism does not change, and his rule remains:

 $d\Pi(\theta | X) \propto p_{\theta}(X) d\Pi(\theta)$

Nonparametric Bayesian statistics set off in the 1970/80/90s, but before 2000 it was thought not to work, except in very special cases.

Data:
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$$

An obvious nonparametric estimator is the empirical distribution

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

Bayesian approach starts with a prior over the set of distributions.

Def $P = \sum_{i=1}^{\infty} W_i \delta_{\theta_i}$ is *Dirichlet process* if $W_i = V_i \prod_{j < i} (1 - V_j)$, where $V_j \stackrel{\text{iid}}{\sim} \text{Be}(1, M)$, $\theta_i \stackrel{\text{iid}}{\sim} G$

Def $P = \sum_{i=1}^{\infty} W_i \delta_{\theta_i}$ is *Dirichlet process* if $W_i = V_i \prod_{j < i} (1 - V_j)$, where $V_j \stackrel{\text{iid}}{\sim} \text{Be}(1, M)$, $\theta_i \stackrel{\text{iid}}{\sim} G$

Sample of 100 from Cauchy (-2,1).

Thm [Ferguson, Lo 1983-86] If $P \sim DP(MG)$ and $X_1, \ldots, X_n | P \stackrel{\text{iid}}{\sim} P$, then $E(P | X_1 \ldots, X_n) - \mathbb{P}_n = O(1/n)$ $\sqrt{n}(P - \mathbb{P}_n) | X_1, \ldots, X_n \rightsquigarrow \text{Brownian bridge}$

"Bayesian bootstrap"

Def $P = \sum_{i=1}^{\infty} W_i \delta_{\theta_i}$ is *Pitman-Yor process* if $W_i = V_i \prod_{j < i} (1 - V_j)$, where $V_j \stackrel{\text{iid}}{\sim} \text{Be}(1 - \sigma, M + j\sigma)$, $\theta_i \stackrel{\text{iid}}{\sim} G$

Sample of 100 from Cauchy (-2,1)

Def $P = \sum_{i=1}^{\infty} W_i \delta_{\theta_i}$ is *Pitman-Yor process* if $W_i = V_i \prod_{j < i} (1 - V_j)$, where $V_j \stackrel{\text{iid}}{\sim} \text{Be}(1 - \sigma, M + j\sigma)$, $\theta_i \stackrel{\text{iid}}{\sim} G$

Sample of 100 from Cauchy (-2,1).

Thm [James 2006, Franssen vdV 2022] If $P \sim PY(MG, \sigma)$ and $X_1, \ldots, X_n | P \stackrel{\text{iid}}{\sim} P$, then

$$P|X_1,\ldots,X_n \rightsquigarrow \delta_{(1-\lambda)P_0^d+\lambda(1-\sigma)P_0^c+\sigma\lambda G}$$

$$\sqrt{n}\Big(P - \mathbb{P}_n - \frac{\sigma K_n}{n}(G - \tilde{\mathbb{P}}_n)\Big)\Big| X_1, \dots, X_n \rightsquigarrow \text{Gaussian}.$$

Bayesian regression

Data: $Y_i = u_{\theta}(x_i) + \varepsilon_i$, for u_{θ} solution of a PDE with unknown θ

Bayesian data assimilation

[Stuart 2010,]

Data: $Y_i = u_{\theta}(x_i) + \varepsilon_i$, for u_{θ} solution of a PDE with unknown θ

Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for largescale problems, with application to flow of the Antarctic ice sheet

