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1 Mixing times of random walks on wreath prod-
uct graphs

In 1906 Andrey Markov introduced the random processes that would later
be named after him. The classical theory of Markov chains was mostly
concerned with long-time behavior of Markov chains: The goal is to under-
stand the stationary distribution and the rate of convergence of a fixed chain.
Many introductory books on stochastic processes include an introduction to
Markov chains, see for example the book by Lawler [42].

However, in the past three decades, a different asymptotical analysis has
emerged: in theoretical computer science, physics and biology, the growing
interest in large state spaces required a better understanding of the finite
time behavior of Markov chains in terms of the size of the state space.
Thus, some target distance from the stationary measure in some metric on
the space of measures is usually prescribed and the question is to determine
the required number of steps to reach this distance as the size of the state
space increases. Mixing time refers to this notion. Thus, in a metric m we
can define the m-mixing time of the random walk with transition matrix P
on graph G as

tmmix(G, ε) := min

{
t ≥ 0 : max

x∈V (G)
‖P t(x, .)− π(.)‖m ≤ ε

}
.

We study the total variation or TV and the uniform mixing time of the
models described below, corresponding to mixing in the `1 and `∞ norms.
A more algebraic point of view of mixing is to look at the spectral behavior
of the transition matrix P . Namely, since P is a stochastic matrix, 1 is the
main eigenvalue and all the other eigenvalues of it lie in the complex unit
disk. If further the chain is reversible, then the eigenvalues are real and it
makes sense to define the spectral gap of the chain by

trel(G) :=
1

1− λ2
,

where λ2 is the second largest eigenvalue of the chain. The relation and the
ordering between the three quantities can be heuristically understood by
the following argument: to see the order of the relaxation time, it is enough
to understand how fast the chain ”forgets its starting position”. The TV -
mixing time is related to understand the probabilities of hitting large sets,
i.e. those which are at least of constant times the size of the graph G. The
uniform mixing time is the hardest to analyze, since for that one has to
understand the transition probabilities to a single state more precisely.
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In general it is known that for a reversible Markov chain the asymp-
totic behavior of the relaxation time, the TV and uniform mixing times can
significantly differ, i.e. in terms of the size of the graph G they can have
different asymptotics. More precisely, we have

trel(G) ≤ tTVmix(G, 1/4) ≤ tumix(G, 1/4),

see [2] or [43]. The lamplighter models described below is an example where
these three quantities differ.

To understand the behavior of Markov chain sequences, other different
notions of mixing times emerged as well, each capturing some different aspect
or property of the chain. Aldous [3] introduced random stopping times
achieving stationary measure. They were studied more by Lovász, Winkler
[48, 49], (E.g. they studied maximum-length-optimal or expectation-optimal
stopping times reaching stationary distribution, strong stationary times and
forget times.) To find the relation between different notions of mixing is a
challenging problem, see [3] and the recent papers connecting hitting times
to mixing times and stopping rules by Sousi and Peres [53] and independently
by Oliveira [50], or blanket times and cover times to the maxima of Gaussian
free fields by Ding, Lee and Peres [28]. For a more comprehensive overview
of Markov Chain mixing we refer the reader to the indispensable book [2] by
Aldous and Fill or [43] by Levin, Peres and Wilmer as our main references.

In the first chapter of my thesis we investigate the mixing properties of
random walks on wreath product graphs. The intuitive representation of the
walk is the following: A lamplighter or an engineer is doing simple random
walk on the vertices of a base graph G. Further, to each vertex v ∈ G there is
a lamp or machine attached, and each of these identical machines is in some
state fv(t). Then, as the lamplighter walks along the base graph, he can
make changes in the state of the machines or lamps touched, according to
the transition probabilities of the states of the machines, see Figure 1. If the
machines are just on-off lamps (Figure 2), we get the well-known lamplighter
problem, but if the machines (the lamp-graphs) have some more complicated
structure, possibly even growing together with the size of the base, then we
are in the setting of generalized lamplighter walks. If the underlying graphs
H and G are Cayley-graphs of groups generated by some finite number of
generators, then the graph H oG is the graph of the wreath product of the
two groups. This relates our work to the behavior of random walk on groups,
analyzed by many authors; we refer the reader for references on this topic
to [1] by Aldous.

To describe the model in a precise way, suppose that G and H are finite,
connected graphs, G regular, X is a lazy random walk on G and Z is a
reversible ergodic Markov chain on H. The generalized lamplighter chain
X� associated with X and Z is the random walk on the wreath product
H oG, the graph whose vertices consist of pairs (f, x) where f = (fv)v∈V (G)
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Figure 1: A typical state of the generalized lamplighter walk. Here H = Z4

and G = Z2
4; the red bullets on each copy of H represents the state of the

lamps over each vertex v ∈ G and the walker is drawn as a red W bullet.

is a labeling of the vertices of G by elements of H and x is a vertex in
G. In each step, X� moves from a configuration (f, x) by updating x to y
using the transition rule of X and then independently updating both fx and
fy according to the transition probabilities on H; fz for z 6= x, y remains
unchanged.

Relaxation time and TV-mixing on general graphs with Z2 = 0−1 lamps
was already well-understood, even the constant factor in the asymptotic
behavior, we will give the precise references below. Heuristically speaking,
to get the correct order of the relaxation time of the chain Z2 o G, one
needs to hit far-away vertices on the base graph to be able the ”forget
about” the starting position of the chain. Thus, the relaxation time of
Z2 oG is related to the maximal expected hitting time of the graph, thit(G),
defined as thit(G) = maxx,y∈G E(τy|X0 = x), τy denoting the time needed
to reach vertex y ∈ G. The total variation mixing of Z2 o G is understood
by the fact that we want to run the chain until the 0− 1 labeling of vertices
becomes indistinguishable from a uniform 0− 1 labeling. Thus, the normal
fluctuations of the 0− 1 lamps allow us to visit all except

√
|G| vertices on

the base graph, if these last vertices does not exhibit too much nontrivial
geometric structure. From this heuristics one can see that the TV -mixing
time is related to the asymptotic behavior of the expected cover time tcov(G)
of the base graph G (the expected time it takes the walker to visit every
vertex in the graph from a worst case starting position). On the other hand,
to understand the behavior of the uniform mixing time of Z2 oG one needs to
understand the exponential moment E[2U(t)] of the not-yet-visited vertices
U(t). One needs to determine the time when this quantity drops below 1+ε,
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Figure 2: A typical configuration of the lamplighter over a 5 × 5 planar
grid. The colors indicate the state of the lamps and the dashed circle gives
the position of the lamplighter.

which is much harder to analyze; so it was a gap left between the lower and
upper bound on the uniform mixing time for Z2 oG in [52].

