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enlightening collaboration.
I thank the people in the Department of Stochastics for the inspiring atmo-
sphere for research.
Last but not least I would like to thank the constant support and the devo-
tion of my family and friends.

iv





Introduction

In this thesis we investigate three different, interesting topics of proba-
bility: Markov chain mixing, properties of network models and interacting
particle systems. We briefly summarize the content of the different chapters
here.

The mixing time of Markov chains have been an active research topic
in the past three decades, as large databases required better and better
understanding of the finite time behavior of nonstationary Markov chains.
In particular, consider a sequence of Markov chains on larger and larger state
spaces, and set a finite threshold (1/4, say). The question is, how long the
chain has to be run to reach the threshold distance from stationary measure
as a function of the size of the state space. If the distance is measured in
l1 or in the uniform metric then we call this time the total-variation and
the uniform mixing time, respectively. For precise definitions see (1.2.12)
and (1.2.2). A more algebraic way of measuring the correlation decay -
i.e. how fast the chain forgets about its starting state - is to investigate
the eigenvalues and thus the spectral gap of the chain. The relaxation time
(1.2.3) is the reciprocal of the spectral gap, again considered as a function
of the size of the state space along the sequence.

In the first chapter of the thesis we consider the mixing times of lamp-
lighter groups. Based on the joint paper with Jason Miller and Yuval Peres
[77], in the first section we investigate the uniform mixing time of the lamp-
lighter walks. Heuristically, a lamplighter walk can be visualized as follows:
imagine a random walker walking on the graph G, where there are lamps
attached to each vertex of the graph. Wherever the walker is, he randomizes
the state of the lamp. More precisely, suppose that G is a finite, connected
graph and X is a lazy random walk on G. The lamplighter chain X� as-
sociated with X is the random walk on the wreath product G� = Z2 o G,
the graph whose vertices consist of pairs (f, x) where f is a labeling of the
vertices of G by elements of Z2 = {0, 1} and x is a vertex in G. For example,
see Figure 1.1, where G is a 5× 5 grid and the 0− 1 lamps are illustrated as
blue and yellow, respectively. In each step, X� moves from a configuration
(f, x) by updating x to y using the transition rule of X and then sampling
both f(x) and f(y) according to the uniform distribution on Z2; f(z) for
z 6= x, y remains unchanged. We give matching upper and lower bounds
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on the uniform mixing time of X� provided G satisfies mild hypotheses. In
particular, when G is the hypercube Zd2, we show that the uniform mixing
time of X� is of order d2d. More generally, we show that when G is a torus
Zdn for d ≥ 3, the uniform mixing time of X� is of order dnd uniformly in
n and d. A critical ingredient for our proof is a concentration estimate for
the local time of random walk in a subset of vertices and Green’s function
estimates. This work closes the gap on the estimates on the uniform mixing
time in [96].

Then, in the second section of the first chapter we move to larger lamp
spaces and consider the wreath product H o G, the graph whose vertices
consist of pairs (f, x) where f = (f(v))v∈V (G) is a labeling of the vertices of
G by elements of H and x is a vertex in G. Heuristically, the generalized
lamplighter walk can be visualized as follows: imagine the random walker
again, walking on the base graph G. At each vertex of the graph G there is
an identical, complicated machine, with possible states represented by the
graph H. While moving one step on the base graph G, the walker changes
one step according to the transition rule of the machine on his departure
and also on his arrival vertex, respectively. See Figure 1.3 where the base
graph G is a torus and the lamp graphs are cycles. More precisely, the
generalized lamplighter chain X� associated with the Markov chains X on
G and Z on H is the random walk on the wreath product H o G: In each
step, X� moves from a configuration (f, x) by updating x to y using the
transition rule of X and then independently updating both f(x) and f(y)
according to the transition probabilities on H; f(z) for z 6= x, y remains
unchanged. We estimate the total variation mixing time of X� in terms of
the parameters of H and G. Further, we show that the relaxation time of X�

is the same order as the maximal expected hitting time of G plus |G| times
the relaxation time of H. Various methods are used in this chapter to prove
the bounds, including strong stationary times, Dirichlet form techniques,
distinguishing set methods and mean optimal stopping rules. The area of
considering general lamp graphs is new in the literature, and is still our
ongoing research joint with Yuval Peres.

In the second chapter we switch to consider mathematical properties of
graph and network models. Random graphs are in the main stream of re-
search interest since the late 50s, starting with the seminal random graph
model introduced by Erdős and Rényi [61]. A wide spectrum of literature
investigates graph models with a fixed number of vertices (i.e some general-
ization of the Erdős-Rényi (ER) graphs), we refer the reader to the books of
[71] or [35] as an introduction. In the last two decades there have been a con-
siderable amount of attention paid to the study of complex networks like the
World Wide Web, social networks, or biological networks. The properties
of these networks turned out to be way too different from models based on
some variation of the ER graph. This resulted in the construction of numer-
ous new, more dynamical and growing network models, see e.g. [27], [35],
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[39], [59], [76]. Most of them use a version of preferential attachment and
are of probabilistic nature. A different approach was initiated by Barabási,
Ravasz, and Vicsek [25] based on the observation that real network often
obey some hierarchical structure. They introduced deterministic network
models generated by a method which is common in constructing fractals.
Their model both exhibits hierarchical structure and the degree sequence
obeys power law decay, and with a slight modification of the model [100]
the local clustering coefficient is also decaying as in real networks. A simi-
lar, fractal based deterministic model were introduced by Zhang, Comellas,
Fertin and Rong [109], and called the high-dimensional Apollonian network.
The graph is generated from the cylinder sets of the fractal of the Apollonian
circle packing or the Sierpinsky carpet.

Motivated by the hierarchical network model of E. Ravasz, A.-L. Barabási
and T. Vicsek [25], we introduce deterministic scale-free networks derived
from a graph directed self-similar fractal Λ. Starting from an arbitrary
initial bipartite graph G on N vertices, we construct a hierarchical sequence
of deterministic graphs Gn. The embedding of the adjacency matrix of the
graph sequence Gn is carried out in the most straightforward way: A vertex
with code x = (x1 . . . xn) ∈ Gn is identified with the corresponding N -adic
interval Ix, and Λn is the union of those N−n × N−n squares Ix × Iy for
which the vertices x, y are connected by an edge in Gn. Λn turns out to
be a nested sequence of compact sets, which can be considered as the n-
th approximation of a graph directed self-similar fractal Λ on the plane,
see Figure 2.1(c). We discuss connection between the graph theoretical
properties of Gn and properties of the limiting fractal Λ. In particular, we
express the power law exponent of the degree distribution with the ratio of
the Hausdorff dimensions of some slices of Λ (Theorem 2.3.6).

Further, we verify that our model captures some of the most important
features of many real networks: we show that the degree distribution of
vertices has a power law decay and thus the model obeys the scale free
property. We also prove that the diameter is the logarithm of the size of
the system. There are no triangles in Gn. Hence, in order to model the
clustering properties of many real networks, we need to extend the set of
edges of our graph sequence to destroy the bipartite property. Motivated by
[100], we add some additional edges to G1 to obtain the (no longer bipartite)
graph Ĝ1. Then we build up the graph sequence Ĝn in a similar manner than
it was done for Gn, and show that the average local clustering coefficient of
Ĝn does not depend on the size and the local clustering coefficient of a node
with degree k is of order 1/k.

The third chapter investigates fluctuations of one dimensional interacting
particle systems. The motivation comes mainly from statistical mechanics:
the surface growth or the fluctuations of a stream wants to be understood
on the microscopical level. For a good and thorough introduction to the
field we refer to the two books by Liggett [86, 87].
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We consider Markov processes that describe the motion of particles and
antiparticles in the one dimensional integer lattice Z, or equivalently, growth
of a surface by depositing or removing individual bricks of unit length and
height over Z. We examine the net particle current seen by an observer
moving at the characteristic speed of the process. The characteristic speed is
the speed at which perturbations travel in the system and can be determined
e.g. via the hydrodynamic limit. The process is assumed to be asymmetric
(i.e. the rates of removal and deposition, or the particle to jump to the right
and to the left in the particle-picture, are not the same) and in one of its
extremal stationary distributions, which is a product measure parameterized
by the density of particles %. We set a system of conditions called microscopic
concavity or convexity and prove that under these conditions, the net particle
current across the characteristic has variance of order t2/3. The net particle
current counts the number of particles that pass the observer from left to
right minus the number that pass from right to left during time interval
(0, t]. As a bi-product, we also obtain Law of Large Numbers for the second
class particle and Central Limit Theorem for the particle current.

Earlier proofs of t1/3fluctuations e.g. [8, 74, 75, 99, 44] have been quite
rigid in the sense that they work only for particular cases of the models
where special combinatorial properties emerge as if through some fortuitous
coincidences. There is basically no room for perturbing the rules of the
process. By contrast, the proof given here works for the whole class of pro-
cesses. The hypothesis of microscopic concavity that is required is certainly
nontrivial. But it does not seem to rigidly exclude all but a handful of the
processes in the broad class.

The chapter is based on two papers, both of them joint with Márton
Balázs and Timo Seppäläinen. The first one is [17], which describes mi-
croscopic concavity, the general proof under this system of conditions and
investigates totally asymmetric zero range processes with a concave jump
rate function whose slope decreases geometrically, and may be eventually
constant. Section 3.7 is based on the paper [16], where we show that the
strategy works for the exponential bricklayers process, a process obeying
convex flux function.
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Chapter 1

Mixing times of random
walks on wreath product
graphs

1.1 Introduction

In 1906 Andrey Markov introduced the random processes that would later
be named after him. The classical theory of Markov chains was mostly
concerned with long-time behavior of Markov chains: The goal is to under-
stand the stationary distribution and the rate of convergence of a fixed chain.
Many introductory books on stochatic processes include an introduction to
Markov chains, see for example the book by Lawler [80].

However, in the past three decades, a different asymptotical analysis has
emerged: in theoretical computer science, physics and biology, the growing
interest in large state spaces required a better understanding of the finite
time behavior of Markov chains in terms of the size of the state space.
Thus, some target distance from the stationary measure in some metric on
the space of measures is usually prescribed and the question is to determine
the required number of steps to reach this distance as the size of the state
space increases. Mixing time refers to this notion. For a comprehensive
overview of Markov Chain mixing we refer the reader to the indispensable
book [49] by Aldous and Fill or [83] by Levin, Peres and Wilmer as our main
references. See also the books by Häggstöm [70], Jerrum [73], or the recent
survey by Montenegro and Tetali [94].

To understand the behavior of Markov chain sequences, different notions
of distances on probability measures and mixing times emerged, each cap-
turing some different aspect or property of the chain. Aldous [3] introduced
random stopping times achieving equilibrium measure. They were studied
more by Lovász, Winkler [89, 90]. To find the relation between different
notions of mixing is a challenging problem, see [3] and the recent papers
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connecting hitting times to mixing times and stopping rules by Sousi and
Peres [98] and independently by Oliveira [95], or blanket times and cover
times to the maxima of Gaussian free fields by Ding, Lee and Peres [56].

A further understanding of the Markov Chain sequence is to see whether
there is any ”concentration” of the mixing time, i.e., if the ratio between
mixing times up to different thresholds has a limit. Such behavior is called
cutoff. In general, it was conjectured that the total variation mixing time has
a cutoff as long as the necessary condition, that its ratio with the relaxation
time is is tending to infinity, holds. However, the conjecture fails to be true
in the highest generality, see [83, Example 18.7]. Cutoffs are proven recently
for random walks on random regular graphs by Lubetzky and Sly [91] and
for birth and death chains by Ding, Lubetzky and Peres [58]. The cutoff
phenomenon is discussed further in Chen and Saloff-Coste [46] and Diaconis
and Saloff-Coste [55].

In this chapter we are interested in the mixing properties of random walks
on wreath product graphs. The intuitive representation of the walk is the
following: A lamplighter or an engineer is doing simple random walk on the
vertices of a base graph G. Further, to each vertex v ∈ G there is an identical
lamp or machine attached, and each of the machines is in some state f(v).
Then, as the lamplighter walks along the base graph, he can make changes in
the state of the machines touched, according to the transition probabilities
of the machines. If the machines are just on-off lamps, we get the well-known
lamplighter problem, but if the machines (the lamp-graphs) have some more
complicated structure, possibly even growing together with the size of the
base, then we are in the setting of generalized lamplighter walks. If the
underlying graphs H and G are Cayley-graphs of groups generated by some
finite number of generators, then the graph H oG is the graph of the wreath
product of the two groups. This relates our work to understand the behavior
of random walk on groups, analyzed by many authors, we refer the reader
for references [1] Aldous.

More precisely, suppose that G and H are finite, connected graphs, G
regular, X is a lazy random walk on G and Z is a reversible ergodic Markov
chain on H. The generalized lamplighter chain X� associated with X and Z
is the random walk on the wreath product H oG, the graph whose vertices
consist of pairs (f, x) where f = (f(v))v∈V (G) is a labeling of the vertices of
G by elements of H and x is a vertex in G. In each step, X� moves from a
configuration (f, x) by updating x to y using the transition rule of X and
then independently updating both f(x) and f(y) according to the transition
probabilities on H; f(z) for z 6= x, y remains unchanged. In Section 1.2,
based on the joint paper with Miller an Peres [77] we give matching upper
bound for the mixing time in the uniform metric of X� on Z2 o G up to
universal constants in terms of the parameters of G to the lower bound
given in [96, Theorem 1.4] by Peres and Revelle. Then in Section 1.3 we
give bounds on the total variation mixing time and estimate the relaxation
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time of H oG for general H and G up to universal constants.
Before we proceed to the particular models, we will mention some other

work on mixing times for lamplighter chains. The mixing time of Z2 oG was
first studied by Häggström and Jonasson in [69] in the case of the complete
graph Kn and the one-dimensional cycle Zn. Their work implies a total
variation cutoff with threshold 1

2 tcov(Kn) in the former case and that there
is no cutoff in the latter. Here, tcov(G) for a graph G denotes the expected
number of steps required by lazy random walk to visit every vertex in G.
The connection between tmix(Z2 oG) and tcov(G) is explored further in [96],
in addition to developing the relationship between the relaxation time of
Z2 oG and the maximal expected hitting time thit(G), and the mixing time
in the uniform metric tu(Z2 o G) and E[2|U(t)|], the exponential moment of
the not-yet-touched vertices of the base graph G. The results of [96] include
a proof of total variation cutoff for Z2 oZ2

n with threshold tcov(Z2
n). In [93], it

is shown that tmix(Z2 oZdn) ∼ 1
2 tcov(Zdn) when d ≥ 3 and more generally that

tmix(Z2 oGn) ∼ 1
2 tcov(Gn) whenever (Gn) is a sequence of graphs satisfying

some uniform local transience assumptions.
The mixing time of X� = (F ,X) on Z2 oG is typically dominated by the

first coordinate F since the amount of time it takes for X to mix is negligible
compared to that required by X�. We can sample from F (t) by:

1. sampling the range C(t) of lazy random walk run for time t, then

2. marking the vertices of C(t) by i.i.d. fair coin flips.

Determining the mixing time of X� is thus typically equivalent to computing
the threshold t where the corresponding marking becomes indistinguishable
from a uniform marking of V (G) by i.i.d. fair coin flips. This in turn can be
viewed as a statistical test for the uniformity of the not covered set U(t) of X
— if U(t) exhibits any sort of non-trivial systematic geometric structure then
X�(t) is not mixed. This connects Section 1.2 work to the literature on the
geometric structure of the last visited points by random walk [51, 50, 43, 93].

Moving towards larger lamp spaces, if the base is the complete graph
Kn and |Hn| = o(n) one can determine the order of mixing time from [83,
Theorem 20.7], since in this case the lamplighter chain is a product chain
on
∏n
i=1Hn. Levi [84] investigated random walks on wreath products when

H 6= Z2. In particular, he determined the order of the mixing time of
Knλ oKn, 0 ≤ λ ≤ 1, and he also had upper and lower bounds for the case
Hd o Zn, i.e. H is the d-dimensional hypercube and the base is a cycle of
length n. However, the bounds failed to match for general d and n.

Similarly as the mixing time of Hn = Z2 is closely related to the cover
time of the base graph, larger lamp graphs give more information on the
local time structure of the base graph G. This relates Section 1.3 to the
literature on blanket time (when all the local times of vertices are within a
constant factor of each other) [28, 56, 107].
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1.2 Uniform mixing time for Random Walk on
Lamplighter Graphs

1.2.1 The model

Let us start with the precise description of the model adapted to the setting
H = Z2. Suppose that G is a finite graph with vertices V (G) and edges
E(G), respectively. Let X (G) = {f : V (G) → Z2} be the set of markings of
V (G) by elements of Z2. The wreath product G� = Z2 oG is the graph whose
vertices are pairs (f, x) where f ∈ X (G) and x ∈ V (G). There is an edge
between (f, x) and (g, y) if and only if {x, y} ∈ E(G) and f(z) = g(z) for all
z /∈ {x, y}. Suppose that P is a transition matrix for a Markov chain on G.
The lamplighter walk X� (with respect to the transition matrix P ) is the
Markov chain on G� which moves from a configuration (f, x) by

1. picking y adjacent to x in G according to P , then

2. updating each of the values of f(x) and f(y) independently according
to the uniform measure on Z2.

The lamp states at all other vertices in G remain fixed. It is easy to see
that if P is ergodic and reversible with stationary distribution πP then the
unique stationary distribution of X� is the product measure

π
(
(f, x)

)
= πP (x)2−|G|,

and X� is itself reversible. In this section, we will be concerned with the
special case that P is the transition matrix for the lazy random walk on G
in order to avoid issues of periodicity. That is, P is given by

P (x, y) =

{
1
2 if x = y,

1
2d(x) if {x, y} ∈ E(G),

(1.2.1)

for x, y ∈ V (G) and where d(x) is the degree of x.

1.2.2 Main Results

Let P be the transition kernel for lazy random walk on a finite, connected
graph G with stationary distribution π. The ε-uniform mixing time of G is
given by

tu(ε,G) = min

{
t ≥ 0 : max

x,y∈V (G)

∣∣∣∣P t(x, y)− π(y)

π(y)

∣∣∣∣ ≤ ε} . (1.2.2)

Throughout, we let tu(G) = tu((2e)−1,G). The main result of the article [77]
is a general theorem which gives matching upper and lower bounds of tu(G�)
provided G satisfies several mild hypotheses. One important special case of
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Figure 1.1: A typical configuration of the lamplighter over a 5 × 5 planar
grid. The colors indicate the state of the lamps and the dashed circle gives
the position of the lamplighter.

this result is the hypercube Zd2 and, more generally, tori Zdn for d ≥ 3. These
examples are sufficiently important that we state them as our first theorem
in the chapter.

Theorem 1.2.1. There exists constants C1, C2 > 0 such that

C1 ≤
tu((Zd2)�)

d2d
≤ C2 for all d.

More generally,

C1 ≤
tu((Zdn)�)

dnd+2
≤ C2 for all n ≥ 2 and d ≥ 3.

Prior to this work, the best known bound [96] for tu((Zd2)�) was

C1d2d ≤ tu((Zd2)�) ≤ C2 log(d)d2d

for C1, C2 > 0.
In order to state our general result, we first need to review some basic

terminology from the theory of Markov chains. The relaxation time of P is

trel(G) =
1

1− λ0
(1.2.3)

where λ0 is the second largest eigenvalue of P . The maximal hitting time of
P is

thit(G) = max
x,y∈V (G)

Ex[τy], (1.2.4)

where τy denotes the first time t that X(t) = y and Ex stands for the
expectation under the law in which X(0) = x. The Green’s function G(x, y)
for P is

G(x, y) = Ex

tu(G)∑
t=0

1{X(t)=y}

 =

tu(G)∑
t=0

P t(x, y), (1.2.5)
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i.e. the expected amount of timeX spends at y up to time tu givenX(0) = x.
For each 1 ≤ n ≤ |G|, we let

G∗(n) = max
S⊆V (G)

|S|=n

max
z∈S

∑
y∈S

G(z, y). (1.2.6)

This is the maximal expected time X spends in a set S ⊆ V (G) of size n
before the uniform mixing time. This quantity is related to the hitting time
of subsets of V (G). Finally, recall that G is said to be vertex transitive if for
every x, y ∈ V (G) there exists an automorphism ϕ of G with ϕ(x) = y. Our
main result requires the following hypothesis.

Assumption 1.2.2. G is a finite, connected, vertex transitive graph and X
is a lazy random walk on G. There exists constants K1,K2,K3 > 0 such
that

1. thit(G) ≤ K1|G|,

2. 2K2(5/2)K2(G(x, y))K2 ≤ exp
(
− tu(G)
trel(G)

)
,

3. G∗(n∗) ≤ K3(trel(G) + log |G|)/(log n∗)

where n∗ = 4K2tu(G)/G(x, y) for x, y ∈ V (G) adjacent.

The general theorem is:

Theorem 1.2.3. Let G be any graph satisfying Assumption 1.2.2. There
exists constants C1, C2 depending only on K1,K2,K3 such that

C1 ≤
tu(G�)

|G|
(
trel(G) + log |G|

) ≤ C2 (1.2.7)

The lower bound is proved in [96, Theorem 1.4]. The proof of the upper
bound is based on the observation from [96] that the uniform distance to
stationarity can be related to E[2|U(t)|] where U(t) is the set of vertices in
G which have not been visited by X by time t. Indeed, suppose that f
is any initial configuration of lamps, let f(t) be the state of the lamps at
time t, and let g be an arbitrary lamp configuration. Let W be the set of
vertices where f 6= g. Let C(t) = V (G) \ U(t) be the set of vertices which
have been visited by X by time t. With P(f,x) the probability under which
X�(0) = (f, x), we have that

P(f,x)[f(t) = g|C(t)] = 2−|C(t)|1{W⊆C(t)}.

Since the probability of the configuration g under the uniform measure is
2−|G|, we therefore have

P(f,x)[f(t) = g]

2−|G|
= E(f,x)

[
2|U(t)|1{W⊆C(t)}

]
. (1.2.8)

10



The right hand side is clearly bounded from above by E[2|U(t)|] (the initial
lamp configuration and position of the lamplighter no longer matters). On
the other hand, we can bound (1.2.8) from below by

P(f,x)[W ⊆ C(t)] ≥ P[|U(t)| = 0] ≥ 1− (E
[
2|U(t)|]− 1).

Consequently, to bound tu(ε,G�) it suffices to compute

min{t ≥ 0 : E[2|U(t)|] ≤ 1 + ε} (1.2.9)

since the amount of time it requires for X to subsequently uniformly mix
after this time is negligible.

In order to establish (1.2.9), we will need to perform a rather careful
analysis of the process by which U(t) is decimated by X. The key idea is to
break the process of coverage into two different regimes, depending on the
size of U(t). The main ingredient to handle the case when U(t) is large is
the following concentration estimate of the local time

LS(t) =
t∑

s=0

1{X(s)∈S}

for X in S ⊆ V (G).

Proposition 1.2.4. Let λ0 be the second largest eigenvalue of P . Assume
λ0 ≥ 1

2 and fix S ⊆ V (G). For C0 = 1/50, we have that

Pπ

[
LS(t) ≤ tπ(S)

2

]
≤ exp

(
−C0t

π(S)

trel(G)

)
. (1.2.10)

Proposition 1.2.4 is a corollary of [82, Theorem 1]; we consider this suf-
ficiently important that we state it here. By invoking Green’s function esti-
mates, we are then able to show that the local time is not concentrated on
a small subset of S. The case when U(t) is small is handled via an estimate
(Lemma 1.2.9) of the hitting time τS = min{t ≥ 0 : X(t) ∈ S} of S.

Earlier results on the uniform mixing time.

Suppose that µ, ν are probability measures on a finite measure space. The
total variation distance between µ, ν is given by

‖µ− ν‖TV = max
A
|µ(A)− ν(A)| = 1

2

∑
x

|µ(x)− ν(x)|. (1.2.11)

The ε-total variation mixing time of P is

tmix(ε,G) = min

{
t ≥ 0 : max

x∈V (G)
‖P t(x, ·)− π‖TV ≤ ε

}
. (1.2.12)

11



Let tmix(G) = tmix((2e)−1,G). It was proved [96, Theorem 1.4] by Peres and
Revelle that if G is a regular graph such that thit(G) ≤ K|G|, there exists
constants C1, C2 depending only on K such that

C1|G|(trel(G) + log |G|) ≤ tu(G�) ≤ C2|G|(tmix(G) + log |G|).

These bounds fail to match in general. For example, for the hypercube
Zd2, trel(Z

d
2) = Θ(d) [83, Example 12.15] while tmix(Zd2) = Θ(d log d) [83,

Theorem 18.3]. Theorem 1.2.3 says that the lower from [96, Theorem 1.4]
is sharp.

Outline

The remainder of this section is structured as follows. In Section 1.2.3 we
will collect a number of estimates regarding the amount of X spends in and
requires to cover sets of vertices in G of various sizes. Then, in Section 1.2.4,
we will complete the proof of Theorem 1.2.3. Finally, in Section 1.2.5, we
will give the proof of Theorem 1.2.1 by checking the hypotheses of Theorem
1.2.3.

1.2.3 Coverage Estimates

Throughout, we assume that G is a finite, connected, vertex transitive graph
and X is lazy random walk on G with transition matrix P and stationary
measure π. For S ⊆ V (G), we let CS(t) be the set of vertices in S visited
by X by time t and let US(t) = S \ CS(t) be the subset of S which X has
not visited by time t. We let C(t) = CV (G)(t) and U(t) = UV (G)(t). We
will use Px,Ex to denote the probability measure and expectation under
which X(0) = x. Likewise, we let Pπ,Eπ correspond to the case that X is
initialized at stationarity. The purpose of this section is to develop a number
of estimates which will be useful for determining the amount of time required
by X in order to cover subsets S of V (G). We consider two different regimes
depending on the size of S. If S is large, we will estimate the amount of
time it takes for X to visit tu(G) distinct vertices in S. If S is small, we will
estimate the amount of time it takes for X to visit 1/2 of the vertices in S.

Large Sets

In this subsection, we will prove that the amount of time it takes for X to
visit tu(G) distinct elements of a large set of vertices S ⊆ V (G) is stochasti-
cally dominated by a geometric random variable whose parameter depends
on tu(G)/trel(G). The main result is:

12



Proposition 1.2.5. Assume X satisfies part (2) of Assumption 1.2.2 with
constants K2,K3. Let S ⊆ V (G) consist of at least 2K2tu(G)/G(x, y) ele-
ments for x, y ∈ V (G) adjacent and let

t =
2(K2 + 2)tu(G)

π(S)
.

There exists a universal constant C > 0 such that for every x ∈ V (G), we
have that

Px [CS(t) ≤ tu(G)] ≤ exp

(
−C tu(G)

trel(G)

)
.

Recall that

LS(t) =

t∑
s=0

1{X(s)∈S}

is the amount of time that X spends in S up to time t. The proof consists
of several steps. The first is Proposition 1.2.4, which we will deduce from
[82, Theorem 1] shortly, which gives that the probability LS(t) is less than
1/2 its mean is exponentially small in t. Once we show that LS(t) is large
with high probability, in order to show that X visits many vertices in S, we
need to rule out the possibility of X concentrating most of its local time in
a small subset of S. This is accomplished in Lemma 1.2.6. We now proceed
to the proof of Proposition 1.2.4.

Proof of Proposition 1.2.4. We rewrite the event{
LS(t) ≤ tπ(S)

2

}
=

{
t∑

s=0

f(Xs) > t

(
1− π(S) +

π(S)

2

)}
(1.2.13)

where f(x) = 1Sc(x). Let ε = π(S)/2 and µ = Eπ[f(X(t))] = 1 − 2ε. The
case ε ≥ 1/4 follows immediately from [82, Equation 3] in the statement of
[82, Theorem 1], so we will only consider the case ε ∈ (0, 1/4) here. Let
µ = 1− µ = 2ε. For x ∈ (0, 1), let

I(x) = −x log

(
µ+ µλ0

1− 2x/(
√

∆ + 1)

)
− x log

(
µ+ µλ0

1− 2x/(
√

∆ + 1)

)
where x = 1− x and

∆ = 1 +
4λ0xx

µµ(1− λ0)2
. (1.2.14)

For x ∈ [µ, µ+ ε] = [1− 2ε, 1− ε], ε ∈ (0, 1/4), and λ0 ≥ 1/2, we note that

1/2

(1− λ0)2
≤ ∆ ≤ 20

(1− λ0)2
(1.2.15)

By [82, Theorem 1] and using the representation (1.2.13), we have that

Pπ [LS(t) ≤ tε] ≤ exp(−I(µ+ ε)t).
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Since I(µ) = I ′(µ) = 0 and I ′′(x) = (
√

∆xx)−1 (see [82, Appendix B]), we
can write

I(µ+ ε) =

∫ µ+ε

µ

∫ x

µ

1√
∆yy

dydx (1.2.16)

where y = 1 − y. Inserting the bounds from (1.2.15), we thus see that the
right side of (1.2.16) admits the lower bound

1− λ0√
20

∫ 1−ε

1−2ε

∫ x

1−2ε

1

2ε
dydx ≥ (1− λ0)ε

16
√

5

for all ε ∈ (0, 1/4) and λ0 ≥ 1
2 .

As in the proof of Lemma 1.2.13, we couple X with a non-lazy random
walk Y so that X(t) = Y (Nt) where Nt =

∑t
i=0 ξi and the (ξi) are iid with

P[ξi = 0] = P[ξi = 1] = 1
2 and are independent of Y . We let LYS (t) denote

the amount of time that Y |[0,Nt] spends in S (note that this differs slightly

from the definition of LYx (t) which appeared in Section 1.2.5). In other
words, LYS is the amount of that X spends in S by time t, not including
those times where X does not move. The next lemma gives a lower bound
on the probability that the number CS(t) of distinct vertices X visits in a
given set S ⊆ V (G) by time t is proportional to LYS (t). The lower bound for
this probability will be given in terms of the Green’s function G(x, y) for X.
Recall its definition from (1.2.5). Since X is a lazy random walk, we also
have that

G(x, y) ≤ G(x, x) for all x, y ∈ V (G). (1.2.17)

This is a consequence of (1.2.38).

Lemma 1.2.6. Fix S ⊆ V (G). For each positive integer k, we have that

Pπ

[
CS(t) ≥

LYS (t)− tu(G)

k

]
≥ 1− tπ(S)qk(t)

tu(G)
, (1.2.18)

where

q(t) = (G(x, y)− 1) + (1 + (2e)−1)
t− tu(G)

|G|
1{t>tu(G)}. (1.2.19)

and x is adjacent to y.

Proof. For t ≥ tu(G), we have P t(x, y) ≤ (1 + (2e)−1)π(y) by the definition
of tu(G). Thus by a union bound,

Px[LYx (t) > 1] ≤ q(t).

Hence by the strong Markov property,

Px[LYx (t) > k] ≤ qk(t).

14



Observe
Pπ[τx = s] ≤ Pπ[Xs = x] ≤ π(x). (1.2.20)

Let
LYS,k(t) =

∑
x∈S
LYx (t)1{LYx (t)>k}

be the total time that Y spends at points in S which it visits more than k
times by time Nt. By (1.2.20), we have that

Eπ[LYS,k(t)] ≤
∑
x∈S

t∑
s=0

Pπ[τx = s]qk(t) ≤ tπ(S)qk(t).

Applying Markov’s inequality we have that

Pπ

[
LYS,k(t) ≥ tu(G)

]
≤

Eπ[LYS,k(t)]
tu(G)

≤ tπ(S)qk(t)

tu(G)

Observe

CS(t) =
∑
x∈S

1{LYx (t)≥1} ≥
∑
x∈S

(
1{LYx (t)≥1} − 1{LYx (t)>k}

)
≥
LYS (t)− LYS,k(t)

k
.

Thus {
LYS,k(t) < tu(G)

}
⊆
{
CS(t) ≥

LYS (t)− tu(G)

k

}
.

We arrive at

Pπ

[
CS(t) ≥

LYS (t)− tu(G)

k

]
≥ 1−Pπ

[
LYS,k(t) ≥ tu(G)

]
≥ 1− tπ(S)qk(t)

tu(G)
,

which completes the proof of the lemma.

Proposition 1.2.4 gives a lower bound on the probability LS(t) is propor-
tionally lower than its expectation, Lemma 1.2.6 gives a lower bound on the
probability X visits less than a positive fraction of LYS (t)− tu(G) vertices in
S by time t, and standard large deviations estimates bound the probability
that LYS (t) is proportionally smaller than LS(t). By combining these two
lemmas, we obtain the following result, which gives a lower bound on the
rate at which X covers vertices in S.

Lemma 1.2.7. Fix S ⊆ V (G). Then

Pπ

[
CS(t) ≤ tπ(S)− 8tu(G)

8k

]
(1.2.21)

≤ exp

(
−C0t

π(S)

trel(G)

)
+ exp

(
− 1

16
tπ(S)

)
+
tπ(S)qk(t)

tu(G)

where the constant C0 is as in Proposition 1.2.4 and the function q is as in
(1.2.19).
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Proof. We trivially have that

Pπ

[
CS(t) ≥ tπ(S)− 8tu(G)

8k

]
≥ Pπ

[
CS(t) ≥ tπ(S)− 8tu(G)

8k
,LYS (t) >

tπ(S)

8

]
≥Pπ

[
CS(t) >

LYS (t)− tu(G)

k
, LYS (t) >

tπ(S)

8

]
.

Therefore

Pπ

[
CS(t) ≤ tπ(S)− 8tu(G)

8k

]
≤ Pπ

[
LYS (t) ≤ tπ(S)

8

]
+ Pπ

[
CS(t) ≤

LYS (t)− tu(G)

k

]
We can bound the second term from above by Lemma 1.2.6. The first term
is bounded from above by

Pπ

[
LYS (t)≤ tπ(S)

8

]
≤Pπ

[
LS(t)≤ tπ(S)

2

]
+Pπ

[
LS(t)>

tπ(S)

2
,LYS (t)≤ tπ(S)

8

]
.

We can bound the first term using Proposition 1.2.4. Conditionally on
{LS(t) > t

2π(S)}, we note that {LYS (t) ≤ t
8π(S)} occurs if X stays in

place for at least 3t
8 π(S) time steps. Consequently, standard large deviations

estimates imply that the second term above is bounded by exp(− 1
16 tπ(S)).

We can now easily complete the proof of Proposition 1.2.5 by ignoring
the first tu(G) units of time in order to reduce to the stationary case, then
apply Assumption 1.2.2 in order to match the error terms in Lemma 1.2.7.

Proof of Proposition 1.2.5. We first observe that

Px [CS(t) ≤ tu(G)] ≤ (1 + (2e)−1)Pπ[CS(t− tu(G)) ≤ tu(G)].

With t̃ = 2K2tu(G)/π(S) and using |S| ≥ 2K2tu(G)/(G(x, y) − 1) for
x, y ∈ V (G) adjacent, we see that

G(x, y)− 1 ≤ q(t̃) ≤ 5

2
(G(x, y)− 1).

Combining this with part (2) of Assumption 1.2.2 implies

t̃π(S)qK2(t̃)

tu(G)
≤ 2K2q

K2(t̃) ≤ exp

(
− tu(G)

trel(G)

)
. (1.2.22)

Applying Lemma 1.2.7 gives the result.
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Small Sets

We will now give an upper bound on the rate at which X covers 1/2 the
elements of a set of vertices S ⊆ V (G), provided |S| is sufficiently small.

Proposition 1.2.8. Fix S ⊆ V (G), let s = |S|, and assume that

tu(G) ≤ |G|
4s
.

There exists constants C2, C3 > 0 such that

Px

[
CS(C2|G|G∗(s)) ≤

s

2

]
≤ exp(−C3s)

for all x ∈ V (G).

The main step in the proof of Proposition 1.2.8 is the next lemma, which
gives an upper bound on the hitting time for S. Its proof is based on the
following observation. Suppose that S ⊆ V (G) and τS = min{t ≥ 0 :
X(t) ∈ S}. Let Z be a non-negative random variable with Z1{τS>t} = 0
and Ex[Z1{τS≤t}] > 0. Then we have that

Px[τS ≤ t] =
Ex[Z]

Ex[Z|τS ≤ t]
. (1.2.23)

We will take Z to be the amount of time X spends in S.

Lemma 1.2.9. Fix S ⊆ V (G) and let s = |S|. Assume that

tu(G) ≤ |G|
2s
.

There exists a universal constant ρ0 > 0 such that x ∈ V (G) we have

Px

[
τS ≤

|G|
s

]
≥ ρ0

G∗(s)
.

Proof. Let us introduce E =
{
τS ≤ |G|s

}
. Observe that

Px[E] ≥
Ex

[
LS
(
|G|
s

)]
Ex

[
LS
(
|G|
s

)
|E
]

We can bound the numerator from below as follows:

Ex

[
LS
(
|G|
s

)]
≥ (1− (2e)−1)Eπ

[
LS
(
|G|
s
− tu(G)

)]
≥ (1− (2e)−1)π(S)

(
|G|
s
− tu(G)

)
≥ 1

4
. (1.2.24)
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Let LS(u, t) = LS(t)−LS(u−1) be the number of times in the set {u, . . . , t}
that X spends in S. Then we can express the denominator as the sum

Ex [LS (τS , τS + tu(G)) |E] + Ex

[
LS
(
τS + tu(G) + 1,

|G|
s

)
|E
]

=:D1 +D2.

We have

D2 ≤ (1 + (2e)−1)Eπ

[
LS
(
|G|
s

)]
≤ 2.

We will now bound D1. By the strong Markov property, we have that

D1 ≤ max
z∈S

Ez[LS(tu(G))] = max
z∈S

Ez

tu(G)∑
t=0

1{X(t)∈S}

= max
z∈S

∑
y∈S

G(z, y) ≤ G∗(s).

Putting everything together completes the proof.

The remainder of the proof of Proposition 1.2.8 is based on a simple
stochastic domination argument.

Proof of Proposition 1.2.8. Let C2 > 0; we will fix its precise value at the
end of the proof. That X visits at least s/2 points in S by the time
C2|G|G∗(s) with probability exponentially close to 1 in s follows from a
simple large deviation estimate of a binomial random variable. Namely, we
run the chain for C2G

∗(s)s rounds, each of length |G|/s. We let S0 = S and
inductively let Si = Si−1 \ {x} if X hits x in the ith round for i ≥ 1. If
|Si| ≥ s/2, the hypotheses of Lemma 1.2.9 hold. In this case, the probability
that X hits a point in Si in the ith round is at least ρ0/G

∗(s) > 0. Thus by
stochastic domination, we have that

P[CS(C2|G|G∗(s)) < s/2] ≤ P [Z < s/2]

where Z ∼ BIN(C2G
∗(s)s, ρ0/G

∗(s)). By picking C2 large enough (C2 >
1/ρ0 will do, say) and applying the Chernoff bound, we see that

P [CS(C2|G|G∗(s)) < s/2] ≤ exp(−C3s) (1.2.25)

for some constant C3 (one can check that C3 = 1
8 suffices). This estimate

also holds if s = 1. In this case we cover the point with constant probability
in C2|G| steps.
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1.2.4 Proof of Theorem 1.2.3

Throughout this section, we shall assume that X is a lazy random walk on
a graph G which satisfies Assumption 1.2.2. Recall that U(t) is the set of
vertices of G which X has not visited by time t. We will use the notation
Px,Ex for the probability measure and expectation under which X(0) = x.
Likewise, we let Pπ,Eπ correspond to the case that X is initialized at sta-
tionarity. We will now work towards completing the proof of Theorem 1.2.3
by applying the results of the previous section to describe the process by
which X covers V (G). We will study the process of coverage in two differ-
ent regimes: before and after U(t) contains at least n∗ vertices (recall the
definition of n∗ from part (3) of Assumption 1.2.2). To this end, we let

r = max{i : |G| − itu(G) ≥ n∗},
r̃ = blog2(|G| − rtu(G))c

and

si = |G| − itu(G), i = 0, . . . , r,

sr+i =
⌊sr

2i

⌋
i = 1, . . . , r̃ − 1,

sr+r̃ = 0.

We also define the stopping times

Ti = min{t ≥ 1 : |U(t)| ≤ si}, i = 1, . . . , r + r̃.

Lemma 1.2.10. There exists constants C4, C5 such that for each 1 ≤ i ≤ r
and all x ∈ V (G), we have that

Px [|U(t)| > si] ≤ exp

(
si

trel(G)

(
C4 log |G| − C5

|G|
t

))
. (1.2.26)

Proof. For each i ∈ {1, . . . , r}, we let

ti =
2(K2 + 2)tu(G)|G|

si

Proposition 1.2.5 implies that

Px[|U(t+ ti)| ≤ si+1 | |U(t)| ∈ (si+1, si]] ≥ 1− exp

(
−C tu(G)

trel(G)

)
.

Consequently, it follows that there exists independent variables Zj ∼ GEO(1−
exp(−Ctu(G)/trel(G))) such that Tj − Tj−1 is stochastically dominated by
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tjZj for all j ∈ {1, . . . , r}. Thus for θi > 0, we have that

Px[|U(t)| > si] = Px[Ti > t] = Px

 i∑
j=1

Tj − Tj−1 > t


≤ e−θit

i∏
j=1

Ex[eθitjZj ]. (1.2.27)

Note that for every β ∈ (0, 1) there exists α = α(β) > 0 such the moment
generating function of a GEO(p) random variable satisfies

pex

1− (1− p)ex
≤ eαx provided (1− p)ex ≤ β. (1.2.28)

Choosing

θi =
Ctu(G)

2titrel(G)

we have that

θitj =
Ctu(G)

trel(G)
· tj
ti

=
Ctu(G)

2trel(G)
· si
sj
.

