
Efficient Iterative Solution of Large Linear Systems on

Heterogeneous Computing Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 1 april 2011 om 15:00 uur

door

Tijmen Pieter COLLIGNON
Master of Science Scientific Computing, Universiteit Utrecht

geboren te Haarlem

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. C. Vuik

Copromotor: Dr.ir. M.B. van Gijzen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. C. Vuik, Technische Universiteit Delft, promotor
Dr.ir. M.B. van Gijzen, Technische Universiteit Delft, copromotor
Prof.dr. D. Boley, University of Minnesota, USA
Prof.dr. D.B. Szyld, Temple University, USA
Prof.dr.ir. B. Koren, Universiteit Leiden
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft
Dr. G.L.G. Sleijpen, Universiteit Utrecht
Prof.dr.ir. C.W. Oosterlee, Technische Universiteit Delft, reservelid

Keywords: iterative methods, linear systems, preconditioning, asynchronous methods, parallel
computing, Grid computing, high performance computing, IDR(s), flexible methods, domain
decomposition, deflation

Efficient Iterative Solution of Large Linear Systems on Heterogeneous Computing Systems.
Dissertation at Delft University of Technology.
Copyright c© 2011 by T. P. Collignon
Typeset in LATEX

The work described in this thesis was financially supported by the Delft Centre for Computational
Science and Engineering (DCSE).

ISBN 978-94-91211-15-7

Acknowledgments

This dissertation concludes four years of intense scientific research in the numerical analysis
group at Delft University of Technology. It was an unforgettable experience and I learned many
valuable lessons, both personally and professionally. I would not have been able to finish such a
large body of work without the help of many people, who I want to thank here.

First of all, I want to mention that this PhD research was financially supported by the Delft
Centre for Computational Science and Engineering (DCSE). Also, this work is performed as
part of the research project “Development of an Immersed Boundary Method, Implemented on
Cluster and Grid Computers, with Application to the Swimming of Fish”, which is joint work
with Barry Koren and Yunus Hassen from CWI. The Netherlands Organisation for Scientific
Research (NWO) is gratefully acknowledged for the use of the DAS–3.

My most sincere gratitude goes to my daily supervisor and copromotor Martin van Gijzen.
His endless enthusiasm and constructive criticism made working with him a real pleasure. Martin
always managed to provide the perfect balance between freedom and supervision. If I am a better
scientist than before, it is largely due to Martin’s influence. I could truly not have asked for a
better supervisor.

The other person that I am greatly indebted to is my promotor prof.dr. Kees Vuik. He
provided invaluable feedback during the many meetings that we had. It was a true privilege
being able to work in his numerical analysis group.

I also thoroughly enjoyed working with dr. Gerard Sleijpen. He truly knows everything about
everything and I loved picking his brain for inspiration and knowledge. I also immensely enjoyed
our time together in Gifu and Tokyo with Yoshi and Emiko.

I was fortunate enough to have numerous inspiring conversations with Scott MacLachlan,
Jok Tang, and Peter Sonneveld. Their immense body of knowledge has helped me improve my
understanding of difficult mathematical material in many ways.

I want to thank my colleagues Barry Koren and Yunus Hassen from CWI for many construc-
tive meetings during the beginning of my PhD research. I only regret that our research paths
deviated somewhat towards the end. That is typical of being on the frontier of science, where it
is always hard to predict how things will go.

I thank from the bottom of my heart prof. Kuniyoshi Abe from Gifu Shotoku University
and prof. Emiko Ishiwata from Tokyo University of Science for being such excellent hosts during
my short but intense stay in Japan. I want to mention in particular some of Emiko’s students:
Akiko, Atsushi, Masaki, Kensuke, Tsubasa, Dai, Muran, and Hama–chan. The hospitality of all
these people extended far beyond the confines of the university walls and I had the privilege to
see numerous interesting things, not only in Gifu and in Tokyo but also in other parts of Japan.

I had the good opportunity to attend several international conferences in Poland, Switzerland,
France, Sweden, and Belgium. I thank my supervisors for giving me this chance to expand my
academic horizon. I especially want to mention the annual Woudschoten conferences in Zeist,
which were always a real pleasure attending.

iii

iv Acknowledgments

Without the invaluable assistance of the secretaries Diana Droog, Mechteld de Boer-van
Doorninck, Daniëlle Docter, and Deborah Dongor, my academic life much would have been much
more difficult. And whenever our own secretary was not available, Evelyn Sharabi, Dorothée
Engering, and Cindy Bosman were always there to fill in.

Kees Lemmens and Xiwei Wu were invaluable in providing and maintaining the excellent
computing facilities. I thank them for their continuous support.

It was a pleasure organising the excursion to Deltares in 2009 together with Peter Lucas and
Wim van Balen.

I want to thank Dick Epema and his (former) PhD students — in particular Alexandru Iosup
— from the Parallel and Distributed Systems group for the interesting discussions I had in the
many “Grid meetings”.

I would like to thank the GridSolve team for their prompt response pertaining to my questions
and also Stéphane Domas for his prompt and extensive responses pertaining to the CRAC
programming system. I also thank Hans Blom for information on the performance of the DAS–3
network system and Kees Verstoep for answering questions regarding DAS–3 inner workings.
Figure 1.6 is based on a figure kindly donated by Xu Lin and Paulo Anita kindly provided
information on the communication patterns induced by the algorithm on the DAS–3 cluster.
Paulo als helped me whenever a DAS–3 node gave me troubles.

I would also like to thank Rob Bisseling for careful proof–reading of the manuscript that
Chapter 2 was based on. Also, I thank the editors and anonymous referees for their constructive
criticism of the manuscripts, which considerably improved the presentation of each final paper.

On a more personal note, I thank all of the (former and current) people of the numerical
analysis group for providing such a pleasant working environment. First of all, the PhD re-
searchers Sander van Veldhuizen, John Brussche, Reijer Idema, Jok Tang, Fang Fang, Bowen
Zhang, Liangyue Ji, and Paulien van Slingerland. Also, the members of the (more) permanent
staff Peter Sonneveld, Fons Daalderop, Jos van Kan, Fred Vermolen, Duncan van der Heul,
Domenico Lahaye, Guus Segal, Kees Oosterlee, Jennifer Ryan, and Sergey Zemskov. I would
especially like to thank Liangyue Ji for introducing me to Chinese cooking and to Lao Gan Ma.

I want to mention in particular the people that I had the good fortune to share an office with.
In the beginning these were Sander van Veldhuizen and John Brussche, and later on Reijer Idema
and Pavel Prokharau. I thank them all for providing such a pleasant and effective distraction
from work. I can only hope that my future group of colleagues will be as pleasant as all these
people.

The daily lunch breaks with my colleagues were always a real pleasure, and I want to mention
in particular Miriam ter Brake and Jelle Hijmissen from the Mathematical Physics department.

I want to name a few of my fellow participants and friends (in no particular order) of the
PhDays weekends, which I attended and enjoyed immensely four years in a row: Arthur van Dam,
Albert–Jan Yzelman, Jeroen Wackers, Joris Vanbiervliet, Ricardo Jorge Reis Silva, Peter In ’t
Panhuis, Liesbeth Vanherpe, Katrijn Frederix, Bart Vandereycken, Samuel Corveleyn, Virginie
De Witte, Charlotte Sonck, Tinne Haentjens, Kim Volders, Eveline Rosseel, Yvette Vanberghen,
Ward Van Aerschot, Jeroen de Vlieger, and Yves Frederix.

My greatest debts are to my family. My father continues to encourage me, as does the
memory of my late mother. The support and affection of Congli have made this project an
odyssey and not a marathon. My brothers and sister are my greatest friends and I dedicate this
dissertation to them.

Tijmen Collignon
Delft, November 2010

Summary

Efficient Iterative Solution of Large Linear Systems on Het-
erogeneous Computing Systems

Tijmen P. Collignon

This dissertation deals mainly with the design, implementation, and analysis of efficient iterative
solution methods for large sparse linear systems on distributed and heterogeneous computing
systems as found in Grid computing.

First, a case study is performed on iteratively solving large symmetric linear systems on
both a multi–cluster and a local heterogeneous cluster using standard block Jacobi precondi-
tioning within the software constraints of standard Grid middleware and within the algorith-
mic constraints of preconditioned Conjugate Gradient–type methods. This shows that global
synchronisation is a key bottleneck operation and in order to alleviate this bottleneck, three
main strategies are proposed: exploiting the hierarchical structure of multi–clusters, using asyn-
chronous iterative methods as preconditioners, and minimising the number of inner products in
Krylov subspace methods.

Asynchronous iterative methods have never really been successfully applied to the solution
of extremely large sparse linear systems. The main reason is that the slow convergence rates
limit the applicability of these methods. Nevertheless, the lack of global synchronisation points
in these methods is a highly favourable property in heterogeneous computing systems. Krylov
subspace methods offer significantly improved convergence rates, but the global synchronisation
points induced by the inner product operations in each iteration step limits the applicability.
By using an asynchronous iterative method as a preconditioner in a flexible Krylov subspace
method, the best of both worlds is combined. It is shown that this hybrid combination of a
slow but asynchronous inner iteration and a fast but synchronous outer iteration results in high
convergence rates on heterogeneous networks of computers. Since the preconditionering iteration
is performed on heterogeneous computing hardware, it varies in each iteration step. Therefore,
a flexible iterative method which can handle a varying preconditioner has to be employed. This
partially asynchronous algorithm is implemented on two different types of Grid hardware applied
to two different applications using two different types of Grid middleware.

The IDR(s) method and its variants are new and powerful algorithms for iteratively solving
large nonsymmetric linear systems. Four techniques are used to construct an efficient IDR(s)
variant for parallel computing and in particular for Grid computing. Firstly, an efficient and
robust IDR(s) variant is presented that has a single global synchronisation point per matrix–
vector multiplication step. Secondly, the so–called IDR test matrix in IDR(s) can be chosen
freely and this matrix is constructed such that the work, communication, and storage involving
this matrix are minimised in the context of multi–clusters. Thirdly, a methodology is presented
for a priori estimation of the optimal value of s in IDR(s). Finally, the proposed IDR(s) variant

v

vi Summary

is combined with an asynchronous preconditioning iteration.
By using an asynchronous preconditioner in IDR(s), the IDR(s) method is treated as a flexible

method, where the preconditioner changes in each iteration step. In order to begin analysing
mathematically the effect of a varying preconditioning operator on the convergence properties
of IDR(s), the IDR(s) method is interpreted as a special type of deflation method. This leads
to a better understanding of the core structure of IDR(s) methods. In particular, it provides an
intuitive explanation for the excellent convergence properties of IDR(s).

Two applications from computational fluid dynamics are considered: large bubbly flow prob-
lems and large (more general) convection–diffussion problems, both in 2D and 3D. However, the
techniques presented can be applied to a wide range of scientific applications.

Large numerical experiments are performed on two heterogeneous computing platforms: (i)
local networks of non–dedicated computers and (ii) a dedicated cluster of clusters linked by a
high–speed network. The numerical experiments not only demonstrate the effectiveness of the
techniques, but they also illustrate the theoretical results.

