Bayesian inference in infinite dimensions

Aad van der Vaart

TU Delft, Netherlands

Mordell Lecture, Cambridge, May 4, 2023

[Bayes](#page-2-0)Does it [work?](#page-21-0)[Recovery](#page-26-0)Uncertainty [quantification](#page-42-0)Inverse [problems](#page-55-0)[Outlook](#page-62-0)

The Bayesian paradigm

- \bullet • The unknown θ is generated according to a prior distribution Π .
- \bullet • Given θ the data X is generated according to a measure P_{θ} .

This gives a joint distribution of (X, θ) : $P(X \in A, \theta \in B) = \int_B P_\theta(A) d\Pi(\theta)$.

 \bullet • The scientist updates Π to the conditional distribution of θ given X , the posterior distribution:

 $\Pi(\theta \in B | X)$

The Bayesian paradigm

- \bullet • The unknown θ is generated according to a prior distribution Π .
- \bullet • Given θ the data X is generated according to a measure P_{θ} .

This gives a joint distribution of (X, θ) : $P(X \in A, \theta \in B) = \int_B P_\theta(A) d\Pi(\theta)$.

 \bullet • The scientist updates Π to the conditional distribution of θ given X , the posterior distribution:

 $\Pi(\theta \in B | X)$

If $P_{\theta}(A) = \int_{A} p_{\theta}(x) d\mu(x)$, then **Bayes's rule** gives

 $d\Pi(\theta|\,X) \propto p_\theta(X)\,d\Pi(\theta)$

In general *disintegration*: $P(X \in A, \theta \in B) = \int_A \Pi(\theta \in B | x) dP(x)$.

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh andwas ^a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument with $\theta \in [0,1]$ *uniformly distributed* and X given θ *binomial* (n,θ) .

$$
d\Pi(\theta) = 1 \cdot d\theta, \qquad 0 < \theta < 1,
$$
\n
$$
p_{\theta}(x) = P(X = x | \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n - x}, \qquad x = 0, 1, \dots, n,
$$
\n
$$
d\Pi(\theta | X) \propto \theta^X (1 - \theta)^{n - X} \cdot 1 \cdot d\theta.
$$

Thomas Bayes (1702–1761) studied logic and theology in Edinburgh andwas ^a Presbyterian minister in London and Turnbridge Wells.

In his paper read to the Royal Society in 1763, he followed this argument with $\theta \in [0,1]$ *uniformly distributed* and X given θ *binomial* (n,θ) .

Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss (1777–1855) rediscovered Bayes's argument and applied it to general parametric models: models smoothly indexed by a Euclidean vector $\theta.$

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocatedmaximum likelihood, with much success.

Parametric Bayes

Pierre-Simon Laplace (1749–1827) and Carl Friedrich Gauss (1777–1855) rediscovered Bayes's argument and applied it to general parametric models: models smoothly indexed by a Euclidean vector $\theta.$

Ronald Aylmer Fisher (1890–1962) did not buy into it, but advocatedmaximum likelihood, with much success.

The Bayesian method regained popularity following the development of MCMC methods in the 1980/90s.

It is a <mark>method of choice for many applied scientists</mark>.

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are probability distributions on an infinite-dimensional space.

Bayes's formalism does not change, and his rule remains:

 $d\Pi(\theta|\,X) \propto p_\theta(X)\,d\Pi(\theta)$

In nonparametric statistics, the unknown θ is infinite-dimensional.

In nonparametric Bayesian statistics, prior and posterior are probability distributions on an infinite-dimensional space.

Bayes's formalism does not change, and his rule remains:

 $d\Pi(\theta|\,X) \propto p_\theta(X)\,d\Pi(\theta)$

Nonparametric Bayesian statistics set off in the 1970/80/90s, but before2000 it was thought not to work, except in very special cases.

Data:
$$
X_1, \ldots, X_n \overset{\text{iid}}{\sim} P
$$

An obvious nonparametric estimator is the empirical distribution

$$
\mathbb{P}_n = \frac{1}{n} \displaystyle{\sum_{i=1}^n} \delta_{X_i}
$$

Bayesian approach starts with ^a prior over the set of distributions.

