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Introduction



The Bayesian paradigm

• A parameter θ is generated according to a prior distribution Π
• Given θ the data X is generated according to a measure Pθ

This gives a joint distribution of (X, θ)

• Given observed data X the statistician computes the conditional

distribution of θ given X, the posterior distribution:

Π(θ ∈ B|X).



The Bayesian paradigm

• A parameter θ is generated according to a prior distribution Π
• Given θ the data X is generated according to a measure Pθ

This gives a joint distribution of (X, θ)

• Given observed data X the statistician computes the conditional

distribution of θ given X, the posterior distribution:

Π(θ ∈ B|X).

If Pθ is given by a density x 7→ pθ(x), then Bayes’s rule gives

dΠ(θ|X) ∝ pθ(X) dΠ(θ)
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Consider the posterior Π(θ ∈ ·|X) as a given random measure
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Frequentist Bayes

Assume the data X is generated according to a given parameter θ0
Consider the posterior Π(θ ∈ ·|X) as a given random measure

Recovery

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X

Uncertainty quantification

We like the “spread” of Π(θ ∈ ·|X) to indicate remaining uncertainty

Asymptotic setting:

Data X(n) where the information increases as n→ ∞
• We want Πn(·|X(n)) δθ0 , at a good rate

• We like a set of large posterior mass to cover



Parametric Bayes Laplace 1812, Bernstein 1910, von Mises, Le Cam 1989

Data: X1, . . . , Xn
iid∼ pθ

R
d ∋ θ 7→ pθ smooth and identifiable

Thm Under θ0, for any prior with positive density,

∥

∥

∥
Π(·|X1, . . . , Xn)−Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥

TV
→ 0

Here θ̃n are estimators with
√
n(θ̃n − θ0) N(0, I−1

θ0
)
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Parametric Bayes Laplace 1812, Bernstein 1910, von Mises, Le Cam 1989

Data: X1, . . . , Xn
iid∼ pθ

R
d ∋ θ 7→ pθ smooth and identifiable

Thm Under θ0, for any prior with positive density,

∥

∥

∥
Π(·|X1, . . . , Xn)−Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥

TV
→ 0

Here θ̃n are estimators with
√
n(θ̃n − θ0) N(0, I−1

θ0
)

Recovery:

The posterior distribution concentrates most of its mass on balls of radius

O(1/
√
n) around θ0

Uncertainty quantification:

A central set of posterior probability 95 % is equivalent to the usual Wald

confidence set
{

θ:n(θ − θ̃n)
T Iθ̃n(θ − θ̃n) ≤ χ2

d,1−α

}



Bayesian curve estimation

A prior and posterior of a function can be visualized by plotting functions

that are simulated from the prior and posterior distributions

prior
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Many examples of priors: Dirichlet, Gaussian, random series,...

Recovery well understood



Bayesian inverse problems — data assimilation

A prior and posterior of a surface can be visualized by plotting surfaces

that are simulated from the prior and posterior distributions.

prior posterior

From Stadler et al., 2017



Bayesian inverse problems — data assimilation

A prior and posterior of a surface can be visualized by plotting surfaces

that are simulated from the prior and posterior distributions.

prior posterior

From Stadler et al., 2017

Data: = Bθu+ noise, for Dθu = 0, u ∈ Gθ

θ̂ = argmin
θ

[

L(θ,Data) + penalty(θ)
]

Thm Dashti et al 2013

If penalty(θ) = ‖θ‖2
H

for RKHS norm, θ̂ is posterior mode for Gaussian

prior

Connects to applied analysis

Bayesian understanding starting to develop Stuart, Agapiou, Nickl,...



High-dimensional Bayes

A high-dimensional parameter vector (or matrix) may be visualized

through a plot of marginal distributions versus an index

prior
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Parameters θ1, . . . , θ500 versus index 1, . . . , 500
Orange: marginal prior predictive intervals

Green dots: prior draws

posterior

Parameters θ1, . . . , θ500 versus index 1, . . . , 500
Red dots: marginal posterior medians

Orange: marginal credible intervals

Green dots: data points

Connects to Empirical Bayes and Large Scale Inference

Recent progress



Recovery



Rate of contraction

Data: X(n) ∼ P
(n)
θ θ ∈ (Θ, d)

Def contraction rate at θ0 is ǫn if, for large M ,

Eθ0Πn
(

θ: d(θ, θ0) > Mǫn|X(n)
)

→ 0, n→ ∞
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Rate of contraction

Data: X(n) ∼ P
(n)
θ θ ∈ (Θ, d)

Def contraction rate at θ0 is ǫn if, for large M ,

Eθ0Πn
(

θ: d(θ, θ0) > Mǫn|X(n)
)

→ 0, n→ ∞

Benchmark rate for (inverse) curve fitting:

A function θ of d variables with bounded derivatives of order β is

estimable based on n observations at rate

n−β/(2β+d+2p).