Tobin Isaac ª 쩛 , Noemi Petra ^b 오 쩛 , Georg Stadler ^c 쩛 , Omar Ghattas ^{a d e} 쩛

$$-\nabla \cdot [2\eta(\boldsymbol{u}, \boldsymbol{n}) \dot{\boldsymbol{\varepsilon}}_{\boldsymbol{u}} - \boldsymbol{I}\boldsymbol{p}] = \rho \boldsymbol{g} \text{ in } \Omega$$
$$\nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega$$
$$\sigma_{\boldsymbol{u}} \boldsymbol{n} = \boldsymbol{0} \text{ on } \Gamma_{t}$$
$$\boldsymbol{n} = 0 \quad T\boldsymbol{\sigma}_{\boldsymbol{u}} \boldsymbol{n} + \exp(\boldsymbol{\beta}) \boldsymbol{T}\boldsymbol{u} = \boldsymbol{0} \text{ on } \Gamma_{t}$$

$$oldsymbol{u}\cdotoldsymbol{n}=0,\ oldsymbol{T}oldsymbol{\sigma}_{oldsymbol{u}}oldsymbol{n}+\exp(oldsymbol{eta})oldsymbol{T}oldsymbol{u}=oldsymbol{0}$$
 on $\Gamma_{\!b}$

prior

posterior

Data: $Y_i = u_{\theta}(x_i) + \varepsilon_i$, for u_{θ} solution of a PDE with unknown θ

If $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. Gaussian, then Bayes's rule gives

$$d\Pi(\theta|Y_1,\ldots,Y_n) \propto \prod_{i=1}^n e^{-(Y_i - u_\theta(x_i))^2/2\sigma^2} d\Pi(\theta).$$

Thm [posterior mode] [Wahba 1978, Dashti et al 2013] For Gaussian prior on θ with RKHS norm $\|\cdot\|$

$$\lim_{\varepsilon \downarrow 0} \underset{\theta}{\operatorname{argmax}} \prod \left(B(\theta, \varepsilon) | Y^{(n)} \right) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(Y_i - u_{\theta}(x_i) \right)^2 + \sigma^2 \|\theta\|^2$$

Full posterior distribution quantifies uncertainty

Other settings

- density estimation
- high-dimensional inference
- networks
- deep learning
- diffusion processes
- hierarchical models
- ...

Prior used to model sparsity or network structure or "to borrow strength".

network of genes involved in lung cancer

[Kpogbezan et al. 2016]

Does it work?

Frequentist Bayes

Assume data X is generated according to a given parameter θ_0 . Consider the posterior $\Pi(\theta \in \cdot | X)$ as a given random measure.

Frequentist Bayes

Assume data X is generated according to a given parameter θ_0 . Consider the posterior $\Pi(\theta \in \cdot | X)$ as a given random measure.

 $\frac{\text{Recovery}}{\text{We like }\Pi(\theta \in \cdot | X) \text{ to put "most" of its mass near } \theta_0 \text{ for "most" } X.$

Uncertainty quantification

We like the "spread" of $\Pi(\theta \in \cdot | X)$ to indicate remaining uncertainty.

Asymptotic setting Data $X^{(n)}$, with information increasing as $n \to \infty$. **Data:** X_1, \ldots, X_n i.i.d. sample from density $x \mapsto p_{\theta}(x)$ that is **smoothly** and **identifiably** parametrized by $\theta \in \mathbb{R}^d$.

Thm For any prior with positive density,

$$\mathbf{E}_{\theta_0} \left\| \Pi_n(\cdot | X_1, \dots, X_n) - N_d \left(\tilde{\theta}_n, \frac{1}{n} i_{\theta_0}^{-1} \right) (\cdot) \right\|_{TV} \to 0.$$

Here $\tilde{\theta}_n = \tilde{\theta}_n(X_1, \dots, X_n)$ satisfy $\sqrt{n}(\tilde{\theta}_n - \theta_0) \rightsquigarrow N_d(0, i_{\theta_0}^{-1})$.

The prior washes out.

Nonparametric Bayes

For infinite-dimensional θ , the prior matters!