Samenvatting

Efficiënte iteratieve oplosmethoden voor grote lineaire sys-
temen op gedistribueerde heterogene computersystemen

Tijmen P. Collignon

Deze dissertatie gaat over het ontwerpen, implementeren en analyseren van efficiënte iteratieve
oplosmethoden voor grote lineaire en ijle systemen op gedistribueerde heterogene computersys-
temen zoals bijvoorbeeld in Grid computing.

Als eerste is er een casestudy uitgevoerd waarbij iteratief grote symmetrische lineaire sys-
temen worden opgelost op zowel een globaal multicluster als een lokaal heterogeen cluster, ge-
bruikmakend van standaard blok Jacobi preconditionering. Hierbij is geprobeerd de limieten van
gestandaardiseerd Grid middleware en de limieten van de geconjugeerde gradiënten methode zo-
veel mogelijk op te rekken. Deze casestudy laat ondere andere zien dat globale synchronisatie
één van de grootste kritieke punten is. Om dit te verhelpen, worden er drie oplossingen voorge-
steld: het gebruikmaken van de hiërarchische structuur van multiclusters, het gebruikmaken van
asynchrone methoden en het minimalizeren van het aantal inprodukten in Krylov methoden.

Asynchrone methoden zijn nooit echt populair geweest voor het iteratief oplossen van ex-
treem grote lineaire systemen. De hoofdreden is dat deze methoden over het algemeen traag
convergeren. Desalniettemin is het ontbreken van globale synchronisatiepunten in zulke metho-
den een zeer gewaardeerde eigenschap in de context van heterogene computersystemen. Aan de
andere kant bieden Krylov methoden een aanzienlijke snelheidwinst, maar de inherente globale
synchronisatiepunten van zulke methoden maakt het lastig deze effectief toe te passen. Door
een asynchrone methode te gebruiken als preconditioneerder in een zogenaamde flexibele Krylov
methode wordt het beste van twee werelden gecombineerd. Het blijkt dat de hybride combina-
tie van een trage maar asynchrone binneniteratie en een snelle maar synchrone buiteniteratie
leidt tot een hoge convergentiesnelheden op heterogene netwerken van computers. Aangezien
de preconditionering onder andere wordt uitgevoerd op heterogene computerhardware, varieert
deze in iedere iteratiestap. Daarom is het noodzakelijk om een flexibele iterative methode te
gebruiken die een variabele preconditionering aankan. Deze gedeeltelijk asynchrone methode is
gëımplementeerd op twee verschillende soorts Grid computers, gebruikmakend van twee verschil-
lende Grid middleware en met twee verschillende soorten toepassingen.

De IDR(s) methode en zijn varianten zijn krachtige algoritmes voor het iteratief oplossen
van grote niet-symmetrische lineaire systemen. In deze dissertatie zijn vier technieken gebruikt
om een efficiente IDR(s) variant te construeren voor parallelle computers en dan met name
voor Grid computers. Als eerst wordt er een efficiënte en robuuste IDR(s) variant voorgesteld
met één globaal synchronisatiepunt. Als tweede wordt de zogenaamde testmatrix in IDR(s) zo
gekozen dat het rekenwerk, communicatie en opslag behorende bij operaties met deze matrix
zoveel mogelijk worden geminimaliseerd in de context van multiclusters. Als derde wordt een

vii

viii Samenvatting

techniek gepresenteerd voor het a priori schatten van de optimale waarde voor s in IDR(s). Ten
slotte wordt de voorgestelde IDR(s) variant gecombineerd met een asynchrone preconditionering.

Het feit dat een asynchrone methode als preconditioneerder wordt gebruikt in IDR(s), bete-
kent dat IDR(s) als een flexibele methode wordt behandeld. Hierbij wordt de preconditionering
in iedere iteratiestap aangepast. Om een begin te maken met het analyseren van het effect
van een variabele preconditionering op de convergentie van IDR(s), wordt de IDR(s) methode
gëınterpreteerd als een speciaal soort deflatiemethode. Dit leidt tot een beter begrip van de
structuur van IDR(s) methoden. Daarnaast geeft dit een idee waarom IDR(s) methoden vaak
zo goed convergeren.

Twee belangrijke toepassingen uit de numerieke stromingsleer zijn bekeken: stromingsproble-
men met bellen en (meer algemene) convectie–diffusie problemen. Beiden worden in 2D en 3D
behandeld. Echter, de technieken die worden gepresenteerd kunnen op uiteenlopende problemen
worden toegepast.

Grootschalige numerieke experimenten zijn uitgevoerd op twee heterogene computerplatfor-
men: lokale netwerken bestaande uit standaard PC’s en een groot cluster van meerdere clusters
verbonden door een supersnel netwerk. Deze experimenten hebben niet alleen als doel de effec-
tiviteit van de voorgestelde technieken te demonstreren, maar ook om de theoretische resultaten
te illustreren.

Contents

Acknowledgments iii

Summary v

Samenvatting vii

Contents ix

List of Figures xiii

List of Tables xv

1 Solving Large Linear Systems on Grid Computers 1
Part I: Efficient iterative methods in Grid computing 2

1.1 Introduction . 2
1.2 The problem . 4
1.3 Iterative methods . 6

1.3.1 Simple iterations . 6
1.3.2 Impatient processors: asynchronism . 7
1.3.3 Acceleration: subspace methods . 9

1.4 Hybrid methods: best of both worlds . 11
1.5 Some experimental results . 14

Part II: Efficient implementation in Grid computing 14
1.6 Introduction . 14
1.7 Grid middleware . 15

1.7.1 Description of GridSolve . 16
1.7.2 Description of CRAC . 18
1.7.3 MPI–based libraries . 19

1.8 Target hardware . 19
1.8.1 Local heterogeneous clusters . 19
1.8.2 DAS–3: “five clusters, one system” . 21

1.9 Coupled vs. decoupled inner–outer iterations . 21
1.10 Parallel iterative methods: building blocks revisited 22

1.10.1 Matrix–vector multiplication (or data distribution) 22
1.10.2 Preconditioning . 23
1.10.3 Convergence detection . 23
1.10.4 Vector operations . 24

1.11 Applications . 24

ix

x CONTENTS

1.12 Further reading . 25
Part III: General thesis remarks . 25

1.13 Related work and main contributions . 25
1.14 Scope and outline . 26
1.15 Notational conventions and nomenclature . 29

2 Conjugate Gradient Methods for Grid Computing 31
2.1 Introduction . 32
2.2 Heterogeneous sparse linear solvers in GridSolve 32

2.2.1 Motivation . 32
2.2.2 Resource–aware load balancing . 33
2.2.3 Partitioning algorithm and CG schemes 34
2.2.4 Implementation details . 36

2.3 Numerical experiments . 37
2.3.1 Overview . 37
2.3.2 Target hardware . 38
2.3.3 Preliminary testing . 38
2.3.4 Heterogeneous environment . 40
2.3.5 Parallel performance . 41

2.4 Concluding remarks . 42
2.4.1 Conclusions . 42
2.4.2 Suggestions for improvements . 43
2.4.3 General remarks . 43

3 Asynchronous Iterative Methods as Preconditioners 45
Part I: Coupled iterations . 46

3.1 Introduction . 46
3.2 Parallel implementation details . 47

3.2.1 Asynchronous preconditioning . 47
3.2.2 Orthogonalisation . 48

3.3 Numerical experiments . 49
3.3.1 Motivation . 49
3.3.2 Target hardware and experimental setup 50
3.3.3 Experimental results . 51
3.3.4 Discussion . 54
Part II: Decoupled iterations . 55

3.4 Introduction . 55
3.5 Parallel implementation details . 56

3.5.1 Brief description of GridSolve . 56
3.5.2 Decoupled iterations . 56

3.6 Numerical experiments . 58
3.6.1 Target hardware and experimental setup 58
3.6.2 Experimental results and discussion . 59
Part III: Deflation and smoothing . 61

3.7 Motivation . 61
3.8 Deflation methods . 62
3.9 Numerical experiments . 63
3.10 Using asynchronous iterative methods as smoothers 65
3.11 Conclusions . 67

CONTENTS xi

4 IDR(s) for Grid Computing 69
4.1 Introduction . 70
4.2 IDR(s) variant with one synchronisation point per MV 71
4.3 Parallelising IDR(s) methods . 79

4.4 Choosing s and R̃ . 79
4.4.1 Parallel performance models for IDR(s) 80

4.4.2 Using piecewise sparse column vectors for R̃ 82
4.5 Combining IDR(s) with asynchronous preconditioning 83
4.6 Numerical experiments . 84

4.6.1 Target hardware . 85
4.6.2 Test problem . 85
4.6.3 Estimating parameters of performance model 87
4.6.4 A priori estimation of optimal parameter s 88
4.6.5 Validation of the parallel performance model 89
4.6.6 Comparing the time per IDR(s) cycle to the performance model 90
4.6.7 Parallel speedup results . 91
4.6.8 Results for IDR(s) with asynchronous preconditioning 93

4.7 Conclusions . 94

5 IDR(s) as a Deflation Method 97
5.1 Introduction . 98
5.2 Relation between IDR and deflation . 99

5.2.1 IDR methods . 100
5.2.2 Deflation methods . 101
5.2.3 Interpreting IDR(s) as a deflation method 103
5.2.4 IDR algorithms . 107

5.3 The IDR projection theorem . 110
5.3.1 Single IDR(s) cycle . 110
5.3.2 Main result: IDR projection theorem . 111
5.3.3 Numerical examples . 112
5.3.4 Discussion . 113

5.4 Explicitly deflated IDR(s) . 114
5.4.1 Deflation vs. augmentation . 115
5.4.2 Choosing R̃ and ωk . 120
5.4.3 Numerical examples . 121

5.5 Conclusions . 122

6 General Conclusions and Outlook 123
6.1 Aim of research . 123
6.2 Research challenges and principal findings . 124
6.3 Broader implications . 125

Curriculum Vitæ 127

Scientific Résumé 129

Bibliography 133

Index 145

List of Figures

1.1 Depiction of the oceans of the world, divided into two computational subdomains. 6

1.2 Time line of a certain type of asynchronous algorithm, showing three Jacobi iter-
ation processes. 8

1.3 Three–stage iterative method: GMRESR—asynchronous block Jacobi—IDR(s). . 12

1.4 Experimental results asynchronous preconditioning. 14

1.5 Schematic overview of GridSolve. The dashed line represents (geographical) dis-
tance between the client and servers. 17

1.6 The DAS–3 multi–cluster. 20

2.1 Heterogeneous block–row partitioning for s = 4 and k = 8 for a 2D Poisson problem. 35

2.2 Wall clock times of CG implementations in GridSolve on the local cluster. 39

2.3 Breakdown of wall clock time of tasks in communication (bottom part) and com-
putation, for n = 4× 106 and using seven servers. 39