Benchmark rate for sparse estimation:

A vector θ in R
n of which s ≪ n coordinates are nonzero is

estimable based on 1 observation per parameter at rate

√

s log(n/s).



Curve fitting with square exponential prior vdV, van Zanten

Data: Sample of size n in regression model or from density

Prior on regression function or log density θ: centered Gaussian process

with

cov(θs, θt) = e−‖s−t‖2 , s, t ∈ R
d
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Thm Rate of contraction is (logn)γ/
√
n if θ0 is analytic, but

is (1/ logn)k if θ0 is only ordinary smooth

P
(

‖θ‖∞ < ε
)

& e−C(log ε−1)1+d/2



Curve fitting with square exponential prior — adaptation

Data: Sample of size n in regression model or from density

Prior on regression function or log density θ:
• cd ∼ Γ(a, b)
• (Gt: t > 0) square exponential process

• θt ∼ Gct
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Thm Rate of contraction is:

• if θ0 ∈ Cβ [0, 1]d, then nearly n−β/(2β+d)

• if θ0 is analytic, then nearly n−1/2



Linear Gaussian inverse problems Knapik, Szabó, van Zanten et al. 2011, 2015

Data: X(n) = Kθ + n−1/2Ẇ , for white noise Ẇ

• K compact operator with eigen basis (ei) and eigenvalues κi ≍ i−p

• Prior: θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)
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Linear Gaussian inverse problems Knapik, Szabó, van Zanten et al. 2011, 2015

Data: X(n) = Kθ + n−1/2Ẇ , for white noise Ẇ

• K compact operator with eigen basis (ei) and eigenvalues κi ≍ i−p

• Prior: θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)

Thm If
∑∞

i=1 i
2βθ2i,0 <∞, then rate:

• n−β/(2α+2p+1), if β ≤ α
• n−α/(2α+2p+1), if β ≥ α

• Prior on α

Thm If
∑∞

i=1 i
2βθ20,i <∞ and eigenvalues κi ≍ i−p, then rate:

• n−β/(2β+2p+1), any β > 0



Gaussian process priors

When using a Gaussian process as prior for a function:

Recovery is best if prior ‘matches’ truth

Mismatch slows down, but does not prevent, recovery

Mismatch can be prevented by using hyperparameters

(Generalizes to non-Gaussian priors Ray, Yan, Agapiou,...)



Dirichlet normal mixtures Ghosal, vdV, Rousseau, Kruijer, Tokdar, Shen, 2001–2013

Data: X1, . . . , Xn
iid∼ p

• F ∼ Dirichlet process

• 1/c ∼ Γ(a, b), independent of F

pF,c(x) =

∫

1

c
φ
(x− z

c

)

dF (z)

Posterior mean (solid black) and 10 draws of the posterior distribution

for a sample of size 50 from a mixture of two normals (red)

[Plot by DPpackage, Jara et al., 2011]
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• F ∼ Dirichlet process

• 1/c ∼ Γ(a, b), independent of F

pF,c(x) =

∫

1

c
φ
(x− z

c

)
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Thm Hellinger rate of contraction for X1, . . . , Xn
iid∼ p0 is, any β > 0,

• nearly n−1/2 if p0 = pF0,c0 , some F0, c0
• nearly n−β/(2β+d) if p0 ∈ Cβ(Rd) with exponentially small tails



Dirichlet normal mixtures Ghosal, vdV, Rousseau, Kruijer, Tokdar, Shen, 2001–2013

Data: X1, . . . , Xn
iid∼ p

• F ∼ Dirichlet process

• 1/c ∼ Γ(a, b), independent of F

pF,c(x) =

∫

1

c
φ
(x− z

c

)

dF (z)

Thm Hellinger rate of contraction for X1, . . . , Xn
iid∼ p0 is, any β > 0,

• nearly n−1/2 if p0 = pF0,c0 , some F0, c0
• nearly n−β/(2β+d) if p0 ∈ Cβ(Rd) with exponentially small tails

Adaptation to any smoothness with a Gaussian kernel!