Data:
$$X^{(n)} \sim P_{\theta}^{(n)} \qquad \theta \in (\Theta, d)$$

Def Contraction rate at θ_0 is ϵ_n if, for large enough M,

$$E_{\theta_0} \Pi_n \left(\theta : d(\theta, \theta_0) > M_{\epsilon_n} | X^{(n)} \right) \to 0, \qquad n \to \infty$$

Data:
$$X^{(n)} \sim P_{\theta}^{(n)} \qquad \theta \in (\Theta, d)$$

Def Contraction rate at θ_0 is ϵ_n if, for large enough M,

$$E_{\theta_0} \Pi_n \left(\theta: d(\theta, \theta_0) > M \epsilon_n | X^{(n)} \right) \to 0, \qquad n \to \infty$$

Benchmark rate for (inverse) curve fitting: A function θ of d variables with bounded derivatives of order β is estimable based on n observations at rate

 $n^{-\beta/(2\beta+d+2p)}$

Minimax rate

To model Θ_{β} is attached an optimal rate of recovery defined by the minimax criterion

$$\varepsilon_{n,\beta} = \inf_{T} \sup_{\theta \in \Theta_{\beta}} E_{\theta} d(T(X), \theta).$$

Adaptation

Given models $(\Theta_{\beta}: \beta \in B)$, there often exists a single *T* that attains the minimax rate for every β .

Minimax rate

To model Θ_{β} is attached an optimal rate of recovery defined by the minimax criterion

$$\varepsilon_{n,\beta} = \inf_{T} \sup_{\theta \in \Theta_{\beta}} E_{\theta} d(T(X), \theta).$$

Adaptation

Given models $(\Theta_{\beta}: \beta \in B)$, there often exists a single *T* that attains the minimax rate for every β .

A good prior gives a posterior such that

$$\forall \beta \colon \forall \theta_0 \in \Theta_{\beta} \colon \mathbf{E}_{\theta_0} \Pi_n \big(\theta \colon d(\theta, \theta_0) > M \epsilon_{n,\beta} | X^{(n)} \big) \to 0.$$

Data: Sample of size *n* from density *p*.

Prior Π , on set of densities \mathcal{P} , with convex metric d, $d \leq$ Hellinger.

Kolmogorov entropy

 $N(\epsilon, \mathcal{P}, d)$ is the minimal number of *d*-balls of radius ϵ needed to cover \mathcal{P} .

Thm If

$$\Pi\left(p: P_0\left(\log\frac{p_0}{p}\right) < \varepsilon_n^2\right) \ge e^{-n\epsilon_n^2}, \qquad \text{(prior mass)}$$
$$\exists \mathcal{P}_n: \quad \log N\left(\epsilon_n, \mathcal{P}_n, d\right) \le n\epsilon_n^2 \quad \text{and} \quad \Pi(\mathcal{P}_n^c) \le e^{-4n\epsilon_n^2}, \quad \text{(complexity)}$$

then posterior rate of contraction at p_0 is ϵ_n .

[Hellinger metric: $h(p,q) = \|\sqrt{p} - \sqrt{q}\|_2$.]

*Interpretation

Let $p_1, \ldots, p_N \in \mathcal{P}$ be maximal set with $d(p_i, p_j) \ge \epsilon_n$, $N \asymp N(\epsilon_n, \mathcal{P}, d)$

The complexity bound says

$$N \asymp N(\epsilon_n, \mathcal{P}, d) \le e^{n\epsilon_n^2}.$$

A "uniform prior" would give each ball of radius ε_n mass

$$\Pi(B(p_j,\varepsilon_n)) \asymp \frac{1}{N} \ge e^{-n\epsilon_n^2}.$$

This is the prior mass bound.

Suggestion: Contraction rate is ε_n at every $p_0 \in \mathcal{P}$ for priors that *"distribute mass uniformly over* \mathcal{P} *, at discretization level* ϵ_n *".*

Gaussian process prior

Stochastic process $W = (W_t: t \in T)$ gives prior on functions $\theta: T \to \mathbb{R}$.

W is a Gaussian process if $\sum_{i=1}^{k} \alpha_i W_{t_i}$ is Gaussian, for every $\alpha_1, \ldots, \alpha_k, t_1, \ldots, t_k$. For every positive-definite $c: T \times T \to \mathbb{R}$, there exists *W* with $c(s,t) = EW_sW_t, \qquad s, t \in T.$

Example: Brownian motion and its primitives

0, 1, 2 and 3 times integrated Brownian motion

View Gaussian process W as map into Banach space $(\mathbb{B}, \|\cdot\|)$. It comes with a RKHS \mathbb{H} .

