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Chapter One

Introduction and preliminaries

GIVEN a finite graph, to find the maximum number of vertices which are pair-
wise nonadjacent is a well-known problem in combinatorial optimization. This

maximum is usually called the stability number of the graph, and several problems
can be modeled as the problem of determining the stability number of some finite
graph. The stability number is related to the chromatic number, which is the mini-
mum number of colors needed to color the vertices of a graph so that no two adjacent
vertices are colored with the same color; determining the chromatic number is also
a fundamental problem in combinatorial optimization.

Many problems in geometry can be modeled as problems of determining the
stability number or chromatic number of some finite graph, but sometimes we need
to consider infinite graphs. Moreover, sometimes it might be necessary to work with
analogues of the stability number, since infinite graphsmight have infinite stable sets.
Is it useful to consider such problems in the framework of graphs? As we discuss in
Section 1.1, by doing so we gain access to a range of techniques from combinatorial
optimization that have been developed to compute bounds for the stability number
or chromatic number of finite graphs and we may generalize these techniques to our
infinite graphs as well.

In Section 1.2 we present a quick survey of the geometrical problems which
motivated many of the results we present in later chapters. In Section 1.3 we give a
short outline of the thesis, and finally in Section 1.4 we present some preliminaries
and fix some of the notation used in the rest of the text. We usually omit references
to the preliminaries during the text; if a term is used but not introduced, then its
meaning can often be found in the preliminaries section.

1.1 The stability number of distance graphs
Let X be a metric space with distance function d and take D ⊆ (0,∞). Consider
the following graph, denoted by G(X,D): Its vertices are the points of the spaceX ,
and two vertices x, y ∈ X are adjacent if and only if d(x, y) ∈ D. We say that this

1



2 Introduction and preliminaries Chapter 1

graph is a distance graph over the metric space (X, d) because its vertex set is X and
the adjacency relation is completely characterized by distance.

Many problems of interest can be modeled as problems in distance graphs de-
fined over natural metric spaces. We are particularly interested in the stability num-
ber of such graphs. Given a graphG = (V,E), recall that a setC ⊆ V is called stable
if no two vertices in it are adjacent; the stability number of G, denoted by α(G), is
the maximum size of any stable set of G.

So we consider our first example of a distance graph. Let Hn = {0, 1}n be
the n-dimensional Hamming cube, that is, the set of all binary words of length n.
The Hamming cube can be seen as a metric space if one introduces in it the Ham-
ming distance: The distance between two words in Hn is just the number of bits
in which they differ. Now fix a number 1 < d ≤ n and consider the distance
graph G(Hn, {1, . . . , d − 1}). A stable set in this graph is a set of words any two
of which are at Hamming distance at least d from each other. Such a set is a binary
code of length n and minimum distance at least d. The stability number of this graph
is thus the maximum size of such a binary code. This is an important parameter in
coding theory, and is usually denoted by A(n, d).

Our next example replaces Hn by the (n − 1)-dimensional unit sphere, which is
the set

Sn−1 = { x ∈ R
n : x · x = 1 },

where x · y denotes the standard Euclidean inner product in Rn. The unit sphere is
also a metric space when one considers the angular distance: The distance between
points x, y ∈ Sn−1 is given by

arccosx · y,
so distances are always in the interval [0, π], with antipodal points being at dis-
tance π.

Now fix 0 < θ ≤ π and consider the distance graph G(Sn−1, (0, θ)). A stable
set of this graph is a set of points the distance between any two of which is at least θ.
Such a set is called a spherical code of minimum angular distance at least θ. Notice
that the stability number of G(Sn−1, (0, θ)) is finite, being then the maximum car-
dinality of any spherical code of minimum angular distance at least θ. This is also
a well-known parameter, which is usually denoted by A(n, θ). When θ = π/3, the
stability number of G(Sn−1, (0, θ)) is known as the kissing number of Rn, since it
gives the maximum number of pairwise nonoverlapping unit spheres in R

n that can
simultaneously touch a central unit sphere. For instance, the kissing number of the
plane is easily seen to be 6.

As a third example we again consider a distance graph over the sphere. This time,
fix a number 0 < θ ≤ π and consider the graph G(Sn−1, {θ}), which from now on
we denote by G(Sn−1, θ) for short. Stable sets in this graph can be infinite. Indeed,
any spherical cap of small enough diameter is a stable set. So the stability number
of G(Sn−1, θ) is infinite.
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Consider now the surface measure ω on the sphere, which is normalized so that

ω(Sn−1) =
2πn/2

Γ(n/2)
.

We may now define a measurable version of the stability number of G(Sn−1, θ)
by restricting ourselves to measurable stable sets. Namely, the measurable stability
number of G(Sn−1, θ) is the number

αm(G(Sn−1, θ)) = sup{ω(C) : C ⊆ Sn−1 is measurable and stable }.
The example of the spherical cap we gave before shows that αm(G(Sn−1, θ)) > 0,
and it is immediate that it is finite. We have then a generalization of the concept of
stability number.

From the graph on the Hamming cube to the graph G(Sn−1, (0, θ)) over the
sphere we have jumped from a finite graph to an infinite graph which, however, had
finite stability number. Our second jump was from the graphG(Sn−1, (0, θ)) to the
graph G(Sn−1, θ), which has infinite stability number, but for which we defined a
measurable stability number. Now we jump from graphs over the sphere, which is
a compact space with a finite measure, to graphs over the n-dimensional Euclidean
space, which is not compact.

More specifically, we consider now the distance graph G(Rn, {1}), which we
abbreviate by G(Rn, 1). This is a well-known geometric graph, usually called the
unit-distance graph. A stable set in this graph is a set of points in Rn no two of
which are at distance 1 from each other. Many questions have been asked about this
graph. For instance, determining its chromatic number, i.e., the minimum number
of colors needed to color the points of Rn in such a way that no two points at
distance 1 get the same color, is a well-known open question in geometry for n ≥ 2,
which we treat in more detail in Section 1.2.

Questions have also been asked about the stable sets of G(Rn, 1). Notice that
they can be infinite, so that the stability number of G(Rn, 1) is infinite, and they
can also have infinite measure. Therefore, instead of considering the measure of a
measurable stable set C, we consider its upper density, which is given by

δ(C) = lim sup
R→∞

vol(C ∩ [−R,R]n)
vol[−R,R]n

,

where volX simply denotes the Lebesgue measure of set X . Now we may consider
the parameter

αm(G(Rn, 1)) = sup{ δ(C) : C ⊆ R
n is measurable and stable },

which is a density analogue of the measurable stability number as defined for the
graph G(Sn−1, θ). This parameter has also been studied in geometry, being usually
denoted by m1(Rn); we will discuss this further in Section 1.2.

From our four examples, it is clear that distance graphs and the different con-
cepts of stability number we have considered provide a framework in which one may
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approach four different problems in the same light. But does this help us to say any-
thing about, for instance, the stability number of G(Hn, {1, . . . , d − 1}) or about
the measurable stability number of G(Sn−1, θ)? Well, the problem of determining
the stability number of a finite graph is a well-known problem in combinatorial op-
timization. It is known to be NP-hard, so that there is little hope that an efficient
algorithm exists to compute the stability number. But methods have been proposed
for the computation of lower and upper bounds for the stability number, so hope-
fully they can also be used for our distance graphs.

We are particularly interested here in finding upper bounds for the stability num-
ber. One upper bound that has been proposed, which provides the best known
bounds in many cases, is the Lovász theta number. Introduced by Lovász [29], the
theta number of a finite graph G = (V,E), denoted by ϑ(G), is given as the opti-
mal value of a semidefinite programming problem. Namely, ϑ(G) is equal to the
maximum of ∑

u∈V

∑
v∈V

A(u, v)

taken over all matrices A:V × V → R whose rows and columns are indexed by V
and which are such that∑

v∈V A(v, v) = 1,
A(u, v) = 0 whenever u, v ∈ V are adjacent, and
A is positive semidefinite.

(1.1)

It is easy to see that ϑ(G) ≥ α(G). Indeed, let C ⊆ V be a nonempty stable set
ofG. Let χC :V → {0, 1} denote the characteristic function ofC, that is, χC(v) = 1
if v ∈ C and χC(v) = 0 otherwise. Then the matrix A:V × V → R such that

A(u, v) = |C|−1χC(u)χC(v)

can be seen to satisfy the properties in (1.1) and moreover∑
u∈V

∑
v∈V

A(u, v) = |C|,

so that ϑ(G) ≥ |C|, and therefore, since C is any stable set of G, we have ϑ(G) ≥
α(G). For a finite graph, the theta number can be efficiently computed; that is one
of the reasons that makes it an attractive bound.

Can we use the theta number to upper bound the stability number of the dis-
tance graph G(Hn, {1, . . . , d− 1})? Well, this is a finite graph, so the theta number
immediately applies. But thematrix we have to consider is now indexed by all binary
words of length n, and there are 2n of them. So the matrix itself is very big, and it
is then unlikely that we could use the computer to solve the resulting optimization
problem, even for moderate values of n.

But the graph G(Hn, {1, . . . , d− 1}) is not just any finite graph. It is a distance
graph over the Hamming cube, which is a highly symmetrical object. More specif-
ically, the Hamming cube has many isometries, that is, there are many bijections
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from Hn to itself that preserve distances, and all of these bijections also preserve the
adjacency relation of our graph. By exploiting these symmetries, we may reduce the
size of the optimization problem, reducing the number of variables from 22n, which
is the number of entries in the matrix A, to only n + 1. This allows us to solve the
optimization problem and compute the theta number even for large values of n.
This is the approach that was proposed by Delsarte [10] in order to bound A(n, d),
albeit in a different language.

Now what about our graph G(Sn−1, (0, θ))? Can we use the theta number to
upper bound its stability number? And what about using the theta number to upper
bound the measurable stability number of G(Sn−1, θ) or the maximum density of a
stable set ofG(Rn, 1)? Maybe the first idea that comes to themind of someonewith a
background in combinatorial optimization/computer science when confronted with
these questions is to discretize, that is, to make our infinite problems finite. For
instance, one could try to approximate the infinite graphs by finite ones, and then
use the computer. In this thesis, however, we take a different path. Namely, we
show how to generalize the Lovász theta number to some kinds of infinite distance
graphs — among which are those we discussed above — by considering infinite-
dimensional optimization problems, that is, optimization problems with infinitely
many variables and/or constraints.

In doing so, we keep our original graphs, instead of approximating them by finite
graphs in whichmany of their original properties might disappear. By exploiting the
symmetry of our infinite graphs, we may actually reduce the optimization problems
we get to simpler ones, ultimately being able to solve them, sometimes analytically,
sometimes with the help of the computer. This is analogous to the approach em-
ployed to compute the theta number of G(Hn, {1, . . . , d − 1}), in which case it is
by considering the symmetries of the Hamming cube that one manages to reduce
the size of the original problem, making it possible to solve it. So in many cases we
may actually compute the theta number of these infinite graphs, and even when we
cannot do it, our optimization problems provide us with a tool that can be used to
prove theorems about the stability number of some classes of infinite graphs.

It is then by considering the framework of distance graphs that we manage to
use the methods and techniques of combinatorial optimization to help us deal with
questions from other areas of mathematics. And it is by keeping ourselves from dis-
cretizing the original problems in order to conform them to the traditional frame-
work of combinatorial optimization that we manage to exploit their structure, thus
making it possible to successfully apply the optimization techniques.

1.2 The chromatic number of the Euclidean space
The chromatic number of Rn, denoted by χ(Rn), is the minimum number of colors
needed to color the points of Rn in such a way that no two points at distance 1 get
the same color. In other words, χ(Rn) is the chromatic number of the infinite graph
whose vertex set is Rn and in which two vertices are adjacent if and only if they lie
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at distance 1 from each other; this graph is the unit-distance graph on Rn.
Obviously, χ(R) = 2. For n ≥ 2, the exact value of χ(Rn) is unknown.

The problem of determining χ(Rn) for n ≥ 2 was proposed by Nelson in 1950
(cf. Soifer [48], Chapter 3) and later considered by mathematicians such as Isbell,
Hadwiger,Moser, and Erdős; see the Chapter 3 of Soifer [48] for a detailed historical
account.

In 1981, Falconer [13] introduced a restricted version of the parameter χ(Rn).
Namely, he defined the measurable chromatic number of R

n, denoted by χm(Rn),
as the minimum number of colors needed to color the points of Rn in such a way
that no two points at distance 1 get the same color and the sets of points that are
colored with a same given color are Lebesgue measurable. In other words, χm(Rn)
is the minimum number of Lebesgue measurable sets needed to partition Rn in
such a way that no two points at distance 1 belong to the same set. Obviously, we
have χm(Rn) ≥ χ(Rn).

It is readily seen that χm(R) = 2. As in the case of the chromatic number, the
exact value of χm(Rn) is not known for n ≥ 2. Most of the results in this thesis were
motivated by the problem of finding good lower bounds for χm(Rn). So in this sec-
tion we survey some of the most important results concerning χ(Rn) and χm(Rn).
We also survey some of the main results concerning the parameter m1(Rn), which
is defined as the maximum density a Lebesgue measurable set C ⊆ Rn can have if
it does not contain a pair of points at distance 1 from each other; this parameter
is naturally related to χm(Rn), as we will see later. Our survey does not intend to
be exhaustive; for a more complete account, we refer the reader to the survey by
Székely [51].

We start with some comments on the parameter χ(Rn). First, it is known that

4 ≤ χ(R2) ≤ 7.

Here, the lower bound of 4 comes from the Moser graph, a graph with 7 vertices
which can be realized in the plane with unit segments and which has chromatic
number 4; see Figure 1.1 for a picture of the Moser graph. The upper bound of 7
comes from the coloring of the plane also given in Figure 1.1. According to Chap-
ter 3 of the book by Soifer [48], the lower bound is due to Nelson and the upper
bound is due to Isbell; both were found in 1950. Both the lower and upper bounds
appear in Hadwiger [21], who credits them both to Isbell.

It is also known that
6 ≤ χ(R3) ≤ 15,

where the lower bound is due to Nechushtan [35] and the upper bound is due
to Coulson [9]. In Table 1.2 we list the best known lower bounds for χ(Rn) for
dimensions n = 2, . . . , 24.

Frankl and Wilson [16] were the first to prove that χ(Rn) grows exponentially
with n. They showed that

χ(Rn) ≥ (1 + o(1))1.2n. (1.2)
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1
2

3
4

5
6

7

Figure 1.1. On the left we have the Moser graph, which has 7 vertices and
chromatic number 4. It is drawn here so that all edges have unit length. On
the right we show a coloring of the plane with 7 colors. Each of the regular
hexagons has diameter slightly less than one. The points inside each hexagon
are colored with one of seven colors; the points in the intersection of two
or more hexagons can be colored with any of the colors of the neighboring
hexagons. The coloring we show of the seven hexagons at the center is just
pasted so as to cover the whole plane.

Later, Raigorodskii [39] gave the slightly better bound

χ(Rn) ≥ (1.239. . .+ o(1))n. (1.3)

As for upper bounds, Larman and Rogers [27] prove that

χ(Rn) ≤ (3 + o(1))n.

Finally, notice that χ(Rn) is at least the chromatic number of any finite subgraph
of the unit-distance graph on Rn. From a result of de Bruijn and Erdős [7] it follows
that χ(Rn) is actually equal to the chromatic number of some finite subgraph of the
unit-distance graph on Rn. The proof of this result uses the Axiom of Choice. For
more on the relation between χ(Rn) and the Axiom of Choice, see Chapter 46 of
the book by Soifer [48].

As we mentioned before, the study of χm(Rn) began with Falconer [13], who
proved that

χm(R2) ≥ 5 and χm(R3) ≥ 6.

Table 1.2 gives a list of the best lower bounds for χm(Rn) for n = 2, . . . , 24 which
are available in the literature. In Chapters 3 and 4 we will improve on the results
of this table. In particular, in Chapter 4 we give better lower bounds for χm(Rn)
for n = 3, . . . , 24.

The construction of Figure 1.1 and the construction of Coulson [9] both use
measurable sets only, hence

χm(R2) ≤ 7 and χm(R3) ≤ 15.
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Lower bound Lower bound Upper bound
n for χ(Rn) for χm(Rn) for m1(Rn)

2 4 5 0.27906976
3 6 6 0.18750000
4 6 8 0.12800000
5 8 11 0.09539473
6 10 15 0.07081295
7 14 19 0.05311365
8 16 30 0.03419769
9 16 35 0.02882153
10 19 45 0.02234835
11 19 56 0.01789325
12 24 70 0.01437590
13 31 84 0.01203324
14 35 102 0.00981770
15 37 119 0.00841374
16 67 148 0.00677838
17 67 174 0.00577854
18 68 194 0.00518111
19 82 263 0.00380311
20 97 315 0.00318213
21 114 374 0.00267706
22 133 526 0.00190205
23 154 754 0.00132755
24 178 933 0.00107286

Table 1.2. These are the best lower bounds for χ(Rn) and χm(Rn) and the
best upper bounds for m1(R

n) found in the literature. The lower bounds
for χ(Rn) were all taken from the table compiled by Székely [51] in his sur-
vey, except for χ(R3) ≥ 6, which was given by Nechushtan [35]. The lower
bounds for χm(Rn) for n = 2 and 3 were given by Falconer [13]; all other
lower bounds for χm(Rn) were given by Székely and Wormald [54]. Fi-
nally, the upper bound for m1(R

2) was given by Székely [52]; all other upper
bounds for m1(R

n) were given by Székely and Wormald [54].

Also the construction of Larman and Rogers [27] uses only measurable sets, so

χm(Rn) ≤ (3 + o(1))n.

Since χm(Rn) ≥ χ(Rn), the exponential lower bounds for χ(Rn) carry over
to χm(Rn). In Chapters 3 and 4 we also give exponential lower bounds for χm(Rn),
but they are not better than (1.2).

We know that χ(R) = χm(R) = 2, but for n ≥ 2 it is not known whether χ(Rn)
coincides with χm(Rn) or not. Since the Axiom of Choice is needed to construct
non-measurable subsets of Rn, if χ(Rn) < χm(Rn), then in order to color the
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points of Rn with χ(Rn) colors in such a way that no two points at distance 1 get
the same color, one would need to use the Axiom of Choice. Moreover, if for some
dimension n we have strict inequality, then we would have that all finite subgraphs
of the unit-distance graph of Rn have chromatic number strictly less than χm(Rn).

We now discuss a parameter which is related to the measurable chromatic num-
ber: the maximum density of 1-avoiding sets.

A set C ⊆ R
n avoids distance d if no two points in C are at distance d from

each other. A set that avoids distance 1 is also called 1-avoiding. Given a Lebesgue
measurable set C ⊆ Rn, its upper density is defined as

δ(C) = lim sup
R→∞

vol(C ∩ [−R,R]n)
vol[−R,R]n

,

where volX simply denotes the Lebesgue measure of set X . We then consider the
parameter

m1(Rn) = sup{ δ(C) : C ⊆ R
n is measurable and 1-avoiding },

i.e., m1(Rn) is the maximum upper density a 1-avoiding subset of Rn can have.
Notice that χm(Rn) is the minimum number of 1-avoiding measurable sets one

needs in order to partition Rn. So we immediately have the inequality

m1(Rn)χm(Rn) ≥ 1,

so that any upper bound for m1(Rn) implies a lower bound for χm(Rn). Finding
lower bounds for χm(Rn) is one of our main motivations in studying m1(Rn).

It can be easily shown thatm1(R) = 1/2. The problem of determining m1(R2)
was mentioned already in the problem collection of Moser [34]. Later, Székely [52]
showed that

m1(R2) ≤ 12/43 ≈ 0.279.

Table 1.2 lists the best known upper bounds form1(Rn) for n = 2, . . . , 24which
can be found in the literature. In Chapter 4 we improve on the bounds shown in
the table for n = 2, . . . , 24.

We finish by mentioning that the reciprocal of the exponential lower bound
for χ(Rn) from (1.2), which was given by Frankl and Wilson [16], can be seen to
provide an exponential upper bound form1(Rn), showing thus thatm1(Rn) decays
exponentially with n. Namely, we have

m1(Rn) ≤ (1 + o(1))1.2−n ≈ (1 + o(1))0.833n. (1.4)

Similarly, the reciprocal of the lower bound given by Raigorodskii [39] (see equa-
tion (1.3)) can also be seen to provide an upper bound form1(Rn). In Chapter 4 we
also prove thatm1(Rn) decays exponentially, but our bound is not better than (1.4).



10 Introduction and preliminaries Chapter 1

1.3 Outline of the thesis
This thesis is divided into four chapters, including this introductory chapter. The
contents of the other three chapters can be summarized as follows:

Chapter 2.TheLovász theta number. Wedefine the Lovász theta number for finite
graphs and present some of its basic properties, specially those that are useful to us in
later chapters. We also show how to apply the theta number in order to upper bound
the maximum cardinality of a binary code with prescribed length and minimum
distance, showing that the bound it provides is the same one that was proposed by
Delsarte [10], a fact first observed by McEliece, Rodemich, and Rumsey [33] and
Schrijver [45]. It is useful to keep this example in mind while reading the other
chapters, as the ideas used in this application are analogous to, if simpler than, those
used later.

Chapter 3. Distance graphs on the sphere. Here we consider distance graphs on
the sphere. We show how to generalize the Lovász theta number to such graphs in
order to upper bound the stability number or the measurable stability number. By
exploring a relation between themeasurable chromatic number of distance graphs on
the sphere and the measurable chromatic number of the Euclidean space,we provide
improved lower bounds for χm(Rn) for n = 10, . . . , 24. We also consider other
applications of the theta number, proving a theorem concerning the behavior of the
measurable stability number of a distance graph as progressively more distances are
set to define edges. Finally, we use our methods to show that the upper bound of
Delsarte, Goethals, and Seidel [11] and Kabatyanskii and Levenshtein [23] for the
maximum cardinality of spherical codes with prescribed minimum angular distance
can be seen as coming from a generalization of the Lovász theta number, in the same
way that the bound of Delsarte [10] for the maximum size of a binary code comes
from the theta number for finite graphs, as shown in Chapter 2.

Chapter 4. Distance graphs on the Euclidean space. We next consider the prob-
lem of finding upper bounds for m1(Rn) (see Section 1.2), the maximum density
of a 1-avoiding subset of Rn. We propose a bound based on linear programming
and harmonic analysis and we show how to compute it and also how to strengthen
it. From this approach we improve on the known upper bounds for m1(Rn) for
dimensions n = 2, . . . , 24 and on the known lower bounds for χm(Rn) for dimen-
sions n = 3, . . . , 24.

We also apply our approach to provide upper bounds for the density of distance-
avoiding subsets ofRn as progressively more distances are avoided, proving a stronger
version of a result of Furstenberg, Katznelson, andWeiss [17]. Finally, we show how
our bounds actually come from a suitable generalization of the Lovász theta number
to distance graphs defined over Rn and we study some of the properties of this
generalization.

This thesis is partially based on the following two papers that have been accepted
for publication:
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� C. Bachoc, G. Nebe, F.M. de Oliveira Filho, and F. Vallentin, Lower bounds for
measurable chromatic numbers, arXiv:0801.1059v2 [math.CO], to appear in
Geometric and Functional Analysis, 2008, 18pp.

� F.M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear programming,
and densities of distance avoiding sets inRn, arXiv:0808.1822v2 [math.CO],
to appear in Journal of the European Mathematical Society, 2008, 11pp.

1.4 Preliminaries
In this section we make a quick summary of some terms and concepts that appear
throughout the thesis and we also fix our notation concerning graph theory, linear
algebra, and optimization problems. We strived to keep the necessary preliminaries
to a minimum and during the text we often reintroduce some terms that are also
defined here, in order to keep the flow.

1.4a. Graph theory. A graph is a pair G = (V,E) where V is a nonempty set
and E ⊆ { e ⊆ V : |e| = 2 }. Set V is the vertex set of G and its elements are the
vertices of G. Set E is the edge set of G and its elements are called edges. All our
graphs are thus simple, i.e., they have no loops or parallel edges.

We usually denote edge {u, v} simply by uv. We say vertices u, v ∈ V are
adjacent if uv ∈ E. When V is finite, we say that G is a finite graph.

We say that a graph H is a subgraph of graph G if the vertex set of H is a subset
of the vertex set of G and the edge set of H is a subset of the edge set of G. The
complementary graph of a graph G = (V,E), denoted by G, is the graph with vertex
set V in which two distinct vertices are adjacent if and only if they are nonadjacent
in G.

Let G = (V,E) be a graph. A set C ⊆ V is stable if no two vertices in it are
adjacent. The stability number of a graph, denoted by α(G), is the maximum size a
stable set of G can have.

A coloring of G is an assignment of colors to the vertices of G in such a way that
no two adjacent vertices are assigned the same color. In a given coloring, the sets
of vertices that receive a same color are termed color classes. The chromatic number
of G, denoted by χ(G), is the minimum number of colors one needs to color G,
i.e., it is the minimum number of colors used by any coloring of G.

Notice that in any coloring ofG the color classes are stable sets. A coloring is thus
a partition of V into stable sets. The following fundamental relation between α(G)
and χ(G) for a finite graph G then follows at once:

α(G)χ(G) ≥ |V |. (1.5)

So an upper bound for α(G) implies a lower bound for χ(G).
For a finite graph G, it is an NP-hard problem to compute α(G) or χ(G). These

are some of the first combinatorial problems that were proven to be NP-hard; they
figure in the list of problems considered by Karp [24].
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An automorphism of a graphG = (V,E) is a bijection ϕ:V → V which preserves
adjacency, that is, for any two vertices u, v of G, we have that u is adjacent to v if
and only if ϕ(u) is adjacent to ϕ(v). The set of all automorphisms of G, denoted
by Aut(G), is a group under composition, which is called the automorphism group
of G. A graph G is said to be vertex-transitive if for any two vertices u and v of G
there is an automorphism ϕ of G which is such that ϕ(u) = v.

1.4b. Vectors and matrices. We denote the transpose of a matrix A by A�. The
conjugate transpose of a complexmatrixA is denoted byA∗. For us, a vector x ∈ Rn

(or Cn) is always a column vector, that is, in matrix operations it is treated as a matrix
with n rows and 1 column.

We will often need to use matrices whose rows and columns are indexed by finite
sets other than {1, . . . , n}. If V is a finite set, then A:V × V → R is a real matrix
whose rows and columns are indexed by V and likewise x:V → R is a real vector
whose entries are indexed by V . Needless to say, all that follows immediately applies
to matrices indexed by some finite set V , even though our presentation is in terms
of matrices indexed by {1, . . . , n}.

LetA be an n×nmatrix, real or complex. We say thatA is symmetric ifAij = Aji

for all i, j = 1, . . . , n. We also write A(i, j) for Aij . A complex n× n matrix A is
Hermitian if Aij = Aji for all i, j = 1, . . . , n.

A real matrix A ∈ Rn×n is positive semidefinite if it is symmetric and

p�Ap =
n∑

i,j=1

Aijpipj ≥ 0

for every vector p ∈ Rn. A basic fact about positive semidefinite matrices is the
equivalence

A ∈ Rn×n is positive semidefinite
⇐⇒ there exists a matrix B ∈ Rn×n such that A = BB�

⇐⇒ A is symmetric and all of its eigenvalues are nonnegative
⇐⇒ there exist k and orthogonal vectors u1, . . . , uk in Rn

such that A = u1u
�
1 + · · · + uku

�

k .

(1.6)

We say that a complex matrix A ∈ Cn×n is positive semidefinite if it is Hermitian
and

p∗Ap =
n∑

i,j=1

Aijpipj ≥ 0

for every vector p ∈ Cn. The analogue of equivalence (1.6) holds for complex
positive semidefinite matrices, with R replaced by C and transposes replaced by
conjugated transposes.

The trace of an n×n real or complex matrix A is the sum of its diagonal elements
and is denoted by TrA. It can be shown that the trace of a matrix equals the sum of
its eigenvalues.
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Given two matrices A, B ∈ Rn×n, we let

〈A,B〉 = Tr(A�B).

This defines an inner product for the space Rn×n, to which we will often refer to as
the trace inner product. If A andB are positive semidefinite, then 〈A,B〉 ≥ 0, as can
be seen from the last equivalence in (1.6). For complex matrices we may likewise
define the trace inner product by letting 〈A,B〉 = Tr(A∗B).

Finally, we denote by x · y the standard Euclidean inner product between two
vectors x, y ∈ Rn, that is

x · y = x�y =
n∑

i=1

xiyi.

We denote the Euclidean norm of a vector x ∈ Rn by ‖x‖ = (x · x)1/2.

1.4c. Optimization problems and semidefinite programming. We make heavy
use of optimization problems and in relation to them our terminology is quite stan-
dard. We assume the reader has some familiarity with linear programming,whichwe
often use throughout the thesis. What we need of linear programming can, in any
case, be found in any standard book on the subject, like the book by Schrijver [47].
We also often use semidefinite programming, so we choose to introduce our nota-
tion for optimization problems in general while at the same time summarizing some
facts about semidefinite programming.

Let A1, . . . , Am, C ∈ Rn×n be symmetric matrices and b1, . . . , bm be real
numbers. Say we partition the set {1, . . . ,m} into sets I= and I≤. A semidefinite
programming problem is the problem of finding the maximum of

〈C,X〉 (1.7)

where X is a matrix such that
〈Ai, X〉 = bi for i ∈ I=,
〈Ai, X〉 ≤ bi for i ∈ I≤,
X ∈ Rn×n is positive semidefinite.

(1.8)

We usually express this problem (and also other optimization problems) in the fol-
lowing compact form:

max 〈C,X〉
〈Ai, X〉 = bi for i ∈ I=,
〈Ai, X〉 ≤ bi for i ∈ I≤,
X ∈ Rn×n is positive semidefinite.

(1.9)

Notice that any linear programming problem can be written as a semidefinite pro-
gramming problem in the form above; in this case matrices A1, . . . , Am, C are all
diagonal.