Def $P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ where $V_j \overset{\mathsf{iid}}{\sim} \text{Be}(1, M)$, $\theta_i \overset{\mathsf{iid}}{\sim} G$ \sum ∞ $\sum\limits_{i=1}^\infty W_i\delta_{\theta_i}$ is *Dirichlet process* if $W_i=V_i\prod_{j$ − $V_j),$

Def $P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ where $V_j \overset{\mathsf{iid}}{\sim} \mathrm{Be}(1,M)$, $\theta_i \overset{\mathsf{iid}}{\sim} G$ $\sum_{i=1}^{\infty}$ $\sum\limits_{i=1}^\infty W_i\delta_{\theta_i}$ is *Dirichlet process* if $W_i=V_i\prod_{j$ − $V_j),$

Sample of 100 from Cauchy (-2,1).

ThmI MM [Ferguson, Lo 1983-86]
If $P \sim DP(MG)$ and $X_1, \ldots, X_n | P \overset{\text{iid}}{\sim} P$, then $\operatorname{E}(P|X_1\ldots,X)$ $_n)$ $-\,\mathbb{P}_n=$ $O(1/n)$ $\sqrt{n}(P-\mathbb{P}_n)| X_1,\ldots,X_n \rightsquigarrow \mathsf{Brownian~bridge}$

"Bayesian bootstrap"

Def $P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ where $V_j \overset{\mathsf{iid}}{\sim} \text{Be}(1-\sigma,M)$ \sum ∞ $\sum\limits_{i=1}^\infty W_i\delta_{\theta_i}$ is *Pitman-Yor process* if $\quad W_i = V_i\prod_{j < i}(1)$ − $V_j),$ − $\sigma, M{+}j\sigma)$, θ_i ^{iid} G

Sample of 100 from Cauchy (-2,1)

Def $P=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\Delta x^{\ast}$ where $V_j \stackrel{\text{iid}}{\sim} \text{Be}(1-\text{C})$ \sum ∞ $\sum\limits_{i=1}^\infty W_i\delta_{\theta_i}$ is *Pitman-Yor process* if $\quad W_i = V_i\prod_{j < i}(1)$ − $V_j),$ − $\sigma, M{+}j\sigma)$, θ_i ^{iid} G

prior and posterior

Sample of 100 from Cauchy (-2,1).

ThmI ΠΠΙ [James 2006, Franssen vdV 2022]
If $P \sim PY(MG, \sigma)$ and $X_1, \ldots, X_n | P \overset{\text{iid}}{\sim} P$, then

$$
P[X_1, \ldots, X_n \leadsto \delta_{(1-\lambda)P_0^d + \lambda(1-\sigma)P_0^c + \sigma \lambda G}]
$$

$$
\sqrt{n}\Big(P-\mathbb{P}_n-\frac{\sigma K_n}{n}(G-\tilde{\mathbb{P}}_n)\Big)\Big|\;X_1,\ldots,X_n\leadsto \textsf{Gaussian}.
$$

Bayesian regression

Data: $Y_i = u_\theta(x_i) + \varepsilon_i$, for u_θ solution of a PDE with unknown θ

Bayesian data assimilation

[Stuart 2010,]

Data: $Y_i = u_\theta(x_i) + \varepsilon_i$, for u_θ solution of a PDE with unknown θ

Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for largescale problems, with application to flow of the Antarctic ice sheet

Tobin Isaac^a 23, Noemi Petra ^b 2 23, Georg Stadler^c 23, Omar Ghattas^{ade} 23

$$
-\nabla \cdot [2\eta(u, n) \dot{\varepsilon}_u - I_p] = \rho g \quad \text{in } \Omega
$$

$$
\nabla \cdot u = 0 \quad \text{in } \Omega
$$

$$
\sigma_u n = 0 \quad \text{on } \Gamma_t
$$

$$
n = 0 \quad T\sigma_v n + \exp(\beta) T u = 0 \quad \text{on } \Gamma_t
$$

$$
\boldsymbol{u}\cdot\boldsymbol{n}=0,\,\boldsymbol{T}\boldsymbol{\sigma}_{\boldsymbol{u}}\boldsymbol{n}+\exp(\beta)\boldsymbol{T}\boldsymbol{u}=\boldsymbol{0}\quad\text{ on }\Gamma_b
$$

Data:
$$
Y_i = u_\theta(x_i) + \varepsilon_i
$$
, for u_θ solution of a PDE with unknown θ

If $\varepsilon_1,\ldots,\varepsilon_n$ are i.i.d. Gaussian, then Bayes's rule gives

$$
d\Pi(\theta|Y_1,\ldots,Y_n) \propto \prod_{i=1}^n e^{-(Y_i-u_\theta(x_i))^2/2\sigma^2} d\Pi(\theta).
$$