Thm If statistical distances combine appropriately with $\|\cdot\|$, then contraction rate is ε_n if both

$$P(\|W\| < \varepsilon_n) \ge e^{-n\varepsilon_n^2} \quad \text{and} \quad \inf_{h \in \mathbb{H}: \|h - \theta_0\| < \varepsilon_n} \|h\|_{\mathbb{H}}^2 \le n\varepsilon_n^2$$

View Gaussian process W as map into Banach space $(\mathbb{B}, \|\cdot\|)$. It comes with a RKHS \mathbb{H} .

Thm If statistical distances combine appropriately with $\|\cdot\|$, then contraction rate is ε_n if both

$$P(\|W\| < \varepsilon_n) \ge e^{-n\varepsilon_n^2} \quad \text{and} \quad \inf_{h \in \mathbb{H}: \|h-\theta_0\| < \varepsilon_n} \|h\|_{\mathbb{H}}^2 \le n\varepsilon_n^2$$

Example Integrated Brownian motion viewed as map in C[0,1] has $\mathbb{H} = H^{k+1} = \{h: \|h\|_{\mathbb{H}} := \|h^{(k+1)}\|_2 < \infty\}$ $-\log P(\|W\|_{\infty} < \varepsilon) \asymp (1/\varepsilon)^{2/(2k+1)}$ $I = \int_{0}^{1} \int_{0}^{1}$ **Data:** Sample of size *n* in regression model or from density

Prior Gaussian with $cov(\theta_{\tau x}, \theta_{\tau x'}) = e^{-\|x-x'\|^2 \tau^2}$.

$$\mathbf{P}(\sup_{0 < x < 1} |\theta(x)| < \varepsilon) \gtrsim e^{-C(\log \varepsilon^{-1})^{1+d/2}}$$

Thm If τ fixed,

- if θ_0 analytic, then contraction rate nearly $n^{-1/2}$.
- if θ_0 only ordinary smooth, then contraction rate $(\log n)^{-k}$.

Data: Sample of size *n* in regression model or from density

Prior Gaussian with $cov(\theta_{\tau x}, \theta_{\tau x'}) = e^{-\|x-x'\|^2 \tau^2}$.

Thm If τ fixed,

- if θ_0 analytic, then contraction rate nearly $n^{-1/2}$.
- if θ_0 only ordinary smooth, then contraction rate $(\log n)^{-k}$.

Thm If $\tau^d \sim \Gamma(a, b)$,

- if $\theta_0 \in C^{\beta}[0,1]^d$, then contraction rate nearly $n^{-\beta/(2\beta+d)}$.
- if θ_0 is analytic, then contraction rate nearly $n^{-1/2}$.

Data:
$$X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}$$

Prior $\theta_i \stackrel{\text{ind}}{\sim} N(0, \tau^2 i^{-2\alpha-1})$ on coefficients on orthonormal basis

Lem For all $s < \alpha$, prior concentrates on

$$G^s = \{\theta \in \ell_2 : \sum_{i=1}^{\infty} i^{2s} \theta_i^2 < \infty\}.$$

Thm τ fixed If $\theta_0 \in G^{\beta}$, then contraction rate $n^{-(\alpha \wedge \beta)/(1+2\alpha)}$.

Thm $\tau^{-1} \sim \Gamma(c, d)$ If $\theta_0 \in G^{\beta}$ and $\beta < \alpha + 1/2$, then contraction rate $n^{-\beta/(1+2\beta)}$.

Data:
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p$$
.

Prior on p

- $F \sim \text{Dirichlet process.}$
- $1/\tau \sim \Gamma(c, d)$, independent of F.

