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Bayes



The Bayesian paradigm

• The unknown θ is generated according to a prior distribution Π.

• Given θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X, θ): P(X ∈ A, θ ∈ B) =
∫

B Pθ(A) dΠ(θ).

• The scientist updates Π to the conditional distribution of θ given X, the

posterior distribution:

Π(θ ∈ B|X)



The Bayesian paradigm

• The unknown θ is generated according to a prior distribution Π.

• Given θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X, θ): P(X ∈ A, θ ∈ B) =
∫

B Pθ(A) dΠ(θ).

• The scientist updates Π to the conditional distribution of θ given X, the

posterior distribution:

Π(θ ∈ B|X)

If Pθ(A) =
∫

A pθ(x) dµ(x), then Bayes’s rule gives

dΠ(θ|X) ∝ pθ(X) dΠ(θ)

In general disintegration: P(X ∈ A, θ ∈ B) =
∫

A Π(θ ∈ B|x) dP (x).



Thomas Bayes

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh and

was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument

with θ ∈ [0, 1] uniformly distributed and X given θ binomial (n, θ).

dΠ(θ) = 1 · dθ, 0 < θ < 1,

pθ(x) = P(X = x| θ) =
(

n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n,

dΠ(θ|X) ∝ θX(1− θ)n−X · 1 · dθ.



Thomas Bayes

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh and

was a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument

with θ ∈ [0, 1] uniformly distributed and X given θ binomial (n, θ).
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Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss

(1777–1855) rediscovered Bayes’s argument and applied it to general

parametric models: models smoothly indexed by a Euclidean vector θ.

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocated

maximum likelihood, with much success.



Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss

(1777–1855) rediscovered Bayes’s argument and applied it to general

parametric models: models smoothly indexed by a Euclidean vector θ.

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocated

maximum likelihood, with much success.

The Bayesian method regained popularity following the development of

MCMC methods in the 1980/90s.

It is a method of choice for many applied scientists.



Nonparametric Bayes

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are

probability distributions on an infinite-dimensional space.

Bayes’s formalism does not change, and his rule remains:

dΠ(θ|X) ∝ pθ(X) dΠ(θ)



Nonparametric Bayes

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are

probability distributions on an infinite-dimensional space.

Bayes’s formalism does not change, and his rule remains:

dΠ(θ|X) ∝ pθ(X) dΠ(θ)

Nonparametric Bayesian statistics set off in the 1970/80/90s, but before

2000 it was thought not to work, except in very special cases.



Bayesian distribution estimation

Data: X1, . . . , Xn
iid∼P

An obvious nonparametric estimator is the empirical distribution

Pn =
1

n

n
∑

i=1

δXi

Bayesian approach starts with a prior over the set of distributions.

For instance, a random discrete distribution

P =
∞
∑

i=1

Wiδθi



Bayesian distribution estimation – Dirichlet prior [Ferguson 1973]

Def P =
∑∞

i=1Wiδθi is Dirichlet process if Wi = Vi

∏

j<i(1− Vj),

where Vj
iid∼Be(1,M), θi

iid∼G

prior cdf
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Bayesian distribution estimation – Dirichlet prior [Ferguson 1973]

Def P =
∑∞

i=1Wiδθi is Dirichlet process if Wi = Vi

∏

j<i(1− Vj),

where Vj
iid∼Be(1,M), θi

iid∼G

prior and posterior cdf
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Thm [Ferguson, Lo 1983-86]

If P ∼ DP (MG) and X1, . . . , Xn|P iid∼P , then

E(P |X1 . . . , Xn)− Pn = O(1/n)

√
n(P − Pn)|X1, . . . , Xn  Brownian bridge

“Bayesian bootstrap”



Bayesian distribution estimation – Pitman-Yor prior

Def P =
∑∞

i=1Wiδθi is Pitman-Yor process if Wi = Vi

∏

j<i(1− Vj),

where Vj
iid∼Be(1−σ,M+jσ), θi

iid∼G

prior cdf

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

posterior cdf

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample of 100 from Cauchy (-2,1)