We now introduce some terminology that also applies to other optimization
problems. Function (1.7) is called the objective function. Conditions (1.8) are the
constraints of the problem. Matrix X is the variable matrix.
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A matrix X ∈ Rn×n that satisfies (1.8) is said to be a feasible solution of prob-
lem (1.9). If (1.9) has a feasible solution, then it is said to be feasible, otherwise we
say it is infeasible. If X ∈ Rn×n, then 〈C,X〉 is its objective value. The maximum
itself is the optimal value of problem (1.9) and a feasible solution whose objective
value is the optimal value is an optimal solution.

Needless to say, we could just as well have started with a minimization prob-
lem instead of a maximization problem. Sometimes when we deal with optimiza-
tion problems, it might not be clear that the maximum/minimum exists, so we use
supremum/infimum instead.

Like a linear programming problem, a semidefinite programming problem such
as (1.9) has a dual problem. The dual problem of (1.9) is

min y1b1 + · · · + ymbm
y1A1 + · · · + ymAm − C is positive semidefinite,
yi ≥ 0 for i ∈ I≤.

(1.10)

Here, the optimization variables are y1, . . . ym. We also note that this problem can
be put in form (1.9), as one can show after a bit of work.

It is easy to prove that weak duality holds, i.e., that the minimum is at least
the maximum. Indeed, if X is a feasible solution of (1.9) and (y1, . . . , ym) is a
feasible solution of (1.10), then since for positive semidefinite matrices A and B we
have 〈A,B〉 ≥ 0, it follows that

0 ≤ 〈y1A1 + · · · + ymAm − C,X〉
= y1〈A1, X〉 + · · · + ym〈Am, X〉 − 〈C,X〉
≤ y1b1 + · · · + ymbm − 〈C,X〉,

as we wanted.
Strong duality, i.e., that the minimum and the maximum coincide, does not al-

ways hold for primal/dual pairs of semidefinite programs. A simple sufficient condi-
tion for strong duality to hold is known, however. We say that (1.9) is strictly feasible
if it has a feasible solution X which is positive definite and such that 〈Ai, X〉 < bi
for all i ∈ I≤. Here, observe that we require X to be positive definite, that is, all its
eigenvalues must be positive.

If (1.9) is strictly feasible and has finite optimal value, then also the dual problem
has a finite optimal value and the optima coincide. For more on duality theory of
semidefinite programming, see e.g. the book by Nesterov and Nemirovskii [36].

We finish our discussion on semidefinite programming with a note on complex-
ity. By the use of the ellipsoid method (cf. Grötschel, Lovász, and Schrijver [19]),
semidefinite programs can be solved in polynomial time to any fixed precision. In
practice, however, interior-point algorithms, which are also polynomial-time, are
the method of choice in dealing with semidefinite programs.



Chapter Two

The Lovász theta number

ONE of the parameters that can be shown to provide an upper bound to the
stability number of a finite graph is the Lovász theta number, introduced by

Lovász [29] in 1979. It can be described as the optimal solution of a semidefinite
programming problem, and thus can be efficiently computed. In many cases, the
bounds provided by the theta number and derived methods are the best known (see,
e.g., the thesis of Gvozdenović [20]).

In this chapter, we define the theta number and quickly review some of its most
important properties. Our presentation is very selective, as we keep in mind the
developments of Chapters 3 and 4, where we generalize the theta number to some
kinds of infinite graphs.

Finally, we remind the reader that all the graph-theoretic notions and the semi-
definite programming terminology we use are presented in Section 1.4. We also
stress that all graphs considered in this chapter are finite.

2.1 Definition and basic properties
Let G = (V,E) be a graph. In a 1979 paper [29], Lovász introduced a param-
eter ϑ(G) that provides an upper bound for the stability number α(G) and that
moreover can be efficiently computed. The parameter ϑ(G) has many more in-
teresting properties, some of which we will study later in this chapter. We begin
by defining ϑ(G) as the optimal value of the following semidefinite programming
problem:

max
∑

u,v∈V A(u, v)∑
v∈V A(v, v) = 1,

A(u, v) = 0 if u is adjacent to v,
A:V × V → R is positive semidefinite.

(2.1)

We start by showing that
ϑ(G) ≥ α(G). (2.2)

15
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The proof is simple. Let C ⊆ V be a nonempty stable set and χC :V → {0, 1}
be its characteristic function, which is equal to 1 only for the elements of C. The
matrix A:V × V → R such that

A(u, v) = |C|−1χC(u)χC(v)

is feasible for problem (2.1). Indeed, the first constraint is trivially satisfied and
the second set of constraints is also satisfied since C is stable. Finally, A is positive
semidefinite since A = |C|−1χC(χC)�. Moreover, we have that the sum of all the
entries of A is equal to |C|, so ϑ(G) ≥ |C|, and it follows that ϑ(G) ≥ α(G).

Notice that problem (2.1) is strictly feasible (cf. Section 1.4c) and has a finite
optimal value. So strong duality holds between it and its dual, which then provides
an equivalent formulation for ϑ(G), namely

min λ
Z(v, v) = λ− 1 for all v ∈ V ,
Z(u, v) = −1 if u, v ∈ V , u �= v, are nonadjacent,
Z:V × V → R is positive semidefinite.

(2.3)

It is instructive to show directly from (2.3) that ϑ(G) ≥ α(G). To do so, let Z
be any feasible solution of (2.3) and C ⊆ V be any nonempty stable set of G. Let λ
be such that Z(v, v) = λ − 1 for all v ∈ V . Then, since Z is positive semidefinite
and C is stable,

0 ≤
∑

u,v∈C

Z(u, v) = |C|(λ − 1) − (|C|2 − |C|),

and it follows that λ ≥ |C| and hence ϑ(G) ≥ |C|. Notice that in fact any feasible
solution of (2.3) provides an upper bound to α(G); this is a reflection of the weak
duality relation between (2.3) and (2.1).

By using (2.3) we can also prove that

ϑ(G) ≤ χ(G), (2.4)

where G is the complementary graph of G.
To prove (2.4), suppose we have stable sets C1, . . . , Ck of G which partition V ,

where k = χ(G). Consider the matrix

Z = k

k∑
i=1

χCi(χCi)� − J,

where J is the all one matrix. Clearly, Z satisfies the first two sets of constraints
of (2.3) and its diagonal elements are all equal to χ(G)−1. So, if we prove that Z is
positive semidefinite, we will have proven thatZ is feasible for (2.3), and hence (2.4)
will follow.

To prove Z is positive semidefinite, let p:V → R be any vector. For i = 1, . . . , k,
let πi = (χCi)�p. Since

J = (χC1 + · · · + χCk)(χC1 + · · · + χCk)�,
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it follows that

p�Zp = k

k∑
i=1

π2
i −

k∑
i,j=1

πiπj

=
k∑

i=1

k∑
j=i+1

(πi − πj)2

≥ 0,

and hence Z is positive semidefinite.
Combining (2.2) with (2.4), we get the following theorem of Lovász [29].

Theorem 2.1. We have α(G) ≤ ϑ(G) ≤ χ(G) for every graph G.

2.2 Other properties of the theta number
We will now quickly review some of the most important properties of the theta
number. The first property we mention is the monotonicity of ϑ(G), that is, ifH is
a subgraph of G and has the same vertex set as G, then

ϑ(H) ≥ ϑ(G).

Indeed, let V be the common vertex set of G andH . Suppose Z:V × V → R is
an optimal solution of formulation (2.3) for ϑ(H). Then Z is also feasible for (2.3)
when we consider the edge set of G, hence ϑ(H) ≥ ϑ(G), as we wanted.

The next property is analogous to the inequality

α(G)χ(G) ≥ |V |,
which holds for a graph G = (V,E). It states that, for any graph G = (V,E),

ϑ(G)ϑ(G) ≥ |V |. (2.5)

To prove (2.5), let Z be an optimal solution of formulation (2.3) of ϑ(G). We
then have Z(v, v) = ϑ(G) − 1 for all v ∈ V . Consider the matrix

A = (ϑ(G)|V |)−1(Z + J).

Notice A is feasible for formulation (2.1) of ϑ(G), so

ϑ(G) ≥
∑

u,v∈V

A(u, v)

= 〈J,A〉
= (ϑ(G)|V |)−1(〈J, Z〉 + 〈J, J〉)
≥ (ϑ(G)|V |)−1〈J, J〉
= ϑ(G)−1|V |,
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proving (2.5). Here we used that 〈J, Z〉 ≥ 0 since both J and Z are positive semi-
definite.

For vertex-transitive graphs we get equality in (2.5). To see this, let G = (V,E)
be a vertex-transitive graph. Let A be an optimal solution of formulation (2.1)
for ϑ(G). We say A is invariant under Aut(G), the automorphism group of G, if

A(ϕ(u), ϕ(v)) = A(u, v) for all ϕ ∈ Aut(G) and u, v ∈ V .

We may assume that A is invariant. Indeed, if ϕ is an automorphism of G, then

(ϕ · A)(u, v) = A(ϕ(u), ϕ(v))

is also an optimal solution of (2.1). So the matrix∑
ϕ∈Aut(G)

|Aut(G)|−1(ϕ · A)

is also an optimal solution which is moreover invariant.
So we may assume A is an invariant optimal solution. We observe in particular

that, since G is vertex-transitive, all diagonal entries of A coincide, and hence are
equal to 1/|V |.

Consider then the matrix

Z = (|V |2/ϑ(G))A − J.

We claim that Z is a feasible solution of formulation (2.3) for ϑ(G). To show this, it
suffices to prove that Z is positive semidefinite, as the other constraints are trivially
satisfied.

To prove Z is positive semidefinite, we first observe that 1, the all one vector, is
an eigenvector of A. To see this, consider two vertices u and v. Then there is an
automorphism ϕ of G such that ϕ(u) = v. Then∑

w∈V

A(v, w) =
∑
w∈V

A(ϕ(u), w) =
∑
w∈V

A(u, ϕ−1(w)) =
∑
w∈V

A(u,w),

and it follows that 1 is indeed an eigenvector of A. Moreover, since the sum of all
entries of A is ϑ(G), the eigenvalue associated with 1 is ϑ(G)/|V |.

The vector 1 is also an eigenvector of J , with associated eigenvalue |V |; more-
over 1 is the only (up to scalar multiples) eigenvector of J with nonzero associated
eigenvalue. With this it becomes at once clear that Z is positive semidefinite.

We have thus proved that ϑ(G) ≤ |V |/ϑ(G), since the diagonal elements of A
are all equal to 1/|V |. So we have ϑ(G)ϑ(G) ≤ |V | and, together with (2.5), we
obtain the identity

ϑ(G)ϑ(G) = |V |.
The following theorem summarizes the results of this section. These results are

also contained in Lovász [29].
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Theorem 2.2. Let G and H be graphs over the same vertex set V . We have:
(i) if H is a subgraph of G, then ϑ(H) ≥ ϑ(G);
(ii) ϑ(G)ϑ(G) ≥ |V |;
(iii) if G is vertex-transitive, then ϑ(G)ϑ(G) = |V |.

2.3 An application to binary codes
It is natural to ask if there are further constraints that can be added to the for-
mulation of the theta number of a graph in order to strengthen it. McEliece, Ro-
demich, and Rumsey [33], and independently Schrijver [45], proposed adding the
constraint A ≥ 0 to (2.1), i.e., requiring the matrix to be nonnegative. They thus
introduced the parameter ϑ′, which obviously also upper bounds α(G). In using the
notation ϑ′ for this parameter, we in fact follow the choice of Schrijver; McEliece,
Rodemich, and Rumsey use αL instead of ϑ′.

One application of the parameter ϑ′ is in giving an upper bound for the sizes of
binary codes with prescribed minimum distance. A binary code is a subset C of the
Hamming cube Hn = {0, 1}n. The code C is said to have length n. If x and y are
two codewords, the Hamming distance between them is

distH(x, y) = |{i : xi �= yi}|.
The minimum distance of the code C is the minimum distance between any pair of
distinct codewords in C. We denote by A(n, d) the maximum size a binary code of
length n and minimum distance at least d can have. The parameter A(n, d) is of par-
ticular interest in coding theory; see, e.g., the book byMacWilliams and Sloane [31].

Say we want to find A(n, d). Consider the graph G whose vertex set is {0, 1}n

and in which two vertices are adjacent if and only if the Hamming distance between
them is strictly less than d. Then A(n, d) is the stability number of G, and ϑ′(G)
provides an upper bound for A(n, d).

In other words, the following semidefinite programming problem gives an upper
bound for A(n, d):

max
∑

x,y∈Hn
A(x, y)∑

x∈Hn
A(x, x) = 1,

A(x, y) = 0 if 0 < distH(x, y) < d,
A:Hn ×Hn → R is nonnegative and positive semidefinite.

(2.6)

In its present form, problem (2.6) is not of much use, since the size of the ma-
trix A is exponential in n. A simple observation can help us overcome this problem
however.

Let Iso(Hn) be the isometry group of the Hamming cube, that is, Iso(Hn) is the
group of all bijections σ:Hn → Hn which preserve Hamming distances. (Notice
that any element of Iso(Hn) is also an automorphism of the graph G we defined
above.)
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A matrix A:Hn ×Hn → R is invariant under Iso(Hn) if

A(σ(x), σ(y)) = A(x, y) for all σ ∈ Iso(Hn) and x, y ∈ Hn.

Let A be an optimal solution of (2.6). We may assume that A is invariant, as
otherwise the matrix ∑

σ∈Iso(Hn)

| Iso(Hn)|−1(σ ·A)

is an optimal solution of (2.6) which is invariant, and we can take it instead of A.
Here, σ · A is the matrix such that (σ · A)(x, y) = A(σ(x), σ(y)).

So, sincewemay restrict ourselves to invariant matrices,wemay use the following
result to our advantage.

Theorem 2.3. A matrix A:Hn × Hn → R is invariant and positive semidefinite if
and only if

A(x, y) =
n∑

k=0

fkK
n
k (distH(x, y))

for nonnegative numbers f0, . . . , fn, where Kn
k (t) is the Krawtchouk polynomial of

degree k, which for integer t, 0 ≤ t ≤ n, is given by

Kn
k (t) =

k∑
i=0

(−1)i

(
t

i

)(
n− t

k − i

)
.

Using this theorem, we may rewrite (2.6) to obtain the equivalent problem

max 22nf0∑n
k=0 fk

(
n
k

)
= 2−n,∑n

k=0 fkK
n
k (t) = 0 for t = 1, . . . , d− 1,∑n

k=0 fkK
n
k (t) ≥ 0 for t = 0, . . . , n,

fk ≥ 0 for k = 0, . . . , n.

Notice that the above problem is a linear programming problem with n+1 vari-
ables, which can be efficiently solved on a computer. This upper bound to A(n, d)
was introduced by Delsarte [10] in his doctoral thesis in the more general framework
of (symmetric) association schemes and is generally known as the linear program-
ming bound. The observation that it can be obtained from ϑ′ is due to McEliece,
Rodemich, and Rumsey [33] and Schrijver [45].

We finish this section with a proof of Theorem 2.3.

Proof of Theorem 2.3. If A:Hn ×Hn → R is an invariant matrix, then A(x, y) only
depends on the distance between x and y, because if distH(x, y) = distH(x′, y′),
then there is σ ∈ Iso(Hn) such that σ(x) = x′ and σ(y) = y′. So such an invariant
matrix A can be seen as a one variable function A: {0, . . . , n} → R, and vice versa.
This means thatW , the vector space of all invariant matrices A:Hn ×Hn → R, has
dimension n+ 1.
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Let us find a basis for W . For u ∈ Hn, consider the function χu:Hn → R such
that χu(x) = (−1)u·x, where x · y =

∑n
i=1 xiyi. We observe that the functions χu,

u ∈ Hn, are orthogonal with respect to the standard inner product in RHn .
For k = 0, . . . , n, consider the matrix Bk:Hn ×Hn → R given by

Bk(x, y) =
∑

u∈Hn

|u|=k

χu(x)χu(y), (2.7)

where |u| = |{i : ui �= 0}| is the weight of the codeword u. We claim that each Bk

is invariant.
Indeed, if σ is any isometry of the Hamming cube and x, y are any two code-

words, then by expanding (2.7) using the definition of the χu we get

Bk(σ(x), σ(y)) =
∑

u∈Hn

|u|=k

(−1)u·(σ(x)+σ(y)).

If we consider addition of codewords as an operation over GF(2), then since σ is
an isometry, codewords x + y and σ(x) + σ(y) must both have the same weight,
which is equal to distH(x, y). Since the sum is taken over all codewords u of a given
weight, it follows that Bk(σ(x), σ(y)) = Bk(x, y), and Bk is invariant as claimed.

Now, since the χu are orthogonal, the matrices Bk are also orthogonal with
respect to the trace inner product on RHn×Hn , i.e., 〈Bk, Bl〉 = Tr(B�kBl) = 0
if k �= l. From this, and sinceW has dimension n+1,we conclude thatB0, . . . ,Bn

is an orthogonal basis of W .
So, if A:Hn ×Hn → R is a positive semidefinite invariant matrix, we must have

A =
n∑

k=0

fkBk (2.8)

for some numbers fk, which must be nonnegative since 〈A,Bk〉 ≥ 0 for all k, as
bothA andBk are positive semidefinite. Conversely, ifA is written in the form (2.8)
with nonnegative numbers fk, then A is invariant and positive semidefinite.

To finish, we need only note that Bk(x, y) = Kn
k (distH(x, y)), what follows

from the definitions of Bk and Kn
k .

2.4 Notes
As we said in the beginning of the chapter, our presentation is very selective. We
mention, however, two good sources of further information on the theta number:
Chapter 67 of the book by Schrijver [46] and the nice survey paper by Knuth [26].

Though now the theta number is usually introduced as a polynomially com-
putable bound for the stability number or the chromatic number, at the time of its
introduction this was not known to be the case (in fact, it was not yet known that
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linear programming problems could be solved in polynomial time). Lovász [29] re-
marks, however, after proving strong duality between (2.1) and (2.3), that such a
result provides a “good characterization of the value ϑ(G)”, so the computational
complexity aspect was already present.



Chapter Three

Distance graphs on the sphere

THE Lovász theta number, which we defined in Chapter 2, provides a way to
upper bound the stability number of a finite graph. Also for an infinite graph

can we consider the notion of stability number and related notions and then the
question arises of how to provide bounds for such parameters of an infinite graph.
In this chapter we consider infinite graphs whose vertex set is the (n−1)-dimensional
unit sphere and we show how to generalize the theta number for these graphs. As a
consequence of our study, we improve the lower bounds for χm(Rn), the measurable
chromatic number of Rn (see Section 1.2) for n = 10, . . . , 24. This chapter is
partially based on the paper by Bachoc, Nebe, Oliveira, and Vallentin [3].

3.1 An infinite graph
Recall we denote the standard Euclidean inner product between vectors x, y ∈ Rn

by x · y. The (n− 1)-dimensional unit sphere is the set

Sn−1 = { x ∈ R
n : x · x = 1 }.

From now on we assume n ≥ 2, unless otherwise noted. Let D ⊆ [−1, 1) be
a closed subset of the real line. Consider the graph G(Sn−1, D) whose vertex set
is Sn−1 and in which two vertices x and y are adjacent if and only if x · y ∈ D.
Notice G(Sn−1, D) is an infinite graph. We say it is a distance graph because its
vertex set is a metric space and because the adjacency of any two vertices depends
only on the distance between them.

Stable sets in G(Sn−1, D) can be infinite, so its stability number is infinite. If
we restrict ourselves to Lebesgue measurable stable sets, however, we may give an
alternative definition of the stability number of G(Sn−1, D).

For n ≥ 1, let ω be the surface measure on Sn−1, normalized so that

ω(Sn−1) = ωn =
2πn/2

Γ(n/2)
.

23
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Then the measurable stability number of G(Sn−1, D) is

αm(G(Sn−1, D)) = sup{ω(C) : C ⊆ Sn−1 is stable and measurable }.
It is easy to see that αm(G(Sn−1, D)) > 0 for every closed subset D ⊆ [−1, 1) of
the real line.

We may define the chromatic number of G(Sn−1, D), which we here denote
by χ(G(Sn−1, D)), simply as the minimum number of colors needed to color the
points of Sn−1 in such a way that if two points are adjacent, then their colors are
different. Equivalently, this is the minimum number of stable sets (not necessarily
measurable) one needs in order to partition Sn−1. Lovász [30] studied the parame-
ter χ(G(Sn−1, D)) for the case in whichD is a singleton.

It is easy to see that χ(G(Sn−1, D)) <∞ for any closedD ⊆ [−1, 1): It suffices
to partition the sphere into parts of very small diameter, so that each part is a stable
set. Notice also that χ(G(Sn−1, D)) is at least the chromatic number of any finite
subgraph ofG(Sn−1, D). From a result of de Bruijn and Erdős [7], we know in fact
that χ(G(Sn−1, D)) is equal to the chromatic number of some finite subgraph.

In Section 1.2, we have defined the chromatic number χ(Rn) of the Euclidean
space R

n, which bears resemblance to the chromatic number ofG(Sn−1, D). There
we also defined the measurable chromatic number χm(Rn) of Rn, which was intro-
duced by Falconer [13]. Following this idea of Falconer, we may define the mea-
surable chromatic number of G(Sn−1, D), which we denote by χm(G(Sn−1, D)), as
the minimum number of measurable stable sets needed to partition Sn−1. Notice
this is the same as the chromatic number ofG(Sn−1, D), except that now we require
the color classes to be measurable sets. In analogy to inequality (1.5), which holds
for finite graphs, we have

αm(G(Sn−1, D))χm(G(Sn−1, D)) ≥ ωn. (3.1)

In this chapter we will study αm(G(Sn−1, D)) and χm(G(Sn−1, D)), which are
both more amenable to the application of analytic techniques than χ(G(Sn−1, D)).
We are specially interested in the caseD = {t} for some −1 ≤ t < 1. This case is of
particular interest since

χm(G(Sn−1, t)) ≤ χm(Rn) for every −1 ≤ t < 1, (3.2)

where we write G(Sn−1, t) = G(Sn−1, {t}). To see this, notice that if we have a
coloring of Rn with measurable color classes in which no color class contains a pair
of points at distance 1, we may scale this coloring until no color class contains a pair
of points at distance

√
2 − 2t. Then the intersection of the scaled coloring with Sn−1

will give a coloring ofG(Sn−1, t) with measurable color classes and at most χm(Rn)
colors.

3.2 Preliminaries on functional analysis
We wish to generalize the Lovász theta number to the infinite graphs on the sphere
that we consider. To this end, we need a generalized notion of matrix that will allow
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us to speak of matrices indexed by Sn−1. The notion we need here is that of a kernel,
an object studied in functional analysis.

So our goal in this section is to give a summary of all the concepts of functional
analysis that we will need. We will develop the theory for functions over Sn−1,
but everything remains unchanged if we replace the sphere by other measure spaces,
provided they satisfy some requirements. In Chapter 4, for instance, we will need
to deal with functions defined over the cube [−R,R]n. All theorems presented here
also hold for these functions. We also develop the theory for the case of real-valued
functions, what is sufficient for our purposes. Finally, everything we present here
can be found in classical books on functional analysis, like the books by Riesz and
Sz.-Nagy [42] or Reed and Simon [40].

By L2(Sn−1) we denote the Hilbert space of square-integrable real-valued func-
tions defined over Sn−1, with respect to the measure ω and with inner product

(f, g) =
∫

Sn−1
f(x)g(x) dω(x)

for f , g ∈ L2(Sn−1). As usual, we write ‖f‖ = (f, f)1/2 for the L2-norm of f .
Likewise we consider the Hilbert space L2(Sn−1 × Sn−1), equipped with the

inner product

〈A,B〉 =
∫

Sn−1

∫
Sn−1

A(x, y)B(x, y) dω(x)dω(y)

for A, B ∈ L2(Sn−1 × Sn−1). We also write ‖A‖ = 〈A,A〉1/2 for the L2-norm
of A.

The elements of L2(Sn−1 × Sn−1) are called Hilbert-Schmidt kernels, or ker-
nels for short. They are much like matrices in many senses. Like a matrix, a ker-
nel A:Sn−1 × Sn−1 → R also defines a linear operator A:L2(Sn−1) → L2(Sn−1).
Indeed, if f ∈ L2(Sn−1), we let

(Af)(x) =
∫

Sn−1
A(x, y)f(y) dω(y).

The integral above exists for almost all x ∈ Sn−1 and the function Af so defined
is square-integrable. Moreover, if both A and f are continuous, then Af is also
continuous.

A kernelA is symmetric ifA(x, y) = A(y, x) for all x, y ∈ Sn−1. In the same way
that matrices are said to be positive semidefinite, kernels are said to be positive. More
specifically, a kernel A is positive if it is symmetric and if for every p ∈ L2(Sn−1) we
have

(Ap, p) =
∫

Sn−1

∫
Sn−1

A(x, y)p(x)p(y) dω(x)dω(y) ≥ 0.
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Bochner [5] made the following observation:

ifA:Sn−1×Sn−1 → R is continuous, thenA is positive if and only if
for any choice x1, . . . , xN of finitely many points in Sn−1, the matrix(
A(xi, xj)

)N
i,j=1

is positive semidefinite.
(3.3)

This observation also holds for kernels defined over spaces other than Sn−1 × Sn−1

(like [−R,R]n × [−R,R]n), provided they satisfy some simple requirements.
The notion of positivity for a kernel is thus directly analogous to the notion of

positive semidefiniteness for a matrix. Our choice of using, in relation to kernels,
the term “positive” instead of “positive semidefinite”, is just a matter of following
tradition.

Let A ∈ L2(Sn−1 × Sn−1) be a kernel. A nonzero function f ∈ L2(Sn−1)
is an eigenfunction of A if Af = λf for some real number λ. The scalar λ is the
eigenvalue associated with the eigenfunction f . Every nonzero symmetric Hilbert-
Schmidt kernel has a nonzero eigenvalue. Even more strongly, the following spectral
decomposition theorem holds:

Theorem 3.1 (Hilbert-Schmidt theorem). LetA ∈ L2(Sn−1×Sn−1) be a symmetric
kernel. Then there is a complete orthonormal system ϕ1, ϕ2, . . . of L2(Sn−1) consisting
of eigenfunctions of A with associated eigenvalues λ1, λ2, . . . such that

A(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y) (3.4)

with convergence according to the L2-norm. In particular, ‖A‖2 =
∑∞

i=1 λ
2
i .

A consequence is that, if f ∈ L2(Sn−1) is any function, then

Af =
∞∑

i=1

λi(f, ϕi)ϕi

in the sense of L2 convergence. This means that there is no eigenfunction of A
with nonzero associated eigenvalue that is orthogonal to all the functions ϕi for
which λi �= 0. Observe also that it becomes obvious that A is positive if and only
if λi ≥ 0 for i = 1, 2, . . . , i.e., if and only if all its eigenvalues are nonnegative.

The Hilbert-Schmidt theorem also implies that if A and B are two positive ker-
nels, then 〈A,B〉 ≥ 0. There is a simpler proof of this fact if both A and B are con-
tinuous. In this case we need only notice that the kernel C(x, y) = A(x, y)B(x, y)
is also positive. This follows from the analogous statement for positive semidefinite
matrices (which can be easily proved with the help of the spectral theorem for ma-
trices) coupled with (3.3). Then 〈A,B〉 = (C1,1) ≥ 0, where 1 is the constant one
function.

If we consider only continuous and positive kernels, we may guarantee abso-
lute and uniform convergence in the development (3.4). This is known as Mercer’s
theorem:
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Theorem 3.2 (Mercer’s theorem). Let A:Sn−1 × Sn−1 → R be a continuous and
positive kernel. Then there is a complete orthonormal system ϕ1, ϕ2, . . . of L2(Sn−1)
consisting of continuous eigenfunctions of A with nonnegative associated eigenvalues λ1,
λ2, . . . such that

A(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y)

with absolute and uniform convergence over Sn−1 × Sn−1.

Let A ∈ L2(Sn−1 × Sn−1) and consider its development (3.4). If the series∑∞
i=1 λi converges absolutely, we say that A is trace-class and that its trace is equal to

the value of the series. Not all Hilbert-Schmidt kernels are trace class, but Mercer’s
theorem implies that all continuous and positive kernels are trace-class. Indeed,
if A is a continuous and positive kernel, then since we have absolute and uniform
convergence for (3.4) and since all eigenvalues are nonnegative we also have∫

Sn−1
A(x, x) dω(x) =

∞∑
i=1

λi

∫
Sn−1

ϕi(x)2 dω(x) =
∞∑

i=1

λi =
∞∑

i=1

|λi|.

Notice how in this case the analogy between kernels and matrices is strong, as
the trace of a matrix is both the sum of its diagonal elements and the sum of its
eigenvalues.

3.3 A generalization of the theta number
Now we have all the notions we need in order to generalize the Lovász theta number
to our graph G(Sn−1, D), where D ⊆ [−1, 1) is a closed subset of the real line. We
define ϑ(G(Sn−1, D)) as the optimal value of the following optimization problem:

sup
∫

Sn−1

∫
Sn−1 A(x, y) dω(x)dω(y)∫

Sn−1 A(x, x) dω(x) = 1,
A(x, y) = 0 if x · y ∈ D,
A:Sn−1 × Sn−1 → R is a continuous and positive kernel.

(3.5)

This is an infinite-dimensional semidefinite programming problem which is very
similar to formulation (2.1) for the theta number of finite graphs. Themain property
of the theta number, i.e., that it gives an upper bound to the stability number, is also
true for our generalization:

Theorem 3.3. We have ϑ(G(Sn−1, D)) ≥ αm(G(Sn−1, D)).