•
$$p_{F,\tau}(x) = \int \frac{1}{\tau} \phi\left(\frac{x-z}{\tau}\right) dF(z).$$

Thm Hellinger contraction rate is

- nearly $n^{-1/2}$ if $p_0 = p_{F_0,\tau_0}$, some F_0 , τ_0 .
- nearly $n^{-\beta/(2\beta+d)}$ if p_0 has β derivatives and small tails.

Recovery is best if prior matches truth. Mismatch slows down, but does not prevent, recovery. Mismatch can be prevented by using a hyperparameter. Uncertainty quantification

Def A credible set is a data-dependent set C(X) with $\Pi(\theta \in C(X) | X) \ge 0.95.$

credible bands C(X) are natural

Estimated abundance of a transcription factor as function of time: posterior mean curve and 95% credible bands (Gao et al. *Bioinformatics* 2008)

credible set	confidence set
$\Pi\big(\theta \in C(X) X) \ge 0.95$	$\forall \theta_0: \mathbf{P}_{\theta_0} (\theta_0 \in C(X)) \ge 0.95$

- Finite-dimensional θ : yes (by Bernstein-von Mises)
- Smooth projections of infinite-dimensional θ : yes
- Truly nonparametric θ : no

Does spread of posterior give correct order of uncertainty? Different answers for deterministic bandwidth and data-driven bandwidth

True θ_0 (black), posterior mean (red)

•
$$\theta = \sum_{i=1}^{\infty} \theta_i e_i$$

Firuth:
$$\theta_{0,i} \asymp i^{-1-2\beta}$$

• Prior:
$$\theta_i \stackrel{\text{ind}}{\sim} N(0, i^{-1-2\alpha})$$

Top to bottom: increasing α

Black: truth

Green: bands

True θ_0 (black), posterior mean (red)

•
$$\theta = \sum_{i=1}^{\infty} \theta_i e_i$$

.

$$\theta_{0,i} \asymp i^{-1-2\beta}$$

• Prior:
$$\theta_i \stackrel{\text{ind}}{\sim} N(0, i^{-1-2\alpha})$$

Top to bottom: increasing α

Data:
$$X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}$$

Prior $\theta_i \stackrel{\text{ind}}{\sim} N(0, i^{-2\alpha-1})$ for coefficients on orthonormal basis

$$\|\theta\|_{G^s}^2 = \sum_{i=1}^{\infty} i^{2s} \theta_i^2$$

Thm
$$\hat{\theta}_n = \mathcal{E}(\theta | X^{(n)})$$

• If $\alpha < \beta$, then $\mathcal{E}(\|\theta - \hat{\theta}_n\|_{\ell_2}^2 | X^{(n)}) \gg \|\mathcal{E}\hat{\theta}_n - \theta_0\|_{\ell_2}^2$, all $\theta_0 \in G^{\beta}$.
• If $\alpha > \beta$, then $\mathcal{E}(\|\theta - \hat{\theta}_n\|_{\ell_2}^2 | X^{(n)}) \ll \|\mathcal{E}\hat{\theta}_n - \theta_0\|_{\ell_2}^2$, some $\theta_0 \in G^{\beta}$.

Cor For
$$C_n = \{\theta : \|\theta - \hat{\theta}_n\|_{\ell_2} < R_n\}$$
, for $\Pi(C_n|X^{(n)}) = 0.95$.

- If $\alpha < \beta$, then $P_{\theta_0}(\theta_0 \in C_n) \to 1$, all $\theta_0 \in G^{\beta}$.
- If $\alpha > \beta$, then $P_{\theta_0}(\theta_0 \in C_n) \to 0$, some $\theta_0 \in G^{\beta}$.

Data-driven bandwidth

Family of priors Π_{τ} of varying smoothness τ .

Examples

- $t \mapsto W_{\tau t}$, for Gaussian process W
- $t \mapsto \sum_{i=1}^{\infty} \theta_i e_i(t)$, for $\theta_i \stackrel{\text{ind}}{\sim} N(0, \tau^2 i^{-1-2\alpha})$
- $t \mapsto \int \tau^{-1} \phi(\tau^{-1}(t-z)) dF(z)$, with $F \sim$ Dirichlet process

Family of priors Π_{τ} of varying smoothness τ .

