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1. Introduction
Linear systems

K u = b

where K has saddle point structure:

K =

(
A BT

B −C

)

In this talk: A SPD, C sym. nonnegative definite
(all results compatible with C = 0)
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1. Introduction
Linear systems

K u = b

where K has saddle point structure:

K =

(
A BT

B −C

)

In this talk: A SPD, C sym. nonnegative definite
(all results compatible with C = 0)

� Applications
Stokes problems (stationnary or time dependent),
PDE-constrained optimization, etc

� All results presented here can be applied to any
context (purely algebraic analysis)
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1. Introduction
� We are interested in iterative solution schemes

combining a Krylov subspace method with block
preconditioners

� A preconditioner is any procedure that provides a
cheap approximation to the inverse of the system
matrix K

� When the preconditioner is SPD, MINRES is a choice
method

If the preconditioner is nonsymmetric or indefinite,
GMRES or GCR has to be used instead
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1. Introduction
Block preconditiners

They are rooted in / equivalent to
fractional steps iterative methods: approximately solve

(
A BT

B −C

)(
v

p

)
=

(
bv

bp

)

alternating approximates solves of

Aδv = bv − A v̂ − BT p̂ ;

i.e.:
δv = M−1

A

(
bv − A v̂ − BT p̂

)

and “pressure corrections”:

δp = ±M−1
S (bp − B v + C p)
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1. Introduction
These operations cane be combined in a numbers of
ways:
� different orders
� some may be repeated
� different possibilities to define v̂ , p̂ , v , p in function of

previous and current approximations

These combinations give rise to the different types of block

preconditioners
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1. Introduction
The schemes have in comman that they need:
� A (good) preconditioner MA for A

(possibly defined only implicitly)
� An operator MS governing the pressure correction

We’ll see (well known fact) that it needs to be a (good)
preconditioner for the Schur complement

S = C + BA−1BT

A new analysis of block preconditioners for saddle point problems – p.7



1. Introduction
The schemes have in comman that they need:
� A (good) preconditioner MA for A

(possibly defined only implicitly)
� An operator MS governing the pressure correction

We’ll see (well known fact) that it needs to be a (good)
preconditioner for the Schur complement

S = C + BA−1BT

Types of contributions in the field
� Identify relevant MA , MS for a given application area
� Analyse one or several schemes assuming that

relevant MA and MS have been obtained
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2. Taxonomy of block preconditioners
Block Diagonal+: Block Diagonal:

M+ =

(
MA

MS

)
Md =

(
MA

−MS

)

Block Triangular: Inxeact Uzawa:

Mt =

(
MA BT

−MS

)
Mu =

(
MA

B −MS

)

Block Approximate Factorization:

Mf =

(
MA

B −MS

) (
I M−1

A BT

I

)
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2. Taxonomy of preconditioners (cont.)

M̃A such that:

I − M̃−1
A A =

(
I −M−1

A A
)2

→
Block Triangular(2): Inxeact Uzawa(2):

Mt2 =

(
M̃A BT

−MS

)
Mu2

=

(
M̃A

B −MS

)

Block SGS:

Mg =

(
I

BM−1
A I

) (
M̃A

−MS

) (
I M−1

A BT

I

)
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3. Relations between the precond.
Remark
The eigenvalues of M−1

+ K are real (positive and negative)
For all other prec., the eigenvalues have positive real part

Theorem

(1)

max
λ∈σ(M−1

d
K)

|λ| ≤ max
λ∈σ(M−1

+ K)
|λ|

min
λ∈σ(M−1

d
K)

|λ| ≥ min
λ∈σ(M−1

+ K)
|λ|
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3. Relations between the precond.
Remark
The eigenvalues of M−1

+ K are real (positive and negative)
For all other prec., the eigenvalues have positive real part

Theorem

(1)

max
λ∈σ(M−1

d
K)

|λ| ≤ max
λ∈σ(M−1

+ K)
|λ|

min
λ∈σ(M−1

d
K)

|λ| ≥ min
λ∈σ(M−1

+ K)
|λ|

(2) M−1
t K and M−1

u K have the same spectrum
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3. Relations between the precond.
Remark
The eigenvalues of M−1

+ K are real (positive and negative)
For all other prec., the eigenvalues have positive real part

Theorem

(1)

max
λ∈σ(M−1

d
K)

|λ| ≤ max
λ∈σ(M−1

+ K)
|λ|

min
λ∈σ(M−1

d
K)

|λ| ≥ min
λ∈σ(M−1

+ K)
|λ|

(2) M−1
t K and M−1

u K have the same spectrum

(3) M−1
g K , M−1

t2
K and M−1

u2
K have the same spectrum

A new analysis of block preconditioners for saddle point problems – p.10



4. Eigenvalue analysis

The real eigenvalues λ of M−1
∗ K satisfy: ξ ≤ λ ≤ ξ

µ = λmin

(
M−1

A A
)

