Semiparametric Bayesian estimation,
with or without bias

8

Kolyan Ray and Aad van der Vaart

King’s College London and Universiteit Leiden

BNP12, Oxford, June 2019



Questions

- on priors on semiparametric models

- on Bayesian inference versus “any” inference

Some results
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Home Office Web www. gov.uk/ukvi

VAF no:  Ukvs /1398611
GWF no:

Date 21 May 2019
Dear MOHAMED AMINE HADJI,

Your application for a visit visa to the United Kingdom has been refused.

What this means for you

Any future UK visa applications you make will be considered on their individual merits,
however you are likely to be refused unless the circumstances of your application change.

In relation to this decision, there is no right of appeal or right to administrative review.

The reasons for this decision are set out on the next page.

Yours sincerely,

GG
UKVS



REASONS FOR REFUSAL NRA v 1.0

You have applied for a visa to visit the UK.

In deciding whether you meet the requirements of Appendix V: of the Immigration Rules for
visitors (https://www.gov.uk/guidance/immigration-rules/immigration-rules-appendix-v-visitor-
rules), | have considered:

« your application and any additional relevant information you have provided with it

e your immigration history

The decision
| have refused your application for a visit visa because | am not satisfied that you meet the
requirements of Appendix V: Immigration Rules for Visitors because:

You have applied for entry clearance for 7 days.

| note that you previously applied for a visit visa and that your application was refused on
21/06/2018.

| also note the reasons for that refusal and the documents and comments you have now
submitted in support of your current application. It was noted on the previous refusal that
any future UK visa applications you made would be considered on their individual merits,
however you were likely to be refused unless the circumstances of your application
changed.

| have considered your application carefully but | find that your circumstances have not
changed since your last refusal and you have chosen not to address the reasons given by
the Entry Clearance Officer for your previous refusal with this application.

| am not satisfied that you have accurately presented your circumstances or intentions in
wishing to enter the United Kingdom. This means that | am not satisfied that you are
genuinely seeking entry as a visitor or that you intend to leave the United Kingdom at the
end of your proposed visit; or that you have access to sufficient funds to cover all reasonable
costs in relation to your visit without working or accessing public funds (this includes, but is
not exclusively, the cost of the return or onward journey, any costs relating to dependants,
and the cost of planned activities such as private medical treatment) Paragraph V 4.2 (a) (c)
(e) of the Immigration Rules.



NEXT STEPS NRA v 1.0

In relation to this decision, there is no right of appeal or right to administrative review.

https://www.homeofficesurveys.homeoffice.gov.uk/s/visasurveyuk




Questions



Missing data

Outcome Y, observed if A = 1, unobserved if A = 0.
Covariate Z such that

Y11 Al Z (missing at random)

Observe sample of (Y A, A, Z) satisfying
e Y| Z ~ binomial (1,5(2))
® A‘ 7 ~ binomial (1, a(Z)) [propensity score]
o / ~F

We wish to estimate
EY = /bdF
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Connection to causal inference

Treatment indicator A
Outcome Y if not treated
Outcome Y'! if treated

Causal effect EY! — EY?

Covariate Z such that

YU Y'Y 1L AlZ  (nounmeasured confounders)

YO ifA=0
Y:= .
Y, ifA=1

Observe sample from (Y, 4, Z), equivalently (YA, Y°(1 — A), A, Z)

We wish to estimate EY'! from (Y1 A4, A, 7)
and EY' from (Y°(1 — A), A, Z)



Semiparametric regression

Outcome Y, covariates X and Z, error e
Y=0X+bZ)+e
Observe sample of (Y, X, 7) satisfying
e c ~asuchthat E(e| X,Z) =0
e (X,Z)~F

We wish to estimate ¢
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Preliminary estimators

Observe X = (Y A, A, 7)
Parameter (a, b, f)
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e ¢ and b can be estimated by any nonparametric regression estimator
e f can be estimated by any nonparametric density estimator,
(and so can f/a x f(-| A =1))

If a, b, f or f/a are Holder smooth of orders «, 3,~ on [0, 1]¢,
estimation errors will be of order
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e o and b can be estimated by any nonparametric regression estimator
e f can be estimated by any nonparametric density estimator,
(and so can f/a x f(-| A =1))

