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1. Introduction

Linear systems
Ku=D>Db

where K has saddle point structure:

A BY
K —

In this talk: A SPD, C' sym. nonnegative definite
(all results compatible with C' = 0)
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1. Introduction

Linear systems
Ku=D>Db

where K has saddle point structure:

T
o A B

In this talk: A SPD, C' sym. nonnegative definite
(all results compatible with C' = 0)

B Applications
Stokes problems (stationnary or time dependent),
PDE-constrained optimization, etc

B All results presented here can be applied to any
context (purely algebraic analysis)
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1. Introduction

® \We are Interested In iterative solution schemes
combining a Krylov subspace method with block
preconditioners

B A preconditioner Is any procedure that provides a
cheap approximation to the inverse of the system
matrix K

® When the preconditioner is SPD, MINRES Is a choice
method

If the preconditioner iIs nonsymmetric or indefinite,
GMRES or GCR has to be used instead
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1. Introduction

Block preconditiners

They are rooted In / equivalent to
fractional steps iterative methods: approximately solve

(5 2%)6) - G

alternating approximates solves of
Avv = b,— Av—Blp:

e v = M;' (b, — Av — B'p)

and “pressure corrections”:

p = ::Ms_l(bp—BV—l—Cﬁ)

alysis of block preconditioners for saddle point problems — p.5




1. Introduction

These operations cane be combined in a numbers of
ways:

B different orders
B some may be repeated

B different possibilities to define v, p, v, p In function of
previous and current approximations

These combinations give rise to the different types of block
preconditioners
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1. Introduction

The schemes have in comman that they need.:

B A (good) preconditioner M4 for A
(possibly defined only implicitly)

B An operator Mg governing the pressure correction

We’ll see (well known fact) that it needs to be a (good)
preconditioner for the Schur complement

S = C+BA'B
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1. Introduction

The schemes have in comman that they need.:

B A (good) preconditioner M4 for A
(possibly defined only implicitly)

B An operator Mg governing the pressure correction
We’'ll see (well known fact) that it needs to be a (good)
preconditioner for the Schur complement

S = C+BA'B

Types of contributions in the field
® [dentify relevant M4, Mj for a given application area

B Analyse one or several schemes assuming that
relevant M 4 and M¢ have been obtained




2. Taxonomy of block preconditioners

Block Diagonal™: Block Diagonal:
M M

Mg — Mg

Block Triangular: Inxeact Uzawa:

M, B M
M= 4 M,= (A
— Mg B —Mg
Block Approximate Factorization:

v— [ Ma I M;'B”
"7 \ B —Mgs I
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2. Taxonomy of preconditioners(cont.) uis

]\7A such that:

I—M'A = (I—M;'A)°

%
Block Triangular®: Inxeact Uzawa'?:
_ . ~
M, — My B M, — A
— Mg B —Mg
Block SGS:

v I M 4 [ M;'BT
’ BM;' I — Mg I




3. Relations between the precond.

Remark
The eigenvalues of M 'K are real (positive and negative)

For all other prec., the eigenvalues have positive real part

Theorem
(1)
max |A] < max |}
Aeo(M;'K) Aeo(M{'K)
min ~ |A\] > min |\

Aeo(M;'K) Aeo(M'K)
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3. Relations between the precond.

Remark
The eigenvalues of M 'K are real (positive and negative)

For all other prec., the eigenvalues have positive real part

Theorem
(1)
max |A] < max |}
Aeo(M;'K) Aeo(M{'K)
min ~ |A\] > min |\
Aeo(M;'K) Aeo(M'K)

(2) M; 'K and M, 'K have the same spectrum

(3) M,'K, M, 'K and M, 'K have the same spectrum
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4. Eigenvalue analysis

The real eigenvalues )\ of M 'K satisfy: { < A < ¢

W= Ayt (Mle)
V= Amin (Mg'S)

§ §
My | min(K, V) | max (@, D)
My, Mo UL i v) | max(1, ) 770
m=1) D>, T
M,, M, || . i . -
(ﬁ>1’; /> min (g,n Z) v v<nuv+1)
M min (K, V max ([, v PA =
J (H, Y) (1, v) P [—M_lA)
My - y _
> | min (1—p%, ¥) | max (1, D)
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4. Eigenvalue analysis

The eigenvalues with nonzero imaginary part satisfy
X< Re(N) < X, (SN <5, A—¢ < ¢
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4. Eigenvalue analysis