Hence as si ≤ sj for all i, j ∈ {1, . . . , r} with j ≤ i, we have

exp

(
Ctu(G)

2trel(G)
· si
sj
− Ctu(G)

trel(G)

)
≤ exp

(
−Ctu(G)

2trel(G)

)
≤ exp(−C/2).

Let α = α(e−C/2) as in (1.2.28). Consequently, we can bound the product
of exponential moments in (1.2.27) by

log
i∏

j=1

Ex[eθitjZj ] ≤ α
i∑

j=1

θitj =
αCtu(G)si

2trel(G)

i∑
j=1

1

sj

=
αCsi

2trel(G)

i∑
j=1

1

|G|/tu(G)− j
≤ αCsi

2trel(G)
log |G|.

Inserting this expression into (1.2.27) gives (1.2.26).

Lemma 1.2.11. There exists constants C6, C7 such that for all 1 ≤ i ≤ r̃
and x ∈ V (G), we have that

Px [|U(t)| > sr+i] (1.2.29)

≤Px[|U(t/2)| > sr] + exp

(
sr+i−1

(
C6i−

C7

|G|G∗(n∗)
t

))
.
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Proof. Let
qr+j = C2|G|G∗(sr+j)

where C2 is as in Proposition 1.2.8. Proposition 1.2.8 implies that

Px[|U(t+ qr+j)| ≤ sr+j+1 | |U(t)| ∈ (sr+j+1, sr+j ]] ≥ 1− exp(−C3sr+j)

for j ∈ {1, · · · , r̃}. Consequently, there exists independent random variables
Zr+j ∼ GEO(1 − exp(−C3sr+j)) such that Tr+j − Tr+j−1 is stochastically
dominated by qr+jZr+j . We have that

Px[|U(t)| > sr+i] = Px[Tr+i > t]

≤Px

[
Tr >

t

2

]
+ Px

 i∑
j=1

Tr+j − Tr+j−1 >
t

2

 =: I1 + I2 (1.2.30)

Using that I1 = P[|U(t/2)| > sr] gives the first term in (1.2.29). We now
turn to bound I2. Fixing θr+i > 0, we have

I2 ≤ e−θr+it/2
i∏

j=1

Ex

[
eθr+iqr+jZr+j

]
. (1.2.31)

With the particular choice

θr+i =
C3

2C2

sr+i
|G|G∗(n∗)

we have that

exp(θr+iqr+j − C3sr+j) ≤ exp(−C3/2) =: β < 1.

Here, we used that if n ≤ m then G∗(n) ≤ G∗(m). Thus by (1.2.28) there
exists α = α(β) > 0 such that we can bound the exponential moments in
(1.2.31) by

log

i∏
j=1

Ex

[
eθr+iqr+jZr+j

]
≤ αθr+i

i∑
j=1

qr+j =
αC3

2
isr+i

Inserting this bound into (1.2.31) gives the second term in (1.2.29).

Lemma 1.2.12. There are constants C8, C9, C10 > 0 such that for

t = (1 + a)C8|G|(trel(G) + log |G|)

and every x ∈ V (G) we have

Ex

[
2|U(t)|

]
≤ 1 + C9 exp (−aC10 log(n∗)) . (1.2.32)
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Proof. We can write

Ex

[
2|U(t)|

]
≤ 1 +

r+r̃∑
i=1

2si−1P [|U(t)| > si] .

For i ≤ r, we have that si−1 = si + tu(G). By Lemma 1.2.10, we have
that

2si+tu(G)P[|U(t)| > t] ≤ exp

{
(si + tu(G)) log 2 +

si
trel(G)

(
C4 log |G| − C5

|G|
t

)}
.

By taking C8 (in the statement) large enough, this is in turn bounded from
above by

exp

(
−asi

(
1 +

log |G|
trel(G)

))
. (1.2.33)

For r + i ∈ {r + 1, . . . , r + r̃} we have from (1.2.29) that

2sr+i−1Px[|U(t)| > sr+i]

≤2sr+i−1Px[|U(t)| > t
2 ] + exp

(
sr+i−1

(
(C6 + log 2)i− C7

|G|G∗(n∗)
t

))
.

The first term admits the same bound as (1.2.33) with i = r, possibly
by increasing C8 if necessary. Using that i ≤ log2 |n∗|, by increasing C8 if
necessary, from condition (3) it is easy to see that the second term admits
the bound

exp

(
−asr+i

log |G|+ trel(G)

G∗(n∗)

)
. (1.2.34)

Applying condition (3) again, we see that (1.2.34) is bounded from above
by

exp(−asr+i log(n∗)).

Putting together the estimates we get that for i ∈ {1 . . . r̃}

2sr+i−1Px[|U(t)| > sr+i]

≤ exp

(
−asr

(
1 +

log |G|
trel(G)

))
+ exp (−asr+i log(n∗)) (1.2.35)

Summing (1.2.33) and (1.2.35) gives (1.2.32) (the dominant term in the
summation comes from when sr+i = 1) which proves the lemma.

Proof of Theorem 1.2.3. This is a consequence of Lemma 1.2.12 and the
relationship between tu(G�) and E[2|U(t)|] given in (1.2.9).
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1.2.5 Proof of Theorem 1.2.1

We are going to prove Theorem 1.2.1 by checking the hypotheses of Theo-
rem 1.2.3. We begin by noting that by [83, Corollary 12.12] and [83, Section
12.3.1], we have that

trel(Z
d
n) = Θ(dn2). (1.2.36)

By [54, Example 2, Page 2155], we know that tu(Zn) = O(n2). Hence by
[52, Theorem 2.10], we have that

tu(Zdn) = O((d log d)n2). (1.2.37)

The key to checking parts (1)–(3) of Assumption 1.2.2 are the Green’s
function estimates which are stated in Proposition 1.2.14 (low degree) and
Proposition 1.2.18 (high degree). In order to establish these we will need
to prove several intermediate technical estimates. We begin by recording
the following facts about the transition kernel P for lazy random walk on a
vertex transitive graph G. First, we have that

P t(x, y) ≤ P t(x, x) for all x, y. (1.2.38)

To see this, we note that for t even, the Cauchy-Schwarz inequality and the
semigroup property imply

P t(x, y) =
∑
z

P t/2(x, z)P t/2(z, y) ≤
√
P t(x, x)P t(y, y) = P t(x, x).

The inequality and final equality use the vertex transitivity of G so that
P (x, z) = P (z, x) and P (x, x) = P (y, y). To get the same result for t odd,
one just applies the same trick used in the proof of [83, Proposition 10.18(ii)].
Moreover, by [83, Proposition 10.18], we have that

P t(x, x) ≤ P s(x, x) for all s ≤ t. (1.2.39)

The main ingredient in the proof of Proposition 1.2.14, our low degree
Green’s function estimate, is the following bound for the return probability
of a lazy random walk on Zd.

Lemma 1.2.13. Let P (x, y; Zd) denote the transition kernel for lazy random
walk on Zd. For all t ≥ 1, we have that

P t(x, x; Zd) ≤
√

2

(
4d

π

)d/2 1

td/2
+ e−t/8. (1.2.40)

Proof. To prove the lemma we first give an upper bound on the transition
probabilities for a (non-lazy) simple random walk Y on Zd. One can easily
give an exact formula for the return probability of Y to the origin of Zd in
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2t steps by counting all of the possible paths from 0 back to 0 of length 2t
(here and hereafter, PNL(x, y; Zd) denotes the transition kernel of Y ):

P 2t
NL

(
x, x; Zd

)
=

∑
n1+···+nd=t

(2t)!

(n1!)2(n2!)2 · · · (nd!)2
· 1

(2d)2t

=
1

(2d)2t

(
2t

t

) ∑
n1+···+nd=t

(
t!

n1!n2! · · ·nd!

)2

We can bound the sum above as follows, using the multinomial theorem in
the second step:

P 2t
NL

(
x, x; Zd

)
≤ 1

(2d)2t

(
2t

t

)(
max

n1+···+nd=t

t!

n1! · · ·nd!

) ∑
n1+···+nd=t

t!

n1! · · ·nd!

≤ 1

(2d)2t

(
2t

t

)
t!

[(bt/dc)!]d
· dt.

Applying Stirlings formula to each term above, we consequently arrive at

P 2t
NL

(
x, x; Zd

)
≤

√
2

(2π)d/2
· d

d/2

td/2
(1.2.41)

We are now going to deduce from (1.2.41) a bound on the return proba-
bility for a lazy random walk X on Zd. We note that we can couple X and Y
so that X is a random time change of Y : X(t) = Y (Nt) where Nt =

∑t
i=0 ξi

and the (ξi) are iid with P[ξi = 0] = P[ξi = 1] = 1
2 and are independent of Y .

Note that Nt is distributed as a binomial random variable with parameters
t and 1/2. Thus,

P t(x, x; Zd) =

t/2∑
i=0

P 2i
NL(x, x; Zd)P(Nt = 2i)

≤ P(Nt < t/4) +
√

2

(
4d

π

)d/2 1

td/2
,

where in the second term we used the monotonicity of the upper bound
in (1.2.41) in t. The first term can be bounded from above by using the
Hoeffding inequality. This yields the term e−t/8 in (1.2.40).

Throughout the rest of this section, we let |x− y| denote the L1 distance
between x, y ∈ Zdn.

Proposition 1.2.14. Let G(x, y) denote the Green’s function for lazy ran-
dom walk on Zdn. For each δ ∈ (0, 1), there exists constants C1, C2, C3 > 0
independent of n, d for d ≥ 3 such that

G(x, y) ≤ C1

d

(
4d

π

)d/2
|x− y|1−d/2 + C2(d log d)

(
4d

π

)d/2
n2−d(1−δ/2)

+ C3

(
d2 log d

)
n2e−n

δ/2
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for all x, y ∈ Zdn distinct.

Proof. Fix δ ∈ (0, 1). We first observe that the probability that there is a
coordinate in which the random walk wraps around the torus within t < n2

steps can be estimated by using Hoeffding’s inequality and a union bound
by

d ·P(Z(t) > n) = de−
n2

2t

where Z(t) is a one dimensional simple random walk on Z. Let k = |x −
y|. Applying (1.2.38) and (1.2.39) in the second step, and estimating the
probability of wrapping around in time n2−δ in the third term, we see that

G(x, y) =

tu∑
t=k

P t(x, y) ≤
n2−δ∑
t=k

P t(x, x; Zd) + tuP
n2−δ

(x, x; Zd) (1.2.42)

+ dtue
−n

δ

2 .

We can estimate the sum on the right hand side above using Lemma 1.2.13,
yielding the first term in the assertion of the lemma. Applying Lemma 1.2.13
again, we see that there exists a constant C2 which does not depend on n, d
such that the second term in the right side of (1.2.42) is bounded by

C2(d log d)

(
4d

π

)d/2
n2−d(1−δ/2). (1.2.43)

Indeed, the factor (d log d)n2 comes from (1.2.37) and the other factor comes
from Lemma 1.2.13. Combining proves the lemma.

Proposition 1.2.14 is applicable when n is much larger than d. We
now turn to prove Proposition 1.2.18, which gives us an estimate for the
Green’s function which we will use when d is large. Before we prove Propo-
sition 1.2.18, we first need to collect the following estimates.

Lemma 1.2.15. Suppose that X is a lazy random walk on Zdn for d ≥ 8
and that |X(0)| = k ≤ d

8 . For each j ≥ 0, let τj be the first time t that
|X(t)| = j. There exists a constant Ck > 0 depending only on k such that
P[τ0 < τ2k] ≤ Ckd

−k. If, instead, |X(0)| = 1, then there exists a universal
constant p > 0 such that P[τ0 < τ2k] ≥ p.

Proof. It clearly suffices to prove the result when X is non-lazy. Assume
that |X(t)| = j ∈ {k, . . . , 2k}. It is obvious that the probability that |X|
moves to j + 1 in its next step is at least 1 − 2k

d . The reason is that the
probability that the next coordinate to change is one of the coordinates of
X(t) whose value is 0 is at least 1 − 2k

d . Similarly, the probability that

|X| next moves to j − 1 is at most 2k
d . Consequently, the first result of

the lemma follows from the Gambler’s ruin problem (see, for example, [83,
Section 17.3.1]). The second assertion of the lemma follows from the same
argument.
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Lemma 1.2.16. Assume that k ∈ N and that d = 2k ∨ 3. Suppose that
X is a lazy random walk on Zd and that |X(0)| = 2k. Let τk be the first
time t that |X(t)| = k. There exists pk > 0 depending only on k such that
P[τk =∞] ≥ pk > 0.

Proof. Let Py denote the law under which X starts at y. Assume that
Py[τk = ∞] = 0 for some y ∈ Zd with |y| = 2k. Suppose that z ∈ Zd with
|z| = 2k and let τz be the first time that X hits z. Then since Py[τz < τk] >
0, it follows from the strong Markov property that Pz[τk = ∞] = 0. From
this, it follows that the expected amount of time that X spends in B(0, k)
is infinite because it implies that on each successive hit to ∂B(0, 2k), X
returns to B(0, k) with probability 1. Since X is transient [81, Theorem
4.3.1], the expected amount of time that X spends in B(0, k) is finite. This
is a contradiction.

Lemma 1.2.17. Assume that k ∈ N and d ≥ 2k ∨ 3. Suppose that X is
a lazy random walk on Zdn and that |X(0)| = 2k. Let τk be the first time
t that |X(t)| = k. There exists pk, ck > 0 depending only on k such that
P[τk > ckdn

2] ≥ pk > 0.

Proof. We first assume that d = 2k ∨ 3. It follows from Lemma 1.2.16 that
there exists a constant pk,1 > 0 depending only on k such that P[τk >
τn/4] ≥ pk,1. The local central limit theorem (see [81, Chapter 2]) implies
that there exists constants ck,1, pk,2 > 0 such that the probability that a
random walk on Zdn moves more than distance n

4 in time ck,1n
2 is at most

1− pk,2. Combining implies the result for d = 2k ∨ 3.
Now we suppose that d ≥ 2k ∨ 3. Let (X1(t), . . . , Xd(t)) be the coor-

dinates of X(t). By re-ordering if necessary, we may assume without loss
of generality that X2k+1(0), . . . , Xd(0) = 0. Let Y (t) = (X1(t), . . . , X2k(t)).
Then Y is a random walk on Z2k

n . Clearly, |Y (0)| = 2k because X(0) cannot
have more than 2k non-zero coordinates. For each j, let τYj be the first time

t that |Y (t)| = j. Then τYk ≤ τk. For each t, let Nt denote the number of
steps that X takes in the time interval {1, . . . , t} in which one of its first 2k
coordinates is changed (in other words, Nt is the number of steps taken by
Y ). The previous paragraph implies that P[NτYk

≥ ck,1n
2] ≥ pk,3 > 0 for a

constant pk,3 > 0 depending only on k. Since the probability that the first
2k coordinates are changed in any step is k/d (recall that X is lazy), the
final result holds from a simple large deviations estimate.

Now we are ready to prove our estimate of G(x, y) when d is large.

Proposition 1.2.18. Suppose that d ≥ 8. Let G(x, y) denote the Green’s
function for lazy random walk on Zdn. For each k ∈ N with k ≤ d

8 , there
exists a constant Ck > 0 which does not depend on n, d such that

G(x, y) ≤ Ck
dk

for all x, y ∈ Zdn with |x− y| ≥ k.
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B(0, k)

B(0, 2k)

B(0, 4k)

X(0)

X(τ04k)

X(σ1
2k)

X(τ14k)

X(σ2
2k)

Figure 1.2: Assume that d ≥ 8 and that k ∈ N with d ≥ 8k. Let X
be a lazy random walk on Zdn and that X(0) = x with |x − y| = k. In
Proposition 1.2.18, we show that G(x, y) ≤ Ckd

−k where Ck > 0 is a con-
stant depending only on k . By translation, we may assume without loss of
generality that |x| = k and y = 0. The idea of the proof is to first invoke
Lemma 1.2.15 to show that X escapes to ∂B(0, 4k) with probability at least
1 − Ck,1d−k. We then decompose the path of X into successive excursions

{X(σj2k), . . . , X(τ j4k), . . . , X(σj+1
2k )} between ∂B(0, 2k) back to itself through

∂B(0, 4k). By Lemma 1.2.15, we know that each excursion hits 0 with prob-
ability bounded by C2k,1d

−2k and Lemma 1.2.17 implies that each excursion
takes length ckdn

2 with probability at least pk > 0. Consequently, the result
follows from a simple stochastic domination argument.

Proof. See Figure 1.2 for an illustration of the proof. By translation, we
may assume without loss of generality that y = 0; let k = |x|. Let τ0 be the
first time t that |X(t)| = 0. The strong Markov property implies that

G(x, y) ≤ P[τ0 > tu] + (1−P[τ0 > tu])G(x, x).

Consequently, it suffices to show that for each k ∈ N, there exists constants
Ck, C0 > 0 such that

P[τ0 > tu] ≤ Ck
dk

and (1.2.44)

G(x, x) ≤ C0. (1.2.45)

We will first prove (1.2.44); the proof of (1.2.45) will be similar.
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Let N be a geometric random variable with success probability C2kd
−2k

where C2k is the constant from Lemma 1.2.15. Let (ξj) be a sequence of
independent random variables with P[ξj = c2kdn

2] = p2k and P[ξj = 0] =
1− p2k where c2k, p2k are the constants from Lemma 1.2.17 independent of
N . We claim that τ0 is stochastically dominated from below by

∑Nζ−1
j=1 ξj

where ζ is independent of N and (ξj) with P[ζ = 0] = Ckd
−k = 1 −P[ζ =

1]. Indeed, to see this we let σ0
k = 0 and let τ0

4k be the first time t that

|X(t)| = 4k. For each j ≥ 1, we inductively let σj2k be the first time t

after τ j−1
4k that |X(t)| = 2k and let τ j4k be the first time t after σj2k that

|X(t)| = 4k. Let Ft be the filtration generated by X. Lemma 1.2.15 implies
that the probability that X hits 0 in {σj2k, . . . , τ

j
4k} given F

σj2k
is at most

C2kd
−2k for each j ≥ 1 where C2k > 0 only depends on 2k. This leads to

the success probability in the definition of N above. The factor ζ is to take
into account the probability that X reaches distance 2k before hitting 0.
Moreover, Lemma 1.2.17 implies that P[σj2k − τ

j−1
4k ≥ c2kdn

2|F
τ j4k

] ≥ p2k.

This leads to the definition of the (ξj) above. This implies our claim.
To see (1.2.44) from our claim, an elementary calculation yields that

P[Nζ ≤ C−1
2k d

k] ≤ P[N ≤ C−1
2k d

k or ζ = 0] ≤ 2d−k + Ckd
−k.

We also note that

P

 m∑
j=1

ξj ≤
pkckmn

2

2

 ≤ e−cm
for some constant c > 0. Combining these two observations along with a
union bound implies (1.2.44). To see (1.2.45), we apply a similar argument
using the second assertion of Lemma 1.2.15.

Now that we have proved Proposition 1.2.14 and Proposition 1.2.18, we
are ready to check the criteria of Assumption 1.2.2.

Part (1)

By [83, Proposition 1.14] with τ+
x = min{t ≥ 1 : X(t) = x}, we have

that Ex[τ+
x ] = |Zdn|. Applying Proposition 1.2.18, we see that there exists

constants d0, r > 0 such that if d ≥ d0, then

G(x, y) ≤ 1/2 for all |x− y| ≥ r. (1.2.46)

Proposition 1.2.14 implies that there exists n0 such that if n ≥ n0 and
3 ≤ d < d0 then (1.2.46) likewise holds, possibly by increasing r (clearly,
part (1) holds when d ≤ d0 and n ≤ n0; note also that we may assume
without loss of generality that d0, n0 are large enough so that the diameter
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of the graph is at least 2r). Let τr be the first time t that |X(t)−X(0)| = r.
We observe that there exists ρ0 = ρ0(r) > 0 such that

Px[τr < τ+
x ] ≥ ρ0 (1.2.47)

uniform in n, d since in each time step there are d directions in which X(t)
increases its distance from X(0). By combining (1.2.46) with (1.2.47), we
see that Px[τ+

x ≥ tu(G)] ≥ ρ1 > 0 uniform d ≥ d0. Let Ft be the filtration
generated by X. We consequently have that

Ex[τ+
x ] ≥ Ex[τ+

x 1{τ+
x ≥tu(G)}] = Ex

[
Ex[τ+

x |Ftu(G)]1{τ+
x ≥tu(G)}

]
≥ Ex

[
EX(tu(G))[τx]1{τ+

x ≥tu(G)}
]
≥ ρ1

(
1− 1

2e

)
Eπ[τx].

That is, there exists ρ2 > 0 uniform in d ≥ d0 such that Ex[τ+
x ] ≥ ρ2Eπ[τx].

Hence by [83, Lemma 10.2], we have that thit(Z
d
n) ≤ K1|Zdn| where K1 =

2/ρ2 is a uniform constant.

Remark 1.2.19. There is another proof of Part 1 which is based on eigen-
functions. In particular, we know that

thit(Z
d
n) ≤ 2Eπ[τx] = 4

∑
i

1

1− λi

where the λi are the eigenvalues of simple random walk on Zdn distinct from
1; the extra factor of 2 in the final equality accounts for the laziness of
the chain. The λi can be computed explicitly using [83, Lemma 12.11] and
the form of the λi when d = 1 which are given in [83, Section 12.3]. The
assertion follows by performing the summation which can be accomplished
by approximating it by an appropriate integral.

Part (2)

It follows from Proposition 1.2.18 that there exist constants C > 0 and
d0 ≥ 3 such that

G(x, y) ≤ C

d
for x, y ∈ Zdn with |x− y| = 1 (1.2.48)

provided d ≥ d0. Consequently, there exists K ∈ N which does not depend
on d ≥ d0 such that

2K(5/2)KGK(x, y) = O

(
2K

(
5/2

d

)K)
(1.2.49)

It follows by combining (1.2.36) and (1.2.37) that we have that

tu(Zdn)

trel(Zdn)
= O(log d). (1.2.50)
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Combining (1.2.49) with (1.2.50) shows that part (2) of Assumption 1.2.2 is
satisfied provided we take K2 = K large enough. Moreover, (1.2.50) clearly
holds if 3 ≤ d < d0 by Proposition 1.2.14.

Part (3)

We first note that it follows from (1.2.36), (1.2.37), Proposition 1.2.14, and
Proposition 1.2.18 that there exists constants C > 0 such that n∗ for Zdn is
at most Cd2n2 log d for all d ≥ 3. To check this part, we need to show that
there exists K3 > 0 such that

G∗(n∗) ≤ K3

(
dn2 + d log n

log d+ log n

)
. (1.2.51)

We are going to prove the result by considering the regimes of d ≤
√

log n
and d >

√
log n separately.

Case 1: d <
√

log n.
From (1.2.51) it is enough to show that G∗(n∗) ≤ Kdn2/ log n. We can

bound G∗(n∗) in this case as follows. Let D = (d log d log n)1/(
1
2d−1). By

Proposition 1.2.14, we can bound from above the expected amount of time
that X starting at 0 in Zdn spends in the L1 ball of radius D by summing
radially:

D∑
k=1

C1

d

(
4d

π

)d/2
k1−d/2 · 2d(2k)d−1

≤C1

(
16d

π

)d/2 D∑
k=1

kd/2 ≤ C2

d

(
16d

π

)d/2
D1+d/2 ≤ C3n(d log d log n)5

for constants C1, C2, C3 > 0, where we used that dd/2 ≤ n. We also note
that 2d(2k)d−1 is the size of the L∞ ball of radius k. The exponent of 5
comes from the inequality

1
2d+ 1
1
2d− 1

≤ 5 for all d ≥ 3.

We can estimate G∗(n) by dividing between the set of points which have
distance at most D to 0 and those whose distance to 0 exceeds D by:

G∗(n∗) ≤C3n(d log d log n)5 + C4D
1−1

2dn∗

≤C3n(d log d log n)5 +
C4 · Cd2n2 log d

d log d log n
,

where C4 > 0 is a constant and we recall that C > 0 is the constant from
the definition of n∗. This implies the desired result.
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Case 2: d ≥
√

log n.
In this case, we are going to employ Proposition 1.2.18 to bound G∗(n∗).

The number of points which have distance at most k to 0 is clearly 1+(2d)k.
Consequently, by Proposition 1.2.18, we have that

G∗(n∗) ≤

(
C0 +

3∑
k=1

Ckd
−k(2d)k

)
+ C4d

−4n∗

≤C5 +
C6(log d)n2

d2

for some constants C5, C6 > 0. Since d2 ≥ log n, this is clearly dominated
by the right hand side of (1.2.51) (with a large enough constant), which
completes the proof in this case.

1.3 Mixing and relaxation time for random walk
on wreath product graphs

1.3.1 The generalized lamplighter model

Let us recall the general setting of the random walk on the wreath product
H oG first. Suppose that G and H are finite connected graphs with vertices
V (G), V (H) and edges E(G), E(H), respectively. We refer to G as the base
and H as the lamp graph, respectively. Let X (G) = {f : V (G) → H} be
the set of markings of V (G) by elements of H. The wreath product H o G
is the graph whose vertices are pairs (f, x) where f = (f(v))v∈V (G) ∈ X (G)
and x ∈ V (G). There is an edge between (f, x) and (g, y) if and only if
(x, y) ∈ E(G), (f(x), g(x)) , (f(y), g(y)) ∈ E(H) and f(z) = g(z) for all
z /∈ {x, y}. Suppose that P and Q are transition matrices for Markov chains
on G and on H, respectively. The generalized lamplighter walk X� (with
respect to the transition matrices P and Q) is the Markov chain on H o G
which moves from a configuration (f, x) by

1. picking y adjacent to x in G according to P , then

2. updating each of the values of f(x) and f(y) independently according
to Q on H.

The state of lamps f(z) at all other vertices z ∈ G remain fixed. It is easy to
see that if P and Q are irreducible, aperiodic and reversible with stationary
distribution πG and πH , respectively, then the unique stationary distribution
of X� is the product measure

π�
(
(f, x)

)
= πG(x) ·

∏
x∈V (G)

πH (f(x)) ,
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and X� is itself reversible. In this section, we will be concerned with the
special case that P is the transition matrix for the lazy random walk on
G, see (1.2.1). We further assume that the transition matrix Q on H is
irreducible and aperiodic. This and lazyness on G guarantees that we avoid
issues of periodicity.

a

a

W

Figure 1.3: A typical state of the generalized lamplighter walk. Here H =
Z4 and G = Z2

4, the red bullets on each copy of H represents the state of the
lamps over each vertex v ∈ G and the walker is drawn as a red W bullet.

1.3.2 Main Results

In order to state our general result, we first need to review some basic
terminology from the theory of Markov chains. Recall the definitions of ε-
mixing time (1.2.12), the relaxation time (1.2.3), the maximal hitting time
(1.2.4) from Section 1.2. A few changes, we will set tmix(G) := tmix(G, 1

4)
throughout this section and we denote the base graph by simply G.

We further define the random cover time τcov is the first time when all
vertices have been visited by the walker X, and the cover time tcov(G) is

tcov(G) := max
x∈V (G)

Ex[τcov]. (1.3.1)

At this moment, for technical reasons (we just found a mistake in the theo-
rems we cited before) we state our main theorems under a weaker assumption
than the highest generality. First we need to define the concept of strong
stationary times.

Definition 1.3.1. A randomized stopping time τ is called strong stationary
time for the Markov chain Xt on G if

Px [Xτ = y, τ = t] = π(y)Px[τ = t],
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that is, the place where τ stops is independent of the time when it stops.

The adjective randomized means that the stopping time can depend on some
extra randomness, not just purely the trajectories of the Markov chain, for
a precise definition see [83, Section 6.2.2].

Definition 1.3.2. A state h(x) ∈ V (G) is called a halting state for a stop-
ping time τ and initial state x if {Xt = h(x)} implies {τ ≤ t}.

Our main results are summarized in the following theorem:

Theorem 1.3.3. Let us assume that G and H are connected graphs with
G regular and the Markov chain on H is ergodic and reversible. Then there
exist universal constants c1, C1, c2, C2 such that the mixing and the relaxation
time of the generalized lamplighter walk on H o G satisfies

c1 ≤
trel(H oG)

thit(G) + |G|trel(H)
≤ C1, (1.3.2)

c2 (tcov(G) + trel(H)|G| log |G|+ |G|tmix(H)) ≤ tmix(H oG)

tmix(H oG) ≤ C2

(
tcov(G) + |G|tmix(H,

1

|G|
)

)
.

(1.3.3)

If further the Markov chain is such that

(A) There is a strong stationary time τH for the Markov chain on H which
has a halting state h(x) for every initial starting point x ∈ H,

then the upper bound of 1.3.3 is sharp.

Outline

The remainder of this section is structured as follows. In Section 1.3.3
we state a few necessary theorems and lemmas about the Dirichlet form,
strong stationary times, different notions of distances and their relations. In
Lemmas 1.3.6 and 1.3.8 we construct a crucial stopping time τ� and a strong
stationary time τ�2 on H oG which we will use several times throughout the
proofs later. Then we prove the main theorem about the relaxation time in
Section 1.3.4, and the mixing time bounds in Section 1.3.5.

Notations

Throughout the section, objects related to the base or the lamp graph will
be indexed by G and H, respectively, and � always refers to an object related
to the whole H oG. Unless misleading, G and H refers also to the vertex set
of the graphs, i.e. v ∈ G means v ∈ V (G). Pµ,Eµ denotes probability and
expectation under the conditional law where the initial distribution of the
Markov chain under investigation is µ. Similarly, Px(.) = P(.|X0 = x).
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1.3.3 Preliminaries

In this subsection we collect the preliminary lemmas to be able to carry
through the proofs quickly afterwards. The reader familiar with notions of
strong stationary times, separation distance, and Dirichlet forms might want
jump forward to Lemmas 1.3.6 and 1.3.8 immediately, and check the other
lemmas here only when needed.

The first lemma is a common useful tool to prove lower bounds for relax-
ation times, by giving the variational characterization of the spectral gap.
First we start with a definition.

Let P be a reversible transition matrix with stationary distribution π
on the state space Ω and let Eπ[φ] :=

∑
y∈Ω φ(y)π(y). The Dirichlet form

associated to the pair (P, π) is defined for functions φ and η on Ω by

E(φ, η) := 〈(I − P )φ, η〉π =
∑
y∈Ω

(I − P )φ(y)η(y)π(y).

It is not hard to see [83, Lemma 13.11] that

E(φ) := E(φ, φ) =
1

2
Eπ

[
(φ(X1)− φ(X0))2

]
(1.3.4)

The next lemma relates the spectral gap of the chain to the Dirichlet form
(for a short proof see [49] or [83, Lemma 13.12]):

Lemma 1.3.4 (Variational characterization of the spectral gap). The spec-
tral gap γ = 1− λ2 of a reversible Markov Chain satisfies

γ = min
φ:Varπφ 6=0

E [φ]

Varπφ
, (1.3.5)

where Varπφ = Eπ[φ2]− (Eπ[φ])2 .

A very useful object to prove the upper bound on trel and both bounds
for tmix is the concept of strong stationary times. Recall the definition from
(1.3.1). It is not hard to see ([83, Lemma 6.9]) that the defining equality is
equivalent to

Px [Xt = y, τ ≤ t] = π(y)Px[τ ≤ t]. (1.3.6)

To be able to relate the tail of the strong stationary times to the mixing time
of the graphs, we need another distance from stationary measure, called the
separation distance:

sx(t) := max
y∈Ω

[
1− P t(x, y)

π(y)

]
. (1.3.7)

The relation between the separation distance and any strong stationary time
τ is the following inequality from [49] or [83, Lemma 6.11]:

∀x ∈ Ω : sx(t) ≤ Px(τ > t). (1.3.8)

34



Throughout the section, we will need a slightly stronger result than (1.3.8),
namely from the proof of (1.3.8) [83, Lemma 6.11] it follows that in (1.3.8)
equality holds if τ has a halting state h(x) for x. Unfortunately, we just
point out that the [83, Remark 6.12] is not true and the statement can
not be reversed: the state h(x, t) maximizing the separation distance at
time t can also depend on t and thus the existence of a halting state is not
necessarily needed to get equality in (1.3.8).

On the other hand, one can always construct τ such that (1.3.8) holds
with equality for every x ∈ Ω. This is a key ingredient to our proofs, so we
cite it as a Theorem (with adjusted notation to the present section).

Theorem 1.3.5. [Aldous, Diaconis] [2, Proposition 3.2] Let (Xt, t ≥ 0) be
an irreducible aperiodic Markov chain on a finite state space Ω with initial
state x and stationary distribution π, and let sx(t) be the separation distance
defined as in (1.3.7). Then

1. if τ is a strong stationary time for Xt, then sx(t) ≤ Px(τ > t) for all
t ≥ 0.

2. Conversely, there exists a strong stationary time τ such that sx(t) =
Px(τ > t) holds with equality.

Combining these, we will call a strong stationary time τ separation opti-
mal if it achieves equality in (1.3.8). Mind that every stopping time obeying
halting states is separation optimal, but the reversed statement is not neces-
sarily true. The next two lemmas, which we will use several times, constructs
two stopping times for the graph H oG. The first one will be used to lower
bound the separation distance and the second one upper bounds it.

We start with introducing the notation

Lv(t) = 2

t∑
i=0

1(Xi = v)− δX0,v − δXt,v (1.3.9)

for the number of moves on the lamp graph Hv, v ∈ G by the walker up to
time t. Slightly confusing, we call it the local time at vertex v ∈ G.

Lemma 1.3.6. Let τH be any strong stationary time for the Markov chain
on H. Take independent copies of (τH(v))v∈G and define the stopping time
τ� for X� by

τ� := inf {t : ∀v ∈ G : τH(v) ≤ Lv(t)} . (1.3.10)

Then, for τ� we have

P(f
0
,x0)

[
X�t = (f, x), τ� = t

]
=
∏
v∈G

πH(f(v))P(f
0
,x0) [Xt = x, τ� = t] .

(1.3.11)
If further τH has halting states then the vectors (h(f0(v)), y) are halting state
vectors for τ� for every y ∈ G.
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We postpone the proof and continue with a corollary of the lemma:

Corollary 1.3.7. Let τH be a strong stationary time for the Markov chain
on H which has a halting state h(d) for any d ∈ H. Then define τ� as
in Lemma 1.3.6. Then for the separation distance on the lamplighter chain
H oG the following lower bound holds for any starting state (f

0
, x0):

s(f
0
,x0)(t) ≥ P(f

0
,x0) [τ� > t] .

Proof. Observe that reaching the halting state vector (h(f0(v)), x) implies
the event τ� ≤ t so we have

1−
P(f

0
,x0) [X�t = (h(f0(v)), x)]

πG(x)
∏
v∈G

πH (h(f0(v)))
= 1−

P(f
0
,x0) [X�t = (h(f0(v)), x), τ� ≤ t]
πG(x)

∏
v∈G

πH (h(f0(v)))

(1.3.12)
Now pick a vertex xx0,t ∈G which minimizes P [Xt = xx0,t|τ� ≤ t] /πG(xx0,t).
This quotient is less than 1 since both the numerator and the denominator
are probability distributions on G. Then, using this and Lemma 1.3.6, the
right hand side of (1.3.12) equals

1−
P(f

0
,x0) [Xt = xx0,t|τ� ≤ t] P(f

0
,x0)[τ

� ≤ t]
πG(xx0,t)

≥ 1−P(f
0
,x0) [τ� ≤ t] .

Clearly the separation distance is larger than the left hand side of (1.3.12),
and the proof of the claim follows. Note that the proof only works if τH has
a halting state and thus it is separation-optimal.

Lemma 1.3.8. Let τH be the stopping time defined as in Lemma 1.3.6, and
let τG(x) be a strong stationary time for G starting from x ∈ G and define
τ�2 by

τ�2 := τ� + τG(Xτ�) (1.3.13)

Then, τ�2 is a strong stationary time for H oG.

Proof of Lemma 1.3.6. First we show that (1.3.11) holds using the condi-
tional independence of τH(v)-s given the number of moves Lv(t) on the
lamp graphs H(v), v ∈ G. Clearly, conditioning on the trajectory of the
walker {X1, . . . , Xt−1, Xt = x} := X[1, t] contains the knowledge of Lv(t)-s
as well. We will omit to note the dependence of P on initial state (f

0
, x0)

for notational convenience. The left hand side of condition (1.3.6) equals

P
[
X�t = (f, x), τ� ≤ t

]
=
∑
X[1,t]

P
[
X�t = (f, x), τ� ≤ t|X[1,t]

]
P
[
X[1,t]

]
.

Recall that Z stands for the Markov chain on the lamp graph H. Due to
(1.3.6) and τH being strong stationary for H we have for all v ∈ G that

P[ZLv(t) = f(v), τH(v) ≤ Lv(t)|X[1,s]] = πH(f(v)) ·P[τH(v) ≤ Lv(t)|X[1,t]].
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Now we use that τH(v)-s are conditionally independent given the local times
to see that

P
[
X�t = (f, x), τ� ≤ t|X[1,t]

]
= P

[
∀v ∈ G : ZLv(t) = f(v), τH(v) ≤ Lv(t), Xt = x, |X[1,t]

]
=
∏
v∈G

πH(f(v))
∏
v∈G

P
[
τH(v) ≤ Lv(t)|X[1,t]

]
Note that the second product gives exactly P

[
τ� ≤ t|X[1,t]

]
, yielding

P
[
Xt = (f, x), τ� ≤ t

]
=
∏
v∈G

πH(f(v))
∑
X[1,t]

P
[
τ� ≤ t|X[1,t]

]
P[X[1,t]]

(1.3.14)
As Xt = x remains fixed over the summation, summing over all possible
trajectories yields

P[Xt = (f, x), τ� ≤ t] =
∏
v∈G

πH(f(v))P[Xt = (f, x), τ� ≤ t].

To turn the inequality τ� ≤ t inside the probability to equality can be done
the same way as in (1.3.6) and left to the reader. To see that the vector of
halting states (h(f0(v)), y) is a halting state for τ� for any y ∈ G is based
on the simple fact that reaching the halting state vector (h(f(v))v∈G, y)
means that all the halting states h(f(v)), v ∈ G have been reached on all
the lamp graphs H(v), v ∈ G-s. Thus, by definition of the halting states, all
the strong stationary times τH(v) have happened. Then, by its definition,
τ� has happened as well.

Proof of Lemma 1.3.8. The intuitive idea of the proof is based on the fact
that τG is conditionally independent of τH -s and thus the lamp graphs stay
stationary after reaching τ�, and stationarity on G is reached by adding
the term τG(Xτ�). The proof is not very difficult but it needs a delicate
sequence of conditioning. To have shorter formulas, we write shortly P for
P(f

0
,x0). First we condition on the events {τ� = s,X�s = (g, y)} and make

use of (1.3.11) from Lemma 1.3.6.

P
[
X�t = (f, x), τ�2 = t

]
=

∑
s≤t;(g,y)

P
[
X�t = (f, x), τ�2 = t|τ� = s,X�s = (g, y)

]
·
∏
v∈G

πH(g(v)) ·P [τ� = s,Xs = y] .

(1.3.15)
Now for the conditional probability inside the sum on the right hand side
we have

P
[
X�t = (f, x), τ�2 = t|τ� = s,X�s = (g, y)

]
= P

[
X�t = (f, x); τG(y) = t− s|X�s = (g, y)

]
37



where we used in the last step that τG is only depending on y. We claim
that ∑

g

(
P(g,y)

[
X�t−s = (f, x), τG(y) = t− s

] ∏
v∈G

πH(g(v))

)

= Py[Xt−s = x, τG(y) = t− s]
∏
v∈G

πH(f(v))

= πG(x)Py[τG = t− s]
∏
v∈G

πH(f(v)).

The first equality holds true since τG(y) is independent of the lampgraphs
and the transition rules of X� on H o G tells us that the lamp-chains stay
stationary. We omit the details of the proof. The second equality is just
the strong stationarity property of τG. Thus, using this and rearranging the
order of terms on the right hand side of (1.3.15) we end up with∑

s≤t,y∈G
Py[τG = t− s]P[τ� = s,Xs = y] · πG(x)

∏
v∈G

πH(f(v)).

Then, realizing that the sum is just P[τ� + τG(Xτ�) = t] finishes the proof.

We continue with a lemma which relates the separation distance to the
total variation distance: Let us define first

dx(t) := ‖P t(x, .)− π(.)‖TV =
1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ . (1.3.16)

The total variation distance of the chain from stationarity is defined as:

d(t) := max
x∈Ω

dx(t).

The next lemma relates the total and the separation distance:

Lemma 1.3.9. For any reversible Markov chain and any state x ∈ Ω, the
separation distance from initial vertex x satisfies:

dx(t) ≤ sx(t) (1.3.17)

sx(2t) ≤ 4d(t) (1.3.18)

Proof. For a short proof of (1.3.17) see [49] or [83, Lemma 6.13], and combine
[83, Lemma 19.3] with a triangle inequality to conclude (1.3.18).

We will also make use of the following lemma: ([83, Corollary 12.6])

Lemma 1.3.10. For a reversible, irreducible and aperiodic Markov chain,

lim
t→∞

d(t)1/t = λ∗,

with λ∗ = max{|λ| : λ eigenvalue of P, λ 6= 1}.
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A fundamental step to prove Lemma 1.3.10 is the inequality stating that
for all x ∈ Ω we have

dx(t) ≤ sx(t) ≤ λt∗
πmin

, (1.3.19)

with πmin = miny∈Ω π(y). Follows from [83, Equation (12.11)].
We note that Lemma 1.3.9 implies that the assertion of Lemma 1.3.10

stays valid if we replace d(t)1/t by the separation distance s(t)1/t.

1.3.4 Relaxation time bounds

Proof of the lower bound

We prove c1 = 1/(16 log 2). First note that it is enough to prove that thit(G)
and |G|trel(H) are both lower bounds, hence their average is a lower bound
as well. First we start showing the latter.