General lamp graphs H were only considered before in special cases. If
the base graph is a complete graph Kn, then the lamplighter turns into a
”product-chain”, which is well understood by being able the construct all
the eigenfunctions of H oKn from the eigenfunctions of H, see [43]. Nathan
Levi [44] in his thesis investigated general lamplighters with H = Zd2, the
d-dimensional hypercube, but his mixing time bounds did not match in
general. Further, Fill and Schoolfield [35] investigated the total variation
and l2 mixing time of Kn o Sn, where the base graph is the Cayley graph
of the symmetric group Sn with transpositions chosen as the generator set,
and the stationary distribution on Kn is not necessarily uniform.

Thus, in my thesis we study uniform mixing with Z2 lamps, and TV-
mixing and relaxation time with general lamps, giving exact results up to
constant factors in almost all cases. (The uniform mixing time on general
lamp graphs H, for the reasons previously mentioned, can be a subject of
possible future work.)

Based on a paper with Yuval Peres we give bounds on the total variation
mixing time and estimate the relaxation time of H oG for general H and G up
to universal constants. To state our main theorem, we need one definition:

Definition 1.1. A randomized stopping time τ is called a strong stationary
time for the Markov chain Xt on G if

Pv [Xτ = y, τ = t] = π(y)Pv[τ = t],

that is, the position of the walk when it stops at τ is independent of the value
of τ .

Further, a state h(v) ∈ V (G) is called a halting state for a stopping time
τ and initial state v ∈ V (G) if {Xt = h(v)} implies {τ ≤ t}.
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Our main results are summarized in the following theorems:

Theorem 1.2. Let us assume that G and H are connected graphs with G
regular and the Markov chain on H is ergodic and reversible. Then there ex-
ist universal constants c1, C1 such that the relaxation time of the generalized
lamplighter walk on H oG satisfies

c1 ≤
trel(H oG)

thit(G) + |G|trel(H)
≤ C1, (1.1)

Theorem 1.3. Assume that the conditions of Theorem 1.2 hold and further
assume that the chain with transition matrix Q on H is lazy, i.e. Q(x, x) ≥
1
2 ∀x ∈ H. Then there exist universal constants c2, C2 such that the mixing
time of the generalized lamplighter walk on H oG satisfies

c2 (tcov(G) + |G|(trel(H) log |G|+ tmix(H))) ≤ tmix(H oG),

tmix(H oG) ≤ C2

(
tcov(G) + |G|tmix(H,

1

|G|
)

)
.

(1.2)

If further the Markov chain is such that

(A) There is a strong stationary time τH for the Markov chain on H which
possesses a halting state h(x) for every initial starting point x ∈ H,

then the upper bound of 1.2 is sharp.

Remark 1.4. The laziness assumption on the transition matrix Q on H is
only used to get the term c2|G|tmix(H) in (1.2). All the other bounds hold
without the laziness assumption.

Remark 1.5. If the Markov Chain on H is such that

tmix(H, ε) ≤ tmix(H, 1/4) + trel(H) log ε,

then the upper bound matches the lower bound. This holds for many natural
chains such as lazy random walk on hypercube Zd2, tori Zdn, some walks on
the permutation group Sn (the random transpositions or random adjacent
transpositions shuffle, and the top-to-random shuffle, for instance).

Remark 1.6. Many examples where Assumption (A) holds are given in
the thesis of Pak [51], including the cycle Zn, the hypercube Zd2 and more
generally tori Zdn, n, d ∈ N and dihedral groups Z2 n Zn, n ∈ N are also
obtained by the construction of strong stationary times with halting states
on direct and semidirect product of groups. Further, Pak constructs strong
stationary times possessing halting states for the random walk on k-sets of
n-sets, i.e. on the group Sn/(Sk × Sn−k), and on subsets of n× n matrices
over the full linear group, i.e. on GL(n,Fq)/(GL(k,Fq)×GL(n− k,Fq)).
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Then, based on the joint paper with Miller an Peres [40] we give matching
upper bound for the mixing time in the uniform metric of Z2 o G up to
universal constants in terms of the parameters of G to the lower bound
given in [52, Theorem 1.4] by Peres and Revelle. We show that for vertex
transitive base graph G, the uniform mixing time of the lamplighter chain
on G satisfies

tumix(Z2 oG, 1/4) = O
(
|G|(trel(H) + log |G|)

)
under some conditions which capture the local transience of the base graph
G. Further we show that these conditions are satisfied by the hypercube Zd2
or in general the d-dimensional tori Zdn with d and n both possibly tending
to infinity:

Theorem 1.7. There exists constants C1, C2 > 0 such that

C1 ≤
tu(Z2 o Zd2)

d2d
≤ C2 for all d.

More generally,

C1 ≤
tu(Z2 o Zdn)

dnd+2
≤ C2 for all n ≥ 2 and d ≥ 3.

Prior to this work, the best known bound [52] for tu(Z2 o Zd2) was

C12
dd ≤ tu(Z2 o Zd2) ≤ C22

dd log d

for C1, C2 > 0.