Thm[posterior mode] [Wahba 1978, Dashti et al 2013] For Gaussian prior on θ with RKHS norm $\|\cdot\|$

$$
\lim_{\varepsilon \downarrow 0} \operatorname*{argmax}_{\theta} \Pi\big(B(\theta, \varepsilon) | Y^{(n)}\big) = \operatorname*{argmin}_{\theta} \sum_{i=1}^{n} \big(Y_i - u_{\theta}(x_i)\big)^2 + \sigma^2 \|\theta\|^2
$$

Full posterior distribution quantifies uncertainty

Other settings

- density estimation
- high-dimensional inference
- networks
- deep learning
- diffusion processes
- hierarchical models
- \bullet ...

Prior used to model sparsity or network structure or "to borrow strength".

network of genes involved in lung cancer

[Kpogbezan et al. 2016]

Does it work?

Frequentist Bayes

Assume data X is generated according to a given parameter θ_0 .
Consider the posterier $\Pi(\theta \in \Gamma X)$ as a given rendem messure. Consider the posterior $\Pi(\theta\in\cdot| \, X)$ as a given random measure.

Frequentist Bayes

Assume data X is generated according to a given parameter θ_0 .
Consider the posterier $\Pi(\theta \in \Gamma X)$ as a given rendem messure. Consider the posterior $\Pi(\theta\in\cdot| \, X)$ as a given random measure.

Recovery We like $\Pi(\theta \in \cdot| \, X)$ to put "most" of its mass near θ_0 for "most" $X.$

Uncertainty quantification

We like the "spread" of $\Pi(\theta \in \cdot|\:X)$ to indicate remaining uncertainty.

Asymptotic settingData $X^{(n)}$, with information increasing as $n\to\infty$.

Data: X_1, \ldots, X_n i.i.d. sample from density $x \mapsto p_\theta(x)$
at is **smoothly** and **identifiably** parametrized by $\theta \in \mathbb{R}$ that is **smoothly** and **identifiably** parametrized by $\theta \in \mathbb{R}^d$.

ThmFor any prior with positive density,

$$
E_{\theta_0}\Big\|\Pi_n(\cdot|X_1,\ldots,X_n)-N_d(\tilde{\theta}_n,\frac{1}{n}i_{\theta_0}^{-1})(\cdot)\Big\|_{TV}\to 0.
$$

Here $\tilde{\theta}_n = \tilde{\theta}_n(X_1,\ldots,X_n)$ satisfy $\sqrt{n}(\tilde{\theta}_n - \theta_0) \rightsquigarrow N_d(0, i_{\theta_0}^{-1})$.

The prior washes out.

Nonparametric Bayes

For infinite-dimensional θ , the prior matters!

Data:
$$
X^{(n)} \sim P_{\theta}^{(n)}
$$
 $\theta \in (\Theta, d)$

Deff Contraction rate at θ_0 is ϵ_n if, for large enough M ,

$$
E_{\theta_0} \Pi_n(\theta: d(\theta, \theta_0) > M\epsilon_n | X^{(n)}) \to 0, \qquad n \to \infty
$$

Data:
$$
X^{(n)} \sim P_{\theta}^{(n)}
$$
 $\theta \in (\Theta, d)$

Deff Contraction rate at θ_0 is ϵ_n if, for large enough M ,

$$
E_{\theta_0} \Pi_n(\theta: d(\theta, \theta_0) > M\epsilon_n | X^{(n)}) \to 0, \qquad n \to \infty
$$

Benchmark rate for (inverse) curve fitting: A function θ of d variables with bounded derivatives of order β is estimable based on n observations at rate

 $n^{-\beta/(2\beta+d+2p)}$

Minimax rate

To model Θ_β is attached an optimal rate of recovery defined by the <mark>minimax criterion</mark>

$$
\varepsilon_{n,\beta} = \inf_{T} \sup_{\theta \in \Theta_{\beta}} \mathcal{E}_{\theta} d(T(X), \theta).
$$

Adaptation

Given models $(\Theta_\beta: \beta\in B)$, there often exists a single T that attains the minimax rate for every $\beta.$

Minimax rate

To model Θ_β is attached an optimal rate of recovery defined by the <mark>minimax criterion</mark>

$$
\varepsilon_{n,\beta} = \inf_{T} \sup_{\theta \in \Theta_{\beta}} \mathcal{E}_{\theta} d(T(X), \theta).
$$

Adaptation

Given models $(\Theta_\beta: \beta\in B)$, there often exists a single T that attains the minimax rate for every $\beta.$

A good prior gives a posterior such that

$$
\forall \beta: \quad \forall \theta_0 \in \Theta_{\beta}: \quad E_{\theta_0} \Pi_n(\theta: d(\theta, \theta_0) > M \epsilon_{n,\beta} | X^{(n)}) \to 0.
$$

Data: Sample of size n from density p .