Let us denote the second largest eigenvalue of Q by λH and the cor-
responding eigenfunction by ψ. It is clear that EπH (ψ) = 0 and we can
normalize it such that VarπH (ψ) = EπH (ψ2) = 1 holds. Let us define

φ : V (H oG)→ R, φ((f, x)) =
∑
w∈G

ψ(f(w)),

thus φ is actually not depending on the position of the walker, only on the
configuration of the lamps. Let X�t = (F t, Xt) be the lamplighter chain
with stationary initial distribution π�. In the sequel we will calculate the
Dirichlet form (1.3.4) for φ at time t, first conditioning on the path of the
walker:

Et[φ] =
1

2
Eπ� [(φ(X�t )− φ(X�0 ))2]

=
1

2
Eπ�

(
Eπ� [(φ(X�t )− φ(X�0 ))2|X0, . . . Xt]

) (1.3.20)

We remind the reader that in each step of the lamplighter walk, the state
of the lamp graph H(v) is refreshed both at the departure and arrival site
of the walker. Thus, knowing the trajectory of the walker implies that we
also know the number of steps made by the Markov chain Z(v) on H(v)
equals Lv(t), (twice the number of visits of the vertex v ∈ G). Moreover,
conditioning on the number of moves made by Z(v) on each H(v), v ∈ G, the
collection of random walks (Z(v))v∈G on the lamp graphs are independent.

We can calculate the conditional expectation on the right hand side of
(1.3.20) by using the argument above and the fact that EπH (ψ) = 0 as
follows:

Eπ�
[
(φ(X�t )− φ(X�0 ))2|X0, . . . Xt

]
=
∑
w∈G

Eπ�

[(
ψ(ZLw(t))− ψ(Z0)

)2∣∣Lw(t)
]

(1.3.21)
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Next, the product form of the stationary measure π� ensures that we can
move to πH inside the sum and condition on the starting state Z0:

Eπ�

[(
ψ(ZLw(t))− ψ(Z0)

)2∣∣Lw(t)
]

= 2EπHψ
2−2EπH

[
ψ(Z0)EZ0 [ψ(ZLw(t))|Z0]

]
,

Since ψ was chosen to be the second eigenfunction forQ, clearly EZ0 [ψ(ZLw(t))]

= λ
Lw(t)
H ψ(Z0). Using the normalization EπH [ψ2] = 1, we arrive at

Eπ�

[
(φ(X�t )− φ(X�0 ))2 |X0, . . . Xt

]
= 2|G| − 2

∑
w∈G

λ
Lw(t)
H (1.3.22)

Since
∑

w∈G Lw(t) = 2t and the function λxH is convex, Jensen’s inequality
implies that ∑

w∈G
λ
Lw(t)
H ≥ |G| · λ2t/|G|

H .

Combining this with (1.3.22) and (1.3.20) and setting t := t∗ = |G|trel(H) =
|G|/(1− λH) we arrive at

Et(φ) ≤ |G|
(

1− e2
log λH
1−λH

)
≤ |G|

(
1− 2−4−1

)
,

where in the last step we assumed λH > 1/2, since in this case we have
(1 − λH)−1 log λH > −2 log 2. On the other hand, if λH < 1/2, than we
mix immediately after visiting the vertex w, thus, we will use the other
lower bound thit(G). Dividing by Varπ�φ = |G|, and using the variational
characterization of the spectral gap in Lemma 1.3.4 yields

γt∗ ≤ 1− 2−5.

Since γt is by definition the spectral gap of the chain at time t, we have

1− λ2(H oG)t
∗ ≤ 1− 2−5. (1.3.23)

Thus
5 log 2 ≥ t∗ (1− λ2(H oG)) ,

so we get a lower bound trel(H oG) ≥ 1
5 log 2 |G|trel(H).

To get the lower bound thit(G)/4 we adjust the proof for 0 − 1 lamps
(H = Z2) [83, Theorem 19.1] to our setting. First pick a vertex w ∈ G which
maximizes the expected hitting time Eπ(τw). Similarly as before, we will use
the second eigenfunction ψ with eigenvalue λH with Eπ(ψ) = 0,Eπ(ψ2) = 1
and define

φ
(
(f, x)

)
:= ψ(f(w)).

Easy to see with the same conditioning argument we used in (1.3.21) and
(1.3.22) that the Dirichlet form at time t equals

Et(φ) = 1−E
[
λ
Lw(t)
H

]
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Now we will show that E
[
λ
Lw(t)
H

]
≥ 1/4. To see this we first note that for

any t we have
Ev(τw) ≤ t+ thitPv[τw > t]

Eπ(τw) ≤ t+ thitPπ[τw > t]

To see the first line: either the walk hits w before time t, or the expected
additional time it takes to arrive at w is bounded by thit regardless of where
it is at time t. The second line follows by averaging over πH .

Next, [83, Lemma 10.2] states that thit ≤ 2 maxv Eπ[τv] holds for every
irreducible Markov chain. We exactly picked w such that it maximizes
Eπ(τv), so we have thit ≤ 2Eπ[τw], so multiplying the previous equation by
2 and combining gives

thit ≤ 2t+ 2thitPπ[τw > t]

Now substituting t = thit/4 and rearranging terms results in

Pπ

[
τw >

thit

4

]
≥ 1

4
.

Since {Lw(thit/4) = 0} = {τw > thit/4}, we can use this inequality to obtain
the upper bound

Ethit/4(φ) = 1−Eπ�

[
λ
Lw(thit/4)
H

]
≤ 1−P[τw > thit/4] ≤ 1− 1

4
=

3

4
.

Analogous to the last lines of the proof of the lower bound above, (see
(1.3.23)) we obtain the other desired lower bound:

trel(H) ≥ 1

2 log 2

1

4
thit(G).

Putting together the two bounds we get

trel(H oG) ≥ max

{
1

8 log 2
thit(G),

1

5 log 2
|G|trel(H)

}
≥ 1

16 log 2
(thit(G) + |G|trel(H)) .

Proof of the upper bound

To prove the upper bound, we will estimate the tail behavior of the strong
stationary time τ�2 in Lemma 1.3.8, relate it to s�(t), the separation distance
on H oG, and then use Lemmas 1.3.10 and 1.3.9 to see that s�(t)1/t → λ2.
Use separation-optimal τH and τG in the construction of τ�2 . The existence
is guaranteed by Theorem 1.3.5.
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So, combining (1.3.8) and the fact that τ� happens when all the stopping
times τH(v), v ∈ G have happened on the lamp graphs, by union bound we
have for any choice of 0 < α < 1

s�(f,x)(t) ≤ P(f,x) [τ�2 > t] ≤ P(f,x) [τ� > αt] + P(f,x) [τ�2 > t|τ� < αt]

≤ P[τcov > αt/3] (1.3.24)

+ P
[
∃w ∈ G : Lw(αt) < αt

2|G|
∣∣τcov ≤ αt/3

]
(1.3.25)

+ P

[
∃w ∈ G : τH(w) ≥ Lw(αt)

∣∣∀v ∈ G : Lv(αt) ≥
αt

2|G|

]
(1.3.26)

+ max
(g,y)

P(g,y) [τG > (1− α)t] (1.3.27)

Namely, there are four possibilities: The first option is that there is a state
w ∈ G which is not hit yet, i.e. the cover time of the chain is greater than
αt/3: giving the term (1.3.24). The constant 1/3 could have been chosen
differently, we picked αt/3 such that the remaining 2αt/3 time is still enough
to gain large enough local time on the vertices v ∈ G. Secondly, even though
any state w on the graph G is reached before time αt/3, the remaining time
was not enough to have at least αt/2|G| many moves on some lamp graph
H(w), term (1.3.25). The third option is that even though there have been
done many moves on all the lamp graphs, there is a vertex w ∈ G where
τH(w) has not happened yet, yielding the term (1.3.26). We will handle the
three terms separately. The fourth term handles the case where the strong
stationary time τG is too large. (We will drop the factor α for convenience
in the first three formulas.)

We can estimate the first term (1.3.24) by a union bound:

P[τcov > t/3] ≤ P[∃w : τw > t/3] ≤ |G|2e−
log 2

6
t
thit , (1.3.28)

where thit is the maximal hitting time of the graph G, see (1.2.4). To see
this, use Markov’s inequality on the hitting time of w ∈ G to obtain that
for all starting states v ∈ G we have Pv[τw > 2thit] ≤ 1/2, and then run the
chain in blocks of 2thit. In each block we hit w with probability at least 1/2,
so we have

Pv[τw > K(2thit)] ≤
1

2K
.

To get it for general t, we can move from bt/thitc to t/thit by adding an extra
factor of 2, and (1.3.28) immediately follows by a union bound.

For the third term (1.3.26) we claim the following upper bound holds:

P
[
∃w : τH(w) ≥ Lw(t)

∣∣∀v : Lv(t) >
t

2|G|

]
≤ |G| 1

πmin(H)
e
− t

2|G|trel(H) .

(1.3.29)
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To see this we estimate the probability of the event {τH(w) ≥ Lw(t)
∣∣Lw(t) ≥

t
2|G|} on a single lamp graph and then use union bound to loose the factor

|G| on the right hand side. First note that according to Lemma 1.3.10, the
tail of the strong stationary times τH are driven by λtH . More precisely,
using the inequality (1.3.19) we have that for any initial state h ∈ H:

Ph

[
τH(w) ≥ t

2|G|

]
≤ sH

(
t

2|G|

)
≤ 1

πmin(H)
λ
t/2|G|
H .

≤ 1

πmin(H)
exp

{
−(1− λH)t

2|G|

}
.

Since we have made at least Lw(t) ≥ t
2|G| steps on each coordinate, the

claim (1.3.29) follows. The fourth term (1.3.27) can be handled analogously
and yields an upper bound exp{−c(1−λG)t} which would lead to a term of
order trel(G), clearly dominated by thit(G).

The intuition behind the estimates below for the second term (1.3.25)
is that since the total time was at least 2t/3 after hitting, regularity of G
implies that the average number of moves on each lamp graph equals 4t/3|G|
by the double refreshment at any visit to the vertex. Thus, the probability
of having less than t/2|G| moves must be small.

More precisely, we introduce the excursion-lengths to a vertex w ∈ G:
Let us define for all w ∈ G the first return time to state w as

R(w) = inf{t > 0 : Xt = w|X0 = w}.

The strong Markov property implies that the length of the i-th excursion
Ri(w), defined as the time spent between the (i − 1)th and ith visit to w,
are i.i.d random variables distributed as the first return time R(w).

Thus, having not enough local time on some site w ∈ G can be expressed
in terms of the excursion lengths Ri(w)-s as follows:

P

[
∃w : Lw(t) ≤ t

2|G|
∣∣tcov ≤

t

3

]
≤ |G|Pw

t/4|G|∑
i=1

Ri(w) ≥ 2t

3

 , (1.3.30)

since conditioning on hitting before t/3 ensures that we had at least 2t/3
steps to gain the t/4|G| visits to w, and by the definition (1.3.9) of Lv(t),
this guarantees that Lw(t) < t/2|G|.

We aim to estimate the right hand side of (1.3.30) using the moment
generating function of the first return time R(w). To be able to carry out
the estimates we need a tail behavior on the return times. A very similar
argument can be used than the one we used for the tail of the cover time
(1.3.28), namely the following holds:

Pw [R(w) > 2thit] = Pw [X1 6= w] E [PX1(τw > 2thit|X1)]

≤ E[EX1(τw)]

2thit
≤ 1

2
.
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Running the chains in blocks of 2thit, one can see that in each block the
chain has a chance at least 1/2 to return to w, so we have for each t > 2thit

P [Rw > t] ≤ 2

(
1

2

) t
2thit

= 2 exp

{
− log 2

2

t

thit

}
, (1.3.31)

where the factor 2 comes from ignoring to take the integer part of t/thit.
We can use this tail behavior to estimate the moment generating function

E
[
eβRw

]
≤ e2β|G| + E[eβRw1{Rw > 2|G|}]

= e2β|G| +

∫ ∞
e2β|G|

P[eβRw > z]dz

where we cut the expectation at 2|G|. Changing variables and using the
bounds in (1.3.31) yields:

E
[
eβRw

]
≤ e2β|G| +

∫ ∞
e2β|G|

P[Rw >
1

β
log z]dz

≤ e2β|G| + 2

∫ ∞
e2β|G|

z
− log 2

2βthit dz.

Setting arbitrary β < log 2/(2thit) makes the second term integrable, and
with the special choice of β = log 2

4thit
we obtain the following estimate:

E
[
eβRw

]
≤ e2β|G| + 2e−2β|G| ≤ e(2+δ)β|G| (1.3.32)

with an appropriately chosen 0 < δ < 1/3. Now we apply Markov’s inequal-
ity to the function eβx to estimate the right hand side of (1.3.30):

Pw

t/4|G|∑
i=1

Ri(w) ≥ 2t/3

 ≤ e−2
3βt ·E

[
eβRw

] t
4|G|

, (1.3.33)

where we also used the independence of the excursions Ri(w)-s. Using the
estimate in (1.3.32) to bound the right hand side we gain that

Pw

t/4|G|∑
i=1

Ri(w) ≥ 2t/3

 ≤ e−2
3βt · e(2+δ)β|G|· t

4|G|

≤ e−
1−δ̃

6 βt = exp

{
−(1− δ̃) log 2

24

t

thit

}
,

(1.3.34)
where we used β = log 2/(4thit), and modified δ̃ := 3δ/2 ≤ 1/2. Using the
relation of the local time to the excursion lengths in (1.3.30) we finally get
that the second term (1.3.25) is bounded from above by

P

[
∃w : Lw(t) ≤ t

2|G|
∣∣tcov ≤ t/3

]
≤ |G| exp

{
− log 2

48

t

thit
.

}
(1.3.35)
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Mind that all the estimates (1.3.28), (1.3.29) and (1.3.35) were independent
of the initial state (f, x) ∈ H o G, so maximizing over all possible initial
states yields us

|λ2|t ≤ 2d�(t) ≤ 2s�(t) ≤ 4|G|
πmin(H)

exp

{
− t

2|G|trel(H)

}
+ 4 exp

{
−(1− δ̃) log 2

24

t

thit

}
+ 4|G| exp

{
− log 2

6

t

thit

}
(1.3.36)

In the final step we apply Lemma 1.3.10: we take the power 1/t and limit as
t tends to infinity with fixed graph sizes |G| and |H| on the right hand side of
(1.3.4) to get an upper bound on λ2. Then we use that (1−e−x) ≤ 1/x+O(1)
and obtain the bound on trel finally:

trel(H oG) ≤ max

{
2|G|trel(H),

48

log 2
thit

}
.

This finishes the proof of the upper bound on the relaxation time.

1.3.5 Mixing time bounds

Once H has a strong stationary time τH with halting states, the idea of
the proofs is based on relating the separation distance to the tail behavior
of the stopping times τ� and τ�2 constructed in Lemmas 1.3.6 and 1.3.8,
respectively, then turn the estimates to estimates for the total variation
distance using the relations in Lemma 1.3.9. For the lower bound in the
general case, we will need slightly different methods.

Proof of the upper bound

The idea of the proof is to use appropriate quantiles of the strong stationary
time τH on H, and give an upper bound on the tail of the strong stationary
time τ�2 defined in Lemma 1.3.8. Throughout, we (only) need that τH and τG
in the construction of τ�2 are separation-optimal. The existence is guaranteed
by Theorem 1.3.5. (Thus, τH does not necessarily must have halting states.)

We start with the definition of the blanket time:

B2 := inf
t

{
∀v, w ∈ G :

Lw(t)

Lv(t)
≤ 2

}
. (1.3.37)

Let us denote
B2 := max

y∈Ω
Ey(B2) (1.3.38)

It is known from [56] that there exist universal constants C and C ′ such
that C ′tcov ≤ B2 ≤ Ctcov.
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Thus, our first goal is to show that at time

t� = 8B2 + |G|tquant
1/16|G|(τH) + tquant

1/16 (τG) := 8B2 + |G|tuH + tG

we have for any starting state (f, x) that

P(f,x)[τ
�
2 > t�] ≤ 1

4
. (1.3.39)

We remind the reader that τ�2 = τ� + τG(Xτ�) and thus the following union
bound holds:

P [τ�2 > t�] ≤ P [B2 > 8B2] + P [τ� > |G|tuH + 8B2|B2 ≤ 8B2]

+ max
v∈G

Pv [τG > tG|B2 ≤ 8B2, τ
� < 8B2 + |G|tuH ]

(1.3.40)

The first term on the right hand side is less than 1/8 by Markov’s inequality,
the third is less than 1/16 by the definitoon of the worst case quantile. The
second term can be handled by conditioning on the local time sequence of
vertices and of the blanket time: (for shorter notation we introduce t1 :=
|G|tuH + 8B2)

P [τ� > |G|tuH + 8B2|B2 ≤ 8B2] ≤

=
∑

s≤8B2,(Lv(t1))v

P
[
∃w : {τH > Lw(t1)}

∣∣ (Lv(t1))v ,B2 = s
]
·P [(Lv(t1))v ,B2 = s]

(1.3.41)
The fact that B2 ≤ 8B2 means that the number of visits of every vertex
v ∈ G must be greater than half of the average, which is at least 1

2 t
u
H . Since

Lv(t) is twice the number of visits by (1.3.9), {τH > Lw(t1)} ⊆ {τH > tuH}.
By the definition of the quantiles,

Ph [τH > tuH ] ≤ 1

16|G|

holds for every h ∈ H and v ∈ G, respectively. Applying a simple union
bound on the conditional probability on the right hand side of (1.3.41) yields

P(f,x) [τ� > t1|B2 ≤ 8B2] ≤
∑

s≤8B,(Lv(t1))v

(
|G| 1

16|G|

)
P [(Lv(t1))v ,B2 = s]

≤ 1

16
,

where we used that the sum of the probabilities on the right hand side is at
most 1. Combining these estimates with (1.3.40) yields (1.3.39). It remains
to relate the worst-case quantiles to the total variation mixing times. Here
we will make use of the separation-optimal property of τH and τG. Now just
consider the walk on G. Let us start the position of the walker on G from
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an initial state x0 ∈ G for which the maximum is attained in the definition
(1.3.45) of the quantile tquant

1/16 (τG). Then, by (1.3.18) we have that one step
before the quantile we have

1

16
≤ Px0

[
τG > tquant

1/16 (τG)− 1
]

= sx0

(
tquant
1/16 (τG)− 1

)
≤ 4d

(
1

2
(tquant

1/16 (τG)− 1)

)
.

This immediately implies that 1
2(tquant

1/16 (τG)− 1) ≤ tmix

(
G, 1

64

)
. By the sub-

multiplicative property of the total variation distance d(kt) ≤ 2kd(t)k we
have that tmix(G, 1

64) ≤ 6tmix

(
G, 1

4

)
. So we arrive at

tquant
1/16 (τG)− 1 ≤ 12tmix (G) (1.3.42)

Similarly, starting all the lamps from the position h0 where the maximum is
attained in the definition of tuH = tquant

1/16|G|(τH), one step before the quantile
we have

1

16|G|
≤ Ph0 [τH > tuH − 1] = sh0 (tuH − 1) ≤ 4d ((tuH − 1)/2)

So we have
1

2
(tquant

1/16|G|(τH)− 1) ≤ tmix

(
H, 1

64|G|

)
. (1.3.43)

On the other hand, on the whole lamplighter chain H o G we need the
other direction: For every starting state (f, x) (1.3.17) and (1.3.39) implies
that

d(f,x)(t) ≤ s(f,x)(t) ≤ P(f,x) [τ�2 > t�] ≤ 1/4

Maximizing over all states (f, x) yields

tmix(H oG) ≤ t�. (1.3.44)

Putting the estimates in (1.3.42) and (1.3.43) to (1.3.44), we get that

tmix(H oG) ≤ t� ≤ 8B2(G) + 12tmix(G) + 1 + 2|G|
(
tmix

(
H,

1

64|G|

)
+

1

2

)
.

Since B2(G) ≤ Ctcov(G), and tmix(G) ≤ 2thit ≤ 2tcov(G) for any G, the
assertion of Theorem 1.3.3 follows with C2 = 8(C + 3), where C is the
universal constant relating the blanket time B2 to the cover time tcov in
[56].

We remark why we did not make the constant C2 explicit: If the blanket
time B2 were not used in our estimates, the error probability that some
vertex w ∈ G does not have enough local time would need to be added.

This, similarly as the term (1.3.25) behaves as |G|e−c(tcov+|G|tmix(H, 1
G

))/thit .
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If we do not assume anything about the relation of thit and tcov and on
tmix(H, 1

G), then this error term will not necessarily be small. For example,
if Gn is a cycle of length n, Hn is a sequence of expander graphs, then
tcov = thit = Θ(n2), and tmix(H, 1

G) = log |H| · log |G| = log |H| log n, and
we see that the term is not small if log |H| = o(n/ log n).

Proof of the lower bound

Similarly as we did with the relaxation time, it is enough to prove that all
the bounds are lower bounds separately, then take averaging. First we start
showing that the upper bound is sharp in 1.3.3 under the assumption that
there is a strong stationary time τH with halting states.

Lower bound under Assumption (A)

Consider the stopping time τ� constructed in Lemma 1.3.6. Corollary 1.3.7
tells us that the tail of τ� lower bounds the separation distance at time t.
We again emphasize that this bound holds only if τH in the construction of
τ� is not only separation optimal but it also has a halting state. Our first
goal is to lower bound the tail of τ�, then relate it to the total variation
distance.

We will denote the worst-case initial state upper ε-quantile of a stopping
time τ as

tquant
ε (τ) := max

y∈Ω
inf{t : Py[τ > t] ≤ ε} (1.3.45)

First set

tH := tquant

|G|−1/2/2
(τH)− 1, t� :=

1

4
|G|tH , (1.3.46)

clearly this can be done if tquant

|G|−1/2/2
(τH) 6= 1. We will handle the case if it

equals 1 separately. We can estimate the upper tail of τ� by conditioning
on the number of moves on the lamp graphs H(v), v ∈ G:

P [τ� > t�] ≥ P [∃w ∈ G : τH(w) > Lw(t�)]

≥
∑

(Lv(t�))v

P
[
∃w ∈ G : τH(w) > Lw(t�)

∣∣(Lv(t�))v]P [(Lv(t
�))v]

(1.3.47)
For each sequence (Lv(t

�))v∈G we define the random set

S(Lv)v := {w ∈ G : Lw(t�) ≤ tH}

Since
∑

v Lv(t
�) = 2t� = 1

2 |G|tH , we have that for arbitrary local time
configuration (Lv(t

�))v,
|S(Lv)v | ≥ |G|/2. (1.3.48)
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Thus we can lower bound (1.3.47) by restricting the event only to those
w ∈ G coordinates which belong to this set, i.e. their local time is small:

P [τ� > t�] ≥
∑

(Lv(t�))v

P
[
∃w ∈ S(Lv)v : τH(w)>Lw(t�)

∣∣(Lv (t�))v
]
P [(Lv(t

�))v]

≥
∑

(Lv(t�))v

P
[
∃w ∈ S(Lv)v : τH(w) > tH

∣∣ (Lv(t�))v]P [(Lv(t
�))v] ,

(1.3.49)
where in the second line we used that for w ∈ S(Lv)v we have {τH(w) >
Lw(t�)} ⊇ {τH(w) > tH}. Conditioned on the sequence (Lv(t

�))v, the times
τH(w) for w ∈ S(Lv)v are independent. Moreover, on each lamp graph H(v)
let us pick the starting state to be h0 ∈ H where the maximum is attained
in the definition of tquant

|G|−1/2/2
(τH). Since tH is one step before the quantile,

we have
Ph0

[
τH(w) > tquant

|G|−1/2(τH)− 1
]
≥ |G|−1/2/2. (1.3.50)

We need to start the lamp-chains from the worst-case scenario h0 ∈ H for
two reasons: First, we needed to define the quantile as in (1.3.45) to be able
to relate it to the total variation mixing time on H, see below. Then, the
fact that tquant

ε was defined as the worst-case starting state quantile means
that for other starting states the quantile may be smaller, and the lower
bound can possibly fail.

Combining (1.3.50) with (1.3.48) and the conditional independence gives
us the stochastic domination from below to the event in (1.3.49)

P
[
∃w ∈ S(Lv)v : τH(w) > tH

∣∣(Lw(t�))w
]
≥ P[Z > 0]

where Z is a Binomial random variable with parameters
(
|G|
2 ,
|G|−1/2

2

)
. Clearly

for |G| > 8 > 16(log 2)2 we have

P [Z > 0] = 1−
(

1− 1

2|G|1/2

)|G|/2
≥ 1− e−

|G|1/2
4 ,

Combining this with (1.3.49) and summing over all possible (Lv(t
�))v∈G

sequences we easily get that

P [τ� > t�] ≥ 1− e−
|G|1/2

4 .

Then, by Corollary 1.3.7 we have

s�(h0,x)(t
�) ≥ 1− e−

|G|1/2
4 .

In the next few steps we relate the tail of τ� and τH to the mixing time of
the graphs. First, combining the previous inequality with (1.3.18) implies
that for the starting state (h0, x) the following inequalities hold:

1− e−|G|1/2/4 ≤ s�(h0,x)(t
�) ≤ 4d�(t�/2).
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These immediately imply

tmix(H oG, 1

8
) ≥ 1

2
t� =

1

8
|G|tH (1.3.51)

Now we will relate tH = tquant

|G|−1/2/2
(τH) − 1 to the mixing time on H. Since

tH investigates the worst case initial-state scenario, by inequality (1.3.8) for
any starting state h ∈ H we have

sh(tH + 1) ≤ Ph [τH ≥ tH + 1] ≤ |G|−1/2/2

Using dh(t) ≤ sh(t) (see Lemma 1.3.9) and maximizing over all h ∈ H we
get that

dH(tH + 1) ≤ |G|−1/2/2. (1.3.52)

On the other hand, the total variation distance for any reversible Markov
chain has the following sub-multiplicative property for any integer k, see
[83, Section 4.5]:

d(kt) ≤ 2kd(t)k. (1.3.53)

Taking t = tH + 1 and combining with (1.3.52) we have that

dH(2(tH + 1)) ≤ 4dH(tH + 1)2 ≤ 4
1

4|G|
,

which immediately implies

tmix(H, 1/|G|) ≤ 2(tH + 1).

Combining this with (1.3.51) yields the desired lower bound:

1

16
|G|
(
tmix

(
H, 1
|G|

)
− 2
)
≤ tmix(H oG, 1

8
).

Mind that the term −2 in the brackets can be dropped when picking a
possibly smaller constant and take the graph large enough. The case when
tquant

|G|−1/2/2
(τH) = 1 can be handled the following way: first mind that we

can exchange the quantile for arbitrary 0 < α < 1, and look the proof
with tquant

|G|−α/2(τH). If this is still = 1 for all α, that means that τH ≡ 1.

In this case, it is enough to hit the vertices to mix immediately and thus
the mixing time |G|tmix(H) is of smaller order than the cover time tcov(G).
The case when |G| ≤ 8 but |H| → ∞ is easy to see since in this case
tmix(H, 1

|G|) ≤ 2tmix(H) and one can argue that mixing on H o G requires
mixing on a single lampgraph Hw for a fixed w ∈ G. Thus the lower bound
remains valid.

The cover time is a lower bound for the 0−1 lamps case, but for complete-
ness we adjust the proof in [83, Theorem 19.2] to our setting. By Lemma
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1.3.6 we can estimate the separation distance on H oG as

s�(f,x)(t) = P(f,x) [τ� > t]

≥ P(f,x) [∃w ∈ G : τH(w) > Lw(t)]

≥ P(f,x) [∃w ∈ G : Lw(t) = 0] = P(f,x) [τcov > t] .

(1.3.54)

Now, using the submultiplicativity of d(t) in (1.3.53) and the relation of the
separation distance and the total variation distance in (1.3.18), we have that
at time 4tmix(H oG, 1/4):

s�(f,x)

(
8tmix(H oG, 1

4)
)
≤ 4d�

(
4tmix(H oG, 1

4)
)
≤ 4

24

42
≤ 1

4

Combining with (1.3.54) yields that for every starting state we have

P(f,x) [τcov > 4tmix(H oG, 1/4)] ≤ 1/4.

Thus, run the chain in blocks of 8tmix(H o G, 1/4) and conclude that in
each block it covers with probability at least 3/4. Thus, the cover time
is dominated by 8tmix(H o G, 1/4) times a geometric random variable with
success probability 3/4, so we have

E(f,x) [τcov] ≤ 11tmix(H oG, 1/4).

Maximizing the right hand side over all possible starting states yields tcov(G)
≤ 11tmix(H oG, 1/4), finishing the proof.

Proof of the lower bound, general case

Now we turn to the general case and show that ctrel(H)|G| log |G| is a lower
bound. To see this we will use a distinguishing function method. Namely,
suppose first that there is a single second eigenfunction φ2 on H correspond-
ing to the second eigenvalue λH . Then let us define ψ : H oG→ C:

ψ((f, x)) :=
∑
v∈G

φ2(f(v)). (1.3.55)

One can always normalize such that

Eπ�(ψ) =
∑
v∈G

Eπ[φ2] = 0 Varπ�(ψ) =
∑
v∈G

Varπ(φ2) = |G| · 1

This normalization has two useful consequences: First, by Chebyshev’s in-
equality, the set A = {ψ < 2G1/2} has measure at least 3/4 under station-
arity. Second, φ2(g0) := maxg∈H φ2(g) > 1, otherwise the variance would be
less than 1. We aim to show that the set A has measure less then 1/2 at time
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ctrel|G| log |G| and then we are done by using the following characterization
of the total variation distance, see [49, 83]:

‖ν − µ‖TV = sup
A⊂Ω
{ν(A)− µ(A)}.

Let us start all the lamp graphs from g0 ∈ H where the maximum is
attained for φ2. Then we can condition on the local time sequence and use
the eigenvalue property of φ2

E(g
0
,x) [ψ((Ft, Xt))] = E

[
E

[∑
w∈G

φ2(Ft(w))| (Lv(t))v

]]

= φ2(g0)Ex

[∑
w∈G

λ
Lw(t)
H

]
.

(1.3.56)

Since
∑

w Lv(t) = 2t, we can apply Jensen’s inequality on the function
x 7→ λxH to get a lower bound on the expectation:

Ex

[∑
w∈G

λ
Lw(t)
H

]
≥ |G|λ

2t
G
H .

Now set t = ctrel(H)|G| log |G| to see that

E(g
0
,x) [ψ((Ft, Xt))] ≥ |G|1−2c−o(1−λH)φ2(g0)

We can easily upper bound the conditional variance as follows:

Var [ψt|(Lv(t))v∈G] ≤
∑
w∈G

Eg0

[
φ2

2(Ft(v))|Lv(t)
]
≤ |G|φ2

2(g0).

Now, let us estimate the measure of set A at time t by using the lower bound
on the expectation:

P(g
0
,x)

[
ψt ≤ 2|G|1/2

]
≤ P(g

0
,x)

[
|ψt −E(ψt)| ≥ φ2(g0)|G|1−2c−O(1−λH) − 2|G|1/2

]
Now we use that φ2(g0) > 1 and set c < 1/4. Then we see that on the right
hand side, the term φ2(g0)|G|1−2c−O(λH) dominates, so for |G| large enough
we can drop the negative term and compensate it with a multiplicative factor
of 1/2, say. Thus, condition on the local time sequence first and see that for
any sequence (Lv(t))v∈G Chebysev’s inequality yields:

P(g
0
,x)

[
ψt ∈ A

∣∣ (Lv(t))v∈G] ≤ Var [ψt|(Lv(t))v∈G]

1/4φ2
2(g0)|G|2−4c−o(1)

Combining this with the estimate on the conditional variance above yields
that

P(g
0
,x) [ψt ∈ A| (Lv(t))v] ≤

4

|G|1−4c−o(1−λH)
.
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This is independent of the local time sequence, so law of total probability
says we have the same upper bound without conditioning. Now setting
c := 1/8 and |G| large enough we see that the large hand side can be made
smaller than 1/2, finishing the proof.

Next we show that c|G|tmix(H) is a lower bound. First define

tstop(G) := min {E[τ ]; τstopping time s.t.P[Xτ = y] = π(y)∀y ∈ G}

and show that
1

2
|G| · tstop(H) ≤ tstop(H oG).

Take a mean optimal stopping time τ∗ reaching minimal expectation,
i.e. E(f∗,x∗)

[τ∗] = tstop(H o G) for some (f∗, x∗) ∈ H o G and E(f,x)[τ
∗] ≤

tstop(H oG) for (f, x) 6= (f∗, x∗).
We use this τ∗ to define a stopping rule τH(v) on Hv, for every v ∈ G.

Namely, do the following: look at one coordinate v ∈ G and look at the
chain restricted to the lamp graph Hw, i.e. only the moves which are done
on the coordinate Hv. Then, stop the chain on Hv when τ∗ stops on the
whole lamplighter.

Start the chain from any (f
0
, x0). Since the number of moves done on

different sites are just summing up to twice the total time, we have

∑
v∈G

Ef0 [τH(v)] = E(f
0
,x0)

[∑
v∈G

Lv(τ
∗)

]
= 2E(f

0
,x0)[τ

∗]

Take the site w (which can depend on the starting vertex x0), which
minimizes the expectation Ef0 [τH(w)]. Clearly for this vertex the expected
value is less than the average:

Ef0 [τH ] ≤ 2

|G|
E(f

0
,x0)[τ

∗]

Now clearly the left hand side is at least as large as what a mean-optimal
stopping rule on H can achive, and the right hand side is at most tstop(H oG).
Thus we arrive at

1

2
|G|tstop(H) ≤ tstop(H oG).

Now, we use the equivalence from the paper [98, Corollary 2.5] stating
that tstop and tmix are equivalent up to universal constants for lazy reversible
chains and get that

c1|G|tmix(H) ≤ tmix(H oG).
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An important example - the torii

Mind that cases such as H = Z
d(k)
k , d ≥ 3 can not be handled as above,

since their have many second eigenfunctions. However, the result still carries
through. What matters here is the product structure of the chain, i.e. the
eigenfunctions corresponding to the coordinates are independent once we
condition on how many steps are taken in the given coordinate.

In this case the second eigenvalue λH = 1− 1
d

(
1− cos(2π

k )
)

has d = d(k)

eigenfunctions, namely for x ∈ Zdk we have φ2,i(x) =
√

2 cos(2π
k xi), i =

1 . . . d, where we normalized them such that the stationary variance is 1.
Then define the sum of eigenfunctions by

φ∗(x) := d−1/2
d∑
i=1

φ2,i, ψ :=
∑
v∈G

φ∗(f(v)),

then clearly E�π[ψ] = 0,Var�π[ψ] = |G|, so A = {ψ < 2
√
|G|} has measure at

least 3/4 under π�. Start each lamp-chain from a state g0 = 0, i.e. the state
which maximizes φ∗, clearly we have again φ∗(g0) =

√
2 > 1. To estimate

the expected value of ψt at time t we condition also on the number of steps
taken on different coordinates Lv(t), use linearity and the eigenfunction
property to get

Et

[
ψ| (Lv(t))v,i

]
=
∑
v

Qt
(

1√
d
φ2,i(g0))

)
≥ |G|λ2t/|G|

H ,

where we used Jensen’s inequality to estimate the expression from below in
the last step. If we set in t = ctrel(H)|G| log |G| then we get the lower bound
φ∗(g0)|G|1−2c−O(1−λH). It makes sense to reduce the conditional variance at
time t by using the product structure of the torus and conditioning also on
how many steps were done in each coordinate:

Var[ψt| (Lv,i(t))] =
∑
v

∑
i

d−1Vart[φ2, i(Gt)] ≤ |G|max
x,i

φ2,i(x)2.

This is the point were we use that there is a state g0 where each eigenfunc-
tions are bounded and maximized at the same time with maxx,i φ2,i(x)2 =
φ2,i(g0) = φ∗(g0) and conclude that Var[ψt| (Lv,i(t))] ≤ |G|φ∗(g0)2. Mind
that the variance will not drop much below this even under more precise
calculations. From this we can get the conditional Chebysev estimate sim-
ilar as for the single eigenfunction case to get that for small enough c,
t = ctrel(Z

d
k)|G| log |G| = c|G|(dk2 log |G|) is a lower bound. One can see

via various methods that tmix(Zdk, |G|−1) = O(d log dk2 +dk2 log |G|). Thus,
the method gives a matching lower bound if |G| = o(d).
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1.3.6 Further directions

As one can see, once we realized that the statement [83, Remark 6.12], that
the separation distance equals the tail of the strong stationary time if and
only if there is a halting state y(x) for x, is false, we lost the matching upper
and lower bounds in the highest generality. We have different other lower
bounds which are not necessarily matching for all reversible chains. Thus,
right now we are working on to relate the mixing time of H oG to the Cesaro
or geometric mixing time on H up to ε = 1/G. However, the equivalence
of these mixing times and the total variation mixing time is only known
[3, 98] for ε = 1/4 but not when ε→ 0. Thus it is still an open problem of
its own interest, to find under what conditions the two mixing notions are
equivalent.

The next step of understanding generalized lamplighters walks might be
to investigate which properties on G and H are needed to exhibit cutoff (for
a definition see [49, 83]), or to determine the mixing time in the uniform
metric. For a comprehension what has already been done in this direction
see the Introduction of this chapter.
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Chapter 2

Generating hierarchical
scale-free graphs from
fractals

2.1 Introduction

Random graphs are in the main stream of research interest since the late
50s, starting with the seminal random graph model introduced by Erdős and
Rényi [61]. A wide spectrum of literature investigates graph models with a
fixed number of vertices (i.e some generalization of the Erdős-Rényi (ER)
graphs), we refer the reader to the books of [71] or [35] as an introduction.

More recently in [40] Bollobás, Janson and Riordan introduced a gen-
eral inhomogeneous random graph model, which also includes the ER ran-
dom graphs as a special case. The vertices are assigned different types and
the edge probabilities depend on these types given by a ’kernel’ function.
The authors characterized the emergence of the giant component, i.e. the
phase transition, the typical distances and the diameter. In the supercriti-
cal regime they also proved what the typical graph distance is between two
randomly chosen vertices of the giant component. Typical distances have
also been studied in other models, see for example [47], [106]. A possible
generalization of these models is to give the edges different edge weights.

This leads us to the problem of first passage percolation (FPP) in random
environment: Let the environment be a random graph model and give each
edge a random edge weight, typically independent and identically distributed
(i.i.d.) positive random variables. Now think of fluid percolating through
the graph from some source at a constant rate. First passage percolation
refers to the time when vertices are reached by the fluid, i.e. the shortest
path between vertices under the given edge-weights. As the environment
grows one is interested in the asymptotics of various quantities of the flow.

In [32] Bhamidi, van der Hofstad and Hooghiemstra analyzed FPP on
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the ER random graph with i.i.d. exponential edge weights. They proved
that the hopcount, i.e. the number of edges on the shortest-weight path
between two randomly chosen vertices in the giant component, follows a
central limit theorem. Furthermore, they show convergence in distribution
for the weight of the shortest-weight path. Related results for FPP with
exponential edge weights can be found in [30], [31], [106], and newly the
diameter with edge-weights were investigated in [4, 57].

Parallel to this directions, in the last two decades there have been a
considerable amount of attention paid to the study of complex networks like
the World Wide Web, social networks, or biological networks. This resulted
in the construction of numerous new, more dynamical and growing network
models, see e.g. [27], [35], [39], [59], [76]. Most of them use a version of
preferential attachment and are of probabilistic nature.

In particular, the scale free property - the graph obeying a degree se-
quence with power law decay - raised interest and many models were intro-
duced to capture this property, such as the Preferential Attachment Models.
The history of similar models goes back to the 1920’s [108, 104, 45]. The
model was heuristically introduced by Barabási and Albert [24], and the first
who investigated the model rigorously were Bollobás, Riordan, Spencer and
Tusnády [37], and the mathematically rigorous construction was done by
Bollobás and Riordan [36]. In the preferential attachment model discussed
by Bollobás, Riordan, Spencer and Tusnády [37], starting from an initial
graph, at each discrete time step a new vertex is added to the graph with
some edges connected to it. These edges are attached sequentially to the ex-
isting vertices with a probability proportional to the degree of the receiving
vertex at that time, thus favoring vertices with large degrees. The model
obeys a power-law degree distribution similarly to many real life networks.
Since then, many versions of preferential attachment models appeared in
the literature. Let us mention some of them without the pursuit of com-
pleteness: [38] considers also directed edges, and non-linear preferential at-
tachment model appears in [78]. Rudas, Tóth and Valkó [102] determined
the asymptotic degree distribution for a wide range of weight functions in a
continuous time non-linear model. Another direction of research on this field
is to add some individual character to vertices, which we refer to as fitness.
A new vertex at time t connects to vertex vi with a conditional probability
which is proportional to ζiDi(t) + ηi. A model where vertices only obey ad-
ditive fitness is discussed in [62]. Variations of multiplicative fitness models
were introduced by Bianconi and Barabási [34, 26], and studied further in
[41]. The degree distribution both for the additive and multiplicative models
was found by Bhamidi [33]. A new direction is to change the growth rule,
such that it also takes account the structure of the existing graph. A model
based on triangle-interactions appears in the work of Backhausz and Móri
[6]. The wide-range literature is summarized in [35] or in [71].

