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Salt Lakes: Lake Eyre Australia

Q={(X¥,2): —00 < X,y < 00, Z> 0}
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Equations for salt transport

e Conservation of the fluidum (groundwater)

dd_f_l_v(pq)zov (t,X,y,Z)ER+XQ.

e Conservation of salt dissolved in groundwater

d(pw)
ot

@ +V - (pwq — pDVw) = 0,

(t,x,y,2) € RT x Q.

e Darcy’s law with gravitation

%q—’_vp_pgezzov (t,X,y,Z)ER—i_XQ.

e Equation of state p = p; e“%.
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Initial- and boundary conditions

e q=—-FEe, at z=0 andfor t>0,

(E is the evaporation rate)

e p=pn, at z=0 andfor t>0.
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Dimensionless equations

Introducing the scales

Uu.-94 | Ug 1= (Pm — Pr)gK |
Uc H
t :=tD/E, {x,y,2} := {x,y,z} oD/E? ,

gives for (t,Xx,y,2) € Rt x Q

)
dd_t8+ Ra(U-VS = AS,

(P-1) < V-U=0,
\U—'_VP_&Z:O,

with
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Dimensionless initial- and boundary

(IBC) 4

TU/e

conditions
S =0 In Q,
=0
1
U=—-——e, at z=0 andfor t>0,

Ra

\8:1 at z=0 andfor t>O0.



Ground-state solution

The ground-state is characterized by the uniform
upflow

1
U — UO = _R—aez,

and the growing boundary layer (z > 0)

1 _
S=S(zt) := §e_zerfc (Z—t> +

2\
N 1 ; Z+t
— eIriC { —— .
2 2./t
We restrict the analysis to the equilibrium case only,

l.e.

lim §(zt) = e~

t—o0
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Numerical solutions | (Ra = 35)

15 20 25

10

-10

-15

-20

,,,,,,

15 20

10

-15 -10

-20

15 20 25

10

-15 -10

-20

I\

10

-15 -10

-20

-25

TU/e



Numerical solutions Il (Ra = 35)
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Analysis of perturbation equations

The stability analysis is based on the expansion

S:S)+Sv
U=Up+u,
P:P0+p7

Substitution in (P-1) yields (in Q and for all t > 0)

Vu=0, (1)

ds 0s S
— — 5, TRaw——+Rau-Vs=4s.  (3)

(1)—(2) give for sand w the linear relation
Aw=As, A5 :=0x+0dy. (4)
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Methods

e Method of linearised stability

e Energy method (1966, D.D. Joseph)

e Nonmodal analysis (1993, D.S. Henningson et
al.)
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The method of linearised stability

We disregard the nonlinear term Rau - Vsin (3) and
consider the linear evolution problem in Q and for
t>0

(0SS 0S 0

— — — — =A
Jot "oz T "W T 4%
\AW:AJ_S

Furthermore we assume
{s,w} = {s(2), w(z)} e7t AT
Substitution gives

(D +D —a*> — 0)s= —Rae W,
e {(D2 —a)w = —a’s,

with D:dizanda2:a§+a§.

TU/e

11



Neutral stability

Proposition 1. Let a > 0 and Ra > 0 be given.
Furthermore, rewrite (P-11) in an eigenvalue problem
for g, I.e.

(D* +D —a’+ Rae W = 0s,

(D? — a?)w = —a’s.
Then o € R for each a > 0 and Ra > 0.

Theorem 1. Given g € R, let Ra;(a; 0), for each
a > 0, denote the smallest positive eigenvalue of
problem (P-I1). Then

Ra;(a;0) 2 Ra;(a;0) ifandonlyif o=0.

U

Sufficient: o = 0
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Stabilitycurves
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SC ={(a,Ra):a> 0, Rag(a) < Ra< Ra.(a)}
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The energy method

Aim;:

d .
a||s||§ <0 = stability

We assume X, y-periodicity — analysis Is restricted
to the periodicity cell

¥ ={(x¥:2) : [X| < /syl < M/a,z> 0}

Multiply (3) by s and integrate over 7':

2
dt2/s2_ /|Vs| —I-Ra/S\Ne <0.
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Maximization problem

—Z
| L swe

~_ — Sup )
a (sw)eH# |VS|2

14

with

A = {(s,W) : X, y-periodic with respect to ¥,

s=w=0atz=0,00, and Aw=A, s}

After some tedious algebra we find the following
sixth order eigenvalue problem for w:
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Comparison of eigenvalues

Proposition 2. Let a > 0 be given. Let Ra,(a)
be the eigenvalue of the linearised approach and
Rag(a) be the eigenvalue from the energy method
with differential constraint. Then, for each a > 0,

Rag(a) < Ra.(a) .

Proof. From the linearised problem it follows that

/ S1Wqp e *

Ray (a) / (Ds)” + s,

Clearly, (s;,w1) € 22, which implies
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Nonmodal stability theory

Starting point is the linearised perturbation equation

(0S

0_ :o%Ra,aSa
(P-111) { ot

\S‘tzo =0,

with

Fraa=D*+D—a>+a’Rae 24",
%a — _D2 —|_ a2 .

Again we consider the energy

d1
a§|ISII§ = (LRaaS9) < A3
with
(ZRaas9)
A =su ! : 6
Ség (Sv S) ( )
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Euler—Lagrange equation for (6) reads
1
i(ogRa,a + ZRaa)S=As, (7)
with
Lraa=D?—D—a’ +a’Ras, *(e*").

Proposition 3 (Neutral stability). Let A = 0.
Then, for each a > 0, eigenvalue problem (7) for
Ra is equivalent to eigenvalue problem (5) (energy
method).

As a consequence, the stability curves coincide.
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Asymptotic bounds for ||s(t)||3

Proposition 4 (Initial energy growth). Let(a;,Ra;) €
SC and let (s;,A1), A1 > 0, be the corresponding
eigenpair of problem (7). Further, let

S(zt) = “Raas (2

be the formal solution of (ACP); with s|_, = si.
Then

2

Proof. We have

IS = (e Rorms, e rams, ) =
— (et(iﬂRal,al —|—$|§a1,a1)sl, Sl) _

= ||Sll|§ + ((ogRal,al + glikal,al)slasl)t SR O(tz =
= ||s1]|5 + 2A1]|s1]]5 t + O(t?) .

[]
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Proposition 5. Under the same conditions of Pro-
position 4 we have

S(t
fm L 1og IS0

=== = X Opsx
oo 10 [[s(0)[]3 ’

where 0,..x IS the largest eigenvalue of operator

._-,%Ra,a.

2
2

lIsl]
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Conclusion: in the linear regime there exist
perturbations for which the energy grow in time,
whereas the linearised theory predicts stability, i.e.
all growthrates o lie in the stable halfspace.

Contradiction ?

We can write the solution of (ACP) formally as
s(zt) =) Aedls(2).
i

Operator Zra 4 IS NON-normal, i.e. the eigenfunctions
are not orthogonal:

ss)= [ ss£0. i)
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Discussion

e The nonlinear term never plays a role in the
analysis

e Energy methods depend on the choice of the
norm

e Determination of the “threshold” amplitude of the
perturbations
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