Prior Π , on set of densities $\mathcal P$, with convex metric $d,$ d \leq Hellinger.

Kolmogorov entropy

 $N(\epsilon,\mathcal{P},d)$ is the minimal number of d -balls of radius ϵ needed to cover $\mathcal{P}.$

Thm If

$$
\Pi\Big(p: P_0\Big(\log\frac{p_0}{p}\Big) < \varepsilon_n^2\Big) \ge e^{-n\epsilon_n^2}, \qquad \text{(prior mass)}
$$
\n
$$
\exists \mathcal{P}_n: \quad \log N\big(\epsilon_n, \mathcal{P}_n, d\big) \le n\epsilon_n^2 \quad \text{and} \quad \Pi(\mathcal{P}_n^c) \le e^{-4n\epsilon_n^2}, \quad \text{(complexity)}
$$

then posterior rate of contraction at $p_{\rm 0}$ $_0$ is ϵ_n .

[Hellinger metric: $h(p,q) = ||\sqrt{p} - \sqrt{q}||_2.$]

***Interpretation**

Let $p_1,\ldots,p_N\in\mathcal{P}$ be maximal set with $d(p_i,p_j)\geq \epsilon_n,\quad N\asymp N(\epsilon_n,\mathcal{P},d)$

The complexity bound says

$$
N \asymp N(\epsilon_n, \mathcal{P}, d) \le e^{n\epsilon_n^2}.
$$

A "uniform prior" would give each ball of radius ε_n mass

$$
\Pi(B(p_j, \varepsilon_n)) \asymp \frac{1}{N} \ge e^{-n\epsilon_n^2}.
$$

This is the <mark>prior mass bound</mark>.

Suggestion:Contraction rate is ε_n at every $p_0 \in \mathcal{P}$ for priors that "distribute mass uniformly over ${\cal P}$, at discretization level ϵ_n ".

Gaussian process prior

Stochastic process $W = (W_t \: : \: t \in T)$ gives prior on functions $\theta \colon T \to \mathbb{R}$.

 \sum W is a Gaussian process if ∇^k and W is Gaussian for $\,$ $i=1$ $_1\,\alpha_iW_{t_i}$ is Gaussian, for every $\alpha_1,\ldots,\alpha_k,t_1,\ldots,t_k.$ For every positive-definite $c\mathpunct{:}T\times T\to\mathbb{R},$ there exists W with $c(s,t) = EW_sW_t,$ s, $t \in T$.

Example: Brownian motion and its primitives

0, 1, 2 and 3 times integrated Brownian motion

View Gaussian process W as map into Banach space $(\mathbb{B},\|\cdot\|).$ It comes with a $\mathsf{R}\mathsf{K}\mathsf{H}\mathsf{S}\mathbb{H}$.

ThmIf statistical distances combine appropriately with $\|\cdot\|$, then contraction rate is ε_n $_n$ if both

$$
\mathbf{P}\big(\|W\| < \varepsilon_n\big) \ge e^{-n\varepsilon_n^2} \quad \text{and} \quad \inf_{h \in \mathbb{H}: \|h - \theta_0\| < \varepsilon_n} \|h\|_{\mathbb{H}}^2 \le n\varepsilon_n^2
$$

View Gaussian process W as map into Banach space $(\mathbb{B},\|\cdot\|).$ It comes with a $\mathsf{R}\mathsf{K}\mathsf{H}\mathsf{S}\mathbb{H}$.