The eigenvalues with nonzero imaginary part satisfy
X < Re(A) <X, [Sm(A)] <0, [A=( <¢

ATt b i LT AREREREES 1
0f & > 0
05 - 0.5m- -0
" -
15 osm’i"“ ..... ;.h5 > T 05 1 15 >
Block Diagonal Block Triang. & Uzawa
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4. Eigenvalue analysis

The eigenvalues with nonzero imaginary part satisfy
X < Re(A) <X, [Sm(A)] <0, [A=( <¢

0.5/ leesteees, : A P e

0y <
-05 TPt R PO S s
05 1 15 > B 0.5 1 15 >
Block Approx. Fact. Block SGS
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4. Eigenvalue analysis

Comparison with bounds appeared previously:

B Our estimates for real eigenalues are sharper
(see below)
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4. Eigenvalue analysis

Comparison with bounds appeared previously:

B Our estimates for real eigenalues are sharper
(see below)

B The bound in [Simoncini (2004)] for Block Triang.:
Sm(A) A0 = | A—1] < /1-p

offers a useful complement.
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4. Eigenvalue analysis

Comparison with bounds appeared previously:

B Our estimates for real eigenalues are sharper
(see below)

B The bound in [Simoncini (2004)] for Block Triang.:
Sm(A) A0 = | A—1] < /1-p

offers a useful complement.

B Ours analysis extends this result to Uzawa, and further
to Block SGS, for which we get:

%m(A)#O — ’)\—1‘ < p4a

(via the equivalence between Block SGS and
Block Triangular(®))




4. Eigenvalue analysis

Combining this with our bounds for real eigenvalues:

Corollary
Let

pa= p(l—M;"A) ps = p(I —Mg'S)

B For Block Triang. & Uzawa, If

A= dmax (M3'A) <1
then:

p(I-—M'K) = p(I—M;'K) < max(y/pa, ps)

® For block SGS:
p(I—Mg_lK) < max (pa, ps)
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5. Example

Stationnary Stokes problem on the unit square ¢

Find velocity vector v and the kinematic pressure field p
satisfying

—Au+Vp = f In €2
V-u = 0 In €2

Dirichlet BC for v & FD MAC scheme

— ik
o (AB)
B 0

Further, with M¢ = T,
Vv ~ 0.25 and v =1




5. Example

Preconditioner for A

B A block diagonal with each diag. block being a discrete
Laplace operator
%
well approximated by any (algebraic) multigrid method
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5. Example

Preconditioner for A

B A block diagonal with each diag. block being a discrete
Laplace operator
%
well approximated by any (algebraic) multigrid method

B AGMG efficient and as simple as (in Matlab):

% Set up the preconditioner:
>> agmg(A []1.[1.[1.01.11,11,1);

% Apply prec. to x, resultiny:
>> y=agmg([],x,[1,[]1.[1,[],[],3);

® Then:
w

&

0.4 and nw =1



5. Example

Eigenvalue plot
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5. Example

Eigenvalue plot
Block Approx. Fact. Block SGS
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5. Example

Rescaling the preconditioner for A:
B~ 04a and @ = a
Makes sense for Block Triang. & Uzawa
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5. Example

Rescaling the preconditioner for A:
B~ 04a and @ = «
Makes sense for Block Triang. & Uzawa

Lower bounds = f(«) Upper bounds = f(a)
—N.
0.3l - ==~ Zulehner (2002) I
‘‘‘‘‘‘‘ Simoncini (2004) [worst case] || .
0.25\" """"" Simoncini (2004) [best case] ||
0.2+
0.15¢
0.1+
R T
0.05} S
o1 1.5 2 2.5 3 O1 1.5 2 2.5 3
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5. Example

a=1 a =1, scaled (p =0.73)
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5. Example
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a = 1.5, scaled (p = 0.81)
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5. Example

a=2.5 a = 2.5, scaled (p = 0.90)
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5. Example

Number of iterations to solve the system (a = 1.5)

h1| 32512 | 1024

Block Diag.*) (M) | 43|59 | 62

Block Diag. (M;) | 58|89 | 150

Krylov:

Block Triang. (M;) |28 |47 | 58
Inexact Uzawa (M,,) | 30 | 61 57 MINRES for A1,
Block Fact. (M) | 21|29 | 37 GCR(15) in all