Bayesian distribution estimation – Pitman-Yor prior

Def P =
∑∞

i=1Wiδθi is Pitman-Yor process if Wi = Vi

∏

j<i(1− Vj),

where Vj
iid∼Be(1−σ,M+jσ), θi

iid∼G

prior and posterior
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Thm [James 2006, Franssen vdV 2022]

If P ∼ PY (MG,σ) and X1, . . . , Xn|P iid∼P , then

P |X1, . . . , Xn  δ(1−λ)P d
0 +λ(1−σ)P c

0+σλG

√
n
(

P − Pn − σKn

n
(G− P̃n)

)
∣

∣

∣
X1, . . . , Xn  Gaussian.



Bayesian regression

Data: Yi = θ(xi) + εi, for i = 1, . . . , n.

prior
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Bayesian data assimilation [Stuart 2010, ....]

Data: Yi = uθ(xi) + εi, for uθ solution of a PDE with unknown θ
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Data: Yi = uθ(xi) + εi, for uθ solution of a PDE with unknown θ

prior posterior



Bayesian data assimilation [Stuart 2010, ....]

Data: Yi = uθ(xi) + εi, for uθ solution of a PDE with unknown θ

If ε1, . . . , εn are i.i.d. Gaussian, then Bayes’s rule gives

dΠ(θ|Y1, . . . , Yn) ∝
n
∏

i=1

e−(Yi−uθ(xi))
2/2σ2

dΠ(θ).

Thm [posterior mode] [Wahba 1978, Dashti et al 2013]

For Gaussian prior on θ with RKHS norm ‖ · ‖

lim
ε↓0

argmax
θ

Π
(

B(θ, ε)|Y (n)
)

= argmin
θ

n
∑

i=1

(

Yi − uθ(xi)
)2

+ σ2‖θ‖2

Full posterior distribution quantifies uncertainty



Other settings

• density estimation

• high-dimensional inference

• networks

• deep learning

• diffusion processes

• hierarchical models

• ...

Prior used to model sparsity or network structure or “to borrow strength”.

network of genes involved in lung cancer

[Kpogbezan et al. 2016]



Does it work?



Frequentist Bayes

Assume data X is generated according to a given parameter θ0.
Consider the posterior Π(θ ∈ ·|X) as a given random measure.



Frequentist Bayes

Assume data X is generated according to a given parameter θ0.
Consider the posterior Π(θ ∈ ·|X) as a given random measure.

Recovery

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

Uncertainty quantification

We like the “spread” of Π(θ ∈ ·|X) to indicate remaining uncertainty.
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Asymptotic setting

Data X(n), with information increasing as n → ∞.



Parametric Bayes [Laplace, Bernstein, von Mises, Le Cam 1986]

Data: X1, . . . , Xn i.i.d. sample from density x 7→ pθ(x)
that is smoothly and identifiably parametrized by θ ∈ R

d.

Thm For any prior with positive density,

Eθ0

∥

∥

∥
Πn(·|X1, . . . , Xn)−Nd

(

θ̃n,
1

n
i−1
θ0

)

(·)
∥

∥

∥

TV
→ 0.

Here θ̃n = θ̃n(X1, . . . , Xn) satisfy
√
n(θ̃n − θ0) Nd(0, i

−1
θ0

).
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The prior washes out.



Nonparametric Bayes

For infinite-dimensional θ, the prior matters!

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8



Recovery



Rate of contraction

Data: X(n) ∼ P
(n)
θ θ ∈ (Θ, d)

Def Contraction rate at θ0 is ǫn if, for large enough M ,

Eθ0Πn

(

θ: d(θ, θ0) > Mǫn|X(n)
)

→ 0, n → ∞
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Rate of contraction

Data: X(n) ∼ P
(n)
θ θ ∈ (Θ, d)

Def Contraction rate at θ0 is ǫn if, for large enough M ,

Eθ0Πn

(

θ: d(θ, θ0) > Mǫn|X(n)
)

→ 0, n → ∞
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Benchmark rate for (inverse) curve fitting:

A function θ of d variables with bounded derivatives of order β is

estimable based on n observations at rate

n−β/(2β+d+2p).