ThmIf statistical distances combine appropriately with $\|\cdot\|$, then contraction rate is ε_n $_n$ if both

$$
\mathbf{P}\big(\|W\| < \varepsilon_n\big) \ge e^{-n\varepsilon_n^2} \quad \text{and} \quad \inf_{h \in \mathbb{H}: \|h - \theta_0\| < \varepsilon_n} \|h\|_{\mathbb{H}}^2 \le n\varepsilon_n^2
$$

Example e Integrated Brownian motion viewed as map in $C[0,1]$ has $\mathbb H$ = $\,H$ $^{k+1} =$ $\big\{h: \mathcal{r} \big\}$ $\,h$ $\| \mathbb{H} \mathbb{R} =$ \parallel $h\,$ $(k+1)$ || 2 $<$ ∞ $\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right.$ $-\log P(||W||_{\infty} < \varepsilon) \asymp (1/\varepsilon)$ Contraction rate $n^{-(\beta\wedge (k+1/2))/(2k+2)}$ if $\theta_0\in C^\beta$. Optimal if $k+1/2=\beta$. 2 $2/(2k+1)$ $\left(\begin{array}{cccccccc} 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \end{array} \right)$ −2.0 −1.0 0.0

Data: Sample of size n in regression model or from density

ε

1

 $\binom{1}{1}$

.

Prior Gaussian with $\text{cov}(\theta_{\tau x}, \theta_{\tau})$ $(x') = e^{-\|}$ $\mathcal X$ − $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ x^{\prime} || 2 $-\tau$ 2.

Thm τ fixed,

- **m** If
● if θ_0 $_0$ analytic, then contraction rate nearly n^{-1} $\frac{1}{\sqrt{2}}$ 2.
- if θ_0 only ordinary smooth, then contractio $_0$ only ordinary smooth, then contraction rate $(\log n)^{-k}$.

Data: Sample of size n in regression model or from density

Prior Gaussian with $\text{cov}(\theta_{\tau x}, \theta_{\tau})$ $(x') = e^{-\|}$ $\mathcal X$ − $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ x^{\prime} || 2 $-\tau$ 2.

Thm τ fixed,

- **m** If
● if θ_0 $_0$ analytic, then contraction rate nearly n^{-1} $\frac{1}{\sqrt{2}}$ 2.
- if θ_0 only ordinary smooth, then contractio $_0$ only ordinary smooth, then contraction rate $(\log n)^{-k}$.

Thm If $τ$ d ∼ $\sim \Gamma(a, b),$

- • if $\theta_0 \in C^\beta[0,1]^d$, then contraction rate nearly $n^{-\beta/(2\beta)}$ $+ d$)
- $\bullet\,$ if θ_0 is analytic, then contraction rate nearly r $_{0}$ is analytic, then contraction rate nearly n^{-1} $\frac{1}{\sqrt{2}}$ 2.

$$
Data: X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}
$$

Prior $\theta_i \stackrel{\mathsf{ind}}{\sim} N(0, \tau^2 i^{-2\alpha-1})$ on coefficients on orthonormal basis

LemFor all $s < \alpha$, prior concentrates on

$$
G^{s} = \{ \theta \in \ell_2 : \sum_{i=1}^{\infty} i^{2s} \theta_i^2 < \infty \}.
$$

Thm ^τ fixed If $\theta_0 \in G^{\beta}$, then contraction rate $n^{-(\alpha \wedge \beta)/(1+2\alpha)}$.

Thm $\tau^{-1} \sim \Gamma(c, d)$
If $\theta \in C^{\beta}$ and $\beta \leq c$ If $\theta_0 \in G^{\beta}$ and $\beta < \alpha + 1/2$, then contraction rate $n^{-\beta/(1+2\beta)}$.

Data:
$$
X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p
$$
.

Prior on p

- $F \sim$ Dirichlet process.
- $1/\tau \sim \Gamma(c,d)$, independent of F.

•
$$
p_{F,\tau}(x) = \int \frac{1}{\tau} \phi\left(\frac{x-z}{\tau}\right) dF(z).
$$

ThmHellinger contraction rate is

- \bullet • nearly $n^{-1/2}$ if $p_0 = p_{F_0, \tau_0}$, some F_0 , τ_0 .
- •• nearly $n^{-\beta/(2\beta+d)}$ if p_0 has β derivatives and small tails.