In the proof, it is crucial to use the fact that ω is a regular measure. In a regu-
lar measure space, measurable sets can be approximated arbitrarily well by open or
closed sets: If C is measurable, then for every ε > 0 there exist sets X ⊆ C ⊆ Y ,
where X is closed and Y is open, such that ω(C \X) < ε and ω(Y \ C) < ε.
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Proof of Theorem 3.3. The proof is similar to the proof of the analogous statement
for finite graphs (cf. Section 2.1), only slightlymore complicated because of analysis.

To start we fix ε > 0. Let C ⊆ Sn−1 be a measurable stable set of G(Sn−1, D)
such that ω(C) ≥ αm(G(Sn−1, D)) − ε. Since ω is regular, we may assume that C
is closed, otherwise we just find a stable set with measure closer to αm(G(Sn−1, D))
and consider a suitable inner approximation of it by a closed set.

So C is closed and therefore also compact. Then, since also D is compact, there
must be a number δ > 0 such that |x · y − t| > δ for all x, y ∈ C and t ∈ D. This
means that, for small enough ξ > 0, the set

B(C, ξ) = { x ∈ Sn−1 : ∃ y ∈ C such that ‖x− y‖ < ξ }
is stable.

Now the function f :Sn−1 → [0, 1] such that

f(x) = ξ−1 · max{ξ − d(x,C), 0},
where d(x,C) = min{ ‖x − y‖ : y ∈ C }, is continuous and we have f(x) = 1
for x ∈ C and f(x) = 0 for x ∈ Sn−1\B(C, ξ). So the kernelA:Sn−1×Sn−1 → R

given by
A(x, y) = (f, f)−1f(x)f(y)

is feasible for (3.5).
Let us now estimate the objective value of A. Recall that B(C, ξ) is stable. Then

we have
(f, f) ≤ ω(B(C, ξ)) ≤ αm(G(Sn−1, D))

and ∫
Sn−1

∫
Sn−1

f(x)f(y) dω(x)dω(y) ≥ ω(C)2 ≥ (αm(G(Sn−1, D)) − ε)2,

implying ∫
Sn−1

∫
Sn−1

A(x, y) dω(x)dω(y) ≥ (αm(G(Sn−1, D)) − ε)2

αm(G(Sn−1, D))

and, since ε is arbitrary, the theorem follows.

Theproof above is indeed similar to the proof for finite graphs. In particular, note
that the function f we used to define A is nothing more than a suitable continuous
approximation of the characteristic function χC :Sn−1 → {0, 1} of the stable set C
we chose. This we had to do, since the kernel A:Sn−1 × Sn−1 → R such that

A(x, y) = ω(C)−1χC(x)χC(y)

is not continuous, even though it satisfies all other constraints of (3.5). Dropping the
continuity condition is, however, impossible, as for instance if D = {t} we would
have constraintsA(x, y) = 0 for x, y such that x ·y = t, and these constraints would
become trivial without the continuity condition.



Section 3.4 Exploiting symmetry with a theorem of Schoenberg 29

Problem (3.5) might provide a bound for αm(G(Sn−1, D)), but in the way it is
presented it is not clear how to actually solve it. This is similar to the situation we
were in after introducing problem (2.6) in order to bound the parameter A(n, d).
Similarly to that case, the way out of this problem starts with the following obser-
vation: In solving (3.5), one may restrict oneself to kernels that are invariant under
the orthogonal group, which is the isometry group of Sn−1. We show in the next
section how this observation can be used to reduce the problem to a more tractable
form.

Finally, notice that our generalization does not use any property specific to the
sphere. So it can also be used for other compact metric spaces with regular measures.
In Section 4.6b, for instance, we use it for distance graphs on the space [−R,R]n.

3.4 Exploiting symmetry with a theorem of Schoenberg
The orthogonal group of the n-dimensional Euclidean space is defined as

O(Rn) = {T ∈ R
n×n : T�T = I },

where I is the identity matrix. The surface measure on the sphere is invariant un-
der O(Rn), i.e., if X ⊆ Sn−1 is measurable and T ∈ O(Rn), then

ω(T ·X) = ω({Tx : x ∈ X }) = ω(X).

This implies that, if f :Sn−1 → R is a measurable function and T ∈ O(Rn), then∫
Sn−1

f(Tx) dω(x) =
∫

Sn−1
f(x) dω(x).

So also the inner product (·, ·) is invariant under O(Rn), that is, for T ∈ O(Rn)
and f , g ∈ L2(Sn−1), we have (T · f, T · g) = (f, g), where (T · f)(x) = f(Tx) for
all x ∈ Sn−1.

A kernel A:Sn−1 × Sn−1 → R is invariant under O(Rn) if

A(Tx, T y) = A(x, y) for all T ∈ O(Rn) and x, y ∈ Sn−1.

So, if A is invariant, the value of A(x, y) depends only on x · y. We claim that, in
solving (3.5), we may restrict ourselves to invariant kernels.

To prove this claim we need to use the Haar measure over O(Rn). The orthog-
onal group O(Rn) is a topological group with the topology inherited from Rn×n.
Thismeans that with this topology it is a topological Hausdorff space and that group
operations (in this case,matrix multiplication and inversion) are continuous. More-
over, O(Rn) is compact, hence there is a finite Radon measure μ over it which is
invariant under the action of the group, i.e., for every T ∈ O(Rn) and measur-
able X ⊆ O(Rn),

μ(X ) = μ({TX : X ∈ X }) = μ({XT : X ∈ X }).
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This invariant measure is unique up to multiplication by scalars and is called the
Haar measure. For a proof of the existence of the Haar measure, see the book by
Halmos [22]. The book by Mattila [32] contains a discussion of the properties of
the Haar measure for the orthogonal group.

The main use of the Haar measure is in invariant integration. If f : O(Rn) → R

is any measurable function and X and Y are any two orthogonal matrices, then∫
O(Rn)

f(XTY ) dμ(T ) =
∫

O(Rn)

f(T ) dμ(T ).

Lovász [28] gives a simple, combinatorial way to construct an invariant integration
for functions defined over a compact topological group. From such an integration,
the existence of the Haar measure can also be derived.

So we can prove our claim that we may restrict ourselves to invariant kernels.
Let A be any feasible solution of (3.5). Consider the kernel A:Sn−1 × Sn−1 → R

such that
A(x, y) =

∫
O(Rn)

A(Tx, T y) dμ(T ),

where μ is the Haar measure over O(Rn) normalized such that μ(O(Rn)) = 1.
From our discussion above, A is invariant under O(Rn). With the help of Fu-

bini’s theorem, one may also verify that A is feasible for (3.5); moreover∫
Sn−1

∫
Sn−1

A(x, y) dω(x)dω(y) =
∫

Sn−1

∫
Sn−1

A(x, y) dω(x)dω(y),

and from this our claim follows at once.
We may now use a theorem of Schoenberg [44], which characterizes the invari-

ant, positive, and continuous kernels over the sphere in terms of Jacobi polynomials.
To state the theorem, we must therefore define the Jacobi polynomials.

Our discussion on the Jacobi polynomials basically follows Szegö [50]. The Jacobi
polynomials with parameters (α, β), α, β > −1, are the orthogonal polynomials with
respect to the weight function (1 − u)α(1 + u)β on the interval [−1, 1].

This means that we consider the Hilbert space L2([−1, 1]) with inner product

(f, g)α,β =
∫ 1

−1

f(u)g(u) (1 − u)α(1 + u)β du. (3.6)

Then we consider the polynomial functions

1, u, u2, u3, . . . (3.7)

and apply the Gram-Schmidt orthogonalization process to them, with respect to the
inner product (3.6), in the order of the sequence above.

Since each function in (3.7) is linearly independent of those which come before
it in the sequence, from this process we will obtain functions

P
(α,β)
0 , P (α,β)

1 , P (α,β)
2 , P (α,β)

3 , . . . (3.8)
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which are by construction polynomials and pairwise orthogonal and such that the
linear span of P (α,β)

0 , . . . , P (α,β)
k is the same as that of 1, . . . , uk. So it must be

that P (α,β)
k is a polynomial exactly of degree k. Notice, moreover, that during the

process we have little choice, so each P (α,β)
k is uniquely determined up to scalar

multiples.
Finally, since we may write any polynomial as a linear combination of the poly-

nomials P (α,β)
k , Weierstrass’ approximation theorem tells us that (3.8) is actually a

complete orthogonal system for L2([−1, 1]), i.e., for every f ∈ L2([−1, 1]), we may
write

f =
∞∑

k=0

λkP
(α,β)
k

with convergence in the norm ‖f‖α,β = (f, f)1/2
α,β .

The polynomials P (α,β)
k are the ones we call Jacobi polynomials with parame-

ters (α, β). They are usually normalized so that

P
(α,β)
k (1) =

(
k + α

k

)
=

Γ(k + α+ 1)
Γ(k + 1)Γ(α+ 1)

,

and we keep this normalization to prevent confusion when alluding to facts con-
cerning Jacobi polynomials which are to be found in external references. Sometimes
it is more convenient to use a different normalization, however. Namely we also
consider the polynomials P (α,β)

k which are such that

P
(α,β)

k (u) =
P

(α,β)
k (u)

P
(α,β)
k (1)

,

and hence P (α,β)

k (1) = 1.
Now we are ready to state the following theorem due to Schoenberg [44]:

Theorem 3.4. Let α = (n − 3)/2. A kernel A:Sn−1 × Sn−1 → R is continuous,
positive, and invariant under O(Rn) if and only if

A(x, y) =
∞∑

k=0

fkP
(α,α)

k (x · y) (3.9)

for some nonnegative numbers f0, f1, . . . such that
∑∞

k=0 fk converges, in which case
the series in (3.9) converges absolutely and uniformly over Sn−1 × Sn−1.

This theorem is very similar to Mercer’s theorem (Theorem 3.2), the eigenfunc-
tions being hidden in the Jacobi polynomials. Thiswill become clear once we present
a proof of Theorem 3.4 in Section 3.8. For now, we stress that the guarantee of ab-
solute and uniform convergence is linked to the continuity and positiveness of the
kernel A, as was the case in Mercer’s theorem.
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Let us now try to better understand the statement of Theorem 3.4 before we use
it to deal with problem (3.5). A function f :Sn−1 → R is a zonal spherical function
with pole e ∈ Sn−1 if f(x) depends only on the inner product between e and x. In
other words, f(x) = f(y) if e · x = e · y. So a zonal spherical function f can also be
seen as a function of one variable defined over the domain [−1, 1]. For u ∈ [−1, 1],
we will write f(u) for the common value of f for all x ∈ Sn−1 with e · x = u.

Theweight function (1−u2)(n−3)/2 is obtained from the projection of the surface
measure ω of the sphere Sn−1 onto the interval [−1, 1]. More specifically, if we fix
a point e ∈ Sn−1, then for any measurable subset U of [−1, 1] we have

ω({ x ∈ Sn−1 : e · x ∈ U }) =
∫

U

ωn−1(1 − u2)(n−3)/2 du,

where ωn−1 = ω(Sn−2). This means that, if f , g:Sn−1 → R are square-integrable
zonal spherical functions with the same pole e, then

(f, g) =
∫

Sn−1
f(x)g(x) dω(x) =

∫ 1

−1

f(u)g(u)ωn−1(1 − u2)(n−3)/2 du.

For k = 0, 1, . . . , consider the kernel En
k :Sn−1 × Sn−1 → R such that

En
k (x, y) = P

(α,α)

k (x · y),
where α = (n − 3)/2. This is an invariant kernel. So, if we fix a point e on the
sphere, the function y �→ En

k (e, y) is a zonal spherical function of pole e. Then,
using again the invariance of En

k and since the inner product (·, ·) is also invariant,
we have for k �= l that

〈En
k , E

n
l 〉 =

∫
Sn−1

∫
Sn−1

En
k (x, y)En

l (x, y) dω(x)dω(y)

=
∫

Sn−1

∫
Sn−1

En
k (e, y)En

l (e, y) dω(x)dω(y)

= ωn

∫
Sn−1

En
k (e, y)En

l (e, y) dω(y)

= ωnωn−1

∫ 1

−1

P
(α,α)

k (u)P
(α,α)

l (u) (1 − u2)α du

= 0,

since P (α,α)

k is orthogonal to P (α,α)

l with respect to the weight function (1 − u2)α.
So we see that the kernels En

k are pairwise orthogonal, and at once it is clear that
the numbers fk in the right-hand side of (3.9) are given by fk = ‖En

k ‖−1〈A,En
k 〉.

We may now use Theorem 3.4 to deal with problem (3.5). Suppose we restrict
ourselves in (3.5) to invariant kernels. If A is invariant, the constraint∫

Sn−1
A(x, x) dω(x) = 1
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is the same as A(x, x) = ω−1
n for all x ∈ Sn−1, since all diagonal entries coincide.

The objective function is just 〈En
0 , A〉. So, if we write A =

∑∞
k=0 fkE

n
k , then since

the En
k are pairwise orthogonal we have 〈En

0 , A〉 = ω2
nf0 for the objective function.

So we may rewrite (3.5) equivalently as

sup ω2
nf0∑∞
k=0 fk = ω−1

n ,∑∞
k=0 fkP

(α,α)

k (t) = 0 for all t ∈ D,
fk ≥ 0 for k = 0, 1, . . . .

(3.10)

Above, in the first constraint, we made use of the fact that

A(x, x) =
∞∑

k=0

fkP
(α,α)

k (x · x) =
∞∑

k=0

fkP
(α,α)

k (1) =
∞∑

k=0

fk,

since we use the normalization P (α,α)

k (1) = 1.
Now (3.10) is a linear programming problem, albeit an infinite one, with in-

finitely many variables and constraints. Solving this problem is relatively simple
whenD = {t} for some−1 ≤ t < 1, as we discuss in the next section. Also whenD
is finite can problem (3.10) be used to obtain information about αm(G(Sn−1, D)),
as we show in Section 3.6.

3.5 Solving the problem for one inner product
We now discuss how to solve problem (3.10) whenD = {t} for −1 ≤ t < 1. This is
the main case of interest to us because of relation (3.2), which makes a connection
between χm(G(Sn−1, t)) and χm(Rn).

When D = {t}, problem (3.10) becomes

sup ω2
nf0∑∞
k=0 fk = ω−1

n ,∑∞
k=0 fkP

(α,α)

k (t) = 0,
fk ≥ 0 for k = 0, 1, . . . .

(3.11)

For n ≥ 2 and −1 ≤ t < 1 we define

ln(t) = inf{P (α,α)

k (t) : k = 0, 1, . . . }, (3.12)

where α = (n−3)/2. The infimum above is finite for every −1 ≤ t < 1, as we show
in the next two sections. For n ≥ 3 we will show later that the infimum is always
attained; for n = 2 this is not the case for all t.

The first property of ln(t) we observe is that it is negative for −1 ≤ t < 1. For
suppose not. Then we have P (α,α)

k (t) ≥ 0 for k = 0, 1, . . . . This implies that
problem (3.11) is either infeasible, what fromTheorem 3.3 we know is not true, or
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that its optimal value is zero. This case is also impossible, or from Theorem 3.3 we
would have that 0 = ϑ(G(Sn−1, t)) ≥ αm(G(Sn−1, t)) > 0, a contradiction.

In the case D = {t}, one can express ϑ(G(Sn−1, t)) in terms of ln(t) alone, as
we show in the next theorem.

Theorem 3.5. For n ≥ 2 and −1 ≤ t < 1 we have

ϑ(G(Sn−1, t) =
ωnln(t)
ln(t) − 1

.

If, moreover, the infimum in the definition of ln(t) is attained, then problem (3.11)
admits an optimal solution.

Proof. Let α = (n − 3)/2. The following linear programming problem on two
variables and infinitely many constraints is a dual of (3.11):

inf ω−1
n z0
z0 + z1 ≥ ω2

n,
z0 + z1P

(α,α)

k (t) ≥ 0 for k = 1, 2, . . . .
(3.13)

It is easy to show that weak duality holds between (3.11) and (3.13). Indeed, if f0,
f1, . . . is a feasible solution of (3.11) and (z0, z1) is a feasible solution of (3.13),
then

ω2
nf0 ≤

∞∑
k=0

fk(z0 + z1P
(α,α)

k (t)) = ω−1
n z0.

One may easily check that

z0 =
ω2

nln(t)
ln(t) − 1

and z1 =
ω2

n

1 − ln(t)

is a feasible solution of (3.13). From weak duality we then get that

ϑ(G(Sn−1, t)) ≤ ωnln(t)
ln(t) − 1

. (3.14)

We now show how to construct a feasible solution for (3.11). To this end, let k
be such that P (α,α)

k (t) < 0. Then

f0 =
P

(α,α)

k (t)

ωn(P
(α,α)

k (t) − 1)
and fk =

1

ωn(1 − P
(α,α)

k (t))
(3.15)

is a feasible solution of (3.11), and so

ϑ(G(Sn−1, t)) ≥ ωnP
(α,α)

k (t)

P
(α,α)

k (t) − 1
.
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Now, by changing k, we may make P (α,α)

k (t) as close to ln(t) as we like. So,
using (3.14), we see that

ϑ(G(Sn−1, t)) =
ωnln(t)
ln(t) − 1

.

Moreover, if the infimum in the definition of ln(t) is attained, so that ln(t) =
P

(α,α)

k (t) for some k, then we see that, for this k in particular, (3.15) is in fact
an optimal solution of (3.11), as we wanted.

So, in order to compute ϑ(G(Sn−1, t)) for −1 ≤ t < 1, one only has to com-
pute ln(t). In the rest of this section we will study the behavior of ln(t) and see how
it can be computed.

3.5a. The behavior of l2(t). We start with the case n = 2, which is rather patho-
logical. There are basically three possibilities for l2(t), depending on the value of t.
To establish the behavior of l2(t), we use the fact that

P
(− 1

2 ,− 1
2 )

k (cos θ) = cos kθ (3.16)

(cf. (5.1.1) in Andrews, Askey, and Roy [1]).
Now fix −1 ≤ t < 1 and let 0 < θ ≤ π be such that t = cos θ. We distinguish

three cases. Suppose first that θ = (p/q)π, where p and q are relatively prime natural
numbers and p is odd. Then we have P (− 1

2 ,− 1
2 )

q (t) = −1, and so l2(t) = −1 and
the infimum is in this case attained.

Suppose now θ = (p/q)π where p and q are relatively prime natural numbers
and p is even. In this case we have cos kθ > −1 for k = 0, 1, . . . . Also, if we
have k ≡ l (mod q), then

P
(− 1

2 ,− 1
2 )

k (t) = P
(− 1

2 ,− 1
2 )

l (t),

and so we see that for some k = 1, . . . , q − 1 we have l2(t) = P
(− 1

2 ,− 1
2 )

k (t) > −1.
Finally, suppose θ is not a positive rational multiple of π. In particular, then, the

angles kθ, for k ≥ 0 integer, are all different modulo 2π. One may further prove
that in this case the set {θ, 2θ, 3θ, . . .} is dense in the circle, and so l2(t) = −1. The
infimum is not attained in this case, though.

The bound given by ϑ(G(Sn−1, t)) is tight for some values of t, in particular
when t = cosπ/p for some positive integer p. Thenwe have ϑ(G(Sn−1, t)) = π, and
the union of the open arcs of the unit circle that are of the form (2jπ/p, (2j+1)π/p)
for j = 0, . . . , p − 1 is a stable set of G(Sn−1, t) of measure π, as illustrated in
Figure 3.1.

For t = cos 2π/3, one has l2(t) = cos 2π/3, and so ϑ(G(Sn−1, t)) = 2π/3.
Then the bound is also tight, since one may choose an open arc of length 2π/3 as a
stable set in G(Sn−1, t).

For all other values of t, it is not clear whether the bound given by the theta
number is tight.
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0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

Figure 3.1. The shaded set above, consisting of the union of the open arcs
of the form (2jπ/4, (2j + 1)π/4) for j = 0, . . . , 3, is a stable set of the
graph G(S1, cos π/4) which has measure π.

3.5b. The basic behavior of ln(t) for n ≥ 3. From now on we assume n ≥ 3.
Recall that we use two normalizations for the Jacobi polynomials. The Jacobi poly-
nomials P (α,β)

k are normalized so that

P
(α,β)
k (1) =

(
k + α

k

)
=

Γ(k + α+ 1)
Γ(k + 1)Γ(α+ 1)

. (3.17)

This is the normalization commonly found in the literature about Jacobi polynomi-
als. We also consider a different normalization for the Jacobi polynomials, namely
the polynomials P (α,β)

k which are such that

P
(α,β)

k (u) =
P

(α,β)
k (u)

P
(α,β)
k (1)

.

We first establish that the infimum in the definition (3.12) of ln(t) is attained
for all −1 ≤ t < 1. Indeed, let α = (n− 3)/2. Since P (α,α)

k (1) = 1 for all k, using
the formula

P
(α,β)
k (−u) = (−1)kP

(β,α)
k (u) (3.18)

(cf. (6.4.23) in Andrews, Askey, and Roy [1]) we see that ln(−1) = −1.
For −1 < t < 1, the existence of ln(t) for n ≥ 3 follows immediately from the

fact that, for α ≥ 0 and −1 < t < 1,

lim
k→∞

P
(α,β)

k (t) = 0. (3.19)

This follows fromTheorem 8.21.8 in Szegö [50] together with (3.17). The theorem
provides an asymptotic formula for the polynomials P (α,β)

k from which it follows
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1

−1

−1 1
a

Figure 3.2. In the subinterval [−1, a] of [−1, 1], function l5 is the minimum
of the Jacobi polynomials P

(1,1)
k for k = 1, . . . , 4. These polynomials are

plotted above, and the graph of l5 in [−1, a] is highlighted in gray. The plot
of the graph of l5 continues as a dotted line in the interval [a, 1).

that P (α,β)
k (t) → 0 as k → ∞ for any choice of α, β > −1 and any fixed num-

ber −1 < t < 1. From (3.17) we see that, for α ≥ 0, we have P (α,β)
k (1) ≥ 1, so

together with the asymptotic formula we have (3.19).
The asymptotic formula for P (α,β)

k given in Theorem 8.21.8 of Szegö [50] is
uniform in any interval [a, b] ⊆ (−1, 1). So for any [a, b] ⊆ (−1, 1), (3.19) holds
uniformly for all t ∈ [a, b]. This implies that, for every interval [a, b] ⊆ (−1, 1),
there is a number k0 such that, for every t ∈ [a, b],

ln(t) = min{P (α,α)

k (t) : k = 0, . . . , k0 }, (3.20)

where α = (n−3)/2. So we see that ln(t) as a function of t is continuous in [−1, 1).
This is so because, in any interval [a, b] ⊆ (−1, 1), function ln(t) is the mini-
mum of finitely many continuous functions, what implies that ln(t) is continuous
in (−1, 1). The continuity of ln(t) at −1 follows from the fact that ln(−1) = −1

and P (α,α)

1 (u) = u, as we see from (3.18). Figure 3.2 shows the graphs of the first
few Jacobi polynomials P (α,α)

k for α = (n − 3)/2 with n = 5, together with the
graph of l5(t).

We now come to the problem of computing ln(t) for a given −1 < t < 1.

The numbers P (α,α)

k (t), for k = 0, 1, . . . , can be computed with the help of the
recurrence formula for Jacobi polynomials (formula (4.5.1) in Szegö [50]). This
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formula, adapted to the normalization of the polynomials P (α,α)

k , is

P
(α,α)

k (u) =
2k + 2α− 1
k + 2α

uP
(α,α)

k−1 (u) − k − 1
k + 2α

P
(α,α)

k−2 (u), k ≥ 2,

P
(α,α)

1 (u) = u, P
(α,α)

0 (u) = 1.
(3.21)

To find ln(t) we know from (3.20) that we only need to compute P (α,α)

k (t),
where again α = (n− 3)/2, for k = 0, . . . , k0 for some k0 and take the minimum.
The asymptotic formula ofTheorem 8.21.8 of Szegö [50], however, does not provide
precise error estimates, so it does not help us in finding k0.

To estimate k0, and therefore know when we may stop computing P (α,α)

k (t)
in order to find ln(t), we may use a modified version of a formula by Feldheim
and Vilenkin (cf. Corollary 6.7.3 in Andrews, Askey, and Roy [1]). This formula
will allow us to estimate |P (α,α)

k (t)| for α ≥ 0 and k ≥ k0 for any given k0. In
Corollary 6.7.3 of Andrews, Askey, and Roy [1] the formula is stated in terms of the
ultraspherical polynomials Cλ

k , which are such that

Cλ
k (u) =

Γ(λ + 1/2)Γ(k + 2λ)
Γ(2λ)Γ(k + λ+ 1/2)

P
(λ− 1

2 ,λ− 1
2 )

k (u). (3.22)

If in the formula we take ν = α+ 1/2 and λ = 0 we then get, for α ≥ 0,

P
(α,α)

k (cos θ) =
2Γ(α+ 1)

Γ(1
2 )Γ(α + 1

2 )

∫ π/2

0

cos2α φ (1 − sin2 θ cos2 φ)k/2

· pk(θ, φ) dφ,
(3.23)

where pk(θ, φ) = P
(− 1

2 ,− 1
2 )

k (cos θ(1 − sin2 θ cos2 φ)−1/2).
So let us see how to use this formula in order to estimate |P (α,α)

k (cos θ)| for
all k ≥ k0 and fixed 0 < θ < π. Fix θ and let I denote the integral in (3.23). From
the Cauchy-Schwarz inequality we know that

|I|2 ≤
∫ π/2

0

cos4α φ (1 − sin2 θ cos2 φ)k dφ ·
∫ π/2

0

(pk(θ, φ))2 dφ. (3.24)

From (3.16) we see that the second integral above is at most π/2. So let us look
at the integral ∫ π/2

0

cos4α φ (1 − sin2 θ cos2 φ)k dφ. (3.25)

As 0 < θ < π, we have sin2 θ cos2 φ > 0 for 0 ≤ φ < π/2. So, as k → ∞,
this integral tends to zero. This also holds uniformly for all θ contained in any
interval [a, b] ⊆ (0, π). Notice this gives another proof of (3.19) for the case α = β
and also an alternative proof of the existence of a number k0 such that (3.20) holds.
So we also have another proof of the continuity of ln(t) for n ≥ 3.

More important though is the fact that we may upper bound (3.25) for any
given k by using, for instance, some numerical integration method. So, since (3.25),
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as a function of k and for fixed 0 < θ < π, is decreasing, by upper bounding (3.25)
for some k0 we get from (3.23) and (3.24) an upper bound for |P (α,α)

k (cos θ)| for
all k ≥ k0.

As an example, say we wish to compute l4(0.999). We begin by computing
P

( 1
2 , 1

2 )

k (0.999) for k = 0, . . . , 3500 and then taking the minimum of all these num-
bers, which is attained at k = 99. The minimum is a rational number, as is clear
from (3.21), and its first few digits are −0.217258. Now we use (3.23) and (3.24)
to upper bound |P ( 1

2 , 1
2 )

k (0.999)| for k ≥ k0. If we take k0 = 3500, we see that

|P ( 1
2 , 1

2 )

k (0.999)| ≤ 0.2090. . .

for all k ≥ k0. So it becomes clear that l4(0.999) = P
( 1
2 , 1

2 )

99 (0.999).
We have observed in practice that, for any given −1 < t < 1 and α ≥ 0, the

sequence
P

(α,α)

0 (t), P
(α,α)

1 (t), P
(α,α)

2 (t), . . .

is decreasing until min{P (α,α)

k (t) : k = 0, 1, . . . } is found. We can only prove
this is the case for some values of t, however. Notice that, if this were true for
all −1 < t < 1, then computing ln(t) would be much simpler. We present this and
other questions about Jacobi polynomials in Section 3.5d.

3.5c. A formula for the limit of ln(t) as t→ 1. The aim of this section is to prove
the following theorem:

Theorem 3.6. For n ≥ 3 we have

lim
t→1

ln(t) = Γ(α+ 1)
( 2
jα+1,1

)α

Jα(jα+1,1),

where α = (n− 3)/2, Jα is the Bessel function of the first kind of order α, and jα+1,1

is the first positive zero of Jα+1, the Bessel function of the first kind of order α+ 1.

Bessel functions will play amuchmore prominent role in Chapter 4, here we only
need a few facts relating Bessel functions of the first kind to the Jacobi polynomials.
Background material on Bessel functions is provided in Section 4.3. This material
is, however, not necessary for understanding the rest of this section.

From Theorem 3.6 one may derive the following corollary:

Corollary 3.7. For n ≥ 3, setting α = (n− 3)/2, we have

χm(Rn) ≥ 1 − 1
Γ(α+ 1)

(jα+1,1

2

)α 1
Jα(jα+1,1)

.

Proof. We use Theorem 3.6 together with Theorem 3.5 to see that

lim
t→1

ωn

ϑ(G(Sn−1, t))
= 1 − 1

Γ(α+ 1)

(jα+1,1

2

)α 1
Jα(jα+1,1)

.

Now we apply Theorem 3.3, (3.1), and (3.2), finishing the proof.
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Previous lower Lower bound for χm(Rn)
n bound for χm(Rn) from Corollary 3.7

3 6 4
4 8 6
5 11 9
6 15 13
7 19 19
8 30 26
9 35 35
10 45 48
11 56 64
12 70 85
13 84 113
14 102 147
15 119 191
16 148 248
17 174 319
18 194 408
19 263 521
20 315 663
21 374 840
22 526 1,061
23 754 1,336
24 933 1,679

Table 3.3. The table shows the best lower bounds for χm(Rn) previously
known together with the lower bounds for χm(Rn) from Corollary 3.7. The
lower bound for χm(R3) was given by Falconer [13]; all other lower bounds
were given by Székely and Wormald [54]. Notice that we have improvements
for n = 10, . . . , 24.

Bessel functions may be numerically evaluated to any desired accuracy with the
help of a computer; the zeros of Bessel functions can also be computed to any de-
sired accuracy (cf. Section 4.3). So we may use Corollary 3.7 to compute lower
bounds for χm(Rn). By doing so we were able to improve on the best previously
known lower bounds for n = 10, . . . , 24. Table 3.3 shows the numbers we ob-
tained compared with the best previously known lower bounds for χm(Rn); notice
that, since χm(Rn) is integer, the table actually shows the ceiling of the lower bound
provided by Corollary 3.7.

