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Abstract

A brief description and motivation is given to study the large infinitesimal generator matrix of

a Markov chain for SIS epidemics on a fixed graph.

1 Introduction

We consider epidemic spread in a contact graph G that represents a set N of N individuals as nodes

and specifies the L contacts between all pairs of individuals as links [4]. We assume that the graph

G, characterized [6] by a symmetric adjacency matrix A, is fixed and does not change over time.

Epidemic spread on a graph is one of the simplest, non-trivial diffusion processes in networks that

not only models biological disease spread (e.g. Covid) and digital computer viruses and malware in

the Internet, but also social contagion in on-line social platforms (e.g. Twitter and Facebook), rumor

spread, cascades of failures in infrastructural networks as the Internet and power grids and brain

anomalies such as epileptic seizures and other real-world diffusion applications in graphs.

The class of Susceptible-Infected-Susceptible (SIS) epidemics is the simplest compartmental model

of a disease spread with re-infections in a population, in which individuals are either infectious (I) or

healthy, but susceptible (S). Other compartmental models can be described, both stochastically and

deterministically (after a mean-field approximation), similarly [5] as SIS epidemic.

2 Markovian SIS epidemics on a graph

The viral state of a node i at time t is specified by a Bernoulli random variable Xi (t) ∈ {0, 1}:
Xi (t) = 0 for a healthy node and Xi (t) = 1 for an infected node. A node i at time t can be in one of

the two states: infected, with probability wi(t) = Pr[Xi(t) = 1] or healthy, with probability 1− wi(t),
but susceptible to the virus. We assume that the curing process per node i is a Poisson process

with rate δ and that the infection process per link is a Poisson process with rate β. The effective

infection rate is τ = β
δ . Obviously, only when a node is infected, it can infect its direct neighbors,

that are still healthy. Both the curing and infection Poisson process are independent. This is the

general continuous-time description of the simplest type of a Susceptible-Infected-Susceptible (SIS)
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virus process on a network. Occasionally, a third, independent self-infection process with self-infection

rate ε is considered, which describes background or indirect infections. Infections may happen either

through direct contact or indirectly, for example, after touching infected surfaces or inhaling air in a

closed room previously contaminated by an infected individual. The Markovian ε-SIS model consists

of three, independent Poisson processes: (i) the curing process with rate δ, (ii) infection process with

rate β and (iii) self-infection process with rate ε.

A description of the ε−SIS epidemic process is as follows. Let I denote the set of infected nodes

in the graph G and let aij be the element of the adjacency matrix A. Then, the Markov transitions{
for j /∈ I: I 7→ I ∪ {j} at rate β

∑
k∈I akj + ε

for i ∈ I: I 7→ I\ {i} at rate δ
(1)

detail the dynamics between the infected subgraph I and its complement Ic = G\I.

The time-dependent ε-SIS process can be described as a continuous-time Markov chain with 2N

states [9],[8]. Computationally, enumerating the subgraphs I in G leads to the governing equation (2).

Indeed, representing the Markov state i as i =
∑N

k=1 xk (i) 2k−1, where the binary k-th digit xk (i)

represents the infectious state of a node k in the network, the time dependence of the probability state

vector s (t) in ε-SIS epidemics, with components

si (t) = Pr[X1(t) = x1 (i) , X2(t) = x2 (i) , ..., XN (t) = xN (i)]

and normalization
∑2N−1

i=0 si (t) = 1, obeys the differential equation

ds(t)

dt
= −Qs(t) (2)

where the 2N × 2N infinitesimal generator −Q is specified in [9] and [8]. The solution of the matrix

differential equation is

s(t) = e−Qts(0) (3)

and, for self-infection rate ε > 0, a non-trivial1 2N × 1 steady-state vector s∞ exists, that obeys

Qs∞ = 0 and which is the right-eigenvector belonging to zero eigenvalue of Q. Exact analyses for the

complete graph are presented in [1] and [7] and for the star in [2].

Although exact, the solution (3) is hardly computable for a large size N of the contact graph.

However, all details about the phase transition of the ε-SIS process around the epidemic threshold2

are embedded in the huge 2N×2N matrix Q, still waiting to be unraveled. Analogous to crystallization

of matter from the liquid to the solid phase, understanding the formation of “epidemic cohesion” in a

graph when sweeping the effective infection rate τ from below to above the epidemic threshold τc is a

major motivation to compute the 2N × 1 probability state vector s (t) for large3 N .

1If ε = 0, then the Markov graph possesses an absorbing state (i.e. the overall healhty state in which there is no virus

anymore). That absorbing state is also the steady-state vector.
2The epidemic threshold lies approximately in a region of the effective infection rate τ ∈ ( 1

λ1
, 1
λ1

+ c), where λ1 is the

largest eigenvalue of the adjacency matrix A of the graph G and c is a yet unknown, positive real number.
3The larger the size N of the graph, the faster quantities change around the phase transition. When N → ∞, a

zero-one transition occurs at a single point, which defines the phase transition sharply. If N is finite, there is always an

interval in which the transition happens.
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3 Open problem

The 2N × 2N infinitesimal generator matrix Q is minus a weighted Laplacian matrix. All Laplacian

matrices on graphs are positive semi-definite, with a zero eigenvalue of multiplicity 1 if the graph is

connected. Moreover, as shown in [9, Fig. 2 & 3] and [8, Fig. 2], the matrix Q contains structure and

is sparse. Via nodal relabelling, which interchanges rows and columns in Q, an other structure may

be found (see e.g. [3]). Commercial software such as Matlab and Mathematica are able to provide

the solution (3) of the probability state vector roughly up to N = 12 (i.e. solving linear equations in

matrices up to ca. 4000× 4000).

Can we find a numerical computation method of the 2N×1 probability state vector s(t) as a function

of time t for graphs larger than N = 12 with about 3 digits accurate (i.e. the numerical computation

s∗i (t) for all 1 ≤ i ≤ 2N satisfies |si (t)− s∗i (t)| < 10−a with a = 3)? What is the maximal size N of

the contact graph for which the 2N × 1 probability state vector s(t) can be computed?
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