Recovery is best if prior matches truth. Mismatch slows down, but does not prevent, recovery. Mismatch can be prevented by using ^a hyperparameter. Uncertainty quantification

Deff A credible set is a data-dependent set $C(X)$ with $\Pi\big(\theta\in C(X)\vert\, X)\geq 0.95.$

credible bands $C(X)$ are natural

> Estimated abundance of ^a transcription factor as function of time: posterior mean curve and 95% credible bands(Gao et al. *Bioinformatics* 2008)

- Finite-dimensional θ: yes *(by Bernstein-von Mises)*
- Smooth projections of infinite-dimensional θ : yes
- Truly nonparametric θ : no

Does spread of posterior give correct order of uncertainty?Different answers for deterministic bandwidth and data-driven bandwidth

True θ_0 (black), posterior mean (red)

$$
\bullet \ \theta = \sum_{i=1}^{\infty} \theta_i e_i
$$

 \bullet

\n- **Truth:**
$$
\theta_{0,i} \asymp i^{-1-2\beta}
$$
\n

\n- **Prior:**
\n- $$
\theta_i \stackrel{\text{ind}}{\sim} N(0, i^{-1-2\alpha})
$$
\n

Top to bottom: increasing α

Black: truth

Green: bands

True θ_0 (black), posterior mean (red)

 \bullet $\theta=$ <u>т.</u> \sum ∞ $\sum\limits_{i=1}^{\infty}\theta_ie_i$

\n- **Truth:**
\n- $$
\theta_{0,i} \asymp i^{-1-2\beta}
$$
\n

\n- **Prior:**
\n- $$
\theta_i \stackrel{\text{ind}}{\sim} N(0, i^{-1-2\alpha})
$$
\n

Top to bottom: increasing α

$$
Data: X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}
$$

Prior θ_i ind∼ $N(0,i^{-2}$ α −1 (1) for coefficients on orthonormal basis

$$
\|\theta\|_{G^s}^2 = \sum_{i=1}^\infty i^{2s}\theta_i^2
$$

Thm
$$
\hat{\theta}_n = \mathbb{E}(\theta | X^{(n)})
$$

\n• If $\alpha < \beta$, then $\mathbb{E}(\|\theta - \hat{\theta}_n\|_{\ell_2}^2 | X^{(n)}) \gg \|\mathbb{E} \hat{\theta}_n - \theta_0\|_{\ell_2}^2$, all $\theta_0 \in G^{\beta}$.
\n• If $\alpha > \beta$, then $\mathbb{E}(\|\theta - \hat{\theta}_n\|_{\ell_2}^2 | X^{(n)}) \ll \|\mathbb{E} \hat{\theta}_n - \theta_0\|_{\ell_2}^2$, some $\theta_0 \in G^{\beta}$.

Cor For
$$
C_n = \{\theta : ||\theta - \hat{\theta}_n||_{\ell_2} < R_n\}
$$
, for $\Pi(C_n|X^{(n)}) = 0.95$.

- $\bullet\hspace{1mm}$ If $\alpha<\beta,$ then $\mathrm{P}_{\theta_0}(\theta_0\in C_n)\rightarrow 1,$ all $\theta_0\in G^\beta.$
- \overline{D} (0α) \sim \sim Λ $\bullet\hspace{1mm}$ If $\alpha>\beta,$ then $\mathrm{P}_{\theta_0}(\theta_0\in C_n)\rightarrow 0,$ some $\theta_0\in G^\beta.$

Data-driven bandwidth

Family of priors Π_τ of varying smoothness $\tau.$

Examples

- $t \mapsto W_{\tau t}$, for Gaussian process W
• $t \mapsto \sum_{\alpha} \mathcal{L}_{\alpha}(\tau)$ for θ , ^{ind} $N(\theta, \tau^2)$
- $t \mapsto \sum_{i=1}^{\infty} \theta_i e_i(t)$, for $\theta_i \stackrel{\text{ind}}{\sim} N(0, \tau^2 i^{-1-2\alpha})$
• $t \mapsto \int \tau^{-1} \phi(\tau^{-1}(t-\tau)) dF(\tau)$ with $F \sim t$
- $\bullet\,\,t\mapsto\int\tau^{-1}\phi(\tau^{-1}(t-z))\,dF(z)$, with $F\sim$ Dirichlet process

Family of priors Π_τ of varying smoothness $\tau.$

Prior on bandwidth τ gives adaptive recovery: for smoother true function better reconstruction Family of priors Π_τ of varying smoothness $\tau.$

Prior on bandwidth τ gives adaptive recovery: for smoother true function better reconstruction

This implies that data-driven posteriors *must* be tricked by some inconvenient truths and sometimes be misleading in their uncertainty quantification