A completely different approach was initiated by Barabási, Ravasz, and
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Vicsek [25] based on the observation that real network often obey some hier-
archical structure. They introduced deterministic network models generated
by a method which is common in constructing fractals. Their model both ex-
hibits hierarchical structure and the degree sequence obeys power law decay.
To model also the clustering behavior of real networks, Ravasz and Barabási
[100] developed the original model in [25] so that their deterministic network
model preserved the same power law decay and has similar clustering behav-
ior to many real networks. Namely, the average local clustering coefficient
is independent of the size of the network and the local clustering coefficient
decays inversely proportional to the degree of the node. A similar, frac-
tal based deterministic model were introduced by Zhang, Comellas, Fertin
and Rong [109], and called the high-dimensional Apollonian network. The
graph is generated from the cylinder sets of the fractal of the Apollonian cir-
cle packing or the Sierpinsky carpet. Slightly different randomized version
were introduced in [111, 112, 115, 114, 116, 110, 113].

In this section we generalize both of the models of [25] and [100]. Starting
from an arbitrary initial bipartite graph G on N vertices, we construct a
hierarchical sequence of deterministic graphs Gn. Namely, V (Gn), the set of
vertices of Gn is {0, 1, . . . , N − 1}n. To construct Gn from Gn−1, we take N
identical copies of Gn−1, each of them identified with a vertex of G. Then we
connect these components in a complicated way described in (2.2.1). In this
way, Gn contains Nn−1 copies of G1, which are connected in a hierarchical
manner, see Figures 2.1(a), 2.1(b) and 2.3 for two examples.

There are no triangles in Gn. Hence, in order to model the clustering
properties of many real networks, we need to extend the set of edges of our
graph sequence to destroy the bipartite property. Motivated by [100], we
add some additional edges to G1 to obtain the (no longer bipartite) graph
Ĝ1. Then we build up the graph sequence Ĝn as follows: Ĝn consist of Nn−1

copies of Ĝ1, which copies are connected to each other in the same way as
they were in Gn. So, Ĝn and Gn have the same vertex set and their edges
only differ at the lowest hierarchical level, that is, within the Nn−1 copies
of G1 and Ĝ1, see Figures 2.3 and 2.5. We give a rigorous proof of the fact
that the average local clustering coefficient of Ĝn does not depend on the
size and the local clustering coefficient of a node with degree k is of order
1/k.

The embedding of the adjacency matrix of the graph sequence Gn is
carried out as follows: A vertex x = (x1 . . . xn) is identified with the corre-
spondingN -adic interval Ix (see (2.2.4)). Λn is the union of thoseN−n×N−n
squares Ix × Iy for which the vertices x, y are connected by an edge in Gn.
So, Λn is the most straightforward embedding of the adjacency matrix of
Gn into the unit square. Λn turns out to be a nested sequence of compact
sets, which can be considered as the n-th approximation of a graph directed
self-similar fractal Λ on the plane, see Figure 2.1(c). We discuss connection
between the graph theoretical properties of Gn and properties of the limiting
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fractal Λ. In particular, we express the power law exponent of the degree
distribution with the ratio of the Hausdorff dimensions of some slices of Λ
(Theorem 2.3.6).

Furthermore, using Λ we generate a random graph sequence Gr
n in a

way which was inspired by the W -random graphs introduced by Lovász
and Szegedy [88]. See also Diaconis, Janson [53], which paper contains
a list of corresponding references. We show that the degree sequence has
power law decay with the same exponent as the deterministic graph sequence
Gn. Thus we can define a random graph sequence with a prescribed power
law decay in a given range. Bollobás, Janson and Riordan [39] considered
inhomogeneous random graphs generated by a kernel. Our model is not
covered by their construction, since Λ is a fractal set of zero two dimensional
Lebesgue measure.

The section is organized as follows: In Section 2.2 we define the deter-
ministic model and the associated fractal set Λ. In Section 2.3, we verify
the scale free property of Gn (Theorem 2.3.1). We compare the Hausdorff
dimension of Λ to the power law exponent of the degree sequence of Gn.
Our next result is that both of the diameter of Gn and the average length
of shortest path between two vertices are of order of the logarithm of the
size of Gn (Corollary 2.3.9 and Theorem 2.3.10). In Section 2.3.4 we prove
the above mentioned properties of the clustering coefficient of Ĝn (Theorem
2.3.16 and 2.3.14). In Section 2.4 we describe the randomized model, and
in Section 2.4.1 we prove that the model exhibits the same power law decay
as the corresponding deterministic version.

2.2 Deterministic model

The model was motivated by the hierarchical graph sequence model in [25],
and is given as follows.

2.2.1 Description of the model

Let G, our base graph, be any labeled bipartite graph on the vertex set
Σ1 = {0, . . . , N − 1}. We partition Σ1 into the non-empty sets V1, V2 and
one of the end points of any edge is in V1, and the other is in V2. We write
ni := |Vi|, i = 1, 2 for the cardinality of Vi. The edge set of G is denoted
by E(G). If the pair x, y ∈ Σ1 is connected by an edge, then this edge is
denoted by

(
x
y

)
, since this notation makes it convenient to follow the labels

of the vertices along a path.
Now we define our graph sequence {Gn}n∈N generated by the base graph

G.
The vertex set is Σn = {(x1x2 . . . xn) : xi ∈ Σ1}, all words of length n

above the alphabet Σ1. To be able to define the edge set, we need some
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further definitions.

Definition 2.2.1.

1. We assign a type to each element of Σ1. Namely,

typ(x) =

{
1, if x ∈ V1;
2, if x ∈ V2.

2. We define the type of a word z = (z1z2 . . . zn) ∈ Σn as follows: if all
the elements zj , j = 1, . . . , n of z fall in the same Vi, i = 1, 2 then
typ(z) the type of z is i. Otherwise typ(z) := 0.

3. For x = (x1 . . . xn), y = (y1 . . . yn) ∈ Σn we denote the common
prefix by

x ∧ y = (z1 . . . zk) s.t. xi = yi = zi,∀i = 0, . . . , k and xk+1 6= yk+1.

4. Given x = (x1 . . . xn), y = (y1 . . . yn) ∈ Σn, the postfixes x̃, ỹ ∈
Σn−|x∧y| are determined by

x = (x ∧ y)x̃, y = (x ∧ y)ỹ,

where the concatenation of the words a, b is denoted by ab.

Now we can define the edge set E(Gn). Two vertices x and y in Gn are
connected by an edge if and only if the following assumptions hold:

(a) One of the postfixes x̃, ỹ is of type 1, the other is of type 2,

(b) for each i > |x ∧ y|, the coordinate pair
(
xi
yi

)
forms an edge in G.

That is, E(Gn) ⊂ Σn × Σn:

E(Gn) =

{(
x

y

)∣∣∣x = y or

{typ(x̃), typ(ỹ)} = {1, 2}, ∀|x ∧ y| < i ≤ n,
(
xi
yi

)
∈E(G)

}
(2.2.1)

Remark 2.2.2. Note that we artificially added all loops to the (otherwise
bipartite) graph sequence Gn, implying easier calculations later without loss
of the important properties. In particular, G1 differs from G only in the
loops.

Remark 2.2.3 (Hierarchical structure of Gn). For every initial digit x ∈
{0, 1, . . . , N − 1}, consider the set Wx of vertices (x1 . . . xn) of Gn with
x1 = x. Then the induced subgraph on Wx is identical to Gn−1.
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We write degn(x) for the degree of a vertex in Gn, including the loop
which increases the degree by 2. However, for an x ∈ Σ1, deg x denotes
degree of x in G. In particular deg1(x) = deg(x) + 2. In what follows, we
will frequently use `(x), the length of the longest block from backwards in
x which has a nonzero type,

`(x) := max
i∈N
{typ(xn−i+1, . . . xn) ∈ {1, 2}} (2.2.2)

Remark 2.2.4. The degree of a node x ∈ Σn

degn(x) = 2 + S(x) · deg(xn),

where

S(x) : = 1 + deg(xn−1) + · · ·+ deg(xn−1) deg(xn−2) · · · deg(xn−`(x)+1)

=

`(x)−1∑
r=0

 r∏
j=1

deg(xn−j)

 , (2.2.3)

where the empty sum is meant to be 1.

The following two examples satisfy the requirements of our general model.

Example 2.2.5 (Cherry). Barabási, Ravasz and Vicsek [25] introduced the
”cherry” model presented on Figures 2.1(a) and 2.1(b): Let V1 = {1} and
V2 = {0, 2}, E(G) = {(1, 0), (1, 2)}.

Example 2.2.6 (Fan). Our second example is called ”fan”, and is defined
on Figure 2.3. Note that here |V1| > 1.

2.2.2 The embedding of the adjacency matrices into [0, 1]2

In this Section, we investigate the sequence of adjacency matrices corre-
sponding to {Gn}n∈N. Roughly speaking, we will map them in the unit
square, see Figure 2.1(c).

To represent the adjacency matrix of Gn as a subset of the unit square,
first partition [0, 1]2 into N2n congruent boxes, i.e. divide [0, 1] into equal
subintervals of length 1

Nn , corresponding to the first n digits of the N -adic
expansion of elements of [0, 1]:

Ix1...xn =

[
n∑
r=1

xr
N r

,

n∑
r=1

xr
N r

+
1

Nn

]
, ∀(x1 . . . xn) ∈ Σn. (2.2.4)

We partition [0, 1]2 with the corresponding level-n squares:

Q(xy)
:= Ix × Iy,

(
x

y

)
∈ Σn × Σn. (2.2.5)
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1

0 2

11

10 12

01

00 02

21

20 22

(a) G1 and G2 with loops

111

110 112

101

100 102

121

120 122

011

010 012

001

000 002

021

020 022

211

210 212

201

200 202

221

220 222

(b) G3

Λ1 Λ2 Λ3

(c) The sets Λ1,Λ2,Λ3

Figure 2.1: G1, G2, G3,Λ1,Λ2,Λ3 for the cherry Example 2.2.5
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A natural embedding of the adjacency matrix of Gn in the unit square is as
follows:

Λn(a, b) :=

{
1, if (a, b) ∈ Q(xy)

,
(
x
y

)
∈ E(Gn);

0, otherwise.
(2.2.6)

That is,

Λn(a, b) =
∑

x,y∈Σn

(xy)∈E(Gn)

1Q(xy)
(a, b).

We write Λn for the support of the function Λn(a, b), see Figure 2.1(c).
Observe that Λn is a compact set and Λn+1 ⊂ Λn holds for all n. So we can
define the non-empty compact set

Λ :=
∞⋂
n=1

Λn. (2.2.7)

Clearly,
1Λ(a, b) = lim

n→∞
Λn(a, b).

Remark 2.2.7. This representation obviously depends on the labeling of the
graph G. For an arbitrary permutation π of {0, . . . , N−1}, the corresponding
representation of Gn is denoted by Λπn(a, b). The relation between these two
representations is given by the formula

Λπn(a, b) = Λn(ϕπ−1(a), ϕπ−1(b)), and

1Λπ(a, b) = 1Λ(ϕπ−1(a), ϕπ−1(b)),

where the measurable function ϕπ(x) : [0, 1]→ [0, 1] is defined by

ϕπ

( ∞∑
i=1

xi
N i

)
=

∞∑
i=1

π(xi)

N i
.

2.2.3 Graph-directed structure of Λ

Now we prove that the limit Λ (defined in (2.2.7)) can be considered as the
attractor of a not irreducible graph-directed self-similar iterated function
system, (for the definition see [64]), with the directed graph G defined below.

Definition 2.2.8. The vertex set V (G) is partitioned into three subsets:

Vdd =

{(
z

z

)
, z ∈ Σ1

}
V12 =

{(
x

y

)
, x ∈ V1, y ∈ V2

}
V21 =

{(
x

y

)
, x ∈ V2, y ∈ V1

}
.

(2.2.8)
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Then
V (G) = Vdd ∪ V12 ∪ V21.

The set of directed edges E(G) of G is as follows: First we connect all
vertices in both directions within each of the three sets Vdd, V12 and V21

(loops included). Then there is an outgoing edge for each vertex in Vdd to
all vertices in V12 and V21.

For every directed edge e = (v1, v2) ∈ E(G) we define a homothety:

fe : Qv2 → Qv1 , fe(a, b) :=
1

N
(a, b) +

1

N
(x1, y1), with vi =

(
xi
yi

)
, (2.2.9)

where Qv := Q(xy)
is the level-1 square for v =

(
x
y

)
∈ V (G).

The graph G corresponding to the graph sequence in the ”cherry” exam-
ple is given by Figure 2.2.

−−−−−−→
K|E|(V12)

−−−−−−→
K|N|(Vdd)

−−−−−−→
K|E|(V21)

(0
0

)(1
1

) (2
2

)

(1
0

) (1
2

)

(0
1

) (2
1

)

Figure 2.2: The graph G for the ”cherry”, Example 2.2.5.

In general, G is given by the schematic picture on the right hand side of
Figure 2.2, where the double arrow in between the complete directed graphs−−−−→
K.(V..) illustrates that we connect all pairs of vertices in the given direction.

Let Pn be the set of all paths of length n in G, i.e.

Pn := {v = (v1 . . . vn)|∀ 1 ≤ i < n (vi, vi+1) ∈ E(G)} .
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For a v = (v1 . . . vn) =
(
x1...xn
y1...yn

)
∈ Pn it immediately follows from definitions

(2.2.5) and (2.2.9) that

Qv = fv
(
[0, 1]2

)
= Ix1...xn × Iy1...yn , (2.2.10)

where

fv(.) : = f(v1,v2) ◦ · · · ◦ f(vn−1,vn)(.) if n ≥ 2,

fv(a, b) : =
1

N
(a, b) +

1

N
(x, y), if n = 1, v =

(
x

y

)
.

(2.2.11)

The key observation of connecting G to the graph sequence Gn is the fol-
lowing:

Claim 2.2.9. For all n we have

E(Gn) = Pn.

Proof. Let v = (v1 . . . vn) =
(
a1...an
b1...bn

)
∈ Σn × Σn, thus a = (a1 . . . an) and

b = (b1 . . . bn) are vertices in Gn. First we assume that v ∈ E(Gn). Observe
that by (2.2.1),

(
ai
bi

)
are vertices in G. We would like to prove that the

sequence (
a1

b1

)
. . .

(
an
bn

)
∈ Pn. (2.2.12)

If k := |a∧b| ≥ 1, then for i ≤ k, ai = bi holds, thus the sequence of points(
a1

b1

)
. . .
(
ak
bk

)
forms a path in

−−−−−−→
K|N |(Vdd). By (2.2.1), the pairs

(ak+1

bk+1

)
, . . . ,

(
an
bn

)
are all edges in G thus vertices in G. Furthermore, either they all belong
to V12 or they are all contained in V21, see (2.2.8). This implies that this

postfix also forms a path in
−−−−−−→
K|N |(V12) or in

−−−−−−→
K|N |(V21). By definition of E(G),((

ak
bk

)
,
(ak+1

bk+1

))
is an edge in G, so

(
a1

b1

)
. . .
(
an
bn

)
is a path in G. If k = 0 then

the whole path is contained either in V12 or in V21. This completes the proof
of (2.2.12).

On the other hand, if
(
a1

b1

)
. . .
(
an
bn

)
is a path of length n in G, then we

claim that for a = (a1 . . . an), b = (b1 . . . bn) ∈ V (Gn)

(a, b) ∈ E(Gn).

The proof is very similar to the previous one.

In this way we can characterize Λn as follows:

Corollary 2.2.10.

Λn =
⋃
v∈Pn

Qv =
⋃
v∈Pn

fv
(
[0, 1]2

)
.
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Proof. Immediately follows from (2.2.6) and (2.2.10) and the assertion of
the Claim 2.2.9.

Let us define

P∞ := {v = (v1v2 . . . )|∀i ∈ N, (vi, vi+1) ∈ E(G)}.

Now for every v ∈ P∞ we have
∞⋂
n=1

Q(v1...vn) is a point in [0, 1]2, which will

be denoted by Πv. That is,

Π : P∞ → [0, 1]2, Π(v) :=
∞⋂
n=1

Q(v1...vn) = lim
n→∞

fv1...vn(0, 0).

It is an immediate consequence of Corollary 2.2.10, that

Π(P∞) = Λ, i.e. Λ =
⋃

v∈P∞

Πv. (2.2.13)

This means that Λn, the embedded adjacency matrix of Gn, can be consid-
ered as the n-th approximation of the fractal set Λ.

In this way we coded the elements of Λ by the elements of P∞. This
coding is not 1− 1 for the same reason as the N -adic expansion is not 1− 1.
However, if neither of the two coordinates of a point (a, b) ∈ Λ are N -adic
rational numbers, then (a,b) has a unique code.

2.2.4 Fractal geometric characterization of Λ.

For notational convenience we define the set of finite words above the al-
phabet Vdd (including the empty word as well):

V ∗dd := {v| ∃n ∈ N ∪ {0} , v = (v1 . . . vn) and vi ∈ Vdd} .

The three subgraphs
−−−−−−→
K|E|(V12),

−−−−−−→
K|E|(V21) and

−−−−−−→
K|E|(Vdd) of G are com-

plete directed graphs. We consider the three corresponding self-similar iter-
ated function systems (IFS):

Fdd : = {fv}v∈Vdd ,
F12 : = {fv}v∈V12

,

F21 : = {fv}v∈V21
,

where the functions fv, v ∈ V (G) were defined in (2.2.11). The attractors of
these IFS-s (see [64, p.30]) are the unique nonempty compact sets satisfying

Λdd :=
⋃
v∈Vdd

fv(Λdd) = {Π(v)|v = (v1, v2 . . . ) and vi ∈ Vdd}

Λ12 :=
⋃
v∈V12

fv(Λ12) = {Π(v)|v = (v1, v2 . . . ) and vi ∈ V12}

Λ21 :=
⋃
v∈V21

fv(Λ21) = {Π(v)|v = (v1, v2 . . . ) and vi ∈ V21} .

(2.2.14)

66



The Open Set Condition (see e.g. [64, p.35]) holds for these IFS-s, so we
can easily compute the Hausdorff-dimension of the attractors. Clearly, Λdd
is the diagonal of the unit square.

Now we prove that Λ is a countable union of homothetic copies of these
attractors.

Theorem 2.2.11.

Λ = Diag︸︷︷︸
Λdd

∪
⋃
v∈V ∗dd

(
fv(Λ12) ∪ fv(Λ21)

)
,

where Diag = {(x, x) : x ∈ [0, 1]}.

Remark 2.2.12. Observe that Λ21 is the image of Λ12 by the reflection
through the diagonal, hence Λ is symmetric to the diagonal. The same is
true for the n-th approximation Λn of Λ. This can be seen immediately by
using the embedded adjacency matrix characterization of Λn.

Proof of Theorem 2.2.11. We start by showing that

Λ ⊂ Diag ∪
⋃
v∈V ∗dd

(
fv(Λ12) ∪ fv(Λ21)

)
. (2.2.15)

Pick an arbitrary point (a, b) ∈ Λ. As a consequence of (2.2.13) there exists
a v = (v1v2 . . . ) ∈ P∞ such that Π(v) = (a, b). Let k := max {` : v` ∈ Λdd}.
We distinguish three cases: k = 0, k =∞ or 0 < k <∞. Mind that for all
i ≤ k, vi ∈ Vdd since once the path left the component Vdd, there is no way
to return. Since V12 and V21 are closed, for k < ∞ all vi, i > k are in the
same component V12 or V21.

Case k = 0 Clearly either all vi are in V12 or in V21, so Π(v) ∈ Λ12 ∪ Λ21.

Case k =∞ For the same reason, Π(v) = lim
n→∞

fv1...vn(0, 0) ∈ Λdd = Diag.

This is so because fv1...vn(0, 0) is in the 1
Nn neighborhood of the diag-

onal {(x, x) : x ∈ [0, 1]}.

Case 0 < k <∞ Let vk = (v1 . . . vk). For symmetry, without loss of gener-
ality we may assume that vk+1 ∈ V12. As in the first case, we can see
that for w := (vk+1vk+2 . . . ), Π(w) ∈ Λ12. Hence Π(v) = fvk(Πw) ∈
fvk(Λ12).

Now we have verified (2.2.15). To prove the opposite direction, that is

Λ ⊃ Diag ∪
⋃
v∈V ∗dd

(
fv(Λ12) ∪ fv(Λ21)

)
, (2.2.16)

we will use the symbolic representation of Λ given in (2.2.13).
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Pick an x ∈ [0, 1] and take the N -adic code (x1x2 . . . ) of x. That is,

x =
∞∑
n=1

xi
N i , xi ∈ {0, . . . , N − 1}. Then

v :=

((
x1

x1

)
︸ ︷︷ ︸
v1

,

(
x2

x2

)
︸ ︷︷ ︸
v2

, . . .

)
∈ P∞,

it is easy to see that Π(v) = (x, x). So by (2.2.13), (x, x) ∈ Λ.
Now we assume that (a, b) ∈

⋃
v∈V ∗dd

(
fv(Λ12) ∪ fv(Λ21)

)
. Without loss of

generality we may further assume that (a, b) ∈ fv(Λ12) for some v ∈ V ∗dd.
That is, (a, b) = fv(a

′, b′) where (a′, b′) ∈ Λ12. By (2.2.14) there exists a
w := (w1w2 . . . ), wi ∈ V12 such that Π(w) = (a′, b′). In this way, for the
concatenation t := vw ∈ P∞ we have (a, b) = Π(t) which implies (a, b) ∈ Λ.
This completes the proof of (2.2.16).

2.2.5 The same model without loops.

Let G′n be the same graph as Gn but without loops, i.e. V (G′n) = V (Gn)
and E(G′n) ⊂ Σn × Σn:

E(G′n) =

{(
x

y

) ∣∣∣ {typ(x̃), typ(ỹ)} = {1, 2} and

∀|x ∧ y| < i ≤ n,
(
xi
yi

)
∈E(G)

}

In this case Λ′n = Λn\Diagn, where Diagn is the union of the level n squares
that have nonempty intersection with the diagonal. The sequence Λ′n is
not a nested sequence of compact sets. However, it is easy to see that the
characteristic function of Λ′n tends to characteristic function of Λ \ Diag.
Further, Λ′n tends to Λ in the Hausdorff metric, see [64].

2.3 Properties of the sequence {Gn} and Λ

In this section we compute the degree distribution of Gn, and relate it to
the Hausdorff dimension of Λ. We also compute the length of the average
shortest path in Gn. To get interesting result about the local clustering
coefficient we need to modify our graph sequence Gn in the line as it was
done in [25].
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0 1 3 5

(a) G on the left and G1 on the right hand side.
Here V1 = {2, 4} and V2 = {0, 1, 3, 5}

02 04
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12 14
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32 34
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42 44

40 41 43 45

(b) The graph G2 (contains additionally all loops).

Figure 2.3: Example ”fan”.

2.3.1 Degree distribution of {Gn}

Here we compute the degree distribution under the following regularity as-
sumption on the base graph G:

deg(x) := d1, ∀x ∈ V1

max
j∈V2

deg(y) := d2 ≤ d1 − 1, ∀y ∈ V2
(A1)

Recall that we defined `(x) in (2.2.2) as the length of the longest block
from backwards of the node x such that the last `(x) digits of x belong to
the same Vi. Put Σi

n := {x ∈ Σn|xn ∈ Vi} , i = 1, 2. It follows from A1 and

Remark 2.2.4 that the degree of a node x ∈ Σ1
n is

d
`(x)+1
1 −1
d1−1 + 1, and the

number of such nodes with `(x) = ` is exactly Nn−`+1 · n2 · n`1.
Under assumption A1, the decay of the degree distribution is determined
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by the set of high degree nodes denoted by

HDn :=

{
x ∈ Σ1

n| degn(x) > max
y∈Σ2

n

degn(y)

}
.

An equivalent characterisation of HDn is

HDn =

{
x ∈ Σ1

n|`(x) >
1

log d1
max {(n+ 1) log(d2), log n}

}
.

This is so because the degree of any y ∈ Σ2
n is at most max{dn+1

2 , n} . The
tail of the cumulative degree distribution is

P

[
degn(X) >

d`+1
1 − 1

d1 − 1
+ 1

]
=
n`+1

1 Nn−`−1

Nn
=
(n1

N

)`+1
,

where X is a uniformly chosen node of Gn. Mind that as long as ` < n, this
probability does not depend on n. Writing F̃ (t) = P(deg(X) > t) for the
tail of the cumulative distribution function we get the power law decay

F̃ (t) = t
− log(N/n1)

log d1 · c(d1) for t =
d`+1

1 − 1

d1 − 1
.

So we have proved

Theorem 2.3.1. The degree distribution of the graph sequence Gn satisfying
assumption A1, has a power law decay with exponent

γ̃ = γ − 1 =
log(N/n1)

log d1
. (2.3.1)

Using this, a simple calculation shows that the largest decay γ we can
possibly get from our model is 1 + log 3

log 2 , and this maximum is attained when
n1 = 1 and d1 = 2 = n2. This is exactly the graph sequence in Example
2.2.5, see Figures 2.1(a) and 2.1(b). We will later see that the case n1 = 1
is important in another sense as well, see Section 2.3.2.

2.3.2 Hausdorff dimension of Λ

In Theorem 2.2.11 we decomposed Λ into the diagonal of the square and
countably many homothetic copies of the self-similar sets Λ12 and Λ21. By
definition, we obtain Λ21 from Λ12 by interchanging the coordinates. Hence

dimH

(
Λ\Diag

)
= dimH(Λ12). (2.3.2)

We have seen that Λ12 is the attractor of the self-similar IFS F12 (defined in
Section 2.2.4) which consists of |E| similarities of contraction ratio 1

N , and
F12 satisfies the Open Set Condition. Hence

dimH (Λ12) =
log |E|
logN

. (2.3.3)

Combining (2.3.2) and (2.3.3) yields the assertion of the following theorem:

70



Theorem 2.3.2. The Hausdorff dimension of Λ is

dimH Λ = max

{
log |E|
logN

, 1

}
,

furthermore,

dimH

(
Λ\Diag

)
= dimH (Λ12) =

log |E|
logN

. (2.3.4)

Relation between the Hausdorff dimension and the power-law
exponent.

Now we discuss the relation between the Hausdorff dimension of Λ\Diag
and the decay exponent γ̃ of the degree distribution in Gn. To shorten the
notation, in this section we write

HD := dimH (Λ \Diag) .

First we consider the simplest case when n1 = 1 which is a generalization of
the Cherry Example 2.2.5.

Corollary 2.3.3. If |V1| = n1 = 1, then (A1) holds with d1 = |E| in
the bipartite G. Hence the degree distribution exponent (defined in equation
(2.3.1)) equals

γ̃ =
logN

log |E|
=

1

dimH

(
Λ\Diag

) .
Proof. This follows immediately from (2.3.1) and (2.3.4) .

In the more general setting where we assume only that (A1) holds we
still have a simple relation in between dimH (Λ \Diag) and γ̃. Namely,
putting together (2.3.1) and (2.3.4) and using that |E| = n1 · d1 we obtain
the following Corollary:

Corollary 2.3.4. Assume that (A1) holds. Then

NHD−1 = d1−γ̃
1 . (2.3.5)

Hence

γ̃ = 1− (HD− 1) · logN

log d1
. (2.3.6)

In particular using our model one can study the generally problematic area,
where the degree distribution of the graph sequence has diverging averages.
Namely, when γ = 1 + γ̃ ∈ (1, 2). Using (2.3.6) we have

γ̃ ∈ (0, 1] if and only if HD ∈ [1, 2). (2.3.7)

By (2.3.4) this happens exactly when |E| ≥ N , i.e. the number of edges is at
least as large as the number of vertices in the base graph G. In particular,
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in Example 2.2.6 we have HD = γ̃ = 1, attaining the upper bound for γ̃ in
Equation (2.3.7). On the other hand, our model produces graph sequences
with degree exponent γ̃ arbitrarily close to zero when our base graph G is
the complete bipartite graph on |V1| = n1 and |V2| = n2 = n1 + 1 vertices,
for large n1.

In this case N ∼ 2n1 and d1 ∼ n1. So, for large n1 we have logN
log d1

∼ 1.
Using (2.3.6) this yields γ̃ ∼ 0. More precisely, in this case (A1) holds with
d1 = n1 + 1 and d2 = n1, thus the Hausdorff dimension and γ̃ are equal to

HD =
log n1(n1 + 1)

logN
= 2− log 4

logN
,

γ̃ =
log(2− 1

n1
)

log(n1 + 1)
.

As a consequence of our discussions above we can conclude that our model

can produce graph sequences with power law exponent γ ∈
(

1,
log 3

log 2
+ 1
]
.

The geometric interpretation of the connection between HD and
γ̃ Here we always assume that assumption (A1) is satisfied and in the rest
of this section we focus on the case when (2.3.7) holds. That is, we assume
that in our bipartite base graph G

N = |V (G)| < |E| = n1 · d. (2.3.8)

Example 2.3.5 (Triplets). On Figure 2.4 we introduce a base graph G, that
we call Triplets, which satisfies (A1) and the Hausdorff dimension is greater
than 1.

The following theorem describes the geometric meaning of γ̃.

Theorem 2.3.6. Assume that both (A1) and (2.3.8) holds. Let `vert be an
arbitrary vertical line that intersects Λ12 and let `rand be a randomly chosen
line on the plane that intersects Λ12. Then almost surely,

1− γ̃ =
dimH (`rand ∩ Λ12)

dimH (`vert ∩ Λ12)
. (2.3.9)

More precisely, any straight line ` on the plane can be described as

` = `(a,b) = {(x, y)|y = a · x+ b} . (2.3.10)

Let A :=
{

(a, b) : `(a,b) ∩ Λ12 6= ∅
}

. Then for Lebesgue almost all (a, b) ∈ A
the assertion of (2.3.9) holds with `rand = `(a,b).

That is, among those lines that intersect Λ12, a randomly chosen one
intersects Λ12 in a set of smaller Hausdorff dimension than a vertical line
does. The ratio of the Hausdorff dimensions of these two intersections is
equal to 1− γ̃, which gives a nice geometric characterization of γ̃.
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(a) The triplets graph G.

Second approximation of Λ12
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(b) The x axis corresponds to V1 = {2, 4, 6}
the y axis corresponds to V2 = {0, 1, 3, 5, 7}.

Figure 2.4: The triplets example which satisfies both (A1) and (2.3.8)

Proof of the Theorem. From (2.3.6) we get:

1− γ̃ =
HD− 1

log d1

logN

. (2.3.11)

It is enough to prove that

(a) HD− 1 = dimH (`rand ∩ Λ12),

(b) log d1

logN = dimH (`vert ∩ Λ12).

Proof of Part (a) Let LP,θ be a line through a typical (in the sense of
appropriate dimensional Hausdorff measure) point P of Λ12 with Lebesgue
typical direction θ. Then a well-known Theorem of Marstrand [92, Theorem
III] states that

dimH(LP,θ ∩ Λ12) = HD − 1. (2.3.12)

However, in Theorem 2.3.6 we phrased the notion of typicality of a line in
a seemingly different (perhaps more natural) way. Below we prove that in
spite of this, Marstrand theorem implies Part (a) of Theorem 2.3.6.

Let ν be the natural (evenly distributed) measure on Λ12 which is known
[72] to be equal to constant times the appropriate dimensional Hausdorff
measure:

ν(·) = const · HHD|Λ12(·).

Let Wa = {(x, y) : y = a · x} and W⊥a be the line through origin which is
perpendicular to Wa and we call Λa12 the orthogonal projection of Λ12 to the
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line W⊥a . We write νa for the projection of ν to W⊥a . It follows from the
PROOF of [63, Theorem 6.8 (b)] that

νa � Leb for Leb almost every a. (2.3.13)

On the other hand, observe that νa is a self-similar measure in itself. Using
the previous observation and [97, Proposition 3.1 (ii)] for νa we obtain that

either νa⊥Leb|Λa12
or νa ∼ Leb|Λa12

. (2.3.14)

Putting together (2.3.13) and (2.3.14) we get

νa ∼ Leb|Λa12
for Leb almost every a. (2.3.15)

Combining Fubini Theorem and the Theorem of Marstrand [92, Theorem
III] mentioned above it follows that for νa-almost every c

dimH([Wa + c] ∩ (Λ12)) = HD− 1. (2.3.16)

From this and (2.3.15) we obtain that for Lebesgue almost every a satisfying
[Wa + c] ∩ (Λ12) 6= ∅, the equation dimH([Wa + c] ∩ (Λ12)) = HD − 1 holds
also for Lebesgue almost every c. This completes the proof of Part (a).

Proof of Part (b) Let `vert be a vertical line that intersects Λ12.
Put Λ′ := `vert ∩ Λ12. Then the n-th approximation of Λ′ consists of dn1
intervals with disjoint interior of length N−n. The assertion of Part (b) is
an immediate corollary of [29, Theorem 3.1.1].

2.3.3 Average shortest path in Gn

In many real networks, the typical distance between two randomly chosen
points is of order log(|G|), the logarithm of the size of the network. We will
see that our model also shares this property as well as the power law decay
and the hierarchical structure, combining all these important features.

In this section we calculate the average length of shortest path between
two nodes in Gn. First we give a deterministic way to construct one of the
shortest paths between any two nodes in the graph. To do so, we need to
introduce some notation. Recall that the graph G is a bipartite graph with
partition V1, V2, see the beginning of Section 2.2. We remind the reader
that for x, y ∈ Σn, typ(x), the common prefix x ∧ y and the postfixes x̃, ỹ
were defined in Definition 2.2.1.

Definition 2.3.7.
For two arbitrary vertices x, y ∈ Σn we denote the length of their common

prefix by k = k(x, y) := |x ∧ y|. Furthermore, let us decompose the postfixes
x̃, ỹ into blocks of digits of the same type:

x̃ = b1b2 . . . br, ỹ = c1c2 . . . cq, (2.3.17)
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such that all of the blocks have a nonzero type and the consecutive blocks are
of different types. That is, for i = 1, . . . , r − 1, j = 1, . . . q − 1 we have

typ(bi) 6= typ(bi+1) ∈ {1, 2}, and typ(cj) 6= typ(cj+1) ∈ {1, 2}.

Note, that we denoted the number of blocks in x̃, ỹ by r and q, respectively.
If X and Y are two random vertices of Gn, then the same notation as in
(2.3.17) is used with capital letters.

Now we fix an arbitrary self-map p of Σ1 such that

(x, p(x)) ∈ E(G) ∀x ∈ G.

Most commonly, p(p(x)) 6= x. Note that x and p(x) have different types
since G is bipartite. For a word z = (z1 . . . zm) with typ(z) ∈ {1, 2} we
define p(z) := (p(z1) . . . p(zm)).. Then,

(tz, tp(z)) is an edge in G`+m,∀t = (t1 . . . t`), (2.3.18)

follows from (2.2.1).
As usual we write Diam(G) for the maximal graph-distance in the graph

G within components of G. Clearly Diam(G) ≤ N − 1.

Lemma 2.3.8. Let x, y be arbitrary vertices in the same connected compo-
nent of Gn. Using the notation above, the length of the shortest path between
them is at least r + q − 1 and at most r + q + Diam(G)− 2.

Considering the worst case scenario, i.e. choosing all blocks of length 1
yields:

Corollary 2.3.9. The diameter of the graph Gn is at most 2n+Diam(G)−2.
Since the size of the graph is Nn, therefore

Diam(Gn) =
2

logN
log(|Gn|) +O(1).

Proof of Lemma 2.3.8. First we construct a path P (x, y) of minimal length.
Starting from x the first half of the path P (x, y) is as follows:

x̂0 = x = (x ∧ y)b1 . . . br−1br

x̂1 = (x ∧ y)b1 . . . br−1p(br)

. . .

x̂r−1 = (x ∧ y)b1p(b2 . . . p(br−1p(br))),

Starting from y the first half of the path P (x, y) is as follows:

ŷ0 = y = (x ∧ y)c1c2 . . . cr

ŷ1 = (x ∧ y)c1 . . . cr−1p(cr)

. . .

ŷq−1 = (x ∧ y)c1p(c2 . . . p(cr−1p(cq))).
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It follows from (2.3.18) that

Px : = (x̂0, x̂1, . . . , x̂r−1)

Py : = (ŷq−1, · · · ŷ1, ŷ0)

are two paths in Gn. To construct P (x, y) the only thing remained is to

connect x̂r−1 and ŷq−1. Using (2.3.18) it is easy to see that this can be done
with a path Pc of length at most Diam(G). In this way,

P (x, y) := PxPcPy.

Clearly,

r + q − 1 ≤ Length(P (x, y)) ≤ r + q + Diam(G)− 2

On the other hand, now we prove that no shorter paths exists than P (x, y).

Recall that it follows from (2.2.1) that for any pathQ(x, y) = (x = q0, . . . , q` =
y), the consecutive elements of the path only differ in their postfixes, which
have different types. That is,

∀i, qi = wizi, qi+1 = wiz̃i, with typ(zi) 6= typ(z̃i) ∈ {1, 2}.

This implies that in each step on the path, the number of blocks in (2.3.17)
changes by at most one. Recall that |x ∧ y| = k, so xk+1 6= yk+1. Since the
digit on the k+ 1-th position changes on the path, we have to reach a point
where all the digits to the right from the k-th position are of the same type.
Starting from p̃0 = x, to reach the first vertex a of this property, we need

at least r− 1 steps on any path P̃ , where r was defined in formula (2.3.17).
Similarly, starting from y, we need at least q − 1 steps to reach the first
vertex b where all the digits after the k-th position are of the same type.
Because xk+1 6= yk+1, we need at least one more edge and at most Diam(G)
edges.

Theorem 2.3.10. The expectation of the length of a shortest path between
two uniformly chosen vertices X,Y ∈ Gn can be bounded by

4n1n2

N2
(n− 1) < E(|P (X,Y )|) < N +

4n1n2

N2
(n− 1).

Corollary 2.3.11. The magnitude of the average length of a shortest path
between two uniformly chosen vertices in Gn is the logarithm of the size of
Gn, which is the same order as Diam(Gn).

Proof of Theorem 2.3.10. Let X,Y be independent, uniformly chosen ver-
tices of Gn. In this proof we use the notation introduced in Definitions 2.2.1
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and 2.3.7. The digits of the code of a uniformly chosen vertex are inde-
pendent and uniform in {0, . . . , N − 1}, hence K(X,Y ) := |X ∧ Y | has a
truncated geometric distribution with parameter N−1

N . That is

P(K(X,Y ) = k) =


(

1

N

)k
· N − 1

N
, if 0 ≤ k < n,(

1

N

)n
if k = n.

Furthermore, given that the length of the prefix is k = K(X,Y ), the
random variables R and Q (see Definition 2.2.1) can be represented as the
sum of indicators corresponding to the start of a new block:

R = 1 +

n−k−1∑
i=1

1typ(Xk+i)6=typ(Xk+i+1),

Q = 1 +
n−k−1∑
i=1

1typ(Yk+i)6=typ(Yk+i+1).

Taking expectation yields

E(Q|K(X,Y ) = k) = E(R|K(X,Y ) = k)

= 1 + E

(
n−k−1∑
i=1

1typ(Xk+i)6=typ(Xk+i+1)

)

= 1 +
n−k−1∑
i=1

P(typ(Xk+i) 6= typ(Xk+i+1))

= 1 + (n− k − 1)
2n1n2

N2
.

So weighting this with the geometric weights of the length of the prefix,
we get

E(Q) = E(R) = E
(
E(R|K(X,Y ))

)
= E

(
1 + (n−K(X,Y )− 1)

2n1n2

N2

)
= 1 +

(
n− 1

N − 1

(
1− 1

Nn

)
− 1

)
2n1n2

N2
.

Using this and the following immediate consequence of Lemma 2.3.8

−1 ≤ E(|P (X,Y )| − (R+Q)) ≤ Diam(G)− 2,

finally we obtain that

1− 1

N − 1
+

4n1n2

N2
(n− 1) ≤ E(|P (X,Y )| < Diam(G) +

4n1n2

N2
(n− 1).
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2.3.4 Decay of local clustering coefficient of the modified se-

quence
{
Ĝn

}
An important property of most real networks is the high degree of clustering.
In general, the local clustering coefficient of a node v having nv neighbors
is defined as

Cv :=
#{links between neighbors of v}(

nv
2

) .

Note that the numerator in the formula is the number of triangles containing
v and Cv is the portion of the pairs of neighbors of v which form a triangle
with v in the graph.

Observe that without the loops the graph sequence Gn is bipartite, i.e.
there are no triangles in the graph Gn. However, we can modify the graph se-
quenceGn in a natural way, like in [100], to get a new sequence Ĝn preserving
the hierarchical structure of Gn, still reflecting the dependence of clustering
coefficient on node degree observed in several real networks. Namely, the
local clustering coefficient of a vertex v is of order 1/ deg(v).

Definition 2.3.12.

• We obtain the graph Ĝ adding a set of extra edges RE(Ĝ) to G satis-
fying the following property:

Property R

∀x ∈ Σ1, ∃y, z ∈ Σ1, such that two among the edges of the triangle
(x, y, z)∆ are contained in E(G) and one of the edges is in RE(Ĝ).

So,
V (Ĝ) = V (G) and E(Ĝ) = E(G) ∪RE(Ĝ).

In the example presented on Figure 2.5 the edges from RE(Ĝ) are the
dashed red edges.

• Similarly we define the graph sequence
{
Ĝn

}∞
n=1

by deleting all loops

in Gn and adding extra edges to Gn. That is, the vertices V (Ĝn) =
V (Gn) = Σn, and with the definition of the simple graph G′n in Section
2.2.5, the edge set is extended by the following rule

E(Ĝn) = E(G′n)
⋃
RE(Ĝn), (2.3.19)

where

RE(Ĝn) =

{(
x1 . . . xn
y1 . . . yn

)
: xi = yi, i ≤ n− 1,

(
xn
yn

)
∈ RE(Ĝ)

}
.