Block SGS (M,) |19|23 | 26 other cases
Block Triang.®® (M,,) | 19|23 | 26
Inexact Uzawa'® (M,,,) | 20 | 26 | 28

e AGMG becomes a variable preconditioner for A= > 32
e )M, performs simialrly to M If Iarger restart IS chosen

is of block preconditioners for saddle point pro -p.25



5. Example

Number of iterations to solve the system (a = 1.5)

Preconditioner for A AGMG amg(ifiss 3.2)
h=t| 32| 512 | 1024 | 512
Block Diag.(*) (M.) |43 |59 | 62 |37
Block Diag. (M;) | 58|89 | 150 |54
Block Triang. (M;) |28 |47 | 58 |28
Inexact Uzawa (M,,) | 30|61 | 57 |28
Block Fact. (M) (21|29 | 37 |25
Block SGS (M,) 119|123 | 26 |25
Block Triang.® (M,,) | 19|23 | 26 |23
Inexact Uzawa'® (M,,,) | 20 |26 | 28 |25




5. Example

Time to solve the system (o = 1.5)

Preconditioner for A AGMG amg(ifiss 3.2)
A=t 512 | 1024 | 512

Block Diag.'*) (M,) | 16.0 |17.2 | 28.0
Block Diag. (M,;) | 26.8 | 49.0 | 40.8
Block Triang. (M;) | 15.0 | 19.5 | 21.5
Inexact Uzawa (M,) | 19.7 | 195 | 21.7
Block Fact. (M) |15.3 |20.6 |35.6
Block SGS (M,) |11.8 |14.0 | 35.3
Block Triang.® (M,,) | 11.2 | 13.5 | 32.0
Inexact Uzawa® (M,,) | 12.9 | 15.2 | 34.9

Elapsed time excluding set up In

seconds per 10° unknowns



5. Example

Time to solve the system (o = 1.5)

Preconditioner for A| AGMG | amg(ifiss 3.2)
h=t| 5121|1024 | 512

Block Diag.t) (M) | 16.4 | 17.7 | 5717.
Block Diag. (M,) | 27.2 | 49.5 | 5730.
Block Triang. (M;) | 15.4|19.9 | 5711.
Inexact Uzawa (M,,) | 20.1 | 20.0 | 5711.
Block Fact. (M) |15.7 | 21.1 | 5725.
Block SGS (M,) | 12.2 | 14.4 | 5725.
Block Triang.® (M,,) | 11.6 | 13.9 | 5721.
Inexact Uzawa'® (M) | 13.3 | 15.7 | 5724.

Total Elapsed time ( inlcuding set up) In
seconds per 10° unknowns



6. Conclusions ULB

B All block preconditioners work well except perhaps M,
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B All block preconditioners work well except perhaps M,

B We are left with essentially three options:
— postive definite block diagonal
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B What Is the best scheme depends on the relative
guality and cost of the preconditioners for A and S
(Block SGS iterates twice on A)
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6. Conclusions ULB

B All block preconditioners work well except perhaps M,

B We are left with essentially three options:
— postive definite block diagonal
— block upper or lower triangular
— block SGS

B What Is the best scheme depends on the relative
guality and cost of the preconditioners for A and S
(Block SGS iterates twice on A)

B There Is In fact more to gain or loose In the choice of
the preconditioner for the subproblems (M4 and Mg)

B Be cautious with numerical results involving multigrid
(especially: algebraic multigrid) and displaying only
iteration counts
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More detalls: reports available

Y. Notay, A new eigenvalue analysis of block
preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and

Carmen Rodrigo, A simple and efficient segregated
smoother for the discrete Stokes equations
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More detalls: reports available

Y. Notay, A new eigenvalue analysis of block
preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and

Carmen Rodrigo, A simple and efficient segregated
smoother for the discrete Stokes equations

Thank you for your attention !

A analysis of block preconditioners for saddle point problems — p.30



	Outline
	{yellow 1.} Introduction
	{yellow 1.} Introduction
	{yellow 1.} Introduction
	{yellow 1.} Introduction
	{yellow 1.} Introduction
	{yellow 2.} Taxonomy of block preconditioners
	{yellow 2.} Taxonomy of preconditioners (cont.)
	{yellow 3.} Relations between the precond.
	{yellow 4.} Eigenvalue analysis
	{yellow 4.} Eigenvalue analysis
	{yellow 4.} Eigenvalue analysis
	{yellow 4.} Eigenvalue analysis
	{yellow 4.} Eigenvalue analysis
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 5.} Example
	{ye 6.} Conclusions
	~