2.4 Heterogeneous experiments with the 3D bubbly flow problem (local cluster). . . . 41

2.5 Comparison of two preconditioning techniques (local cluster). 42

2.6 Comparison of two preconditioning techniques (DAS–3). 42

3.1 Total execution time (3D problem). 51

3.2 Relative increase of time per outer iteration step (3D problem). 52

3.3 Total execution time (2D problem). 54

3.4 Relative increase of time per outer iteration step (2D problem). 55

3.5 Experiments on a large heterogeneous cluster with 250,000 equations per server. 59

3.6 Jacobi sweeps performed by each server during outer iteration steps. 60

3.7 Point smoothers. 65

3.8 Smoothing for block Jacobi and for asynchronous iterations (A-BJ). 66

4.1 Varying preconditioner in IDR(s), shown for a single IDR cycle. 83

4.2 Estimating model parameters: n̂ and processor speed. 87

4.3 Performance model results for variants (i) and (ii) using 32 nodes per cluster. . . 90

4.4 Investigating s–dependence for s ∈ {1, . . . , 16} using 64 nodes, four sites, and fast
network. 91

4.5 Strong scalability results, scaled to number of iterations, n = 1283. 91

4.6 Strong scalability results, scaled to number of iterations, n = 2563. 92

4.7 Weak scaling experiments on the DAS–3. 93

4.8 A-synchronous preconditioning, total computing time (NC denotes ‘no conver-
gence’). 95

xiii

xiv LIST OF FIGURES

5.1 Left: solve AB−1y = x. Middle: premultiply y and u by B−1. Right: substitute
x = B−1y. 106

5.2 B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {2.9, 2.5, 2.2} for k = 0, 1, 2, 3. 113
5.3 B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {1} for all k. 114
5.4 Residual norms for IDR(s), n = 25, s = 5,B = I, showing primary “∗” and

secondary “◦” residuals. 121

List of Tables

1.1 Parallel and distributed computing on cluster and Grid hardware. 4
1.2 Main difficulties and possible solutions associated with designing efficient numer-

ical algorithms in Grid computing. 5
1.3 Several characteristics pertaining to three different types of (Grid) middleware. . 15
1.4 DAS–3: “five clusters, one system”. 20
1.5 Average roundtrip measurements (in ms) between several DAS–3 sites, with ex-

ception of the TUD site. 21
1.6 Overview of the iterative methods and middleware used in this thesis. 27
1.7 Notational conventions and nomenclature. Let A ∈ C

n×n and v ∈ C
n. 29

3.1 Differences in computational setting. 46
3.2 Influence of parameter m (Tmax = 5s, five nodes, 2D problem). 50
3.3 Outer iterations for synchronous and asynchronous preconditioning (3D problem). 53
3.4 Outer iterations for synchronous and asynchronous preconditioning (2D problem). 53
3.5 Number of outer iterations (3D problem). 64

4.1 Specifications DAS–3: all values (except WAN latencies) are obtained from [16]. 85
4.2 Processor grids and problem size for the strong scalability experiments. 86
4.3 Processor grids and problem sizes for the weak scalability experiments. 86
4.4 A priori estimation of s for the LU cluster. 88
4.5 A priori estimation of s for the DAS–3 multi–cluster. 89
4.6 Total number of iterations. 93

5.1 Extra computational cost per MV compared to “standard” IDR(s). 119

xv

List of Algorithms

1.1 (A–)synchronous block Jacobi iteration without overlap for solving Ax = b on p
processors. 8

1.2 The preconditioned Conjugate Gradient method [81]. 10
2.1 Resource–aware Preconditioned Conjugate Gradient Algorithm; s servers 34
2.2 Preconditioned CG; Task i with three subtasks. 36
2.3 Preconditioned CG; Chronopoulos and Gear variant; Task i. 37
3.1 Flexible Conjugate Gradients (pure truncation strategy) 47
3.2 Asynchronous block Jacobi iteration for CRAC task i. 48
3.3 Modified Gram–Schmidt. 49
3.4 GMRESR (truncated version) . 56
3.5 Classical Gram–Schmidt . 57
3.6 Asynchronous block Jacobi iteration task for each GridSolve server i. 57
3.7 Computation of u = Padef2rk . 63
3.8 Computation of Π̂y . 63
4.1 IDR(s)-biortho with bi–orthogonalisation of intermediate residuals. 73
4.2 IDR(s)-minsync with bi–orthogonalisation of intermediate residuals and with a

single synchronisation point per MV. 75
5.1 IDR(s) as a deflation method: generating a sequence of subspaces of Gk. 104
5.2 IDR(s) as a deflation method: a “traditional” listing. 108
5.3 IDR(s) as a deflation method: the IDR(s)-biortho variant from Algorithm 4.1. . 109
5.4 Computation of Πidr′y . 119
5.5 Computation of Πidr′y with special choice for R̃. 120

xvii

Chapter 1

Solving Large Linear Systems on
Grid Computers

This chapter has appeared as:

T. P. Collignon and M. B. van Gijzen. Parallel scientific computing on loosely coupled networks
of computers. In B. Koren and C. Vuik, editors, Advanced Computational Methods in Science
and Engineering. Springer Series Lecture Notes in Computational Science and Engineering, vol-
ume 71, pages 79–106. Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

1

2 Solving Large Linear Systems on Grid Computers

Overview

Efficiently solving large sparse linear systems on loosely coupled networks of computers is a rich
and vibrant field of research. The induced heterogeneity and volatile nature of the aggregated
computational resources present numerous algorithmic challenges. The design of efficient nu-
merical algorithms is therefore a complex process that brings together many different scientific
disciplines. This introductory chapter of the thesis is divided into three parts and whenever
appropriate specific references to other chapters are given.

The purpose of the first part (Section 1.1–1.5 starting on page 2) is to give a bird’s eye view of
the issues pertaining to designing efficient numerical algorithms for Grid computing and is aimed
at a general audience. The first part starts in Section 1.1 by giving a general introduction to
parallel computing and in particular to Grid computing. The discussion continues in Section 1.2
by clearly stating the problem and exposing the various bottlenecks, subsequently followed by the
presentation of potential solutions. Thus, the stage is set and Section 1.3 proceeds by detailing
classical iterative solution methods for linear systems, along with the concept of asynchronous
iterative methods. Although these type of methods exhibit features that are extremely well–
suited for Grid computing, they can also suffer from slow convergence speeds. In Section 1.4 it is
explained how asynchronous methods can be combined with faster but more expensive subspace
methods. The general idea is that by using an asynchronous method as a preconditioner, the
best of both worlds can be combined. The advantages and disadvantages of this approach are
discussed in minute detail. The first part is wrapped up in Section 1.5 by presenting some
illustrative experimental results using this partially asynchronous approach.

The second part (Section 1.6–1.12 starting on page 14) deals with more advanced topics and
contains discussions on the various intricacies related to efficiently implementing the proposed
algorithms on Grid computers. After giving some general remarks in Section 1.6, a description
is given in Section 1.7 of the three classes of so–called Grid middleware used in this thesis.
Section 1.8 discusses the two types of target hardware that are considered. Then, each building
block of a subspace method as discussed in the first part is revisited in Section 1.10 and put in
the context of parallelisation on Grid computers. The exposition of the second part is concluded
in Section 1.12 by giving suggestions for further reading.

In the last part (Section 1.13–1.15 starting on page 25) general statements concerning this
thesis are given. Section 1.13 discusses related work and gives the main contributions of this
thesis. In Section 1.14 the scope and outline of the thesis are given and in Section 1.15 the
notational conventions used in this thesis are listed.

Part I: Efficient iterative methods in Grid computing

1.1 Introduction

Solving extremely large sparse linear systems of equations is the computational bottleneck in a
wide range of scientific and engineering applications. Examples include simulation of air flow
around wind turbine blades, weather prediction, option pricing, and Internet search engines.
Although the computing power of a single processor continues to grow, fundamental physical laws
place severe limitations on sequential processing. This fact accompanied by an ever increasing
demand for more realistic simulations has intensely stimulated research in the field of parallel
and distributed computing. By combining the power of multiple processors and sophisticated
numerical algorithms, simulations can be performed that perfectly imitate physical reality.

Traditional parallel processing was and is currently performed using sophisticated super-

1.2. The problem 3

computers, which typically consist of thousands of identical processors linked by a high–speed
network. They are often purpose–built and highly expensive to operate, maintain, and expand.

A poor man’s alternative to massive supercomputing is to exploit existing non–dedicated
hardware for performing parallel computations. With the use of cost–effective commodity com-
ponents and freely available software, cheap and powerful parallel computers can be built. The
Beowulf cluster technology is a good example of this approach [121]. A major advantage of
such technology is that resources can easily be replaced and added. However, this introduces
the problem of dealing with heterogeneity, both in machine architecture and in network capabil-
ities. The problem of efficiently partitioning the computational work became an intense topic of
research [132].

The nineties of the previous century ushered in the next stage of parallel computing. With
the advent of the Internet, it became viable to connect geographically separate resources —
such as individual desktop machines, local clusters, and storage space — to solve very large–
scale computational problems. In the mid–1990s the SETI@home project was conceived, which
has established itself as the prime example of a so–called Grid computing project. It currently
combines the computational power of millions of personal computers from around the world to
search for extraterrestrial intelligence by analysing massive quantities of radio telescope data [5].

In analogy to the Electric Grid, the driving philosophy behind Grid computing is to allow
individual users and large organisations alike to access casu quo supply computational resources
without effort by plugging into the Computational Grid. Much research has been done in Grid
software and Grid hardware technologies, both by the scientific community and industry [65].

The fact that in Grid computing resources are geographically separated implies that com-
munication is less efficient compared to more tightly–coupled parallel hardware. As a result, it
is naturally suited for so–called embarrassingly parallel applications where the problem can be
broken up easily and tasks require little or no interprocessor communication. An example of
such an application is the aforementioned SETI@home project.

For the numerical solution of linear systems of equations, matters are far more complicated.
One of the main reasons is that inter–task communication is both unavoidable and abundant. For
this application, developing efficient parallel numerical algorithms for dedicated homogeneous
systems is a difficult problem, but becomes even more challenging when applied to heterogeneous
systems. In particular, the heterogeneity of the computational resources and the variability in
network performance present numerous algorithmic challenges. This chapter highlights the key
difficulties in designing such algorithms and strives to present efficient solutions.

One of the latest trends in parallel processing is Cell computing [84] and GPU comput-
ing [105]. Modern gaming consoles and graphics cards employ dedicated high–performance
processors for compute–intensive tasks, such as rendering high–resolution 3D images. In com-
bination with their inherent parallel design and cheap manufacturing process, this makes them
extremely appropriate for parallel scientific computing, in particular for problems with high data
parallelism [147]. The Folding@Home project is a striking example of an embarrassingly parallel
application where the power of many gaming consoles is used to simulate protein folding and
other molecular dynamics [64]. For a recent paper that use results from this project, see [99].