Minimaxity and adaptation

Minimax rate

To model Θβ is attached an optimal rate of recovery defined by

the minimax criterion

εn,β = inf
T

sup
θ∈Θβ

Eθd
(

T (X), θ
)

.

Adaptation

Given models (Θβ:β ∈ B), there often exists a single T that

attains the minimax rate for every β.



Minimaxity and adaptation

Minimax rate

To model Θβ is attached an optimal rate of recovery defined by

the minimax criterion

εn,β = inf
T

sup
θ∈Θβ

Eθd
(

T (X), θ
)

.

Adaptation

Given models (Θβ:β ∈ B), there often exists a single T that

attains the minimax rate for every β.

A good prior gives a posterior such that

∀β: ∀θ0 ∈ Θβ: Eθ0Πn

(

θ: d(θ, θ0) > Mǫn,β|X(n)
)

→ 0.



Basic contraction theorem – direct problem [Ghosal, Ghosh, vdV, 2000]

Data: Sample of size n from density p.

Prior Π, on set of densities P, with convex metric d, d ≤ Hellinger.

Kolmogorov entropy

N(ǫ,P, d) is the minimal number

of d-balls of radius ǫ needed to cover P.

Thm If

Π
(

p:P0

(

log
p0
p

)

< ε2n

)

≥ e−nǫ2n , (prior mass)

∃Pn: logN
(

ǫn,Pn, d
)

≤ nǫ2n and Π(Pc
n) ≤ e−4nǫ2n , (complexity)

then posterior rate of contraction at p0 is ǫn.

[Hellinger metric: h(p, q) = ‖√p − √
q‖2.]



*Interpretation

Let p1, . . . , pN ∈ P be maximal set with d(pi, pj) ≥ ǫn, N ≍ N(ǫn,P, d)

The complexity bound says

N ≍ N(ǫn,P, d) ≤ enǫ
2
n .

A “uniform prior” would give each ball of radius εn mass

Π
(

B(pj , εn)
)

≍ 1

N
≥ e−nǫ2n .

This is the prior mass bound.

Suggestion:

Contraction rate is εn at every p0 ∈ P for priors that

“distribute mass uniformly over P, at discretization level ǫn”.



Gaussian process prior

Stochastic process W = (Wt: t ∈ T ) gives prior on functions θ:T → R.
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W is a Gaussian process if
∑k

i=1 αiWti is Gaussian, for every α1, . . . , αk, t1, . . . , tk.

For every positive-definite c:T × T → R, there exists W with

c(s, t) = EWsWt, s, t ∈ T.



Example: Brownian motion and its primitives

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0, 1, 2 and 3 times integrated Brownian motion



Posterior contraction rates for Gaussian priors [vdV+van Zanten, 2007-2011]

View Gaussian process W as map into Banach space (B, ‖ · ‖).
It comes with a RKHS H.

Thm If statistical distances combine appropriately with ‖ · ‖, then

contraction rate is εn if both

P
(

‖W‖ < εn
)

≥ e−nε2n and inf
h∈H:‖h−θ0‖<εn

‖h‖2H ≤ nε2n



Posterior contraction rates for Gaussian priors [vdV+van Zanten, 2007-2011]

View Gaussian process W as map into Banach space (B, ‖ · ‖).
It comes with a RKHS H.