1.0.1 A few words about the proofs

The methods for proving Theorems 1.2 and 1.3 are a mixture of various
methods on the field. The lower bound on the relaxation time is based on
Dirichlet-form methods. The upper bound uses the following steps:
1. Construct a strong stationary time τ on H oG,
2. Give a precise estimate on the tail P(τ > t) of the strong stationary time,
3. Use that the second eigenvalue λ2 ≤ limt→∞P(τ > t)1/t, calculate the
order of the limit.

The proof of Theorem 1.3 also uses strong stationary times: to get the
upper bound, one needs to estimate the time t∗ when P(τ > t∗) < 1/4 for
the strong stationary time constructed for the chain on H o G, but to be
able to do so we need to use the equivalence of blanket and cover times,
a recent result [28]. The proof with the assumption 1.3 is based on giving
a lower bound on the probability for τ > t. The proof of the lower bound

6



without the assumption uses distinguishing set method and also the relation
of mean-optimal stopping times and mixing times.

The proof of uniform mixing time result performs a rather careful analysis
of the process by which U(t), the set of not-yet-covered vertices of the base
graph G is decimated by the simple random walk. The key idea is to break
the process of coverage into two different regimes, depending on the size of
U(t). In both regimes, we use stochastic domination arguments: for large
U(t) we show that in the time depending on the current size of U(t), the
chain covers at least some fixed amount of vertices with large probability. In
the small regime we show that again, during some time interval depending
on the size of U(t), the chain covers at least half of the vertices in the set
with large probability. Then, we can build a careful estimate on E(2U(t)).
Throughout the proof, we use the behavior of the Green’s function of the
chain.

Now we turn to describe the second chapter of the thesis.

2 Generating hierarchical scale-free graphs from
fractals

Random graphs are in the main stream of research interest since the late 50s,
starting with the seminal random graph model introduced independently by
Solomonoff, Rapoport (1951) [57] and by Gilbert (1959) [36], and by Erdős
and Rényi (1960) [31]. Given a finite set of vertices, a link between vertex x
and y is formed independently of all other pair of vertices with probability
p. Albeit the simplicity of the model, it serves as an interesting example of
phase transition: there is a threshold in the link probability, such that the
network has crucially different properties above and below the threshold. A
wide spectrum of literature investigates graph models with a fixed number
of vertices (i.e some generalizations of the Erdős-Rényi (ER) graphs), we
refer the reader to the books of [37] or [20] as an introduction.

Parallel to the discussion of the ER and related models, there have been
a considerable amount of attention paid to the study of complex networks
like the World Wide Web, social networks, or biological networks in the last
two decades.

The Erdős - Rényi graphs and their generalizations offer a simple and
powerful model with many applications, but they fail to match some very
important properties that are typical for real-world networks. First, the
number of edges of a vertex follows asymptotically a Poisson-type distribu-
tion, having an exponential decay for large degrees: This fact hinders the
formation of hubs, i.e. vertices with very high degree, existing in most real
network. Second, one can show that the number of triangles in the graph
is negligible compared to its size: the ER graphs and their generalizations
have a low local clustering coefficient, unlike many real networks having a
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high clustering. Here and later, the local clustering coefficient of a vertex
refers to the proportion of closed triangles and all edge-pair starting from
the given vertex.

The Watts and Strogatz model [59] is an interpolation between the ER
model and high clustering grid-based models: The vertices of the network
are arranged on a grid, say, on a circle, and each of the nodes is connected
to the vertices which are closer than k steps in the grid. This graph has high
clustering but large diameter, thus to obtain the small diameter each edge is
re-wired to a uniform random vertex with some probability 0 ≤ β ≤ 1. For
β = 0 the model is just a regular grid, and for β = 1 it approaches the ER
graphs. The model is often called small world model, since even for small
re-wiring probability β the diameter is significantly smaller than that in the
grid and similar to the one in the ER model. The high clustering property
is ensured by having the grid as an initial configuration.

A different attempt to model real networks resulted in the construction of
numerous new, more dynamical and growing network models, see e.g. [19],
[20], [23], [29], [39]. Most of them use a version of preferential attachment
and are of probabilistic nature. In particular, the scale free property - the
graph obeying a degree sequence with power law decay - raised interest and
many models were introduced to capture this property, such as the Prefer-
ential Attachment Models. The history of similar models goes back to the
1920’s [60, 56, 25]. The model was heuristically introduced by Barabási and
Albert [17], and the first who investigated the model rigorously were Bol-
lobás, Riordan, Spencer and Tusnády [22], and the mathematically rigorous
construction was done by Bollobás and Riordan [21]. In the preferential at-
tachment model (sometimes also called Barabási Albert model) discussed by
Bollobás, Riordan, Spencer and Tusnády [22], starting from an initial graph,
at each discrete time step a new vertex is added to the graph with some edges
connected to it. These edges are attached sequentially to the existing ver-
tices with a probability proportional to the degree of the receiving vertex
at that time, thus favoring vertices with large degrees. The model obeys
a power-law degree distribution similarly to many real life networks. Since
then, many versions of preferential attachment models appeared in the liter-
ature. The literature on this field has a wide range and is summarized e.g. in
[20] or in [37]. A completely different approach than preferential attachment
was initiated by Barabási, Ravasz, and Vicsek [18] based on the observation
that real networks often obey some hierarchical structure. They introduced
deterministic network models generated by a method which is common in
constructing fractals. Their model exhibits both hierarchical structure and
an extreme-end power law decay of the degree sequence. This means that
vertices of ”high enough” degree follow power law behavior. However, it is
a bipartite graph, hence no triangles. The clustering coefficient of a vertex
is the proportion of triangles to the edge-pairs starting from the vertex, so
the clustering coefficient of the model equals 0. In order to model also the
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(a) G1 and G2 with loops
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Figure 3: G1, G2, G3,Λ1,Λ2,Λ3 for the ”cherry” example. The adjacency
matrices are drawn such that the origin is at the left-bottom corner and
the orientation of the two axes goes right and up, respectively. Everything
which is colored belongs to the adjacency matrix, and a box of a given color
corresponds to an edge of the same color in the corresponding graph.
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clustering behavior of real networks, Ravasz and Barabási [54] developed the
original model in [18] so that their deterministic network model preserved
the same power law decay and had similar clustering behavior to many real
networks. Namely, the local clustering coefficient decays inversely propor-
tional to the degree of the node. As a consequence of this and the power law
decay, in their model and also in real networks, the average local clustering
coefficient is more or less independent of the size of the network (uniformly
bounded away from both infinity and 0). A similar, fractal based determin-
istic model were introduced by Zhang, Comellas, Fertin and Rong [61], and
called the high-dimensional Apollonian network. The graph is generated
from the cylinder sets of the fractal of the Apollonian circle packing or the
Sierpiński carpet.