(Kernel density estimation needs higher order kernels)

1

nc

n
∑

i=1

φ
(x−Xi

c

)

= pFn,c(x)



Sparse high-dimensional estimation Castillo, Schmidt-Hieber et al.

Data: Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n

• τ ∼ B(1, n+ 1)

• θi
iid∼ (1− τ)δ0 + τG, e.g. G = Laplace

Thm For sn → ∞ with sn ≪ n,

sup
#(θ0,i 6=0)≤sn

Eθ0 Πn
(

θ: ‖θ − θ0‖22 & sn log(n/sn)|Y n
)

→ 0.

Shrinkage controlled by sparsity parameter τ
(interpretation: τ ≈ (s/n)

√

logn/s)



Uncertainty quantification



Credible sets

Def A credible set is a data-dependent set C(X) with

Π
(

θ ∈ C(X)|X) = 0.95.



Credible sets

Def A credible set is a data-dependent set C(X) with

Π
(

θ ∈ C(X)|X) = 0.95.

Estimated abundance of a transcription factor as function of time:
posterior mean curve and 95% credible bands

(Gao et al. Bioinformatics, 2008)

Red dots: marginal posterior medians
Orange: marginal credible intervals

Green dots: data points



Do credible sets correctly quantify remaining uncertainty?

Is a credible set a confidence set?

credible set

Π
(

θ ∈ C(X)|X) = 0.95

confidence set

Pθ0
(

θ0 ∈ C(X)
)

= 0.95 ∀θ0
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Do credible sets correctly quantify remaining uncertainty?

Is a credible set a confidence set?

credible set

Π
(

θ ∈ C(X)|X) = 0.95

confidence set

Pθ0
(

θ0 ∈ C(X)
)

= 0.95 ∀θ0

Meta Thm Cox 1993, Freedman 2000, Leahu 2012

Only if some version of the Bernstein-von Mises theorem holds

Identify θ with a set Ψ of smooth functionals ψ(θ)

A joint Bernstein-von Mises theorem

d
(

Πn
(

θ:
√
n(ψ(θ)− ψ̂n

)

ψ∈Ψ
∈ ·|X(n)

)

,P
(

Z(ψ)ψ∈Ψ ∈ ·
)

)

→ 0

may be used to get valid credible sets

Castillo, Nickl, Ray .. make this operational using weak norms



Do credible sets correctly quantify remaining uncertainty?

Is a credible set a confidence set?

credible set

Π
(

θ ∈ C(X)|X) = 0.95

confidence set

Pθ0
(

θ0 ∈ C(X)
)

= 0.95 ∀θ0

Does the spread in the posterior give the correct order

of the discrepancy between θ0 and the posterior mean?
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Deterministic bandwidth: coverage requires undersmoothing

In nonparametric statistics:

oversmoothing gives big bias and small variance and hence no coverage



Deterministic bandwidth: coverage requires undersmoothing

In nonparametric statistics:

oversmoothing gives big bias and small variance and hence no coverage

In nonparametric Bayesian statistics:

oversmoothing occurs if the prior produces too smooth functions



** Example: heat equation

Data: X(n) = Kθ + n−1/2Ẇ , for white noise Ẇ

For given initial heat curve θ: [0, 1] → R let Kθ = u(·, 1) be the final curve:

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(·, 0) = θ, u(0, t) = u(1, t) = 0

Observe noisy version (X
(n)
x : 0 ≤ x ≤ 1) of final curve

• θ =
∑∞

i=1 θiei, for ei eigenbasis of K
• Truth: θ0,i ≍ i−1−2β

• Prior: θi
ind∼ N(0, i−1−2α)

Interpretation:

α = β: prior and truth match

α > β: prior oversmoothes

α < β: prior undersmoothes



Example: heat equation (n=10 000) Knapik et al, 2013

True θ0 (black), posterior mean (red)

20 realizations from the posterior (dashed black)

posterior credible bands (green)

• θ =
∑∞

i=1 θiei
• Truth:

θ0,i ≍ i−1−2β

• Prior:

θi
ind∼ N(0, i−1−2α)

Top to bottom:

increasing α



Bayesian adaptation

Family of priors Πα of varying smoothness α; posteriors Πα(·|X)