Thm If statistical distances combine appropriately with ‖ · ‖, then

contraction rate is εn if both

P
(

‖W‖ < εn
)

≥ e−nε2n and inf
h∈H:‖h−θ0‖<εn

‖h‖2H ≤ nε2n

Example Integrated Brownian motion viewed as map in C[0, 1] has

H = Hk+1 =
{

h: ‖h‖H: = ‖h(k+1)‖2 < ∞
}

− log P
(

‖W‖∞ < ε
)

≍ (1/ε)2/(2k+1) 0.0 0.2 0.4 0.6 0.8 1.0

−
2
.0

−
1
.0

0
.0

Contraction rate n−(β∧(k+1/2))/(2k+2) if θ0 ∈ Cβ. Optimal if k + 1/2 = β.



Regression with square exponential prior

Data: Sample of size n in regression model or from density

Prior Gaussian with cov(θτx, θτx′) = e−‖x−x′‖2τ2 .
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sup
0<x<1

|θ(x)| < ε
)

& e−C(log ε−1)1+d/2
.

Thm If τ fixed,

• if θ0 analytic, then contraction rate nearly n−1/2.

• if θ0 only ordinary smooth, then contraction rate (logn)−k.



Regression with square exponential prior

Data: Sample of size n in regression model or from density

Prior Gaussian with cov(θτx, θτx′) = e−‖x−x′‖2τ2 .
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τ ≫ 1

Thm If τ fixed,

• if θ0 analytic, then contraction rate nearly n−1/2.

• if θ0 only ordinary smooth, then contraction rate (logn)−k.

Thm If τd ∼ Γ(a, b),
• if θ0 ∈ Cβ [0, 1]d, then contraction rate nearly n−β/(2β+d).

• if θ0 is analytic, then contraction rate nearly n−1/2.



*Rates in sequence space

Data: X(n) = θ + n−1/2
Ẇ

Prior θi
ind∼ N(0, τ2i−2α−1) on coefficients on orthonormal basis

Lem For all s < α, prior concentrates on

Gs = {θ ∈ ℓ2:
∞
∑

i=1

i2sθ2i < ∞}.

Thm τ fixed

If θ0 ∈ Gβ , then contraction rate n−(α∧β)/(1+2α).

Thm τ−1 ∼ Γ(c, d)
If θ0 ∈ Gβ and β < α+ 1/2, then contraction rate n−β/(1+2β).



*Dirichlet normal mixtures [Ghosal vdV Rousseau Kruijer Tokdar Shen 2001–2013]

Data: X1, . . . , Xn
iid∼ p.

Prior on p
• F ∼ Dirichlet process.

• 1/τ ∼ Γ(c, d), independent of F .

• pF,τ (x) =
∫

1
τ φ

(

x−z
τ

)

dF (z).

Thm Hellinger contraction rate is

• nearly n−1/2 if p0 = pF0,τ0 , some F0, τ0.
• nearly n−β/(2β+d) if p0 has β derivatives and small tails.



Recovery: summary

Recovery is best if prior matches truth.

Mismatch slows down, but does not prevent, recovery.

Mismatch can be prevented by using a hyperparameter.



Uncertainty quantification



Credible sets

Def A credible set is a data-dependent set C(X) with

Π
(

θ ∈ C(X)|X) ≥ 0.95.

credible bands C(X)
are natural

Estimated abundance of a transcription factor as function of time:
posterior mean curve and 95% credible bands

(Gao et al. Bioinformatics 2008)



Are credible sets confidence sets?

credible set

Π
(

θ ∈ C(X)|X) ≥ 0.95

confidence set

∀θ0: Pθ0

(

θ0 ∈ C(X)
)

≥ 0.95

• Finite-dimensional θ: yes (by Bernstein-von Mises)

• Smooth projections of infinite-dimensional θ: yes

• Truly nonparametric θ: no
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Does spread of posterior give correct order of uncertainty?