µ = λmax

(
M−1

A A
)

ν = λmin

(
M−1

S S
)

ν = λmax

(
M−1

S S
)

ξ ξ

Md min (µ , ν) max (µ , ν)

Mu , Mt

(µ ≤ 1)

}
min (µ , ν) max (1 , ν)

Mu , Mt

(µ > 1)

}
min

(
µ , η−1 ν

)
ν̃

Mf min (µ , ν) max (µ , ν)

Mg

Mu2
, Mt2

}
min

(
1−ρ2A , ν

)
max (1 , ν)

η ≈ 1

ν̃ ≥ µ , ν

ν̃ ≤ µ(ν + 1)

ρA =
ρ
(
I −M−1

A A
)
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4. Eigenvalue analysis
The eigenvalues with nonzero imaginary part satisfy

χ ≤ ℜe(λ) ≤ χ , |ℑm(λ)| ≤ δ , |λ− ζ| ≤ ζ

2
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4. Eigenvalue analysis
The eigenvalues with nonzero imaginary part satisfy

χ ≤ ℜe(λ) ≤ χ , |ℑm(λ)| ≤ δ , |λ− ζ| ≤ ζ
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4. Eigenvalue analysis
Comparison with bounds appeared previously:
� Our estimates for real eigenalues are sharper

(see below)
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4. Eigenvalue analysis
Comparison with bounds appeared previously:
� Our estimates for real eigenalues are sharper

(see below)
� The bound in [Simoncini (2004)] for Block Triang.:

ℑm(λ) 6= 0 ⇒ |λ− 1| ≤
√

1−µ

offers a useful complement.
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4. Eigenvalue analysis
Comparison with bounds appeared previously:
� Our estimates for real eigenalues are sharper

(see below)
� The bound in [Simoncini (2004)] for Block Triang.:

ℑm(λ) 6= 0 ⇒ |λ− 1| ≤
√

1−µ

offers a useful complement.
� Ours analysis extends this result to Uzawa, and further

to Block SGS, for which we get:

ℑm(λ) 6= 0 ⇒ |λ− 1| ≤ ρA

(via the equivalence between Block SGS and
Block Triangular(2)) A new analysis of block preconditioners for saddle point problems – p.14



4. Eigenvalue analysis
Combining this with our bounds for real eigenvalues:

Corollary
Let

ρA = ρ
(
I −M−1

A A
)
, ρS = ρ

(
I −M−1

S S
)

� For Block Triang. & Uzawa, if

µ = λmax

(
M−1

A A
)

≤ 1
then:

ρ
(
I −M−1

t K
)

= ρ
(
I −M−1

u K
)

≤ max (
√
ρA , ρS)

� For block SGS:

ρ
(
I −M−1

g K
)

≤ max (ρA , ρS)
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5. Example
Stationnary Stokes problem on the unit square Ω

Find velocity vector v and the kinematic pressure field p
satisfying

−∆u+∇p = f in Ω

∇ · u = 0 in Ω

Dirichlet BC for v & FD MAC scheme
→

K =

(
A BT

B 0

)

Further, with MS = I ,

ν ≈ 0.25 and ν = 1
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5. Example
Preconditioner for A
� A block diagonal with each diag. block being a discrete

Laplace operator
→
well approximated by any (algebraic) multigrid method
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5. Example
Preconditioner for A
� A block diagonal with each diag. block being a discrete

Laplace operator
→
well approximated by any (algebraic) multigrid method

� AGMG efficient and as simple as (in Matlab):

% Set up the preconditioner:
>> agmg(A,[],[],[],[],[],[],1);

% Apply prec. to x, result in y:
>> y=agmg([],x,[],[],[],[],[],3);

� Then:
µ ≈ 0.4 and µ = 1
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5. Example
Eigenvalue plot

Block Diagonal Block Triang. & Uzawa
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5. Example
Eigenvalue plot

Block Approx. Fact. Block SGS
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5. Example
Rescaling the preconditioner for A:

µ ≈ 0.4α and µ = α

Makes sense for Block Triang. & Uzawa

3
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5. Example
Rescaling the preconditioner for A:

µ ≈ 0.4α and µ = α

Makes sense for Block Triang. & Uzawa

Lower bounds = f(α) Upper bounds = f(α)
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5. Example