From Corollary 3.7 one may also derive an exponential lower bound for the
growth of χm(Rn) as a function of n. Namely, it is possible to prove that

χm(Rn) ≥
(2
e

+ o(1)
)−n/2

= (1.165. . .+ o(1))n.
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Figure 3.4. Here we have the graphs of P
( 1
2 , 1

2 )

3 and P
( 1
2 , 1

2 )

4 . This plot illus-
trates some properties of the Jacobi polynomials, in particular the interlacing
property and identities (3.26) and (3.27).

In Section 4.4 we obtain the same lower bound from fundamentally the same for-
mula given in Corollary 3.7. To obtain this lower bound, more properties of Bessel
functions and their zeros are necessary, so we defer further discussion on this issue
to Section 4.4. We observe however that our lower bound, though exponential, is
not better than the best known asymptotic lower bounds for χm(Rn), which were
discussed in Section 1.2.

We now set out to prove Theorem 3.6. Recall that we assume n ≥ 3. We
begin with a characterization of ln(t) for some specific values of t. To present this
characterization we first state some properties of the Jacobi polynomials which we
will need. Some of these properties hold for more general families of orthogonal
polynomials, but we state them for the case of Jacobi polynomials. In reading this
section, it is useful to keep Figure 3.4 in mind; it illustrates some of the properties
of the Jacobi polynomials we discuss below.

First, all k zeros of P (α,β)
k are real and distinct and are contained in the inter-

val (−1, 1) (cf. Theorem 3.3.1 in Szegö [50]). The zeros of the Jacobi polynomi-
als also satisfy the interlacing property. Let t(α,β)

k,1 < · · · < t
(α,β)
k,k denote the zeros

of P (α,β)
k in ascending order and set t(α,β)

k,0 = −1 and t(α,β)
k,k+1 = 1. Then the inter-

lacing property says that in each interval (t(α,β)
k,i , t

(α,β)
k,i+1), for i = 0, . . . , k, there is

exactly one zero of P (α,β)
k+1 (cf. Theorem 3.3.2 in Szegö [50]).

Since all the zeros of P (α,β)
k lie in the interval (−1, 1) and are real and distinct
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and since we know from (3.17) that P (α,β)
k (1) > 0, it must be that the rightmost

extremum z of P (α,β)
k is a minimum and that P (α,β)

k (z) < 0. It is actually the
case that the rightmost extremum of P (α,β)

k occurs at t(α+1,β+1)
k−1,k−1 , the rightmost zero

of P (α+1,β+1)
k−1 . This is so since

dP
(α,β)
k (u)
du

=
(k + α+ β + 1)

2
P

(α+1,β+1)
k−1 (u) (3.26)

(cf. (6.3.8) in Andrews, Askey, and Roy [1]), so in fact we see that the extrema
of P (α,β)

k coincide with the zeros of P (α+1,β+1)
k−1 .

Fix α ≥ 0. For some values of t, we know exactly which polynomial achieves the
minimum min{P (α,α)

j (t) : j = 0, 1, . . . }. Namely, if t is the rightmost extremum
of P (α,α)

k , which is a minimum, then we know that the minimum above is equal
to P (α,α)

k (t), as we state in the next theorem.

Theorem 3.8. For α ≥ 0 and k ≥ 2 we have

min{P (α,α)

j (t(α+1,α+1)
k−1,k−1 ) : j = 0, 1, . . . } = P

(α,α)

k (t(α+1,α+1)
k−1,k−1 ).

In particular, for n ≥ 3, α = (n− 3)/2, and k ≥ 2 we have

ln(t(α+1,α+1)
k−1,k−1 ) = P

(α,α)

k (t(α+1,α+1)
k−1,k−1 ).

To prove the theorem we give some further facts about Jacobi polynomials that
we will need and which will also be of use later on. We begin by observing that the
points where P (α,α)

k and P (α,α)

k+1 coincide in the interval (−1, 1) correspond to the
zeros of P (α+1,α)

k , as is clear from the formula

(k + α+ 1)(1 − u)P
(α+1,α)

k (u) = (α + 1)(P
(α,α)

k (u) − P
(α,α)

k+1 (u)), (3.27)

which is adapted to the normalization of P (α,α)

k from (6.4.20) in Andrews, Askey,
and Roy [1].

We now show that

the rightmost zero of P (α+1,α)
k in the interval [−1, 1] is the only zero

of P (α+1,α)
k that lies in the interval (t(α+1,α+1)

k−1,k−1 , t
(α+1,α+1)
k,k ).

(3.28)

To show this we need the identity

P
(α+1,α)
k =

k + 2α+ 2
2k + 2α+ 2

P
(α+1,α+1)
k +

k + α+ 1
2k + 2α+ 2

P
(α+1,α+1)
k−1 , (3.29)

which follows from (6.4.21) in Andrews, Askey, and Roy [1] by taking β = α + 1
and applying (3.18).

Now, from (3.29) and the interlacing property, one sees that P (α+1,α)
k has differ-

ent signs at the endpoints of the intervals (t(α+1,α+1)
k−1,i−1 , t

(α+1,α+1)
k,i ) for i = 1, . . . , k,
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where we take t(α+1,α+1)
k−1,0 = −1. So there is a zero of P (α+1,α)

k in each such interval.
But then, since P (α+1,α)

k has exactly k zeros, it must be that there is exactly one zero
of P (α+1,α)

k in each of the k intervals, and (3.28) follows.
Finally, we need two properties of the rightmost extremum of P (α,α)

k . The first
one is given in (6.4.19) of Andrews, Askey, and Roy [1] and implies, in particular,
that for α > −1/2,

|P (α,α)

k (t(α+1,α+1)
k−1,k−1 )| > |P (α,α)

k+1 (t(α+1,α+1)
k,k )| for k = 2, 3, . . . , (3.30)

i.e., the rightmost extremum of P (α,α)

k decreases in absolute value with k.
The second property is stated in (6.4.24) of Andrews, Askey, and Roy [1] but

only for the case α = 0. It says that

min{P (α,α)

k (u) : u ∈ [0, 1] } = P
(α,α)

k (t(α+1,α+1)
k−1,k−1 ) for k = 2, 3, . . . , (3.31)

i.e., the global minimum of P (α,α)

k in [0, 1] is attained at t(α+1,α+1)
k−1,k−1 , its rightmost

extremum in [0, 1].
To prove (3.31) we first consider the function

g(u) = (P
(α,α)

k (u))2 +
1 − u2

k(k + 2α+ 1)

(
dP

(α,α)

k (u)
du

)2

.

We then compute g′ and use the identity

(1 − u2)
d2P

(α,α)

k (u)
du2

− (2α+ 2)u
dP

(α,α)

k (u)
du

+ k(k + 2α+ 1)P
(α,α)

k (u) = 0,

which is adapted from (6.3.9) in Andrews, Askey, and Roy [1] to the normalization
of P (α,α)

k , to obtain

g′(u) =
(4α+ 2)u

k(k + 2α+ 1)

(
dP

(α,α)

k (u)
du

)2

.

So we see that the polynomial g′ takes positive values on (0, 1] and hence g is
increasing on [0, 1]. So we have

g(t(α+1,α+1)
k−1,i ) < g(t(α+1,α+1)

k−1,i+1 )

whenever i < k − 1 and t(α+1,α+1)
k−1,i ≥ 0. By using (3.26) we then get

(P
(α,α)

k (t(α+1,α+1)
k−1,i ))2 < (P

(α,α)

k (t(α+1,α+1)
k−1,i+1 ))2

whenever i < k − 1 and t(α+1,α+1)
k−1,i ≥ 0.

Now, we see from (3.18) and (3.26) that, when k is odd, then P (α,α)

k (0) = 0,
and when k is even, then 0 is an extremum of P (α,α)

k . So, since t(α+1,α+1)
k−1,i are the

extrema of P (α,α)

k , it is clear that (3.31) follows.
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Proof of Theorem 3.8. Let t = t
(α+1,α+1)
k−1,k−1 . We first show that the sequence

P
(α,α)

0 (t), . . . , P
(α,α)

k (t)

is decreasing. Indeed, for j < k, we have

t
(α+1,α)
j,j ≤ t

(α+1,α)
k−1,k−1 < t

(α+1,α+1)
k−1,k−1 = t.

The first inequality above comes from the interlacing property and the second in-
equality follows from (3.28). So t lies to the right of the rightmost zero of P (α+1,α)

j ,

hence P (α+1,α)

j (t) > 0. Then it is clear from (3.27) that P (α,α)

j (t) > P
(α,α)

j+1 (t), as
we wanted.

Now, for j > k, we also have P (α,α)

j (t) > P
(α,α)

k (t). Indeed, from (3.30)
and (3.31) we know that

P
(α,α)

k (t) < P
(α,α)

j (t(α+1,α+1)
j−1,j−1 ) = min{P (α,α)

j (u) : u ∈ [0, 1] }
for all j > k. This finishes the proof.

An interesting corollary of Theorem 3.8 is the following:

Corollary 3.9. For n ≥ 3 and k = 2, 3, . . . , we have ln(t(α+1,α+1)
k−1,k−1 ) < ln(t) for

all t > t
(α+1,α+1)
k−1,k−1 , where α = (n− 3)/2.

Proof. Follows from Theorem 3.8 together with (3.30) and (3.31).

There are two things left for a proof of Theorem 3.6. The first is the following
simple observation: We have

ln(t) ≤ P
(α,α)

k+1 (t(α+1,α)
k,k ) for t ∈ [t(α+1,α+1)

k−1,k−1 , t
(α+1,α+1)
k,k ] and k ≥ 2, (3.32)

where α = (n − 3)/2. Indeed, we know from (3.28) that t(α+1,α)
k,k is the only zero

of P (α+1,α)

k that lies in the interval (t(α+1,α+1)
k−1,k−1 , t

(α+1,α+1)
k,k ). Hence by (3.27) it is

clear that t(α+1,α)
k,k is the only point in this interval where P (α,α)

k equals P (α,α)

k+1 . From
the interlacing property applied to P (α+1,α+1)

k−1 andP (α+1,α+1)

k together with (3.26),
we know that P (α,α)

k is increasing in [t(α+1,α+1)
k−1,k−1 , t

(α+1,α+1)
k,k ], whereas P (α,α)

k+1 is de-
creasing in this interval. So we have that

min{P (α,α)

k (t), P
(α,α)

k+1 (t)} ≤ P
(α,α)

k (t(α+1,α)
k,k ) = P

(α,α)

k+1 (t(α+1,α)
k,k )

for all t ∈ [t(α+1,α+1)
k−1,k−1 , t

(α+1,α+1)
k,k ], and so with the definition of ln(t)we have (3.32).

The last ingredient we need for the proof of Theorem 3.6 is the following result:

Theorem 3.10. For α > −1/2 and β > −1 we have that, with the notation of
Theorem 3.6,

lim
k→∞

P
(α,α)

k (t(α+1,β)
k−1,k−1) = Γ(α+ 1)

( 2
jα+1,1

)α

Jα(jα+1,1).
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A very similar result is proven byWong and Zhang [57] (see (1.6) in their paper),
but since they are interested in providing asymptotic formulas, their proof is con-
siderably more complicated than the one we present. Before presenting the proof,
however, we first use this theorem to prove Theorem 3.6.

Proof of Theorem 3.6. From Theorem 3.10 we know that both limits

lim
k→∞

P
(α,α)

k (t(α+1,α+1)
k−1,k−1 ) and lim

k→∞
P

(α,α)

k (t(α+1,α)
k−1,k−1)

are equal to

Γ(α+ 1)
( 2
jα+1,1

)α

Jα(jα+1,1),

where α = (n− 3)/2. Theorem 6.1.1 in Szegö [50] implies that the zeros of P (α,β)

k

are dense in [−1, 1]. From this and the interlacing property we see that both se-
quences (t(α+1,α+1)

k,k )k≥0 and (t(α+1,α)
k,k )k≥0 tend to 1 as k → ∞. So, by using

Corollary 3.9, (3.32), and Theorem 3.8, we are done.

We finish this section with a proof of Theorem 3.10.

Proof of Theorem 3.10. In our proof we need two facts which relate Bessel functions
of the first kind with Jacobi polynomials. The first fact we state relates the rightmost
zero of the polynomial P (α,β)

k with the first positive zero of the Bessel function of
the first kind Jα of order α. For k = 1, 2, . . . , let 0 < θk < π be such that cos θk =
t
(α,β)
k,k . Then (cf. Theorem 4.14.1 in Andrews, Askey, and Roy [1])

lim
k→∞

kθk = jα,1, (3.33)

where jα,1 is the first positive zero of Jα.
The second fact we need is the following formula, adapted fromTheorem 4.11.6

in Andrews, Askey, and Roy [1] to take into account the normalization of P (α,α)

k :

lim
k→∞

P
(α,α)

k

(
cos

u

k

)
= Γ(α+ 1)

(2
u

)α

Jα(u). (3.34)

Now, to prove the theorem, we estimate the difference∣∣∣P (α,α)

k (t(α+1,β)
k−1,k−1) − Γ(α+ 1)

( 2
jα+1,1

)α

Jα(jα+1,1)
∣∣∣,

which we upper bound by∣∣∣P (α,α)

k (t(α+1,β)
k−1,k−1) − P

(α,α)

k

(
cos

jα+1,1

k

)∣∣∣
+
∣∣∣P (α,α)

k

(
cos

jα+1,1

k

)
− Γ(α+ 1)

( 2
jα+1,1

)α

Jα(jα+1,1)
∣∣∣.

From (3.34) we see that the second term tends to 0 as k → ∞. So we estimate the
first term. Let θk−1 be such that cos θk−1 = t

(α+1,β)
k−1,k−1 and 0 < θk−1 < π. Applying
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the mean value theorem twice we get∣∣∣P (α,α)

k (t(α+1,β)
k−1,k−1) − P

(α,α)

k

(
cos

jα+1,1

k

)∣∣∣
≤
(

max
u∈[−1,1]

∣∣∣dP (α,α)

k (u)
du

∣∣∣)∣∣∣cos θk−1 − cos
jα+1,1

k

∣∣∣
≤
(

max
u∈[−1,1]

∣∣∣dP (α,α)

k (u)
du

∣∣∣)(max
θ∈Ik

| sin θ|
)∣∣∣θk−1 − jα+1,1

k

∣∣∣,
(3.35)

where Ik is the interval with extremes θk−1 and jα+1,1/k.
Then, by using (3.33) we obtain∣∣∣θk−1 − jα+1,1

k

∣∣∣ =
∣∣∣θk−1 − jα+1,1

k − 1
+

jα+1,1

k(k − 1)

∣∣∣
≤
∣∣∣(k − 1)θk−1 − jα+1,1

k − 1

∣∣∣+ ∣∣∣ jα+1,1

k(k − 1)

∣∣∣
= o(1/k).

(3.36)

So for θ ∈ Ik we have

| sin θ| ≤ |θ| ≤ jα+1,1

k
+
∣∣∣θk−1 − jα+1,1

k

∣∣∣ = O(1/k). (3.37)

Now, if we adapt (3.26) to the normalization of P (α,α)

k we get the formula

dP
(α,α)

k (u)
du

=
k(k + 2α+ 1)

2α+ 2
P

(α+1,α+1)

k−1 (u). (3.38)

Also, for α > −1/2, we have |P (α,α)

k (u)| ≤ 1 for −1 ≤ u ≤ 1; this is stated in
p. 302 of Andrews, Askey, and Roy [1] in terms of the ultraspherical polynomials,
which we defined in (3.22). Then it is clear from (3.38) that in the interval [−1, 1]
we have ∣∣∣dP (α,α)

k (u)
du

∣∣∣ = O(k2),

and this together with (3.35), (3.36), and (3.37) implies that

lim
k→∞

∣∣∣P (α,α)

k (t(α+1,β)
k−1,k−1) − P

(α,α)

k

(
cos

jα+1,1

k

)∣∣∣ = 0,

as we wanted.

3.5d. Open questions. We now give some open questions regarding the Jacobi
polynomials and their relation to the function ln and to ϑ(G(Sn−1, t)).

In Section 3.5b we discussed how to compute ln(t) for n ≥ 3 and −1 ≤ t < 1.
The following question is related to this issue.
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Question 1. Let α ≥ 0 and −1 < t < 1. Let k be such that

min{P (α,α)

j (t) : j = 0, 1, . . . } = P
(α,α)

k (t).

Is it true that the sequence

P
(α,α)

0 (t), P
(α,α)

1 (t), . . . , P
(α,α)

k (t)

is decreasing?

If the answer to this question is “yes”, then computing ln(t) for n ≥ 3 and
any −1 < t < 1 becomes a simple matter of computing P (α,α)

k (t) for k = 0, 1, . . . ,
until the sequence ceases to be decreasing, at which point we know we have found
the minimum. Notice that in the proof of Theorem 3.8 we have actually shown that
Question 1 admits an affirmative answer when t = t

(α+1,α+1)
k−1,k−1 for any given k ≥ 2.

Our second question is also related to the computation of ln(t), indeed it con-
cerns a complete characterization of ln. We showed in Theorem 3.8 that, if α ≥ 0
and t = t

(α+1,α+1)
k−1,k−1 for any given k ≥ 2, then

min{P (α,α)

j (t) : j = 0, 1, . . . } = P
(α,α)

k (t).

So we know in this case exactly at which degree the minimum is achieved.
From Figure 3.2 it seems, in fact, that the minimum above is achieved by P (α,α)

k

for every t ∈ [a, b], where a is the last point in (0, 1) where P (α,α)

k−1 and P (α,α)

k

coincide, and likewise b is the last point in (0, 1) where P (α,α)

k and P (α,α)

k+1 coincide.
If we recall identity (3.27), we are then lead to the following question:

Question 2. Let α ≥ 0 and set t(α+1,α)
0,0 = −1. Is it true that, for k ≥ 0 and

all t ∈ [t(α+1,α)
k,k , t

(α+1,α)
k+1,k+1], we have

min{P (α,α)

j (t) : j = 0, 1, . . . } = P
(α,α)

k+1 (t)?

An affirmative answer would lead to a complete characterization of the behavior
of ln for n ≥ 3.

The last question we present concerns the bound for χm(Rn) given in Corol-
lary 3.7. The bound from the corollary comes from the inequality

χm(Rn) ≥ lim
t→1

ωn

ϑ(G(Sn−1, t))
, (3.39)

which follows from the fact that χm(Rn) ≥ χm(G(Sn−1, t)) for all −1 ≤ t < 1.
It is then reasonable to ask whether the limit above provides the best lower bound
for χm(Rn). In other words, we may ask the following question:

Question 3. For n ≥ 3, is it so that limt→1 ϑ(G(Sn−1, t)) ≤ ϑ(G(Sn−1, u)) for
every −1 ≤ u < 1?
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An affirmative answer would show that taking the limit in (3.39) gives a lower
bound for χm(Rn) at least as good as ωn/ϑ(G(Sn−1, t)) for any given −1 ≤ t < 1.

Question 3 is strongly related to a conjecture concerning Jacobi polynomials
which is open at least since 1975. We now briefly discuss this connection.

FromTheorem 3.5 we know that the answer to Question 3 is “yes” if and only if

lim
t→1

ln(t) ≥ ln(u)

for all −1 ≤ u < 1. Then, by combining (3.32) with Theorems 3.6 and 3.10, we
see that, if

|P (α,α)

k (t(α+1,α)
k−1,k−1)| > |P (α,α)

k+1 (t(α+1,α)
k,k )| for k = 2, 3, . . . (3.40)

with α = (n− 3)/2, then Question 3 admits an affirmative answer.
By using a result of Gerard and Roberts [18] we may reformulate (3.40). They

show that, for α, β > −1,

P
(α+1,β)
k (u) = P

(α,β)
k (u) if u is an extremum of P (α,β)

k .

Using this together with (3.18) and (3.26) we may then show that, for α > 0,

P
(α,α)

k (u) = P
(α,α−1)

k (u) if u is an extremum of P (α,α−1)

k . (3.41)

This can also be seen to hold for α = 0 if one defines

P
(0,−1)

k (u) =
P

(0,0)

k (u) + P
(0,0)

k−1 (u)
2

.

Now, using (3.26) together with (3.41), we may rewrite (3.40) as

|P (α,α−1)

k (t(α+1,α)
k−1,k−1)| > |P (α,α−1)

k+1 (t(α+1,α)
k,k )| for k = 2, 3, . . . . (3.42)

Notice the resemblance between this and (3.30).
Both (3.30) and (3.42) are special cases of a conjecture presented on page 190

of Szegö [50]. The conjecture states that, for α > β > −1/2,

|P (α,β)

k (t(α+1,β+1)
k−1,k−1 )| > |P (α,β)

k+1 (t(α+1,β+1)
k,k )| for k = 2, 3, . . . . (3.43)

Notice that a proof of this conjecture would provide an affirmative answer to Ques-
tion 3 for n ≥ 4. Wong and Zhang [57] show that the conjecture is asymptotically
true, i.e., that (3.43) holds for all large enough k.

For α = 0 it was proven by Wong and Zhang [58] that (3.42) holds with the
inequalities reversed (this was a conjecture of Askey, cf. Wong and Zhang [58]). It
is no surprise then that the answer to Question 3 is “no” when n = 3. Indeed, we
have

l3(t
(1,0)
1,1 ) = −1/3,

whereas from Theorem 3.6 we know that

lim
t→1

l3(t) = −0.4027. . . .
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The difference between the limit and l3(t(1,0)
1,1 ) is however not enough to provide a

better lower bound for χm(R3), since ω3/ϑ(G(S2, t
(1,0)
1,1 )) = 4, but also the ceiling

of the lower bound of Corollary 3.7 is 4.

3.6 A theorem concerning many forbidden inner products
Let t1, t2, . . . be a sequence of numbers in [0, 1) that converges to 1. Then

αm(G(Sn−1, {t1, t2, . . .})) = 0.

This is a simple consequence of a generalization — due to Weil (cf. Weil [56],
page 50; see also Stromberg [49] for a simple proof )— of Steinhaus’ theorem, which
implies that if C ⊆ Sn−1 has positive measure, then there is a −1 < t0 < 1 such
that for all t with t0 < t < 1, set C contains a pair of points with inner product t.
In this section we show the following stronger result for n ≥ 3.

Theorem 3.11. Let t1, t2, . . . be a sequence of numbers in [0, 1) that converges to 1.
Then, for n ≥ 3, we have that αm(G(Sn−1, {t1, . . . , tN})) → 0 as N → ∞.

This theorem does not hold for n = 2. Indeed, for p ≥ 1 integer, let Cp ⊆ S1 be
the union of the open arcs of the form (2jπ/p, (2j + 1)π/p) for j = 0, . . . , p − 1
(the same construction was considered in Section 3.5a; see in particular Figure 3.1).
Notice that no two points in Cp form an angle of (2j + 1)π/p with the origin for
any integer j ≥ 0. In particular, the angle between any two points in C3k is not of
the form π/3j for j = 1, . . . , k, so C3k is a stable set of

G(S1, { cosπ/3j : j = 1, . . . , k }).
But then, since ω(C3k) = π for all k ≥ 1, we immediately see that Theorem 3.11
fails for the sequence

cosπ/3, cosπ/32, cosπ/33, . . . ,

which converges to 1.
Theorem 3.11 is an analogue for the sphere of a theorem of Falconer [14] for the

plane. In particular, the construction presented above to show that Theorem 3.11
fails for n = 2 is similar to a construction of Falconer [14] for the real line. We
consider this theorem of Falconer and other related results in Section 4.5 and the
treatment we present there is analogous to the one presented here.

We prove Theorem 3.11 by showing that it is a consequence of a stronger result,
namely of the following theorem.

Theorem 3.12. Let n ≥ 3. There is a function r: (0, 1] × [0, 1) → (0, 1) such that
if t1, . . . , tN ∈ [0, 1) with t1 < · · · < tN satisfy

ti+1 ≥ r(ε, ti) for i = 1, . . . , N − 1 (3.44)
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for a given 0 < ε ≤ 1, then

αm(G(Sn−1, {t1, . . . , tN})) ≤ ωn · λN
n + ε(N − 1)

1 + λn + · · · + λN
n + ε(N − 1)

,

where λn = λn(t1) = |min{ ln(u) : t1 ≤ u < 1 }|.
This theorem is an analogue to the sphere ofTheorem 4.5 of Section 4.5. It seems

a bit artificial, so before providing a proof we first discuss some of its consequences.
First, from Section 3.5b we know that the number λn(t) exists for all−1 ≤ t < 1.

Moreover, from Corollary 3.9 we know that λn(t) ≤ |ln(0)| for all 0 ≤ t < 1. Then,
from Theorem 3.8 and (3.21) we have that, for 0 ≤ t < 1,

λn(t) ≤ |ln(0)| =
1

n− 1
≤ 1

2
. (3.45)

The first consequence ofTheorem 3.12 that we present is the following corollary.

Corollary 3.13. For n ≥ 3, let Ln = | limt→1 ln(t)|. Then

inf
t1,...,tN∈[0,1)

αm(G(Sn−1, {t1, . . . , tN})) ≤ ωn · L
N
n (1 − Ln)
1 − LN+1

n

.

Proof. We know from Section 3.5c that Ln exists. Moreover limt→1 λn(t) = Ln.
So, by taking ε → 0 and t1 → 1 in Theorem 3.12, and since 1 + a + · · · + aN =
(1 − aN+1)/(1 − a), we are done.

This corollary together with (3.45) shows that the measure of stable sets decrease
exponentially with the number of inner products which define edges. Another useful
corollary of Theorem 3.12 is the following weakening of it.

Corollary 3.14. Let n ≥ 3 andN ≥ 2. If numbers t1, . . . , tN ∈ [0, 1) are given such
that t1 < · · · < tN and

ti+1 ≥ r(ε, ti) for i = 1, . . . , N − 1,

where ε = λN+1
n /((1 − λn)(N − 1)) with r and λn = λn(t1) as in the statement of

Theorem 3.12, then αm(G(Sn−1, {t1, . . . , tN})) ≤ ωn2−N .

Proof. We apply Theorem 3.12 and (3.45) to obtain

αm(G(Sn−1, {t1, . . . , tN})) ≤ ωn · λN
n + ε(N − 1)

1 + λn + · · · + λN
n + ε(N − 1)

= ωn · λN
n + λN+1

n /(1 − λn)
(1 − λN+1

n )/(1 − λn) + λN+1
n /(1 − λn)

= ωn(λN
n (1 − λn) + λN+1

n )

≤ ωn2−N ,

where we use that λn(1 − λn) ≤ 1/4.

From this weakened version of Theorem 3.12 we may prove Theorem 3.11.
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Proof of Theorem 3.11. If t1, t2, . . . is a sequence of numbers in [0, 1) that converges
to 1, then for every N ≥ 2 we may find N numbers among t1, t2, . . . which satisfy
the hypothesis of Corollary 3.14, so αm(G(Sn−1, {t1, t2, . . .})) ≤ ωn2−N . Since
this is true for every N ≥ 2, we are done.

We end this section with a proof of Theorem 3.12. To this end it will be useful
to introduce a dual of problem (3.10). When D = {t1, . . . , tN}, problem (3.10)
becomes

sup ω2
nf0∑∞
k=0 fk = ω−1

n ,∑∞
k=0 fkP

(α,α)

k (ti) = 0 for i = 1, . . . , N ,
fk ≥ 0 for k = 0, 1, . . . .

(3.46)

We consider the following dual for it:

inf ω−1
n z0
z0 + z1 + · · · + zN ≥ ω2

n,
z0 + z1P

(α,α)

k (t1) + · · · + zNP
(α,α)

k (tN ) ≥ 0 for k = 1, 2, . . . .
(3.47)

As in the case of finite-dimensional linear programming, weak duality holds be-
tween (3.46) and (3.47). That is to say that, if f0, f1, . . . is a feasible solution
of (3.46) and (z0, z1, . . . , zN) is a feasible solution of (3.47), then

ω2
nf0 ≤

∞∑
k=0

fk(z0 + z1P
(α,α)

k (t1) + · · · + zNP
(α,α)

k (tN )) = ω−1
n z0.

So any feasible solution of (3.47) upper bounds ϑ(G(Sn−1, {t1, . . . , tN})).
Proof of Theorem 3.12. Write α = (n − 3)/2 and let 0 < ε ≤ 1 and 0 < t < 1
be given. We claim that we may pick a number 0 < u0 < 1 with the following
property: For all u ≥ u0 and all k ≥ 0, if P (α,α)

k (u) ≤ 1 − ε, then |P (α,α)

k (s)| < ε
for all 0 ≤ s ≤ t.

To prove the claim, recall from Section 3.5b that P (α,α)

k (s) → 0 as k → ∞
uniformly in the interval [0, t]. So we can take a k0 such that |P (α,α)

k (s)| < ε

for all 0 ≤ s ≤ t and k ≥ k0. Now, since each P (α,α)

k is continuous and such
that P (α,α)

k (1) = 1, we may pick a number 0 < u0 < 1 such that P (α,α)

k (u) > 1− ε
for all u ≥ u0 and k ≤ k0, and u0 will have the property we claimed.

Set r(ε, t) = u0. Suppose numbers t1, . . . , tN ∈ [0, 1) with t1 < · · · < tN are
given which satisfy (3.44). We claim that, for 1 ≤ j ≤ N ,

j∑
i=1

λi−1
n P

(α,α)

k (ti) ≥ −λj
n − ε(j − 1) for all k ≥ 0. (3.48)



52 Distance graphs on the sphere Chapter 3

Before proving the claim, let us show how to apply it in order to prove the the-
orem. Taking j = N we see that

N∑
i=1

λi−1
n P

(α,α)

k (ti) ≥ −λN
n − ε(N − 1) for all k ≥ 0.