If a, b, f or f/a are Holder smooth of orders «, 3,~ on [0, 1]¢,
estimation errors will be of order

Plug-in estimator [ bdF has rate n=#"/(28/1+d) 5, p=1/2



Likelihood

Observe X = (YA, A, Z) X ZYﬁAyz
Parameter (a, b, f) T
o b(Z)=E(Y|Z2)




Likelihood

Observe X = (YA, A, Z) X ZYr\JJJ]_TA|Z
Parameter (a, b, f) T
o b(Z)=E(Y|Z2)

Likelihood

(a,b, f) = £(Z)a(2) (1 — a(2)) " b(2)V A (1 = b(2)) A



Likelihood

Observe X = (YA, A, Z) X ZYr\JJJ]_TA|Z
Parameter (a, b, f) T
o b(Z)=E(Y|Z2)

Likelihood

(a;b, f) = [f(Z)] X [a(Z)A(l —a(Z))l_A] x [b(Z)YA(1 _p(z))dNA

Factorizes over f,a,b




Likelihood

Observe X = (YA, A, Z) X ZYr\JJJ]_TA|Z
Parameter (a, b, f) T
o b(Z)=E(Y|Z2)

Likelihood

(a;b, f) = [f(Z)] X [a(Z)A(l —a(Z))l_A] x [b(Z)YA(1 _p(z))dNA

Factorizes over f,a,b

For independent priors, posterior factorizes too




Likelihood

Observe X = (YA, A, Z) X ZYr\JJJ]_TA|Z
Parameter (a, b, f) T
o b(Z)=E(Y|Z2)

Likelihood

(a;b, f) = [f(Z)] X [a(Z)A(l —a(Z))l_A] x [b(Z)YA(1 _p(z))dNA

Factorizes over f,a,b

When using independent priors, posterior factorizes too

Is that good?
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1<~ Y4,

T,==
! nizzla(Zi)

Thm ET,=EY =60= [bdF and

e o o o
2
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Vn(Tq —6) ~ N(0,02)

True for any b or f (unlike nonparametric plug-in [ bdF)

Crucially utilizes a

Independent priors on a and b would not involve a to estimate 6

Is there a Bayesian analogue?




Horvitz-Thompson estimator (2)

Assume a known, but is estimated by fitting a correct parametric model.

Ty = E YZA@
né=a(Z;)
Thm
Vn(Tye —6) ~ N(0,02),
Vn(Ty —0) ~ N(0,72),
for



Horvitz-Thompson estimator (2)

Assume a known, but is estimated by fitting a correct parametric model.

Ty = E YZA@
né=a(Z;)
Thm
Vn(Tye —6) ~ N(0,02),
Vn(Ty —0) ~ N(0,72),
for

Is there a Bayesian analogue?

Not with independent priors on a and b
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Chris Sims in blog discussion with Larry Wasserman, Jamie Robins:

IV. CONCLUSION

Robins and Wasserman have presented not a single case where likeli-
hood based inference, or Bayesian inference in particular, leads one astray.
They have presented examples where naive approaches to specifying pri-
ors on infinite dimensional spaces can unintentionally imply dogmatic
beliefs about parameters of interest. Such examples are interesting and
instructive, but they are not cases where a Bayesian approach to inference
fails to give good results.



Dependent priors

Is it reasonable to model a and b dependent?
a(z)=PA=1|Z=2) bz)=E{Y|Z=2)

Chris Sims in blog discussion with Larry Wasserman, Jamie Robins:

IV. CONCLUSION

Robins and Wasserman have presented not a single case where likeli-
hood based inference, or Bayesian inference in particular, leads one astray.
They have presented examples where naive approaches to specifying pri-
ors on infinite dimensional spaces can unintentionally imply dogmatic
beliefs about parameters of interest. Such examples are interesting and
instructive, but they are not cases where a Bayesian approach to inference
fails to give good results.