Nowadays, multi–core desktop computers with eight or more computing cores are becoming
increasingly mainstream. Many existing software products such as audio editors and computer
games cannot benefit from these additional resources effectively. Such software often needs to
be rewritten from scratch and this has also become an intensive topic of research [1].

4 Solving Large Linear Systems on Grid Computers

cluster computing Grid computing

local–area–networks wide–area networks
dedicated non–dedicated
special–purpose hardware aggregated resources
fast network slow network
synchronous communication asynchronous communication
fine–grain coarse–grain
homogeneous heterogeneous
reliable resources volatile resources
static environment dynamic environment

Table 1.1: Parallel and distributed computing on cluster and Grid hardware.

1.2 The problem

Large systems of linear equations arise in many different scientific disciplines, such as physics,
computer science, chemistry, biology, and economics. Their efficient solution is a rich and vibrant
field of research with a steady supply of important results. As the demand for more realistic
simulations continues to grow, the use of direct methods for the solution of linear systems
becomes increasingly infeasible. This leaves iterative methods as the only practical alternative.

The main characteristic of such methods is that at each iteration step, information from
one or more previous iteration steps is used to find an increasingly accurate approximation to
the solution. Although the design of new iterative algorithms is a very active field of research,
physical restrictions such as memory capacity and computational power will always place limits
on the type of problem that can be solved on a single processor.

The obvious solution is to combine the power of multiple processors in order to solve larger
problems. This automatically implies that memory is also distributed. Combined with the fact
that iterations may be based on previous iterations, this suggests that some form of synchroni-
sation between the processors has to be performed.

Accumulating resources in a local manner is typically called cluster computing. Neglecting
important issues such as heterogeneity, this approach ultimately has the same limitations as
sequential processing: memory capacity and computational power. The next logical step is to
combine computational resources that are geographically separated, possible spanning entire
continents. This idea gives birth to the concept of Grid computing. Ultimately, the price that
needs to be paid is that of synchronisation.

Table 1.1 lists some of the classifications that may be associated with cluster and Grid
computing, respectively. In reality, things are never as clear–cut as this table might suggest.
For example, a cluster of homogeneous and dedicated clusters connected by a network could
be considered a Grid computer. Vice versa, a local cluster may consist of computers that have
varying workloads, making the annotations ‘dedicated’ and ‘static environment’ unwarranted.

The high cost of global synchronisation is not the only algorithmic hurdle in designing efficient
numerical algorithms for Grid computing. In Table 1.2 the main problems are listed, along
with possible solutions. Clearly there are many aspects that need to be addressed, requiring
substantial expertise from a broad spectrum of scientific disciplines.

When designing numerical algorithms for general applications, a proper balance should be
found between robustness (predictable performance using few parameters) and efficiency (opti-
mal scalability, both algorithmic and parallel). At the risk of trivialising these two important

1.2. The problem 5

Difficulties and challenges Possible solution(s)

− Global synchronisation. In most op-
erations that require global synchronisation,
the data that is being exchanged is relatively
small compared to the communication over-
head, which makes this extremely expensive
in Grid environments. The most important
example is the computation of an inner prod-
uct.

− Coarse–grained. Communication is ex-
pensive, so the amount of computation should
be large in comparison to the amount of com-
munication.
− Asynchronous. Tasks should not have to
wait for specific information from other tasks
to become available. That is, the algorithm
should be able to incorporate any newly re-
ceived information immediately.
− Minimal synchronisation. Many iter-
ative algorithms can be modified in such a
manner that the number of synchronisation
points is reduced. These modifications in-
clude rearrangement of operations [37], trun-
cation strategies [50], and the type of re-
orthogonalisation procedure [48].

−Heterogeneity. Resources from many dif-

ferent sources may be combined, potentially
resulting in a highly heterogeneous environ-
ment. This can apply to things like machine
architecture, network capabilities, and mem-
ory capacities.

− Resource–aware. When dividing the
work, the diversity in computational hard-
ware should be reflected in the partitioning
process. Techniques from graph theory are
extensively used here [132].

− Volatility. Large fluctuations can occur
in things like processor workload, processor
availability, and network bandwidth. A huge
challenge is how to deal with failing network
connections or computational resources.

− Adaptive. Changes in the computa-
tional environment should be detected and
accounted for, either by repartitioning the
work periodically or by using some type of
diffusive partitioning algorithm [132].
− Fault–tolerant. The algorithm should
somehow be (partially) resistant to failing re-
sources in the sense that the iteration process
may stagnate in the worst case, but not break
down.

Table 1.2: Main difficulties and possible solutions associated with designing efficient numerical
algorithms in Grid computing.

issues, the ultimate numerical algorithm wish list for Grid computing contains the following addi-
tional items: coarse–grained, asynchronous, minimal synchronisation, resource–aware, adaptive,
and fault–tolerant. The ultimate challenge is to devise an algorithm that exhibits all of these
eight features. It is shown at the end of this chapter in Section 1.14 that the algorithms presented
in this thesis exhibit all of these features in some way or another.

Parallel scalability can be investigated in both the strong and weak sense. In strong scalability
experiments a fixed total problem size is used, while in weak scalability experiments a fixed
problem size per node is used. In this thesis, the parallel algorithms will be investigated in both
senses.

6 Solving Large Linear Systems on Grid Computers

Figure 1.1: Depiction of the oceans of the world, divided into two computational subdomains.

1.3 Iterative methods

The goal is to efficiently solve a large algebraic linear system of equations,

Ax = b, (1.1)

on large heterogeneous networks of computers. Here, A denotes the coefficient matrix, b repre-
sents the right–hand side vector, and x is the vector of unknowns.

1.3.1 Simple iterations

Given an initial solution x(0), the classical iteration for solving the system (1.1) is

x(k+1) = x(k) +B−1
(
b−Ax(k)

)
, k = 0, 1, . . . , (1.2)

where B−1 serves as an approximation for A−1. For practical reasons, solving systems involving
the matrix B should be cheap and this is reflected in the different choices for B. The simplest
option would be to choose the identity matrix for B, which results in the Richardson iteration,
e.g., [102]. Another variant is the Jacobi iteration, which is obtained by taking for B the diagonal
matrix having entries from the diagonal of A. Choices that in some sense better approximate
the matrix A tend to result in methods that converge to the solution in less iterations. However,

1.3. Iterative methods 7

inverting the matrix B will be more expensive and it is clear that some form of trade–off is
necessary.

The iteration (1.2) can be generalised to a block version, which results in an algorithm closely
related to domain decomposition techniques [118]. One of the earliest variants of this method was
introduced as early as 1870 by the German mathematician Hermann Schwarz. The general idea
is as follows. Most problems can be divided quite naturally into several smaller problems. For
example, problems with complicated geometry may be divided into subdomains with a geometry
that can be handled more easily, such as rectangles or triangles.

Consider the physical domain Ω shown in Figure 1.1. The objective is to solve some given
equation on this domain. For illustrative purposes, the domain is divided into two subdomains
Ω1 and Ω2. The coefficient matrix A, the solution vector x, and the right–hand side b are
partitioned into non–overlapping blocks as follows:

A =

[
A11 A12

A21 A22

]
, x =

[
x1

x2

]
, and b =

[
b1

b2

]
. (1.3)

The two matrices on the main diagonal ofA symbolise the governing equation on the subdomains
themselves, while the coupling between the subdomains is contained in the off–diagonal matrices
A12 and A21.

The block Jacobi iteration generalises the Jacobi iteration by taking for B the block diagonal
elements, giving

B =

[
A11 ∅
∅ A22

]
. (1.4)

This results in the following two iterations for the first and second domain respectively,

x
(k+1)
1 = x

(k)
1 +A−1

11

(
b1 −A11x

(k)
1 −A12x

(k)
2

)
;

x
(k+1)
2 = x

(k)
2 +A−1

22

(
b2 −A21x

(k)
1 −A22x

(k)
2

)
,

k = 0, 1, (1.5)

On a parallel computer, each complete subdomain can be mapped to a single processor and
these iterations may be performed independently for each iteration step k. This is followed by
a synchronisation point where information is exchanged between the processors. This so–called
synchronous variant of a block Jacobi iteration is shown in line 4 of Algorithm 1.1 for the general
case of p processors and/or subdomains. Here, A,x, and b are partitioned into non–overlapping
blocks as follows:

A =

A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App

 , x =

x1

x2

...
xp

 , and b =

b1

b2

...
bp

 . (1.6)

An extra complication is that the block matrices Aii located on the diagonal need to be
inverted. In practical implementations, these inner systems are often solved approximately by
some other iterative method. In this case, how accurately these systems should be solved becomes
an important issue.

1.3.2 Impatient processors: asynchronism

Asynchronous algorithms generalise simple iterative methods such as the classical block Jacobi
iteration and line 5 of Algorithm 1.1 shows an asynchronous block Jacobi iteration. Instead of

8 Solving Large Linear Systems on Grid Computers

Algorithm 1.1 (A–)synchronous block Jacobi iteration without overlap for solving Ax = b on
p processors.

output: Approximation x to Ax′ = b;
1: Choose x(0);
2: for k = 0, 1, . . . , until convergence do
3: for i = 1, 2, . . . , p do

4: Solve Aiix
(k+1)
i = bi −

p∑

j=1,j 6=i

Aijx
(k)
j // synchronous iterations

5: Solve Aiix
new
i = bi −

p∑

j=1,j 6=i

Aijx
old
j // a–synchronous iterations

6: end for
7: end for

Figure 1.2: Time line of a certain type of asynchronous algorithm, showing three Jacobi iteration
processes.

using the most recent information x(k) to compute x(k+1) at each iteration step k, a processor
now computes xnew using information xold that is available on the process at that particular
time. As a result, each separate block Jacobi iteration process may use out–of–date information,
but the lack of synchronisation points can potentially result in improved parallel performance.

In Figure 1.2 a graphical representation taken from [14] is given which illustrates some of the
important features of a particular type of asynchronous algorithm. Time is progressing from left
to right and communication between the three Jacobi iteration processes is denoted by arrows.
The erratic communication pattern is expressed by the varying length of the arrows. At the end of
an iteration step of a particular process, locally updated information is sent to its neighbour(s).
Vice versa, new information may be received multiple times during an iteration. However,
only the most recent information is included at the start of the next iteration step. In other
words, newly computed information is sent at the end of each iteration step and newly received
information is not used until the start of the next iteration step. Other kinds of asynchronous
communication are possible [19, 20, 46, 69, 92]. For example, asynchronous iterative methods

1.3. Iterative methods 9

exist where newly received information is immediately incorporated by the iteration processes.
Thus, the execution of the processes does not halt while waiting for new information to

arrive from other processes. As a result, it may occur that a process does not receive updated
information from one of its neighbours. Another possibility is that received information is
outdated in some sense. Also, the duration of each iteration step may vary significantly, caused
by heterogeneity in computer hardware, problem characteristics, and fluctuations in processor
workload.

Some of the main advantages of parallel asynchronous algorithms are summarised in the
following list.

(i) Reduction of the global synchronisation penalty. No global synchronisations are performed,
an operation that may be extremely expensive in a heterogeneous environment.