Prior on bandwidth τ gives adaptive recovery: for smoother true function better reconstruction Family of priors Π_{τ} of varying smoothness τ .

Prior on bandwidth τ gives adaptive recovery: for smoother true function better reconstruction

This implies that data-driven posteriors *must* be tricked by some inconvenient truths and sometimes be misleading in their uncertainty quantification

- Estimation: $\forall \beta : \forall \theta \in \Theta_{\beta} : \text{ rate } \varepsilon_{n,\beta}.$
- Uncertainty: $\forall \theta \in \bigcup_{\beta} \Theta_{\beta} : P_{\theta} (\theta \in C(X)) \ge 0.95.$

"We may know that a given statistical procedures is optimal in many settings simultaneously, but we cannot know how good it is" [Lucien Birgé] $\theta_1, \theta_2, \ldots, \theta_{N_1}, 0, 0, \ldots, 0, \theta_{n_2}, \theta_{n_2+1}, \ldots, \theta_{N_2}, 0, 0, \ldots, 0, \theta_{n_3}, \ldots, \theta_{N_3}, 0, \ldots$

Length of zero runs increasing.

Def $\theta \in \ell_2$ satisfies the *polished tail condition* if

$$\sum_{i=N}^{1000N} \theta_i^2 \ge 0.001 \sum_{i=N}^{\infty} \theta_i^2, \qquad \forall \text{ large } N$$

Def $\theta \in \ell_2$ satisfies the *polished tail condition* if

$$\sum_{i=N}^{1000N} \theta_i^2 \ge 0.001 \sum_{i=N}^{\infty} \theta_i^2, \qquad \forall \text{ large } N$$

"Everything" is polished tail...:

- For the *topologist* [Giné,Nickl 2010] Non polished tail sequences are meagre in a natural topology
- For the *minimax expert*: Intersecting the usual models with polished tail sequences decreases the minimax risk by at most a logarithmic factor
- For the *Bayesian*:

Almost every θ from a prior $\theta_i \stackrel{\text{ind}}{\sim} N(0, ci^{-\alpha - 1/2})$ is polished tail

Data:
$$X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}$$
, for white noise $\dot{\mathbb{W}}$

- Prior $\theta = \sum_{i=1}^{\infty} \theta_i e_i$, with $\theta_i | \alpha \stackrel{\text{ind}}{\sim} N(0, i^{-2\alpha 1})$
- Prior on α

$$\hat{C}_{n,M} := \{\theta : \|\theta - \hat{\theta}_n\| < MR\}$$

$$\hat{\theta}_n = \mathcal{E}(\theta | X^{(n)})$$
$$\Pi(\theta : \|\theta - \hat{\theta}_n\| < R | X^{(n)}) = 0.95$$

Thm For not too small M, uniformly in polished tail functions θ_0 ,

$$\mathbf{P}_{\theta_0}\big(\theta_0 \in \hat{C}_{n,M}\big) \to 1$$

Inverse problems

Data: $Y^{(n)} = u_{\theta} + n^{-1/2} \dot{\mathbb{W}}$, for u_{θ} solution to a PDE

Estimation of u_{θ} is ordinary regression problem

However, contraction rate for u_{θ} does not imply rate for θ

The prior must regularize both u_{θ} and the inverse $u_{\theta} \mapsto \theta$.

Data:
$$Y^{(n)} = K\theta + n^{-1/2}\dot{\mathbb{W}}$$
, for white noise $\dot{\mathbb{W}}$

Smoothness scale $\|\theta\|_{G^s}^2 = \sum_{i=1}^{\infty} i^{2s/d} \theta_i^2$ for $\theta = \sum_{i=1}^{\infty} \theta_i e_i$.

Smoothing property $K: G^0 \to L$, Hilbert space, with

 $\|K\theta\|_L \asymp \|\theta\|_{G^{-p}}.$

Galerkin reconstruction $\theta^{(j)} = K^{-1}Q_j K \theta$, for $Q_j: L \to K \ln(e_1, ..., e_j)$.