Different answers for deterministic bandwidth and data-driven bandwidth



Deterministic bandwidth: coverage requires undersmoothing

True θ0 (black), posterior mean (red)

• θ =
∑∞

i=1 θiei
• Truth:

θ0,i ≍ i−1−2β

• Prior:

θi
ind∼ N(0, i−1−2α)

Top to bottom:

increasing α

Black: truth

Green: bands



Deterministic bandwidth: coverage requires undersmoothing

True θ0 (black), posterior mean (red)

• θ =
∑∞

i=1 θiei
• Truth:

θ0,i ≍ i−1−2β

• Prior:

θi
ind∼ N(0, i−1−2α)

Top to bottom:

increasing α



**Deterministic bandwidth: coverage requires undersmoothing

Data: X(n) = θ + n−1/2
Ẇ

Prior θi
ind∼ N(0, i−2α−1) for coefficients on orthonormal basis

‖θ‖2Gs =
∞
∑

i=1

i2sθ2i

Thm θ̂n = E(θ|X(n))
• If α < β, then E

(

‖θ − θ̂n‖2ℓ2 |X
(n)

)

≫ ‖Eθ̂n − θ0‖2ℓ2 , all θ0 ∈ Gβ.

• If α > β, then E
(

‖θ − θ̂n‖2ℓ2 |X
(n)

)

≪ ‖Eθ̂n − θ0‖2ℓ2 , some θ0 ∈ Gβ.

Cor For Cn = {θ: ‖θ − θ̂n‖ℓ2 < Rn}, for Π(Cn|X(n)) = 0.95.

• If α < β, then Pθ0(θ0 ∈ Cn) → 1, all θ0 ∈ Gβ.

• If α > β, then Pθ0(θ0 ∈ Cn) → 0, some θ0 ∈ Gβ .



Data-driven bandwidth

Family of priors Πτ of varying smoothness τ .

Examples

• t 7→ Wτt, for Gaussian process W
• t 7→ ∑∞

i=1 θiei(t), for θi
ind∼ N(0, τ2i−1−2α)

• t 7→
∫

τ−1φ(τ−1(t− z)) dF (z), with F ∼ Dirichlet process



Data-driven bandwidth

Family of priors Πτ of varying smoothness τ .

Prior on bandwidth τ gives adaptive recovery:

for smoother true function better reconstruction



Data-driven bandwidth

Family of priors Πτ of varying smoothness τ .

Prior on bandwidth τ gives adaptive recovery:

for smoother true function better reconstruction

This implies that data-driven posteriors must be tricked by

some inconvenient truths and sometimes be misleading

in their uncertainty quantification

• Estimation: ∀β: ∀θ ∈ Θβ : rate εn,β.

• Uncertainty: ∀θ ∈ ∪βΘβ : Pθ

(

θ ∈ C(X)
)

≥ 0.95.

“We may know that a given statistical procedures is optimal in many settings

simultaneously, but we cannot know how good it is” [Lucien Birgé]



Inconvenient truths

θ1, θ2, . . . , θN1 , 0, 0, . . . , 0, θn2 , θn2+1, . . . , θN2 , 0, 0, . . . , 0, θn3 , . . . , θN3 , 0, . . .

Length of zero runs increasing.



Convenient truths [Szabó et al 2015]

Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
∑

i=N

θ2i ≥ 0.001

∞
∑

i=N

θ2i , ∀ large N



Convenient truths [Szabó et al 2015]

Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
∑

i=N

θ2i ≥ 0.001

∞
∑

i=N

θ2i , ∀ large N

“Everything” is polished tail...:

• For the topologist [Giné,Nickl 2010]

Non polished tail sequences are meagre in a natural topology

• For the minimax expert:

Intersecting the usual models with polished tail sequences

decreases the minimax risk by at most a logarithmic factor

• For the Bayesian:

Almost every θ from a prior θi
ind∼ N(0, ci−α−1/2) is polished tail



Data-driven bandwidth – credible balls [Szabó et al 2015, Sniekers et al 2020]

Data: X(n) = θ + n−1/2
Ẇ, for white noise Ẇ

• Prior θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)
• Prior on α

Ĉn,M : = {θ: ‖θ − θ̂n‖ < MR}
θ̂n = E(θ|X(n))

Π
(

θ: ‖θ − θ̂n‖ < R|X(n)
)

= 0.95

Thm For not too small M , uniformly in polished tail functions θ0,

Pθ0

(

θ0 ∈ Ĉn,M

)

→ 1



Inverse problems



Inverse problems

Data: Y (n) = uθ + n−1/2
Ẇ, for uθ solution to a PDE

Estimation of uθ is ordinary regression problem

However, contraction rate for uθ does not imply rate for θ

The prior must regularize both uθ and the inverse uθ 7→ θ.