Examples

• t 7→ ∑∞
i=1 θiei(t), for θi

ind∼ N(0, i−1−2α)
• t 7→ Gαt, for Gaussian process G
• t 7→

∫

α−1φ(α−1(t− z)) dF (z), with F ∼ Dirichlet process

• i 7→ θi ∼ αδ0 + (1− α)Laplace
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• Plug-in posterior Πα̂(·|X)
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for smoother true function better reconstruction



Bayesian adaptation

Family of priors Πα of varying smoothness α; posteriors Πα(·|X)

Examples

• t 7→ ∑∞
i=1 θiei(t), for θi

ind∼ N(0, i−1−2α)
• t 7→ Gαt, for Gaussian process G
• t 7→

∫

α−1φ(α−1(t− z)) dF (z), with F ∼ Dirichlet process

• i 7→ θi ∼ αδ0 + (1− α)Laplace

Hierarchical Bayes:

• Prior on α
• Ordinary posterior

Empirical Bayes:

• α̂ = argmaxα
∫

p(X| θ) dΠα(θ)
• Plug-in posterior Πα̂(·|X)

Both methods give adaptive reconstructions:

for smoother true function better reconstruction

This implies that they cannot give honest confidence sets



Honesty and impossibility of adaptation Low, Cai, Lepski, Hoffmann, Juditzky,

Lambert-Lacroix, Robins, vdV, Bull, Nickl

Def Cn(X
(n)) is a (honest) confidence set over a model Θ if

Pθ0
(

Cn(X
(n)) ∋ θ0

)

≥ 0.95, ∀θ0 ∈ Θ



Honesty and impossibility of adaptation Low, Cai, Lepski, Hoffmann, Juditzky,

Lambert-Lacroix, Robins, vdV, Bull, Nickl

Def Cn(X
(n)) is a (honest) confidence set over a model Θ if

Pθ0
(

Cn(X
(n)) ∋ θ0

)

≥ 0.95, ∀θ0 ∈ Θ

Thm The diameter of Cn(X
(n)) cannot be smaller, uniformly in

θ ∈ Θ1 ⊂ Θ, than:

(a) εn such that, for any Tn,

lim inf
n→∞

sup
θ∈Θ1

Pθ
(

d(Tn, θ) ≥ εn
)

> 0.501

(b) rate εn of minimax testing, for any given Θ′
1 ⊂ Θ1 of

H0: θ ∈ Θ′
1 versus H1: θ ∈ Θ, d(θ,Θ′

1) > εn

(a) typically gives minimax rate of estimation for model Θ1

(b) is determined by biggest model Θ rather than Θ1



* Credible balls — counter example — reconstructing a derivative

n = 103 n = 104 n = 106 n = 108

Gaussian prior in white noise model of smoothness determined by empirical Bayes

Black: true curve. Blue: posterior mean. Grey: draws from posterior

The pictures show an inconvenient truth

For some (most?) truths the results are good



** Credible balls — counter example — reconstructing a derivative

Data: X(n) =
∫ ·
0 θ(t) dt+ n−1/2Ẇ , for white noise Ẇ

• Prior: θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)
• Prior on α or empirical Bayes α̂

Thm For nj ≥ n4j−1 for every j, define θ = (θ1, θ2, ...) by

θ2i =







n
− 1+2β

1+2β+2p

j , if n
1

1+2β+2p

j ≤ i < 2n
1

1+2β+2p

j , j = 1, 2, . . . ,

0, otherwise

Then
∑

j j
2βθ2j ≤ 1, but the central 95%-credible ball Ĉn, blown up by

Ln ≪ nδ, satisfies

lim inf Pθ
(

θ ∈ Ĉn
)

= 0

• Data allows inference only on θ1, . . . , θNn

• Trouble if θ1, . . . , θNn does not resemble θ1, θ2, . . .
• Example θ has repeated runs of 0s of increasing lengths



Estimation versus uncertainty quantification

Adaptive estimation:

• Estimators can be simultaneously optimal for multiple regularities

• (Bayesian procedures are natural)

Uncertainty quantification:

• Size of honest confidence set is determined by smallest considered

regularity

• (Data-driven constructions can be misleading)
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Estimation versus uncertainty quantification

Adaptive estimation:

• Estimators can be simultaneously optimal for multiple regularities

• (Bayesian procedures are natural)

Uncertainty quantification:

• Size of honest confidence set is determined by smallest considered

regularity

• (Data-driven constructions can be misleading)