Likelihood
H ¢’L @?i (]. — Ozi)l_Ai 63/'“4’&(1 _ 67;)(1—3/@')14,&-



Double robustness [many authors, 1980s, 90s; Klaassen, 1987; Robins; vdV 1998]

Estimate a and b nonparametrically (with external data), and set

AU [
T= [ bdFE+= .1 4(X;),
b 2 0

for
A

a(Z)

Xab,f(X) = (Y = b(2)) +b(Z) — [bdF

Thm Ifa € C*[0,1]% and b € C?]0, 1]¢ for

« I5; 1
+ > —,
20+d  204+d 2

then
\/E(T o 9) ~ N(OaTQ)a

for minimal variance
7‘2 < 73 < 03



Double robustness (2)

Estimate a and b nonparametrically, and set

. 1
T=[bdE+= x.:4(Xy),
b T X0
for

A v _b(2) +b(2) — [bdF

Xa,b,f(X) — CL(Z)

Thm .
\/E(T—HJF/(&—@)(B—I))T) ~ N(0,7%)

a



Double robustness (2)

Estimate a and b nonparametrically, and set

R, [
T= [ bdF + = = 2 (X;),
/ D a0

for
A
o (X)) = Y —b(Z Z) — F
Xas (X) = (Y = W(Z)) +(Z) — [bd
Thm dF
\/H(T— 0+ /(d —a)(b- 5)7) ~ N(0,77)
a b f no bias if
Op(n=1/2) op(1) _ dim(a) < o0
op(1) Op(n=1/2) — dim(b) < oo
n—0/(26+d)  ,—6/(26+d)  _ a=pF=06§>d/2
o—a/(2atd) o —B/(28+d) _ 72 + g > 1/2




Double robustness (2)

Estimate a and b nonparametrically, and set

. 1
T=[bdE+= x.:4(Xy),
b T X0
for

Xap,f(X) = a(AZ) (Y —=b(2))+b(Z) — [bdF
Thm -
Va(r -0+ [a-ab-n%) ~ N.)

Is there a Bayesian analogue?




Double robustness (3) [Robins, Li, Tchetgen, vdV, 2017]

Estimate a, b and f/a nonparametrically, at optimal rates
zﬂzufédﬁt+m%x&&%
for a higher order influence function (z1, ..., zx) = Xap 7 (%1, .., zk)
Thm If a € C*[0,1]¢, b € CP[0,1]%, f/a € C7]0,1]¢,

V(T —0) ~ N(0,72), if o + 5> d/2
T — 0 = Op(n~20+26)/(2a+26+d)y otherwise

This is optimal

(provided ~ not too small)
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Thm If a € C*[0,1]¢, b € CP[0,1]%, f/a € C7]0,1]¢,

V(T —0) ~ N(0,72), if o + 5> d/2
T — 0 = Op(n~(20+20)/(2a+20+d)y otherwise

This is optimal

(provided ~ not too small)

Is there a Bayesian analogue?




Bias-variance trade-off

In high-dimensional models the quality of estimation
Is determined by bias-variance trade-off

Non-principled methods (e.g. estimating equations)
can make explicit bias corrections,
as opposed to Bayesian or other likelihood-based inference



Bias-variance trade-off

In high-dimensional models the quality of estimation
Is determined by bias-variance trade-off

Non-principled methods (e.g. estimating equations)
can make explicit bias corrections,
as opposed to Bayesian or other likelihood-based inference

True?
Or can one use clever priors?
Should one?




Results



Bernstein-von Mises

Given priors on a, b, F' consider posterior distribution on 6 = [ bdF.

We say the Bernstein-von Mises theorem holds if, under (ag, bg, Fo),
d(c(\/ﬁ(e — 0| X1, .., X)), N(O, i52)> £ o,

for estimators 0,, = 6,,(X1, ..., X,) such that

The classical result uses the total variation distance d.

Here we use the weak distance (sufficient for justifying credible intervals).



Scores, influence function, and information

[Koshevnik and Levit (1976), Pfanzagl (1983), vdV (1991)]

We wish to estimate 6 = x(p), from sample from density p € P
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Scores, influence function, and information

[Koshevnik and Levit (1976), Pfanzagl (1983), vdV (1991)]

We wish to estimate 6 = x(p), from sample from density p € P
Tangent cone (at p) to P: all score functions

) P o
1 { e

. L
/ 3

== o
9 dt =0 gDt

of 1-dimensional submodels ¢ +— p; with pg = p

Influence function is x, € closed span of tangent cone with, V ¢t — p;

d

(=0 = Epg(X)xp(X)

e 0, is asymptotically efficient for & = x(p) if and only if

T, — (g =F = pr ‘I‘ OPO —1/2).