(2.3.20)
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(a) We obtain Ĝ by adding the dashed (red)
edges to G.
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(b) Ĝ2: The edges of Ĝ2 and G2 differ only at the lowest hierarchical level (cf. Figure
2.3)

Figure 2.5: Clustering extended ”fan”.
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It is clear from Property R that

Ĉmin := min
x∈Ĝ

Cx > 0. (2.3.21)

Further, using (2.2.1) and (2.3.20) one can easily see that the degree of a
vertex x ∈ Ĝn is

d̂egn(x) = S(x) · deg(xn) +
(

d̂eg(xn)− deg(xn)
)
, (2.3.22)

where d̂eg(.) denotes the degree of a vertex in Ĝ, while deg(.) stands for the
degree in G.

Remark 2.3.13. The difference between the degree of any node x ∈ Σn in
Gn and in Ĝn is bounded, thus the degree sequence of Ĝn has the same power
law exponent as Gn.

Theorem 2.3.14. There exists K1,K2 > 0 such that the local clustering
coefficient Cx of an arbitrary node x ∈ Ĝn satisfies.

K1

d̂egn(x)
≤ Cx ≤

K2

d̂egn(x)
.

Proof. We write Tn(x) for the set of all triangles in Ĝn containing the node
x ∈ Σn. We say that a triangle (x, y, z)∆ ∈ Tn(x) is regular if and only if
exactly two of its edges are from E(Gn). The triangle (x, y, z)∆ ∈ Tn(x) is
called irregular if it is not regular. The set of irregular triangles containing
x is denoted by IRT n(x). We partition the set of regular triangles RT n(x)
into the classes:

RT n(x) = RT 1
n(x) ∪RT 2

n(x)

in the following way: A triangle (x, y, z)∆ ∈ RT n(x) belongs to RT 1
n(x) if

and only if x is NOT an endpoint of the edge contained in RE(Ĝn). That
is

RT 1
n(x) :=

{
(x, y, z)∆ ∈ RT n(x) :

(
x

y

)
,

(
x

z

)
∈ E(Gn).

}
Hence, RT 2

n(x) is the set of those (x, y, z)∆ ∈ RT n(x) for which either(
x
y

)
∈ E(Gn) and

(
x
z

)
∈ RE(Ĝn) or vice versa. Summarizing these partitions:

Tn(x) = RT n(x) ∪ IRT n(x) = RT 1
n(x) ∪RT 2

n(x) ∪ IRT n(x)

Now we define the cardinality of these classes:

∆1
n(x) := #RT 1(x),∆2

n(x) := #RT 2(x) and ∆ir
n(x) := #IRT (x).

When n = 1 then we suppress the index n. Observe that by Property R,

∆r
n(x) := ∆1

n(x) + ∆2
n(x) ≥ 1, ∀n ≥ 1, x ∈ Σn.
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Now we compute ∆i
n(x), i ∈ {1, 2, ir}, for an arbitrary fixed x ∈ Σn. To do

so the notation `(x) will be used. First we verify that

∆1
n(x) =

`(x)−1∑
r=0

r∏
j=1

deg(xn−j) ·∆1(xn) = S(x) ·∆1(xn), (2.3.23)

where S(x) was defined in (2.2.3). To see this, observe that it follows from
(2.2.1), (2.3.19) and (2.3.20) that

(x, y, z)∆ ∈ RT 1
n(x)

holds if and only if all of the following three assertions are satisfied:

1. ∃0 ≤ r ≤ `(x)− 1, |y ∧ z| = n− 1 and |x ∧ y| = |x ∧ z| = n− r − 1

2.
(
xk
yk

)
∈ E(G) whenever n− r ≤ k ≤ n− 1

3. (xn, yn, zn)∆ ∈ RT 1(xn).

Hence (2.3.23) is obtained by an immediate calculation.
Now we prove that

∆2
n(x) =

`(x)−1∑
r=0

r∏
j=1

deg(xn−j) ·∆2(xn) = S(x) ·∆2(xn). (2.3.24)

This is so because by (2.2.1), (2.3.19) and (2.3.20) we have

(x, y, z)∆ ∈ RT 2
n(x)

holds if and only if all of the following three assertions are satisfied:

1. ∃0 ≤ r ≤ `(x)− 1, |x ∧ y| = n− 1 and |x ∧ z| = |y ∧ z| = n− r − 1,

2.
(
xk
zk

)
∈ E(G) whenever n− r ≤ k ≤ n− 1

3. (xn, yn, zn)∆ ∈ RT 2(xn).

Hence, using the same argument as above we get (2.3.24).
Finally, we determine the number of irregular triangles containing x:

∆ir
n(x) = ∆ir(xn). (2.3.25)

This follows from the fact that

(x, y, z)∆ ∈ IRT n(x)

is equivalent to

∀1 ≤ i ≤ n− 1, xi = yi = zi and (xn, yn, zn)∆ ∈ IRT (xn).
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We write Z∆(x) for the number of all triangles in Ĝn containing x:

Z∆(x) := ∆1
n(x) + ∆2

n(x)︸ ︷︷ ︸
∆r(x)

+∆ir
n(x).

Using (2.3.22), (2.3.23), (2.3.24) and (2.3.25) we get

Cx =
Z∆(x)(
d̂egn(x)

2

) =
2∆r(xn) · S(x) + 2∆ir(xn)

d̂egn(x)(d̂egn(x)− 1)
, (2.3.26)

where S(x) was defined in (2.2.3). Now we estimate Cx.

Claim 2.3.15.

(i) If `(x) = 1, then Cx = Cxn.

(ii) If `(x) ≥ 2, then we have∣∣∣∣∣Cx − 2∆r(xn)

deg(xn)
· 1

d̂egn(x)

∣∣∣∣∣ ≤ const

d̂eg
2

n(x)
. (2.3.27)

Proof of the Claim. Part (i) immediately follows from (2.2.1). To prove
(ii) we fix an arbitrary x ∈ Σn with `(x) ≥ 2. Since t, u, v introduced below
depend only on xn there exists a constant C∗ independent of n and x such
that

0 ≤ t :=
∆r(x)

deg(xn)
, u := d̂eg(xn)− deg(xn), v := 2∆ir(xn) < C∗.

(2.3.28)
To prove (2.3.27) it is enough to verify that

Q :=
(

d̂egn(x)
)(

d̂egn(x)− 1
)
· Cx − 2t · (d̂egn(x)− 1)

is bounded in n and x ∈ Σn. This so, because by (2.3.22) and (2.3.26) we
have

Q = 2∆r(xn) · S + v − 2t
(
S · deg(xn) + u︸ ︷︷ ︸

d̂eg(x)

−1
)

= 2∆r(xn) · S + v − 2∆r(xn) · S︸ ︷︷ ︸
2tS deg(xn)

−2t(u− 1)

= v − 2t(u− 1),

which is bounded by (2.3.28).

Property R implies that both Cxn and ∆r(xn)
deg(xn) are bounded away from

zero. This completes the proof of the Theorem 2.3.14.
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The following theorem shows that the graph sequence Ĝn displays similar
features to that of considered in [100], namely, the average local clustering
coefficient of the graphs Ĝn is not tending to zero with the size of Ĝn.

Theorem 2.3.16. The average local clustering coefficient C̄(Ĝn) of the
graph Ĝn is bounded by two positive constants, more precisely

2n1n2Ĉmin

N2
≤ C̄(Ĝn) ≤ C̄(Ĝ), (2.3.29)

where Ĉmin was defined in (2.3.21).

Proof. We will use the notation introduced in the proof of Theorem 2.3.14.
It easily follows from the proof of Theorem 2.3.14 that

Cx ≤ Cxn . (2.3.30)

Namely, if `(x) = 1 then by (2.3.20), Cx = Cxn . If `(x) ≥ 2 then S(x) ≥ 1
thus using (2.3.26) we obtain

Cx ≤ ∆r(xn) + ∆ir(xn)(
deg(xn)

2

)︸ ︷︷ ︸
Cxn

·
(

deg(xn)

2

)
· S(x)(

d̂egn(x)
2

)︸ ︷︷ ︸
≤1

.

≤ Cxn .

This completes the proof of (2.3.30) from which the upper estimate of
(2.3.29) follows by averaging. On the other hand to see that the lower
estimate holds we take into consideration only the contribution of x ∈ Σn

with `(x) = 1.

C̄(Ĝn) >
1

Nn

∑
z∈V1

Nn−2n2Cz +
∑
z∈V2

Nn−2n1Cz


Using Cz > Ĉmin, the lower bound of (2.3.29) follows.

2.4 The randomized model

In this section we randomize the deterministic model in Section 2.2 by using
Λ in [0, 1]2. The random graph sequence Gr

n is generated in a way which
was inspired by the W -random graphs introduced by Lovász and Szegedy
[88]. See also [39].

Fix a deterministic model with a base graph G, |V (G)| = N . This
determines Λ(a, b) the limit of the sequence of scaled adjacency matrices,
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see the definition (2.2.7) and (2.2.6) in Section 2.2.2. Now for each n, we
throw Mn + 1 independent, uniform random numbers over [0, 1]:

X(1), X(2), . . . , X(Mn+1) ∼ U [0, 1], i.i.d.

We denote the N -adic expansion of each of these numbers by

X(i) = (Xi
1, X

i
2, . . . ), i.e. X(i) =

∞∑
k=1

Xi
k

Nk
,

where the Xi
k-s are uniform over the set {0, 1, . . . , N −1}. The n-th approx-

imation of X(i) is

X
(i)
[n] =

n∑
k=1

Xi
k

Nk
, X(i)

n = (Xi
1, . . . , X

i
n).

Now we construct the random graphGr
n as follows: |V (Gr

n)| = {1, . . . ,Mn},
and E(Gr

n) is given by

E(Gr
n) =

{
(i, j)

∣∣ int

(
I
X

(i)
[n]

× I
X

(j)
[n]

)
∩ Λ 6= ∅

}
,

where int denotes the interior of a set. Clearly,

E(Gr
n) =

{
(i, j)|Λn(X(i), X(j)) = 1

}
.

Note that

Λn(X(i), X(j)) = 1 ⇔
(
Xi

1 . . . X
i
n

Xj
1 . . . X

j
n

)
∈ E(Gn).

Namely, we can think of the first n digits (Xi
1, . . . , X

i
n) and (Xj

1 , . . . , X
j
n)

of the N-adic expansion of X(i) and X(j) as vertices in Gn. We draw an
edge between the two vertices i and j in Gr

n if the vertices (Xi
1 . . . X

i
n) and

(Xj
1 . . . X

j
n) are connected by an edge in the deterministic model Gn. This

gives the following probabilistic interpretation of the random model:

Remark 2.4.1. Consider the deterministic graph sequence Gn with urns
sitting at each vertex v ∈ Gn. Now throw Mn + 1 balls independently and
uniformly into the urns, and connect vertex i to vertex j by an edge in the
random graph Gr

n if and only if the urns of ball i and j are connected by and
edge in Gn.

We need to introduce some further notation.
Frequently used definitions. Under assumption A1, for an x ∈ Gn

with `(x) = k the degree of x is

tk :=
dk+1

1 − 1

d1 − 1
+ 1,
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independently of the length of n.
In the random graph Gr

n, the conditional probability of the degree distri-
bution of a random node V ∈ {0, . . . ,Mn} conditioned on the first n digits
of the N-adic expansion of the corresponding code X(V ) follows a Binomial
distribution: (

deg(V )|(XV
1 . . . XV

n ) = x
)
∼ BIN

(
Mn,

t`(x)

Nn

)
. (2.4.1)

This follows from the characterization of Gr
n described in Remark 2.4.1.

Namely, assume that the V -th ball has landed in urn with label x ∈ Σn. In
Gn there are exactly degn(x)− 1 = t`(x) vertices y ∈ Σn that are connected
to x. All the balls landing into urns corresponding to these vertices y will
be connected to V in Gr

n.

2.4.1 Properties of the randomized model

In this section we determine the proportion of isolated vertices and charac-
terize the degree sequence.

Isolated vertices

Theorem 2.4.2. If Mn = cnN
n with lim

n→∞
cn = ∞, then the fraction of

isolated vertices tends to zero as n → ∞. More precisely, for a uniformly
chosen node V ∈ Gr

n,

P (deg(V ) = 0) ≤ e−dmincn ,

where dmin stands for the minimal degree in the base graph G, and in deg(.)
we do not count the loops.

The following corollary is an immediate consequence of the Borel-Cantelli
lemma.

Corollary 2.4.3. If
∞∑
n=1

cnN
ne−dmincn < ∞, then almost surely there will

be only finitely many n-s, for which the graph Gr
n has isolated vertices.

The assumption of the Corollary is satisfied if e.g. cn > n log(N + 1).

Proof of Theorem 2.4.2. Given the N-adic expansion of X(V ), the proba-
bility that a vertex is isolated depends on how many neighbors the vertex
(XV

1 . . . XV
n ) has in the deterministic model. So we can write

P (deg(V ) = 0) =
∑
x∈Σn

P(deg(V ) = 0|(XV
1 . . . XV

n ) = x) · 1

Nn
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As we have already seen,
(

deg(V )|(XV
1 . . . XV

n ) = x
)

follows a Binomial dis-

tribution with parameters Mn and degn(x)−1
Nn , so the conditional probability

of isolation is

P(deg(V ) = 0|(XV
1 . . . XV

n ) = x) =

(
1−

t`(x)

Nn

)Mn

≤ e− degn(x)cn(1 + o(1)).

Obviously e− degn(x)cn ≤ e−dmincn holds for all x ∈ Σn, which completes the
proof.

Decay of degree distribution

Fix a constant K such that for a standard normal variable Z, P(|Z| > K) <
e−10. We write

Ik,n := [cntk −K
√
cntk, cntk +K

√
cntk],

and

k0(n) := max

{
(n+ 1)

log d2

log d1
,

log n

log d1

}
.

Now we describe the degree distribution for the random model.

Theorem 2.4.4. Let k > k0(n) and u ∈ Ik,n. Then for a uniformly chosen
node V in Gr

n

P (deg(V ) = u) =
(n1

N

)k n2

N
· 1√

cntk
φ
( u− cntk√

cntk(1− tk
Nn )

)(
1 +O(

1√
cntk

)
)
,

where φ denotes the density function of a standard Gaussian variable.

This immediately implies

Corollary 2.4.5. The degree distribution of the random model is given by
the following formula for a, b ∈ [−K,K]:

P
(
deg(V ) ∈ [cntk + a

√
cntk, cntk + b

√
cntk]

)
=
(n1

N

)k n2

N
· (Φ(b)− Φ(a))

+O
((n1

N

)k 1√
cntk

)
,

where k > k0(n) and Φ denotes the distribution function of a standard Gaus-
sian variable. So, for u ∈ Ik,n, k > k0(n) the tail of the probability distribu-
tion is:

P(deg(V ) > u) =
(n1

N

)k+1
+
(n1

N

)k n2

N

1− Φ
( u− cntk√

cntk(1− tk
Nn )

)
+
(n1

N

)k+1
O
( 1√

cntk

)
.

(2.4.2)
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This holds because P(deg(V ) > u) equals the sum of all probability mass
that is concentrated around tl-s for l ≥ k+1, resulting in the first term, plus
the second term coming from the part greater than u of the binomial mass
around tk. As a consequence, the decay of the degree distribution follows a
power law. Namely, the following holds

Theorem 2.4.6. Let

γ := 1 +
log( Nn1

)

log d1
.

Then the decay of the degree distribution is:

P(deg(V ) > u) = u−γ+1 · L(u),

where L(u) is a bounded function:

n1

N
≤ L(u) ≤ N

n1
.

The idea of the proof of Theorem 2.4.4. The conditional distribution of the

degree of a node V conditioned on the n-digit N-adic expansion of X
(V )
n = x

follows a BIN(cnN
n,

t`(x)

Nn ) law. This is close to a POI(cnt`(x)) random vari-
able, because cn and t`(x) tend to infinity in a much smaller order than Nn.
Now for the POI(cnt`(x)) variable, the Central Limit Theorem holds with
an error term of order 1/

√
cnt`(x). Now the unconditional degree distribu-

tion comes from the law of total probability and from the fact that all other
errors are negligible.

Proof of Theorem 2.4.4. We determined the degree distribution of the deter-
ministic model under assumption (A1), see Section 2.3.1 for details. Recall
that if k > k0(n), then the mass at tk is

pk := P(`(x) = k) =
(n1

N

)k n2

N
.

We show that in the random model Gr
n, these Dirac masses are turned into

Gaussian masses centered at cntk. Suppose u ∈ Ik,n. By the law of total
probability, we have

P(deg(V ) = u) = P(deg(V ) = u|
(
XV

1 . . . XV
n

)
= x, `(x) = k) · pk

+ S1 + S2,
(2.4.3)

where

S1 =

k−1∑
j=1

P(deg(V ) = u|
(
XV

1 . . . XV
n

)
= x, `(x) = j) · pj

S2 =

n∑
j=k+1

P(deg(V ) = u|
(
XV

1 . . . XV
n

)
= x, `(x) = j) · pj
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S1 and S2 combines the total contribution of cases when `(XV
1 . . . XV

n ) 6= k,
i.e. referring to the urn model of our random graph, S1 +S2 settles the cases
when the random ball V falls into an urn which has degree different from
tk in Gn. As a first step in our proof we show that the right hand side in
the first line of (2.4.3) gives the formula in Theorem 2.4.4, then as a second
step we verify that S1 + S2 is negligible.

First step: Following the standard proof of the local form of de Moivre-
Laplace CLT, we obtain that for u ∈ Ik,n

P
(

deg(V ) = u|
(
XV

1 . . . XV
n

)
= x

)
=

1√
cnt`(x)(1−

t`(x)

Nn )
φ

 u− cnt`(x)√
cnt`(x)(1−

t`(x)

Nn )

 ·(1 +O
( 1√

cnt`(x)

))
.

We can neglect 1− t`(x)

Nn . This completes the first step.
Second step: Since u ∈ Ik,n we have:

S1 ≤
k−1∑
j=1

P(deg(V ) > tk −K
√
tk|(XV

1 . . . XV
n ) = x, `(x) = j) · pj

S2 ≤
n∑

j=k+1

P(deg(V ) < tk +K
√
tk|(XV

1 . . . XV
n ) = x, `(x) = j) · pj

(2.4.4)

Now we use the fact known from Chernoff-bounds: for an Z ∼ BIN(m, p)
variable

P(Z ≥ (1 + δ)E(Z)) ≤ e−
1
2
δ2E(Z),

and the same bound holds for P(Z ≤ (1 − δ)E(S)). By (2.4.1), to esti-
mate each summand in (2.4.4) we can apply these inequalities for Zj ∼
BIN(cnN

n,
tj
Nn ), j ∈ {1, . . . , n} \ {k}, yielding an upper bound

S1 + S2 ≤
k−1∑
j=1

e−
1
2
d2k−j

1 cn · pj +
n∑

j=k+1

e−
1
2

(1−dk−j1 )2dj1cn · pj

≤ e−
1
8
dk1cn .

Since e−
1
8
dk1cn = o( 1√

cntk
), the statement of Theorem 2.4.4 follows.

Now we are ready to prove the main result of the section.

Proof of Theorem 2.4.6. If u ∈ Ik,n, then

u = dk1 ·
(

1 +O

(
1

d

))
.
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Using (2.4.2) we obtain that there exists C(u) ∈ [n1
N , 1] such that

P(deg(V ) > u) =
(n1

N

)k
C(u).

The last two formulas immediately imply the assertion of the Theorem when-
ever u ∈ Ik,n. Actually in this case we have n1

N ≤ L(u) ≤ 1. If u 6∈ ∪kIn,k,
then there exists k = k(u) such that u ∈ (cntk, cntk+1). By monotonicity of
the distribution function we have

P(deg(V ) > cntk+1) ≤ P(deg(V ) > u) ≤ P(deg(V ) > cntk).

Applying the theorem for cntk+1 and cntk, we loose a factor of N
n1

in the
upper bound of L(u) and the assertion of the Theorem follows.

2.5 Conclusion

Using the attractor Λ of a self-similar graph-directed iterated function sys-
tem, which consists of homotheties of contraction ratio 1/N , we construct
both deterministic and random graph sequences. In this way we obtain ran-
dom and deterministic network models which share some of the important
properties of real networks: scale-free property, clustering and the length of
average shortest path.
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Chapter 3

Fluctuation bounds in a class
of deposition processes

3.1 Introduction

This chapter studies fluctuations in deposition processes of the following
type. An integer-valued height function

h(t) = {hi(t)}i∈Z

evolves via random deposition and removal of individual bricks of unit length
and height. The Poisson rates of deposition and removal at point i are al-
lowed to depend on the neighboring increments hi−1 − hi and hi − hi+1.
Assumptions are made on these rates to guarantee stochastic monotonicity
(attractivity) and the existence of a family of product-form stationary dis-
tributions µ% for the increments {hi−1−hi : i ∈ Z} . The family of invariant
measures is indexed by the average slope % = E%(hi−1 − hi). The flux func-
tion H(%) = t−1E%(hi(t)− hi(0)) gives the average velocity of the height as
a function of the slope %. In this chapter we consider asymmetric systems
for which H′′(%) < 0 at least in a neighborhood of a particular density value
%.

Height increments are conserved because every deposition and removal
event causes a change of +1 in one increment and a change of −1 in a
neighboring increment. The increments (when non negative) are naturally
regarded as occupation numbers of particles. Figure 3.1 shows a configura-
tion and a possible step with both walls and particles. It is in the particle
guise that many of these processes appear in the literature: simple exclu-
sion processes, zero range processes and misanthrope processes are examples
included in the class studied in this chapter. In the particle picture the pa-
rameter % that indexes invariant distributions is the mean particle density
per site. Height increment hi(t)−hi(0) is the cumulative net particle current
across the edge (i, i+ 1) during time (0, t].
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Figure 3.1: The wall and the particles with a possible step

Fix % and consider the process h(t) with stationary increments at average
slope %, normalized so that h0(0) = 0. Interesting fluctuations can be found
by observing the height hbV %tc(t) in the characteristic direction V % = H′(%).
In the particle picture the height fluctuations in the characteristic direc-
tion become fluctuations of the cumulative net particle current seen by an
observer traveling at the characteristic velocity.

Rigorous results on these fluctuations exist for examples that fall in two
categories.

Order t1/4 fluctuations. WhenH is linear the fluctuations are of order t1/4

and converge to Gaussian processes related to fractional Brownian motion.
This has been proved for independent particles [60, 79, 103] and the random
average process [18, 66].

Order t1/3 fluctuations. When H′′(%) 6= 0 the fluctuations are of order
t1/3 and converge to distributions and processes related to the Tracy-Widom
distributions from random matrix theory. The most-studied examples are
the totally asymmetric simple exclusion process (TASEP), the polynuclear
growth model (PNG) and the Hammersley process. Two types of mathe-
matical work should be distinguished.

(a) Exact limit distributions have been derived with techniques of asymp-
totic analysis applied to determinantal representations of the probabilities
of interest. Most of this work has dealt with particular deterministic initial
conditions, and the stationary situation has been less studied. The seminal
results appeared in [8] for the last-passage version of the Hammersley pro-
cess and in [74] for the last-passage model associated with TASEP. Current
fluctuations for stationary TASEP were analyzed in [67]. Here is a selection
of further results in this direction: [9, 42, 68, 75, 99].
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(b) Probabilistic approaches exist to prove fluctuation bounds of the
correct order. The seminal work [44] was on the last-passage version of the
Hammersley process, and then the approach was adapted to the last-passage
model associated with TASEP [13]. The next step was the development of
a proof that works for particle systems: the asymmetric simple exclusion
process (ASEP) was treated in [23] and the totally asymmetric zero range
process with constant jump rate in [15]. The ASEP work [23] was the first
to prove t1/3 order of fluctuations for a process where particle motion is not
restricted to totally asymmetric.

The present chapter is based on two papers, both of them joint with
Márton Balázs and Timo Seppäläinen. The first one is [17], which take
a further step toward universality of the t1/3 order for fluctuations in the
case H′′(%) 6= 0. In [17] we develop a general strategy for proving that in a
stationary process fluctuations in the characteristic direction have order of
magnitude t1/3, then in [16] we show that the strategy works for a process
obeying convex flux function. In its present form the argument rests on a
nontrivial hypothesis that involves control of second class particles. This
control of second class particles that we require is a microscopic counterpart
of the macroscopic effect that convexity or concavity of H has on charac-
teristics. Throughout the first part of the chapter we consider the concave
case H′′(%) < 0, hence we name the property microscopic concavity, then in
Section 3.7 we show that the proof works for convex flux functions as well.

Once the microscopic concavity assumption is made (in a form that we
make technically precise in Section 3.2.6) the proof works for the entire
class of processes. This then is the sense in which we take a step toward
universality. As a bi-product, we also obtain superdiffusivity of the second
class particle in the stationary process. Earlier proofs of t1/3 fluctuations
have been quite rigid in the sense that they work only for particular cases of
the models where special combinatorial properties emerge as if through some
fortuitous coincidences. There is basically no room for perturbing the rules
of the process. By contrast, the proof given in the present chapter works for
the whole class of processes. The hypothesis of microscopic concavity that
is required is certainly nontrivial. But it does not seem to rigidly exclude
all but a handful of the processes in the broad class. The estimates that
it requires can probably be proved in different ways for different subclasses
of the processes. And the proof itself may evolve further and weaken the
hypothesis required.

We are currently able to verify the required hypothesis of microscopic
concavity for the following three subclasses of processes.

(i) The asymmetric simple exclusion process (ASEP). Full details of this
case are reported by Balazs and Seppäläinen [22] and we give a brief informal
description in Section 3.2.8. This proof is somewhat simpler than the earlier
one given in [23].
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(ii) Totally asymmetric zero range processes with a concave jump rate
function whose slope decreases geometrically, and may be eventually con-
stant. This example is developed fully here, and thus the proofs are simpler
than the one given in my Masters thesis [15].

(iii) The totally asymmetric bricklayers process with convex, exponen-
tial jump rate. This system satisfies the analogous microscopic convexity.
Due to the fast growth of the jump rate function this example needs more
preliminary work and so the result is shown in Section 3.7. We postpone a
more thorough introduction to bricklayer processes until then.

We expect that a broader class of totally asymmetric concave zero range
processes should be amenable to further progress because a key part of the
hypothesis can be verified, and only a certain tail estimate is missing. We
explain this in Section 3.2.8.

This chapter has three parts. In the main part we prove the general
fluctuation bound under the assumptions needed for membership in the class
of processes and the assumption of microscopic concavity. The second and
the third part shows that the assumptions required by the general result are
satisfied by a class of zero range processes, and the exponential bricklayers
process, respectively. Here is a section by section outline.

In Section 3.2 we define the general family of processes under consider-
ation, describe the microscopic concavity property and other assumptions
used, and state the general results. Partly as corollaries to the fluctuation
bound along the characteristic we obtain a law of large numbers for a second
class particle and limits that show how fluctuations in non-characteristic di-
rections on the diffusive scale come directly from fluctuations of the initial
state. Section 3.2.8 describes two examples. First, it gives a brief descrip-
tion of how the asymmetric simple exclusion process (ASEP) satisfies the
assumptions of our general theorem. (Full details for this example are re-
ported in [22].) Then it describes a class of totally asymmetric zero range
processes with concave jump rates that increase with exponentially decaying
slope.

The general theorem is proved in two parts: the upper bound in Section
3.3 and the lower bound in Section 3.4. Section 3.5 proves a strong law
for the second class particle, partly as a corollary of the main fluctuation
bounds. We then return to the zero range example and give a complete
proof for this class of processes in Section 3.6. Finally, Section 3.7 handles
the microscopic convexity property of the exponential bricklayers process.

The appendices contain auxiliary computations for the stationary distri-
bution and hydrodynamic flux function. In particular we show monotonicity
of the measures µ and µ̂ in % and regularity properties of the flux function.
Further, if the jump rate function of a zero range process is concave and
not linear then the hydrodynamic flux H is smooth and satisfies H′′(%) < 0
for all densities 0 < % < ∞. We omit to include the very first part of the
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Appendix of [17] showing that the hydrodinamic flux function is a convex
function of the density %, and we refer the reader to [20].

Notation

We summarize here some notation for easy reference. Z+ = {0, 1, 2, . . . },
R+ = [0, ∞). Centering a random variable is denoted by X̃ = X − EX.
Constants C�, α� do not depend on time, but may depend on the density
parameter % and their values can change from line to line. The numbering of
these constants is of no particular significance and is meant only to facilitate
following the arguments.

3.2 Definitions and results

We define the class of processes studied in this chapter, give a list of ex-
amples, and discuss some of basic properties. Then come the hypotheses
and main results of this chapter, followed by two examples of subclasses of
processes for which the hypotheses can be verified.

3.2.1 A family of deposition processes

The family of processes we consider is the one described in [21], and we
repeat the definition here. We start with the interface growth picture, but
we end up using the height and particle languages interchangeably. For
extended-integer-valued boundaries −∞ ≤ ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞
define the single-site state space

I : =
{
z ∈ Z : ωmin − 1 < z < ωmax + 1

}
and the increment configuration space

Ω : = {ω = (ωi)i∈Z : ωi ∈ I} = IZ.

At times it will be convenient to have notation for the increment configura-
tion δi ∈ Ω with exactly one nonzero entry equal to 1:

(δi)j =

{
1, for i = j,

0, for i 6= j.
(3.2.1)

For each pair of neighboring sites i and i + 1 of Z imagine a column of
bricks over the interval (i, i + 1). The height hi of this column is integer-
valued. The components of a configuration ω ∈ Ω are the negative discrete
gradients of the heights: ωi = hi−1 − hi ∈ I.
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The evolution is described by jump processes whose rates p and q are
nonnegative functions on I × I. Two types of moves are possible. A brick
can be deposited:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1)

hi −→ hi + 1

}
with rate p(ωi, ωi+1), (3.2.2)

or removed:

(ωi, ωi+1) −→ (ωi + 1, ωi+1 − 1)

hi −→ hi − 1

}
with rate q(ωi, ωi+1). (3.2.3)

Conditionally on the present state, these moves happen independently at
all sites i. We can summarize this information in the formal infinitesimal
generator L of the process ω(·):

(Lϕ)(ω) =
∑
i∈Z

p(ωi, ωi+1) · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . )− ϕ(ω)]

+
∑
i∈Z

q(ωi, ωi+1) · [ϕ(. . . , ωi + 1, ωi+1 − 1, . . . )− ϕ(ω)] .
(3.2.4)

L acts on bounded cylinder functions ϕ : Ω→ R (this means that ϕ depends
only on finitely many ωi-values).

Thus we have a Markov process {ω(t) : t ∈ R+} of an evolving increment
configuration and a Markov process {h(t) : t ∈ R+} of an evolving height
configuration. The initial increments ω(0) specify the initial height h(0) up
to a vertical translation. We shall always normalize the height process so
that h0(0) = 0.

In the particle picture the variable ωi(t) represents the number of parti-
cles at site i at time t. Step (3.2.2) represents a rightward jump of a particle
over the edge (i, i + 1), while step (3.2.3) represents a leftward jump. (If
negative ω-values are permitted, one needs to consider particles and antipar-
ticles, with antiparticles jumping in the opposite direction.) It will be useful
to see that

hi(t) = hi(t)−h0(0) = the net number of particles that have passed,

from left to right, the straight-line space-time path

that connects (1/2, 0) to (i+ 1/2, t).
(3.2.5)

We impose the following four assumptions (3.2.6)–(3.2.9) on the rates.

• The rates p, q : I × I → R+ must satisfy

p(ωmin, · ) ≡ p( · , ωmax) ≡ q(ωmax, · ) ≡ q( · , ωmin) ≡ 0 (3.2.6)

whenever either ωmin or ωmax is finite. Either both p and q are strictly
positive in all other cases, or one of them is identically zero. The
process is called totally asymmetric if either q ≡ 0 or p ≡ 0.
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• The dynamics has a smoothing effect when we assume the following
monotonicity:

p(z + 1, y) ≥ p(z, y), p(y, z + 1) ≤ p(y, z)
q(z + 1, y) ≤ q(z, y), q(y, z + 1) ≥ q(y, z)

(3.2.7)

for y, z, z + 1 ∈ I. Under this property the higher the neighbors of a
column, the faster it grows and the longer it waits for a brick removal,
on average. This is the notion of attractivity.

• The next two assumptions guarantee the existence of translation-in-
variant product-form stationary measures. (Similar assumptions were
employed by Cocozza-Thivent [48].)

– For any x, y, z ∈ I

p(x, y) + p(y, z) + p(z, x)

+ q(x, y) + q(y, z) + q(z, x) = p(x, z) + p(z, y) + p(y, x)

+ q(x, z) + q(z, y) + q(y, x).
(3.2.8)

– There are symmetric functions sp and sq on I× I, and a function
f on I such that f(ωmin) = 0 whenever ωmin is finite, f(z) > 0
for z > ωmin, and for any y, z ∈ I,

p(y, z) = sp(y, z + 1)f(y)

and q(y, z) = sq(y + 1, z)f(z).
(3.2.9)

(Interpret sp(y, z) = sq(y, z) = 0 if y or z > ωmax.) Condition
(3.2.7) implies that f is nondecreasing on I.

An attempt at covering this broad class of processes raises the uncom-
fortable point that there is no unified existence proof for this entire class.
Different constructions in the literature place various boundedness or growth
conditions on p and q and the space I, and result in various degrees of reg-
ularity for the semigroup. (Among key references are Liggett’s monograph
[86], and articles [5], [19] and [85].) These existence matters are beyond the
scope of this thesis. Yet we wish to give a general proof for fluctuations that
in principal works for all processes in the family, subject to the more seri-
ous assumptions we explain in Section 3.2.6. To avoid extraneous technical
issues we make the following blanket assumptions on the rates p and q to
be considered.

• We assume that the increment process ω(t), and the corresponding
height process h(t) with normalization h0(0) = 0, that obey Poisson
rates p and q as described by (3.2.2) and (3.2.3), can be constructed
with cadlag paths in a subspace Ω̃ of tempered increment configura-
tions (i.e. configurations that obey some restrictive growth conditions).
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• The subspace Ω̃ is of full measure under the invariant distributions µθ

defined in Section 3.2.4.

• It is also possible to construct jointly several versions of the process
with initial configurations from the space Ω̃ and with joint evolution
obeying basic coupling (described in Section 3.2.3).

• Rates p and q have all moments under the invariant distributions µθ.
In fact arguments like Lemma 3.B.2 of the Appendix provide this when
f does not grow faster than exponential on Z+ and does not decrease
faster to zero than exponential on Z−.

The reader will see that our proofs in Sections 3.3, 3.4, 3.5 and 3.6 do
not make any analytic demands on the semigroup and its relation to the
generator. We only use couplings, counting of particle currents and simple
Poisson bounds.

Two identities from article [21] play a key role in this chapter, given as
(3.2.19) and (3.2.20) in Section 3.2.5. These identities hold for all processes
in the family under study. The proofs given in [21] use generator calculations
which may not be justified for all these processes. However, these identities
can also be proved by counting particles and taking limits of finite-volume
processes ([22] contains an example). Such a proof should be available with
any reasonable construction of a process. Hence we shall not hesitate to use
the results of [21].

3.2.2 Examples

To give concrete meaning to the general formulation of the previous section
we describe some basic examples. The type of state space I distinguishes
three cases that we call generalized exclusion, misanthrope and bricklayers
processes. In all cases there are two parameters 0 ≤ p, q ≤ 1 such that
p + q = 1. Asymmetric processes have p 6= q. These are the processes for
which our results are relevant.

1. Generalized exclusion processes. These are the cases where both
ωmin and ωmax are finite.

• The asymmetric simple exclusion process (ASEP) intro-
duced by F. Spitzer [105] is defined by ωmin = 0, ωmax = 1,
f(z) = 1{z = 1}, sp(y, z) = p · 1{y = z = 1} and sq(y, z) =
q · 1{y = z = 1}. This produces the familiar rates

p(y, z) = p ·1{y = 1, z = 0} and q(y, z) = q ·1{y = 0, z = 1}.

Here ωi ∈ {0, 1} is the occupation number for site i, p(ωi, ωi+1) is
the rate for a particle to jump from site i to i+1, and q(ωi, ωi+1)
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is the rate for a particle to jump from site i+ 1 to i. These rates
have values p and q, respectively, whenever there is a particle to
perform the above jumps, and there is no particle on the terminal
site of the jumps. Conditions (3.2.7) and (3.2.8) are also satisfied
by these rates.

• Particle-antiparticle exclusion process. Let ωmin = −1,
ωmax = 1. Take f(−1) = 0, f(0) = c (creation), f(1) = a
(annihilation) where c and a are positive rates with c ≤ a/2,

sp(0, 1) = sp(1, 0) = p, sp(0, 0) =
pa

2c
, sp(1, 1) =

p

2
,

sq(0, 1) = sq(1, 0) = q, sq(0, 0) =
qa

2c
, sq(1, 1) =

q

2

and sp, sq zero in all other cases. These result in rates

p(0, 0) = pc, p(0, −1) = p(1, 0) =
pa

2
, p(1, −1) = pa,

q(0, 0) = qc, q(−1, 0) = q(0, 1) =
qa

2
, q(−1, 1) = qa

and zero in all other cases. If ωi is the number of particles at site
i, with ωi = −1 meaning the presence of an antiparticle, then
this model describes an asymmetric exclusion process of particles
and antiparticles with annihilation and particle-antiparticle pair
creation. These rates also satisfy our conditions.

One can imagine other generalizations with bounded numbers of par-
ticles and/or antiparticles per site.

2. Generalized misanthrope processes have ωmin > −∞, ωmax =∞.

• Zero range process. Take ωmin = 0, ωmax = ∞, an arbitrary
nondecreasing function f : Z+ → R+ such that f(0) = 0,

sp(y, z) ≡ p and sq(y, z) ≡ q,
p(y, z) = pf(y) and q(y, z) = qf(z).

Again, ωi represents the number of particles at site i. Depending
on this number, a particle jumps from i to the right with rate
pf(ωi), and to the left with rate qf(ωi). These rates trivially
satisfy conditions (3.2.7) and (3.2.8).

3. General deposition processes have ωmin = −∞ and ωmax = ∞.
The height differences between adjacent columns can be arbitrary in-
tegers. Antiparticles are needed for a particle representation of the
process.
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• Bricklayers process. Let f : Z → R+ be non-decreasing and
satisfy

f(z) · f(1− z) = 1 for all z ∈ Z.

The values of f for positive z’s thus determine the values for
non-positive z’s. Let

sp(y, z) = p+
p

f(y)f(z)
and sq(y, z) = q +

q

f(y)f(z)
,

which results in

p(y, z) = pf(y) + pf(−z) and q(y, z) = qf(−y) + qf(z).

The following picture motivates the name bricklayers process. At
each site i stands a bricklayer who lays a brick on the column to
his left at rate pf(−ωi) and on the column to his right at rate
pf(ωi). Each bricklayer also removes a brick from his left at rate
qf(ωi) and from his right at rate qf(−ωi). Conditions (3.2.7) and
(3.2.8) hold for the rates.

These were examples for which our theorem holds, provided the hypothe-
ses on microscopic concavity to be described below can be verified.

While this chapter has nothing to say about symmetric processes, let us
point out that the general class defined in Section 3.2.1 contains also such
processes. Symmetric processes are characterized by the identity p(y, z) =
q(z, y). In this case (3.2.8) holds automatically and we only need to take
care of (3.2.7) and (3.2.9). Here is an interesting example.

• The symmetric K-exclusion process is obtained if we set ωmin = 0,
ωmax = K, f(z) = 1{z > 0},

sp(y, z) = sq(y, z) = 1{z, y ≤ K}.

These result in

p(y, z) = q(z, y) = 1{y > 0, z < K}.

Thus this process also has a family of product-form invariant distri-
bution, as described below.

The interesting point about this example is that the asymmetric version does
not have product-form invariant distributions, and indeed the existence of
spatially ergodic invariant distributions for all density values % ∈ [0, K] has
been an open problem for many years. And of course, current fluctuations
for the asymmetric process are also open.
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3.2.3 Basic coupling

In basic coupling the joint evolution of n processes ωm(·), m = 1, . . . , n,
is defined in such a manner that the processes “jump together as much
as possible.” The joint rates are determined as follows, given the current
configurations ω1, ω2, . . . , ωn ∈ Ω̃. Consider a step of type (3.2.2) over the
edge (i, i+ 1). Let m 7→ `(m) be a permutation that orders the rates of the
individual processes for this move:

r(m) ≡ p(ω`(m)
i , ω

`(m)
i+1 ) ≤ p(ω`(m+1)

i , ω
`(m+1)
i+1 ) ≡ r(m+ 1), 1 ≤ m < n.

Set also the dummy value r(0) = 0. Now the rule is that independently for
each m = 1, . . . , n, at rate r(m)−r(m−1), precisely processes ω`(m), ω`(m+1),
. . . , ω`(n) execute move (3.2.2), and processes ω`(1), ω`(2), . . . , ω`(m−1) do
not. The combined effect of these joint rates creates the correct marginal
rates, that is, process ω`(m) executes this move with rate r(m).

Notice also that, due to (3.2.7), a jump of ωa without ωb can only occur if
p(ωbi , ω

b
i+1) < p(ωai , ω

a
i+1) which implies ωai > ωbi or ωai+1 < ωbi+1. The result

of this step (3.2.2) then cannot increase the number of discrepancies between
the two processes, hence the name attractivity for (3.2.7). In particular, a
sitewise ordering ωai ≤ ωbi ∀i ∈ Z is preserved by the basic coupling.

One can check that moves of type (3.2.3) with rates q obey the same
attractivity property.

The differences between two processes are called second class particles.
Their number is nonincreasing. In particular, if ωai ≥ ωbi for each i ∈ Z, then
the second class particles are conserved. In view of (3.2.5), in this case the
net number of second class particles that pass from left to right across the
straight-line space-time path from (1/2, 0) to (i+ 1/2, t) equals the growth
difference(

hai (t)− ha0(0)
)
−
(
hbi(t)− hb0(0)

)
= hai (t)− hbi(t) (3.2.10)

between the two processes ωa(·) and ωb(·).
A special case that is of key importance to us is the situation where only

one second class particle is present between two processes.