In the second chapter of the thesis we generalize both of the models of [18]
and [54]. Starting from an arbitrary initial bipartite graph G on N vertices,
we construct a hierarchical sequence of deterministic graphs Gn. Namely,
V (Gn), the set of vertices of Gn is {0, 1, . . . , N − 1}n. To construct Gn from
Gn−1, we take N identical copies of Gn−1, each of them identified with a
vertex of G. Then we connect these components in a complicated way based
on the coding of vertices and the postfix the codes have. In this way, Gn
contains Nn−1 copies of G1, which are connected in a hierarchical manner,
see Fig. 3(a), 3(b) for examples.

The main advantage of our generalization is that our construction pro-
vides easily analyzable unbounded average degree examples: namely, the
extreme-end exponent γ in the power-law can be any log-rational number be-
tween (1, 1+log 3/ log 2], producing graph sequences in the regime γ ∈ (1, 2).
If the initial bipartite graph is bi-regular, we can explicitly determine the
degree exponent of the ”high degree” and the ”low degree” vertices and show
that two different power law exponents dominate the degree distribution, see
Fig.4. Further, we explicitly calculate the diameter and the average shortest
path length between two uniformly chosen vertices and show that they scale
as the logarithm of the size of the graph.

There are no triangles in Gn. Hence, in order to model the clustering
properties of many real networks, we need to extend the set of edges of our
graph sequence to destroy the bipartite property. Motivated by [54], we add
some additional edges to G1 to obtain the (no longer bipartite) graph Ĝ1.
Then we build up the graph sequence Ĝn as follows: Ĝn consist of Nn−1

copies of Ĝ1, which copies are connected to each other in the same way as
they were in Gn. So, Ĝn and Gn have the same vertex set and their edges
only differ at the lowest hierarchical level, that is, within the Nn−1 copies
of G1 and Ĝ1, see Fig. 5(b) and 5. We give a rigorous proof of the fact that
local clustering coefficient of a node with degree k is of order 1/k in Ĝn,
thus the average is uniformly bounded and bounded away from zero.

The embedding of the adjacency matrix of the graph sequence Gn into
the unit square is carried out as follows: A vertex x = (x1 . . . xn) is identified
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Figure 4: The log-log-plot of the tail distribution of the graph G100 for a bi-
partite base graph with d1 = 6, d2 = 2, E = 12. We can see the discontinuity
of the slope of the curve where the type-2 postfix vertices vanish.

with the corresponding N -adic interval Ix. Λn is the union of those N−n ×
N−n squares Ix × Iy for which the vertices x, y are connected by an edge in
Gn. So, Λn is the most straightforward embedding of the adjacency matrix
of Gn into the unit square. Λn turns out to be a nested sequence of compact
sets, which can be considered as the n-th approximation of a graph-directed
self-similar fractal Λ on the plane, see Fig. 3(c).

We prove that the limit Λ can be considered as the attractor of a not
irreducible graph-directed self-similar iterated function system, with the di-
rected graph G similar to the one on Fig. 6. Heuristically speaking, the n-th
adjacency matrix Λn can be written as the union of iterated maps formed by
the maps fi, i = 1 . . . |E(G)| of the unit interval, such as the the composition
of maps fi1 ◦ fi2 ◦ · · · ◦ fin which are allowed in Λn can be determined as
the paths of length n i1i2 . . . in in the directed graph G as on the schematic
picture on Fig. 6. We discuss connections between the graph theoretical
properties of Gn and properties of the limiting fractal Λ. In particular, we
express the power law exponent of the degree distribution with the ratio of
the Hausdorff dimensions of some slices of Λ.

Furthermore, using Λ we generate a random graph sequence Gr
n in a

way which was inspired by the W -random graphs introduced by Lovász
and Szegedy [47], see also Diaconis, Janson [27], which paper contains a
list of corresponding references. We show that the degree sequence has
power law decay with the same exponent as the deterministic graph sequence
Gn. Thus we can define a random graph sequence with a prescribed power
law decay in a given range. Bollobás, Janson and Riordan [23] considered
inhomogeneous random graphs generated by a kernel. Our model is not
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in Ĝ everywhere at the lowest hierarchical level

Figure 5: Clustering extended ”fan”.
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K|E|(V12)
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Figure 6: The graph G for the ”cherry”. Each edge of this graph corresponds
to a homothetic map of the unit square into itself. Λn, the adjacency matrix
of Gn, is the n-th approximation of the graph-directed fractal Λ, and can be
obtained as the union of all iterated maps corresponding to paths of length
n in this picture.

covered by their construction, since Λ is a fractal set of zero two dimensional
Lebesgue measure. We remark that the fractal limit Λ of our embedded
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adjacency matrices of Gn or Gr
n is not stable under isomorphisms of the unit

square into itself, thus, the Lovász-Szegedy limit theory does not apply to
our graph sequences word by word. However, different encoding of vertices
of the base graph G in the alphabet {1, . . . N} gives different fractal limit
Λ-s with the same Hausdorff dimension.