e Minimal asymptotic variance is

= EpXPQ(X)-



Scores, influence function, and information — Missing data

Observe X = (YA, A, Z) X SZ/J:I_FA|Z
Parameter p = p,.5 1) . o(2) = B(A| 2)
e b(Z)=E(]|Z)

Likelihood f(Z) a(2)*(1 — a(Z))l—A b(Z)YA(1 - b(Z))(l—Y)A

For given directions («, 8, ¢), and ¥(t) = 1/(1 + e %)

e a-score: (A—a(2))a(Z) ar = V(¥ (a) + ta)
. AY —b(2)) _ il

e b-score: I b)(Z)B(Z) by = U (T 1(b) + t0)

o f-score: ¢(Z) — [¢dF fi o elog f+ié

0 = [ bdF has Influence function

A

Xa,b,F(X) — CL(Z)

(Y —0(2)) +b(Z) — [bdF



Scores, influence function, and information — Missing data

Least favourable direction (at (a, b, f))
1
&= (a7,8Y,67) = (0,2, — [bdF)
a
gives submodels (a,, b;, f;) with score the efficient influence function:

0

— | a X) = vy, X).
at|t:O ogp t,bt,ft< ) X ,b,F( )



(1) Put prior on n: = (n%, 1, n/) and set

(4) Putprioronwllall F~DP1LLX~ N(0,02), and set

b(z) = W(w(z) + a()\z)>



Numerical results [Ray and Szabd, 2019]

Simulation results for causal effect in Gaussian response model
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independent priors bias corrected with dependent priors

posterior of 9; black line: posterior mean, red line: true value



Numerical results

[Ray and Szabd, 2019]

Simulation results for causal effect in Gaussian response model

Method Abs. error &= sd | Size CI £ sd Coverage | Type II error
GP 0.317 £ 0.031 10.516 £ 0.021 |0.06 0.00
GP (noRand) 0.317 £ 0.031 |0.359 & 0.014 |0.00 0.00
GP PS 0.063 £+ 0.040(0.742 + 0.030 |1.00 0.00
GP PS (noRand)||0.063 4 0.040/0.640 &+ 0.028(1.00 0.00
BART 0.225 £ 0.168 |[1.705 %= 0.474 10.99 0.47
BART (PS) 0.139 £ 0.096 10.747 + 0.080 |0.98 0.00
CF (AIPW) 0.138 & 0.098 10.697 £+ 0.103 ]0.96 0.00
CF (TMLE) 0.136 £ 0.100 10.891 & 0.152 |0.99 0.01
OLS 0.715 £ 0.166 10.363 £ 0.035 |0.00 0.24
CB (IPW) 0.607 £ 0.332 |1.504 £ 0.425 1|0.71 0.01
PSM 0.218 £ 0.173 [1.281 £ 0.165 |0.97 0.06




Numerical results

[Ray and Szabd, 2019]

-

Simulation results for causal effect in Gaussian response model

Method Abs. error = sd | Size CI £ sd Coverage | Type Il error
GP 0.246 £ 0.398 |[1.250 £1.014 |0.92 0.01
GP (noRand) 0.246 + 0.398 |1.014 £+ 0.877 |0.88 0.01
GP + PS 0.189 £ 0.234 |1.286 £ 1.107 |0.99 0.01
GP +PS (noRand)||0.189 + 0.234 |1.040 + 0.897 |0.94 0.01
BART 0.256 £ 0.332 (0.925 £ 0.707 |0.87 0.00
BART PS 0.249 + 0.353 |0.876 + 0.644 |0.87 0.00
CF (AIPW) 0.243 £ 0.265 [1.030 £0.778 |0.90 0.01
CF (TMLE) 0.244 £ 0.274 |1.057 £ 0.782 ]0.90 0.01
OLS 0.134 £0.112 |0.801 & 0.526(0.97 0.00
CB (IPW) 0.238 £0.199 |[1.200 £ 0.850 |0.90 0.00
CB (CM) 0.138 £ 0.120 |0.967 + 0.786 |0.94 0.00
PSM 0.133 £ 0.105(2.002 + 1.681 |[1.00 0.01