(ii) Efficient overlap of communication with computation. Erratic network behaviour may
induce complicated communication patterns. Computation is not stalled while waiting for
new information to arrive and more Jacobi iterations can be performed.

(iii) Coarse–grain. Techniques from domain decomposition can be used to effectively divide the
computational work and the lack of synchronisation results in a very attractive computation
to communication ratio.

In extremely heterogeneous computing environments, these features can potentially result in
improved parallel performance. However, no method is without disadvantages and asynchronous
algorithms are no exception. The following list gives an overview of the various difficulties and
bottlenecks.

(i) Suboptimal convergence rates. It is well–known that block Jacobi–type methods exhibit
slow convergence rates. Furthermore, processes perform their iterations based on poten-
tially outdated information. Consequently, it is conceivable that important characteristics
of the solution may propagate rather slowly throughout the domain. Furthermore, the
iteration may even diverge in some cases.

(ii) Non–trivial convergence detection. Although there are no inherent synchronisation points,
knowing when to stop may require a form of global communication at some point.

(iii) Fault–tolerance issues. If a Jacobi process is killed, the complete iteration process will break
down. On the other hand, a process may become temporarily unavailable for some reason
(e.g., due to network problems). Although this could delay convergence, the complete
iteration process would resume upon reinstatement of said process.

(iv) Load balancing difficulties. Since the Jacobi processes can perform their computations
practically independently of each other, dividing the computational work evenly may ap-
pear less important. However, significant desynchronisation of the iteration processes could
negatively impact convergence rates. Therefore, some form of (possibly resource–aware)
load balancing may still be appropriate.

In the next section it is shown how these disadvantages of asynchronous iterative methods are
addressed in this thesis.

1.3.3 Acceleration: subspace methods

The main disadvantages of both synchronous and asynchronous block Jacobi–type iterations are
that they suffer from slow convergence rates and that they only converge under certain strict

10 Solving Large Linear Systems on Grid Computers

Algorithm 1.2 The preconditioned Conjugate Gradient method [81].

input: Choose x0 and preconditioner B; Compute r0 = b−Ax0

output: Approximate solution x to Ax′ = b

1: for k = 1, 2, . . . do
2: Solve Bzk−1 = rk−1 // Preconditioning
3: Compute ρk−1 = r∗k−1zk−1

4: if k = 1 then
5: Set p1 = z0
6: else
7: Compute βk−1 = ρk−1/ρk−2

8: Set pk = zk−1 + βk−1pk−1

9: end if
10: Compute qk = Apk // Matrix–vector multiplication
11: Compute αk = ρk−1/p

∗
kqk

12: Set xk = xk−1 + αkpk

13: Set rk = rk−1 − αkqk

14: if converged then stop // Convergence detection
15: end for

conditions. These methods can be improved significantly as follows. Using a starting vector x0

and the initial residual r0 = b−Ax0, iteration (1.2) may be rewritten as

uk−1 = B−1rk−1, ck = Auk−1, xk = xk−1 + uk−1, rk = rk−1 − ck, k = 1, 2, (1.7)

Instead of finding a new approximation xk using information solely from the previous iteration
step k − 1, subspace methods operate by iteratively constructing some special subspace and
extracting an approximate solution from this subspace. The key difference with classical methods
is that information is used from several previous iteration steps, resulting in more efficient
methods. This is accomplished by performing projections, which suggests that inner products
need be to computed. This operation requires global synchronisation. This is a very expensive
operation in the context of Grid computing and should be avoided as much as possible. This
makes subspace methods less suitable to Grid computing.

Some popular subspace methods are: the Conjugate Gradient (CG) method [81], GCR [60],
GMRES [104], Bi–CGSTAB [136], and the recently proposed IDR(s) method [120]. Purely
for illustrative purposes, the so–called preconditioned Conjugate Gradient method is listed in
Algorithm 1.2, which is designed for symmetric positive definite systems.

Generally speaking, subspace methods consist of four key building blocks, which can be
identified as follows. The line numbers given below refer to line numbers of the preconditioned
CG algorithm in Algorithm 1.2.

(i) Matrix–vector multiplication (line 10). Generally speaking, this is the most computation-
ally expensive operation in each iteration step. Therefore, the total number of iterations
until convergence is a measure for the total cost of a particular method. However, in the
context of Grid computing, the inner product is the bottleneck operation. In subspace
methods, at least one inner product is performed in each iteration step, so for this case the
number of iteration steps is also a measure for the total cost.

(ii) Preconditioning (line 2). The matrixB in iteration (1.7) is called a preconditioner. As men-
tioned in Section 1.3.1, the art of preconditioning is to find the optimal trade–off between

1.4. Hybrid methods: best of both worlds 11

the cost of solving systems involving the preconditioning matrix B and the “effectiveness”
of the newly obtained update for the iterate.

(iii) Convergence detection (line 14). Normally speaking, an iterative method has converged
when the norm of the residual has reached zero. However, checking for convergence is not
entirely trivial. This has two main reasons: (i) the recursively computed residual rk does
not necessarily have to resemble the true residual b −Axk, and (ii) computing the norm
of the residual ||rk|| requires the evaluation of an inner product, which is a potentially
expensive operation.

(iv) Vector operations (remaining lines). These include the inner products and the vector
updates. Note that classical iterative methods lack inner products.

In many applications, finding an efficient preconditioner is more important than choosing
some particular subspace method. Therefore, it is advantageous to put much effort in finding
an efficient preconditioner. A popular choice is to use so–called incomplete factorisations of the
coefficient matrix as preconditioners, e.g., ILU and Incomplete Cholesky [102]. Another well–
known strategy is to find an approximate solution ε to Aε = rk by performing one or more
iteration steps of some iterative method, such as IDR(s). Algorithms that use such a strategy
are known as inner–outer methods.

A direct consequence of the latter approach is that the preconditioning step may be performed
inexactly. Unfortunately, some subspace methods may break down if a different precondition-
ing operator is used in each iteration step. An example is the aforementioned preconditioned
Conjugate Gradient method. Subspace methods that can handle a varying preconditioner are
called flexible, e.g., FQMR [123], GMRESR [137], FGMRES [103], and flexible Conjugate Gradi-
ents [6, 96, 110]. A major disadvantage of most flexible methods is that they can incur additional
overhead in the form of inner products.

1.4 Hybrid methods: best of both worlds

The potentially large number of synchronisation points in subspace methods make them less suit-
able for Grid computing. On the other hand, the improved parallel performance of asynchronous
algorithms make them perfect candidates.

To reap the benefits and awards of both techniques, we propose to use an asynchronous
iterative method as a preconditioner in a flexible iterative method. By combining a slow but
coarse–grain asynchronous preconditioning iteration with a fast but fine–grain outer iteration,
it is shown in Chapter 3 of this thesis that this results in an effective method for solving large
sparse linear systems on Grid computers.

For example, in Chapter 3 the flexible method GMRESR is used as the outer iteration and
asynchronous block Jacobi is used as the preconditioner. The local subdomains in the precondi-
tioning iteration are solved inexactly using the preconditioned IDR(s) method. Figure 1.3 shows
a graphical representation of the resulting three–stage inner–outer method.

The proposed partially asynchronous algorithm exhibits many of the features that are on the
wish list from Table 1.2 in Section 1.2. These include the following items.

• Coarse–grain. The asynchronous preconditioning iteration can be efficiently performed on
Grid hardware with the help of domain decomposition techniques.

• Minimal synchronisation. By devoting the bulk of the computing time to preconditioning,
the number of expensive global synchronisations can be reduced significantly.

12 Solving Large Linear Systems on Grid Computers

− target precision ǫouter

− update solution xk+1 = xk + uk

− maximum Tmax seconds

− evaluate uk = M(rk)
Asynchronous block Jacobi iteration:

− local subdomain solves

− independent and inexact

A22u = yA11u = y

A33u = y

Preconditioned IDR(s):

GMRESR:

Aiiu = v

Figure 1.3: Three–stage iterative method: GMRESR—asynchronous block Jacobi—IDR(s).

• Asynchronous. Within the preconditioning iteration asynchronous communication is used,
allowing for efficient overlap of communication with computation. In theory, the outer
iteration process does not need to halt while waiting for a new update to arrive. It may
continue to iterate until a new complete update can be incorporated.

• Resource–aware and adaptive. Experimental results indicate that the asynchronous pre-
conditioning iteration is robust with respect to variations in network load.

In addition, the proposed method has several favourable properties.

• Flexible and extendible iteration scheme. The algorithm allows for many different imple-
mentation choices. For example, nested iteration schemes may be used. That is, it could
be possible to solve a sub–block from a block Jacobi iteration step in parallel on some
distant non–dedicated cluster. Another possibility is that the processors that perform
the preconditioning iteration do not need to be equal to the nodes performing the outer
iteration, resulting in a decoupled iteration approach (Section 1.9).

• The potential for efficient multi–level preconditioning. The spectrum of a coefficient matrix
is the set of all its eigenvalues. Generally speaking, the speed at which a problem is
iteratively solved depends on three key things: the iterative method, the preconditioner,
and the spectrum of the coefficient matrix. The second and third component are closely
related in the sense that a good preconditioner should transform (or precondition) the linear
system into a problem that has a more favorable spectrum. Many important large–scale
applications involve solving linear systems that have unfavourable spectra, which consist
of many large and many small eigenvalues. The large eigenvalues can be efficiently handled

1.4. Hybrid methods: best of both worlds 13

by the asynchronous iteration. On the other hand, the small and more difficult eigenvalues
require advanced preconditioners, which can be neatly incorporated in the outer iteration.
In this way, both small and large eigenvalues may be efficiently handled by the combined
preconditioner. This is just one example of the possibilities.

Using this hybrid approach, the drawbacks of asynchronous iterative methods mentioned in
Section 1.3.2 on page 9 are addressed as follows in this thesis.

(i) Problem: Suboptimal convergence rates. Solution: By using a (flexible) subspace method
as the outer iteration, the asynchronous iteration is accelerated significantly.

(ii) Problem: Non–trivial convergence detection. Solution: By spending a fixed amount of
time on preconditioning in each outer iteration step, there is no need for a — possibly
complicated and expensive — convergence detection algorithm in the asynchronous pre-
conditioning iteration.

(iii) Problem: Fault–tolerance issues. Solution: In the preconditioning phase, each server iter-
ates on a unique part of the vector u. In heterogeneous computing environments, servers
may become temporarily unavailable or completely disappear at any time, potentially re-
sulting in loss of computed data. If the asynchronous process is used to solve the main linear
system, these events would either severely hamper the convergence process or terminate
the convergence process completely. Either way, by using the asynchronous iteration as a
preconditioner — assuming that the outer iteration is performed on reliable hardware —
the whole iteration process may temporarily slow down in the worst case, but is otherwise
unaffected.

(iv) Problem: Load balancing difficulties. Solution: The fact that the asynchronous precondi-
tioner can adapt to changes in network load suggests that the (possible) desynchronisation
of the Jacobi processes does not significantly affect the global convergence rate.

