A new analysis of block preconditioners for saddle point problems

Yvan Notay*

Université Libre de Bruxelles Service de Métrologie Nucléaire

Delft, June 14, 2013

* Supported by the Belgian FNRS http://homepages.ulb.ac.be/~ynotay

Outline

1. Introduction

- 2. Taxonomy of block preconditioners
- 3. Relations between the preconditioners
- 4. Eigenvalue analysis
- 5. Example of application
- 6. Conclusions

ULB

Linear systems

 $K\mathbf{u} = \mathbf{b}$

where K has saddle point structure:

$$K = \begin{pmatrix} A & B^T \\ B & -C \end{pmatrix}$$

In this talk: A SPD, C sym. nonnegative definite (all results compatible with C = 0)

ULB

Linear systems

 $K\mathbf{u} = \mathbf{b}$

where K has saddle point structure:

$$K = \begin{pmatrix} A & B^T \\ B & -C \end{pmatrix}$$

In this talk: A SPD, C sym. nonnegative definite (all results compatible with C = 0)

Applications

Stokes problems (stationnary or time dependent), PDE-constrained optimization, etc

All results presented here can be applied to any context (purely algebraic analysis)

- We are interested in iterative solution schemes combining a Krylov subspace method with block preconditioners
- A preconditioner is any procedure that provides a cheap approximation to the inverse of the system matrix K
- When the preconditioner is SPD, MINRES is a choice method
 - If the preconditioner is nonsymmetric or indefinite, GMRES or GCR has to be used instead

Block preconditiners

They are rooted in / equivalent to fractional steps iterative methods: approximately solve

$$\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_v \\ \mathbf{b}_p \end{pmatrix}$$

alternating approximates solves of

$$A\,\delta \mathbf{v} = \mathbf{b}_v - A\,\hat{\mathbf{v}} - B^T\hat{\mathbf{p}} ;$$

i.e.:

$$\delta \mathbf{v} = M_A^{-1} \left(\mathbf{b}_v - A \,\hat{\mathbf{v}} - B^T \,\hat{\mathbf{p}} \right)$$

and "pressure corrections":

$$\delta \mathbf{p} = \pm M_S^{-1} \left(\mathbf{b}_p - B \, \overline{\mathbf{v}} + C \, \overline{\mathbf{p}} \right)$$

These operations cane be combined in a numbers of ways:

- different orders
- some may be repeated
- different possibilities to define \hat{v} , \hat{p} , \overline{v} , \overline{p} in function of previous and current approximations

These combinations give rise to the different types of block preconditioners

ULB

The schemes have in comman that they need:

- A (good) preconditioner M_A for A (possibly defined only implicitly)
- An operator M_S governing the pressure correction We'll see (well known fact) that it needs to be a (good) preconditioner for the Schur complement

 $S = C + B A^{-1} B^T$

The schemes have in comman that they need:

- A (good) preconditioner M_A for A (possibly defined only implicitly)
- An operator M_S governing the pressure correction We'll see (well known fact) that it needs to be a (good) preconditioner for the Schur complement

 $S = C + B A^{-1} B^T$

Types of contributions in the field

- Identify relevant M_A , M_S for a given application area
- Analyse one or several schemes assuming that relevant M_A and M_S have been obtained

2. Taxonomy of block preconditioners ULB

Block Diagonal⁺: **Block Diagonal:** $M_{+} = \begin{pmatrix} M_{A} \\ & M_{S} \end{pmatrix}$ $M_d = \begin{pmatrix} M_A \\ & -M_S \end{pmatrix}$ **Block Triangular: Inxeact Uzawa:** $M_t = \begin{pmatrix} M_A & B^T \\ & -M_S \end{pmatrix}$ $M_u = \begin{pmatrix} M_A \\ B & -M_S \end{pmatrix}$

Block Approximate Factorization:

$$M_f = \begin{pmatrix} M_A \\ B & -M_S \end{pmatrix} \begin{pmatrix} I & M_A^{-1}B^T \\ I \end{pmatrix}$$