3.2.4 Translation invariant stationary product distributions

The results of this chapter concern stationary processes with particular
product-form marginal distributions that we define in this section. For
many cases it has been proved that these measures are the only extremal
translation-invariant stationary distributions. Following some ideas in Cocozza-
Thivent [48], we first consider the nondecreasing function f whose existence
was assumed in (3.2.9). For I 3 z > 0 define

f(z)! : =

z∏
y=1

f(y),
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while for I 3 z < 0 let

f(z)! : =
1

0∏
y=z+1

f(y)

,

and then f(0)! : = 1. This definition satisfies f(z)! · f(z + 1) = f(z + 1)! for
all z ∈ I. Let

θ̄ : =

{
log
(

lim inf
z→∞

(f(z)!)1/z
)

= lim
z→∞

log(f(z)), if ωmax =∞
∞, else

and

θ : =

 log

(
lim sup
z→∞

(f(−z)!)1/z

)
= lim

z→∞
log(f(−z)), if ωmin = −∞

−∞, else.

By monotonicity of f , we have θ̄ ≥ θ. The case θ̄ = θ would imply that
ωmin = −∞, ωmax =∞, and f is a constant. Notice that (3.2.7) and (3.2.9)
imply that sp is non-increasing in its variables, but p is non-decreasing in
its first variable. Hence a constant f results in an sp that does not depend
on its first variable. But then by its symmetric property it does not depend
on its second variable either, and we conclude that a constant f implies
constant rates p (and, similarly, q). We exclude this uninteresting case by
postulating

Assume f to be such that θ < θ̄. (3.2.11)

For θ ∈
(
θ, θ̄

)
define the state sum

Z(θ) : =
∑
z∈I

eθz

f(z)!
<∞. (3.2.12)

Let the product-distribution µθ on Ω = IZ have marginals

µθ(z) = µθ {ω : ωi = z} : =
1

Z(θ)
· eθz

f(z)!
(z ∈ I). (3.2.13)

Assumptions (3.2.6), (3.2.7), (3.2.8), (3.2.9) imply that for θ ∈
(
θ, θ̄

)
the

product distribution µθ is stationary for the process generated by (3.2.4) (see

[21]). Note that the family {µθ} can be obtained by exponentially weighting
a probability measure µθ0 for a fixed value θ0 ∈ (θ, θ̄), see [20].

Pθ, Eθ, Varθ, Covθ will refer to laws of a process evolving in this
stationary distribution. In the Appendix we show that the density

%(θ) : = Eθ(ω)

is a strictly increasing, infinitely differentiable function of the parameter θ
that maps the interval (θ, θ̄) onto the interval (ωmin, ωmax). (The following
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point should cause no confusion: the single-site state space I consists of
the integers between ωmin and ωmax, including endpoints if finite, but for
density values the interval (ωmin, ωmax) is an interval of real numbers.) For
most cases we shall use the density %, rather than θ, for parameterizing the
stationary distributions. Accordingly, µ%, P%, E%, Var%, Cov% will refer
to laws of a density % stationary process.

3.2.5 Hydrodynamics and some exact identities

The hydrodynamic flux is defined as

H(%) : = E%(p(ω0, ω1)− q(ω0, ω1)). (3.2.14)

H(%) is the expected net rate at which a given column grows, or at which
particles pass any fixed lattice edge from left to right in a stationary density-
% process. We show smoothness of H in Section 3.B of the Appendix. It is
expected, and in many instances proved, that asymmetric members of our
class satisfy the conservation law

∂T%(T, X) + ∂XH(%(T, X)) = 0

in the Eulerian-scaled time and space variables T and X, see e.g. Rezakhan-
lou [101] or Bahadoran, Guiol, Ravishankar and Saada [7]. The character-
istic speed is the velocity with which small perturbations of the solution of
this PDE propagate, and is given by

V % : = H′(%). (3.2.15)

A particular expectation we shall need several times is

E%(hi(t)) = H(%)t− %i, t ≥ 0, i ∈ Z. (3.2.16)

For i = 0 this follows from (3.2.5), and in general from the i = 0 case
together with ωj(t) = hj−1(t)− hj(t).

When a stationary process is perturbed by adding a second class particle
at the origin at time zero, we obtain two processes, ω−(·) and ω(·). It
is not a priori clear what the initial joint distribution of the occupation
variables ω−0 (0), ω0(0) should be. For ASEP there is no ambiguity due to the
simplicity of the single-site state space: the only way to have a discrepancy
is to set ω−0 (0) = 0, ω0(0) = 1. A useful generalization of this distribution
to the broader class of processes involves the following family of probability
measures on I introduced in [21]:

µ̂%(y) : =
1

Var%(ω0)

ωmax∑
z=y+1

(z − %)µ%(z), y ∈ I. (3.2.17)
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An empty sum is zero by convention and so if ωmax < ∞, µ̂%(ωmax) = 0.
Consequently there is room for an additional particle under the µ̂% distribu-
tion, in the sense that if ω ∼ µ̂% then also ω + 1 ∈ I.

To our knowledge these distributions µ̂% do not possess any invariance
properties. Their virtue is that they make identities (3.2.19) and (3.2.20)
below true. We show in Section 3.A of the Appendix that both µ% and µ̂% are
stochastically monotone in the density %. (There is, however, no stochastic
domination between µ% and µ̂% in general.)

Denote by E the expectation w.r.t. the evolution of a pair (ω−(·), ω(·))
started with initial data (recall (3.2.1))

ω−(0) = ω(0)− δ0 ∼
(⊗
i 6=0

µ%
)
⊗ µ̂%, (3.2.18)

and evolving under the basic coupling. This pair will always have a single
second class particle whose position is denoted by Q(t). In other words,
ω−(t) = ω(t)− δQ(t). Corollaries 2.4 and 2.5 of [21] state that

Var%(hi(t)) = Var%(ω) ·E|Q(t)− i| (3.2.19)

and

E(Q(t)) = V % · t (3.2.20)

for any i ∈ Z and t ≥ 0. Note in particular that in (3.2.19) the variances
are taken in a stationary process, while the expectation of Q(t) is taken in
the coupling with initial distribution (3.2.18).

3.2.6 Microscopic concavity

From now on fix the jump rates p, q : I × I → R+ that define the process
in question, assumed to satisfy all the assumptions discussed thus far. The
t1/3 current or height fluctuations are expected when the hydrodynamic
flux H(%) is strictly concave or convex. In this section we discuss only the
concave case. Concavity implies that the characteristic speed V % = H′(%) is
a nonincreasing function of density %:

λ < % =⇒ V λ ≥ V %. (3.2.21)

The microscopic counterpart of a characteristic is the motion of a second
class particle. Our key assumption that we term microscopic concavity is
that the ordering (3.2.21) can also be realized at the particle level as an
ordering between two second class particles introduced into two processes
at densities λ and %. Since this is now a probabilistic notion, there are
several possible formulations, ranging from almost sure (Qλ(t) ≥ Q%(t) in a
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coupling) to distributional formulations. Assumption 3.2.1 below gives the
precise technical form in which this section utilizes this notion of microscopic
concavity. It stipulates that the ordering of second class particles is achieved
by processes that evolve on the labels of auxiliary second class particles, and
also requires some control of the tails of these random labels.

We do not imagine that this precise formulation will be the right one for
all processes. We take it as a starting point and future work may lead to
alternative formulations. Assumption 3.2.1 has the virtue that its require-
ments can be verified for some interesting processes.

Let λ < % be two densities. Proposition 3.A.4 in the Appendix gives the
stochastic domination µ̂λ ≤ µ̂%. Define µ̂% + 1 as the measure that gives
weight µ̂%(z− 1) to an integer z such that ωmin < z < ωmax + 1. Let µ̂λ,% be
a coupling measure with marginals µ̂λ and µ̂% + 1 and with the property

µ̂λ,%{(y, z) : ωmin − 1 < y < z < ωmax + 1} = 1. (3.2.22)

Let also µλ,% be a coupling measure of site-marginals µλ and µ% of the
invariant distributions, with

µλ,%{(y, z) : ωmin − 1 < y ≤ z < ωmax + 1} = 1. (3.2.23)

Note the distinction that under µ̂λ,% the second coordinate is strictly above
the first.

To have notation for inhomogeneous product measures on IZ, let λ =
(λi)i∈Z and % = (%i)i∈Z denote sequences of density values, with λi and %i
assigned to site i. The product distribution with marginals µ̂λ0,%0 at the
origin and µλi,%i at other sites is denoted by

µ̂λ,% : =
(⊗
i 6=0

µλi,%i
)
⊗ µ̂λ0,%0 . (3.2.24)

Measure µ̂λ,% gives probability one to the event

{(η(0), ω(0)) : η0(0) < ω0(0), and ηi(0) ≤ ωi(0) for 0 6= i ∈ Z}.

The initial configuration (η(0), ω(0)) will always be assumed a member of
this set, and the pair process (η(t), ω(t)) evolves in basic coupling. In general

µ̂λ,% is not stationary for this joint evolution.
The discrepancies between these two processes are called the ω − η

(second class) particles. The number of such particles at site i at time t is
ωi(t)− ηi(t). In the basic coupling the ω − η particles are conserved, in the
sense that none are created or annihilated. We label the ω−η particles with
integers, and let Xm(t) denote the position of particle m at time t. The
initial labeling is chosen to satisfy

· · · ≤ X−1(0) ≤ X0(0) = 0 < X1(0) ≤ · · · .
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We can specify that X0(0) = 0 because under µ̂λ,% there is an ω− η particle
at site 0 with probability 1. During the evolution we keep the positions
Xi(t) of the ω − η particles ordered. To achieve this we stipulate that

whenever an ω − η particle jumps from a site,
if the jump is to the right the highest label moves,
and if the jump is to the left the lowest label moves.

(3.2.25)

Here is the precise form of microscopic concavity. The assumption states
that a certain joint construction of processes (that is, a coupling) can be
performed for a range of densities in a neighborhood of a fixed density %.
Recall (3.2.1) for the definition of the configuration δ.

Assumption 3.2.1. Given a density % ∈ (ωmin, ωmax), there exists γ0 > 0
such that the following holds. For any λ and % such that % − γ0 ≤ λi ≤
%i ≤ % + γ0 for all i ∈ Z, a joint process (η(t), ω(t), y(t), z(t))t≥0 can be
constructed with the following properties.

• Initially (η(0), ω(0)) is µ̂λ,%-distributed and the joint process
(η(·), ω(·)) evolves in basic coupling.

• Processes y(·) and z(·) are integer-valued. Initially y(0) = z(0) = 0.
With probability one

y(t) ≤ z(t) for all t ≥ 0. (3.2.26)

• Define the processes

ω−(t) : = ω(t)− δXy(t)(t)
and η+(t) : = η(t) + δXz(t)(t). (3.2.27)

Then both pairs (η, η+) and (ω−, ω) evolve marginally in basic cou-
pling.

• For each γ ∈ (0, γ0) and large enough t ≥ 0 there exists a probability
distribution ν%,γ(t) on Z+ satisfying the tail bound

να,γ(t){y : y ≥ y0} ≤ Ctκ−1γ2κ−3y−κ0 (3.2.28)

for some fixed constants 3/2 ≤ κ < 3 and C < ∞, and such that if
% − γ ≤ λi ≤ %i ≤ % + γ for all i ∈ Z, then we have the stochastic
bounds

y(t)
d
≤ ν%,γ(t) and z(t)

d
≥ −ν%,γ(t). (3.2.29)

Let us clarify some of the details in this assumption.
Equation (3.2.27) says that Qη(t) : = Xz(t)(t) is the single second class

particle between η and η+, while Q(t) : = Xy(t)(t) is the one between ω−

and ω. The first three bullets say that it is possible to construct jointly four
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processes (η, η+, ω−, ω) with the specified initial conditions and so that
each pair (η, ω), (η, η+) and (ω−, ω) has the desired marginal distribution,
and most importantly so that

Qη(t) = Xz(t)(t) ≥ Xy(t)(t) = Q(t). (3.2.30)

This is a consequence of (3.2.26) because the ω − η particles Xi(t) stay
ordered.

The tail bound (3.2.28) is formulated in this somewhat complicated fash-
ion because this appears to be the weakest form our present proof allows. In
our currently available examples ν%,γ(t) is actually a fixed geometric distribu-
tion. However, we expect that other examples will require more complicated
bounds and so including this generality is sensible.

The assumptions made imply η(t) ≤ ω(t) a.s., and by (3.2.27)

η(t) ≤ η+(t) ≤ ω(t) and η(t) ≤ ω−(t) ≤ ω(t) a.s.

In our actual constructions of the processes η, η+, ω−, ω for ASEP (Section
3.2.8 and [22]), for a class of totally asymmetric zero range processes (Section
3.6) and for the totally asymmetric bricklayers process with exponential
rates (future work) it turns out that the triples (η, η+, ω) and (η, ω−, ω)
evolve also in basic coupling, but the full joint evolution (η, η+, ω−, ω) does
not.

As already explained, the microscopic concavity idea is contained in in-
equality (3.2.26). There is also a sense in which the tail bounds (3.2.29)
relate to concavity of the flux. Consider the situation λi ≡ λ < % ≡ %i. We
would expect the ω−η particle X0(·) to have average and long-term velocity

R(λ, %) =
H(%)−H(λ)

%− λ
,

the Rankine-Hugoniot or shock speed. By concavity

H′(%) = V % ≤ R(λ, %) ≤ V λ = H′(λ).

A strict microscopic counterpart would be y(t) ≤ 0 ≤ z(t). But this condi-
tion is overly restrictive. The only cases we know to satisfy it are the totally
asymmetric simple exclusion process and the totally asymmetric zero range
process with constant rate. The distributional bounds (3.2.29) are natural
relaxations of y(t) ≤ 0 ≤ z(t).

By the same token, perhaps the way to covering more examples with our
approach involves a similar distributional weakening of (3.2.26), but this
seems less straightforward.
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3.2.7 Results

We need a few more assumptions and then we can state the main result.
Constants C�, α� will not depend on time, but might depend on the density
parameter %, and their values can change from line to line. We are now
working with a fixed member of the class of processes described in Section
3.2.1 with rate functions p, q : I × I → R+. Recall that H is the hydro-
dynamic flux defined in (3.2.14). In the Appendix we show H is infinitely
differentiable under the restrictions on the rates placed in Section 3.2.1.

Assumption 3.2.2. The rates p, q and density % ∈ (ωmin, ωmax) have the
following properties.

• The jump rate functions p and q satisfy assumptions (3.2.6), (3.2.7),
(3.2.8), (3.2.9) and (3.2.11) discussed in Sections 3.2.1 and 3.2.4.

• H′′(%) < 0.

• Let (ω−, ω) be a pair of processes in basic coupling, started from dis-
tribution (3.2.18), with second class particle Q(t). Then there exist
constants 0 < α0, C0 <∞ such that

P{|Q(t)| > K} ≤ C0 ·
t2

K3
(3.2.31)

whenever K > α0t and t is large enough.

As mentioned, our results are valid only for asymmetric processes. The
assumption of asymmetry is implicitly contained in H′′(%) < 0. Symmetric
processes have H(%) ≡ 0. Exponential tail bounds for |Q(t)| that imply
assumption (3.2.31) hold automatically if the rates p, q have bounded incre-
ments because the rates for Q come from these increments of p and q. Here
is the main result.

Theorem 3.2.3. Let Assumptions 3.2.1 and 3.2.2 hold for density %. Let
the processes (ω−(t), ω(t)) evolve in basic coupling with initial distribution
(3.2.18) and let Q(t) be the position of the second class particle between ω−(t)
and ω(t). Then there is a constant C1 = C1(%) ∈ (0, ∞) such that for all
1 ≤ m < 3,

1

C1
< lim inf

t→∞

E|Q(t)− V %t|m

t2m/3
≤ lim sup

t→∞

E|Q(t)− V %t|m

t2m/3
<

C1

3−m
.

(3.2.32)

Superdiffusivity of the second class particle is best seen with the choice
m = 2: the variance of its position is of order t4/3. Next some corollaries.
Notation bXc stands for the lower integer part of X.
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Corollary 3.2.4 (Current variance). Under Assumptions 3.2.1 and 3.2.2,
there is a constant C1 = C1(%) > 0, such that

1

C1
< lim inf

t→∞

Var%(hbV %tc(t))

t2/3
≤ lim sup

t→∞

Var%(hbV %tc(t))

t2/3
< C1.

This follows from (3.2.19) with the choice m = 1.

Corollary 3.2.5 (Law of Large Numbers for the second class particle). Un-
der Assumptions 3.2.1 and 3.2.2, the Weak Law of Large Numbers holds in
a density-% stationary process:

Q(t)

t

d→ V %. (3.2.33)

If the rates p and q have bounded increments, then almost sure convergence
also holds in (3.2.33) (Strong Law of Large Numbers).

The Weak Law is a simple consequence of Theorem 3.2.3. The Strong
Law will be proved in Section 3.5.

Corollary 3.2.6 (Dependence of current on the initial configuration). Un-
der Assumptions 3.2.1 and 3.2.2, for any V ∈ R and α > 1/3 the following
limit holds in the L2 sense for a density-% stationary process:

lim
t→∞

hbV tc(t)− hbV tc−bV %tc(0)− t(H(%)− %H′(%))

tα
= 0. (3.2.34)

Recall that

hbV tc−bV %tc(0) =



0∑
i=bV tc−bV %tc+1

ωi(0), if V < V %,

0, if V = V %,

−
bV tc−bV %tc∑

i=1

ωi(0), if V > V %

(3.2.35)

only depends on a finite segment of the initial configuration. Limit (3.2.34)
shows that on the diffusive time scale t1/2 only fluctuations from the ini-
tial distribution are visible: these fluctuations are translated rigidly at the
characteristic speed V %. Proof of (3.2.34) follows by translating hbV tc(t) −
hbV tc−bV %tc(0) to hbV %tc(t) − h0(0) = hbV %tc(t) and by applying Corollary
3.2.4. From (3.2.34), (3.2.35) and the i.i.d. initial {ωi} follow a limit for the
variance and a central limit theorem (CLT), which we record in our final
corollary.
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Corollary 3.2.7 (Central Limit Theorem for the current). Under Assump-
tions 3.2.1 and 3.2.2, for any V ∈ R in a density-% stationary process

lim
t→∞

Var%(hbV tc(t))

t
= Var%(ω) · |V % − V | = : D, (3.2.36)

and the Central Limit Theorem also holds: the centered and normalized
height h̃bV tc(t)/

√
t ·D converges in distribution to a standard normal.

For ASEP the CLT, the limiting variance (3.2.36) and the appearance of
initial fluctuations on the diffusive scale were proved by P. A. Ferrari and
L. R. G. Fontes [65]. For convex rate zero range and bricklayers processes
Corollary 3.2.7 was proved by M. Balázs [11].

Remark on the convex case

Our results and proofs work in the analogous way in the case where the flux
is convex and the corresponding microscopic convexity is assumed. This
case is carried out in more detail in Section 3.7

3.2.8 Two examples that satisfy microscopic concavity

Presently we have verified all the hypotheses of Theorem 3.2.3 for two classes
of processes.

The asymmetric simple exclusion process

The asymmetric simple exclusion process (ASEP) was the first example
described in Section 3.2.2. It has two parameters 0 ≤ p 6= q ≤ 1 such that
p+ q = 1. To be specific let us take p > q so that on average particles prefer
to drift to the right. The invariant measure µ% is the Bernoulli distribution
with parameter 0 ≤ % ≤ 1, while µ̂% is concentrated on zero for any %. The
hydrodynamic flux is strictly concave: H(%) = (p− q)%(1− %).

The detailed construction of the processes y(t) and z(t) needed for As-
sumption 3.2.1 can be found in [22]. Here it is in a nutshell.

Given the background process (η(·), ω(·)) and the second class particles
{Xm(·)} between them, the processes y(·) and z(·) are nearest-neighbor
random walks on the labels {m} with rates p and q. Walk y(·) has bias to
the left (rate p to the left, rate q to the right) and walk z(·) has bias to the
right (rate p to the right, rate q to the left). Their jumps are restricted so
that jumps between labels m and m + 1 are permitted only when Xm and
Xm+1 are adjacent. The clocks governing these jumps are coupled so that
the ordering y ≤ z is preserved.

Since a second class particle in ASEP is bounded by a rate one Poisson
process, (3.2.31) holds.

Balázs and Seppäläinen gave an earlier proof of Theorem 3.2.3 for ASEP
in [23]. The present general proof evolved from that earlier one.
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Totally asymmetric zero range process with jump rates that in-
crease with exponentially decaying slope

As explained in Section 3.2.2, in a totally asymmetric zero range process
(TAZRP) one particle is moved from site i to site i+ 1 at rate f(ωi), and no
particle jumps to the left (our convention for total asymmetry is p = 1−q =
1). The jump rate f : Z+ → R+ is nondecreasing, f(0) = 0, and f(z) > 0
for z > 0. Assume further that f is concave.

As we shall see later in Section 3.6, one aspect of microscopic concav-
ity, namely the ordering of second class particles, can be achieved for any
TAZRP with a nondecreasing concave jump rate. Indeed, up to Lemma
3.6.2 in Section 3.6 we only use monotonicity and concavity of the rates f .
Thus for concave TAZRP only the tail control (3.2.28)–(3.2.29) of the label
processes remains to be provided. For this part we currently need a stronger
hypothesis, detailed in the next assumption.

Assumption 3.2.8. Let p = 1 − q = 1. Assume the jump rate function f
of a totally asymmetric zero range process has these properties:

• f(0) = 0 < f(1),

• f is nondecreasing: f(z + 1) ≥ f(z),

• f is concave with an exponentially decreasing slope: there is an 0 <
r < 1 such that for each z ≥ 1 such that f(z)− f(z − 1) > 0,

f(z + 1)− f(z)

f(z)− f(z − 1)
≤ r. (3.2.37)

The case where f becomes constant above some z0 is included.

Theorem 3.2.9. Under Assumption 3.2.8, a stationary totally asymmet-
ric zero range process satisfies the conclusions of Theorem 3.2.3, and the
conclusions of Corollaries 3.2.4, 3.2.5, 3.2.6 and 3.2.7.

A class of examples of rates that satisfy Assumption 3.2.8 are

f(z) = 1− exp(−βzϑ), β > 0, ϑ ≥ 1.

Another example is the most basic, constant rate TAZRP with f(z) = 1{z >
0}. For this last case a proof has already been given in [15].

To prove Theorem 3.2.9 we need to check Assumptions 3.2.1 and 3.2.2
of Theorem 3.2.3. The construction of the label processes y(t) and z(t) and
verification of Assumption 3.2.1 are done in Section 3.6. Assumption 3.2.2
requires only a few comments. The properties of the rates required in the
first bullet of Assumption 3.2.2 are straightforward. Since f is concave and
cannot be linear due to (3.2.37), Proposition 3.B.1 in the Appendix implies
that H′′(%) < 0 for each % > 0. Concavity of f implies bounded jump
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rates for the second class particle Q(t), hence a simple Poisson bound gives
(3.2.31).

The next two sections prove Theorem 3.2.3, after that we prove the
Strong Law for the second class particle, and then we return to finish the
proof of Theorem 3.2.9.

3.3 Upper bound of the main theorem

In this section we prove the upper bound of (3.2.32). Density % is fixed.
Let λ ∈ (ρ, ρ − γ0) and apply Assumption 3.2.1 with constant sequences
%i ≡ % and λi ≡ λ for all i ∈ Z. Notations P, E, Var, Cov will refer
to the coupled four-process evolution described in Assumption 3.2.1, while
P%, E%, Var%, Cov% will refer to a density % stationary process. Abbreviate

Ψ(t) : = E|Q(t)− bV %tc|. (3.3.1)

The requirement that (ω−, ω) obey the basic coupling was included in As-
sumption 3.2.1. Consequently Ψ(t) is the m = 1 expectation of (3.2.32).

The following lemma does the main work towards the upper bound.

Lemma 3.3.1. There exist positive constants α1, α2, t0 such that for each
t > t0 and integer u such that α2

√
t < u < α1t,

P{Q(t) > bV %tc+ u} ≤ C5
t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3
. (3.3.2)

Proof. We start with an integer u > 0, and write

P{Q(t) > bV %tc+ u} ≤ P{y(t) ≥ k}+ P{Xk(t) ≥ Q(t) > bV %tc+ u}.
(3.3.3)

The event {Xk(t) > bV %tc + u} implies that among the Xm’s at most par-
ticles X1, . . . , Xk−1 have passed the path

(
s(bV %tc + u) + 1/2

)
0≤s≤1

from

right to left. Each such passing decreases hωbV %tc+u(t) − hηbV %tc+u(t) by one

(recall the statement around (3.2.10)). Hence we can bound the probability
in (3.3.3) by

P{y(t) ≥ k}+ P{hωbV %tc+u(t)− hηbV %tc+u(t) > −k}.

We introduce two more processes: ηeq is a stationary process started with

initial data ηeq
i (0) = ηi(0) for i 6= 0, while ηeq

0 (0) is µλ distributed indepen-
dently of everything. ωeq is a stationary process started with ωeq

i (0) = ωi(0)
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for i 6= 0, and ωeq
0 (0) is µ% distributed independently of everything. Include

these in the basic coupling of (η, ω) and write

hωbV %tc+u(t)− hηbV %tc+u(t) = hω
eq

bV %tc+u(t)− hη
eq

bV %tc+u(t)

+ hωbV %tc+u(t)− hωeq

bV %tc+u(t)

− hηbV %tc+u(t) + hη
eq

bV %tc+u(t).

Basic coupling implies

hωbV %tc+u(t)− hωeq

bV %tc+u(t) ≤ |ω0(0)− ωeq
0 (0)| ≤ |ω0(0)|+ |ωeq

0 (0)|

and hη
eq

bV %tc+u(t)− hηbV %tc+u(t) ≤ |ηeq
0 (0)− η0(0)| ≤ |ηeq

0 (0)|+ |η0(0)|.

We bound the stationary expectations using (3.2.16), (3.2.15) and Taylor’s
formula:

E%hω
eq

bV %tc+u(t)−Eλhη
eq

bV %tc+u(t)

= H(%)t− (bV %tc+ u)%−H(λ)t+ (bV %tc+ u)λ

≤ t
(
H(%)−H(λ) +H′(%)(λ− %)

)
+ u(λ− %) + C1

≤ − t
2
H′′(%)(%− λ)2 + u(λ− %) + C2t(%− λ)3 + C1.

H can be differentiated arbitrarily many times, as we show in Section 3.B
of the Appendix. Constant C1 above bounds errors from discarded integer
parts. Recall that tilde stands for the centered random variable. Collecting
terms we continue from (3.3.3) as follows.

P{Q(t) > bV %tc+ u}
≤ P{y(t) ≥ k}

+ P{h̃ωeq

bV %tc+u(t)− h̃η
eq

bV %tc+u(t) > −k +
t

2
H′′(%)(%− λ)2 + u(%− λ)

− C2t(%− λ)3 − C1 − |η0(0)| − |ηeq
0 (0)| − |ω0(0)| − |ωeq

0 (0)|}
≤ P{y(t) ≥ k}

+ P{h̃ωeq

bV %tc+u(t)− h̃η
eq

bV %tc+u(t) >
t

2
H′′(%)(%− λ)2 +

u

2
(%− λ)}

+ P{|η0(0)|+ |ηeq
0 (0)|+ |ω0(0)|+ |ωeq

0 (0)|

> −k +
u

2
(%− λ)− C2t(%− λ)3 − C1}.

From now on we use the specific assumption H′′(%) < 0. We maximize the
terms on the right-hand side of the probability of h̃’s by the choice

%− λ =
−u

2tH′′(%)
.
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To stay within the range of densities covered by Assumption 3.2.1 we must
ensure that λ > %−γ0. So we introduce a small constant α1 > 0 and restrict
our calculations to the case u < α1t. Then

P{Q(t) > bV %tc+ u} ≤ P{y(t) ≥ k}

+ P{h̃ωeq

bV %tc+u(t)− h̃η
eq

bV %tc+u(t) >
−u2

8tH′′(%)
}

+ P{|η0(0)|+ |ηeq
0 (0)|+ |ω0(0)|+ |ωeq

0 (0)|

> −k − 1

4H′′(%)
· u

2

t
+

C2

H′′(%)3
· u

3

t2
− C1}.

Now we set

k = b −1

8H′′(%)
· u

2

t
c,

and assume α2

√
t < u < α1t for a possibly smaller α1 and a large enough

α2. That allows us to unify the right-hand side of the inequality in the last
line. Thus for all large u and t with α2

√
t < u < α1t

P{Q(t) > bV %tc+ u} ≤ P{y(t) ≥ b −1

8H′′(%)
· u

2

t
c}

+ P{h̃ωeq

bV %tc+u(t)− h̃η
eq

bV %tc+u(t) >
−u2

8tH′′(%)
}

+ P{|η0(0)|+ |ηeq
0 (0)|+ |ω0(0)|+ |ωeq

0 (0)| > C3
u2

t
}.

Assumption 3.2.28 allows us to bound the first probability on the right
by C4t

2/u3 (take γ = % − λ). Apply Chebyshev’s inequality on the second
line and Markov’s inequality on the third one:

P{Q(t) > bV %tc+ u}

≤ 64
t2H′′(%)2

u4
Var(hω

eq

bV %tc+u(t)− hη
eq

bV %tc+u(t)) + C3
t

u2
+ C4

t2

u3

≤ 128
t2H′′(%)2

u4

{
Var%(hω

eq

bV %tc+u(t)) + Varλ(hη
eq

bV %tc+u(t))
}

+ C4
t2

u3
.

The term C3t/u
2 was subsumed under C4t

2/u3 due to the condition u <
α1t. The variances here are taken under the stationary distributions of the
processes ηeq and ωeq. That allows us to apply (3.2.19), whose right-hand
side takes us back to the four-process coupling under measure P. Recall
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(3.3.1).

P{Q(t) > bV %tc+ u}

≤ C5
t2H′′(%)2

u4

{
E|Q(t)− bV %tc − u|+ E|Qη(t)− bV %tc − u|

}
+ C4

t2

u3

≤ C5
t2H′′(%)2

u4

{
E|Q(t)− bV %tc|+ E|Qη(t)− bV %tc|+ 2u

}
+ C4

t2

u3

= C5
t2H′′(%)2

u4

{
Ψ(t) + 2u+ E|Qη(t)− bV %tc|

}
+ C4

t2

u3
.

The variable Qη(t) above is the location of a single discrepancy between the
process η and one started initially with η+(0) = η(0) + δ0.

It remains to relate E|Qη(t)−bV %tc| to Ψ(t). This is where part (3.2.30)
of Assumption 3.2.1 is a key point. Compute now in the four-process cou-
pling of η, η+, ω−, ω described in Assumption 3.2.1. Use (3.2.30) and Taylor
expansion of H again:

E|Qη(t)− bV %tc| ≤ E(Qη(t)−Q(t)) + Ψ(t)

= (H′(λ)−H′(%))t+ Ψ(t) (3.3.4)

≤ H′′(%) · (λ− %)t+ C6(%− λ)2t+ Ψ(t)

=
u

4
+ C6

u2

t
+ Ψ(t) ≤ (1

4 + C6α1)u+ Ψ(t).

The last inequality used u < α1t. Substitute this back into the previous dis-
play and rename constants. This finishes the proof of (3.3.2) and completes
the Lemma.

Completely analogous arguments lead to the same upper bound for the
lower tail of Q(t), and together we get the following bound on the tail of the
absolute deviation, still for α2

√
t < u < α1t:

P{|Q(t)− bV %tc| > u} ≤ C5
t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3
.

Next we relax the restriction to integer u and the upper limit on it:

Lemma 3.3.2. There are positive constants α2, t0 such that for all t > t0
and all real u > α2

√
t,

P{|Q(t)− bV %tc| > u} ≤ C5
t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3
.

Proof. Any u ≥ 1 is less than twice its integer part. Hence by simply
increasing the constants Ci, for all large t and all real u ∈ (α2

√
t, α1t),

P{|Q(t)− bV %tc| > u} ≤ C5
t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3
. (3.3.5)
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Recall (3.2.31). When α1 < α0 + 2|V %| + 2, assume α1t ≤ u < (α0 +
2|V %|+ 2)t. Then α2

√
t < u · α1/(α0 + 2|V %|+ 2) < α1t for large enough t,

and (3.3.5) still holds for u replaced by u · α1/(α0 + 2|V %|+ 2):

P{|Q(t)− bV %tc| > u} ≤ P
{
|Q(t)− bV %tc| > u · α1

α0 + 2|V %|+ 2

}
≤ C5

t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3

via modifying the constants by factors of α1/(α0 + 2|V %|+ 2).
Finally, when u ≥ (α0 +2|V %|+2)t, the fact that u−|bV %tc| > α0t allows

us to use (3.2.31):

P{|Q(t)− bV %tc| > u} ≤ P{|Q(t)| > u− |bV %tc|}

≤ C7
t2

(u− |bV %tc|)3
≤ C8

t2

u3
.

(3.3.6)

Combining the above cases we get the statement for all u > α2

√
t.

Proof of the upper bound of Theorem 3.2.3. We now fix r > 0,
1 ≤ m < 3, and write

E
(
|Q(t)− bV %tc|m

)
=

∫ ∞
0

P{|Q(t)− bV %tc|m > v} dv

≤ rmt
2
3
m +m

∫ ∞
rt2/3

(
C5
t2H′′(%)2

u4

{
Ψ(t) + u

}
+ C4

t2

u3

)
um−1 du

= rmt
2
3
m +

mC5H′′(%)2

4−m
rm−4t

2
3
m− 2

3 Ψ(t) +
mC5H′′(%)2 + C4

3−m
rm−3t

2
3
m.

First choose m = 1 and r large enough to get Ψ(t) ≤ Ct2/3. Then insert
this bound back into the last line of the display to get the bound for general
1 ≤ m < 3.

3.4 Lower bound of the main theorem

In this section we prove the lower bound of (3.2.32). Density % is fixed again,
and λ ∈ (%− γ0, %) is a varying auxiliary density. We let the jointly defined
four processes (η, η+, ω−, ω) be exactly as defined in the upper bound proof
of Section 3.3, namely, as given by Assumption 3.2.1 with constant densities
λi ≡ λ and %i ≡ %. The initial distribution of (η, ω) is µ̂λ,% of (3.2.24). Two
second class particles start from the origin: Qη between processes η and η+,
and Q between processes ω− and ω. The quantity of primary interest is
abbreviated, as before, by Ψ(t) = E|Q(t)− bV %tc|.

To prove the lower bound of (3.2.32) it suffices, by Jensen’s inequality,
to prove the case m = 1. This means showing that Ψ(t) ≥ Ct2/3 for large t
and a constant C > 0.
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3.4.1 Perturbing a segment initially

For this proof we need to introduce another coupled system and invoke
Assumption 3.2.1 once more. By concavity of the flux characteristic speeds
V % = H′(%) and V λ = H′(λ) satisfy V % ≤ V λ. Throughout this section
u > 0 denotes a fixed positive integer, and

n = bV λtc − bV %tc+ u.

Recall definitions (3.2.22) and (3.2.23) of the single-site coupling mea-
sures. Let (ξ(·), ζ(·)) be a pair of processes that obeys the basic coupling,
and whose initial distribution is the product measure(⊗

i<−n
µλ,%

)(⊗
i=−n

µ̂λ,%
)( ⊗
−n<i≤0

µλ,λ
)(⊗

0<i

µλ,%
)
.

This initial measure complies with the pattern in (3.2.24), but translated
n sites to the left so that µ̂λ,% is the distribution at site −n instead of the
origin. A few points about this initial state: ξ(0) has the stationary density-

λ product distribution except at site −n where it is µ̂λ-distributed. ζ(0) has
the product distribution with marginals µ%, except at sites {−n+ 1, . . . , 0}
where the parameter % switches to λ, and at site −n where it has distribution
µ̂% + 1. At sites −n < i ≤ 0 µλ,λ forces ξi(0) = ζi(0).

We add a second class particle to the process ξ(·), start it at site −n and

denote its position at time t by Q(−n)(t). Let ξ+(t) := ξ(t) + δQ−n(t).
As described in Section 3.2.6 the ζ − ξ second class particles are labeled

and their ordered positions denoted by {Xm(t)}. The labeling is chosen to
satisfy initially

· · · ≤ X−1(0) ≤ X0(0) = −n < 0 < X1(0) ≤ X2(0) ≤ . . . (3.4.1)

Thus initially X0(0) = −n = Q(−n)(0). We invoke Assumption 3.2.1 to have
a label process z(t) with tail bound (3.2.29) such that Q(−n)(t) = Xz(t)(t).
(Here ξ plays the role of η and ζ plays the role of ω of Assumption 3.2.1).

As before, the heights (or currents, recall (3.2.5)) of the processes ξ(·)
and ζ(·) are denoted by hξbV tc and hζbV tc, respectively. The first observation

is that Q(−n) gives one-sided control over the difference of these currents.

Lemma 3.4.1. For any V ∈ R

Q(−n)(t) ≤ bV tc implies hζbV tc(t)− h
ξ
bV tc(t) ≤ −z(t).

Proof. Recall again, from (3.2.5) and the statement around (3.2.10), that

the height difference hζbV tc(t)−h
ξ
bV tc(t) equals the net number of second class

particle passings of the path
(
sbV tc+ 1/2

)
0≤s≤1

from left to right. That is,
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each left-to-right passing increases hζbV tc(t)−h
ξ
bV tc(t) while each right-to-left

passing decreases it.
Suppose z(t) ≤ 0. Then (3.4.1) and Xz(t)(t) = Q(−n)(t) ≤ bV tc imply

that only those second class particles with labels z(t) + 1, z(t) + 2, . . . , 0
could have passed the path

(
sbV tc+1/2

)
0≤s≤1

from left to right. The claim
follows.

If z(t) > 0, then Xz(t)(t) = Q(−n)(t) ≤ bV tc implies that at least
those second class particles with labels 1, 2, . . . , z(t) have crossed the path(
sbV tc+ 1/2

)
0≤s≤1

from right to left. Again the claim follows.

Let ω̂(·) be a process started from the product distribution
( ⊗
i 6=−n

µ%
)
⊗

(µ̂%+1). The next lemma compares the distributions of ζ and ω̂. No coupling
of ζ and ω̂ is proposed or required.

Lemma 3.4.2. There exist constants γ = γ(%) > 0 and C1(%) < ∞ such
that for all λ ∈ (%− γ, %) and all events A the following inequality holds:

P{ζ ∈ A} ≤ P{ω̂ ∈ A}
1
2 · exp

{
C1(%)n(%− λ)2

}
.

Proof. We use the Cauchy-Schwarz inequality below to perform a change
of measure on the distribution of the ζ process. First we condition on the
initial ζ-configuration at sites {−n+ 1, −n+ 2, . . . ,−1, 0}.

P{ζ ∈ A} =
∑

z−n+1,...z−1,z0

P{ ζ ∈ A | ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0}

×
[ 0∏
i=−n+1

µ%(zi)
] 1

2
0∏

i=−n+1

µλ(zi)

[µ%(zi)]
1
2

≤
[ ∑
z−n+1,...,z0

[P{ ζ ∈ A | ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0}]2
0∏

i=−n+1

µ%(zi)
] 1

2

×
[ ∑
z−n+1,...,z0

0∏
i=−n+1

[µλ(zi)]
2

µ%(zi)

] 1
2

≤
[ ∑
z−n+1,...,z0

P{ ζ ∈ A | ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0}
0∏

i=−n+1

µ%(zi)
] 1

2

×
[ ∑
z−n+1,...,z0

0∏
i=−n+1

[µλ(zi)]
2

µ%(zi)

] 1
2

= P{ω̂ ∈ A}
1
2 ·
[ ∑
z−n+1,...,z0

0∏
i=−n+1

[µλ(zi)]
2

µ%(zi)

] 1
2
.

The last inequality came from dropping the square. For the last equality
note that the distributions of the initial configurations {ω̂i(0)} and {ζi(0)}
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are product-form and agree outside the interval {−n+1, −n+2, . . . ,−1, 0}.
Thus conditioned on the initial values in {−n+ 1, −n+ 2, . . . ,−1, 0} these
processes have identical conditional probabilities.

To complete the proof we bound the last factor in brackets. Recall formu-
las (3.2.12) and (3.2.13) for the state sum and the site-marginals. Without
the power 1/2 the factor in brackets equals

∑
z−n+1,...z0

( Z(θ(%))

Z(θ(λ))2

)n 0∏
i=−n+1

e(2θ(λ)−θ(%))zi

f(zi)!
=
(Z(2θ(λ)− θ(%))Z(θ(%))

Z(θ(λ))2

)n
.

In the Appendix we show that logZ(θ) and θ(%) are infinitely differentiable.
Let ε = θ(%)− θ(λ). By local Lipschitz continuity of the function θ(%), the
interval (θ(λ) − ε, θ(λ) + ε) is in (θ, θ̄) with a small enough choice of γ.
There exists some θ ∈ (θ(λ)− ε, θ(λ) + ε) such that

log
(Z(2θ(λ)− θ(%))Z(θ(%))

Z(θ(λ))2

)
= logZ(θ(λ)− ε) + logZ(θ(λ) + ε)

− 2 logZ(θ(λ))

=
1

2

d2

dθ2
logZ(θ)ε2 ≤ C1(%) · (%− λ)2.

Thus we get the bound(Z(2θ(λ)− θ(%))Z(θ(%))

Z(θ(λ))2

)n
≤ exp{C1(%) · n(%− λ)2}.

3.4.2 Completion of the proof of the lower bound

The gist of the proof is to get upper bounds on the complementary proba-
bilities P{Q(−n)(t) > bV %tc} and P{Q(−n)(t) ≤ bV %tc}. As stated u is an
arbitrary but fixed positive integer and n = bV λtc − bV %tc+ u.