3 Fluctuation bounds in a class of deposition pro-
cesses

The third chapter of the thesis studies fluctuations in deposition processes
of the following type. An integer-valued height function

h(t) = {hi(t)}i∈Z

evolves via random deposition and removal of individual bricks of unit length
and height. The Poisson rates of deposition and removal at point i are al-
lowed to depend on the neighboring increments hi−1 − hi and hi − hi+1.
Assumptions are made on these rates to guarantee stochastic monotonicity
(attractivity) and the existence of a family of product-form stationary dis-
tributions µ% for the increments {hi−1−hi : i ∈ Z} . The family of invariant
measures is indexed by the average slope % = E%(hi−1 − hi). The flux func-
tion H(%) = t−1E%(hi(t)− hi(0)) gives the average velocity of the height as
a function of the slope %. In this chapter we consider asymmetric systems,
for which H′′(%) < 0 holds additionally at least in a neighborhood of a par-
ticular density value %. Asymmetry here always mean spatial asymmetry,
i.e. models in which the jump rates to the right differ from those to the left.

The sum of height increments are conserved because every deposition
and removal event causes a change of +1 in one increment and a change of
−1 in a neighboring increment. The increments (when non negative) are
naturally regarded as occupation numbers of particles. Figure 3 shows a
configuration and a possible step with both walls and particles. It is in
the particle guise that many of these processes appear in the literature:
simple exclusion processes, zero range processes and misanthrope processes
are examples included in the class studied in this chapter. In the particle
picture the parameter % that indexes invariant distributions is the mean
particle density per site. Height increment hi(t) − hi(0) is the cumulative
net particle current across the edge (i, i+ 1) during time (0, t].

Fix % and consider h(t) with stationary increments at average slope %,
normalized so that h0(0) = 0. Interesting fluctuations can be found by
observing the height hbV %tc(t) in the characteristic direction V % := H′(%).
(Characteristics is a line X(T ) where the density %(T,X(T )) is constant.
The characteristic speed V % is the velocity with which small perturbations
of the solution of the PDE obtained by hydrodynamic limit propagate, i.e.
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Figure 7: The wall and the particles with a possible step

the slope of constant density lines.) We show that this particular speed
for an observer causes interesting fluctuations for the height function, and
other velocities give normal fluctuations. In the particle picture the height
fluctuations in the characteristic direction become fluctuations of the cumu-
lative net particle current seen by an observer traveling at the characteristic
velocity.

Rigorous results on these fluctuations exist for examples that fall in two
categories.

Order t1/4 fluctuations. WhenH is linear the fluctuations are of order t1/4

and converge to Gaussian processes related to fractional Brownian motion.
This has been proved for independent particles [30, 41, 55] and the random
average process [11, 33].

Order t1/3 fluctuations. When H′′(%) 6= 0 the fluctuations are of order
t1/3 and converge to distributions and processes related to the Tracy-Widom
distributions from random matrix theory. The most-studied examples are
the totally asymmetric simple exclusion process (TASEP), the polynuclear
growth model (PNG) and the Hammersley process. Two types of mathe-
matical work should be distinguished.

(a) Exact limit distributions have been derived with techniques of asymp-
totic analysis applied to determinantal representations of the probabilities
of interest. Most of this work has dealt with particular deterministic initial
conditions, and the stationary situation has been less studied. The seminal
results appeared in [5] for the last-passage version of the Hammersley pro-
cess and in [38] for the last-passage model associated with TASEP. Current
fluctuations for stationary TASEP were analyzed in [34]. (b) Probabilistic
approaches exist to prove fluctuation bounds of the correct order. The sem-
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inal work [24] was on the last-passage version of the Hammersley process,
and then the approach was adapted to the last-passage model associated
with TASEP [7]. The next step was the development of a proof that works
for particle systems: the asymmetric simple exclusion process (ASEP) was
treated in [14] and the totally asymmetric zero range process with constant
jump rate in [8]. The ASEP work [14] was the first to prove t1/3 order of
fluctuations for a process where particle motion is not restricted to totally
asymmetric.

The chapter is based on two papers, both of them joint with Márton
Balázs and Timo Seppäläinen. The first one is [10], which takes a further step
toward universality of the t1/3 order for fluctuations in the case H′′(%) 6= 0.
In [10] we develop a general strategy for proving that in a stationary process
fluctuations in the characteristic direction have order of magnitude t1/3, then
in [9] we show that the strategy works for a process obeying convex flux
function. In its present form the argument rests on a nontrivial hypothesis
that involves control of second class particles. This control of second class
particles that we require is a microscopic counterpart of the macroscopic
effect that convexity or concavity of H has on characteristics. Throughout
the first part of the chapter we consider the concave case H′′(%) < 0, hence
we name the property microscopic concavity, then in the second part we show
that the same strategy also works for a convex model, the point not being
the modification from concave to convex, but to check the exact convexity
assumptions in that model.

Once the microscopic concavity assumption is made the proof works for
the entire class of processes. This then is the sense in which we take a
step toward universality. As a byproduct, we also obtain superdiffusivity
of the second class particle in the stationary process. Mostly, (but not
including [14]) earlier proofs of t1/3 fluctuations have been quite rigid in
the sense that they work only for particular cases of models where special
combinatorial properties emerge as if through some fortuitous coincidences.
There is basically no room for perturbing the rules of the process. By
contrast, the proof given in the present chapter works for a whole class
of processes. The hypothesis of microscopic concavity that is required is
certainly nontrivial. But it does not seem to rigidly exclude all but a handful
of the processes in a broad class. The estimates that it requires might be
proved in different ways for different further subclasses of processes. And the
general proof itself may evolve further and weaken the hypothesis required.

We are currently able to verify the required hypothesis of microscopic
concavity for the following three subclasses of processes.

(i) The asymmetric simple exclusion process (ASEP). Full details of this
case are reported by Balázs and Seppäläinen [13]. This proof is somewhat
simpler than the earlier one given in [14].