- Estimation: $\forall \beta: \forall \theta \in \Theta_{\beta}:$ rate $\varepsilon_{n,\beta}$.
- Uncertainty: $\forall \theta \in \cup_{\beta} \Theta_{\beta} : P_{\theta} (\theta \in C(X)) \geq 0.95.$

"We may know that a given statistical procedures is optimal in many settings *simultaneously, but we cannot know how good it is"[Lucien Birge]´*

 $\theta_1, \theta_2, \ldots, \theta_{N_1}, 0, 0, \ldots, 0, \theta_{n_2}, \theta_{n_2+1}, \ldots, \theta_{N_2}, 0, 0, \ldots, 0, \theta_{n_3}, \ldots, \theta_{N_3}, 0, \ldots$

Length of zero runs increasing.

Def \mathbf{f} $\theta \in \ell_2$ satisfies the *polished tail condition* if

$$
\sum_{i=N}^{1000N} \theta_i^2 \ge 0.001 \sum_{i=N}^{\infty} \theta_i^2, \qquad \forall \text{ large } N
$$

Def \mathbf{f} $\theta \in \ell_2$ satisfies the *polished tail condition* if

$$
\sum_{i=N}^{1000N} \theta_i^2 \ge 0.001 \sum_{i=N}^{\infty} \theta_i^2, \qquad \forall \text{ large } N
$$

"Everything" is polished tail...:

- For the *topologist* [Giné,Nickl 2010] Non polished tail sequences are meagre in ^a natural topology
- For the *minimax expert*:

Intersecting the usual models with polished tail sequencesdecreases the minimax risk by at most ^a logarithmic factor

• For the *Bayesian*:

Almost every θ from a prior $\theta_i \stackrel{\mathsf{ind}}{\sim} N(0, c i^{-\alpha-1/2})$ is polished tail

Data:
$$
X^{(n)} = \theta + n^{-1/2} \dot{\mathbb{W}}
$$
, for white noise $\dot{\mathbb{W}}$

- Prior $\theta =$ $\sum_{i=1}^{\infty}$ $\sum\limits_{i=1}^{\infty}\theta_{i}e_{i}$, with $\theta_{i}|\,\alpha\mathop \sim \limits^{\mathsf{ind}} N(0,i^{-1})$ 2 α 1 $\left(\frac{1}{2} \right)$
- Prior on α

$$
\hat{C}_{n,M} := \{\theta: \|\theta - \hat{\theta}_n\| < MR\}
$$

$$
\hat{\theta}_n = \mathcal{E}(\theta | X^{(n)})
$$

$$
\Pi(\theta : \|\theta - \hat{\theta}_n\| < R| X^{(n)}) = 0.95
$$

Thmm For not too small M, uniformly in polished tail functions θ_0 ,

$$
\mathrm{P}_{\theta_0}\big(\theta_0\in\hat{C}_{n,M}\big)\rightarrow 1
$$

Inverse problems

Data: $Y^{(n)} = u_{\theta} + n^{-1/2} \dot{\mathbb{W}}$, for u_{θ} solution to a PDE

Estimation of u_θ is ordinary regression problem

However, contraction rate for u_θ does not imply rate for θ

The prior must regularize both u_{θ} and the inverse $u_{\theta} \mapsto \theta$.

Data:
$$
Y^{(n)} = K\theta + n^{-1/2}\dot{\mathbb{W}}
$$
, for white noise $\dot{\mathbb{W}}$

Smoothness scale
$$
\|\theta\|_{G^s}^2 = \sum_{i=1}^{\infty} i^{2s/d} \theta_i^2
$$
 for $\theta = \sum_{i=1}^{\infty} \theta_i e_i$.

Smoothing property $K: G^0 \rightarrow L$, Hilbert space, with

 $||K\theta||_L \asymp ||\theta||_{G^{-p}}.$

Galerkin reconstruction $\theta^{(j)} = K^{-1} Q_j K \theta$, for $Q_j : L \to K$ $\text{lin} \, (e_1, ..., e_j).$