So, letting S = 1 + λn + · · · + λN
n + ε(N − 1), we may set

z0 = ω2
n · λ

N
n + ε(N − 1)

S
and zi = ω2

n · λ
i−1
n

S
for i = 1, . . . , N

and check that this is a feasible solution of (3.47). But then, from the weak duality
relation between (3.47) and (3.46) together withTheorem 3.3, the theorem follows.

We now prove (3.48) by induction. For j = 1, the statement is obviously true.
Now suppose the statement is true for some 1 ≤ j < N ; we show it is also true
for j + 1. To this end, let k ≥ 0 be an integer. If P (α,α)

k (tj+1) > 1 − ε, then by
using the induction hypothesis and since λn ≤ 1 we get

j+1∑
i=1

λi−1
n P

(α,α)

k (ti) = λj
nP

(α,α)

k (tj+1) +
j∑

i=1

λi−1
n P

(α,α)

k (ti)

≥ λj
n(1 − ε) − λj

n − ε(j − 1)
≥ −εj.

If, on the other hand, P (α,α)

k (tj+1) ≤ 1 − ε, we know from the choice of the ti
that |P (α,α)

k (ti)| < ε for i = 1, . . . , j. But then we have
j+1∑
i=1

λi−1
n P

(α,α)

k (ti) = λj
nP

(α,α)

k (tj+1) +
j∑

i=1

λi−1
n P

(α,α)

k (ti)

≥ −λj+1
n − εj,

proving (3.48).

3.7 The theta number of the complementary graph
In Chapter 2, when we studied the theta number for finite graphs, we derived rela-
tions between the theta number of a graph G and that of its complement G. These
relations were given in Theorem 2.2. We try now to decide what the theta number
of the complementary graph of the infinite graph G(Sn−1, D) should be in order
to see which of the properties of the theta number for finite graphs extend to this
infinite case.

LetD ⊆ [0, 1) be a closed subset of the real line. Consider the graphG(Sn−1, D),
the complement ofG(Sn−1, D). Its vertices are the points of the (n−1)-dimensional
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unit sphere Sn−1. Two distinct vertices x, y ∈ Sn−1 are adjacent in G(Sn−1, D)
if x · y /∈ D.

How could we define ϑ(G(Sn−1, D))? The definition which worked for the
graph G(Sn−1, D) does not work here anymore: The optimization problem (3.5),
adapted to the graph G(Sn−1, D), is infeasible. Indeed, the only continuous kernel
A:Sn−1 ×Sn−1 → R satisfying A(x, y) = 0 for all x �= y such that x · y /∈ D is the
zero kernel, and this kernel is not feasible for (3.5).

This happens because, while the complementG(Sn−1, D) ofG(Sn−1, D) is also
a distance graph, inG(Sn−1, D) there is a whole interval of inner products close to 1
that do not define edges, whereas inG(Sn−1, D) there are inner products arbitrarily
close to 1 which define edges. It is this difference that accounts for the fact that,
while formulation (3.5) works for G(Sn−1, D), it fails for G(Sn−1, D).

Moreover, this difference between G(Sn−1, D) and G(Sn−1, D) also accounts
for the different nature of the stable sets of both graphs. While in G(Sn−1, D)
stable sets can have positive measure, in G(Sn−1, D) they are always finite and of
bounded cardinality. So G(Sn−1, D) has finite stability number.

For finite graphs we presented two equivalent formulations for the theta number,
problems (2.1) and (2.3), which were obtained from the duality theory of semidefi-
nite programming. Our generalization of the theta number for G(Sn−1, D), prob-
lem (3.5), was based on (2.1). If we base ourselves on (2.3), however, we may also
define a version of the theta number for G(Sn−1, D).

The theta number of G(Sn−1, D), denoted by ϑ(G(Sn−1, D)), is the optimal
value of the following optimization problem:

inf λ
Z(x, x) = λ− 1 for all x ∈ Sn−1,
Z(x, y) = −1 if x · y ∈ D,
Z:Sn−1 × Sn−1 → R is continuous and positive.

(3.49)

It is a priori not clear that this optimization problem is feasible — we will prove
feasibility in a moment. For now, we observe that the following inequality holds, as
expected:

ϑ(G(Sn−1, D)) ≥ α(G(Sn−1, D)). (3.50)
Assume (3.49) is feasible and let C be a nonempty stable set of G(Sn−1, D) and Z
be a feasible solution of (3.49). Recall C is finite. Let λ be such that Z(x, x) = λ−1
for all x ∈ Sn−1. Then, since Z is continuous and positive and since C is stable, by
using (3.3) we get

0 ≤
∑

x,y∈C

Z(x, y) = (λ− 1)|C| − (|C|2 − |C|),

and this implies that λ ≥ |C|, whence (3.50) follows. Note also how this is a
dual approach: While any feasible solution of (3.49) provides an upper bound
for α(G(Sn−1, D)), our proof that (3.5) gives an upper bound for the parame-
ter αm(G(Sn−1, D)) shows only that an optimal solution of that optimization prob-
lem gives an upper bound.
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We now prove that

ϑ(G(Sn−1, D))ϑ(G(Sn−1, D)) = ωn, (3.51)

along the way proving that (3.49) is feasible. Identity (3.51) is in direct analogy with
the similar identity that is valid for vertex-transitive finite graphs (see Theorem 2.2).

We begin by showing inequality “≤” in (3.51), proving at the same time that
problem (3.49) is feasible. So letA:Sn−1×Sn−1 → R be a feasible solution of (3.5)
and assume thatA is invariant underO(Rn) (invariance under the orthogonal group
was defined in Section 3.4). Then, in particular, all diagonal entries of A are equal
to ω−1

n . Let J :Sn−1 × Sn−1 → R be the constant one kernel and consider the
kernel

Z =
ω2

n

〈J,A〉A− J.

We claim that Z is feasible for (3.49).
To prove this claim it suffices to check that Z is positive, since it clearly satisfies

all other constraints of (3.49). To prove that Z is positive, notice that 1, the con-
stant one function, is an eigenfunction of A, with associated eigenvalue 〈J,A〉/ωn.
Indeed, since A is invariant under the orthogonal group, for every x ∈ Sn−1 we
have ∫

Sn−1
A(x, y) dω(y) =

〈J,A〉
ωn

.

Now 1 is the only eigenfunction of J , with associated eigenvalue ωn. Then it follows
from the Hilbert-Schmidt theorem (Theorem 3.1) that Z is positive, as we wanted.

So Z is a feasible solution of (3.49), and hence ϑ(G(Sn−1, D)) ≤ 1 + Z(x, x)
for any x ∈ Sn−1. So we have

〈J,A〉ϑ(G(Sn−1, D)) ≤ 〈J,A〉(1 + Z(x, x)) = 〈J,A〉 ωn

〈J,A〉 = ωn.

Now, since this holds for any invariant feasible solution A of (3.5) and since we may
restrict ourselves in (3.5), without loss of generality, to invariant kernels (cf. Sec-
tion 3.4), we have

ϑ(G(Sn−1, D))ϑ(G(Sn−1, D)) ≤ ωn.

We now show inequality “≥” in (3.51). To this end, let Z be a feasible solution
of (3.49) and let λ be such that Z(x, x) = λ− 1 for all x ∈ Sn−1. Then

A = (λωn)−1(Z + J)

is feasible for (3.5), as can be easily checked. So we know that ϑ(G(Sn−1, D)) ≥
〈J,A〉 and hence

ϑ(G(Sn−1, D))λ ≥ 〈J,A〉λ = (λωn)−1(〈J, Z〉 + 〈J, J〉)λ ≥ ωn,

since 〈J, Z〉 ≥ 0 as both J and Z are positive. Now, since Z is any feasible solution
of (3.49), we must have

ϑ(G(Sn−1, D))ϑ(G(Sn−1, D)) ≥ ωn,
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and so our proof of (3.51) is finished.
To solve (3.49) we may apply the same idea we applied before in relation to (3.5).

First, we restrict ourselves to kernels that are invariant under O(Rn), and in doing
so no generality is lost (cf. Section 3.4). Then we apply Theorem 3.4 to decompose
the kernel Z. We arrive at the following optimization problem, equivalent to (3.49):

inf 1 +
∑∞

k=0 gk∑∞
k=0 gkP

(α,α)
k (t) = −1 for t ∈ D,

gk ≥ 0 for k = 0, 1, . . . ,

(3.52)

where α = (n− 3)/2.

3.7a. Bounds from finite subgraphs. We now use formulation (3.49) to derive a
result concerning finite subgraphs of G(Sn−1, D), which is analogous to the mono-
tonicity of the theta number for finite graphs (cf. item (i) in Theorem 2.2).

Let H = (V,E) be a finite subgraph of G(Sn−1, D). Then

ϑ(H) ≤ χ(H) ≤ χm(G(Sn−1, D)).

This means that a strategy to find lower bounds for χm(G(Sn−1, D)) is to compute
the theta number of the complements of finite subgraphs of G(Sn−1, D). This,
however, cannot yield better bounds than ωn/ϑ(G(Sn−1, D)), as we proceed to
show.

Indeed, let Z be a feasible solution of (3.49). Then the matrix
(
Z(x, y)

)
x,y∈V

is
a feasible solution for formulation (2.3) of ϑ(H). With (3.51), this implies that

ϑ(H) ≤ ϑ(G(Sn−1, D)) =
ωn

ϑ(G(Sn−1, D))
,

as we wanted.
Upper bounds for the stability number of a finite subgraph H = (V,E) of the

graph G(Sn−1, D) also provide upper bounds for the measurable stability number
of G(Sn−1, D). Indeed we have

αm(G(Sn−1, D))
ωn

≤ α(H)
|V | . (3.53)

To see this, letC be a measurable stable set ofG(Sn−1, D). Then |C∩T ·V | ≤ α(H)
for all T ∈ O(Rn), where

T · V = {Tx : x ∈ V }.
Let μ be the Haar measure over O(Rn) normalized so that μ(O(Rn)) = 1. Then

for any x ∈ Sn−1 and measurable X ⊆ Sn−1,

μ({T ∈ O(Rn) : Tx ∈ X }) =
ω(X)
ωn
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(cf. Theorem 3.7 in Mattila [32]). With this we have that

ω(C)
ωn

|V | =
∑
x∈V

∫
O(Rn)

|C ∩ {Tx}| dμ(T )

=
∫

O(Rn)

|C ∩ T · V | dμ(T )

≤ α(H)

and, since this holds for every measurable stable setC ofG(Sn−1, D), (3.53) follows.
Now, since ϑ(H) ≥ α(H), we have

ϑ(H)
|V | ≥ α(H)

|V | ≥ αm(G(Sn−1, D))
ωn

,

and then by computing the theta number of finite subgraphs ofG(Sn−1, D) wemay
find upper bounds for αm(G(Sn−1, D)). But these bounds cannot be better than
the bound provided by ϑ(G(Sn−1, D)). Indeed, sinceH is finite, fromTheorem 2.2
we know that

ϑ(H)ϑ(H) ≥ |V |.
But then, since ϑ(H) ≤ ϑ(G(Sn−1, D)), as we observed above, and from (3.51),
we have

ϑ(H)
|V | ≥ 1

ϑ(H)
≥ ϑ(G(Sn−1, D))

ωn
,

as we wanted.

3.7b. An application to spherical codes. Finally, we would like to discuss an ap-
plication of (3.49) to the problem of spherical codes. A spherical code in Sn−1 of
minimum angular distance θ, 0 < θ ≤ π, is a subset C of Sn−1 such that the an-
gle between any two distinct points in C is at least θ. We define A(n, θ) to be the
maximum size that a spherical code in Sn−1 of minimum angular distance θ can
have.

Delsarte, Goethals, and Seidel [11] and Kabatyanskii and Levenshtein [23] pro-
posed an upper bound forA(n, θ) based on linear programming, which is analogous
to Delsarte’s linear programming bound for binary codes (cf. Section 2.3). We show
now how to obtain this bound from a suitable generalization of the theta number,
in analogy with the similar observation that McEliece, Rodemich, and Rumsey [33]
and Schrijver [45] made in relation to Delsarte’s linear programming bound for bi-
nary codes (cf. Section 2.3).

Fix a number −1 ≤ t < 1 and consider the graph G(Sn−1, [−1, t]). The sta-
ble sets in the complement G(Sn−1, [−1, t]) of G(Sn−1, [−1, t]) are precisely the
spherical codes in Sn−1 of minimum angular distance θ = arccos t. So the stability
number of G(Sn−1, [−1, t]) is equal to the parameter A(n, θ).
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We may consider problem (3.49) for G(Sn−1, [−1, t]) and at the same time
strengthen it in the direction of α(G(Sn−1, [−1, t]). So we obtain the following op-
timization problem, the optimal value of which we denote by ϑ′(G(Sn−1, [−1, t])):

inf λ
Z(x, x) = λ− 1 for all x ∈ Sn−1,
Z(x, y) ≤ −1 if x · y ∈ [−1, t],
Z:Sn−1 × Sn−1 → R is continuous and positive.

(3.54)

Let now C ⊆ Sn−1 be a nonempty stable set of G(Sn−1, [−1, t]). Let Z be a
feasible solution of (3.54) and λ be such that Z(x, x) = λ − 1 for all x ∈ Sn−1.
Then, using (3.3), we have

0 ≤
∑

x,y∈C

Z(x, y) ≤ (λ− 1)|C| − (|C|2 − |C|).

This shows that λ ≥ |C| and so
ϑ′(G(Sn−1, [−1, t])) ≥ α(G(Sn−1, [−1, t])) = A(n, θ).

Note that in (3.54) we require that A(x, y) ≤ −1 when x · y ∈ [−1, t] instead
of requiring equality to hold. As we see above this still provides an upper bound
forA(n, θ), and the upper bound is possibly tighter than if we had required equality
to hold. We also remark that ϑ′(G(Sn−1, [−1, t])) is analogous to the parameter ϑ′
defined for finite graphs in Section 2.3.

In order to solve (3.54), we apply Theorem 3.4, so that ϑ′(G(Sn−1, [−1, t])) is
the optimal value of the following infinite linear program:

inf 1 +
∑∞

k=0 gk∑∞
k=0 gkP

(α,α)
k (u) ≤ −1 for all u ∈ [−1, t],

gk ≥ 0 for k = 0, 1, . . . ,

where α = (n− 3)/2.
This is exactly the linear programming bound of Delsarte, Goethals, and Sei-

del [11] and Kabatyanskii and Levenshtein [23]. Solving this optimization problem
is not as straight-forward as it was to solve (3.5). Since any feasible solution of it pro-
vides an upper bound for A(n, θ), however, we may for instance simply consider a
finite number of variables and use some optimization approach to find good feasible
solutions.

3.8 A proof of Schoenberg’s theorem
Our goal in this section is to give a proof of Theorem 3.4, which was originally
stated and proved by Schoenberg [44]. We aim at presenting a short and simple
proof. The reader who is familiar with representation theory will likely notice many
concepts from representation theory hidden in the proof. We choose not to make
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our use of such concepts explicit as they are not essential to the proof we present.
Finally, it is important to emphasize the similarity between this proof and the proof
of Theorem 2.3.

We start with a lemma from whichTheorem 3.4 will follow after a bit of analyt-
ical work.

Lemma 3.15. The kernelEn
k :Sn−1×Sn−1 → R such thatEn

k (x, y) = P
(α,α)

k (x·y),
with α = (n− 3)/2 for n ≥ 2, is positive for every k.

We will prove the lemma in a moment— proving it is actually most of the work.
First, however, we use it to prove the theorem.

Proof of Theorem 3.4. We first show that, if f0, f1, . . . are nonnegative numbers
such that

∑∞
k=0 fk converges, then the series

∞∑
k=0

fkP
(α,α)

k (x · y) (3.55)

converges absolutely and uniformly for all x, y ∈ Sn−1.
Indeed, since we know from Lemma 3.15 that the kernelEn

k is positive, we must
have that |P (α,α)

k (u)| ≤ P
(α,α)

k (1) = 1 for all u ∈ [−1, 1]. This immediately implies
that the series

∞∑
k=0

fkP
(α,α)

k (u)

converges absolutely for every u ∈ [−1, 1], and hence (3.55) converges absolutely
for all x, y ∈ Sn−1.

Now, for every u ∈ [−1, 1] and every integerm ≥ 0 we also have that∣∣∣ ∞∑
k=m

fkP
(α,α)
k (u)

∣∣∣ ≤ ∞∑
k=m

fk,

and so (3.55) also converges uniformly for all x, y ∈ Sn−1, as we wanted.
With the above observation, if we are given nonnegative numbers f0, f1, . . .

such that
∑∞

k=0 fk converges, then the kernel A:Sn−1 × Sn−1 → R such that

A(x, y) =
∞∑

k=0

fkP
(α,α)

k (x · y)

is continuous. From Lemma 3.15 it is also positive, and sufficiency follows.
Now we prove necessity. Let A:Sn−1 × Sn−1 → R be a continuous, positive,

and invariant kernel. Kernel A is invariant, so let h: [−1, 1] → R be the function
such that A(x, y) = h(x · y) for all x, y ∈ Sn−1.

We mention in Section 3.4 that the polynomials P (α,α)

0 , P
(α,α)

1 , . . . form a
complete orthogonal system of L2([−1, 1]), which we equip with the inner prod-
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uct (·, ·)α,α. So there are numbers f0, f1, . . . such that

h =
∞∑

k=0

fkP
(α,α)

k (3.56)

with convergence in the L2-norm.
We first claim that the fk are all nonnegative. To see this, recall from Sec-

tion 3.4 that, since the P (α,α)

k are pairwise orthogonal with respect to the inner
product (·, ·)α,α, the kernels En

k are pairwise orthogonal with respect to the inner
product 〈·, ·〉. But then, since from (3.56) we have

A =
∞∑

k=0

fkE
n
k

in the sense of L2 convergence and since, by Lemma 3.15, each En
k is positive, we

must have that the fk are all nonnegative. (This follows from the fact that, if A
and B are positive kernels, then 〈A,B〉 ≥ 0, cf. Section 3.2.)

To finish, we show that the series
∑∞

k=0 fk converges. To this end, consider
for m = 0, 1, . . . the function

hm(u) = h(u) −
m∑

k=0

fkP
(α,α)

k (u) for all u ∈ [−1, 1].

These are continuous functions. Moreover, since we have

hm =
∞∑

k=m+1

fkP
(α,α)

k

in the sense of L2 convergence, from Lemma 3.15 it follows that for each m the
kernel Am(x, y) = hm(x · y) is positive.

This implies in particular that hm(1) ≥ 0 for all m. But then we have

h(1) −
m∑

k=0

fk = h(1) −
m∑

k=0

fkP
(α,α)

k (1) = hm(1) ≥ 0,

and we conclude that the series of nonnegative terms
∑∞

k=0 fk converges to a num-
ber less than or equal to h(1), as we wanted.

The part of the proof in which we deal with convergence is basically a simplified
version of the proof of Mercer’s theorem (cf. Riesz and Sz.-Nagy [42]). All that is
left to do now is to prove the lemma.

Proof of Lemma 3.15. An n-variable polynomial p ∈ R[x1, . . . , xn] is harmonic if it
is homogeneous and vanishes under the Laplace operator, that is, if Δp = 0, where

Δ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n
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is the Laplace operator.
Recall that for L2(Sn−1) we use the inner product

(f, g) =
∫

Sn−1
f(x)g(x) dω(x).

We may also treat polynomials p, q ∈ R[x1, . . . , xn] as functions in L2(Sn−1) by
considering their restrictions to the sphere. It is in this sense that we also write (p, q),
i.e., when we write such an expression we consider p and q restricted to the sphere.

Claim A. If p, q ∈ R[x1, . . . , xn] are harmonic and of distinct degrees, then (p, q) = 0.

Proof. This follows easily from Green’s identity (equation (1.1) in Axler, Bourdon,
and Ramey [2]; see also Section 9.4 of Andrews, Askey, and Roy [1]). Let pk, pl be
two harmonic polynomials of degrees k and l, respectively. Green’s identity states
that ∫

‖x‖≤1

pk(x)(Δpl)(x) − pl(x)(Δpk)(x) dx

=
∫

Sn−1
pk(x)(∇pl)(x) · x− pl(x)(∇pk)(x) · xdω(x).

(3.57)

Note that, since pk, pl are harmonic, both sides above are equal to 0.
Now, since pk is a homogeneous polynomial of degree k,

(∇pk) · x = x1
∂pk

∂x1
+ · · · + xn

∂pk

∂xn
= kpk,

and similarly (∇pl) · x = lpl. Substituting back into the right-hand side of (3.57)
we get

(l − k)
∫

Sn−1
pk(x)pl(x) dω(x) = 0,

as we wanted. �

The restriction of a harmonic polynomial in R[x1, . . . , xn] to Sn−1 is called a
spherical harmonic. Because of Claim A, we may define the degree of a nonzero
spherical harmonic to be the degree of a harmonic polynomial from which it is
obtained. Actually, it is true that two harmonic polynomials which coincide in Sn−1

coincide everywhere, so that each spherical harmonic corresponds to exactly one
harmonic polynomial. We do not need this more general fact for the rest of the
proof, however.

For k = 0, 1, . . . , let Hk be the subspace of L2(Sn−1) generated by the spher-
ical harmonics of degree k. We equip Hk with the inner product (·, ·). We claim
that Hk �= {0} for all k. To prove this, we need to exhibit for every k a harmonic
polynomial of degree k that does not vanish on the sphere. Consider then the two-
variable polynomial (x1+ix2)k. This is a homogeneous polynomial of degree k with
complex coefficients. It also vanishes under the Laplace operator, as can be seen after
a simple application of the chain rule.
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This polynomial has complex coefficients, but from it we may obtain a poly-
nomial with real coefficients that is harmonic. To do so, expand (x1 + ix2)k to
obtain k+1 monomials. Now, simply delete the imaginary unit i from each mono-
mial in which it appears. For instance, in the case of k = 4, we have the polynomial

(x1 + ix2)4 = x4
1 + 4ix3

1x2 − 6x2
1x

2
2 − 4ix1x

3
2 + x4

2,

and from it we obtain the polynomial

x4
1 + 4x3

1x2 − 6x2
1x

2
2 − 4x1x

3
2 + x4

2.

Thepolynomial obtained after the deletion of the imaginary unit has real coefficients
and one can easily check that it is harmonic and of degree k. Moreover, if we consider
this polynomial as a polynomial in R[x1, . . . , xn], we immediately see that when it
is restricted to the sphere it is nonzero, proving the claim.

Let ek,1, . . . , ek,hk
be an orthonormal basis of Hk, where hk is the dimension

of Hk. Consider the kernel Bk:Sn−1 × Sn−1 → R such that

Bk(x, y) =
hk∑
i=1

ek,i(x)ek,i(y). (3.58)

Each Bk is nonzero, continuous, and positive. From Claim A it also follows that
the Bk, k = 0, 1, . . . , are pairwise orthogonal with respect to 〈·, ·〉.
Claim B. Each kernel Bk is invariant under O(Rn).

Proof. Let f :Sn−1 → R and T ∈ O(Rn). We define T · f as the function such
that (T · f)(x) = f(Tx) for all x ∈ Sn−1. Recall from Section 3.4 that the inner
product (·, ·) is invariant under the orthogonal group, that is, if f , g ∈ L2(Sn−1),
then (T · f, T · g) = (f, g).

For each x ∈ Sn−1, the function evx:Hk → R such that evx(f) = f(x) is
a linear functional. Since Hk is finite dimensional, this means that for each x ∈
Sn−1 there is an rx ∈ Hk such that (f, rx) = f(x) for all f ∈ Hk. Moreover,
if T ∈ O(Rn), then rTx = T−1 · rx. Indeed, we have that, for f ∈ Hk,

(f, T−1 · rx) = (T · f, rx)
= (T · f)(x)
= f(Tx),

as we wanted.
Now note that, since ek,1, . . . , ek,hk

is an orthonormal basis of Hk,

Bk(x, y) =
hk∑
i=1

(ek,i, rx)(ek,i, ry) = (rx, ry).

But we also have

(rTx, rTy) = (T−1 · rx, T−1 · ry) = (rx, ry),

and so Bk(Tx, T y) = Bk(x, y), proving that Bk is invariant. �
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We finally come to the last claim we need to complete the proof.

Claim C. For each k = 0, 1, . . . there is a real one-variable polynomial Rk of degree k
such that Bk(x, y) = Rk(x · y) for all x, y ∈ Sn−1.

Proof. Let e = (1, 0, . . . , 0) ∈ Sn−1. From (3.58), we may see p(x) = Bk(e, x) as
an n-variable homogeneous polynomial of degree k. For u ∈ [−1, 1], let w(u) =
(u, (1 − u2)1/2, 0, . . . , 0) ∈ Sn−1. Using Claim B, we conclude that Bk(x, y) =
p(w(x · y)) for all x, y ∈ Sn−1.

For u ∈ [−1, 1], let us then compute p(w(u)). In computing p(w(u)), we need
only look at monomials of p which contain only variables x1 and x2. There must be
at least one such monomial, as Bk is nonzero.

Now let p0 be the polynomial consisting of all monomials of p that are of the
form cxk1

1 x
k2
2 with k2 even; likewise, let p1 be the polynomial consisting of all mono-

mials cxk1
1 x

k2
2 of p that are such that k2 is odd. So, for u ∈ [−1, 1], we have

p(w(u)) = p0(w(u)) + p1(w(u)). (3.59)

We claim that, for u ∈ [−1, 1], we actually have

p(w(u)) = p0(w(u)).

To see this, for u ∈ [−1, 1] let w′(u) = (u,−(1 − u2)1/2, 0, . . . , 0) ∈ Sn−1.
Since Bk is invariant and e · w(u) = e · w′(u), we must have p(w(u)) = p(w′(u)).
But notice that p0(w(u)) = p0(w′(u)), so that from (3.59) we see that p1(w(u)) =
p1(w′(u)) and, since p1(w′(u)) = −p1(w(u)), we must have that p1(w(u)) = 0 for
all u ∈ [−1, 1], and our claim follows.

So it is at once clear that Rk(u) = p0(w(u)) can be seen as a one-variable poly-
nomial of degree k. Moreover, Bk(x, y) = Rk(x · y) for all x, y ∈ Sn−1. �

Since the kernels Bk, k = 0, 1, . . . , are pairwise orthogonal with respect to the
inner product 〈·, ·〉, the polynomialsRk, k = 0, 1, . . . , are pairwise orthogonal with
respect to the inner product (·, ·)α,α, i.e., they are orthogonal with respect to the
weight function (1 − u2)(n−3)/2 (cf. Section 3.4). But then, since Rk(1) > 0, Rk

must be a positive multiple of P (α,α)

k . So also Bk is a positive multiple of En
k , and

hence En
k is positive for k = 0, 1, . . . .



Chapter Four

Distance graphs on the Euclidean space

IN Chapter 3 we showed how to generalize the Lovász theta function to distance
graphs over the (n − 1)-dimensional unit sphere in order to upper bound the

measurable stability number of such graphs. Our main motivation in doing so was
to find lower bounds for the measurable chromatic number of Rn, and we could
improve on previous lower bounds for χm(Rn) for n = 10, . . . , 24.

In this chapter we use a more direct method to find lower bounds for χm(Rn),
namely, we work directly with Rn instead of Sn−1. As a consequence we are able
to improve on previously known bounds for χm(Rn) for n = 3, . . . , 24. We also
provide bounds for m1(Rn), the maximum density of 1-avoiding sets, which im-
prove on previously known bounds for n = 2, . . . , 24. Our method can be seen
as a generalization of the Lovász theta number for distance graphs on Rn; this view
is explored in detail in Section 4.6. This chapter is partially based on the paper by
Oliveira and Vallentin [37].

4.1 Distance-avoiding sets in Euclidean space
A set C ⊆ Rn avoids distance d if for all x, y ∈ C we have ‖x− y‖ �= d. Sometimes
we say that a set that avoids distance d is a d-avoiding set.

Given a Lebesgue measurable set C ⊆ Rn, its upper density is defined as

δ(C) = lim sup
R→∞

vol(C ∩ [−R,R]n)
vol[−R,R]n

,

where [−R,R]n is the n-dimensional cube of side 2R with center at the origin
and volX simply denotes the Lebesgue measure of setX . In this chapter, we will in-
vestigate the maximum density that measurable distance-avoiding sets can achieve,
that is, we investigate the parameter

md1,...,dN (Rn) = sup{ δ(C) : C ⊆ R
n is measurable and avoids

distances d1, . . . , dN }.

63
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We are chiefly interested in finding upper bounds formd1,...,dN (Rn), in particu-
lar for the case of 1-avoiding sets, i.e., form1(Rn). We do so because of the connec-
tion betweenm1(Rn) and χm(Rn), the measurable chromatic number ofRn. Recall
from Section 1.2 that χm(Rn) is the minimum number of measurable 1-avoiding
sets needed to partition Rn, hence

m1(Rn)χm(Rn) ≥ 1, (4.1)

so that any upper bound form1(Rn) implies a lower bound for χm(Rn).
In the next section, we prove the main theorem of this chapter, which provides

a tool to compute upper bounds for md1,...,dN (Rn). To state the theorem, we first
introduce the real-valued function Ωn, which is defined on the nonnegative reals
and is such that

Ωn(‖u‖) =
1
ωn

∫
Sn−1

eiu·ξ dω(ξ), (4.2)

for u ∈ Rn, where ω is the surface measure on the (n− 1)-dimensional unit sphere

Sn−1 = { x ∈ R
n : x · x = 1 }.

Here x · y denotes the standard Euclidean inner product between vectors x and y.
Measure ω is normalized so that

ω(Sn−1) = ωn =
2πn/2

Γ(n/2)
.