The two remaining but essential issues are robustness and efficiency.

• Robustness issues. It is well–known that block Jacobi–type methods are slowly conver-
gent for a large number of subdomains (i.e., processors). This problem is addressed in
Chapter 3, where a coarse–grid correction is combined with the asynchronous iteration,
resulting in a two–level preconditioning method [118]. Nevertheless, there are still several
parameters which have a significant impact on the performance of the complete iteration
process. Determining the optimal parameters for a specific application may be a difficult
issue. For example, finding the ideal amount of time to spend on preconditioning can be
highly problem–dependent. Furthermore, it may be advantageous to vary the amount of
preconditioning in each iteration step.

• Algorithmic and parallel efficiency issues. The preconditioning operator varies in each
outer iteration step, which implies that a flexible method has to be used. Not only can
this introduce additional overhead in the outer iteration, the outer iteration has to be
able to cope with a varying preconditioning operator in each iteration step. Therefore,
variable preconditioning is an important theme in this thesis. For older methods such as
CG and GMRES, this issue has been investigated extensively. However, to which extent
the new IDR(s) method can cope with a varying preconditioner is an open problem and is
investigated experimentally in Chapter 5. Also, in order to avoid potential computational
bottlenecks, the outer iteration has to be performed in parallel as well.

14 Solving Large Linear Systems on Grid Computers

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

outer iteration number

n
u

m
b

e
r

o
f

J
a

c
o

b
i
s
w

e
e

p
s

(a) Effect of heterogeneity in computational environ-
ment on number of Jacobi iterations.

0 500 1000 1500 2000 2500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

elapsed time (in seconds)

lo
g
(r

e
s
id

u
a
l)

synchronous
a−synchronous

(b) Comparing synchronous and asynchronous precon-
ditioning.

Figure 1.4: Experimental results asynchronous preconditioning.

1.5 Some experimental results

In order to give a general idea on the effect a heterogeneous computing environment may have
on the performance of the proposed algorithm, two illustrative experiments will be presented.

Figure 1.4(a) shows the effect heterogeneity can have on the number of asynchronous Jacobi
iterations performed on each server. This experiment is performed using ten servers on a large
heterogeneous and non–dedicated local cluster during a typical workday. The figure shows the
number of Jacobi iterations — broken down for each server — performed during each outer
iteration step. Here, a fixed amount of time is devoted to each preconditioning step. After the
sixth outer iteration several nodes began to experience an increased workload. The effect of the
variability in computational environment on the number of Jacobi iterations is clearly visible.

In the second experiment a comparison in execution time is made between using synchronous
preconditioning and asynchronous preconditioning to illustrates the potential gain of desynchro-
nising part of a subspace method. The problem to be solved consists of one million equations
using four servers within a heterogeneous computing environment. Figure 1.4(b) shows the exe-
cution time versus the 10–log norm of the residual. Each point represents an (expensive) outer
iteration step (i.e., a GCR step). By devoting a relatively large (and fixed) amount of time to
asynchronous preconditioning, the number of outer iterations is reduced considerably, cutting
the total execution time nearly in half.

These experiments conclude the first and general part of this chapter. The second part of
the chapter contains more advanced topics and deals with specific implementation issues.

Part II: Efficient implementation in Grid computing

1.6 Introduction

The implementation of numerical methods on Grid computers is an involved process that com-
bines many concepts from mathematics, computer science, and physics. In the second part of
this chapter the various facets of the whole process will be discussed in detail.

1.7. Grid middleware 15

Open MPI CRAC GridSolve

low–level language mid–level language high–level language
expert users advanced users novice users
general hardware dedicated hardware non–dedicated hardware
general communication direct communication bridge communicaton
general algorithms asynchronous algorithms task farming
general applications coarse–grain applications embarrassingly parallel
general data distributions data persistence non–persistent data
potentially fault–tolerant no fault–tolerance fault–tolerant
extendible semi–extendible mostly non–extendible
message passing message passing remote procedure call
coupled iterations coupled iterations decoupled iterations

Table 1.3: Several characteristics pertaining to three different types of (Grid) middleware.

At least four key ingredients can be distinguished when implementing numerical algorithms
on Grid computers: (i) the Grid middleware (Section 1.7), (ii) the target hardware (Section 1.8),
(iii) the numerical algorithm (Section 1.10), and last but not least, (iv) the application (Sec-
tion 1.11). A particular component can greatly affect the remaining components. For example,
some middleware may not be suitable for a particular type of hardware. Another possibility is
that some applications require that specific features are present in the algorithm.

The discussion in this part will take place within the general framework of the proposed
approach mentioned in the first part, i.e., a flexible subspace method in combination with an
asynchronous iterative method as a preconditioner. As argued, this algorithm possesses many
features that make it perfectly suitable for Grid computing.

1.7 Grid middleware

One of the primary components in Grid computing is the Grid middleware (or Grid program-
ming environment), which serves as the software layer between the user and the computational
resources. The Grid middleware should facilitate client access to (possibly) remote resources and
should deal with issues like heterogeneity and volatility. In which manner and to what extent
the middleware handles these important issues depends on the type of middleware.

Although Grid middleware comes in many different shapes and sizes, the focus in this thesis
will be on three examples, which are GridSolve [58, 154], CRAC [47] and Open MPI [71]. Grid-
Solve is a distributed programming system that uses a client–server model for solving problems
remotely on global networks. The CRAC library is specifically designed for efficient implemen-
tation of parallel asynchronous iterative algorithms on a cluster of clusters. Lastly, the Open
MPI library is a widely–used implementation of the message–passing interface (MPI) standard.

These three middleware were chosen because they represent different types of programming
models. The diversity is exemplified in Table 1.3, which lists some prototypical classifications
pertaining to these three middleware. Some of these classifications are related to each other
in the sense that some types of middleware are better suited for particular applications than
others. For example, the bridge communication used in GridSolve would make it more ap-
propriate for embarrassingly parallel problems. Note that both CRAC and Open MPI employ
a message–passing programming model, while GridRPC uses the remote procedure call (RPC)
programming model. Other important examples of Grid programming environments are GAT [3]

16 Solving Large Linear Systems on Grid Computers

and ASSIST [2].

In this thesis, GridSolve, CRAC, and the Open MPI library are all used to implement parallel
algorithms on Grid computers. In this context, GridSolve can be seen as a high–level program-
ming language, while the Open MPI library can be viewed as a low–level programming language.
The CRAC library can be considered as an inbetween. The apparent disadvantage of using a
low–level library such as Open MPI is that functionalities important in Grid computing are often
not readily available. For example, features like secure communication, detecting the availability
of nodes, workload detection, and scheduling of processes.

The main reasons for choosing GridRPC were that is a standard for programming on Grid
environments and that it is intended for implementing numerical algorithms on Grid computing.
In addition, CRAC was chosen since it is designed for implementing (partially) asynchronous
methods on a cluster of clusters, which is one of the two types of target hardware considered in
this thesis. Finally, Open MPI was chosen for its flexibility and for its wide–spread availability.

In the following, descriptions of GridSolve, CRAC, and MPI–based libraries such as Open
MPI will be given.

1.7.1 Description of GridSolve

GridSolve is a distributed programming system which uses a client–server model for solving
complex problems remotely on Grid resources. It is an instantiation of the GridRPC model, a
standard for a Remote Procedure Call (RPC) mechanism on Grid computers [109]. The GridRPC
Application Programming Interface (API) is defined within the Global Grid Forum [89]. Other
projects that implement the GridRPC API are DIET [34], NetSolve [108], Ninf–G [125], and
OmniRPC [106].

Software environments such as GridSolve are often called Network Enabled Servers (NES).
These systems typically consist of six components: clients, agents, servers, databases, monitors,
and schedulers. We will elaborate on the specific details of these components in the context
of version 0.17.0 of GS (see Figure 1.5). The GS servers (i.e., component 3 in Figure 1.5) are
software components that are started on each computational node which may consist of a single
CPU or a cluster. The server monitors the workload of the node and keeps an updated list of the
services (or tasks) that are installed on the server. For example, a task can be a matrix–matrix
multiplication or a parallel MPI job. Services can be added or modified without restarting the
server.

A single GridSolve agent (component 2) actively monitors the server properties such as CPU
speed, memory size, computational services, and availability. These properties are stored in a
database on the agent node and are periodically updated. When a GridSolve client program
(component 1) written in either C, Fortran, or Matlab uses the GridRPC API to initiate a GS
call to a remote problem, the GS middleware first contacts the agent.

Based on the problem complexity, size of the input parameters, and the available computa-
tional resources, the agent then returns a list of servers sorted by minimum completion time.
The client resorts the list after performing a quick network performance test. Input parameters
are sent to the first server on the list and the task, which can be either blocking or non–blocking,
is executed on the server. The result (if any) is then sent back to the client. If a task should fail
it is transparently resubmitted to the next server on the list.

In order to determine the completion time of a particular task on server s, the total flop
count of the problem is divided by the effective speed of the server. The latter is calculated using

sflops × sncpu
sworkload

100 + 1
, (1.8)

1.7. Grid middleware 17

Figure 1.5: Schematic overview of GridSolve. The dashed line represents (geographical) distance
between the client and servers.

where sflops is the speed of server s in flops determined by multiplication of two dense matrices
of fixed size, sncpu is the number of CPUs in the node, and sworkload ∈ [0, 100] denotes the
periodically updated workload. This means that if a server is fully occupied, the server can be
used effectively half of the time, which is a realistic assumption.

The main advantages of GridSolve are that it is easy to use, install, maintain, and that it is
a standard for programming on Grid environments. It allows for convenient access to advanced
remote computational resources. Furthermore, fault–tolerance is supported through a simple but
effective mechanism. Nevertheless, the current implementation has several obvious limitations.
For example, the remote servers cannot communicate directly, which imposes a severe constraint

18 Solving Large Linear Systems on Grid Computers

on the type of applications that can be efficiently solved using the current implementation of
GridSolve. It is therefore naturally suited for coarse–grained applications such as parametric
studies and ‘embarrassingly parallel’ problems. In contrast, traditional parallel iterative solvers
are inherently fine–grained and much research needs to be performed before iterative solvers can
be efficiently applied in Grid computing.

In the current GridSolve model, separate tasks communicate data through the client, result-
ing in bridge communication. As a result, input and output data associated with a task are
continuously being sent back and forth between the client and the server using a possibly slow
network connection. Also, any data that is read or generated locally during the execution of a
task is lost after it finishes. Several strategies such as data persistence and data redistribution
have been proposed to tackle these deficiencies for different implementations of the GridRPC
API [33, 30, 88, 156, 51, 29]. Furthermore, a proposal for a Data Management API within the
GridRPC is currently being developed.