Lemma 3.4.3.

P{Q(−n)(t) > bV %tc} ≤ Ψ(t)

u
+
C2t(%− λ)

u
+

2

u
.

Proof. Distributionwise the system (ξ, ξ+, Q(−n)) is a translate of
(η, η+, Qη), and so

P{Q(−n)(t) > bV %tc} = P{Q(−n)(t) + n− bV λtc > u}

= P{Qη(t)− bV λtc > u} ≤ E(|Qη(t)− bV λtc|)
u

≤ E(|Qη(t)−Q(t)|)
u

+
E(|Q(t)− bV %tc|)

u
+
bV λtc − bV %tc

u
.
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Use (3.2.30) precisely as was done in (3.3.4) to conclude that the first term
equals

u−1E(Qη(t)−Q(t)) = u−1t
(
H ′(λ)−H ′(%)

)
= −u−1H ′′(ν)t(%− λ)

for some ν ∈ (λ, %). The second term is Ψ(t)/u, and the third term is
similarly estimated by −u−1H ′′(ν)t(%−λ) + 2/u, the last part coming from
discarded integer parts. Setting C2 := 2 max

ν∈[%−γ, %]
−H ′′(ν) finishes the proof.

Notice that H ′′(%) < 0 was crucial in the previous proof, as well as in the
following lemma, and the final proof thereafter. These points show where the
proof fails for symmetric systems – recall that these would have lower-order
current fluctuations on the characteristics.

Lemma 3.4.4. Let K be any number such that 0 < K < −1
3 tH

′′(%)(%−λ)2.
Then for small enough γ > 0, large enough t, and λ ∈ (%− γ, %),

P{Q(−n)(t) ≤ bV %tc} ≤ Var%(ω0)1/2Ψ(t)1/2

−1
3 tH

′′(%)(%− λ)2 −K
· eC1n(%−λ)2

+
C4

−1
6 tH

′′(%)(%− λ)2 − C3t(%− λ)3 − %
· eC1n(%−λ)2

+
Varλ(η0)Ψ(t)

K2/4
+
C6t(%− λ)

K2
+

C5

K − 4|λ|
+ Ctκ−1γ2κ−3K−κ.

Proof. Lemma 3.4.1 leads to

P{Q(−n)(t) ≤ bV %tc} ≤ P{hζbV %tc(t)− h
ξ
bV %tc(t) ≤ −z(t)}

≤ P{−z(t) ≥ K/4} (3.4.2)

+ P{hζbV %tc(t) ≤ K + t
(
H(λ)− λH ′(%)

)
} (3.4.3)

+ P
{
hξbV %tc(t) > 3K/4 + t

(
H(λ)− λH ′(%)

)}
(3.4.4)

To bound (3.4.2) we use the assumed distribution bound (3.2.28) on z(t)
and get

P{−z(t) ≥ K/4} ≤ Ctκ−1γ2κ−3K−κ.

Apply Lemma 3.4.2 to line (3.4.3) to bound it by the probability of the
process ω̂:

(3.4.3) ≤
[
P{hω̂bV %tc(t) ≤ K + t

(
H(λ)− λH ′(%)

)
}
] 1

2 · eC1n(%−λ)2
.
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As in the proof of Lemma 3.3.1 we switch to stationary processes to get
precise bounds:

hω̂bV %tc(t) = h̃ω
eq

bV %tc(t) + [hω̂bV %tc(t)− h
ωeq

bV %tc(t)]

+ [Ehω
eq

bV %tc(t)− t(H(%)− %H ′(%))] + t(H(%)− %H ′(%))

≥ h̃ωeq

bV %tc(t)− |ω̂0(0)| − |ωeq
0 (0)| − |%|+ t(H(%)− %H ′(%)).

After the equality sign, the absolute value of the first term in brackets is not
larger than |ω̂0(0)−ωeq

0 (0)| ≤ |ω̂0(0)|+|ωeq
0 (0)|. The second term in brackets

is between −|%| and |%| due to the integer part in bV %tc. Consequently

hω̂bV %tc(t) ≤ K + t(H(λ)− λH ′(%))

implies

h̃ω
eq

bV %tc(t)− |ω̂0(0)| − |ωeq
0 (0)| ≤ K + t[H(λ)−H(%) +H ′(%)(%− λ)] + |%|

≤ K +
1

2
tH ′′(%)(%− λ)2 + C3t(%− λ)3 + |%|.

Then, we cut the event into two parts according to the value of |ω̂0(0)| +
|ωeq

0 (0)| and we use (3.2.19) to bound the variance of Var[hω
eq

bV %tc(t)] by the

function Ψ(t).

(3.4.3) ≤
[
P%{h̃ωeq

bV %tc(t) ≤ K +
1

3
tH ′′(%)(%− λ)2}

] 1
2 · eC1n(%−λ)2

+
[
P{|ω̂0(0)|+ |ωeq

0 (0)| > −1

6
tH ′′(%)(%− λ)2 − C3t(%− λ)3 − |%|}

] 1
2

· eC1n(%−λ)2

≤
Var%(hω

eq

bV %tc(t))
1/2

−1
3 tH

′′(%)(%− λ)2 −K
· eC1n(%−λ)2

+
E[|ω̂0(0)|+ |ωeq

0 (0)|]
−1

6 tH
′′(%)(%− λ)2 − C3t(%− λ)3 − |%|

· eC1n(%−λ)2

≤ Var%(ω0)1/2Ψ(t)1/2

−1
3 tH

′′(%)(%− λ)2 −K
· eC1n(%−λ)2

+
C4

−1
6 tH

′′(%)(%− λ)2 − C3t(%− λ)3 − |%|
· eC1n(%−λ)2

.

Now we turn to (3.4.4). To reduce hξbV %tc to the current of the density-λ

equilibrium process hη
eq

bV %tc and to get rid of the integer part errors we argue
as before.

hξbV %tc = h̃η
eq

bV %tc + [hξbV %tc − h
ηeq

bV %tc]

+ [Eλhη
eq

bV %tc − t(H(λ)− λH ′(%))] + t(H(λ)− λH ′(%)).
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hξbV %tc(t) differs by at most |ξ0(0)−ηeq
0 (0)| ≤ |ξ0(0)|+|ηeq

0 (0)| from hη
eq

bV %tc(t)).

Taking integer parts again into account, giving another error term |λ|, line
(3.4.4) is bounded from above by

P
{
h̃η

eq

bV %tc(t) + |ξ0(0)|+ |ηeq
0 (0)|+ |λ| ≥ 3K/4

}
Then, we cut the event into two parts and use Markov’s inequality in the
second one:

(3.4.4) ≤ Pλ
{
h̃η

eq

bV %tc(t) ≥ K/2
}

+ P
{
|ξ0(0)|+ |ηeq

0 (0)| > K/4− |λ|
}

≤
Varλ(hη

eq

bV %tc)

K2/4
+

C5

K − 4|λ|
.

We can use (3.2.19) again to continue with

(3.4.4) ≤ Varλ(ξ0)E(|Qη(t)− bV %tc|)
K2/4

+
C5

K − 4|λ|
.

Repeating the first two steps of calculation (3.3.4) we can write

E(|Qη(t)− bV %tc|) ≤ E(|Qη(t)−Q(t)|) + E(|Q(t)− bV %tc|)
≤ Ct(%− λ) + Ψ(t).

So, we finally get

(3.4.4) ≤ Varλ(η0)Ψ(t)

K2/4
+
C6t(%− λ)

K2
+

C5

K − 4|λ|
.

Proof of the lower bound of Theorem 3.2.3. As observed in the
beginning of this Section, it suffices to prove that

lim inf
t→∞

t−2/3Ψ(t) > 0. (3.4.5)

In the last two lemmas take

u = dht2/3e, %− λ = bt−1/3, and K = bt1/3,

where h and b are large, in particular b large enough to have b < −1
3H
′′(%)b2

so that K satisfies the assumption of Lemma 3.4.4. Then

n = bV λtc − bV %tc+ u

≤ (H ′(λ)−H ′(%))t+ u+ 2

= −H ′′(%)(%− λ)t+ u+ C7t(%− λ)2 + 2

≤ (−H ′′(%)b+ h)t2/3 + C7b
2t

1
3 + 3

≤ C8t
2/3
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for large enough t. With these definitions we can simplify the outcomes of
Lemma 3.4.3 and Lemma 3.4.4 to the inequalities

P{Q(−n)(t) > bV %tc} ≤ CΨ(t)

t2/3
+
C2b

h
+

2

ht2/3
(3.4.6)

and

P{Q(−n)(t) ≤ bV %tc} ≤ C
(

Ψ(t)

t2/3

)1/2

+ C
Ψ(t)

t2/3
+
C6

b
+
C5

bt
1
3

+ Cbκ−3.

(3.4.7)

The new constant C depends on b and h.
The lower bound (3.4.5) now follows because the left-hand sides of (3.4.6)–

(3.4.7) add up to 1 for each fixed t, while we can fix b large enough and then
h large enough so that C2b/h + C6/b + Cbκ−3 < 1 (recall κ < 3). Then
t−2/3Ψ(t) must have a positive lower bound for all large enough t. This
completes the proof of Theorem 3.2.3.

3.5 Strong Law of Large Numbers for the second
class particle

This section proves the Strong Law of Large Numbers (Corollary 3.2.5). We
assume that the jump rates of the second class particle are bounded, i.e.,

p(y + 1, z)− p(y, z), p(y, z)− p(y, z + 1)

q(y, z + 1)− q(y, z), q(y, z)− q(y + 1, z)

}
≤ C ∀ωmin ≤ y, z < ωmax.

(3.5.1)
This means that the second class particle has at most rate C to jump to
the right and to the left, respectively, implying that starting at any time t,
it can be bounded by rate C Poisson processes that start from its position
Q(t).

Proof of Corollary 3.2.5. Let ε, δ > 0. Define the events

An :=
{∣∣∣Q(n1+δ)

n1+δ
− V %

∣∣∣ > ε/2
}

for n ∈ N. Then, Markov’s inequality and Theorem 3.2.3 imply, for 1 ≤
m < 3 and large n,

P{An} = P{
∣∣Q(n1+δ)− V %n1+δ

∣∣m > (ε/2)mn(1+δ)m}

≤ 1

(ε/2)mn(1+δ)m
·E[|Q(n1+δ)− V %n1+δ|m]

≤ C1

(3−m)(ε/2)m
· 1

nm(1+δ)/3
,
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which is summable if (1+δ)m > 3. Here δ can be chosen arbitrarily small by
taking m close to 3. By the Borel-Cantelli Lemma there exists a.s. n0 ∈ N
such that

∀n ≥ n0

∣∣∣Q(n1+δ)

n1+δ
− V %

∣∣∣ < ε/2. (3.5.2)

Using this we show that a.s. there exists n1 ∈ N such that∣∣∣Q(t)

t
− V %

∣∣∣ < ε for all real t ≥ n(1+δ)
1 . (3.5.3)

Let n ≥ n0 and suppose there exists some t ∈ [n1+δ, (n + 1)1+δ) such
that (3.5.3) fails: |Q(t) − V %t| ≥ εt. Together with (3.5.2) we have, if n is
large,

|Q(t)−Q(n1+δ)| ≥ |Q(t)− V %t| − |Q(n1+δ)− V %n1+δ| − |V %t− V %n1+δ|
≥ εt− ε/2 · n1+δ − |V %|(t− n1+δ)

≥ ε

4
n1+δ.

(3.5.4)
The jump rates (3.5.1) (both left and right) of Q are bounded by C.

However, the event (3.5.4) implies that at least b ε4n
1+δc many left jumps or

this many right jumps happen in the time interval [n1+δ, (n + 1)1+δ). For
large n, the length of this interval is smaller than 2(1 + δ)nδ. Let N(·) be a
rate C Poisson process. Then for large n the probability of the event (3.5.4)
is bounded from above by

2P{N(2(1 + δ)nδ) ≥ ε

4
n1+δ} ≤ 2P{eN(2(1+δ)nδ) ≥ eε/4·n

1+δ}

≤ 2e−ε/4·n
1+δ

E[eN(2(1+δ)nδ)]

= 2e−ε/4·n
1+δ · e(e−1)2C(1+δ)nδ .

This quantity is summable over n, so the Borel Cantelli Lemma implies that
a.s. (3.5.3) holds eventually. Since this is true for each ε > 0, the Strong
Law of Large Numbers holds.

3.6 Microscopic concavity for a class of totally asym-
metric concave exponential zero range processes

In this section we verify that Assumption 3.2.1 can be satisfied under As-
sumption 3.2.8, and thereby complete the proof of Theorem 3.2.9.

The task is to construct the processes y(t) and z(t) with the requisite
properties. First let the processes (η(·), ω(·)) evolve in the basic coupling
so that ηi(t) ≤ ωi(t) for all i ∈ Z and t ≥ 0. We consider as a background
process this pair with the labeled and ordered ω − η second class particles
· · · ≤ X−2(t) ≤ X−1(t) ≤ X0(t) ≤ X1(t) ≤ X2(t) ≤ · · ·.
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At each time t ≥ 0 this background induces a partition {Mi(t)} of the
label space Z into intervals indexed by sites i ∈ Z, with partition intervals
given by

Mi(t) : = {m : Xm(t) = i}.

(For simplicity we assumed infinitely many second class particles in both
directions, but no problem arises in case we only have finitely many of
them.) Mi(t) contains the labels of the second class particles that reside at
site i at time t, and can be empty. The labels of the second class particles
that are at the same site as the one labeled m form the set MXm(t)(t) =
: {am(t), am(t) + 1, . . . , bm(t)}. The processes am(t) and bm(t) are always
well-defined and satisfy am(t) ≤ m ≤ bm(t).

Let us clarify these notions by discussing the ways in which am(t) and
bm(t) can change.

• A second class particle jumps from site Xm(t−) − 1 to site Xm(t−).
Then this one necessarily has label am(t−) − 1, and it becomes the
lowest labeled one at site Xm(t−) = Xm(t) after the jump. Hence
am(t) = am(t−)− 1.

• A second class particle, different from Xm, jumps from site Xm(t−)
to site Xm(t−) + 1. Then this one is necessarily labeled bm(t−), and
it leaves the site Xm(t−), hence bm(t) = bm(t−)− 1.

• The second class particle Xm is the highest labeled on its site, that
is, m = bm(t−), and it jumps to site Xm(t−) + 1. Then this particle
becomes the lowest labeled in the set MXm(t−)+1 = MXm(t), hence
am(t) = m. In this case bm(t) can be computed from bm(t)−am(t)+1 =
ωXm(t)(t) − ηXm(t)(t), the number of second class particles at the site
of Xm after the jump.

We fix initially y(0) = z(0) = 0. The evolution of (y, z) is superimposed
on the background evolution (η, ω, {Xm}) following the general rule below:
Immediately after every move of the background process that involves the
site where y resides before this move, y picks a new value from the labels
on the site where it resides after the move. Thus y itself jumps only within
partition intervals Mi. But y joins a new partition interval whenever it is
the highest X-label on its site and its “carrier” particle Xy is forced to move
to the next site on the right. This is the situation when y(t−) = by(t−)(t−)
and at time t an ω− η move from this site happens. (Recall that the choice
of X-particle to move is determined by rule (3.2.25). In the present case
there is only one type of ω− η move: the highest label from a site moves to
the next site on the right.) All this works for z in exactly the same way.

Next we specify the probabilities that y and z use to refresh their val-
ues. When y and z reside at separate sites, they refresh independently.

124



When they are together in the same partition interval, they use the joint
distribution in the third bullet below.

• Whenever any change occurs in either ω or η at site Xy(t−)(t−) and,

as a result of the jump, ay(t−)(t) 6= az(t−)(t), that is, y(t−) and z(t−)
belong to different parts after the jump then, independently of every-
thing else,

y(t) : =


ay(t−)(t), with pr.

f(ωXy(t−)(t)(t)− 1)− f(ηXy(t−)(t)(t))

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))
,

by(t−)(t), with pr.
f(ωXy(t−)(t)(t))− f(ωXy(t−)(t)(t)− 1)

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))

(3.6.1)
when the denominator is non-zero, and y(t) : = ay(t−)(t) when the
denominator is zero.

• Whenever any change occurs in either ω or η at site Xz(t−)(t−) and,

as a result of the jump, ay(t−)(t) 6= az(t−)(t), that is, y(t−) and z(t−)
belong to different parts after the jump then, independently of every-
thing else,

z(t) : =


bz(t−)(t)− 1, with pr.

f(ωXz(t−)(t)(t))− f(ηXz(t−)(t)(t) + 1)

f(ωXz(t−)(t)(t))− f(ηXz(t−)(t)(t))
,

bz(t−)(t), with pr.
f(ηXz(t−)(t)(t) + 1)− f(ηXz(t−)(t)(t))

f(ωXz(t−)(t)(t))− f(ηXz(t−)(t)(t))

(3.6.2)
when the denominator is non-zero, and z(t) : = bz(t−)(t) when the
denominator is zero. When ωXz(t−)(t)(t) = ηXz(t−)(t)(t)+1, bz(t−)(t)−
1 is not an admissible value but in this case the probability in the first
line is zero.

• Whenever any change occurs in either ω or η at sites Xy(t−)(t−) or

Xz(t−)(t−) and, as a result of the jump, ay(t−)(t) = az(t−)(t), that
is, y(t−) and z(t−) belong to the same part after the jump, that is,
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Xy(t−)(t) = Xz(t−)(t) then, independently of everything else,

(
y(t)
z(t)

)
: =



(
ay(t−)(t)

by(t−)(t)− 1

)
,

with pr.
f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t) + 1)

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))
,(

ay(t−)(t)

by(t−)(t)

)
,

with pr.
f(ηXy(t−)(t)(t) + 1)− f(ηXy(t−)(t)(t))

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))

−
f(ωXy(t−)(t)(t))− f(ωXy(t−)(t)(t)− 1)

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))
,(

by(t−)(t)

by(t−)(t)

)
,

with pr.
f(ωXy(t−)(t)(t))− f(ωXy(t−)(t)(t)− 1)

f(ωXy(t−)(t)(t))− f(ηXy(t−)(t)(t))

(3.6.3)
when the denominator is non-zero, and

(y(t), z(t)) : = (ay(t−)(t), by(t−)(t))

when the denominator is zero. When ωXz(t−)(t)(t) = ηXz(t−)(t)(t) + 1,

bz(t−)(t)− 1 is not an admissible value but in this case the probability
in the first line is zero.

The fact that the numbers on the right hand-sides are probabilities follows
from ωi(t) > ηi(t) on the sites i in question, and from the monotonicity and
concavity of f . The above moves for y and z always occur within labels
at a given site. This determines whether the particle Q(t) : = Xy(t)(t) or
Qη(t) : = Xz(t)(t) is the one to jump if the next move out of the site is an
ω − η move.

We prove that the above construction has the properties required in
Assumption 3.2.1.

Lemma 3.6.1. The pair (ω−, ω) : = (ω − δXy , ω) obeys basic coupling, as

does the pair (η, η+) : = (η, η + δXz).

Proof. We write the proof for (ω−, ω). We need to show that, given the
configuration (η, ω, {Xm}, y), the jump rates of (ω−, ω) are the ones pre-
scribed in basic coupling (Section 3.2.3) and by (3.2.2). Leftward jumps of
type (3.2.3) do not happen in the system under discussion. Since the jump
rate function p depends only on its first argument, jumps out of sites i 6= Q
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happen for ω− and ω with the same rate p(ω−i , ω
−
i+1) = f(ω−i ) = f(ωi) =

p(ωi, ωi+1). The only point to consider is jumps out of site i = Q.
Since the last time any change occurred at site i, y chose values according

to (3.6.1) or (3.6.3). Notice that (3.6.1) and (3.6.3) give the same marginal
probabilities for this choice. Hence

y took on value ay with probability
f(ωi − 1)− f(ηi)

f(ωi)− f(ηi)
(3.6.4)

and

y took on value by with probability
f(ωi)− f(ωi − 1)

f(ωi)− f(ηi)
, (3.6.5)

as given in (3.6.1), or y took on value ay in the case f(ωi) = f(ηi). According
to the basic coupling of η and ω, the following jumps can occur over the edge
(i, i+ 1):

• With rate p(ωi, ωi+1) − p(ηi, ηi+1) = f(ωi) − f(ηi), when positive, ω
jumps without η. The highest labeled second class particle, Xby jumps
from site i to site i+ 1.

– With probability (3.6.5) Xy = Q jumps with Xby . In this case

ω−i (t−) = ωi(t−)− 1 = ωi(t) = ω−i (t)

since the difference Q disappears from site i. Also,

ω−i+1(t−) = ωi+1(t−) = ωi+1(t)− 1 = ω−i+1(t),

since the difference Q appears at site i + 1. So in this case ω
undergoes a jump but ω− does not, and the rate is

[f(ωi)− f(ηi)] ·
f(ωi)− f(ωi − 1)

f(ωi)− f(ηi)
= f(ωi)− f(ω−i ).

– With probability (3.6.4) Xy = Q does not jump with Xby , since
it has label ay and not by (this probability is zero if ωi = ηi + 1).
In this case ω− and ω perform the same jump and it occurs with
rate

[f(ωi)− f(ηi)] ·
f(ωi − 1)− f(ηi)

f(ωi)− f(ηi)
= f(ω−i )− f(ηi).

• With rate p(ηi, ηi+1) = f(ηi), both η and ω jump over the edge (i, i+
1). No change occurs in the ω − η particles, hence no change occurs
in Q. This implies that the process ω− jumps as well.
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Summarizing we see that the rate for (ω−, ω) to jump together over (i, i+1)
is f(ω−i ), and the rate for ω to jump without ω− is f(ωi)− f(ω−i ). This is
exactly what basic coupling requires.

A very similar argument can be repeated for (η, η+).

Lemma 3.6.2. Inequality (3.2.26) y ≤ z holds in the above construction.

Proof. Since no jump of y or z moves one of them into a new partition
interval, the only situation that can jeopardize (3.2.26) is the simultane-
ous refreshing of y and z in a common partition interval. But this case is
governed by step (3.6.3) which by definition ensures that y ≤ z.

So far in this section everything is valid for a general zero range process
with nondecreasing concave jump rate. Now we use the special convexity
requirement (3.2.37). With r ∈ (0, 1) from (3.2.37), define the geometric
distribution

ν(m) : =

{
(1− r)rm, m ≥ 0

0, m < 0.
(3.6.6)

Lemma 3.6.3. Conditioned on the process (η, ω), the bounds y(t)
d
≤ ν and

z(t)
d
≥ −ν hold for all t ≥ 0.

The proof of this lemma is achieved in three steps.

Lemma 3.6.4. Let Y be a random variable with distribution ν, and fix
integers a ≤ b and η < ω so that ω − η = b − a + 1. Apply the following
operation to Y :

(i) if a ≤ Y ≤ b, apply the probabilities from (3.6.1) (equivalently, (3.6.4)
and (3.6.5)) with parameters a, b, η, ω to pick a new value for Y ;

(ii) if Y < a or Y > b then do not change Y .
Then the resulting distribution ν∗ is stochastically dominated by ν.

Proof. There is nothing to prove when b = a, hence we assume b > a or,
equivalently, ω − η = b − a + 1 ≥ 2. It is also clear that ν∗(m) = ν(m) for
m < a or m > b. We need to prove, in view of the distribution functions,

m∑
`=a

ν∗(`) ≥
m∑
`=a

ν(`) or, equivalently,

b∑
`=m

ν∗(`) ≤
b∑

`=m

ν(`)

for all a ≤ m ≤ b. Notice that ν∗ gives zero weight on values a < m < b (if
any), therefore the left hand-side of the second inequality equals ν∗(b) for
a < m ≤ b. Hence the above display is proved once we show

ν∗(b) ≤ ν(b), that is,

f(ω)− f(ω − 1)

f(ω)− f(η)
·

b∑
`=a

ν(`) ≤ ν(b), (3.6.7)

128



see (3.6.1). When f(ω) = f(ω−1), there is nothing to prove. Hence assume
f(ω) > f(ω − 1) which by concavity implies that f has positive increments
on {η, . . . , ω}. If b < 0 then both sides are zero. If b ≥ 0 then we have, by
(3.2.37),

ν(`) ≤ ν(b) · r`−b ≤ ν(b) ·
ω−1∏

z=ω−b+`

f(z)− f(z − 1)

f(z + 1)− f(z)

= ν(b) · f(ω − b+ `)− f(ω − b+ `− 1)

f(ω)− f(ω − 1)

for each ` ≤ b. The first inequality also takes into account possible ν(`) = 0
values for negative `’s. With this we can write

b∑
`=a

ν(`) ≤ ν(b) · f(ω)− f(ω − b+ a− 1)

f(ω)− f(ω − 1)

which becomes (3.6.7) via ω − η = b− a+ 1.

We repeat the lemma for z(t).

Lemma 3.6.5. Let Z be a random variable of distribution −ν, and fix
integers a ≤ b, η < ω so that ω − η = b − a + 1. Operate on Z as was
done for Y in Lemma 3.6.4, but this time use the probabilities from (3.6.2)
with parameters a, b, η, ω. Let −ν∗ be the resulting distribution. Then ν∗

is stochastically dominated by ν.

Proof. Again, we assume b > a or, equivalently, ω − η = b− a+ 1 ≥ 2. It is
also clear that ν∗(−m) = ν(−m) for m < a or m > b. We need to prove

m∑
`=a

ν∗(−`) ≤
m∑
`=a

ν(−`)

for all a ≤ m ≤ b. Notice that −ν∗ gives zero weight on values a ≤ ` < b−1
(if any), therefore the left hand-side of the inequality equals 0 for a ≤ m <
b− 1, ν∗(b− 1) for m = b− 1, and agrees to the right hand-side for m = b.
Hence the above display is proved once we show

ν∗(−b) ≥ ν(−b), that is,

f(η + 1)− f(η)

f(ω)− f(η)
·

b∑
`=a

ν(−`) ≥ ν(−b), (3.6.8)

see (3.6.2). We have, by (3.2.37),

ν(−`) ≥ ν(−b) · rb−` ≥ ν(−b) ·
η+b−`∏
z=η+1

f(z)>f(z−1)

f(z + 1)− f(z)

f(z)− f(z − 1)

= ν(−b) · f(η + 1 + b− `)− f(η + b− `)
f(η + 1)− f(η)
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for each ` ≤ b. The first inequality also takes into account possible ν(−b) = 0
values for positive b’s. With this we can write

b∑
`=a

ν(−`) ≥ ν(−b) · f(η + 1 + b− a)− f(η)

f(η + 1)− f(η)

which becomes (3.6.8) via ω − η = b− a+ 1.

Lemma 3.6.6. The dynamics defined by (3.6.1) or (3.6.2) is attractive.

Proof. Following the same realizations of (3.6.1), we see that two copies of
y(·) under a common environment can be coupled so that whenever they
get to the same partMi, they move together from that moment. The same
holds for z(·).

Proof of Lemma 3.6.3. Initially y(0) = 0 by definition, which is clearly a
distribution dominated by ν of (3.6.6). Now we argue recursively: by time
t the distribution of y(t) was a.s. only influenced by finitely many jumps of
the environment, which resulted in distributions ν1, then ν2, then ν3, etc.

Suppose νk
d
≤ ν, and let ν∗ be the distribution that would result from ν by

the k+ 1st jump. Then νk+1

d
≤ ν∗ by νk

d
≤ ν and Lemma 3.6.6, while ν∗

d
≤ ν

by Lemma 3.6.4. A similar argument proves the lemma for z(·).

3.7 Microscopic convexity of the exponential brick-
layers process

In this section we prove the microscopic convexity properties and hence
the t1/3 scaling for yet another system, the totally asymmetric exponential
bricklayers process (TAEBLP). This model was introduced in [10], and its
normal fluctuations off-characteristics were demonstrated in [11] (in case of
general convex jump rates, not only exponential).

Very briefly, the proofs in the previous sections work if one proves the
following properties of a model (see the exact formulation therein):

1. a strict domination of a second class particle of a denser system on
one of a sparser system,

2. a non-strict, but tight, domination of a second class particle on a
system of second class particles that are defined between the system
in question and another system with a different density,

3. strictly concave or convex, in the second derivative sense, hydrody-
namic flux function of the hyperbolic conservation law obtained by
the Eulerian limiting procedure,
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4. a tail bound of a second class particle in a(n essentially) stationary
process.

Properties 1 and 2 form what we call the microscopic concavity or convexity
property. Arguments in this chapter are worked out for the concave setting,
but everything works word-for-word in the convex case.

General convex increasing rates of a totally asymmetric bricklayers pro-
cess allow couplings that prove properties 1 and 3 above. The exponential
jump rates have a strong enough convexity property that will allow us to
show property 2. We do this by repeating an argument somewhat similar
to the one applied to the concave zero range process in Section 3.6. The
idea resembles much to the concave case, but we include this convex case in
full details (rather than listing all the differences from previous work) due
to the complexity of the method.

Finally, property 4 is highly nontrivial when the jump rates have un-
bounded increments. We use a coupling based on property 1 and a recent
result [14] that asserts that a second class particle of the exponential brick-
layers process performs a simple (drifted) random walk under appropriate
shock initial conditions. It is worth noting that exponential jump rates were
also of fundamental importance in [14], this technical point being the main
reason for considering this particular family of jump rates in this section.
Indeed, this is the only point that prevents us from proving the result for
e.g. the totally asymmetric zero range process with convex exponential jump
rates.

We emphasize at this point that we only consider nearest neighbor mod-
els. We believe that, as far as the hydrodynamic flux is strictly convex in
the second derivative sense, the t1/3 scaling should hold for a wide class of
non nearest neighbor dynamics as well. However, as intricate couplings and
orderings of second class particles play a crucial role in the methods, we do
not see an easy way to deal with the non-nearest neighbor case.

Let us also have a few comments on explicit product invariant stationary
distributions. In [17] and thus in this chapter we explicitly use them, as they
make the arguments easier. The crucial points of the method are properties 2
(microscopic convexity) and 4 (tail bound of the second class particle) above.
These depend on the details of the models, and the few known examples for
which they could be proved indeed have product stationary distributions.
Therefore we have not investigated how the arguments in [17] could be
generalized to the case of other types of stationary distributions. We again
believe that once microscopic convexity and the tail bound were proved,
the remainder of the argument could be generalized and the scaling would
remain valid for many models with non product stationary distributions as
well.

The case of exponential jump rates was constructed in [19]. The results
of the note [21] are used by [17]. Those require strong construction results
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which are not provided by [19] and therefore, to our knowledge, are not
available. To close that gap, we reproduce the results of [21] here for the
TAEBLP.

The model we discuss in this Section is the totally asymmetric exponen-
tial bricklayers process (TAEBLP), see Section 3.2.2. It was introduced in
[10], and also treated in [12] and [14]. The model is a member of the class
in Section 3.2.1, here is a brief definition. The process describes the growth
of a surface which we imagine as the top of a wall formed by columns of
bricks over the interval (i, i+1) for each pair of neighboring sites i and i+1
of Z. The height hi of this column is integer-valued. Bricklayers processes
are characterized by a function f : Z → R+. We only consider the totally
asymmetric nearest neighbor case here, in which only deposition of bricks
in the following way are allowed:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1)

hi −→ hi + 1

}
with rate f(ωi) + f(−ωi+1). (3.7.1)

Conditionally on the present state, these moves happen independently at all
sites i. Attractivity of the process is essential, this is achieved by assuming
that f is nondecreasing.

Finally, stationary translation-invariant product distributions for ω(·) are
ensured by f(z) · f(1− z) = 1 for each z ∈ Z.

The totally asymmetric exponential bricklayers process (TAEBLP) is ob-
tained by taking

f(z) = eβ(z−1/2). (3.7.2)

The construction of the bricklayers process with any nondecreasing f
that is bounded by an exponential function is given in [19] on a set of
tempered configurations Ω̃. This set consists of configurations with bounded
asymptotic slope, the precise definition is given in [19]. As certain desired
semigroup properties are not fully proved, we avoid technical difficulties in
the proofs of [21] by reproducing its results for the TAEBLP in the Appendix
of [16]. However, we neglect to add that Appendix here.

The basic coupling for TAEBLP

We use a particularly simple form of the basic coupling which is made pos-
sible by the bricklayer representation: it is enough to define the structure
of moves as described in Section 3.2.3 for a given side (left or right) of an
individual bricklayer. Here is how to do it for a given bricklayer at site i.
Given the present configurations ω1, ω2, . . . , ωn ∈ Ω̃, let m 7→ `(m) be a
permutation that orders the ωi values:

ω
`(m)
i ≤ ω`(m+1)

i , 1 ≤ m < n.
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For simplicity, set

p(m) : = f(ω
`(m)
i ) and q(m) : = f(−ω`(m)

i ),

and the dummy variables p(0) = q(n+ 1) = 0. Recall that the function f is
nondecreasing. Now the rule is that independently for each m = 1, . . . , n, at
rate p(m)−p(m−1), precisely bricklayers of ω`(m), ω`(m+1), . . . , ω`(n) place
a brick on their right, and bricklayers of ω`(1), ω`(2), . . . , ω`(m−1) do not. In-
dependently, at rate q(m)−q(m+1), precisely bricklayers of ω`(1), ω`(2), . . . ,
ω`(m) place a brick on their left, and bricklayers of ω`(m+1), ω`(m+2), . . . , ω`(n)

do not. Given the configurations ω1, ω2, . . . , ωn ∈ Ω̃, bricklayers at different
sites perform the above steps independently.

The combined effect of these joint rates creates the correct marginal rates,
that is, the bricklayer of ω`(m) executes the move (3.7.1) with rate p(m) =

f(ω
`(m)
i ), and the same move on column hi−1 with rate q(m) = f(−ω`(m)

i ).
Notice also that, due to monotonicity of f , a jump of ωa without ωb on the

column [i, i+ 1] by the bricklayers at site i can only occur if f(ωbi ) < f(ωai )
which implies ωai > ωbi . Also, a jump of ωa without ωb on the column [i−1, i]
by the bricklayers at site i can only occur if f(−ωbi ) < f(−ωai ) which implies
ωai < ωbi . The result of any of these steps then cannot increase the number
of discrepancies between the two processes, hence the name attractivity for
monotonicity of f . In particular, a sitewise ordering ωai ≤ ωbi ∀i ∈ Z is
preserved by the basic coupling.

Hydrodynamics and exact identities for TAEBLP

Recall the jump rates (3.7.1). As described in 3.2.4, the process has product
translation-invariant stationary distribution with marginals µθ

µθ(z) =
eθz

f(z)!
· 1

Z(θ)
(3.7.3)

that turn out to be of discrete Gaussian type, see [10] for the explicit for-
mula. The density %(θ) : = Eθ(ω) ∈ R is a strictly increasing function of
the parameter θ ∈ R, and can take on any real value by the Appendices
below. As before, µ%, P%, E%, Var%, Cov% will refer to laws of a density %
stationary process.

The hydrodynamic flux in this case is

H(%) = E%[f(ω) + f(−ω)] = eθ(%) + e−θ(%).

As f (3.7.2) is convex and nonlinear, the Appendices apply and yields a
convex hydrodynamic flux with

H′′(%) > 0. (3.7.4)
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Recall the measure (3.2.17) from Section 3.2.5, The Appendices below
apply to show that both µ% and µ̂% are stochastically monotone in %. As be-
fore, denote by E the expectation w.r.t. the evolution of a pair (ω−(·), ω(·))
started with initial data (recall (3.2.1))

ω−(0) = ω(0)− δ0 ∼
(⊗
i 6=0

µ%
)
⊗ µ̂%, (3.7.5)

and evolving under the basic coupling. This pair will always have a single
second class particle whose position is denoted by Q(t). In other words,
ω−(t) = ω(t) − δQ(t). We reprove Corollaries 2.4 and 2.5 of [21] in the
Appendix of [16] that state that for any i ∈ Z and t ≥ 0,

Var%(hi(t)) = Var%(ω) ·E|Q(t)− i| (3.7.6)

and

E(Q(t)) = V % · t,

where V % = H′(%) is the characteristic speed. Note in particular that in
(3.7.6) the variances are taken in a stationary process, while the expectation
of Q(t) is taken in the coupling with initial distribution (3.7.5).

Microscopic convexity

We start with the definition of microscopic convexity. This is just trans-
lated from the microscopic concavity property of Section 3.2.6, where more
detailed explanations and comments can be found. We assume that the set-
ting in Section 3.2.6 holds true, i.e. the processes start under the measure
(3.2.24) and the label of second class particles follows the rule (3.2.25).

Assumption 3.7.1. Given a density % ∈ R, there exists γ0 > 0 such that
the following holds. For any λ and % such that %− γ0 ≤ λi ≤ %i ≤ %+ γ0 for
all i ∈ Z, a joint process (η(t), ω(t), y(t), z(t))t≥0 can be constructed with
the following properties.

• Initially (η(0), ω(0)) is µ̂λ,%-distributed and the joint process (η(·), ω(·))
evolves in basic coupling.

• Processes y(·) and z(·) are integer-valued. Initially y(0) = z(0) = 0.
With probability one

y(t) ≥ z(t) for all t ≥ 0. (3.7.7)

• Define the processes

ω−(t) : = ω(t)− δXy(t)(t)
and η+(t) : = η(t) + δXz(t)(t). (3.7.8)

Then both pairs (η, η+) and (ω−, ω) evolve marginally in basic cou-
pling.
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• For each γ ∈ (0, γ0) and large enough t ≥ 0 there exists a probability
distribution ν%,γ(t) on Z+ satisfying the tail bound

ν%,γ(t){y : y ≥ y0} ≤ Ctκ−1γ2κ−3y−κ0 (3.7.9)

for some fixed constants 3/2 ≤ κ < 3 and C < ∞, and such that if
% − γ ≤ λi ≤ %i ≤ % + γ for all i ∈ Z, then we have the stochastic
bounds

y(t)
d
≥ −ν%,γ(t) and z(t)

d
≤ ν%,γ(t). (3.7.10)

Thus, the only difference is that in the convex setting we need

Qη(t) = Xz(t)(t) ≤ Xy(t)(t) = Q(t).

and the tail bounds of (3.2.29) hold in the reversed order (3.7.10)
Section 3.7.1 contains the proof of Assumption 3.7.1 for the TAEBLP.

The proof of (3.7.10) makes use of the particular exponential form (3.7.2)
of the rates. Unfortunately, we do not have an argument for more general
convex rates at the moment.

There is one more assumption in Section 3.2.6 needed to state the main
result, and this is the inequality (3.2.31) of Assumption 3.2.2. Such an
assumption is natural and easy to prove if the jump rates have bounded
increments. Since f (3.7.2) does not, this statement for the TAEBLP is
nontrivial. We prove it in Section 3.7.2 for the TAEBLP.

3.7.1 Proof of microscopic convexity

In this section we verify that Assumption 3.7.1 can be satisfied. The proof
is similar to that of for concave zero range processes, so we try to stick to
the differences, but some repetition might occur. Recall from the beginning
of Section 3.6 the partitioning {Mi(t)} of the label space Z into intervals
indexed by sites i ∈ Z, with partition intervals given by Mi(t) contains the
labels of the second class particles that reside at site i at time t, and can be
empty. The labels of the second class particles that are at the same site as
the one labeled m form the setMXm(t)(t) = : {am(t), am(t)+1, . . . , bm(t)}.
The processes am(t) and bm(t) are always well-defined and satisfy am(t) ≤
m ≤ bm(t). Notice that

|MXm(t)(t)| = bm(t)− am(t) + 1 = ωXm(t)(t)− ηXm(t)(t). (3.7.11)

In the TAEBLP, the ways in which am(t) and bm(t) can change are a bit
more complicated than the same for TAZRP, and can be summarized the
following list:

• A second class particle jumps from site Xm(t−) − 1 to site Xm(t−).
Then this one necessarily has label am(t−) − 1, and it becomes the
lowest labeled one at site Xm(t−) = Xm(t) after the jump. Hence
am(t) = am(t−)− 1.
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• A second class particle jumps from site Xm(t−) + 1 to site Xm(t−).
Then this one necessarily has label bm(t−) + 1, and it becomes the
highest labeled one at site Xm(t−) = Xm(t) after the jump. Hence
bm(t) = bm(t−) + 1.

• A second class particle, different from Xm, jumps from site Xm(t−)
to site Xm(t−) + 1. Then this one is necessarily labeled bm(t−), and
it leaves the site Xm(t−), hence bm(t) = bm(t−)− 1.

• A second class particle, different from Xm, jumps from site Xm(t−)
to site Xm(t−)− 1. Then this one is necessarily labeled am(t−), and
it leaves the site Xm(t−), hence am(t) = am(t−) + 1.

• The second class particle Xm is the highest labeled on its site, that
is, m = bm(t−), and it jumps to site Xm(t−) + 1. Then this particle
becomes the lowest labeled in the set MXm(t−)+1 = MXm(t), hence
am(t) = m. In this case bm(t) can be computed from (3.7.11), the
number of second class particles at the site of Xm after the jump.

• The second class particle Xm is the lowest labeled on its site, that is,
m = am(t−), and it jumps to site Xm(t−) − 1. Then this particle
becomes the highest labeled in the set MXm(t−)−1 = MXm(t), hence
bm(t) = m. In this case am(t) can be computed from (3.7.11), the
number of second class particles at the site of Xm after the jump.