Thm If
$$
\exists j_n \lesssim n \varepsilon_n^2
$$
 and $\eta_n \gtrsim \varepsilon_n j_n^p \vee j_n^{-\beta}$ with
\n
$$
\Pi(\theta: \|K\theta - K\theta_0\|_{L} < \varepsilon_n) \gtrsim e^{-n\varepsilon_n^2},
$$
\n
$$
\Pi(\theta: \|\theta^{(j_n)} - \theta\|_{G^0} > \eta_n) \le e^{-4n\varepsilon_n^2},
$$

then contraction rate for $\theta_0\in G^0$ is $\eta_n.$

Data: $Y^{(n)} = K\theta + n^{-1}$ $1/$ 2 $^2\dot{\mathbb{W}},\;\;$ for white noise $\dot{\mathbb{W}}$

• Prior
$$
\theta_i \stackrel{\text{ind}}{\sim} N(0, \tau^2 i^{-2\alpha/d-1})
$$

• Prior τ^{-1} ∼ $\sim \Gamma(c, d)$

 \mathbf{f}

Smoothness scale $\quad \|\theta\|_C^2$ $\overline{G^s}$ \equiv Smoothing property $K: G^0$ $\sum_{i=1}^{\infty}$ $\sum\limits_{i=1}^{\infty}i^{2s/d}\theta_{i}^{2}$ $i²$ for $\theta=$ $\sum_{i=1}^{\infty}$ $\sum\limits_{i=1}^{\infty}\theta_ie_i$. $^{\rm o}\to L$, Hilbert space, with

> $\|K\theta\|_L$ $L \asymp \|\theta\|_{G^{-p}}.$

Thm For $\delta < \beta < \alpha + 1/2$, contraction rate for $\theta_0 \in G^{\delta}$ is $\theta_0 = \frac{(\beta - \delta)}{(2\beta + 2p + d)}$ $n^{-(\beta-\delta)/(2\beta+2p+d)}$

Data: $Y^{(n)}=u_\theta+n^{-1}$ $1/$ 2 $^2\dot{\mathbb{W}},\;\;$ for white noise $\dot{\mathbb{W}}$

Forward map u_θ solves a PDE that depends on $\theta.$

Examples

- Schrödinger [Nickl 2020] $\frac{1}{2}$ $\frac{1}{2}\Delta u=\theta u.$
- Heat with absorption [Kekkonen 2022] $\partial_t u \frac{1}{2}$ $\frac{1}{2}\Delta u=\theta u.$
- Non-abelian X-ray transform [Monard Nickl Paternain 2019, 2021]
- Divergence/Darcy [Abraham Nickl 2019, Bohr 2022] $\nabla \cdot (\theta \nabla u) = g$.
- Navier-Stokes [Nickl Titi 2023]
- \bullet ...

Data:
$$
Y^{(n)} = u_{\theta} + n^{-1/2} \dot{\mathbb{W}}
$$
, for white noise $\dot{\mathbb{W}}$

$$
\begin{cases}\n\mathcal{L}u_{\theta} = c(\theta, u_{\theta}), & \text{on } \Omega, \\
u_{\theta} = g, & \text{on } \Gamma \subseteq \partial\Omega.\n\end{cases}
$$

 $\boldsymbol{\mathcal{L}}$ linear and rich enough so that there exists (Lipschitz) e with

$$
\theta = e(\mathcal{L}u_{\theta}).
$$

Data:
$$
Y^{(n)} = K\mathcal{L}u_{\theta} + n^{-1/2}\dot{\mathbb{W}}, \text{ for } K = \mathcal{L}^{-1}
$$

- Put prior on u_{θ} , equivalently on $v=\mathcal{L}u_{\theta}$
- Obtain posterior for v from $Y^{(n)} = Kv + n^{-1}$ $1/$ 2 $2\ddot{\text{W}}$
- Map to posterior of $\theta = e(v)$.

ThmThm If e Lipschitz on set of posterior mass tending to 1, then contraction rate and uncertainty quantification inherited from linear e Lipschitz on set of posterior mass tending to 1, then problem

Schroedinger equation

$$
\begin{cases} \frac{1}{2}\Delta u_{\theta} = \theta u_{\theta}, & \text{on } \Omega, \\ u_{\theta} = g, & \text{on } \partial\Omega \end{cases}
$$

on
$$
\Omega
$$
, on $\partial\Omega$.

$$
= \theta u_{\theta}, \qquad \text{on } \Omega, \qquad \theta = e(\Delta u_{\theta}) := \frac{\Delta u_{\theta}}{2\theta}.
$$

= g, \qquad \text{on } \partial \Omega.

Outlook

Contraction rates in direct problems understood Uncertainty quantification much less understoodGrowing insight in Bayesian methods for inverse problems