In GridSolve there is currently a partial solution to the data management problem called
the Distributed Storage Infrastructure (DSI). At the Logistical Computing and Internetworking
(LoCI) Laboratory of the University of Tennessee the IBP (Internet Backplane Protocol) mid-
dleware has been developed based on this approach [21]. To avoid multiple transmissions of the
same data between the client and the server, the client can upload data to an IBP data depot
which is in close proximity to the computational servers. Subsequently a data handle is sent to
the server and the task can fetch and update the data on the IBP depot (component 4). Using
the DSI can be considered as programming for a shared memory model.

An approach similar to [30] in which the RPC model of NetSolve is extended to include
communication between remote servers has been developed for GridSolve [29].

1.7.2 Description of CRAC

The Grid middleware CRAC (Communication Routines for Asynchronous Computations) was
developed by Stéphane Domas at Laboratoire d’Informatique de Franche–Comté (LIFC) and is
specifically designed for easy implementation of (partially) asynchronous iterative algorithms [47,
46]. It allows for direct communication between the processes, both synchronous and asyn-
chronous. The middleware provides a small set of simple communication primitives, which
greatly facilitates the implementation of (partially) asynchronous iterative algorithms.

The CRAC library is primarily intended for dedicated parallel hardware consisting of geo-
graphically separated computational resources. For this reason there are no facilities for detect-
ing properties like varying workload or other types of heterogeneity in computational hardware.
However, the object–oriented approach of the software ensures that such functionalities can be
easily incorporated.

In the context of asynchronous iterative algorithms and heterogeneous environments, mes-
sages do not necessarily arrive in the same order as they were sent. Furthermore, iteration pro-
cesses can desynchronise considerably and it may happen that updated information is received
multiple times during a local iteration step. To properly handle these events, CRAC employs
so-called message crunching , which is a technique to ensure that a process always operates on
the most recent local data.

In the current version of CRAC (v1.0, May 2008), resources that fail completely will cause the
complete application to abort. On the other hand, a resource that is temporarily unavailable
might not necessarily destroy the iteration process. It is the responsibility of the algorithm
designer to make sure that such an event does not result in stagnation. Furthermore, it is not
yet possible to add or remove computational resources during an iteration process.

1.8. Target hardware 19

1.7.3 MPI–based libraries

The Open MPI library is a freely available implementation of the MPI–2 standard [71]. Although
Open MPI and most other MPI implementations have functionalities for handling asynchronous
and non–blocking communication, it lacks specific features such as message crunching as pro-
vided by CRAC. For a more extensive description of the MPI communication protocol, see for
example [74, 73].

Special MPI–based libraries exist for running parallel applications in heterogeneous comput-
ing environments. For example, MPICH–G2 is a reference MPI implementation that is designed
for running MPI applications in Grid environments [85]. It builds on the Grid software infrastruc-
ture provided by the Globus Toolkit [66]. Another MPI–based implementation that is tailored
to heterogeneous networks of clusters is MPICH–Madeleine [90]. For real–world applications on
Grid hardware that use MPICH–G2, see [150, 149, 28, 54, 93].

1.8 Target hardware

Numerous computing platforms exist that can be qualified as Grid computing hardware. How-
ever, in this thesis the focus will be on the following two types of architectures:

(i) Local networks of non–dedicated computers associated with organisations, such as univer-
sities and companies. These networks typically consist of the computers used daily by
employees. Such hardware may considerably differ in speed, memory size, and availability.
Examples of such clusters are the local networks at the Numerical Analysis group at Delft
University of Technology.

(ii) Dedicated cluster of clusters linked by a high–speed network. For example, the Dutch DAS–
3 national supercomputer is a multi–cluster of five geographically separated clusters. It is
designed for dedicated parallel computing and although each cluster separately is homoge-
neous, the system as a whole can be considered heterogeneous.

The Grid middleware best suited to type (i) is GridSolve, while CRAC is more suitable to type
(ii). Although the low–level nature of the Open MPI library allows it to be used on any type of
architecture, it requires considerable programming effort. In the following, specific details will
be given on the two types of architectures used in this thesis.

1.8.1 Local heterogeneous clusters

The first local cluster of the Numerical Analysis group at Delft University of Technology is a
multi–user system and is moderately heterogeneous in design, consisting of twelve nodes: six Intel
2.20 GHz machines, two Intel 2.66 GHz machines, and four AMD Athlon 2.20 GHz machines.
The nodes are equipped with memory in the range 2–4 GB and the cluster is interconnected
through 100 MB/s Ethernet links.

The second local cluster consists of ten single core (AMD Athlon 64 Processor 3700 at
2.4GHz) and two dual core CPU nodes (Intel Core 2 CPU 6700 at 2.66GHz) with 3 GB and 8
GB of memory respectively and running Linux 2.6.

Since the clusters are used by employees for their daily work activities, the workload of a
node can vary considerably.

20 Solving Large Linear Systems on Grid Computers

������������	A�BC�DEF�

������������	A�BC���

��AB�	���D������D���

��AB�	����D���B���������D���

Figure 1.6: The DAS–3 multi–cluster.

Cluster Nodes Cores Speed Memory Storage HDD Network
(name) (#) (type) (Ghz) (GB) (TB) (GB) (type)

VU 85 dual 2.4 4 10 250 Myri–10G & GbE
LU 32 single 2.6 4 10 400 Myri–10G & GbE
UvA 41 dual 2.2 4 5 250 Myri–10G & GbE
TUD 68 single 2.4 4 5 250 only GbE
UvA–MN 46 single 2.4 4 3 1,500 Myri–10G & GbE

Table 1.4: DAS–3: “five clusters, one system”.

1.9. Coupled vs. decoupled inner–outer iterations 21

VU LU UvA UvA–MN

VU — 1.919 0.708 —
LU 1.920 — 1.246 —
UvA 0.707 1.242 — 0.039
UvA–MN — — 0.029 —

Table 1.5: Average roundtrip measurements (in ms) between several DAS–3 sites, with exception
of the TUD site.

1.8.2 DAS–3: “five clusters, one system”

The Distributed ASCI Supercomputer 3 (DAS–3) is a multi–cluster consisting of five clusters,
located at four academic institutions across the Netherlands [107]. The five sites are connected
through SURFnet, which is the academic and research network in the Netherlands. Four of the
five local clusters are equipped with both Gigabit Ethernet (GbE) interconnect and high speed
Myri–10G interconnect. The TUD site only employs Gigabit Ethernet interconnect.

More specific details on the five sites are given in Table 1.4, while Table 1.5 lists aver-
age roundtrip measurements between four of the five DAS–3 sites on a lightly loaded network.
Figure 1.6 shows the ring structure of the network topology of the DAS–3, as well as the (ap-
proximate) geographical locations of the five sites. These facts show that a large amount of
heterogeneity exists between the sites with respect to the computational resources and network
capabilities, making the DAS–3 a perfect testbed for Grid computing.

1.9 Coupled vs. decoupled inner–outer iterations

The fact that there are essentially two distinct iteration processes in the proposed hybrid algo-
rithm offers much freedom with respect to implementation.

The DAS–3 multi–cluster is designed for dedicated parallel computing and in order to pre-
serve data locality, it is natural to perform the outer iteration and preconditioning iteration
on the same set of nodes, resulting in a coupled iteration process. With respect to the CRAC
library, the possibility of having both synchronous and asynchronous communication allows for
straightforward implementation of both iteration processes.

A disadvantage of this approach is that every single task should be performed on reliable and
stable hardware, which may be an unacceptable restriction in the context of Grid computing.
In the worst case, should any of the tasks fail, it is not unlikely that important intermediate
information is lost, halting the entire iteration process. If a particular node merely becomes
temporarily unavailable, the iteration process would be able to continue when this node becomes
available again.

The GridSolve middleware allows for physically decoupling the outer iteration and the pre-
conditioning iteration. It then becomes feasible to perform the inner iteration on unreliable
(i.e., heterogeneous and distant) computational resources, while the outer iteration is performed
on more stable (i.e., homogeneous and local) hardware, resulting in a partially fault–tolerant
algorithm.

This decoupled iteration approach is somewhat unnatural in the context of CRAC and the
DAS–3 multi–cluster. The two main reasons are that the current version of CRAC cannot
properly handle resources that fail completely and that the synchronisation primitives in CRAC
are global operations. Synchronisation of a subset of processes is possible, but relatively com-

22 Solving Large Linear Systems on Grid Computers

plicated. The CRAC middleware is more suited for dedicated computational hardware where
network connections between nodes may become temporarily unavailable.

1.10 Parallel iterative methods: building blocks revisited

The next step in implementing iterative algorithms on Grid computers is to revisit the four
building blocks of subspace methods as mentioned in Section 1.3.3 on page 9 and discuss their
efficient implementation on Grid computers. Where appropriate, each building block will be
discussed in the context of the aforementioned two types of target architectures with references
to chapters of the thesis.

1.10.1 Matrix–vector multiplication (or data distribution)

Generally speaking, the matrix–vector multiplication is the most expensive operation in parallel
iterative methods. It is therefore important to create an efficient partitioning of the coefficient
matrix for the matrix–vector multiplication. The problem of load balancing is to divide the
computational work of the matrix–multiplication as evenly as possible under the constraint of
minimal communication. For parallel sparse matrix–vector multiplication, this can be achieved
by hypergraph partitioning algorithms used by software packages such as Mondriaan [142] and
PaToH [35]. In the context of Grid computing, the load balancing algorithm may also need
to incorporate properties related to the heterogeneity of the computational hardware into the
partitioning process [132]. Also, the computational effort associated with the partitioning process
itself is far from negligible and may be performed in parallel as well [52].

In this thesis, the coefficient matrix is partitioned using several different approaches, depend-
ing on the computational setting and the employed solution algorithms. In the following, these
approaches will be discussed and motivated.

In Chapter 2 a synchronous method is used as a preconditioner and Section 2.2.2 describes
a heterogenous block–row distribution of the matrix that takes into account the computational
speed of the nodes. The rationale behind this choice is two–fold:

1. Block–row distribution: for the type of applications considered in this thesis, the number
of non–zeros on each row of the coefficient matrix is roughly the same, so only nearest–
neighbour communication is required when this partitioning is used.

2. Heterogenous distribution: in this completely synchronous (i.e., more traditional) context,
“conventional” load balancing techniques for heterogeneous systems are more natural [132,
53].

In Chapter 3 an asynchronous iterative method is used as a preconditioner. Here, a homo-
geneous block–row distribution is employed. The reason for choosing a block–row distribution
is the same as given above. The reason for choosing a homogeneous distribution is as follows.
The purpose of load balancing is to divide the computational work as evenly as possible so that
tasks finish roughly at the same time, avoiding idling of processors at synchronisation points. In
contrast, the key point of asynchronous methods is that processors do not wait for information
from other processors, which essentially negates the need for any type of load balancing. How-
ever, significant desynchronisation of the Jacobi processes could result in suboptimal convergence
rates and therefore some form of load balancing may still be appropriate [13, 12].