Linear inverse problems [Ray 2017, Knapik Salomond 2018, vdV&Yan 2020]

Data: Y (n) = Kθ + n−1/2
Ẇ, for white noise Ẇ

Smoothness scale ‖θ‖2Gs =
∑∞

i=1 i
2s/dθ2i for θ =

∑∞
i=1 θiei.

Smoothing property K:G0 → L, Hilbert space, with

‖Kθ‖L ≍ ‖θ‖G−p .

Galerkin reconstruction θ(j) = K−1QjKθ, for Qj :L → K lin (e1, ..., ej).

Thm If ∃jn . nε2n and ηn & εnj
p
n ∨ j−β

n with

Π
(

θ: ‖Kθ −Kθ0‖L < εn
)

& e−nε2n ,

Π
(

θ: ‖θ(jn) − θ‖G0 > ηn
)

≤ e−4nε2n ,

then contraction rate for θ0 ∈ G0 is ηn.



Linear Gaussian inverse problems [vdV&Yan 2020, Koers Szabó vdV 2023]

Data: Y (n) = Kθ + n−1/2
Ẇ, for white noise Ẇ

• Prior θi
ind∼ N(0, τ2i−2α/d−1)

• Prior τ−1 ∼ Γ(c, d)

Smoothness scale ‖θ‖2Gs =
∑∞

i=1 i
2s/dθ2i for θ =

∑∞
i=1 θiei.

Smoothing property K:G0 → L, Hilbert space, with

‖Kθ‖L ≍ ‖θ‖G−p .

‘

Thm For δ < β < α+ 1/2, contraction rate for θ0 ∈ Gδ is

n−(β−δ)/(2β+2p+d).



Inverse problems from PDEs [Stuart 2010, Nickl,...]

Data: Y (n) = uθ + n−1/2
Ẇ, for white noise Ẇ

Forward map uθ solves a PDE that depends on θ.

Examples

• Schrödinger [Nickl 2020]
1
2∆u = θu.

• Heat with absorption [Kekkonen 2022] ∂tu− 1
2∆u = θu.

• Non-abelian X-ray transform [Monard Nickl Paternain 2019, 2021]

• Divergence/Darcy [Abraham Nickl 2019, Bohr 2022] ∇ · (θ∇u) = g.

• Navier-Stokes [Nickl Titi 2023]

• ...



Linear methods for nonlinear PDE inverse problems [Koers Szabó vdV 2023]

Data: Y (n) = uθ + n−1/2
Ẇ, for white noise Ẇ

{

Luθ = c(θ, uθ), on Ω,

uθ = g, on Γ ⊆ ∂Ω.

L linear and rich enough so that there exists (Lipschitz) e with

θ = e(Luθ).

Data: Y (n) = KLuθ + n−1/2
Ẇ, for K = L−1

• Put prior on uθ, equivalently on v = Luθ
• Obtain posterior for v from Y (n) = Kv + n−1/2

Ẇ

• Map to posterior of θ = e(v).

Thm If e Lipschitz on set of posterior mass tending to 1, then

contraction rate and uncertainty quantification inherited from linear

problem



Schroedinger equation

{

1
2∆uθ = θuθ, on Ω,

uθ = g, on ∂Ω.
θ = e(∆uθ): =

∆uθ
2θ

.



Outlook



Contraction rates in direct problems understood

Uncertainty quantification much less understood

Growing insight in Bayesian methods for inverse problems
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