From (4.2) we immediately see that Ωn(0) = 1. Moreover, for n = 1 we sim-
ply have Ωn(t) = cos t for all t ≥ 0. For general n, the function Ωn also admits
an expression in terms of Bessel functions, a fact which allows us to compute good
numerical approximations of Ωn and also to apply analytical tools. We will use this
expression, which we present in Section 4.3, in our applications of the main theo-
rem. Figure 4.1 shows a graph of function Ω4 which illustrates the typical behavior
of the functions Ωn for n ≥ 2. In particular, we see that the first extremum of Ω4 is
a global minimum and that Ω4(t) → 0 as t → ∞. We will discuss these and other
properties of Ωn in Section 4.3.

Having defined the function Ωn, we may finally present our main theorem.

Theorem 4.1. Let d1, . . . , dN be any given positive real numbers. Suppose there are
numbers z0, z1, . . . , zN such that

z0 + z1 + · · · + zn ≥ 1, (4.3)
z0 + z1Ωn(td1) + · · · + zNΩn(tdN ) ≥ 0 for all t > 0. (4.4)

Then md1,...,dN (Rn) ≤ z0.

Notice thatTheorem 4.1 says that any feasible solution of the optimization prob-
lem

inf{ z0 : (z0, z1, . . . , zN ) satisfies (4.3)–(4.4) }
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1

20 40
t

Ω4(t)

−0.1322. . .
5.1356. . .

Figure 4.1. The graph of Ω4.

provides an upper bound formd1,...,dN (Rn). This is a linear programming problem
with N + 1 variables and infinitely many constraints. In fact, we use concepts from
linear programming in our proof of Theorem 4.1.

In Section 4.4 we useTheorem 4.1 in order to provide upper bounds for the den-
sities of 1-avoiding sets, and hence also lower bounds for the measurable chromatic
number of Rn; in Section 4.5 we use the theorem to upper bound the densities of
sets avoiding many distances. Finally, in Section 4.6 we generalize our results to
other, slightly more general, distance graphs over Rn and show how the bound of
Theorem 4.1 can be obtained from a suitable generalization of the theta number.

Indeed, distance-avoiding sets in R
n can be seen as stable sets in a distance graph

defined over Rn. Let D be a nonempty compact subset of the positive real line —
in particular, 0 /∈ D. Consider the graph G(Rn, D) whose vertices are the points
of Rn and in which two vertices x, y ∈ Rn are adjacent if and only if ‖x− y‖ ∈ D.
This graph is a distance graph in Rn, i.e., adjacency in this graph is completely
characterized in terms of distance, and the stable sets of this graph correspond to
sets which avoid all distances in D. It is this more general setting that we consider
in Section 4.6, where we discuss how the theta number can be generalized to the
graphs G(Rn, D).

4.2 Harmonic analysis and a proof of the main theorem
We need some basic facts from harmonic analysis in order to prove Theorem 4.1.
What we present here can be found, e.g., in the book by Katznelson [25].

Let f : Rn → C be a function. We say that f is periodic if there exists a ba-
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sis b1, . . . , bn of Rn such that

f(x+ α1b1 + · · · + αnbn) = f(x)

for all x ∈ R
n and α1, . . . , αn integer. The lattice

Λ = {α1b1 + · · · + αnbn : αi ∈ Z }
is a periodicity lattice of f . Any version of Λ scaled by an integer factor is also a
periodicity lattice of f . For our purposes, when we work with periodic functions,
the particular lattice will not be important.

A periodic function with periodicity lattice Λ repeats itself in translated copies
of the fundamental domain D = {λ1b1 + · · · + λnbn : 0 ≤ λi < 1 } of Λ centered
at points of Λ. It can also be seen as a function defined over the domain Rn/Λ.

Let f : Rn → C be a measurable periodic function with periodicity lattice Λ.
Let D be the fundamental domain of Λ. We say that f is square-integrable if

lim
R→∞

1
vol[−R,R]n

∫
[−R,R]n

|f(x)|2 dx =
1

volD

∫
D

|f(x)|2 dx <∞.

Notice that the condition expressed in terms of the limit above has the advantage of
being independent of the periodicity lattice of f .

If f , g: Rn → C are two square-integrable periodic functions, we write

〈f, g〉 = lim
R→∞

1
vol[−R,R]n

∫
[−R,R]n

f(x)g(x) dx.

This is clearly well-defined when f and g have both the same periodicity lattice Λ.
In this case, if D is the fundamental domain of Λ, we simply have

〈f, g〉 =
1

volD

∫
D

f(x)g(x) dx.

Also when f and g have different periodicity lattices is 〈f, g〉 well-defined, as can be
seen after a bit of work.

The space of all square-integrable periodic functions with a common periodicity
lattice Λ is a Hilbert space when endowed with the inner product 〈·, ·〉 — let us
denote it by L2(Rn/Λ).

Let Λ∗ be the dual lattice of Λ, that is,

Λ∗ = { u ∈ R
n : x · u ∈ Z for all x ∈ Λ }.

The functions
eiu·x for u ∈ 2πΛ∗,

where 2πΛ∗ is the lattice Λ∗ scaled by 2π, form a complete orthonormal system
of L2(Rn/Λ). So, for every function f ∈ L2(Rn/Λ), we have

f(x) =
∑

u∈2πΛ∗
f̂(u)eiu·x (4.5)
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with convergence in the L2-norm, where f̂(u) = 〈f, eiu·x〉 is the Fourier coefficient
of f associated with u. We also have Parseval’s formula: If f , g ∈ L2(Rn/Λ), then

〈f, g〉 =
∑

u∈2πΛ∗
f̂(u)ĝ(u). (4.6)

Actually, if f ∈ L2(Rn/Λ) and u /∈ 2πΛ∗, then f̂(u) = 〈f, eiu·x〉 = 0. So we
may omit Λ∗ in (4.5) and (4.6) if we like. For instance, (4.5) becomes

f(x) =
∑

u∈Rn

f̂(u)eiu·x.

We just observe that only countably many of the Fourier coefficients are nonzero
and that the order of summation is irrelevant. We may similarly rewrite (4.6) in
order to hide Λ∗.

The observation of the last paragraph is related to the fact that we may define a
space of almost periodic functions (cf. Katznelson [25], Chapter VI) that includes all
continuous periodic functions and in which 〈·, ·〉 plays the role of the inner product.
In this space, which is however not a Hilbert space, as it is not complete, Parseval’s
formula still holds and functions might have Fourier coefficients supported at any
countable subset of Rn. This more complicated framework is however not needed
for our purposes.

Proof of Theorem 4.1. Let C ⊆ Rn be a nonempty measurable set that avoids dis-
tances d1, . . . , dN . Denote by χC : Rn → {0, 1} its characteristic function, whose
support is exactly C. We may assume without loss of generality that χC is periodic.

Indeed, let R be such that vol(C ∩ [−R,R]n)/ vol[−R,R]n is close to the up-
per density of C and also such that vol[−R + d,R − d]n/ vol[−R,R]n, with d =
max{d1, . . . , dN}, differs from 1 only negligibly. Then we construct a set that avoids
distances d1, . . . , dN by tiling Rn with copies of C ∩ [−R+ d,R− d]n centered at
the points of the lattice 2RZ

n. This new set has upper density close to that of C and
its characteristic function is periodic. By taking R large enough, we can make the
density of the new distance-avoiding set as close to δ(C) as we like.

So χC is periodic and, since C is measurable, χC is square-integrable. For a
vector y ∈ Rn, we denote by C + y the translation of C by y and we write C − y =
C + (−y). The following two properties are crucial for our argument:

〈χC ,1〉 = δ(C),

〈χC−y, χC〉 = δ(C ∩ (C − y)) for all y ∈ Rn,

where 1 is the constant one function. In particular, we have 〈χC , χC〉 = δ(C)
and 〈χC−y, χC〉 = 0 if y has norm equal to d1, . . . , dN . Also, 〈χC ,1〉 is just χ̂C(0),
the Fourier coefficient of χC computed at 0.

Consider now the function ϕ: Rn → C such that ϕ(y) = 〈χC−y, χC〉. This is
the so-called autocorrelation function of χC . Function χC−y is periodic and square-
integrable and its periodicity lattice is the same as that of function χC . More-
over, χC−y(x) = χC(x + y), so we may express the Fourier coefficients of χC−y
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in terms of those of χC : We simply have χ̂C−y(u) = χ̂C(u)eiu·y. So, from Parse-
val’s formula we have

ϕ(y) = δ(C ∩ (C − y)) =
∑

u∈Rn

|χ̂C(u)|2eiu·y (4.7)

for all y ∈ Rn. Notice that this series converges absolutely and uniformly every-
where in R

n.
By taking spherical averages of ϕ we construct a radial function ϕ: Rn → R, that

is, the values of ϕ depend only on the norm of the argument. In other words, we set

ϕ(y) =
1
ωn

∫
Sn−1

ϕ(‖y‖ξ) dω(ξ).

Combining the expansion (4.7) forϕwith formula (4.2), we obtain the following
expression for ϕ:

ϕ(y) =
∑
t≥0

α(t)Ωn(t‖y‖), (4.8)

where α(t) is the sum of |χ̂C(u)|2 for vectors u having norm t. So the α(t) are
real and nonnegative, also only countably many of them are nonzero. Furthermore,
α(0) = |χ̂C(0)|2 = δ(C)2 and

∑
t≥0 α(t) = ϕ(0) = δ(C).

So, the optimal value of the following optimization problem in variables α(t)
gives an upper bound for the density of any measurable set that avoids the dis-
tances d1, . . . , dN :

sup α(0)∑
t≥0 α(t) = 1,∑
t≥0 α(t)Ωn(tdi) = 0 for i = 1, . . . , N ,

α(t) ≥ 0 for all t ≥ 0.

(4.9)

Recall that above all but countably many of the variables are zero. Notice also the
normalization

∑
t≥0 α(t) = 1 which we employed.

Problem (4.9) is a linear programming problem with infinitely many variables
and N + 1 constraints. A dual of it is the problem

inf z0
z0 + z1 + · · · + zN ≥ 1,
z0 + z1Ωn(td1) + · · · + zNΩn(tdN ) ≥ 0 for all t > 0,

(4.10)

which is a linear programming problem with N + 1 variables and infinitely many
constraints.

As usual, weak duality holds between (4.9) and (4.10): If α(t) is feasible for (4.9)
and (z0, z1, . . . , zN ) is feasible for (4.10), then

α(0) ≤
∑
t≥0

α(t)(z0 + z1Ωn(td1) + · · · + zNΩN (tdN )) = z0,

what finishes the proof of the theorem.
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4.3 Some facts on Bessel functions
Theorem 4.1 is given in terms of the function Ωn defined in (4.2). To apply the
theorem, we need to know more about Ωn. We know from (4.2) that Ω1(t) = cos t,
but what about larger values of n? For n ≥ 2, expression (4.2) no longer provides
a lot of information about Ωn, for instance it is not clear how to easily compute
approximations to the function evaluated at specific points. Fortunately, Ωn ad-
mits an expression in terms of the Bessel function of the first kind, a well-known
function whose properties are well-understood. In this section we shall develop this
connection and as a result derive those properties of Ωn which are of interest to us.

Our discussion on Bessel functions is oriented towards our study of Ωn. At first
it was tempting to prove most of the facts about Bessel functions that we use, but
the choice of what to prove and what not to prove seemed artificial, so proofs of facts
concerning Bessel functions are mostly omitted. We refer the reader to the book by
Watson [55] for a thorough account on the theory of Bessel functions — we will
follow this book in the rest of this section. Chapter 4 of the book by Andrews, Askey,
and Roy [1] also covers most of the material we need.

Let α be a real number. The Bessel function of the first kind of order α is the
function

Jα(t) =
∞∑

k=0

(−1)k(t/2)2k+α

k! Γ(k + α+ 1)
(4.11)

of one complex variable t. The series on the right-hand side — a hypergeometric se-
ries — converges absolutely for every t (except for t = 0when α < 0) and uniformly
in any compact subset of C (not containing the origin, when α < 0). This follows
from an application of the ratio test (cf. Watson [55], Section 3.13). Hence Jα is an
analytic function of t for all t (except for t = 0, when α < 0), and differentiation
and integration may be carried out term-by-term. By using term-by-term differen-
tiation, one may easily check that Jα is a solution of the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0, (4.12)

which is called Bessel’s equation for functions of order α.
Lommel (cf. Watson [55], Section 3.1) provided an alternative definition for Jα

when α > −1/2, which is

Jα(t) =
1

π1/2Γ(α + 1/2)

( t
2

)α
∫ π

0

cos(t cos θ) sin2α θ dθ. (4.13)

Notice α > −1/2 is necessary for the integral to converge. For a proof of the
equivalence between (4.11) and (4.13), see Section 3.3 of Watson [55].

From Lommel’s definition we may derive a relation between Ωn and J(n−2)/2

when n ≥ 2. For suppose n ≥ 2. Notice that the function eiu·ξ, for u ∈ Rn

and ξ ∈ Sn−1, is (as a function of ξ) a zonal spherical function with pole u/‖u‖.
(For basic facts on zonal spherical functions, see Section 3.4.) So we may write,
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equivalently to (4.2),

Ωn(t) =
ωn−1

ωn

∫ 1

−1

eist(1 − s2)(n−3)/2 ds

=
Γ(n/2)

π1/2Γ((n− 1)/2)

∫ 1

−1

cos(st)(1 − s2)(n−3)/2 ds

for all t ≥ 0.
Writing α = (n− 2)/2 and making the substitution s = cos θ we get

Ωn(t) =
Γ(n/2)

π1/2Γ(α+ 1/2)

∫ π

0

cos(t cos θ) sin2α θ dθ,

and comparing with (4.13) we obtain

Ωn(t) = Γ
(n

2

)(2
t

)(n−2)/2

J(n−2)/2(t) (4.14)

for t > 0, and Ωn(0) = 1, as can be seen from (4.2). This expression was given by
Schoenberg [43].

Actually, (4.14) also applies when n = 1, as then we have Ω1(t) = cos t and

J−1/2(t) =
( 2
πt

)1/2

cos t

(cf. Watson [55], equation (6) in Section 3.4).
From (4.11) one can approximate Jα to any desired degree of accuracy. Accord-

ing to Watson [55], Section 20.1, Bessel [4] was the first to provide a table for J0

and J1, which are called I0 and I1 in his paper, respectively. Today, most mathe-
matical software allows for the efficient computation of Jα to very high accuracy.
Watson’s book also contains tables for Jα for some values of α.

So expression (4.14) at least helps us evaluate Ωn. It also provides us with the
means to investigate other properties of Ωn — that is what we do now as we inves-
tigate the behavior of the extrema of Ωn.

The following formula will be of great help in our investigation:

dt−αJα(t)
dt

= −t−αJα+1(t).

This follows immediately from (4.11). By using this formula we conclude that

Ω′
n(t) = −Γ

(n
2

)(2
t

)(n−2)/2

Jn/2(t) (4.15)

for t > 0. So the positive extrema of Ωn correspond to the positive zeros of Jn/2.
Hence, in order to understand the extrema of Ωn, we first state some properties of
the zeros of Jα.

It can be shown (cf. Watson [55], Section 15.2) that Jα has infinitely many
positive zeros. Hence also J ′

α has infinitely many positive zeros. Then, since Jα is
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analytic everywhere, except maybe at the origin, the set { t > 0 : Jα(t) = 0 } has no
cluster point in the positive real line, and hence we may consider the sequence

0 < jα,1 < jα,2 < · · ·
of all positive zeros of Jα given in order of magnitude. Similarly, we consider the
sequence

0 < j′α,1 < j′α,2 < · · ·
of all positive zeros of J ′

α. We also observe that Jα has no double zero, except
maybe for the origin. That is to say that no complex number t �= 0 is a zero of
both Jα and J ′

α, as otherwise repeated differentiation of (4.12) would yield that all
derivatives of Jα vanish at t, and from the analyticity of Jα we would then have
that Jα is identically zero, a contradiction.

Another important property of the positive zeros of Jα is the interlacing property
(cf. Watson [55], Section 15.22). It states that the zeros of Jα are interlaced with
those of Jα+1, i.e., between any two zeros of Jα there is a zero of Jα+1 and vice
versa. When α > −1, the case which is of interest to us, we even know that jα,1 is
to the left of jα+1,1, so that the interlacing property implies that

0 < jα,1 < jα+1,1 < jα,2 < jα+1,2 < jα,3 < · · · . (4.16)

From what we know so far about the zeros of Jα, we already have a quite clear
picture of the general behavior of the functions Ωn, and we can see that this picture
agrees with the behavior illustrated in Figure 4.1. Indeed, from (4.13) one may
easily check that for all small enough positive t, Jα(t) > 0 when α > −1/2. Then,
from (4.15), Ω′

n(t) < 0 for all small enough positive t. SinceΩ′
n changes signs at the

points jn/2,1, jn/2,2, . . . , if we put jn/2,0 = 0, we conclude that Ωn is decreasing
in the intervals [jn/2,k, jn/2,k+1) when k ≥ 0 is even and is increasing in any such
interval when k ≥ 0 is odd. Also, jn/2,1, jn/2,2, . . . are the extrema of Ωn, and
from the above discussion it is clear that jn/2,k is a minimum of Ωn if k is odd, and
a maximum if k is even. From (4.16) it then follows that every minimum of Ωn is
negative and that every maximum is positive. All this can be trivially seen to apply
for n = 1 as well, as in this case Ω1(t) = cos t and Ω′

1(t) = − sin t.
We show now a result about the extrema of Ωn for n ≥ 2 which will play an

important role in Section 4.4. Namely, we will show that the extrema ofΩn decrease
in absolute value as t increases, or in other words

|Ωn(jn/2,1)| > |Ωn(jn/2,2)| > |Ωn(jn/2,3)| > · · · . (4.17)

In particular, this implies that jn/2,1 is the global minimum of Ωn. The assump-
tion n ≥ 2 is here crucial, as all extrema of Ω1 have the same magnitude.

To prove (4.17), we first prove a similar result for Jα when α ≥ 0. Namely, we
show that

|Jα(j′α,1)| > |Jα(j′α,2)| > |Jα(j′α,3)| > · · · . (4.18)
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This is proven inWatson [55], Section 15.31, for the more general cylinder functions,
which include the Bessel function of the first kind as a special case. Anyway, we
present a proof below since this is the main step in the proof of (4.17).

To prove (4.18) we use the inequalities

jα,1 > α, j′α,1 > α, (4.19)

valid for α ≥ 0 (cf. Watson [55], Section 15.3). Actually, now we only need the
latter, but the former will also be important elsewhere.

Consider the function

L(t) = (Jα(t))2 +
t2(J ′

α(t))2

t2 − α2
.

Since Jα is a solution of (4.12), we have

L′(t) =
−2t3(J ′

α(t))2

(t2 − α2)2
,

and so L is decreasing for t > α. Together with (4.19), this implies that

L(j′α,1) > L(j′α,2) > L(j′α,3) > · · · ,
whence (4.18) follows.

From (4.18) we have that, for k = 1, 2, . . . ,

|Jα(j′α,k)| > |Jα(t)| for all t > j′α,k, (4.20)

and with this we may prove (4.17). Indeed, let α = (n − 2)/2 and fix some inte-
ger k > 0. Let l be such that j′α,l is the first zero of J ′

α to the right of jα,k. Clearly,
j′α,l < jα,k+1. So, since from (4.15) and (4.16), jn/2,k = jα+1,k is the only ex-
tremum of Ωn between jα,k and jα,k+1, together with (4.14) and (4.20) we obtain

|Ωn(jn/2,k)| ≥ |Ωn(j′α,l)| > |Ωn(t)| for all t ≥ jn/2,k+1,

and (4.17) follows.
Finally, there are two more facts we wish to state about Bessel functions and Ωn.

The first one provides a bound for the values of Jα(t) for t ≥ 0. From (4.20) we see
that Jα(t) is bounded at infinity for α ≥ 0. But more is known: We indeed have
that

|Jα(t)| ≤ 1 and |Jα+1(t)| ≤ 1/
√

2 (4.21)
whenever α ≥ 0 (cf. Watson [55], equation (10) in Section 13.42).

The last fact concerns the asymptotic behavior of Ωn. For n ≥ 2, we have

lim
t→∞Ωn(t) = 0. (4.22)

For n ≥ 3, this follows from (4.14) together with the fact that Jα is bounded at
infinity for α ≥ 0. However, the statement follows for all n ≥ 2 from the asymptotic
formula for Jα, for α ≥ 0 (cf. Watson [55], equation (1) in Section 7.21), which
already shows that Jα(t) → 0 as t→ ∞.



Section 4.4 Sets that avoid one distance 73

4.4 Sets that avoid one distance
We show now how to use Theorem 4.1 to find upper bounds to the densities of
sets that avoid one distance, which without loss of generality we assume to be 1,
as m1(Rn) = md(Rn) for any d > 0. So we present upper bounds form1(Rn).

Recall that we have shown in Section 4.3 that the global minimum of Ωn oc-
curs at jn/2,1, the first positive zero of Jn/2, and that it is a negative number. The
following result then follows after a simple application of Theorem 4.1.

Theorem 4.2. For n ≥ 1 we have

m1(Rn) ≤ Ωn(jn/2,1)
Ωn(jn/2,1) − 1

and χm(Rn) ≥ Ωn(jn/2,1) − 1
Ωn(jn/2, 1)

. (4.23)

Proof. Take

z0 =
−Ωn(jn/2,1)

1 − Ωn(jn/2,1)
and z1 =

1
1 − Ωn(jn/2,1)

(4.24)

and apply Theorem 4.1 and (4.1).

The bound given by Theorem 4.2 is actually the best possible bound that can be
obtained from Theorem 4.1. In other words, it can be shown that z0 and z1 given
as in (4.24) are an optimal solution of the optimization problem (4.9). This is easy
to see since, in the case of sets avoiding one distance, problem (4.9) has only two
variables, and solving it amounts to solving a two-by-two system.

The bounds of Theorem 4.2 can be computed, with the help of a computer, to
any desired accuracy for any fixed n. In Table 4.2 we show the numbers so obtained,
compared to previous best known upper bounds for m1(Rn) and lower bounds
for χm(Rn) for n = 2, . . . , 24. For n = 1, the bounds obtained from Theorem 4.2
are tight, yielding the trivial results m1(R) = 1/2 and χm(R) = 2. The upper
bounds for m1(Rn) from Theorem 4.2 are better than previously known bounds
for n = 3, . . . , 24. The lower bounds for χm(Rn) coming from the theorem improve
on the previously known lower bounds for n = 4, . . . , 24.

We also observe that the bound for χm(Rn) in (4.23) is actually the bound ob-
tained in Section 3.5c with our approach of using bounds for the stability num-
ber of distance graphs on the sphere to bound χm(Rn). In that section, however,
we could only conclude that the bound for χm(Rn) in (4.23) was a lower bound
for χm(Rn+1), thus obtaining a weaker result.

From Theorem 4.2 we may prove that m1(Rn) decreases exponentially with n,
and so that χm(Rn) increases exponentially with n. Indeed, from (4.19) we know
that jn/2,1 > n/2 > (n − 2)/2 and this, together with (4.21) and (4.14), implies
that, for n ≥ 2,

|Ωn(jn/2,1)| ≤ Γ
(n

2

)( 2
(n− 2)/2

)(n−2)/2

.
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Previous upper Bound for m1(Rn) Previous lower Bound for χm(Rn)
n bound for m1(Rn) fromTheorem 4.2 bound for χm(Rn) fromTheorem 4.2

2 0.27906976 0.28711938 5 4
3 0.18750000 0.17846503 6 6
4 0.12800000 0.11682584 8 9
5 0.09539473 0.07933457 11 13
6 0.07081295 0.05537340 15 19
7 0.05311365 0.03948200 19 26
8 0.03419769 0.02863560 30 35
9 0.02882153 0.02106105 35 48
10 0.02234835 0.01567163 45 64
11 0.01789325 0.01177701 56 85
12 0.01437590 0.00892554 70 113
13 0.01203324 0.00681436 84 147
14 0.00981770 0.00523614 102 191
15 0.00841374 0.00404638 119 248
16 0.00677838 0.00314283 148 319
17 0.00577854 0.00245212 174 408
18 0.00518111 0.00192105 194 521
19 0.00380311 0.00151057 263 663
20 0.00318213 0.00119181 315 840
21 0.00267706 0.00094321 374 1,061
22 0.00190205 0.00074859 526 1,336
23 0.00132755 0.00059567 754 1,679
24 0.00107286 0.00047513 933 2,105

Table 4.2. The table shows the best upper bounds for m1(R
n) and the best

lower bounds for χm(Rn) previously known, together with the upper bounds
for m1(R

n) and the lower bounds for χm(Rn) coming from Theorem 4.2.
The upper bound for m1(R

2) was given by Székely [52] and all other upper
bounds for m1(R

n) were given by Székely and Wormald [54]. The lower
bounds for χm(Rn) for n = 2 and 3 were given by Falconer [13]. All other
lower bounds for χm(Rn) were given by Székely and Wormald [54].

Using Stirling’s formula Γ(α+1) ∼ √
2πα(α/e)α,we then have that, asymptotically,

|Ωn(jn/2,1)| ≤
√
π(n− 2)

(2
e

)(n−2)/2

≤
(2
e

+ o(1)
)n/2

. (4.25)

So, from Theorem 4.2, we derive the following asymptotic bounds:

m1(Rn) ≤
(2
e

+ o(1)
)n/2

= (0.857. . .+ o(1))n
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and

χm(Rn) ≥
(2
e

+ o(1)
)−n/2

= (1.165. . .+ o(1))n.

Our bounds are exponential, but not better than the best known asymptotic bounds
for both m1(Rn) and χm(Rn), which were discussed in Section 1.2.

4.4a. Simplices and improved bounds. By strengthening problem (4.9), which is
used in the proof of Theorem 4.1, it is possible to get better bounds for m1(Rn)
than those provided by Theorem 4.2. The idea here is to add to (4.9) constraints
coming from unit simplices in Rn. In what follows we show how to modify the
proof of Theorem 4.1 in order to make use of such new constraints. Understanding
the proof of that theorem is thus essential in order to read this section.

Let C ⊆ R
n be a measurable 1-avoiding set and suppose v1, . . . , vn+1 are the

vertices of a unit simplex in Rn, so that ‖vi − vj‖ = 1 if i �= j. Then, if i �= j, we
have (C − vi) ∩ (C − vj) = ∅. So

δ(C) ≥ δ

(
n+1⋃
i=1

C ∩ (C − vi)

)
=

n+1∑
i=1

δ(C ∩ (C − vi)). (4.26)

If we assume, as we do in the proof of Theorem 4.1, that C is such that its
characteristic function χC : Rn → {0, 1} is periodic, then we may consider the func-
tion ϕ: Rn → R such that

ϕ(y) = 〈χC−y, χC〉,
the autocorrelation function of χC , which we also used in the proof ofTheorem 4.1.
Then (4.26) implies that ϕ satisfies

ϕ(v1) + · · · + ϕ(vn+1) ≤ ϕ(0). (4.27)

In the proof of Theorem 4.1, to obtain problem (4.9), we first take spherical
averages of ϕ, i.e., we consider the function ϕ: Rn → R such that

ϕ(y) =
1
ωn

∫
Sn−1

ϕ(‖y‖ξ) dω(ξ).

Inequality (4.27) then implies that also ϕ satisfies

ϕ(v1) + · · · + ϕ(vn+1) ≤ ϕ(0). (4.28)

To prove this, we need a simple fact about the relation between the Haar measure
over the orthogonal group O(Rn) and the measure ω over Sn−1. (For basic facts
on O(Rn) and the Haar measure defined over it, see Section 3.4.) Let μ be the Haar
measure over O(Rn), normalized so that μ(O(Rn)) = 1. Then for any x ∈ Sn−1

and measurable X ⊆ Sn−1,

μ({T ∈ O(Rn) : Tx ∈ X }) =
ω(X)
ωn
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(cf. Theorem 3.7 in Mattila [32]). So averaging on the sphere with respect to ω is
the same as symmetrizing with respect to O(Rn), i.e.,

ϕ(y) =
1
ωn

∫
Sn−1

ϕ(‖y‖ξ) dω(ξ) =
∫

O(Rn)

ϕ(Ty) dμ(T ). (4.29)

Then, since if v1, . . . , vn+1 are the vertices of a unit simplex, also Tv1, . . . , Tvn+1

are the vertices of a unit simplex for every T ∈ O(Rn), by symmetrizing both sides
of (4.27) with respect to the orthogonal group we get (4.28).

Let now S be a finite set of (n+ 1)-tuples of numbers which correspond to the
squared norms of the vertices of unit simplices in Rn. In other words, for each s =
(s1, . . . , sn+1) ∈ S there is a unit simplex in Rn with vertices v1, . . . , vn+1 such
that ‖vi‖2 = si. Since ϕ is radial, i.e., since its values depend only on the norm of
its argument, inequality (4.28) does not depend on the actual vectors v1, . . . , vn+1,
but rather on their norms. So for each s ∈ S we have

ϕ(
√
s1) + · · · + ϕ(

√
sn+1) ≤ ϕ(0), (4.30)

where ϕ(t), for a given number t ≥ 0, is the common value of ϕ for vectors of
norm t.

Recall that we have expression (4.8) for ϕ, so the left-hand side of (4.30) can be
equivalently written as

n+1∑
i=1

∑
t≥0

α(t)Ωn(t
√
si) =

∑
t≥0

α(t)
n+1∑
i=1

Ωn(t
√
si).

Taking into account our normalization
∑

t≥0 α(t) = 1, one then obtains the opti-
mization problem

sup α(0)∑
t≥0 α(t) = 1,∑
t≥0 α(t)Ωn(t) = 0,∑
t≥0 α(t)

∑n+1
i=1 Ωn(t

√
si) ≤ 1 for s ∈ S,

α(t) ≥ 0 for all t ≥ 0,

(4.31)

the optimal value of which provides an upper bound form1(Rn).
A dual of problem (4.31) is the optimization problem

inf z0 +
∑

s∈S ws

z0 + z1 +
∑

s∈S(n+ 1)ws ≥ 1,
z0 + z1Ωn(t) +

∑
s∈S ws

∑n+1
i=1 Ωn(t

√
si) ≥ 0 for all t > 0,

ws ≥ 0 for all s ∈ S.