2. Taxonomy of preconditioners (cont.) **ULB**

 \widetilde{M}_A such that:

$$I - \widetilde{M}_A^{-1}A = \left(I - M_A^{-1}A\right)^2$$

Block Triangular⁽²⁾:

$$M_{t_2} = \begin{pmatrix} \widetilde{M}_A & B^T \\ & -M_S \end{pmatrix}$$

Block SGS:

$$M_{u_2} = \begin{pmatrix} \widetilde{M}_A \\ B & -M_S \end{pmatrix}$$

$$M_g = \begin{pmatrix} I \\ B M_A^{-1} & I \end{pmatrix} \begin{pmatrix} \widetilde{M}_A \\ -M_S \end{pmatrix} \begin{pmatrix} I & M_A^{-1} B^T \\ I \end{pmatrix}$$

3. Relations between the precond.

Remark

The eigenvalues of $M_{+}^{-1}K$ are real (positive and negative) For all other prec., the eigenvalues have positive real part Theorem

(1)

$$\max_{\lambda \in \sigma \left(M_d^{-1} K \right)} |\lambda| \leq \max_{\lambda \in \sigma \left(M_+^{-1} K \right)} |\lambda|$$
$$\min_{\lambda \in \sigma \left(M_d^{-1} K \right)} |\lambda| \geq \min_{\lambda \in \sigma \left(M_+^{-1} K \right)} |\lambda|$$

3. Relations between the precond.

Remark

The eigenvalues of $M_{+}^{-1}K$ are real (positive and negative) For all other prec., the eigenvalues have positive real part Theorem

(1)

$$\max_{\lambda \in \sigma\left(M_d^{-1}K\right)} |\lambda| \leq \max_{\lambda \in \sigma\left(M_+^{-1}K\right)} |\lambda|$$
$$\min_{\lambda \in \sigma\left(M_d^{-1}K\right)} |\lambda| \geq \min_{\lambda \in \sigma\left(M_+^{-1}K\right)} |\lambda|$$

(2) $M_t^{-1}K$ and $M_u^{-1}K$ have the same spectrum

3. Relations between the precond.

Remark

The eigenvalues of $M_{+}^{-1}K$ are real (positive and negative) For all other prec., the eigenvalues have positive real part Theorem

(1)

$$\max_{\lambda \in \sigma\left(M_d^{-1}K\right)} |\lambda| \leq \max_{\lambda \in \sigma\left(M_+^{-1}K\right)} |\lambda|$$
$$\min_{\lambda \in \sigma\left(M_d^{-1}K\right)} |\lambda| \geq \min_{\lambda \in \sigma\left(M_+^{-1}K\right)} |\lambda|$$

(2) $M_t^{-1}K$ and $M_u^{-1}K$ have the same spectrum (3) $M_g^{-1}K$, $M_{t_2}^{-1}K$ and $M_{u_2}^{-1}K$ have the same spectrum

The real eigenvalues λ of $M_*^{-1}K$ satisfy: $\xi \leq \lambda \leq \overline{\xi}$			
$\underline{\mu} =$	$\lambda_{\min}\left(M_A^{-1}A ight)$	$\overline{\mu}=~\lambda_{ ext{max}}$	$\left(M_A^{-1}A\right)$
$\underline{\nu} =$	$\lambda_{\min}\left(M_S^{-1}S\right)$	$\overline{ u}=\lambda_{ ext{max}}$ ($\left(M_S^{-1}S\right)$
	<u>ξ</u>	$\overline{\xi}$	
M_d	$\min\left(\underline{\mu},\underline{ u} ight)$	$\max\left(\overline{\mu},\overline{ u} ight)$	
$\left. \begin{array}{c} M_u, M_t \\ (\overline{\mu} \leq 1) \end{array} \right\}$	$\min\left(\underline{\mu},\underline{\nu} ight)$	$\max\left(1,\overline{ u} ight)$	$\eta \approx 1$ $\widetilde{\eta} > \overline{\eta} \overline{\eta}$
M_u, M_t $(\overline{\mu} > 1)$	$\min\left(\underline{\mu},\eta^{-1}\underline{ u} ight)$	$\widetilde{ u}$	$\nu \leq \mu, \nu$ $\widetilde{\nu} \leq \overline{\mu}(\overline{\nu} + 1)$
M_f	$\min\left(\underline{\mu},\underline{ u} ight)$	$\max\left(\overline{\mu},\overline{ u} ight)$	$\rho_A = \rho \left(I - M_A^{-1} A \right)$
$\left.\begin{array}{c}M_{g}\\M_{u_{2}},\ M_{t_{2}}\end{array}\right\}$	$\min\left(1\!-\!\rho_A^2,\underline{\nu}\right)$	$\max\left(1,\overline{ u} ight)$ A new analysis of	block preconditioners for saddle point problems – p.11