(ii) Totally asymmetric zero range processes with a concave jump rate
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function whose slope decreases geometrically, and may be eventually con-
stant. This example is developed fully here. Earlier, totally asymmetric
constant rate zero range processes were handled in [8], as the first general-
ization of the proof in [14] for processes with more than one allowed particle
per site. The proof given here is simpler than the one in [8]. We expect that
a broader class of totally and not totally asymmetric concave zero range
processes should be amenable to further progress because a key part of the
hypothesis can be verified, and only a certain tail estimate is missing.

(iii) The totally asymmetric bricklayers process with convex, exponential
jump rate. This system satisfies the analogous microscopic convexity. Due
to the fast growth of the jump rate function this example needs more pre-
liminary work so the result was shown in [9] and in the second part of the
chapter in the thesis.

A comment on NOT totally asymmetric models: by now, the only model
in this category for which t1/3 fluctuations are proved is the asymmetric
simple exclusion process, treated in [14]. Note that the general proof given
the microscopic concavity would work also for these models, thus what is left
is to verify the criterions of microscopic concavity for asymmetric models.
In many cases, we already do have a proper coupling described below, only
the distributional bound on the label of the second class particle is missing.

The chapter has three parts. First we define the general family of pro-
cesses under consideration, describe the microscopic concavity property and
other assumptions used, and state the general results. In the main part
we prove the general fluctuation bound under the assumptions needed for
membership in the class of processes and the assumption of microscopic con-
cavity. Partly as corollaries to the fluctuation bound along the characteristic
we obtain a law of large numbers for the second class particle and limits that
show how fluctuations in non-characteristic directions on the diffusive scale
come directly from fluctuations of the initial state (as opposed to fluctua-
tions generated by the dynamics). Then, we give a brief description of how
the asymmetric simple exclusion process (ASEP) satisfies the assumptions
of our general theorem. (Full details for this example are reported in [13].)
Then we prove that our microscopic concavity criterion works for class of to-
tally asymmetric zero range processes with concave jump rates that increase
with exponentially decaying slope. Last, we show that the microscopic con-
vexity counterpart of the assumptions required by the general result are
satisfied by the exponential bricklayers process.

3.1 A family of deposition processes

The family of processes we consider is the one described in [12]. We start with
the interface growth picture, but we end up using the height and particle
languages interchangeably. For extended-integer-valued boundaries −∞ ≤

16



ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞ define the single-site state space

I : =
{
z ∈ Z : ωmin − 1 < z < ωmax + 1

}
and the increment configuration space

Ω : = {ω = (ωi)i∈Z : ωi ∈ I} = IZ.

For each pair of neighboring sites i and i+1 of Z imagine a column of bricks
over the interval (i, i + 1). The height hi of this column is integer-valued.
The components of a configuration ω ∈ Ω are the negative discrete gradients
of the heights: ωi = hi−1 − hi ∈ I.

The evolution is described by jump processes whose rates p and q are
nonnegative functions on I × I. Two types of moves are possible. A brick
can be deposited:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1)

hi −→ hi + 1

}
with rate p(ωi, ωi+1), (3.1)

or removed:

(ωi, ωi+1) −→ (ωi + 1, ωi+1 − 1)

hi −→ hi − 1

}
with rate q(ωi, ωi+1). (3.2)

Conditionally on the present state, these moves happen independently at
all sites i. We can summarize this information in the formal infinitesimal
generator L of the process ω(·):

(Lϕ)(ω) =
∑
i∈Z

p(ωi, ωi+1) · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . )− ϕ(ω)]

+
∑
i∈Z

q(ωi, ωi+1) · [ϕ(. . . , ωi + 1, ωi+1 − 1, . . . )− ϕ(ω)] .
(3.3)

L acts on bounded cylinder functions ϕ : Ω→ R (this means that ϕ depends
only on finitely many ωi-values).

Thus we have a Markov process {ω(t) : t ∈ R≥0} of an evolving increment
configuration and a Markov process {h(t) : t ∈ R≥0} of an evolving height
configuration. The initial increments ω(0) specify the initial height h(0) up
to a vertical translation. We shall always normalize the height process so
that h0(0) = 0.

In the particle picture the variable ωi(t) represents the number of parti-
cles at site i at time t. Step (3.1) represents a rightward jump of a particle
over the edge (i, i+1), while step (3.2) represents a leftward jump. (If nega-
tive ω-values are permitted, one needs to consider particles and antiparticles,

17



with antiparticles jumping in the opposite direction.) It will be useful to see
that

hi(t) = hi(t)−h0(0) = the net number of particles that have passed,

from left to right, the straight-line space-time path

that connects (1/2, 0) to (i+ 1/2, t).
(3.4)

We impose four assumptions on the rates, here we only describe them
heuristically.

• The rates p, q : I × I → R≥0 must satisfy

p(ωmin, · ) ≡ p( · , ωmax) ≡ q(ωmax, · ) ≡ q( · , ωmin) ≡ 0 (3.5)

whenever either ωmin or ωmax is finite. Either both p and q are strictly
positive in all other cases, or one of them is identically zero. The
process is called totally asymmetric if either q ≡ 0 or p ≡ 0.

• The dynamics has a smoothing effect: the increments of the rates are
monotonous such that the more particles on a site, the faster they jump
out. In the height language, the higher the neighbors of a column, the
faster it grows and the longer it waits for a brick removal, on average.
This is the notion of attractivity.

• Two technical assumptions guarantee the existence of translation-in-
variant product-form stationary measures. (Similar assumptions were
employed by Cocozza-Thivent [26].)

An attempt at covering this broad class of processes raises the uncom-
fortable point that there is no unified existence proof for this entire class.
Different constructions in the literature place various boundedness or growth
conditions on p and q and the space I, and result in various degrees of reg-
ularity for the semigroup. (Among key references are Liggett’s monograph
[46], and articles [4], [15] and [45].) These existence matters are beyond the
scope of this thesis. Yet we wish to give a general proof for fluctuations that
in principal works for all processes in the family, subject to the more serious
assumptions we call microscopic concavity. To avoid extraneous technical
issues we make some blanket assumptions on the rates p and q to be con-
sidered.