Thm If
$$\exists j_n \lesssim n\varepsilon_n^2$$
 and $\eta_n \gtrsim \varepsilon_n j_n^p \lor j_n^{-\beta}$ with

$$\Pi(\theta: \|K\theta - K\theta_0\|_L < \varepsilon_n) \gtrsim e^{-n\varepsilon_n^2},$$

$$\Pi(\theta: \|\theta^{(j_n)} - \theta\|_{G^0} > \eta_n) \le e^{-4n\varepsilon_n^2},$$

then contraction rate for $\theta_0 \in G^0$ is η_n .

Data: $Y^{(n)} = K\theta + n^{-1/2} \dot{\mathbb{W}}$, for white noise $\dot{\mathbb{W}}$

• Prior
$$\theta_i \stackrel{\text{ind}}{\sim} N(0, \tau^2 i^{-2\alpha/d-1})$$

• Prior $\tau^{-1} \sim \Gamma(c, d)$

6

Smoothness scale $\|\theta\|_{G^s}^2 = \sum_{i=1}^{\infty} i^{2s/d} \theta_i^2$ for $\theta = \sum_{i=1}^{\infty} \theta_i e_i$. Smoothing property $K: G^0 \to L$, Hilbert space, with

 $||K\theta||_L \asymp ||\theta||_{G^{-p}}.$

Thm For $\delta < \beta < \alpha + 1/2$, contraction rate for $\theta_0 \in G^{\delta}$ is $n^{-(\beta-\delta)/(2\beta+2p+d)}$.

Data: $Y^{(n)} = u_{\theta} + n^{-1/2} \dot{\mathbb{W}}$, for white noise $\dot{\mathbb{W}}$

Forward map u_{θ} solves a PDE that depends on θ .

Examples

- Schrödinger [Nickl 2020] $\frac{1}{2}\Delta u = \theta u$.
- Heat with absorption [Kekkonen 2022] $\partial_t u \frac{1}{2}\Delta u = \theta u$.
- Non-abelian X-ray transform [Monard Nickl Paternain 2019, 2021]
- Divergence/Darcy [Abraham Nickl 2019, Bohr 2022] $abla \cdot (\theta
 abla u) = g$.
- Navier-Stokes [Nickl Titi 2023]
- ...

Data:
$$Y^{(n)} = u_{\theta} + n^{-1/2} \dot{\mathbb{W}}$$
, for white noise $\dot{\mathbb{W}}$

$$\begin{cases} \mathcal{L}u_{\theta} = c(\theta, u_{\theta}), & \text{on } \Omega, \\ u_{\theta} = g, & \text{on } \Gamma \subseteq \partial \Omega. \end{cases}$$

 \mathcal{L} linear and rich enough so that there exists (Lipschitz) e with

$$\theta = e(\mathcal{L}u_{\theta}).$$

Data:
$$Y^{(n)} = K\mathcal{L}u_{\theta} + n^{-1/2}\dot{\mathbb{W}}$$
, for $K = \mathcal{L}^{-1}$

- Put prior on u_{θ} , equivalently on $v = \mathcal{L}u_{\theta}$
- Obtain posterior for v from $Y^{(n)} = Kv + n^{-1/2} \dot{\mathbb{W}}$
- Map to posterior of $\theta = e(v)$.

Thm If *e* Lipschitz on set of posterior mass tending to 1, then contraction rate and uncertainty quantification inherited from linear problem

Schroedinger equation

$$\begin{cases} \frac{1}{2}\Delta u_{\theta} = \theta u_{\theta}, \\ u_{\theta} = g, \end{cases}$$

on
$$\Omega$$
,
on $\partial \Omega$.

$$\theta = e(\Delta u_{\theta}) := \frac{\Delta u_{\theta}}{2\theta}.$$

Outlook

Contraction rates in direct problems understood Uncertainty quantification much less understood Growing insight in Bayesian methods for inverse problems