SOLUTION 1: be honest

make conditional confidence statements

SOLUTION 2: believe your prior

SOLUTION 3: determine which θ cause the trouble

argue that these are implausible



Uncertainty quantification for curve

estimation



Polished tail sequences Szabó et al, 2015

Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
∑

i=N

θ2i ≥ 0.001
∞
∑

i=N

θ2i , ∀ large N

Interpretation:

every block of frequencies (N, 1000N)
contains a fraction of the total energy above frequency N
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Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
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“Everything” is polished tail...:
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Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
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θ2i , ∀ large N
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Non polished tail sequences are meagre in a natural topology

• For the minimax expert:

Intersecting the usual models with polished tail sequences

decreases the minimax risk by at most a logarithmic factor



Polished tail sequences Szabó et al, 2015

Def θ ∈ ℓ2 satisfies the polished tail condition if

1000N
∑

i=N

θ2i ≥ 0.001
∞
∑

i=N

θ2i , ∀ large N

“Everything” is polished tail...:

• For the topologist Giné+Nickl, 2010

Non polished tail sequences are meagre in a natural topology

• For the minimax expert:

Intersecting the usual models with polished tail sequences

decreases the minimax risk by at most a logarithmic factor

• For the Bayesian:

Almost every parameter generated from a prior θi
ind∼ N(0, ci−α−1/2) is

polished tail



Credible balls in linear Gaussian inverse problems

Data: X(n) = Kθ + n−1/2Ẇ , for white noise Ẇ

• K compact operator with eigenvalues κi ≍ i−p and eigen basis (ei)

• Prior: θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)
• Prior on α



Credible balls in linear Gaussian inverse problems

Data: X(n) = Kθ + n−1/2Ẇ , for white noise Ẇ

• K compact operator with eigenvalues κi ≍ i−p and eigen basis (ei)

• Prior: θ =
∑∞

i=1 θiei, with θi|α ind∼ N(0, i−2α−1)
• Prior on α

Credible ball:

Ĉn(M): = {θ: ‖θ − θ̂n‖ < Mr}
θ̂n = E(θ|X(n))

Π
(

θ: ‖θ − θ̂n‖ < r|X(n)
)

= 0.95

Thm For not too small M , uniformly in polished tail functions θ,

Pθ
(

θ ∈ Ĉn(M)
)

→ 1

Similar results for empirical Bayes



Credible bands and other models

• Rousseau & Szabó, 2017-20: empirical Bayes and credible balls for

general models

• Yoo 2017: ‘Bayesian Lepski method’ for adaptive credible bands;

spline and wavelet priors

• Sniekers & vdV 2017, 19: bands for scaled Gaussian prior under

‘self-similarity’, ’good bias’ and ’discrete polished tail’.

• Belitser & Nurushev 2015-19: general projection estimators;

’excessive-bias restriction’

• Ray 2017: intersect credible set from weak and strong norms

• Hadji& Szabó, 2019: supersmooth priors

• ...



Uncertainty quantification for sparse

high-dimensional parameters



Horseshoe prior Carvalho & Polson & Scott, 2010, van der Pas et al.

Data: Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n

Constructive definition of prior Π for θ ∈ R
p:

(1) Choose “sparsity level” τ from prior or by empirical Bayes

(2) Generate
√
ψ1, . . . ,

√
ψn iid from Cauchy+(0, τ)

(3) Generate independent θi ∼ N(0, ψi)

prior density of θi

This prior gives optimal recovery of sparse vectors θ



Credible intervals van der Pas, Szabó et al. 2018

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95
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Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}



Credible intervals van der Pas, Szabó et al. 2018

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}

marginal credible intervals for a single Y n with n = 200 and sn = 10

θ1 = · · · = θ5 = 7, θ6 = · · · = θ10 = 1.5. Insert: credible sets 5 to 13



Credible intervals van der Pas, Szabó et al. 2018

Credible interval:

Ĉni(L) =
{

θi:
∣

∣θi − θ̂i
∣

∣≤ Lr̂i

}

θ̂ = E(θ|Y n)
Π
(

θi: |θi − θ̂i| ≤ r̂i|Y n
)

= 0.95

Sa: =
{

1 ≤ i ≤ n: |θ0,i| ≤ 1/n
}

Ma: =
{

1 ≤ i ≤ n: (sn/n)
√

log(n/sn) ≪ |θ0,i| ≤ 0.99
√

2 log(n/sn)
}

La: =
{

1 ≤ i ≤ n: 1.001
√

2 logn ≤ |θ0,i|
}

Thm For any γ > 0 and ‖θ0‖0 ≤ sn,

Pθ0

( 1

#Sa
#{i ∈ Sa: θ0,i ∈ Ĉni(LS,γ)} ≥ 1− γ

)