(4.32)

Weak duality holds between (4.31) and (4.32), and so any feasible solution of (4.32)
provides an upper bound form1(Rn).

By solving problem (4.32) with an appropriate set S of simplices for each di-
mension, we could improve on the existing bounds for m1(Rn) for n = 2, . . . , 24,



Section 4.4 Sets that avoid one distance 77

Previous upper Bound for m1(Rn) Previous lower Bound for χm(Rn)
n bound for m1(Rn) from problem (4.32) bound for χm(Rn) from problem (4.32)

2 0.27906976 0.26841200 5 4
3 0.18750000 0.16560900 6 7
4 0.12800000 0.11293700 8 9
5 0.09539473 0.07528450 11 14
6 0.07081295 0.05157090 15 20
7 0.05311365 0.03612710 19 28
8 0.03419769 0.02579710 30 39
9 0.02882153 0.01873240 35 54
10 0.02234835 0.01380790 45 73
11 0.01789325 0.01031660 56 97
12 0.01437590 0.00780322 70 129
13 0.01203324 0.00596811 84 168
14 0.00981770 0.00461051 102 217
15 0.00841374 0.00359372 119 279
16 0.00677838 0.00282332 148 355
17 0.00577854 0.00223324 174 448
18 0.00518111 0.00177663 194 563
19 0.00380311 0.00141992 263 705
20 0.00318213 0.00113876 315 879
21 0.00267706 0.00091531 374 1,093
22 0.00190205 0.00073636 526 1,359
23 0.00132755 0.00059204 754 1,690
24 0.00107286 0.00047489 933 2,106

Table 4.3. The table shows the best upper bounds for m1(R
n) and the best

lower bounds for χm(Rn) previously known, together with the upper bounds
for m1(R

n) and lower bounds for χm(Rn) coming from problem (4.32)
with the use of specific lists of simplices, as described below. The upper
bound for m1(R

2) was given by Székely [52] and all other upper bounds
for m1(R

n) were given by Székely and Wormald [54]. The lower bounds
for χm(Rn) for n = 2 and 3 were given by Falconer [13]. All other lower
bounds for χm(Rn) were given by Székely and Wormald [54].

and these improved bounds also imply improved bounds for χm(Rn) for dimen-
sions n = 3, . . . , 24. These new bounds are summarized in Table 4.3. We now
explain how to solve problem (4.32) and also the method we used to choose the sets
of simplices.

To find a (good) feasible solution for (4.32) for a given set S of simplices we use
the computer: A simple analytical solution like the one we provided inTheorem 4.2
seems to be no longer possible. To be able to use the computer, we need to discretize
problem (4.32), which is infinite, and work with numerical approximations of Ωn.
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An explanation of how to proceed with this discretization and get rigorous bounds
at the end is thus in order.

To discretize (4.32), we first consider only the constraints

S(t) = z0 + z1Ωn(t) +
∑
s∈S

ws

n+1∑
i=1

Ωn(t
√
si) ≥ 0 (4.33)

for t ∈ (0, L] for some L > 0. Then we discretize the interval (0, L] by considering
only the points in it that are of the form kε, where k > 0 is an integer and ε > 0
is a suitably small number. We compute the necessary values of Ωn with d digits of
precision and solve the resulting linear program with the help of a computer.

We then obtain a solution (z0, z1, w) of this linear program. This will probably
not be a feasible solution of (4.32), but for some η ≥ 0, (z0 + η, z1, w) will be
feasible. All we have to do is estimate η and hope that, if L is large enough and ε
small enough, η will also be small.

To estimate η, we observe first that if we choose L′ ≥ L large enough, since we
know Ωn(t) → 0 as t → ∞, S(t) will be small enough for all t ≥ L′. To estimate
how small it will be, we need only know how to bound the value of |Ωn(t)| for t ≥ L′

for any given L′ > 0. One approach is to use (4.14), but an approach that provides
better bounds is as follows: Estimate the rightmost zero z of Ω′

n(t) that lies in the
interval [0, L′] and then observe that |Ωn(t)| ≤ |Ωn(z)| for all t ≥ z, as follows
from (4.17).

Next, we need to estimate the minimum of S(t) for t ∈ (0, L′]. One approach
to do so that works well with small numbers of simplices is to compute numerical
approximations to the zeros of the derivative of S(t) which lie in the interval (0, L′].
We may then evaluate S(t) at these points, and in doing so compute its minimum
in the interval (0, L′].

Finally, in all our computations we work with some finite precision d. Thismeans
that, for instance, if s ∈ S, instead of computing Ωn(t

√
si) when needed, we com-

pute an approximation to Ωn evaluated at an approximation of t√si. If we choose
our precision d to be large enough, however, the errors we make will not add too
much to η. One way to estimate how good our precision has to be is to use the fact
that

|Ωn(t) − Ωn(u)| ≤ |t− u|
for all t, u ≥ 0.

This will follow from the mean value theorem once we establish that

|Ω′
n(t)| ≤ 1 (4.34)

for all t ≥ 0. For n = 2 this is clear from (4.15) and (4.21). For n ≥ 4 and t ≥ n,
(4.34) also follows from (4.15), since we know from (4.21) that |Jn/2(t)| ≤ 1 for
all t ≥ 0 and since Γ(α+1) ≤ αα for all α ≥ 1. For n = 3wemay check numerically
that Γ(3/2)(2/3)1/2 ≤ 1, and so (4.34) also follows for all t ≥ n.
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Now, for 0 ≤ t ≤ n, we rewrite (4.15) by comparing it with formula (4.14)
for Ωn+2, obtaining

Ω′
n(t) = − t

n
Ωn+2(t).

Then, since |Ωn+2(t)| ≤ 1 for all t ≥ 0, (4.34) follows.
We now briefly explain how to find good simplices for use in (4.32). For n ≥ 4,

we use only one simplex: The unit simplex centered at the origin. All vertices of this
simplex have the same norm

√
1/2 − 1/(2n+ 2), so (4.33) amounts to

z0 + z1Ωn(t) + w(n+ 1)Ωn(t
√

1/2 − 1/(2n+ 2)) ≥ 0 for all t > 0.

For n = 2, we take as S the set consisting of the following triples (a, b, c) of
squared norms:

(2.4, 2.4, 0.3603. . .),
(3.1, 3.1, 6.5240. . .), and
(3.7, 3.7, 7.4171. . .).

(4.35)

The last number in the above triples is a root of

3(a2 + b2 + c2 + 1) − (a+ b+ c+ 1)2. (4.36)

This ensures that the determinant of the matrix⎛⎜⎝ a 1
2 (a+ b− 1) 1

2 (a+ c− 1)
1
2 (a+ b− 1) b 1

2 (b+ c− 1)
1
2 (a+ c− 1) 1

2 (b+ c− 1) c

⎞⎟⎠ (4.37)

is zero for each triple in (4.35). The matrix above is also positive semidefinite for
each such triple, so if one sees it as the Gram matrix of vectors v1, v2, and v3 ∈ R2

with squared norms a, b, and c, one has that v1, v2, and v3 are the vertices of a unit
simplex in R2.

To find the triples in (4.35) we generated all triples (a, b, c) with a, b = 0.1j
for j = 1, . . . , 40 and c a root of (4.36) such that matrix (4.37) is positive semi-
definite. We then observed that only the triples in (4.35) were used in the solution
of (4.32), in the sense that only for these triples the associated variables were nonzero.

For n = 3, we used a similar approach, which lead us to the set S of quadru-
ples (a, b, c, d) of squared norms which consists of the quadruples

(0.3, 0.4, 0.4, 0.4171. . .),
(1.9, 1.9, 1.9, 0.1893. . .), and
(2.0, 2.0, 2.0, 0.2251. . .),

where the last number in each quadruple above is a root of

4(a2 + b2 + c2 + d2 + 1) − (a+ b+ c+ d+ 1)2.

A similar approach to the one described above to generate simplices for n = 2
and 3 could in principle be used to generate simplices for higher dimensions. The
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computational cost of such an approach however becomes prohibitively large as n
increases, and we observed that the gains are not substantial.

4.5 Sets that avoid many distances
Two important results are known about the behavior of md1,...,dN (Rn) in relation
to the distances d1, . . . , dN . The first result we consider is the following theorem of
Furstenberg, Katznelson, and Weiss [17].

Theorem 4.3. If C ⊆ R2 has positive upper density, then there is a number d0 such
that for all d > d0 there are points x, y ∈ C with ‖x− y‖ = d.

In other words, the theorem says that a planar set that avoids an unbounded
sequence of distances has upper density zero. This was originally a conjecture made
by Székely [53].

Bourgain [6] and Falconer and Marstrand [15] also presented proofs of this
theorem. Both their papers predate the paper of Furstenberg, Katznelson, and
Weiss [17], which only appeared in 1990. Their result was known as far back as 1983
though, as Erdős [12] states in his paper included in the proceedings of the June 26–
July 2, 1983 Oberwolfach Meeting on Measure Theory that “the problem remained
unsolved until a few weeks ago when B. Weiss proved Székely’s conjecture”. It is
interesting to notice that Erdős attributes the proof to Weiss alone; Falconer and
Marstrand [15] follow Erdős, citing hisOberwolfach paper, but Bourgain [6] already
cites a preprint by Katznelson and Weiss as the origin of the result, and refers to the
theorem as the “Katznelson-Weiss theorem”. Note also that the paper by Fursten-
berg, Katznelson, andWeiss [17] contains also a result about sets avoiding triangles,
which is related to Theorem 4.3. More recently, Bukh [8] proved a stronger result
which impliesTheorem 4.3; we will consider it in more detail below. Also Quas [38]
presented a proof of Theorem 4.3, which is based on the second moment method
in probability.

The second theorem is a theorem of Falconer [14] very similar to Theorem 4.3.
This theorem also settled a conjecture of Székely [53], and was proven using a variant
of the method of Falconer and Marstrand [15].

Theorem 4.4. Let d1, d2, . . . be a sequence of positive numbers which converges to
zero. Then md1,...,dN (R2) → 0 as N → ∞.

Recall that in Section 3.6 we presented an analogue of this theorem for distance
graphs on the sphere. The proof of the above theorem we present later on is closely
related to the proof of this analogue for the sphere.

Note that, although both theorems are stated and have been proved for R
2, they

are valid for all n ≥ 2 since we have

md1,...,dN (Rn+1) ≤ md1,...,dN (Rn) (4.38)
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for n ≥ 1. This follows from the fact that, if a measurable set C ⊆ Rn+1 avoids
distances d1, . . . , dN , then the intersection of C with any translation of the hy-
perplane { x ∈ Rn+1 : xn+1 = 0 } gives rise to a subset of Rn which also avoids
distances d1, . . . , dN , and which therefore has upper density at mostmd1,...,dN (Rn).
This implies that also C has upper density at mostmd1,...,dN (Rn).

Both theorems fail, however, for n = 1. Indeed, the set

C =
⋃
k∈Z

(2k, 2k + 1)

avoids every odd integer distance, but has upper density 1/2, and soTheorem 4.3 is
false forR. To see that alsoTheorem 4.4 is false forR, we use the following argument
by Falconer [14]: Consider the sequence 1, 3−1, 3−2, . . . , which converges to zero.
For each integer p ≥ 1, the set { 3−px : x ∈ C } avoids distances 1, 3−1, . . . , 3−p,
and has upper density 1/2, hence it is clear that Theorem 4.4 is also false for R.

Finally, notice that in the statement of Theorem 4.4 we consider ever-growing,
but always finite, sets of distances to be forbidden. This is so because if a planar set
avoids any given zero-convergent sequence of distances, then it cannot have posi-
tive upper density. This follows from Steinhaus’ theorem, a theorem in real analy-
sis which states that, if a subset C of R2 has positive measure, then the difference
set { x− y : x, y ∈ C } contains a neighborhood of the origin.

Recently, Bukh [8] showed that, as the ratios d2/d1, . . . , dN/dN−1 between the
distances d1, . . . , dN go to infinity, so does md1,...,dN (Rn) go to (m1(Rn))N . He
also showed that md1,...,dN (Rn) ≥ (m1(Rn))N , whatever the distances d1, . . . , dN

might be, hence we have

inf
d1,...,dN >0

md1,...,dN (Rn) = (m1(Rn))N .

Bukh’s result provides alternative proofs of both Theorem 4.3 andTheorem 4.4.
It also shows that the density of distance-avoiding sets drops exponentially as more
distances are avoided. In this section, we shall deduce from Theorem 4.1 a result of
the same sort of Bukh’s result which, though weaker, already implies both theorems
from the beginning of the section; it is as follows:

Theorem 4.5. Let n ≥ 2 and denote by λn the absolute value of the global minimum
of Ωn. For every 0 < ε ≤ 1 there is a number r = r(ε) such that if d1, . . . , dN are
any distances satisfying

d2/d1 > r, . . . , dN/dN−1 > r, (4.39)

then

md1,...,dN (Rn) ≤ λN
n + ε(N − 1)

1 + λn + · · · + λN
n + ε(N − 1)

.

Proof. Only two properties of Ωn are used in the proof: (i) the fact that Ωn(0) = 1
and that it is continuous at zero (cf. (4.2)), and (ii) the fact thatΩn(t) → 0 as t → ∞
(cf. (4.22)). The latter property is crucial: It shows exactly where the argument



82 Distance graphs on the Euclidean space Chapter 4

would fail — as it should! — for n = 1, as Ω1(t) = cos t does not converge to zero
as t→ ∞.

Let 0 < ε ≤ 1 be given. Since Ωn(0) = 1 and since it is continuous, there
must be a number t0 > 0 such that Ωn(t) > 1 − ε for all 0 ≤ t ≤ t0. Likewise,
since Ωn(t) → 0 as t → ∞, there must be a number t1 > t0 such that |Ωn(t)| < ε
for all t ≥ t1. We set r(ε) = t1/t0.

Now let distances d1, . . . , dN be given such that (4.39) is satisfied. We claim
that, for 1 ≤ j ≤ N ,

N∑
i=j

λN−i
n Ωn(tdi) ≥ −λN−j+1

n − ε(N − j) for all t ≥ 0. (4.40)

Before proving the claim, we show how to apply it. By taking j = 1, we have
N∑

i=1

λN−i
n Ωn(tdi) ≥ −λN

n − ε(N − 1) for all t ≥ 0.

So, letting S = 1 + λn + · · · + λN
n + ε(N − 1), we may set

z0 =
λN

n + ε(N − 1)
S

and zi =
λN−i

n

S
for i = 1, . . . , N

and apply Theorem 4.1, finishing the proof.
We now prove (4.40) by induction. For j = N , the statement is obviously true.

Now suppose the statement is true for some 1 < j ≤ N ; we show it is also true
for j−1. To this end, consider any number t ≥ 0. Suppose first t ≤ t0/dj−1. Then,
from the choice of t0, Ωn(tdj−1) > 1 − ε. Using the induction hypothesis we then
get

N∑
i=j−1

λN−i
n Ωn(tdi) = λN−j+1

n Ωn(tdj−1) +
N∑

i=j

λN−i
n Ωn(tdi)

≥ λN−j+1
n (1 − ε) − λN−j+1

n − ε(N − j)
≥ −ε(N − j + 1),

where we use the fact that λn ≤ 1, as follows from (4.2).
Now suppose t ≥ t0/dj−1. Then, for j ≤ i ≤ N we have tdi ≥ t0di/dj−1 ≥

t0r = t1, hence |Ωn(tdi)| < ε. Since λn ≤ 1, we then must have
N∑

i=j−1

λN−i
n Ωn(tdi) = λN−j+1

n Ωn(tdj−1) +
N∑

i=j

λN−i
n Ωn(tdi)

≥ −λN−j+2
n − ε(N − j + 1),

and (4.40) follows.

Recall from Section 4.3 that λn = |Ωn(jn/2,1)|, where jn/2,1 is the first positive
zero of Jn/2. From this, we may check numerically for n = 2 and 3 that λn < 1.
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For n ≥ 4, one may check that λn < 1 by combining (4.19) and (4.21) with (4.14).
So the bound provided by Theorem 4.5 is actually exponential in N .

Taking ε→ 0, we have the following corollary:
Corollary 4.6. For n ≥ 2 we have

inf
d1,...,dN>0

md1,...,dN (Rn) ≤ λN
n (1 − λn)
1 − λN+1

n

.

Proof. We have 1+λn + · · ·+λN
n = (1−λN+1

n )/(1−λn). Now applyTheorem 4.5
with ε→ 0.

The following corollary is a weakening of Theorem 4.5, which nonetheless al-
ready shows the exponential decay of inf{md1,...,dN (Rn) : d1, . . . , dN > 0 } in
terms of N .

Corollary 4.7. Let n ≥ 2. For every N ≥ 1 there is a number r = r(N) such that
if d1, . . . , dN are any distances satisfying

d2/d1 > r, . . . , dN/dN−1 > r, (4.41)

then md1,...,dN (Rn) ≤ 2−N .

Proof. We prove the result for n = 2, and hence by (4.38) it will follow for all n > 2
as well. We know (cf. Section 4.3) that the global minimum of Ω2 occurs at j1,1,
the first positive zero of J1, so we may check that λ2 ≤ 1/2, and hence the result
holds for N = 1 in R2, as follows from Theorem 4.2.

So we may assume N > 1. Let then ε = λN+1
2 /((1 − λ2)(N − 1)) and apply

Theorem 4.5 with n = 2. We then obtain a number r depending only on ε, and
hence only on N , such that if d1, . . . , dN satisfy (4.41), then

md1,...,dN (Rn) ≤ λN
2 + ε(N − 1)

1 + λ2 + · · · + λN
2 + ε(N − 1)

=
λN

2 + λN+1
2 /(1 − λ2)

(1 − λN+1
2 )/(1 − λ2) + λN+1

2 /(1 − λ2)

= λN
2 (1 − λ2) + λN+1

2

≤ 2−N ,

where we use that λ2(1 − λ2) ≤ 1/4.

Though a weakening of Theorem 4.5, Corollary 4.7 already implies both Theo-
rem 4.3 and Theorem 4.4. Indeed, to see that it implies Theorem 4.3, notice that
if a set C ⊆ R2 avoids an unbounded sequence of distances, then for every N ≥ 1
we may find in this sequence distances d1, . . . , dN satisfying (4.41), and hence the
density ofC is at most 2−N . Since this is true for everyN , setC cannot have positive
density. The proof of Theorem 4.4 from Corollary 4.7 is similar.

Finally, we remark that Theorem 4.5 actually provides a bound exponential in
both the dimension n and the number of distances N . This is so since also λn

decreases exponentially with the dimension, as we showed in Section 4.4.
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4.6 Relation to the theta number
Theorem 4.1 provides a bound formd1,...,dN (Rn) bymeans of an optimization prob-
lem. In this section, we aim at making the connection between this problem and
the Lovász theta number clear. Along the way we discuss alternative methods to
boundmd1,...,dN (Rn) and prove that they are all equivalent to the approach ofThe-
orem 4.1.
4.6a. Two infinite graphs. We will consider here a slightly more general setting
than before. Let D be a nonempty compact subset of the positive real line — in
particular, 0 /∈ D. We let mD(Rn) be the maximum upper density that a subset
of Rn which avoids all distances in D can have.

In what follows we will consider two infinite graphs:
(i) the graph G(Rn, D) whose vertices are the points of Rn and in which two

vertices x, y ∈ Rn are adjacent if and only if ‖x− y‖ ∈ D; and
(ii) the graph G([−R,R]n, D), R > 0, whose vertices are the points in the

cube [−R,R]n, with x, y ∈ [−R,R]n adjacent if and only if ‖x− y‖ ∈ D.
The stable sets of both graphs are sets which avoid all distances in D. Note

thatmD(Rn) is a density analogue of the stability number for the graph G(Rn, D).
The measurable stability number of G([−R,R]n, D) we define as

αm(G([−R,R]n, D)) = sup{ volC : C ⊆ [−R,R]n is measurable and stable }.
Notice that this is analogous to our approach for the sphere (cf. Section 3.1). Ob-
serve moreover that, since D is compact and 0 /∈ D, both parameters mD(Rn)
and αm(G([−R,R]n, D)) are positive.
4.6b.Three theta numbers. We nowmake use of kernels defined over the compact
set [−R,R]n × [−R,R]n. In Section 3.2 we presented material on kernels defined
over the sphere. The concepts and results of that section all continue to hold when
the sphere is replaced by [−R,R]n.

Following our approach for the sphere (cf. Section 3.3), we define the theta num-
ber of G([−R,R]n, D), denoted by ϑ(G([−R,R]n, D)), as the optimal value of the
following optimization problem:

sup
∫
[−R,R]n

∫
[−R,R]n A(x, y) dxdy∫

[−R,R]n A(x, x) dx = 1,

A(x, y) = 0 if ‖x− y‖ ∈ D,
A: [−R,R]n × [−R,R]n → R is a continuous and positive kernel.

(4.42)

By repeating the arguments in the proof of Theorem 3.3 we then obtain the
inequality

ϑ(G([−R,R]n, D)) ≥ αm(G([−R,R]n, D)).

One may then observe that

lim
R→∞

ϑ(G([−R,R]n, D))
vol[−R,R]n

≥ mD(Rn), (4.43)
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provided the limit exists — we will see later that this is the case; for now we just
assume this to be true. This is our first approach to bound mD(Rn).

The second approach we present is closer to that of Theorem 4.1 and works di-
rectly with Rn. Let f : Rn → C be a continuous function. We say that f is of
positive type if for every choice x1, . . . , xN of finitely many points in Rn, the ma-
trix

(
f(xi −xj)

)N
i,j=1

is positive semidefinite. If f is of positive type, then f(0) ≥ 0

and f(x) = f(−x) for all x ∈ Rn. Moreover, since for every x ∈ Rn the matrix(
f(0) f(x)
f(−x) f(0)

)
has to be positive semidefinite, we have |f(x)| ≤ f(0) for every x ∈ Rn.

Recall the inner product 〈·, ·〉 introduced in Section 4.2. Let ϑR(G(Rn, D)) be
the optimal value of the following optimization problem:

sup 〈ϕ,1〉
ϕ(0) = 1,
ϕ(x) = 0 if ‖x‖ ∈ D,
ϕ: Rn → R is continous, periodic with periodicity lattice RZ

n,
and of positive type.

(4.44)

Here, 1 is the constant one function. Notice we require ϕ to be real-valued. One can
actually prove, however, that the optimal value remains unchanged if ϕ is allowed
to take complex values as well. We introduce the constraint because, as we will see,
when we construct feasible solutions for this problem from distance-avoiding sets,
we naturally get real-valued functions.

Let C ⊆ Rn be a measurable set which avoids all distances in D and which is
such that χC , its characteristic function, has periodicity latticeRZn for someR > 0.
Consider the function

ϕ(x) = 〈χC−x, χC〉, (4.45)

the autocorrelation function of χC , also used in the proof of Theorem 4.1 (cf. Sec-
tion 4.2). Notice ϕ is real-valued and periodic with periodicity lattice RZn. It is
also of positive type, since

ϕ(x− y) = 〈χC−(x−y), χC〉 = 〈χC−x, χC−y〉
for all x, y ∈ Rn. We also have ϕ(0) = δ(C) and ϕ(x) = 0 if ‖x‖ ∈ D.

Let us now compute the objective value of ϕ for (4.44). We have 〈ϕ,1〉 = ϕ̂(0),
the Fourier coefficient of ϕ computed at 0. Now recall that, by applying Parseval’s
formula, one may express the Fourier coefficients of ϕ in terms of those of χC ,
obtaining the expansion

ϕ(x) =
∑

u∈Rn

|χ̂C(u)|2eiu·x (4.46)

for ϕ (cf. (4.7)), whence we see immediately that ϕ̂(0) = |χ̂C(0)|2 = δ(C)2.
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So, if we show that ϕ is a continuous function, then δ(C)−1ϕ will be feasible
for (4.44) and will have objective value δ(C). Then it will follow that

ϑR(G(Rn, D)) ≥ δ(C)

for every set C ⊆ Rn avoiding all the distances in D for which χC is periodic
with periodicity lattice RZn. Since we argued in the proof of Theorem 4.1 in Sec-
tion 4.2 that the densities of such periodic distance-avoiding sets come arbitrarily
close tomD(Rn) as R → ∞, we then could conclude that

lim
R→∞

ϑR(G(Rn, D)) ≥ mD(Rn), (4.47)

provided that the limit exists. In Section 4.6c we prove that the limit indeed ex-
ists; for now we simply assume this fact. So we obtain our second approach to
bound mD(Rn).

To show that ϕ is continuous we need a simple trick that will be useful again
later, so we present it as a lemma for future reference.
Lemma 4.8. For f : Rn → C and x ∈ Rn, let fx: Rn → C be the function such
that fx(z) = f(z+ x). If f : Rn → C is a square-integrable periodic function, then the
function F (x, y) = 〈fx, fy〉 is continuous.
Proof. If f is continuous, then we are done. If not, let Λ be a periodicity lattice of f
and recall that continuous functions are dense inL2(Rn/Λ) in the topology induced
by the norm ‖g‖ = 〈g, g〉1/2. So fix ε > 0 and let g ∈ L2(Rn/Λ) be a continuous
function such that ‖f − g‖ < ε. Then also ‖fx − gx‖ < ε. We assume without loss
of generality that ‖f‖ = 1. Since g is continuous, if x and x′ are close enough, we
will have ‖gx−gx′‖ < ε, and then, using the Cauchy-Schwarz inequality, we obtain

|F (x, y) − F (x′, y)| = |〈fx − fx′ , fy〉|
≤ |〈fx − gx, fy〉| + |〈gx − gx′ , fy〉| + |〈gx′ − fx′ , fy〉|
≤ ‖fx − gx‖‖fy‖ + ‖gx − gx′‖‖fy‖ + ‖gx′ − fx′‖‖fy‖
< 3ε.

Therefore, if (x, y) is close enough to (x′, y′), then

|F (x, y) − F (x′, y′)| ≤ |F (x, y) − F (x′, y)| + |F (x′, y) − F (x′, y′)| < 6ε,

proving that F is continuous.
From the lemma, it is obvious that the autocorrelation function ϕ is continuous,

as we wanted.
The third and final approach we present for boundingmD(Rn) is closely related

to (4.44). In it, we just drop the constraint that ϕ be periodic. In other words, we
let ϑ(G(Rn, D)) be the optimal value of the following optimization problem:

sup 〈ϕ,1〉
ϕ(0) = 1,
ϕ(x) = 0 if ‖x‖ ∈ D,
ϕ: Rn → R is continous and of positive type.

(4.48)
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Once we see that the objective function is defined for every function ϕ: Rn → R

which is continuous and of positive type, it will be immediate that

ϑ(G(Rn, D)) ≥ mD(Rn),

since any feasible solution of (4.44) for any R > 0 is also feasible for (4.48).
To see that the objective function of (4.48) is well-defined, we use the following

theorem of Bochner (cf. Reed and Simon [41], Theorem IX.9):

Theorem 4.9 (Bochner’s theorem). A function f : Rn → C is continuous and of posi-
tive type if and only if

f(x) =
∫

Rn

eiu·x dν(u) (4.49)

for some finite nonnegative Borel measure ν.

Notice that Bochner’s theorem is valid for any continuous function of positive
type, in particular for periodic functions. If f : Rn → C is a periodic, continuous
function of positive type with periodicity lattice Λ, then the measure ν given by
Bochner’s theorem is supported at the points of the scaled dual lattice 2πΛ∗, thus
corresponding to the Fourier coefficients of f . In this case, the integral is just a
(possibly infinite) sum. Compare this situation to the situation of the autocorrela-
tion function ϕ of χC given in (4.45). It is periodic, continuous, and of positive
type, and we had the expansion (4.46), from which we see that ϕ̂(u) = |χC(u)|2 for
all u ∈ 2πΛ∗, so that all Fourier coefficients of ϕ are nonnegative. Notice also that
the Fourier expansion of ϕ is just (4.49) with ν(u) = ϕ̂(u), where we write ν(u)
instead of ν({u}) for short.

Now, the fact that the objective function of (4.48) is well-defined follows imme-
diately from the following theorem.

Theorem 4.10. Let f : Rn → C be a continuous function of positive type and let ν be
the measure given by Bochner’s theorem applied to f . Then 〈f,1〉 = ν(0).

Proof. For δ > 0, write

Bδ =
n⋃

i=1

{ u ∈ R
n : 0 �= |ui| < δ }.

Now fix ε > 0. Then for every δ > 0 there is an L ≥ 0 such that, for all R ≥ L,∣∣∣ 1
vol[−R,R]n

∫
[−R,R]n

eiu·x dx
∣∣∣ < ε (4.50)

for all u /∈ Bδ, u �= 0.
To see this, let b1, . . . , bn be the canonical orthonormal basis of Rn and take

some u /∈ Bδ such that u �= 0. One possible periodicity latticeΛ of the function eiu·x

is generated by the vectors b′1, . . . , b′n such that

b′i =
{
bi, if ui = 0;
(2π/u · bi)bi, otherwise.
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Since u /∈ Bδ, the fundamental domain D = {λ1b
′
1 + · · · + λnb

′
n : 0 ≤ λi < 1 } of

this lattice is a parallelepiped whose sides have length at most max{1, 2πδ−1}.
Let d = max{1, 2πδ−1}. Take L to be big enough so that, for all R ≥ L,

vol([−R,R]n \ [−R + d,R − d]n)/ vol[−R,R]n < ε. Any cube [−R,R]n for
any R ≥ L can be almost completely partitioned into translated copies of the fun-
damental domain of Λ, except for a region at the border, which will be completely
contained in [−R,R]n \ [−R + d,R − d]n. Inside any copy of the fundamental
domain D of Λ, the integral of eiu·x equals zero, as for u �= 0 we have∫

D

eiu·x dx = 〈eiu·x,1〉 = 0.