The reader will see that our proofs do not make any analytic demands
on the semigroup and its relation to the generator. We only use couplings,
counting of particle currents and simple Poisson bounds.

Two identities from article [12] play a key role in this chapter. These
identities hold for all processes in the family under study. The proofs given
in [12] use generator calculations which may not be justified for all these
processes. However, these identities can also be proved by counting particles
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and taking limits of finite-volume processes ([13] contains an example). Such
a proof should be available with any reasonable construction of a process.
Hence we shall not hesitate to use the results of [12].

3.2 Basic coupling

In basic coupling the joint evolution of n processes ωm(·), m = 1, . . . , n,
is defined in such a manner that the processes “jump together as much
as possible.” The joint rates are determined as follows, given the current
configurations ω1, ω2, . . . , ωn ∈ Ω̃. Consider a step of type (3.1) over the
edge (i, i+ 1). Let m 7→ `(m) be a permutation that orders the rates of the
individual processes for this move:

r(m) ≡ p(ω`(m)
i , ω

`(m)
i+1 ) ≤ p(ω`(m+1)

i , ω
`(m+1)
i+1 ) ≡ r(m+ 1), 1 ≤ m < n.

Set also the dummy value r(0) = 0. Now the rule is that independently for
each m = 1, . . . , n, at rate r(m)−r(m−1), precisely processes ω`(m), ω`(m+1),
. . . , ω`(n) execute the move (3.1), and the processes ω`(1), ω`(2), . . . , ω`(m−1)

do not. The combined effect of these joint rates creates the correct marginal
rates, that is, process ω`(m) executes this move with rate r(m).

Due to the second assumption on the rate function, a jump of ωa without
ωb can only occur if p(ωbi , ω

b
i+1) < p(ωai , ω

a
i+1) which implies ωai > ωbi or

ωai+1 < ωbi+1. The result of this step (3.1) then cannot increase the number
of discrepancies between the two processes, hence the name attractivity.
Further, the monotonous increments and the coupling implies that a sitewise
ordering ωai ≤ ωbi ∀i ∈ Z is preserved by the basic coupling.

The differences between two processes are called second class particles.
Their number is nonincreasing. In particular, if ωai ≥ ωbi for each i ∈ Z, then
the second class particles are conserved. In view of (3.4), in this case the
net number of second class particles that pass from left to right across the
straight-line space-time path from (1/2, 0) to (i+ 1/2, t) equals the growth
difference (

hai (t)− ha0(0)
)
−
(
hbi(t)− hb0(0)

)
= hai (t)− hbi(t) (3.6)

between the two processes ωa(·) and ωb(·).
A special case that is of key importance to us is the situation where only

one second class particle is present between two processes ω−(t) and ω(t) ,
we denote its position by Q(t).

3.3 Results

Very briefly, the proofs in the chapter sections work if one proves the fol-
lowing properties of a model, which we call microscopic concavity (see the
exact formulation in the thesis):
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1. a strict domination between the second class particle Qω(t) of a denser
system ω(t) and one Qη of a sparser system η(t),

2. a non-strict, but tight, domination between the single second class par-
ticle Q(t) and a set of second class particles that are defined between
the system in question and another system with a different density,
(this means that the label of the second class particle must not be too
much away from what it should be)

3. strictly concave or convex, in the second derivative sense, hydrody-
namic flux function H,

4. a tail bound of a second class particle in a(n essentially) stationary
process.

Properties 1 and 2 form what we call the microscopic concavity or convexity
property. Arguments in the chapter are worked out for the concave setting,
but everything works word-for-word in the convex case.

Theorem 3.1. Let the microscopic concavity assumptions hold for density %
with the tail bound 4. Let the processes (ω−(t), ω(t)) evolve in basic coupling
with initial distribution stationary on each site except at 0 (defined precisely
in the thesis), and let Q(t) be the position of the single second class particle
between ω−(t) and ω(t). Then there is a constant C1 = C1(%) ∈ (0, ∞) such
that for all 1 ≤ m < 3,

1

C1
< lim inf

t→∞

E|Q(t)− V %t|m

t2m/3
≤ lim sup

t→∞

E|Q(t)− V %t|m

t2m/3
<

C1

3−m
. (3.7)

Superdiffusivity of the second class particle is best seen with the choice
m = 2: the variance of its position is of order t4/3. Next some corollaries.
Notation bXc stands for the lower integer part of X.

Corollary 3.2 (Current variance). Under the microscopic concavity as-
sumptions, there is a constant C1 = C1(%) > 0, such that

1

C1
< lim inf

t→∞

Var%(hbV %tc(t))

t2/3
≤ lim sup

t→∞

Var%(hbV %tc(t))

t2/3
< C1.

This follows from Var%(hi(t)) = Var%(ω0) · E|Q(t) − i| with the choice
m = 1, i = bV %tc.

Corollary 3.3 (Law of Large Numbers for the second class particle). Un-
der the microscopic concavity assumptions, the Weak Law of Large Numbers
holds in a density-% stationary process:

Q(t)

t

d→ V %. (3.8)
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If the rates p and q have bounded increments, (i.e. p(y + 1, z)− p(y, z) and
q(y, z−1)− q(y, z) are bounded), then almost sure convergence also holds in
(3.8) (Strong Law of Large Numbers).

The Weak Law is a simple consequence of Theorem 3.1. The Strong Law
has to be proved separately.

Corollary 3.4 (Dependence of current on the initial configuration). Under
the microscopic concavity assumptions, for any V ∈ R and α > 1/3 the
following limit holds in the L2 sense for a density-% stationary process:

lim
t→∞

hbV tc(t)− hbV tc−bV %tc(0)− t(H(%)− %H′(%))

tα
= 0. (3.9)

The limit (3.9) shows that, on the diffusive scale t1/2, only fluctuations
from the initial distribution are visible: these fluctuations are translated
rigidly at the characteristic speed V %. I.e. all spatial fluctuations not coming
from the initial configuration are smaller than t1/2, moreover, t1/3+ε.