Similarly as for the TAZRP, we fix initially y(0) = z(0) = 0. Next we specify
the probabilities that y and z use to refresh their values. Recall (3.7.2). To
simplify notation, we abbreviate, given integers η < ω,

p(η, ω) =
f(ω)− f(ω − 1)

f(ω)− f(η)
=
f(−η)− f(−η − 1)

f(−η)− f(−ω)
=

eβ(ω−η) − eβ(ω−η−1)

eβ(ω−η) − 1
(3.7.12)

and

q(η, ω) =
f(−ω + 1)− f(−ω)

f(−η)− f(−ω)
=
f(η + 1)− f(η)

f(ω)− f(η)
=

eβ − 1

eβ(ω−η) − 1
. (3.7.13)

Notice that both p(η, ω) and q(η, ω) only depend on ω− η. Therefore, with
a little abuse of notation, we write p(ω− η) : = p(η, ω), q(ω− η) : = q(η, ω).
Then

p(1) = q(1) = 1, p(d) ≥ q(d), p(d)+q(d) ≤ 1 for 2 ≤ d ∈ Z.

When y and z reside at separate sites, they refresh independently. When
they are together in the same partition interval, they use the joint distribu-
tion in the third bullet below.
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• Whenever any change occurs in either ω or η at site Xy(t−)(t−) and,

as a result of the jump, ay(t−)(t) 6= az(t−)(t), that is, y(t−) and z(t−)
belong to different parts after the jump, we abbreviate

p = p(ηXy(t−)(t)(t), ωXy(t−)(t)(t)) q = q(ηXy(t−)(t)(t), ωXy(t−)(t)(t))

of (3.7.12) and (3.7.13) in the formulas below. These depend on the
values of the respective processes at the site where the label y can be
found right after the jump. In this case, independently of everything
else,

y(t) : =


ay(t−)(t), with prob. q,

by(t−)(t)− 1, with prob. 1− p− q,
by(t−)(t), with prob. p,

(3.7.14)

except for y(t) : = ay(t−)(t) = by(t−)(t) when the difference

ωXy(t−)(t)(t)− ηXy(t−)(t)(t)

is 1. Notice that the second line in (3.7.14) has probability zero when
this difference is 2.

• Whenever any change occurs in either ω or η at site Xz(t−)(t−) and,

as a result of the jump, ay(t−)(t) 6= az(t−)(t), that is, y(t−) and z(t−)
belong to different parts after the jump, we abbreviate

p = p(ηXz(t−)(t)(t), ωXz(t−)(t)(t)) q = q(ηXz(t−)(t)(t), ωXz(t−)(t)(t))

of (3.7.12) and (3.7.13) in the formulas below. These depend on the
values of the respective processes at the site where the label z can be
found right after the jump. In this case, independently of everything
else,

z(t) : =


az(t−)(t), with prob. p,

az(t−)(t) + 1, with prob. 1− p− q,
bz(t−)(t), with prob. q,

(3.7.15)

except for z(t) : = az(t−)(t) = bz(t−)(t) when the difference

ωXz(t−)(t)(t)− ηXz(t−)(t)(t)

is 1. Notice that the second line in (3.7.15) has probability zero when
this difference is 2.
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• Whenever any change occurs in either ω or η at sites Xy(t−)(t−) or

Xz(t−)(t−) and, as a result of the jump, ay(t−)(t) = az(t−)(t), that
is, y(t−) and z(t−) belong to the same part after the jump, that is,
Xy(t−)(t) = Xz(t−)(t) then we have

ωXy(t−)(t)(t) = ωXz(t−)(t)(t) and ηXy(t−)(t)(t) = ηXz(t−)(t)(t),

and we abbreviate

p = p(ηXy(t−)(t)(t), ωXy(t−)(t)(t)) q = q(ηXy(t−)(t)(t), ωXy(t−)(t)(t))

of (3.7.12) and (3.7.13) in the formulas below. These depend on the
values of the respective processes at the site where both the labels y
and z can be found right after the jump. In this case, independently
of everything else,

(
y(t)
z(t)

)
: =



(
ay(t−)(t)

ay(t−)(t)

)
, with prob. q,(

by(t−)(t)− 1

ay(t−)(t)

)
, with prob. (p− q) ∧ (1− p− q),(

by(t−)(t)

ay(t−)(t)

)
, with prob. [2p− 1]+,(

by(t−)(t)− 1

ay(t−)(t) + 1

)
, with prob. [1− 2p]+,(

by(t−)(t)

ay(t−)(t) + 1

)
, with prob. (p− q) ∧ (1− p− q),(

by(t−)(t)

by(t−)(t)

)
, with prob. q,

(3.7.16)
except for y(t) = z(t) : = ay(t−)(t) = by(t−)(t) when the difference
ωXy(t−)(t)(t)− ηXy(t−)(t)(t) is 1. Notice that the second, the fourth and
the fifth lines have probability zero when this difference is 2.

The above moves for y and z always occur within labels at a given site. This
determines whether the particle Q(t) : = Xy(t)(t) or Qη(t) : = Xz(t)(t) is the
one to jump if the next move out of the site is an ω − η move.

We prove that the above construction has the properties required in
Assumption 3.7.1. First note that the refreshing rule (3.7.16) marginally
gives the same moves and probabilities as (3.7.14) or (3.7.15) for y(·) or
z(·), respectively.

Lemma 3.7.2. The pair (ω−, ω) : = (ω − δXy , ω) obeys basic coupling, as

does the pair (η, η+) : = (η, η + δXz).
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Proof. We write the proof for (ω−, ω). We need to show that, given the con-
figuration (η, ω, {Xm}, y), the jump rates of (ω−, ω) are the ones prescribed
in basic coupling (Section 3.7) and by (3.7.1). As mentioned in Section 3.7,
the effect of bricklayers determine the evolution of processes. Notice first
that an ω − η particle can only jump away from a site i if a bricklayer of ω
or η moves. As the moves (3.7.14) or (3.7.16) by themselves never result in
a change of Xy(·)(·), any move of Q from a site i is a result of a bricklayer’s
move at site i. Therefore, we see that moves initiated by bricklayers of ω at
sites i 6= Q happen as well to ω−, as required by the basic coupling. The
only point to consider is moves by the bricklayers at site i = Q. We start
with them putting a brick on their right. Since the last time any change oc-
curred at site i, y chose values according to (3.7.14) or (3.7.16). Notice that
(3.7.14) and (3.7.16) give the same marginal probabilities for this choice.
Hence

y took a value < by with prob. 1− p =
f(ωi − 1)− f(ηi)

f(ωi)− f(ηi)
(3.7.17)

and

y took on value by with prob. p =
f(ωi)− f(ωi − 1)

f(ωi)− f(ηi)
, (3.7.18)

as given in (3.7.14). Notice that (3.7.17) happens with probability zero if
ωi = ηi + 1. According to the basic coupling of η and ω, the following right
moves of bricklayers at i can occur:

• With rate f(ωi) − f(ηi), ω jumps without η. The highest labeled
second class particle, Xby jumps from site i to site i+ 1.

– With probability (3.7.18) Xy = Q jumps with Xby . In this case

ω−i (t−) = ωi(t−)− 1 = ωi(t) = ω−i (t)

since the difference Q disappears from site i. Also,

ω−i+1(t−) = ωi+1(t−) = ωi+1(t)− 1 = ω−i+1(t),

since the difference Q appears at site i + 1. So in this case ω
undergoes a jump but ω− does not, and the rate is

[f(ωi)− f(ηi)] ·
f(ωi)− f(ωi − 1)

f(ωi)− f(ηi)
= f(ωi)− f(ω−i ).

– With probability (3.7.17) Xy = Q does not jump with Xby , since
it has label less than by (this probability is zero if ωi = ηi + 1).
In this case ω− and ω perform the same jump and it occurs with
rate

[f(ωi)− f(ηi)] ·
f(ωi − 1)− f(ηi)

f(ωi)− f(ηi)
= f(ω−i )− f(ηi).
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• With rate f(ηi), both bricklayers of η and ω at site i move. No change
occurs in the ω−η particles, hence no change occurs in Q. This implies
that the process ω− jumps as well.

Summarizing we see that the rate for the bricklayers of (ω−, ω) at site i to
lay brick on their rights together is f(ω−i ), and the rate for the one of ω
to move without ω− is f(ωi) − f(ω−i ). This is exactly what basic coupling
requires.

Consider now bricklayers at site i = Q putting a brick on their left.
Since the last time any change occurred at site i, y chose values according
to (3.7.14) or (3.7.16). Hence

y took on value ay with prob. q =
f(−ωi + 1)− f(−ωi)
f(−ηi)− f(−ωi)

(3.7.19)

and

y took a value > ay with prob. 1− q =
f(−ηi)− f(−ωi + 1)

f(−ηi)− f(−ωi)
, (3.7.20)

as given in (3.7.14). Notice that (3.7.20) happens with probability zero if
ωi = ηi + 1. According to the basic coupling of η and ω, the following left
moves of bricklayers at i can occur:

• With rate f(−ηi) − f(−ωi), η jumps without ω. The lowest labeled
second class particle, Xay jumps from site i to site i− 1.

– With probability (3.7.19) Xy = Q jumps with Xay . In this case

ω−i (t−) = ωi(t−)− 1 = ωi(t)− 1 = ω−i (t)− 1

since the difference Q disappears from site i. Also,

ω−i−1(t−) = ωi−1(t−) = ωi−1(t) = ω−i−1(t) + 1,

since the difference Q appears at site i + 1. So in this case ω−

undergoes a jump but ω does not, and the rate is

[f(−ηi)− f(−ωi)] ·
f(−ωi + 1)− f(−ωi)
f(−ηi)− f(−ωi)

= f(−ω−i )− f(−ωi).

– With probability (3.7.20) Xy = Q does not jump with Xay , since
it has label more than ay (this probability is zero if ωi = ηi + 1).
In this case none of ω− or ω move; this occurs with rate

[f(−ηi)− f(−ωi)] ·
f(−ηi)− f(−ωi + 1)

f(−ηi)− f(ωi)
= f(−ηi)− f(−ω−i ).
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• With rate f(−ωi), both bricklayers of η and ω at site i move. No
change occurs in the ω − η particles, hence no change occurs in Q.
This implies that the process ω− jumps as well.

Summarizing we see that the rate for the bricklayers of (ω−, ω) at site i to
lay brick on their rights together is f(−ωi), and the rate for the one of ω−

to move without ω is f(−ω−i )−f(−ωi). This is exactly what basic coupling
requires.

A very similar argument can be repeated for (η, η+).

Lemma 3.7.3. Inequality (3.7.7) y ≥ z holds in the above construction.

Proof. Since no jump of y or z moves one of them into a new partition
interval, the only situation that can jeopardize (3.7.7) is the simultaneous
refreshing of y and z in a common partition interval. But this case is gov-
erned by step (3.7.16) which by definition ensures that y ≥ z. (When
by(t−)(t) = ay(t−)(t)+1, we have, by (3.7.11), ωXy(t−)(t)(t)−ηXy(t−)(t)(t) = 2,

and hence p of (3.7.16) is more than 1/2. Therefore the probability of the
step in line 4 of (3.7.16) is zero.)

Define the geometric distribution

ν(m) : =

{
e−βm(1− e−β), m ≥ 0

0, m < 0.
(3.7.21)

Lemma 3.7.4. Conditioned on the process (η, ω), the bounds y(t)
d
≥ −ν

and z(t)
d
≤ ν hold for all t ≥ 0.

To avoid unnecessary complications with negative values, we show the
proof for z(t). Notice that both the statement and the behavior of y(t) is
reflected compared to z(t), hence the proof is the same for the two pro-
cesses. The proof is the same manner as for the TAZRP but with different
calculations, thus consists of three steps.

Lemma 3.7.5. Let Z be a random variable with distribution ν, and fix
integers a ≤ b and η < ω so that ω − η = b − a + 1. Apply the following
operation to Z:

(i) if a ≤ Z ≤ b, apply the probabilities from (3.6.2) with parameters
a, b, η, ω to pick a new value for Z;

(ii) if Z < a or Z > b then do not change Z.

Then the resulting distribution ν∗ is stochastically dominated by ν.
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Proof. There is nothing to prove when b = a, hence we assume b > a or,
equivalently, ω − η = b − a + 1 ≥ 2. It is also clear that ν∗(m) = ν(m) for
m < a or m > b. We need to prove, in view of the distribution functions,

m∑
`=a

ν∗(`) ≥
m∑
`=a

ν(`)

for all a ≤ m ≤ b. Notice that ν∗ gives zero weight on values a+ 1 < m < b
(if any), and also that the display becomes an equality if m = b. Therefore,
it is enough to prove the inequality for m = a:

ν∗(a) ≥ ν(a), (3.7.22)

and m = b− 1:

b−1∑
`=a

ν∗(`) ≥
b−1∑
`=a

ν(`) that is, ν∗(b) ≤ ν(b). (3.7.23)

Notice that (3.7.22) is trivially true for a < 0. For a ≥ 0 we start with
rewriting the left hand-side of (3.7.22) with the use of (3.7.15), (3.7.12),
and the abbreviation d = ω − η = b− a+ 1:

ν∗(a) = p(d) ·
b∑
`=a

ν(`)

=
eβd − eβ(d−1)

eβd − 1
· (e−βa − e−β(b+1))

= e−βa · eβd − eβ(d−1)

eβd − 1
· (1− e−βd) = ν(a).

As for (3.7.23), both sides become zero if b < 0. For b ≥ 0 we have

ν∗(b) = q(d) ·
b∑
`=a

ν(`)

≤ eβ − 1

eβd − 1
· (e−βa − e−β(b+1))

= e−βb · eβ − 1

eβd − 1
· (eβ(d−1) − e−β) = ν(b).

Lemma 3.7.6. The dynamics defined by (3.7.15) is attractive.

Proof. Following the same realizations of (3.7.15), we see that two copies
of z(·) under a common environment can be coupled so that whenever they
get to the same part Mi, they move together from that moment.

Proof of Lemma 3.7.4. Follows from the previous three lemmas analogously
as the proof of Lemma 3.6.3.
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3.7.2 A tail bound for the second class particle

In this section we prove that Assumption 3.2.2 holds for the TAEBLP model.
The difficulty comes from the fact that jump rates of the second class parti-
cle, being the increments of the growth rates (3.7.2), are unbounded. First
recall the coupling measure µλ,% of (3.2.23) and notice that it gives weight
one on pairs of the form (y, y) if λ = %. Define also µshock % by

µshock %(y, z) =

{
µ%(y), if z = y + 1,

0, otherwise.

With these marginals we define the shock product distribution

µshock % : =
⊗
i<0

µ%+1,%+1 ·
⊗
i=0

µshock % ·
⊗
i>0

µ%,%, (3.7.24)

a measure on a pair of coupled processes with a single second class particle
at the origin.

Lemma 3.7.7. The first marginal of µshock % is the product distribution⊗
i<0

µ%+1 ·
⊗
i≥0

µ%,

while the second marginal is ⊗
i≤0

µ%+1 ·
⊗
i<0

µ%. (3.7.25)

Proof. The first part of the statement and the second part, apart from i = 0,
follow from the definitions. The nontrivial part is

µ%+1(z) = µ%(z − 1), z ∈ Z,

valid for the second marginal at i = 0. This is specific to the definition
(3.2.13) of µ%, and of the exponential rates (3.7.2), and to prove it we write,
with θ = θ(%),

µ%(z − 1) =
f(z)

eθ
· eθz

f(z)!
· 1

Z(θ)
=

e(θ+β)z

f(z)!
· 1

eθ+β/2Z(θ)
.

Summing this up for all z ∈ Z gives one on the left hand-side, hence leads
to

Z(θ + β) =

∞∑
z=−∞

e(θ+β)z

f(z)!
= eθ+β/2Z(θ),

which also implies

%(θ + β) =
d

dθ
log(Z(θ + β)) = %(θ) + 1.
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We conclude that

µ%(z − 1) =
e(θ+β)z

f(z)!
· 1

Z(θ + β)
= µ%(θ+β)(z) = µ%+1(z),

which finishes the proof of the lemma.

The translation of µshock % is denoted by

τkµ
shock % : =

⊗
i<k

µ%+1,%+1 ·
⊗
i=k

µshock % ·
⊗
i>k

µ%,%.

The main tool we use is Theorem 1 from [14], which we reformulate here.
µS(t) will just denote the time evolution of a measure µ under the process
dynamics:

Theorem 3.7.8. In the sense of bounded test functions on Ω× Ω,

d

dt
(τkµ

shock %)S(t) =
(
eθ(%+1) − eθ(%)

)
· (τk+1µ

shock % − µshock %)

+
(
e−θ(%) − e−θ(%+1)

)
· (τk−1µ

shock % − µshock %).
(3.7.26)

The first interesting consequence of this theorem is that the measure
µshock % on a coupled pair evolves into a linear combination of its shifted
versions. Second, notice that (3.7.26) is the Kolmogorov equation for an
asymmetric simple random walk. Indeed, this theorem implies the following

Corollary 3.7.9. Let the pair (ξ−(0), ξ(0)) have initial distribution µshock %

defined by (3.7.24). Then its later distribution evolves into a linear combi-
nation of translated versions of µshock %: at time t the pair (ξ−(t), ξ(0)) has
distribution

µshock %S(t) =
∞∑

k=−∞
Pk(t) · τkµshock %,

where Pk(t) is the transition probability at time t from the origin to k of a
continuous time asymmetric simple random walk with jump rates

eθ(%+1) − eθ(%) to the right and e−θ(%) − e−θ(%+1) to the left.

In particular, Qξ(·), started from an environment µshock %, is a continuous
time asymmetric simple random walk with these rates.

Although the corollary is quite natural, let us give a formal proof here.
First some notation. (ξ−(·), ξ(·)) will denote a pair of processes evolving
under the basic coupling, g will be a bounded function on the path space of
such a pair, and for shortness we introduce Θt for the whole random path,
shifted to time t: Θt = (ξ−(t + ·), ξ(t + ·)). Expectation of the process,
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started from τkµ
shock %, will be denoted by E(k). Notice that under E(k) we

a.s. have a single position Qξ(t) where the coupled pair differ by one, this is
the position of the single conserved second class particle. With some abuse
of notation we also use E(ξ−, ξ) for the evolution of the pair (ξ−(·), ξ(·)),
started from the specific initial state (ξ−, ξ).

We aim for proving the semigroup property of S(·). The first step is

Lemma 3.7.10. Given times 0 < s < t and k ∈ Z,

E(0)
[
g(Θt) |Qξ(s) = k] = E(k)[g(Θt−s)].

Proof. The left hand-side is

E(0)
[
g(Θt) ; Qξ(s) = k]

P(0){Qξ(s) = k}

=
E(0)

[
E(ξ−(s), ξ(s))g(Θt−s) ; Qξ(s) = k]

P(0){Qξ(s) = k}

=

∑
j∈Z

P(0){Qξ(s) = j}E(j)
[
E(ξ−(0), ξ(0))g(Θt−s) ; Qξ(0) = k]

P(0){Qξ(s) = k}

=
P(0){Qξ(s) = k}E(k)

[
E(ξ−(0), ξ(0))g(Θt−s) ; Qξ(0) = k]

P(0){Qξ(s) = k}
= E(k)[g(Θt−s)],

where in the second equality we used that the distribution at time s is a
linear combination of shifted versions of µshock %.

Next we prove the Markov property for Qξ(·).

Lemma 3.7.11. Let n > 0 be an integer, ϕi, i = 0, . . . , n bounded functions
on Z, and 0 = t0 < t1 < · · · < tn. Then

E(0)
n∏
i=1

ϕi
(
Qξ(ti)−Qξ(ti−1)

)
=

n∏
i=1

E(0)ϕi
(
Qξ(ti − ti−1)

)
.

Proof. The statement is trivially true for n = 1. We proceed by induction,
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and assume the statement is true for n− 1. Then

E(0)
n∏
i=1

ϕi
(
Qξ(ti)−Qξ(ti−1)

)
=
∑
j∈Z

P(0){Qξ(t1) = j}ϕ1(j) ·E(0)
[ n∏
i=2

ϕi
(
Qξ(ti)−Qξ(ti−1)

)
|Qξ(t1) = j

]
=
∑
j∈Z

P(0){Qξ(t1) = j}ϕ1(j) ·E(j)
n∏
i=2

ϕi
(
Qξ(ti − t1)−Qξ(ti−1 − t1)

)
=
∑
j∈Z

P(0){Qξ(t1) = j}ϕ1(j) ·E(0)
n∏
i=2

ϕi
(
Qξ(ti − t1)−Qξ(ti−1 − t1)

)
=
∑
j∈Z

P(0){Qξ(t1) = j}ϕ1(j) ·
n∏
i=2

E(0)ϕi
(
Qξ(ti − ti−1)

)
=

n∏
i=1

E(0)ϕi
(
Qξ(ti − ti−1)

)
.

The second equality uses Lemma 3.7.10, the third one uses the fact that φ’s
only depend on Qξ-differences, and the fourth one follows from the induction
hypothesis.

Proof of Corollary 3.7.9. We know that at any fixed time t > 0 the distribu-
tion of (ξ−(t), ξ(t)) is a linear combination of shifted versions of µshock %. The

shift is traced by the second class particle Qξ(t), therefore the differential
equation

d

dt
P(0){Qξ(t) = k}

=
(
eθ(%+1) − eθ(%)

)
·
(
P(0){Qξ(t) = k + 1} −P(0){Qξ(t) = k}

)
+
(
e−θ(%) − e−θ(%+1)

)
·
(
P(0){Qξ(t) = k − 1} −P(0){Qξ(t) = k}

)
(3.7.27)

follows from (3.7.26). In the above lemmas, we also proved that Qξ(t) is
Markovian (annealed w.r.t. the initial distribution of (ξ−, ξ)). As there
exists only one Markovian process with Kolmogorov equation (3.7.27) of the
simple asymmetric random walk, we conclude that the process Qξ(·) with
initial environment µshock % is an asymmetric simple random walk with rates
as stated in the Corollary.

Lemma 3.7.12. Let (ω−, ω) be a pair of processes in basic coupling, started
from distribution (3.2.18), with second class particle Q(t). Then there exist
constants 0 < α0, C <∞ such that

P{|Q(t)| > K} ≤ e−CK
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whenever K > α0t and t is large enough.

Notice that this implies that Assumption 3.2.2 holds for the TAEBLP.

Proof. The proof uses auxiliary processes to connect the above arguments
to the setting of Assumption 3.2.2. Define the pair

(λi, %i) : =

{
(%, %+ 1), for i ≤ 0,

(%, %), for i > 0.

Draw the pair (ζ(0), ξ(0)) from the product distribution of coupling mea-
sures (3.2.23) ⊗

i∈Z
µλi,%i .

Then ξ(0) has distribution ⊗
i≤0

µ%+1 ·
⊗
i<0

µ%,

in agreement with (3.7.25).
Let now the pair (ζ(·), ξ(·)) evolve in the basic coupling, and let them

play the role of (η(·), ω(·)) of Section 3.7.1. This results in the pair (ζ(·), ζ+(·))
with a second class particle Qζ(·) and the pair (ξ−(·), ξ(·)) with a second

class particle Qξ(·) such that Qζ(t) ≤ Qξ(t), see Lemma 3.7.3. Therefore the
random walk result in Corollary 3.7.9 on Qξ(·) yields the desired estimate
for Qζ(t). Finally, notice that the distribution of ω−(0) in Assumption 3.2.2
and of ζ(0) above only differ by ω−0 (0) ∼ µ̂%, while ζ0(0) ∼ µ%. Therefore

P{Q(t) > K} =

∞∑
z=−∞

P{Q(t) > K |ω−0 (0) = z} · µ%(z)
1
2

( µ̂%(z)2

µ%(z)

) 1
2

=
∞∑

z=−∞
P{Qζ(t) > K | ζ0(0) = z} · µ%(z)

1
2

( µ̂%(z)2

µ%(z)

) 1
2

≤
[ ∞∑
z=−∞

P{Qζ(t) > K | ζ0(0) = z} · µ%(z)
] 1

2 ·
[ ∞∑
y=−∞

µ̂%(y)2

µ%(y)

] 1
2

= P{Qζ(t) > K}
1
2 ·
[ ∞∑
y=−∞

µ̂%(y)2

µ%(y)

] 1
2
.

We are done as soon as we show that µ̂%(y)/µ%(y) is uniformly bounded in
y. With the exponential rates (3.7.2) one obtains from (3.2.17)

µ̂%(y)

µ%(y)
= C

∞∑
z=y+1

(z− %)e
−β

2
(z− θ

β
)2+β

2
(y− θ

β
)2

= C
∞∑
k=1

(k+ y− %)e−
β
2
k2−βky+θk.
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This is uniformly bounded for large y’s since then ye−βy < 1. For large
negative y’s one uses the equivalent form

µ̂%(y) : =
1

Var%(ω0)

y∑
z=−∞

(%− z)µ%(z)

of (3.2.17) and writes

µ̂%(y)

µ%(y)
= C

y∑
z=−∞

(%− z)e−
β
2

(z− θ
β

)2+β
2

(y− θ
β

)2

= C
∞∑
k=1

(k − y + %)e−
β
2
k2+βky−θk

which is again uniformly bounded for large negative y values.
To show a lower bound on Q(t), start with

(λi, %i) : =


(%, %), for i < 0,

(%− 1, %), for i = 0,

(%, %− 1), for i > 0,

and the coupled pair (ζ(0), ξ(0)) in distribution⊗
i∈Z

µλi,%i .

Now the roles of the pair (ζ(·), ζ+(·)) with a second class particle Qζ(·) and

the pair (ξ−(·), ξ(·)) with a second class particle Qξ(·) are interchanged and

we have Qζ(t) ≥ Qξ(t). The random walk estimate on Qξ and a Radon-
Nikodym estimate similar to the one above completes the proof of the lower
bound.

3.A Monotonicity of measures

In this first section of the Appendix we show that the measures µ% and µ̂%

defined in (3.2.13) and (3.2.17), respectively, are stochastically monotone as
functions of %. We start with a simple

Lemma 3.A.1. Fix a function ϕ(ω) on Z, bounded by a polynomial. Then
Eθ(ϕ(ω)) is differentiable in θ on (θ, θ̄), and

d

dθ
Eθ(ϕ(ω)) = Covθ(ϕ(ω), ω).

Proof. Convergence of the series involved in Eθ(ϕ(ω)) can be verified via the
ratio test, even after differentiating the terms. Since µθ is the exponentially
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weighted version of µθ0 for some θ0, we have

d

dθ
Eθϕ(ω)

=
d

dθ

Eθ0(ϕ(ω) · e(θ−θ0)ω)

Eθ0e(θ−θ0)ω

=
Eθ0(ϕ(ω) · ω · e(θ−θ0)ω)

Eθ0e(θ−θ0)ω
−Eθ0(ϕ(ω) · e(θ−θ0)ω) ·E

θ0(ω · e(θ−θ0)ω)

[Eθ0e(θ−θ0)ω]2

= Covθ(ϕ(ω), ω).

Corollary 3.A.2. For any θ < θ < θ̄, the state sum (3.2.12) satisfies

d

dθ
logZ(θ) =

1

Z(θ)

ωmax∑
z=ωmin

z
eθz

f(z)!
= Eθ(ω) = : %(θ), (3.A.1)

d2

dθ2
logZ(θ) =

d

dθ
%(θ) = Varθ(ω). (3.A.2)

The function %(θ) is strictly increasing and maps (θ, θ̄) onto (ωmin, ωmax).

Proof. Everything is already covered except the last surjectivity statement.
Due to the monotonicity and continuity one only needs to show convergence
at the boundaries θ, θ̄ to ωmin, ωmax. First let us consider the case when
θ̄ <∞. Then ωmax =∞ and Fatou’s lemma implies

lim inf
θ↗θ̄

Z(θ) = lim inf
θ↗θ̄

∑
z∈I

eθz

f(z)!
≥
∑
z∈I

lim inf
θ↗θ̄

eθz

f(z)!
=
∑
z∈I

eθ̄z

f(z)!
=∞

since for z > 0
eθ̄z

f(z)!
=

z∏
y=1

eθ̄

f(y)
≥ 1

by definition of θ̄ and f being nondecreasing. This shows that logZ(θ)
takes on arbitrarily large values as θ ↗ θ̄. We also know that it is a smooth
and convex function on (θ, θ̄) (see (3.A.2)). This implies that its derivative
(3.A.1) is not bounded from above i.e., arbitrarily large % values can be
achieved. The same reasoning works in case θ > −∞ for arbitrarily large
negative % values.

When θ̄ = ∞ then, regardless whether ωmax is finite or infinite, fix any
0 ≤ y < ωmax and write

%(θ) = Eθ(ω · 1{ω > y}) + Eθ([ω]+ · 1{ω ≤ y})−Eθ([ω]− · 1{ω ≤ y})
≥ (y + 1) ·Pθ(ω > y)−Eθ([ω]− · 1{ω ≤ y})

≥ (y + 1)− (y + 1) ·Pθ(ω ≤ y)−
√

Eθ(([ω]−)2) ·
√

Pθ(ω ≤ y)

≥ (y + 1)− (y + 1) ·Pθ(ω ≤ y)−
√

Eθ0(([ω]−)2) ·
√

Pθ(ω ≤ y)

(3.A.3)
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for a fixed θ < θ0 < θ. The last inequality follows by monotonicity of µθ in θ
and ([ω]−)2) being a nonincreasing function of ω. For any ωmin − 1 < z ≤ y
and θ > θ,

µθ(z)

µθ(y + 1)
=

y∏
x=z

µθ(x)

µθ(x+ 1)
=

y∏
x=z

f(x+ 1)

eθ
≤
(f(y + 1)

eθ

)y−z+1
.

Given 0 ≤ y < ωmax and 1 > ε > 0, there is a large enough θ which makes
the last fraction smaller than ε. With such a choice we have

Pθ{ω ≤ y} =

y∑
z=ωmin

µθ(z) ≤ µθ(y + 1)

y∑
z=ωmin

εy−z+1 ≤ ε · 1− εy−ωmin+1

1− ε
.

Therefore, for the case of a finite ωmax, choosing y = ωmax − 1 and large
θ makes (3.A.3) arbitrarily close to ωmax. When ωmax = ∞, the argument
shows that %(θ) ≥ y+1 can be achieved for any y ≥ 0. A similar computation
demonstrates that any density towards ωmin can be reached when θ = −∞.

Corollary 3.A.3. The measures µ% are stochastically nondecreasing in %.

Proof. Since % and θ are strictly increasing functions of each other, it is
equivalent to show monotonicity of µθ. This follows if we can show 0 ≤
d
dθE

θ(ϕ(ω)) for an arbitrary bounded nondecreasing function ϕ. Lemma
3.A.1 transforms this derivative into the covariance of ϕ(ω) and ω, which is
non-negative due to ϕ being nondecreasing.

Monotonicity of µ̂% requires somewhat more of a convexity argument.

Proposition 3.A.4. The family of measures µ̂%, defined in (3.2.17), is
stochastically nondecreasing in %.

Proof. Start by rewriting the definition:

µ̂%(y) =
E%
(
[ω − %] · 1{ω > y}

)
Var%(ω)

=
Cov%(ω, 1{ω > y})

Cov%(ω, ω)

=
d
dθP

θ{ω > y}
d
dθ%(θ)

∣∣∣∣∣
θ=θ(%)

=
d

d%
P%{ω > y}.

Let us denote the µ̂%-expectation by Ê%. Fix a bounded nondecreasing
function ϕ. We need to show

0 ≤ d

d%
Ê%ϕ(ω).

We compute a different expression for this derivative. Passing the deriva-
tive through the sum in the third equality below is justified because the series
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involved are dominated by certain geometric series, uniformly over θ in small
open neighborhoods. This follows from the definitions of θ and θ̄ and the
assumption θ < θ(%) < θ̄.

Ê%ϕ(ω) =
ωmax∑
y=ωmin

ϕ(y) · d

d%
P%{ω > y}

=

ωmax∑
y=ωmin

ϕ(y) · d

d%
[P%{ω > y} − 1{0 ≥ y}]

=
d

d%

ωmax∑
y=ωmin

ϕ(y) · [P%{ω > y} − 1{0 ≥ y}]

=
d

d%
E%

ωmax∑
y=ωmin

ϕ(y) · [1{ω > y} − 1{0 ≥ y}]

=
d

d%
E%

ωmax∑
y=ωmin

ϕ(y) · [1{ω > y > 0} − 1{0 ≥ y ≥ ω}]

=
d

d%
E%
[ω−1∑
y=1

ϕ(y)−
0∑

y=ω

ϕ(y)
]

=
d

d%
E%Φ(ω).

Above we introduced the function

Φ(x) =
x−1∑
y=1

ϕ(y)−
0∑

y=x

ϕ(y),

with the convention that empty sums are zero. To conclude the proof, notice
that Φ(x+ 1)− Φ(x) = ϕ(x). Thus a nondecreasing function ϕ determines
a (non-strictly) convex function Φ with Φ(1) = 0, and vice-versa. Hence the
convexity theorem [20, Theorem 2.1 ] establishes that

d

d%
Ê%ϕ(ω) =

d2

d%2
E%Φ(ω) ≥ 0.

3.B Regularity properties of the hydrodynamic flux
function

For the zero range process defined among the examples in Section 3.2.2,
the hydrodynamic (macroscopic) flux function H : R+ → R+ of (3.2.14) is
given by

H(%) = E%f(ω).

The results of [20] for f now read as follows:
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Proposition 3.B.1. If the jump rate f of the zero range process is con-
vex (or concave), then the flux H is also convex (or concave, respectively).
Moreover, in this case H′′(%) > 0 (or H′′(%) < 0, respectively) for all % > 0
if and only if f is not a linear function.

Parts of this proposition were proved with coupling methods in [11].
Next we show in the general case that H(%) is well defined, and is in-

finitely differentiable. (We use third derivatives in the proof of Theorem
3.2.3.) The function H(%) is, in general, the expected net growth rate w.r.t.
µ% as defined in (3.2.14). We show that the series making up this expec-
tation is finite, even after differentiating its terms. This will then lead to
smoothness of H(%).

Lemma 3.B.2. Let g(y, z) ≥ 0 be any function on Z × Z, bounded by a
polynomial in |y| and |z|. Then for any θ < θ < θ̄,

Eθ
[
(p(ω0, ω1) + q(ω0, ω1))g(ω0, ω1)

]
<∞.

Proof. We deal with the first part that contains p, the one with q can be
treated analogously. The sum we are looking at is

ωmax∑
y=ωmin+1

ωmax−1∑
z=ωmin

p(y, z) · g(y, z) · eθ(y+z)

f(y)! · f(z)!
· 1

Z(θ)2
.

These sums are certainly convergent if ωmin and ωmax are both finite. When
this is not the case we split both summations at zero, and convergence is
established on the four quadrants of the plane. We use (3.2.7) and the
corollary

p(y, z) = p(z+ 1, y− 1) · f(y)

f(z + 1)
for ωmin < y ≤ ωmax, ωmin ≤ z < ωmax

of (3.2.9), and we consider empty sums to be zero.

• y > 0, z > 0: In this case

p(y, z) ≤ p(y, 0) = p(1, y − 1) · f(y)

f(1)
≤ p(1, 0) · f(y)

f(1)
,

and the corresponding part of the summation is bounded by

p(1, 0)

f(1)
·
ωmax∑
y=1

ωmax−1∑
z=1

g(y, z) · eθ(y+z)

f(y − 1)! · f(z)!
· 1

Z(θ)2
.

• y ≤ 0, z > 0: In this case

p(y, z) ≤ p(1, 0),
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and the corresponding part of the summation is bounded by

p(1, 0) ·
0∑

y=ωmin+1

ωmax−1∑
z=1

g(y, z) · eθ(y+z)

f(y)! · f(z)!
· 1

Z(θ)2
.

• y ≤ 0, z ≤ 0: In this case

p(y, z) ≤ p(1, z) = p(z + 1, 0) · f(1)

f(z + 1)
≤ p(1, 0) · f(1)

f(z + 1)
,

and the corresponding part of the summation is bounded by

p(1, 0)f(1) ·
0∑

y=ωmin+1

0∑
z=ωmin

g(y, z) · eθ(y+z)

f(y)! · f(z + 1)!
· 1

Z(θ)2
.

• y > 0, z ≤ 0: In this case

p(y, z) = p(z + 1, y − 1) · f(y)

f(z + 1)
≤ p(1, 0) · f(y)

f(z + 1)
,

and the corresponding part of the summation is bounded by

p(1, 0) ·
ωmax∑
y=1

0∑
z=ωmin

g(y, z) · eθ(y+z)

f(y − 1)! · f(z + 1)!
· 1

Z(θ)2
.

Convergence of each of these bounds for θ < θ < θ̄ is established e.g. by the
ratio test.

Notice that a similar argument gives finite higher moments of the rates
when log(f) is at most linear in both directions on Z.

Corollary 3.B.3. H(%) is infinitely differentiable at all % ∈ (ωmin, ωmax).

Proof. By the previous lemma the series

F (θ) : = H(%(θ)) =
1

Z(θ)2
·

ωmax∑
y, z=ωmin

(p(y, z)− q(y, z)) eθ(y+z)

f(y)! · f(z)!
,

is convergent and infinitely differentiable. Since H(%) = F (θ(%)) and % 7→
θ(%) is infinitely differentiable as well, the claim follows.
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l’Institut Henri Poincaré. Probabilités et Statistiques, 48(1):151–187,
2012.

[18] M. Balázs, F. Rassoul-Agha, and T. Seppäläinen. The random average
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istence of the zero range process and a deposition model with super-
linear growth rates. Ann. Probab., 35(4):1201–1249, 2007.
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[103] T. Seppäläinen. Second-order fluctuations and current across charac-
teristic for a one-dimensional growth model of independent random
walks. Ann. Probab., 33(2):759–797, 2005.

[104] Herbert A. Simon. On a class of skew distribution functions.
Biometrika, 42(3–4):425–440, 1955.

[105] F. Spitzer. Interaction of Markov processes. Advances in Math., 5:246–
290 (1970), 1970.

[106] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. Distances
in random graphs with finite variance degrees. Random Structures and
Algorithms, 27:76–123, 2005.

[107] Peter Winkler and David Zuckerman. Multiple cover time. Random
Structures Algorithms, 9(4):403–411, 1996.

[108] Udny G. Yule. A mathematical theory of evolution, based on the
conclusions of dr. j. c. willis, f.r.s. Philosophical Transactions of the
Royal Society of London. Series B, Containing Papers of a Biological
Character:, 213:21–87, 1925.

[109] Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, and Lili Rong.
High dimensional apollonian networks, 2005.

161



[110] Zhongzhi Zhang, Jihong Guan, Bailu Ding, Lichao Chen, and Shuigeng
Zhou. Contact graphs of disk packings as a model of spatial planar
networks. New Journal of Physics, 11(8):083007, 2009.

[111] Zhongzhi Zhang, Lili Rong, and Francesc Comellas. High-dimensional
random apollonian networks. Physica A: Statistical Mechanics and its
Applications, 364(0):610 – 618, 2006.

[112] Zhongzhi Zhang, Lili Rong, and Shuigeng Zhou. Evolving apollo-
nian networks with small-world scale-free topologies. Phys. Rev. E,
74:046105, Oct 2006.

[113] Zhongzhi Zhang, Shuigeng Zhou, Lujun Fang, Jihong Guan, and
Yichao Zhang. Maximal planar scale-free sierpinski networks with
small-world effect and power law strength-degree correlation. EPL
(Europhysics Letters), 79(3):38007, 2007.

[114] Zhongzhi Zhang, Shuigeng Zhou, Zhan Su, Tao Zou, and Jihong Guan.
Random sierpinski network with scale-free small-world and modular
structure. The European Physical Journal B - Condensed Matter and
Complex Systems, 65:141–147, 2008. 10.1140/ epjb/ e2008-00305-8.

[115] Zhongzhi Zhang, Shuigeng Zhou, Wenlei Xie, Lichao Chen, Yuan Lin,
and Jihong Guan. Standard random walks and trapping on the koch
network with scale-free behavior and small-world effect. Phys. Rev. E,
79:061113, Jun 2009.

[116] Zhongzhi Zhang, Shuigeng Zhou, Tao Zou, Lichao Chen, and Jihong
Guan. Incompatibility networks as models of scale-free small-world
graphs. The European Physical Journal B - Condensed Matter and
Complex Systems, 60:259–264, 2007. 10.1140/ epjb/ e2007-00344-7.

162


	Introduction
	Mixing times of random walks on wreath product graphs
	Introduction
	Uniform mixing time for Random Walk on Lamplighter Graphs
	The model
	Main Results
	Coverage Estimates
	Proof of Theorem 1.2.3
	Proof of Theorem 1.2.1

	Mixing and relaxation time for random walk on wreath product graphs
	The generalized lamplighter model
	Main Results
	Preliminaries
	Relaxation time bounds
	Mixing time bounds
	Further directions


	Generating hierarchical scale-free graphs from fractals
	Introduction
	Deterministic model
	Description of the model
	The embedding of the adjacency matrices into [0,1]2
	Graph-directed structure of 
	Fractal geometric characterization of .
	The same model without loops.

	Properties of the sequence {Gn} and 
	Degree distribution of { Gn}
	Hausdorff dimension of 
	Average shortest path in Gn
	Decay of local clustering coefficient of the modified sequence {to1.5.n}to1.5. 

	The randomized model
	Properties of the randomized model

	Conclusion

	Fluctuation bounds in a class of deposition processes
	Introduction
	Definitions and results
	A family of deposition processes
	Examples
	Basic coupling
	Translation invariant stationary product distributions
	Hydrodynamics and some exact identities
	Microscopic concavity
	Results
	Two examples that satisfy microscopic concavity 

	Upper bound of the main theorem
	Lower bound of the main theorem
	Perturbing a segment initially
	Completion of the proof of the lower bound

	Strong Law of Large Numbers for the second class particle
	Microscopic concavity for a class of totally asymmetric concave exponential zero range processes
	Microscopic convexity of the exponential bricklayers process
	Proof of microscopic convexity
	A tail bound for the second class particle

	Monotonicity of measures
	Regularity properties of the hydrodynamic flux function