Then it follows from the choice of L that (4.50) holds for every R ≥ L and u /∈ Bδ,
u �= 0, as we wanted.

Now, since
⋂

δ>0Bδ = ∅ and since ν is a finite nonnegative Borel measure, there
must be a δ > 0 such that ν(Bδ) < ε. If we then let L be such that (4.50) holds for
all R ≥ L and u /∈ Bδ such that u �= 0, then for all R ≥ L we have∣∣∣ 1

vol[−R,R]n

∫
[−R,R]n

f(x) dx− ν(0)
∣∣∣

=
∣∣∣ 1
vol[−R,R]n

∫
[−R,R]n

∫
Rn

eiu·x dν(u)dx− ν(0)
∣∣∣

=
∣∣∣∫

Rn

1
vol[−R,R]n

∫
[−R,R]n

eiu·x dxdν(u) − ν(0)
∣∣∣

< (ν(Rn) + 1)ε.

The last inequality follows from splitting Rn, the integration domain, into Bδ, {0},
and Rn \ (Bδ ∪ {0}). It is now obvious that 〈f,1〉 = ν(0), as we wanted.

Before proceeding, we observe that the resemblance between (4.44) or (4.48) and
formulation (2.1) for the theta number of a finite graph is particularly clear when
one sees the connection between functions of positive type and positive translation
invariant kernels over Rn × Rn.

Such a kernel is just a function A: Rn × R
n → C. It is translation invariant

if A(x + z, y + z) = A(x, y) for all x, y, z ∈ Rn. If A is continuous, we say
it is positive if for every choice x1, . . . , xN of finitely many points in Rn, the ma-
trix

(
A(xi, xj)

)N
i,j=1

is positive semidefinite. Notice then that if f : Rn → C is a con-
tinuous function of positive type, thenA: Rn×Rn → C such thatA(x, y) = f(x−y)
is a continuous, positive, translation invariant kernel. Conversely, to a continuous,
positive, and translation invariant kernel corresponds a continuous function of pos-
itive type.

Notice also that, if f : Rn → C is any continuous function of positive type
and A: Rn × Rn → C is such that A(x, y) = f(x− y), then

lim
R→∞

1
(vol[−R,R]n)2

∫
[−R,R]n

∫
[−R,R]n

A(x, y) dxdy = 〈f,1〉. (4.51)
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One easy way to see this is to use Bochner’s theorem and an argument similar to the
one used above to show that 〈f,1〉 = ν(0).

So one can state (4.44) or (4.48) in terms of kernels. It is clear how to do so: The
constraints can be directly translated and, because of (4.51), the objective function
becomes, for a kernel A: Rn × Rn → R,

lim
R→∞

1
(vol[−R,R]n)2

∫
[−R,R]n

∫
[−R,R]n

A(x, y) dxdy.

4.6c. The existence of the limits and equivalence of the bounds. We now prove
the following theorem:

Theorem 4.11. The limits in (4.43) and (4.47) exist and

lim
R→∞

ϑ(G([−R,R]n, D))
vol[−R,R]n

= lim
R→∞

ϑR(G(Rn, D)) = ϑ(G(Rn, D)). (4.52)

Proof. We first show that

lim
R→∞

ϑR(G(Rn, D)) = ϑ(G(Rn, D)). (4.53)

Our strategy is to, given a feasible solution ϕ of (4.48), construct for each R > 4d
a feasible solution ϕR of (4.44) with periodicity lattice RZn, in such a way that

lim
R→∞

〈ϕR,1〉 = 〈ϕ,1〉.

If we can do that, then it will follow that the limit in (4.53) exists and also that
it is equal to ϑ(G(Rn, D)). This is so since, for all R > 0, we have ϑR(G(Rn, D)) ≤
ϑ(G(Rn, D)), as any feasible solution of (4.44) for any R > 0 is also a feasi-
ble solution of (4.48), and then it is clear that by taking R large enough we can
make ϑR(G(Rn, D)) as close to ϑ(G(Rn, D)) as we like.

For our analysis we fix some L > d; later we will take L = R/2 − d for any
given R > 4d. Let ϕ: Rn → R be any feasible solution of (4.48) and consider the
kernel AL: [−L,L]n × [−L,L]n → R such that

AL(x, y) = ϕ(x− y).

This is a continuous and positive kernel, so fromMercer’s theorem (Theorem 3.2,
but for kernels over [−L,L]n × [−L,L]n instead of Sn−1 × Sn−1) we know that
there are continuous functions fi: [−L,L]n → R such that

AL(x, y) =
∞∑

i=1

fi(x)fi(y) (4.54)

with absolute and uniform convergence over [−L,L]n × [−L,L]n.
For each i = 1, 2, . . . , consider the function gi: Rn → R which, in translated

copies of the cube [−L,L]n centered on points of the lattice 2(L+ d)Zn, is a copy
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2L d

Figure 4.4. The figure illustrates the process of obtaining a periodic func-
tion g:Rn → R from a function f : [−L, L]n → R in the case n = 2. Func-
tion f : [−L, L]2 → R is defined on the gray square of side 2L shown on the
left. Function g is defined over R

2; we show a part of it on the right. The
white dots mark the points of the lattice 2(L + d)Z2. Notice that, inside
each gray square, which is a translated copy of the domain of f , function g is
just a copy of f .

of fi, being zero everywhere else— Figure 4.4 illustrates this construction for n = 2.
Notice that each function gi is periodic with periodicity lattice 2(L+ d)Zn.

Consider then the kernel BL: Rn × Rn → R given by

BL(x, y) =
∞∑

i=1

gi(x)gi(y). (4.55)

Since we have absolute and uniform convergence in (4.54) and since each gi is pe-
riodic, from BL we may construct a translation invariant kernel BL: Rn ×Rn → R

by setting

BL(x, y) = lim
T→∞

1
vol[−T, T ]n

∫
[−T,T ]n

BL(x+ z, y + z) dz. (4.56)

Since BL is translation invariant, there is a function ψL: Rn → R that is such
that BL(x, y) = ψL(x− y) for all x, y ∈ Rn. We claim that the function

�L =
vol[−L− d, L+ d]n

vol[−L,L]n
ψL

is a feasible solution of (4.44) with periodicity lattice 2(L+ d)Zn.
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We now proceed to prove this claim. Since each gi is periodic with periodic-
ity lattice 2(L + d)Zn, it is easy to check that also �L is periodic with periodicity
lattice 2(L + d)Zn. Moreover, from the construction of the gi and (4.56), we see
that BL(x, y) = 0 whenever ‖x− y‖ ∈ D, and so �L(x) = 0 whenever ‖x‖ ∈ D.

To prove our claim that �L is feasible for (4.44), we still have to check that it is
continuous and of positive type and that �L(0) = 1.

We first show that �L is continuous. To this end, notice that, since we have
absolute and uniform convergence in (4.54), from the construction of the gi we
see that we also have absolute and uniform convergence in (4.55), and so we may
rewrite (4.56) as

BL(x, y) =
∞∑

i=1

〈(gi)x, (gi)y〉, (4.57)

where (gi)x(z) = gi(x+ z) for all x, z ∈ Rn.
To prove that �L is continuous, we first argue that the series in (4.57) converges

absolutely and uniformly overRn×Rn. Indeed, sinceϕ(0) = 1,we have from (4.54)
that

vol[−L,L]n =
∫

[−L,L]n
AL(x, x) dx =

∞∑
i=1

(fi, fi), (4.58)

where for two square-integrable functions f , g: [−L,L]n → R we write

(f, g) =
∫

[−L,L]n
f(x)g(x) dx.

So the series of nonnegative terms on the right-hand side of (4.58) converges.
Now notice that, for i = 1, 2, . . . ,

〈gi, gi〉 =
(fi, fi)

vol[−L− d, L+ d]n
, (4.59)

so also the series of nonnegative terms
∞∑

i=1

〈gi, gi〉

converges. Next, observe that, if x, y ∈ Rn, then |〈(gi)x, (gi)y〉| ≤ 〈gi, gi〉. From
this we see that the series in (4.57) converges absolutely for every x, y ∈ Rn. It also
converges uniformly for every x, y ∈ Rn since, for m ≥ 1,

∞∑
i=m

|〈(gi)x, (gi)y〉| ≤
∞∑

i=m

〈gi, gi〉.

Now, we know from Lemma 4.8 that, for each i = 1, 2, . . . , the function
(x, y) �→ 〈(gi)x, (gi)y〉 is continuous. Then, since convergence in (4.57) is uni-
form, BL is continuous, and hence also �L is continuous, as we wanted. Now that
we know that �L is continuous, the fact that it is of positive type follows immediately
from expression (4.57) for BL.
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Finally, we show that �L(0) = 1. From (4.57), using (4.58) and (4.59), we see
that

�L(0) =
vol[−L− d, L + d]n

vol[−L,L]n

∞∑
i=1

〈gi, gi〉 =
1

vol[−L,L]n

∞∑
i=1

(fi, fi) = 1,

as we wanted.
So we just proved that �L is feasible for (4.44) with periodicity lattice 2(L+d)Zn.

Now we estimate its objective value, to show that it approaches the objective value
of ϕ as L→ ∞.

From (4.51) we see that

lim
L→∞

1
(vol[−L,L]n)2

∫
[−L,L]n

∫
[−L,L]n

AL(x, y) dxdy = 〈ϕ,1〉. (4.60)

Now note that ∫
[−L,L]n

∫
[−L,L]n

AL(x, y) dxdy =
∞∑

i=1

(fi,1)2. (4.61)

By the construction of the gi we have

〈gi,1〉 =
(fi,1)

vol[−L− d, L+ d]n
,

and so using (4.51) again we obtain for ψL that

〈ψL,1〉 = lim
T→∞

1
(vol[−T, T ]n)2

∫
[−T,T ]n

∫
[−T,T ]n

BL(x, y) dxdy

=
∞∑

i=1

〈gi,1〉2

=
1

(vol[−L− d, L+ d]n)2

∞∑
i=1

(fi,1)2.

Combining this with (4.60), (4.61) and the definition of �L, we see at once that

lim
L→∞

〈�L,1〉 = 〈ϕ,1〉. (4.62)

For each L > d we have built a feasible solution �L of (4.44) with periodicity
lattice 2(L+ d)Zn such that (4.62) holds. Given R > 4d, we set L = R/2 − d > d
and ϕR = �L. Then we have for each R > 4d a feasible solution of (4.44) with
periodicity lattice RZn and the limit of their objective values is the objective value
of ϕ, as we wanted in the first place.

So we just established (4.53). In an analogous way, one may prove that

lim
R→∞

ϑ(G([−R,R]n, D))
vol[−R,R]n

= ϑ(G(Rn, D)),

establishing the existence of the limit above and finally also (4.52).
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4.6d. Spherical averages and a reformulation. It is not immediately clear how to
solve problem (4.48). To simplify it, the trick is again to exploit symmetry, in this
case by noticing that in (4.48) we may restrict ourselves to radial functions ϕ.

Recall that a function f : Rn → C is radial if its values depend only on the norm
of its argument, that is, if f(x) = f(y) whenever ‖x‖ = ‖y‖. To see that we may
restrict ourselves to radial functions, let ϕ be a feasible solution of (4.48). Consider
then the function ϕ: Rn → R such that

ϕ(x) =
1
ωn

∫
Sn−1

ϕ(‖x‖ξ) dω(ξ),

which is radial. We claim that it is feasible for (4.48) and also that 〈ϕ,1〉 = 〈ϕ,1〉.
It is clear that ϕ(0) = 1 and that ϕ(x) = 0 whenever ‖x‖ ∈ D. It is also clear

that ϕ is continuous. So we show that it is also of positive type. To see this, recall
from (4.29) that, if O(Rn) is the orthogonal group and μ is the Haar measure over
it normalized so that μ(O(Rn)) = 1, then

1
ωn

∫
Sn−1

ϕ(‖x‖ξ) dω(ξ) =
∫

O(Rn)

ϕ(Tx) dμ(T ). (4.63)

If x1, . . . , xN is any choice of finitely many vectors in Rn and if p1, . . . , pN are
any real numbers, then since ϕ is of positive type,

N∑
i,j=1

ϕ(xi − xj)pipj =
∫

O(Rn)

N∑
i,j=1

ϕ(Txi − Txj)pipj dμ(T ) ≥ 0,

and we see that ϕ is also of positive type.
Finally, using (4.63) again, we get

〈ϕ,1〉 =
∫

O(Rn)

〈T · ϕ,1〉 dμ(T ),

where (T · ϕ)(x) = ϕ(Tx) for all x ∈ Rn. So we see at once that 〈ϕ,1〉 = 〈ϕ,1〉.
So we have proven our claim that we may restrict ourselves in (4.48) to radial

functions. Then we may use the following theorem of Schoenberg [43]:

Theorem 4.12. A function f : Rn → R is continuous, radial, and of positive type, if
and only if

f(x) =
∫ ∞

0

Ωn(t‖x‖) dα(t) (4.64)

for every x ∈ Rn, where α is a finite, nonnegative Borel measure, and Ωn is given
by (4.2).

Proof. The proof is almost immediate from Bochner’s theorem and (4.2). From
Bochner’s theorem, f is continuous and of positive type if and only if there is a
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measure ν so that (4.49) holds. But then, f is radial, continuous, and of positive
type if and only if, for every x ∈ Rn,

f(x) =
1
ωn

∫
Sn−1

f(‖x‖ξ) dω(ξ)

=
1
ωn

∫
Sn−1

∫
Rn

eiu·(‖x‖ξ) dν(u)dω(ξ)

=
∫

Rn

1
ωn

∫
Sn−1

ei(u‖x‖)·ξ dω(ξ)dν(u)

=
∫

Rn

Ωn(‖u‖‖x‖) dν(u),

where in the last identity we used (4.2).
Now, consider the measure α over [0,∞) which for a Borel set X ⊆ [0,∞) is

such that
α(X) = ν({ u ∈ R

n : ‖u‖ ∈ X }).
Then we have

f(x) =
∫ ∞

0

Ωn(t‖x‖) dα(t),

as we wanted.

Notice that we already usedTheorem 4.12 implicitly in the proof ofTheorem 4.1.
Compare, for instance, expression (4.64) with (4.8).

Recall that, if f : Rn → C is continuous and of positive type and is given as (4.49),
then 〈f,1〉 = ν(0), as follows from Bochner’s theorem. Then, by using Theo-
rem 4.12, we may rewrite (4.48) equivalently as

sup α(0)∫∞
0 1 dα(t) = 1,∫∞
0 Ωn(td) dα(t) = 0 if d ∈ D,
α is a finite, nonnegative Borel measure.

(4.65)

Here we use the fact that Ωn(0) = 1, as follows from (4.2).
Notice the similarity between the above problem and (4.9). The only change

is that the sums are now integrals and α is now a measure. We can also write a
dual for (4.65) such that weak duality holds. If we do so for the case in which we
have D = {d1, . . . , dN}, then we get the dual problem

inf z0
z0 + z1 + · · · + zN ≥ 1,
z0 + z1Ωn(td1) + · · · + zNΩn(tdN ) ≥ 0 for all t > 0,

(4.66)

which is exactly the same problem we considered in the proof of Theorem 4.1. We
may also prove in this case that strong duality holds between (4.65) and (4.66).
From this, we immediately see that ϑ(G(Rn, D)) gives exactly the same bound as
Theorem 4.1.
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4.6e. The complementary graph. In Section 3.7, we showed how to define a theta
number for the complements of distance graphs on the sphere, in such a way that
the relations that one verifies between the theta number of a finite graph and that of
its complement also carry over to the infinite graphs on the sphere. In this section
we aim at doing the same for the graphs G(Rn, D), where D is again a compact
subset of the positive real line.

The complement of G(Rn, D), denoted by G(Rn, D), is the graph whose vertex
set is R

n and in which x, y ∈ R
n, x �= y, are adjacent if and only if ‖x − y‖ /∈ D.

Since D is compact and 0 /∈ D, the graph G(Rn, D) has finite stability number.
How should we define the theta number for G(Rn, D)? Certainly, formula-

tion (4.48) no longer works: A continuous function ϕ such that ϕ(0) = 1 must also
be positive in a neighborhood of the origin, but to be feasible in (4.48) we would
require ϕ(x) = 0 whenever x �= 0 and ‖x‖ /∈ D, and since D is compact and
does not contain the origin, we would get a contradiction. So (4.48) is infeasible
for G(Rn, D).

A formulation based on formulation (2.3) for the theta number of a finite graph
provides however a working alternative. Let ϑ(G(Rn, D)) be the optimal value of
the optimization problem

inf 1 + ψ(0)
ψ(x) = −1 whenever ‖x‖ ∈ D,
ψ: Rn → R is a continuous function of positive type.

(4.67)

It is not immediately clear that (4.67) is even feasible; this we will prove in a
moment. Before that, we observe that any feasible solution of (4.67) provides an
upper bound to the stability number ofG(Rn, D). Indeed, ifC ⊆ Rn is a nonempty
stable set of G(Rn, D) — which is, as observed above, finite — and ψ is a feasible
solution of (4.67), then

0 ≤
∑

x,y∈C

ψ(x− y) = |C|ψ(0) − |C|(|C| − 1),

and hence |C| ≤ 1 + ψ(0), as we wanted.
Recall from Theorem 2.2 that, if G = (V,E) is a finite vertex-transitive graph,

then
ϑ(G)ϑ(G) = |V |.

We now prove the analogous identity for graphs of the form G(Rn, D); note these
graphs are also vertex-transitive. More specifically, we prove

ϑ(G(Rn, D))ϑ(G(Rn, D)) = 1. (4.68)

We begin by showing the inequality “≤” in (4.68), and along the way we also
show that (4.67) is feasible. Let ϕ be a feasible solution of (4.48). We claim that the
function

ψ(x) = 〈ϕ,1〉−1ϕ(x) − 1

is a feasible solution of (4.67).
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It is clear that ψ is continuous and that ψ(x) = −1 whenever ‖x‖ ∈ D. Now,
to see that ψ is of positive type, let ν be the measure given by Bochner’s theorem
applied to ϕ. From Theorem 4.10 we know that

〈ϕ,1〉 = ν(0).

Let δ be the pure point measure over Rn which is 1 at the origin. Then the measure

ν̃ := 〈ϕ,1〉−1ν − δ

is a nonnegative Borel measure. Moreover, since ν was given by Bochner’s theorem
applied to ϕ, we have

ψ(x) =
∫

Rn

eiu·x dν̃(u),

and so we see that ψ is also of positive type. With this, notice that we just proved
that (4.67) is feasible, since (4.48) is feasible.

Finally, observe that we have

〈ϕ,1〉ϑ(G(Rn, D)) ≤ 〈ϕ,1〉(1 + ψ(0)) = 1,

and since ϕ is any feasible solution of (4.48), it follows that

ϑ(G(Rn, D))ϑ(G(Rn, D)) ≤ 1.

To see the reverse inequality, let ψ be a feasible solution of (4.67). Then the
function

ϕ(x) =
1 + ψ(x)
1 + ψ(0)

is feasible for (4.48). Indeed, it is a continuous function of positive type that satis-
fies ϕ(0) = 1 and ϕ(x) = 0 if ‖x‖ ∈ D. Now, we know that

〈ϕ,1〉 =
1 + 〈ψ,1〉
1 + ψ(0)

≥ 1
1 + ψ(0)

,

whence
ϑ(G(Rn, D))(1 + ψ(0)) ≥ 〈ϕ,1〉(1 + ψ(0)) ≥ 1

and, since this holds for any feasible solution ψ of (4.67), we have the inequality

ϑ(G(Rn, D))ϑ(G(Rn, D)) ≥ 1,

finishing the proof of (4.68).

4.6f. Bounds from finite subgraphs. To finish, we investigate the idea of using the
theta number of finite subgraphs ofG(Rn, D) to boundmD(Rn) orχm(G(Rn, D)).
Analogous results were presented for distance graphs on the sphere in Section 3.7a.

Let H = (V,E) be a finite subgraph of G(Rn, D). Clearly, χm(G(Rn, D)) ≥
χ(H). Since, from Theorem 2.1, ϑ(H) ≤ χ(H), we have

ϑ(H) ≤ χm(G(Rn, D)).
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So computing the theta number of complements of finite subgraphs of G(Rn, D) is
a strategy to find lower bounds for χm(G(Rn, D)).

The bounds computed with such an approach are, however, not better than the
bound obtained from computing ϑ(G(Rn, D)). Indeed, let ψ be a feasible solution
of (4.67). Then the matrix Z:V × V → R such that

Z(x, y) = ψ(x− y)

is a feasible solution of formulation (2.3) for ϑ(H), and has objective value equal to
that of ψ. Together with (4.68), this implies that

ϑ(H) ≤ ϑ(G(Rn, D)) =
1

ϑ(G(Rn, D))
, (4.69)

so by computing the theta number of finite subgraphs of G(Rn, D) one cannot do
better than by computing ϑ(G(Rn, D)) in order to bound χm(G(Rn, D)).

Bounds on the stability numbers of finite subgraphs of G(Rn, D) can also be
used to bound mD(Rn). Indeed, if H = (V,E) is a finite subgraph of G(Rn, D),
one has

mD(Rn) ≤ α(H)
|V | .

To see this, letC be ameasurable stable set ofG(Rn, D). Then |C∩(V +y)| ≤ α(H)
for every y ∈ R

n. But then

δ(C)|V | =
∑
x∈V

lim sup
R→∞

1
vol[−R,R]n

∫
[−R,R]n

|C ∩ {x+ y}| dy

= lim sup
R→∞

1
vol[−R,R]n

∫
[−R,R]n

|C ∩ (V + y)| dy

≤ α(H),

as we wanted (this was observed by Larman and Rogers [27]). Since ϑ(H) ≥ α(H),
we then have

ϑ(H)
|V | ≥ α(H)

|V | ≥ mD(Rn).

Recall from Theorem 2.2 that for the finite graph H we have that

ϑ(H)ϑ(H) ≥ |V |.
So, using (4.69) we get

ϑ(H)
|V | ≥ 1

ϑ(H)
≥ ϑ(G(Rn, D)),

and we see that one cannot find better bounds formD(Rn) by computing the theta
numbers of finite subgraphs of G(Rn, D) than by computing ϑ(G(Rn, D)).
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[52] L.A. Székely, Measurable chromatic number of geometric graphs and sets with-
out some distances in Euclidean space, Combinatorica 4 (1984) 213–218.
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Erdős, P. 6, 7, 24, 80
Euclidean space
bounds for the chromatic number of the

plane 6
bounds for the chromatic number

of R
3 6

chromatic number of the ∼ 5, 24
chromatic number of the ∼, asymptotic

upper bound 7
chromatic number of the ∼, exponential

growth 6
chromatic number of the ∼, relation to

measurable chromatic number 6
chromatic number of the ∼, relation to

the Axiom of Choice 7
chromatic number of ∼, relation to mea-

surable chromatic number 8
coloring of the plane 6
distance graph on the ∼ 84
kissing number of the plane 2
kissing number of the ∼ 2
measurable chromatic number of

the ∼ 6, 24
measurable chromatic number of the ∼,

asymptotic upper bound 8
measurable chromatic number of the ∼,

exponential growth 40

measurable chromatic number of the ∼,
upper bounds 8

norm of a vector in ∼ (‖x‖) 13
standard inner product in ∼ (x · y) 13
theta number for graphs on the ∼ 85–

89
unit-distance graph on the ∼ 3, 6

Falconer, K.J. 6–8, 24, 40, 49, 74, 77,
80, 81

Feldheim, E. 38
Fourier coefficient 67
Frankl, P. 6, 9
function
almost periodic ∼ 67
autocorrelation ∼ 67
autocorrelation ∼, expansion 68, 85
Fourier coefficient of a periodic ∼ 67
of positive type 85
over the cube [−R, R]n 25
periodicity lattice of a ∼ 66
periodic ∼ 65
pole of zonal spherical ∼ 32
radial 93
square-integrable periodic ∼ 66
zonal spherical ∼ 32
zonal spherical ∼, properties 32

Furstenberg, H. 10, 80
Gerard, B. 48
Goethals, J.M. 10, 56, 57
Grötschel, M. 14
graph 11
adjacency in a ∼ 11
automorphism group of a ∼ 12
automorphism of a ∼ 12
coloring of a ∼ 11
complementary graph 11
distance ∼ 2
distance ∼ on the unit sphere 23
edge set 11
finite ∼ 11
Moser ∼ 6
stable set in a ∼ 2, 11
subgraph of a ∼ 11
unit-distance ∼ 3, 6
vertex set 11
vertex-transitive ∼ 12

Gvozdenović, N. 15
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Samenvatting

DEmeeste ontwikkelingen in dit proefschrift werden gemotiveerd door het vol-
gende probleem: Wat is het kleinste aantal kleuren dat nodig is om de punten

in R
n te kleuren zodanig dat geen twee punten op afstand 1 van elkaar dezelfde kleur

krijgen en dat de verzamelingen punten met dezelfde kleur Lebesgue-meetbaar zijn? Dit
kleinste aantal is χm(Rn), het meetbare kleuringsgetal (measurable chromatic number)
van Rn. Het is eenvoudig om in te zien dat χm(R) = 2, maar al voor n = 2 is het
alleen bekend dat 5 ≤ χm(R2) ≤ 7. Een van de hoofddoelen bij de start van dit
onderzoek was om betere ondergrenzen te vinden voor χm(Rn). We bestuderen ook
de parameter m1(Rn), de grootste dichtheid die een Lebesgue-meetbare deelverza-
meling van Rn kan hebben als deze geen twee punten met onderlinge afstand 1 mag
bevatten. Deze parameter is gerelateerd aan χm(Rn), aangezien

χm(Rn)m1(Rn) ≥ 1.

In dit proefschrift modelleren we het probleem van het vaststellen van χm(Rn)
enm1(Rn) als een probleem over oneindige grafen. We breiden ideeën van de com-
binatorische optimalisering uit die voor eindige grafen gelden— in het bijzonder het
Lovász theta getal — tot de oneindige grafen die wij bekijken. Door de symmetrie
van deze grafen uit te buiten met hulp van Fourieranalyse kunnen we optimalise-
ringsproblemen definiëren en oplossen waarvan de optimale waardes grenzen geven
voor χm(Rn) en m1(Rn). Op deze manier verbeteren we de bestaande ondergren-
zen voor χm(Rn) voor n = 3, . . . , 24 en de bestaande bovengrenzen voor m1(Rn)
voor n = 2, . . . , 24.

Behalve bovenstaande resultaten kunnen we nog meer resultaten afleiden met
onze technieken. In het bijzonder kunnen we bewijzen dat χm(Rn) exponentieel
groeit in n, ondanks dat onze schatting van de groeisnelheid niet beter is dan bestaan-
de schattingen. Daarnaast kunnen we een numerieke versie krijgen van een stelling
van Furstenberg, Katznelson en Weiss, die stelt dat een Lebesgue-meetbare verza-
meling C ⊆ Rn die geen paren punten op onderlinge afstand d1, d2, . . . bevat
dichtheid nul moet hebben. Onze resultaten tonen aan dat de dichtheid van een
verzameling C ⊆ Rn die geen paren punten op onderlinge afstand d1, . . . , dN bevat
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exponentieel afneemt in N , mits de afstanden d1, . . . , dN uitdijen.
We ontwikkelen ook technieken voor grafen die over de sfeer gedefinieerd zijn.

De resultaten die we voor zulke grafen verkrijgen geven ook ondergrenzen voor
χm(Rn), die beter zijn dan de bestaande ondergrenzen voor n = 10, . . . , 24. Voor
de sfeer bewijzen we ook een versie van een stelling van Falconer, die lijkt op de
zojuist beschreven stelling van Furstenberg, Katznelson en Weiss.



Summary

MOSTof the developments in this thesis were motivated by the following prob-
lem: What is the minimum number of colors one needs in order to color the points

of Rn so that no two points at distance 1 get the same color and so that the sets of points
that are colored with the same color are Lebesgue measurable? This minimum is de-
noted by χm(Rn) and is called the measurable chromatic number of Rn. It is easy to
see that χm(R) = 2, but already for n = 2 it is only known that 5 ≤ χm(R2) ≤ 7.
One of our main goals when we started this research was to find improved lower
bounds for χm(Rn). We also study the parameter m1(Rn), the maximum density
that a Lebesgue measurable subset of Rn can have if it does not contain two points
at distance 1 from each other. This parameter is related to χm(Rn), since

χm(Rn)m1(Rn) ≥ 1.

In this thesis, we model the problems of determining χm(Rn) or m1(Rn) as
problems over infinite graphs. We then extend ideas from combinatorial optimiza-
tion —most importantly, the Lovász theta number — which apply to finite graphs
to the infinite graphs we consider. By exploiting the symmetry of these graphs, with
the help of harmonic analysis, we are able to define and solve optimization prob-
lems whose optimal values provide bounds for χm(Rn) or m1(Rn). In doing so we
improve on existing lower bounds for χm(Rn) for n = 3, . . . , 24 and on existing
upper bounds for m1(Rn) for n = 2, . . . , 24.

We may also derive further results from our methods. In particular, it is possible
to prove that χm(Rn) grows exponentially with n, even though our estimate for
the growth ratio is not better than previously known estimates. Also, we obtain a
numerical version of a theorem of Furstenberg, Katznelson, and Weiss, which states
that a Lebesgue measurable set C ⊆ Rn that does not contain pairs of points at
distances d1, d2, . . . from each other, for some unbounded sequence d1, d2, . . . ,
must have density zero. Our result shows that the density of a set C ⊆ R

n that does
not contain pairs of points at distances d1, . . . , dN decreases exponentially with N ,
as long as the distances d1, . . . , dN space out.

We also develop methods for graphs defined over the sphere. Results we obtain
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from such graphs also provide lower bounds for χm(Rn), which are better than
previously known lower bounds for n = 10, . . . , 24. For the sphere we also prove
a version of a theorem of Falconer, which is close to the theorem by Furstenberg,
Katznelson, and Weiss discussed above.
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