The proof of (3.9) follows by translating hbV tc(t) − hbV tc−bV %tc(0) to
hbV %tc(t) − h0(0) = hbV %tc(t) and by applying Corollary 3.2. From (3.9)
and the i.i.d. initial {ωi} follow a limit for the variance and a central limit
theorem (CLT), which we record in our final corollary. Recall that X̃ stands
for centering the random variable X.

Corollary 3.5 (Central Limit Theorem for the current). Under the mi-
croscopic concavity assumptions, for any V ∈ R in a density-% stationary
process

lim
t→∞

Var%(hbV tc(t))

t
= Var%(ω) · |V % − V | = : D, (3.10)

and the Central Limit Theorem also holds: for the centered and normal-
ized height we have h̃bV tc(t)/

√
t ·D converges in distribution to a standard

normal.

For ASEP, the CLT, the limiting variance (3.10) and the appearance of
initial fluctuations on the diffusive scale were proved by P. A. Ferrari and
L. R. G. Fontes [32]. For convex rate zero range and bricklayers processes,
Corollary 3.5 was proved by M. Balázs [6].

Remark on the convex case

Our results and proofs work in the analogous way in the case where the flux
is convex and the corresponding microscopic convexity is assumed. This
case is carried out in more detail for the exponential bricklayer process.
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3.4 Three examples that satisfy microscopic concavity

Presently we have verified all the hypotheses of Theorem 3.1 for three classes
of processes. The asymmetric simple exclusion process

The asymmetric simple exclusion process (ASEP) was introduced by F.
Spitzer [58], is defined by ωmin = 0, ωmax = 1, The rate functions are given
by

p(y, z) = p · 1{y = 1, z = 0} and q(y, z) = q · 1{y = 0, z = 1}.

Here ωi ∈ {0, 1} is the occupation number for site i, p(ωi, ωi+1) is the rate
for a particle to jump from site i to i + 1, and q(ωi, ωi+1) is the rate for
a particle to jump from site i + 1 to i. These rates have values p and q,
respectively, whenever there is a particle to perform the above jumps, and
there is no particle on the terminal site of the jumps. To be specific let
us take p > q so that on average particles prefer to drift to the right. The
invariant measure µ% is the Bernoulli distribution with parameter 0 ≤ % ≤ 1,
while µ̂% is concentrated on zero for any %. The hydrodynamic flux is strictly
concave: H(%) = (p− q)%(1− %). The detailed construction of the processes
y(t) and z(t) needed for Assumption ?? can be found in [13].

Balázs and Seppäläinen gave an earlier proof of Theorem 3.1 for ASEP
in [14]. The present general proof evolved from that earlier one.

Totally asymmetric zero range process with jump rates that
increase with exponentially decaying slope

In a totally asymmetric zero range process (TAZRP), ωmin = 0, ωmax =
∞, one particle is moved from site i to site i+1 at rate f(ωi), and no particle
jumps to the left (our convention for total asymmetry is p = 1 − q = 1).
The jump rate f : Z≥0 → R≥0 is nondecreasing, f(0) = 0, and f(z) > 0 for
z > 0. Assume further that f is concave. Again, ωi represents the number
of particles at site i. Depending on this number, a particle jumps from i
to the right with rate pf(ωi), and to the left with rate qf(ωi). These rates
trivially satisfy the needed conditions.

We show that, one aspect of microscopic concavity, namely the ordering
of second class particles, can be achieved for any TAZRP with a nondecreas-
ing concave jump rate, we only use monotonicity and concavity of the rates
f . Thus for concave TAZRP only the tail control on the single second class
particle remains to be provided. For this part we currently need a stronger
hypothesis, detailed in the next assumption.

Assumption 3.6. Let p = 1− q = 1. Assume the jump rate function f of
a totally asymmetric zero range process has these properties:
1. f(0) = 0 < f(1) and f is nondecreasing: f(z + 1) ≥ f(z),
2. f is concave with an exponentially decreasing slope: there is an 0 < r < 1
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such that for each z ≥ 1 such that f(z)− f(z − 1) > 0,

f(z + 1)− f(z)

f(z)− f(z − 1)
≤ r. (3.11)

The case where f becomes constant above some z0 is included.

Theorem 3.7. Under Assumption 3.6, a stationary totally asymmetric zero
range process satisfies the conclusions of Theorem 3.1, and the conclusions
of Corollaries 3.2, 3.3, 3.4 and 3.5.

A class of examples of rates that satisfy Assumption 3.6 are

f(z) = 1− exp(−βzϑ), β > 0, ϑ ≥ 1.

Another example is the most basic, constant rate TAZRP with f(z) = 1{z >
0}. For this last case a proof has already been given in [8].

Totally Asymmetric Exponential Bricklayers process.
Let f : Z → R≥0 be non-decreasing and satisfy f(z) · f(1 − z) =

1 for all z ∈ Z. The values of f for positive z’s thus determine the values
for non-positive z’s. The jump rates of the process are given by

p(y, z) = pf(y) + pf(−z) and q(y, z) = qf(−y) + qf(z).

The following picture motivates the name bricklayers process. At each site i
stands a bricklayer who lays a brick on the column to his left at rate pf(−ωi)
and on the column to his right at rate pf(ωi). Each bricklayer also removes
a brick from his left at rate qf(ωi) and from his right at rate qf(−ωi). The
needed conditions hold for the rates. The totally asymmetric exponential
bricklayers process (TAEBLP) is obtained by taking

f(z) = eβ(z−1/2). (3.12)

The increments of the rate function are not bounded, hence the jump rate of
the second class particle cannot be dominated by the jump rates of a biased
random walk. Thus, the hardest is to verify the tail bound on the single
second class particle. The main tool we use to show this bound is Theorem
1 from [16].
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