ULB

The eigenvalues with nonzero imaginary part satisfy

 $\underline{\chi} \ \leq \ \Re \mathbf{e}(\lambda) \ \leq \ \overline{\chi} \ , \qquad |\Im_{\mathsf{m}}(\lambda)| \ \leq \ \delta \ , \qquad |\lambda-\zeta| \ \leq \ \zeta$

 $\mathbf{L}\mathbf{R}$

The eigenvalues with nonzero imaginary part satisfy $\underline{\chi} \leq \Re e(\lambda) \leq \overline{\chi}, \quad |\Im_m(\lambda)| \leq \delta, \quad |\lambda - \zeta| \leq \zeta$

ITR

The eigenvalues with nonzero imaginary part satisfy

ΠR

ULB

Comparison with bounds appeared previously:

Our estimates for real eigenalues are sharper (see below)

ULB

Comparison with bounds appeared previously:

- Our estimates for real eigenalues are sharper (see below)
- The bound in [Simoncini (2004)] for Block Triang.:

$$\Im_{\mathsf{m}}(\lambda) \neq 0 \qquad \Rightarrow \qquad |\lambda - 1| \leq \sqrt{1 - \underline{\mu}}$$

offers a useful complement.

Comparison with bounds appeared previously:

- Our estimates for real eigenalues are sharper (see below)
- The bound in [Simoncini (2004)] for Block Triang.:

 $\Im_{\mathsf{m}}(\lambda) \neq 0 \qquad \Rightarrow \qquad |\lambda - 1| \leq \sqrt{1 - \mu}$

offers a useful complement.

Ours analysis extends this result to Uzawa, and further to Block SGS, for which we get:

 $\Im_{\mathsf{m}}(\lambda) \neq 0 \qquad \Rightarrow \qquad |\lambda - 1| \leq \rho_A$

(via the equivalence between Block SGS and Block Triangular⁽²⁾)

Combining this with our bounds for real eigenvalues: Corollary Let

 $\rho_A = \rho \left(I - M_A^{-1} A \right), \qquad \rho_S = \rho \left(I - M_S^{-1} S \right)$

For Block Triang. & Uzawa, if $\overline{\mu} = \lambda_{\max} \left(M_A^{-1} A \right) \leq 1$ then:

$$\rho\left(I - M_t^{-1}K\right) = \rho\left(I - M_u^{-1}K\right) \leq \max\left(\sqrt{\rho_A}, \rho_S\right)$$

For block SGS:

$$\rho\left(I - M_g^{-1} K\right) \leq \max\left(\rho_A, \rho_S\right)$$

 \rightarrow

Stationnary Stokes problem on the unit square Ω Find velocity vector v and the kinematic pressure field p satisfying

$$-\Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$$

Dirichlet BC for v & FD MAC scheme

$$K = \begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$$

Further, with $M_S = I$,

 $\underline{\nu} \approx 0.25$ and $\overline{\nu} = 1$

 \rightarrow

Preconditioner for A

A block diagonal with each diag. block being a discrete Laplace operator

well approximated by any (algebraic) multigrid method

 \rightarrow

Preconditioner for A

A block diagonal with each diag. block being a discrete Laplace operator

well approximated by any (algebraic) multigrid method

AGMG efficient and as simple as (in Matlab):
 % Set up the preconditioner:
 > agmg(A,[],[],[],[],[],[],[],1);
 % Apply prec. to x, result in y:
 > y=agmg([],x,[],[],[],[],[],[],3);

Then:

ULB

Eigenvalue plot

Block Triang. & Uzawa

ULB

Eigenvalue plot

Block Approx. Fact.

Block SGS

Rescaling the preconditioner for *A*:

 $\underline{\mu} \approx 0.4 \alpha$ and $\overline{\mu} = \alpha$ Makes sense for Block Triang. & Uzawa

Rescaling the preconditioner for *A*:

 $\underline{\mu} \approx 0.4 \alpha$ and $\overline{\mu} = \alpha$ Makes sense for Block Triang. & Uzawa

Number of iterations to solve the system ($\alpha = 1.5$)					
32	512	1024			
43	59	62	-		
58	89	150	Krylov		
28	47	58			
30	61	57	MINRES for M_+		
21	29	37	GCR(15) in all		
19	23	26	other cases		
19	23	26			
20	26	28			
	 solve 32 43 58 28 30 21 19 19 20 	Solve the s3251243595889284730612129192319232026	solve the system3251210244359625889150284758306157212937192326192326202628		