BvM (1) — general prior

Prior on n: = (n?, nb, nf)
Thm  Assume 3IH, withII(n € H,| X; ... X,,) =10 1,

sup ||b — bol|r2(m,) + If — foll1 = 0

b,f:mEHn
sup ‘Gn[b— bol| =10 0
b:neHn
sup |\/ﬁ/(b—bo)(f—fo)dz — 0
b,fmeHn

Then BvM theorem holds if V¢

f?—[n [Ti= pn—tfo/\/ﬁ(Xi) dI1(n)

10 1
f?—[n [Tim1 py(X3) dI1(n)

Modelled after Castillo (2012) and Castillo & Rousseau (2015)



BvM (2) — with Dirichlet prior

Prior on n: = (n%,7°) LLF ~ DP

Thm  Assume IHE° with II(n € HE'| X4, ..., X,) =P 1,

sup Hb—bOHL2(FO) — 0
b:nEH%’b

sup  |G[b — bo]| =1 0
b:nEH%’b

Then BvM theorem holds if V¢

fyab ? 119 —téo /\/—(Xi)dﬂ(ﬁ)
fH“b i= 1p?7 (X3) dII(n)

1o



BvM (3) — with propensity score-dependent prior and Dirichlet prior

Prioronw LL F ~DP 1L\ ~ N(0,02), estimate a with rate p,,

b(z) = \If(w(z) + &(AZ))

Thm  Assume 3’ and numbers u,,, % — 0,

II((w, A):w + A+ tn~ Y% /6 e HE Xi,...,Xp) 10
(A A < upolv/n| X1,..., X,) =01

sup [|b = boll 2(r,) < €,
b:nbeH?l
sup ’Gn[b— boH CNY
b:nbeH?

Then BvM theorem holds if no2 — oo and y/np,e’ — 0

Random A makes prior “vague” in least favorable direction




*** Exponential BVM for Dirichlet

1 mn
E|Zy,.... 2, ~DP F,), F,=- 6z
| Z3 (v + nlFp) n; 7%

Thm  Ifsup,cg, [Fng — Fogl =% 0, vG, = O(1), FoGZ™ = O(1),
then, for small |¢],

sup E[et\/ﬁ(an—an” 7y, ..., Zn] _ pt°Fo(g—Fog)?/2 )
gEgn



Independent Gaussian process priors

Wb 11 W7 Riemann-Liouville (3) and (7)
b(z) = W(W?) F(2) oc e

Cor |Ifage C? by e CP, fo € C7 with

d d _ d B d
%B>§a'§<ﬁ<g+ﬁ_§7’%<7+ﬁ_§

and

A B ~ 1
5_5+’Y_/\’Y>7
20+d 2 +d 2

then BvM theorem holds

Example: if 3 = 3, v = 7, then need «, 3 > d/2 and ~ large enough

No double robustness, f important




Independent Gaussian process prior with Dirichlet

W? ~ Riemann-Liouville(3) L F' ~ DP

Cor Ifage C? bye CP, and
d d d
0576 > 57 5
then BvM theorem holds

Example: if 3 = 3, then need o, 5 > d/2

No condition on f, no double robustness, undersmooth b




Gaussian process prior with propensity score and Dirichlet

Wb 1L X~ N(0,02), estimate a with rate p,,

b(z) = ¥ (W + aé))

Cor Ifage C®andby € CP, and
BAB

\/ﬁpn( & )_25” — 0,

logn

_ BAB

( ; > < onS1, BAB>
logn

¥

57
then BvM theorem holds
Example: if 3 = 3 and & optimal, then need 3 > d/2 and

Q I5; 1
+ > —
20+d  28+d 2

No condition on f, half of double robustness:
smoothness of b can compensate low smoothness of a




Regularity conditions?

e bec CPforp > d/2needed for “regularity condition”

sup ’Gn[b— boH — 1o
bnbeHb
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e bec CPforp > d/2needed for “regularity condition”

sup ’Gn[b— boH — 1o
bnbeHb

e acC*andbe CPfora,s > d/2 needed for prior:

A
b(z) = @ (W2 + Wa), W LLW® 1L X~ N(0,02).

z



Regularity conditions?

e bec CPforp > d/2needed for “regularity condition”

sup ’Gn[b— boH — 1o
bnbeHb

e acC*andbe CPfora,s > d/2 needed for prior:

A
b(z) = @ (W2 + Wa), W LLW® 1L X~ N(0,02).

z

This prevents double robustness
Is this an artefact of the proof?
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