→ 1,

Pθ0

(

θ0,i /∈ Ĉni(L)) → 1, for any i ∈ Ma and any L

Pθ0

( 1

#La

#{i ∈ La: θ0,i ∈ Ĉni(LL,γ)} ≥ 1− γ
)

→ 1

Few false discoveries. Most easy discoveries made

Intermediate discoveries not made



False discovery rate Castillo and Roquain, 2019

Data: Y n ∼ Nn(θ, I), for θ = (θ1, . . . , θn) ∈ R
n

• θi
iid∼ (1− τ)δ0 + τG, with G = Laplace or Cauchy

• τ̂ determined by marginal empirical Bayes

ℓτ (x) = Πτ (θi = 0|Xi = x),

qτ (x) = Πτ (θi = 0| |Xi| ≥ |x|)

Tests: Reject H0: θ0,i = 0 if ℓτ̂ (Xi) ≤ t or qτ̂ (Xi) ≤ t

Thm For sn → ∞ with sn ≪ nν ,

sup
#(θ0,i 6=0)≤sn

Eθ0
#(i: θ0,i = 0, rejected)

#(i: rejected) ∨ 1
. t log

1

t



* Credible balls

A confidence ball

Cn(Y
n) =

{

θ ∈ R
n: ‖θ − θ̂‖ ≤ r̂

}

cannot have both:

• radius r̂ of order the adaptive benchmark
√

s log(n/s) for sparsity,

• uniform coverage over multiple sparsity levels s

Meta Thm

A credible ball will cover “self-similar” parameters



** Simultaneous credible balls — impossibility of adaptation

General principle:

size of honest confidence set is determined by biggest model

Thm [Li, 1987]

If Pθ0(Cn(Y
n)∋θ0) ≥ 0.95, all θ0 ∈ R

n, then diam(Cn(Y
n)) & n−1/4, some

θ0

Thm [Nickl, van de Geer, 2013]

If s1,n ≪ s2,n and

diam(Cn(Y
n)) is of optimal size, uniformly in ‖θ0‖0 ≤ si,n for i = 1, 2,

then Cn(Y
n) cannot have uniform coverage over {θ0: ‖θ0‖0 ≤ s2,n}.

Since the Bayesian procedure adapts to sparsity,

its credible balls cannot be honest confidence sets

[Optimal size is
(

(si,n/n) log(n/si,n)
)1/2

]



** Simultaneous credible balls — impossibility of adaptation —

restricting the parameter

Coverage only when θ0 does not cause too much shrinkage

Def [self-similarity]

For s = ‖θ0‖0 at least 0.001s coordinates of θ0 satisfy

|θ0,i| ≥ 1.001
√

2 log(n/s).



** Simultaneous credible balls — impossibility of adaptation —

restricting the parameter

Coverage only when θ0 does not cause too much shrinkage

Def [self-similarity]

For s = ‖θ0‖0 at least 0.001s coordinates of θ0 satisfy

|θ0,i| ≥ 1.001
√

2 log(n/s).

Def [excessive-bias restriction, Belitser & Nurushev, 2015]

‖θ‖0 ≤ s and ∃s̃ with s̃ ≍ #
(

i: |θ0,i| ≥ 1.001
√

2 log(n/s̃)
)

and

∑

i:|θ0,i|≤1.001
√

2 log(n/s̃)

θ20,i . s̃ log(n/s̃)

Excessive-bias restriction weaker than self-similarity

(Self-similarity allows to tighten up the sets S,M,L)



** Simultaneous credible balls

Credible ball:

Ĉn(L) =
{

θ: ‖θ − θ̂‖ ≤ Lr̂
}

θ̂ = E(θ|Y n)
Π
(

θ: ‖θ − θ̂‖ ≤ r̂|Y n
)

= 0.95

Thm If sn/n→ 0, for sufficiently large L,

lim inf
n→∞

inf
θ0∈EBR[sn]

Pθ0

(

θ0 ∈ Ĉn(L)
)

≥ 1− α

EBR[s]: vectors θ0 that satisfy excessive bias restriction



Closing remarks



Closing remarks

In nonparametric statistics uncertainty quantification is problematic

for both Bayesian and non-Bayesian methods

It necessarily extrapolates into features of the world

that cannot be seen in the data

Adaptive methods seem reasonable, even though

their confidence sets are dishonest
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