• AGMG becomes a variable preconditioner for $h^{-1} > 32$

• M_d performs simially to M_+ if larger restart is chosen

	R
<u> </u>	

Number of iterations to solve the system ($\alpha = 1.5$)				
Preconditioner for A	AGMG		G	amg(ifiss 3.2)
h^{-1}	32	512	1024	512
Block Diag. ⁽⁺⁾ (M_+)	43	59	62	37
Block Diag. (M_d)	58	89	150	54
Block Triang. (M_t)	28	47	58	28
Inexact Uzawa (M_u)	30	61	57	28
Block Fact. (M_f)	21	29	37	25
Block SGS (M_g)	19	23	26	25
Block Triang. ⁽²⁾ (M_{t_2})	19	23	26	23
Inexact Uzawa ⁽²⁾ (M_{u_2})	20	26	28	25

Time to solve the system ($\alpha = 1.5$)

Preconditioner for A	AGMG		amg(ifiss 3.2)
h^{-1}	512	1024	512
Block Diag. $^{(+)}(M_+)$	16.0	17.2	28.0
Block Diag. (M_d)	26.8	49.0	40.8
Block Triang. (M_t)	15.0	19.5	21.5
Inexact Uzawa (M_u)	19.7	19.5	21.7
Block Fact. (M_f)	15.3	20.6	35.6
Block SGS (M_g)	11.8	14.0	35.3
Block Triang. ⁽²⁾ (M_{t_2})	11.2	13.5	32.0
Inexact Uzawa ⁽²⁾ (M_{u_2})	12.9	15.2	34.9

Elapsed time excluding set up in seconds per 10⁶ unknowns

Time to solve the system ($\alpha = 1.5$)

Preconditioner for A	AGMG		amg(ifiss 3.2)
h^{-1}	512	1024	512
Block Diag. $^{(+)}(M_+)$	16.4	17.7	5717.
Block Diag. (M_d)	27.2	49.5	5730.
Block Triang. (M_t)	15.4	19.9	5711.
Inexact Uzawa (M_u)	20.1	20.0	5711.
Block Fact. (M_f)	15.7	21.1	5725.
Block SGS (M_g)	12.2	14.4	5725.
Block Triang. ⁽²⁾ (M_{t_2})	11.6	13.9	5721.
Inexact Uzawa ⁽²⁾ (M_{u_2})	13.3	15.7	5724.

Total Elapsed time (inlcuding set up) in seconds per 10⁶ unknowns

All block preconditioners work well except perhaps M_d

IIIR

- All block preconditioners work well except perhaps M_d
- We are left with essentially three options:
 - postive definite block diagonal
 - block upper or lower triangular
 - block SGS

- All block preconditioners work well except perhaps M_d
- We are left with essentially three options:
 - postive definite block diagonal
 - block upper or lower triangular
 - block SGS
- What is the best scheme depends on the relative quality and cost of the preconditioners for A and S (Block SGS iterates twice on A)

- All block preconditioners work well except perhaps M_d
- We are left with essentially three options:
 - postive definite block diagonal
 - block upper or lower triangular
 - block SGS
- What is the best scheme depends on the relative quality and cost of the preconditioners for A and S (Block SGS iterates twice on A)
- There is in fact more to gain or loose in the choice of the preconditioner for the subproblems (M_A and M_S)

- All block preconditioners work well except perhaps M_d
- We are left with essentially three options:
 - postive definite block diagonal
 - block upper or lower triangular
 - block SGS
- What is the best scheme depends on the relative quality and cost of the preconditioners for A and S (Block SGS iterates twice on A)
- There is in fact more to gain or loose in the choice of the preconditioner for the subproblems (M_A and M_S)
- Be cautious with numerical results involving multigrid (especially: algebraic multigrid) and displaying only iteration counts

More details: reports available

Y. Notay, A new eigenvalue analysis of block preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and Carmen Rodrigo, A simple and efficient segregated smoother for the discrete Stokes equations

More details: reports available

Y. Notay, A new eigenvalue analysis of block preconditioners for saddle point problems

Francisco J. Gaspar, Y. Notay, Cornelis W. Oosterlee and Carmen Rodrigo, A simple and efficient segregated smoother for the discrete Stokes equations

Thank you for your attention !