α = 1 α = 1 , scaled (ρ = 0.73)
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5. Example

α = 1.5 α = 1.5 , scaled (ρ = 0.81)
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5. Example

α = 2.5 α = 2.5 , scaled (ρ = 0.90)
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5. Example
Number of iterations to solve the system (α = 1.5)

h−1 32 512 1024

Block Diag.(+) (M+) 43 59 62
Block Diag. (Md) 58 89 150

Block Triang. (Mt) 28 47 58
Inexact Uzawa (Mu) 30 61 57

Block Fact. (Mf) 21 29 37
Block SGS (Mg) 19 23 26

Block Triang.(2) (Mt2) 19 23 26
Inexact Uzawa(2) (Mu2

) 20 26 28

Krylov:

MINRES for M+

GCR(15) in all
other cases

• AGMG becomes a variable preconditioner for h−1 > 32

• Md performs simialrly to M+ if larger restart is chosen
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5. Example
Number of iterations to solve the system (α = 1.5)

Preconditioner for A AGMG amg(ifiss 3.2)
h−1 32 512 1024 512

Block Diag.(+) (M+) 43 59 62 37
Block Diag. (Md) 58 89 150 54

Block Triang. (Mt) 28 47 58 28
Inexact Uzawa (Mu) 30 61 57 28

Block Fact. (Mf) 21 29 37 25
Block SGS (Mg) 19 23 26 25

Block Triang.(2) (Mt2) 19 23 26 23
Inexact Uzawa(2) (Mu2

) 20 26 28 25
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5. Example
Time to solve the system (α = 1.5)

Preconditioner for A AGMG amg(ifiss 3.2)
h−1 512 1024 512

Block Diag.(+) (M+) 16.0 17.2 28.0
Block Diag. (Md) 26.8 49.0 40.8

Block Triang. (Mt) 15.0 19.5 21.5
Inexact Uzawa (Mu) 19.7 19.5 21.7

Block Fact. (Mf) 15.3 20.6 35.6
Block SGS (Mg) 11.8 14.0 35.3

Block Triang.(2) (Mt2) 11.2 13.5 32.0
Inexact Uzawa(2) (Mu2

) 12.9 15.2 34.9

Elapsed time excluding set up in
seconds per 106 unknowns A new analysis of block preconditioners for saddle point problems – p.27



5. Example
Time to solve the system (α = 1.5)

Preconditioner for A AGMG amg(ifiss 3.2)
h−1 512 1024 512

Block Diag.(+) (M+) 16.4 17.7 5717.
Block Diag. (Md) 27.2 49.5 5730.

Block Triang. (Mt) 15.4 19.9 5711.
Inexact Uzawa (Mu) 20.1 20.0 5711.

Block Fact. (Mf) 15.7 21.1 5725.
Block SGS (Mg) 12.2 14.4 5725.

Block Triang.(2) (Mt2) 11.6 13.9 5721.
Inexact Uzawa(2) (Mu2

) 13.3 15.7 5724.

Total Elapsed time ( inlcuding set up) in
seconds per 106 unknowns A new analysis of block preconditioners for saddle point problems – p.28



6. Conclusions
� All block preconditioners work well except perhaps Md
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6. Conclusions
� All block preconditioners work well except perhaps Md

� We are left with essentially three options:
– postive definite block diagonal
– block upper or lower triangular
– block SGS

� What is the best scheme depends on the relative
quality and cost of the preconditioners for A and S
(Block SGS iterates twice on A)
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– postive definite block diagonal
– block upper or lower triangular
– block SGS

� What is the best scheme depends on the relative
quality and cost of the preconditioners for A and S
(Block SGS iterates twice on A)

� There is in fact more to gain or loose in the choice of
the preconditioner for the subproblems (MA and MS)
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6. Conclusions
� All block preconditioners work well except perhaps Md

� We are left with essentially three options:
– postive definite block diagonal
– block upper or lower triangular
– block SGS

� What is the best scheme depends on the relative
quality and cost of the preconditioners for A and S
(Block SGS iterates twice on A)

� There is in fact more to gain or loose in the choice of
the preconditioner for the subproblems (MA and MS)

� Be cautious with numerical results involving multigrid
(especially: algebraic multigrid) and displaying only
iteration counts
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More details: reports available

Y. Notay, A new eigenvalue analysis of block
preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and
Carmen Rodrigo, A simple and efficient segregated
smoother for the discrete Stokes equations
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More details: reports available

Y. Notay, A new eigenvalue analysis of block
preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and
Carmen Rodrigo, A simple and efficient segregated
smoother for the discrete Stokes equations

Thank you for your attention !
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