In Chapter 4, both synchronous and asynchronous preconditioning techniques are investi-
gated. In the asynchronous approach, the partitioning is equal to the one used in Chapter 3
for the same reasons as listed above. For the synchronous approach, instead of partitioning

1.10. Parallel iterative methods: building blocks revisited 23

the computational domain in strips like in Chapters 2 and 3, the domain is partitioned using a
three–dimensional block partitioning. The reason for this partitioning is that in Chapter 4 the
goal is to construct and test a parallel iterative method that has good scalability in the strong
sense. A two–dimensional domain partitioning as used in Chapters 2 and 3 does not scale well
in the strong sense [25].

Throughout this thesis, the data distribution used in the outer iteration is always equal to
the data distribution used in the preconditioner. This is done for convenience only. Especially
in a decoupled iteration approach such as used in Chapter 3, it may make sense to use more
advanced partitioning algorithms in the outer iteration, such as the aforementioned hypergraph
partitioners.

Note that efficient load balancing for the asynchronous preconditioning iteration can be
problematic. The main reason is as follows. The bulk of the computational work in the precon-
ditioning iteration consists of solving the block diagonal system in each Jacobi iteration step.
These local linear systems are solved iteratively and in most cases inexactly. Furthermore, prob-
lem characteristics may cause erratic convergence rates. Therefore, the amount of work is hard
to predict, which makes load balancing difficult.

1.10.2 Preconditioning

An efficient and robust preconditioner is crucial for rapid convergence of iterative methods.
Generally speaking, preconditioners fall into three different classes:

1. Algebraic techniques. These methods exploit algebraic properties of the coefficient matrix,
such as sparsity patterns and size of matrix elements. For example, incomplete factorisa-
tions such as Incomplete Cholesky (IC) and block ILU [102].

2. Domain decomposition techniques. Many applications in scientific computing involve solv-
ing some partial differential equation on a computational domain. Often, the domain can
be divided quite naturally into subdomains that may be handled more efficiently. Examples
include block Jacobi and alternating Schwarz methods [118].

3. Multilevel techniques. Solutions often contain both slowly–varying and fast–varying com-
ponents. By solving the same problem at different scales in a recursive manner, both
components can be efficiently captured. Examples of such methods are multigrid, defla-
tion, and domain decomposition with coarse grid correction [67, 145].

In this thesis, preconditioners from all these classes are used in some form or another. To be
more precise, in Chapter 2 Jacobi and block Jacobi preconditioning is used and in Chapter 3 an
asynchronous iterative method is used as a preconditioner. These types of preconditioning fall
into the class of domain decomposition techniques (class 2). In Chapter 3 the asynchronous iter-
ative method is also combined with a coarse grid correction, resulting in a multi–level technique
(class 3). In addition, IC and ILU preconditioning is used (class 1) when iteratively solving the
local subdomains within the asynchronous preconditioning iteration.

Chapter 3 shows that asynchronous iterative methods combined with a deflation step can be
efficiently parallelised on Grid computers and that they are highly effective preconditioners for
large and difficult linear systems.

1.10.3 Convergence detection

Another essential component of iterative methods is knowing when to stop. In the proposed
algorithm a distinction has to be made between convergence detection in the preconditioning

24 Solving Large Linear Systems on Grid Computers

iteration and convergence detection in the outer iteration. In most cases, the outer iteration is
performed on reliable hardware in a local manner and as a result, convergence detection in the
outer iteration is relatively straightforward.

Matters are far more complicated for the preconditioning step. If the preconditioning itera-
tion is performed on unreliable computational hardware as may be the case with GridSolve in
combination with a local network of non–dedicated hardware, it may be virtually impossible to
construct a robust and efficient convergence detection algorithm.

On the other hand, if the preconditioning iteration is performed on dedicated but geograph-
ically separated hardware such as the DAS–3 architecture, sophisticated decentralised conver-
gence detection algorithms could be employed, e.g. [14, 27, 143].

In this thesis, all these issues are circumvented by spending a fixed amount of time on each
preconditioning step. The main disadvantage of this approach is that determining the ideal
amount of said time may be extremely problem–dependent.

1.10.4 Vector operations

Vector updates are embarrassingly parallel, so they can be performed efficiently in parallel com-
puting and in particular in Grid computing. In contrast, efficiently performing inner products in
parallel computing is a difficult problem, but even more so in Grid computing. In this thesis, the
focus is not so much on the efficient computation of inner products in Grid computing, but more
on minimising the amount of synchronisation points that are induced by the inner products.

A notable exception is Section 4.4.2 on page 82, where the so–called IDR test matrix R̃ in
IDR(s) is chosen so that the work, communication, and storage involving this matrix is min-
imised in multi–cluster environments. Using Open MPI, a method is presented for the efficient
computation of the s combined inner products R̃∗r for a matrix R̃ ∈ C

n×s and a vector r ∈ C
n

on a cluster of clusters. In such computational environments, the intercluster communication is
more costly than the intracluster communication. In order to minimise communication across
the intercluster links, each column of R̃ is chosen non–zero on one cluster and zero on the re-
maining clusters. By first combining the local results on a single cluster and then exchanging
these partial results with the other clusters, the multiplication R̃∗r can be performed efficiently
in this case.

Grid middleware such as MPICH–G2 provides more general topology–aware collective oper-
ations. For more information, see [86].

1.11 Applications

In this thesis, the main focus is on the efficient iterative solution of very large linear systems
on Grid computers. In principle, the techniques presented in this thesis are applicable to many
types of linear systems: sparse or dense, symmetric or non–symmetric, singular or non–singular,
square or overdetermined.

The focus is on two important problems originating from computational fluid dynamics: large
bubbly flow problems and large (more general) convection–diffusion problems. These bubbly flow
problems are solved on very fine meshes in conjunction with large jumps in the coefficients, which
results in symmetric and sparse linear systems that are severely ill–conditioned. On the other
hand, the convection–diffusion problems result in non–symmetric and sparse linear systems of
equations.

For applications from computational fluid dynamics, the so–called Immersed Boundary Method
(IBM) is particularly appropriate. Although IBMs come in many different flavours, they all share

1.12. Further reading 25

one common characteristic. Instead of adapting the computational mesh to the (possibly com-
plex and moving) boundary, an IBM immerses the boundary on simple regular meshes and
modifies the governing equations in the vicinity of the boundary. The use of fixed and struc-
tured meshes expedites the implementation of numerical algorithms immensely, particularly in a
parallel context. For this reason, only Cartesian meshes are considered in this thesis. For more
discussion on IBMs, the reader is kindly referred to the excellent book chapter [80].

1.12 Further reading

For the interested reader, the classic book by Dimitri Bertsekas and John Tsitsiklis contains a
wealth of information on parallel asynchronous iterative algorithms for solving linear systems
using various applications [24]. More recently, Jacques Bahi, Sylvain Contassot–Vivier, and
Raphaël Couturier wrote a book on parallel iterative algorithms for solving linear systems on
Grid computing using synchronous and asynchronous iterative methods [8]. More extensive
discussions on various aspects of parallel scientific computing may be found in the excellent
book by Rob Bisseling [25].

For a comprehensive discussion on iterative methods for solving linear systems, the classic
book by Gene Golub and Charles van Loan is greatly recommended [72], as well as the excellent
book by Yousef Saad [102]. More on domain decomposition techniques can be found in [118, 133].
For more technical details on Grid hardware and Grid software technologies, the reader is referred
to [23, 57, 55, 65]. The recent overview article on iterative methods by Valeria Simoncini and
Daniel Szyld is also recommended [111]. Another excellent overview article by Michele Benzi
discusses various types of preconditioning techniques [22].

Part III: General thesis remarks

1.13 Related work and main contributions

Throughout this chapter, numerous references are given to papers that are related (either directly
or more indirectly) to the techniques used in this thesis. In this section, the contributions of this
thesis are made explicit, highlighting the references that are the most relevant.

The study of asynchronous iterations — both theoretical and practical — dates back as
far as 1969, when Chazan and Miranker published their seminal paper on chaotic relaxation
methods [36]. Since then, asynchronous iterations have been used in a wide variety of scientific
applications, such as inverse problems in geophysics and oil exploration [100], electrical power
networks [18], network flow [20], and nonlinear problems [124, 10]. Some of the topics not
covered in this thesis that could also be important are stopping criteria [14, 27, 143] and using
overlapping subdomains [122, 68]. For a comprehensive overview paper and additional references
on asynchronous iterative methods, see [70].

There exist several projects that aim to (among other things) efficiently solve linear systems
on heterogeneous computing grids and we will mention two of these projects. Note that this list
is by no means exhaustive and that it is meant to give an idea on the variety in projects.

• The GREMLINS1 (GRid Efficient Methods for LINear Systems) project [46] aims to
construct new algorithms for solving large sparse linear systems on heterogeneous and

1http://info.iut-bm.univ-fcomte.fr/gremlins/

http://info.iut-bm.univ-fcomte.fr/gremlins/

26 Solving Large Linear Systems on Grid Computers

distributed clusters. The CRAC library [47] used in this thesis (Section 1.7.2) was de-
veloped within the context of this project. Other papers associated with this project
are [11, 14, 143, 15, 9].

• The GRAAL2 project is about the design of algorithms and schedulers for distributed
heterogeneous platforms. Part of this project is the DIET3 (Distributed Interactive Engi-
neering Toolbox) systems which is similar to GridSolve mentioned in Section 1.7.1. Also, it
includes the MUMPS4 (MUltifrontal Massively Parallel sparse direct Solvers for symmetric
and unsymmetric, complex and real sparse matrices) project [4].

Despite the amount of research dedicated to tackling the difficult problems considered in this
thesis, there are not many papers that present convincing results of efficiently running truly fine–
grained parallel algorithms in Grid computing environments. One of the few exceptions is [144],
where for any given position in the Awari board game the best possible move is computed in
parallel on the DAS–3. For this type of application, the communication to computation is partic-
ularly high and asynchronous communication is used to obtain good performance. In [17], similar
good results are reported for two other applications that search large state spaces: transposition
driven search and model checking.

In particular, asynchronous iterative methods have never really been successfully applied
to the solution of extremely large sparse linear systems. The main reason is that the slow
convergence rates limit the applicability of these methods. Nevertheless, the lack of global
synchronisation points in these methods is a favourable property in heterogeneous computing
systems.

Although Krylov subspace methods such as the Conjugate Gradient method [81] offer sig-
nificantly improved convergence rates, the global synchronisation points induced by the inner
product operations in each iteration step limits the applicability. By using an asynchronous
iterative method as a preconditioner in a (flexible) Krylov subspace method, the best of both
worlds is combined. It is shown in this thesis that this combination of a slow but asynchronous
inner iteration with a fast but synchronous outer iteration results in high convergence rates on
heterogeneous networks of computers.

To the best of our knowledge, the idea of using an asynchronous preconditioner in a flexible
method is an algorithmic innovation that has not been investigated in the context of Grid
computing before. This constitutes one of the main contributions of this thesis.

The combination of four techniques in Chapter 4 results in an efficient iterative method for
solving large sparse nonsymmetric linear systems on Grid computers, which is another main
contribution of this thesis.

1.14 Scope and outline

This dissertation deals with the design, implementation, and analysis of efficient iterative solution
methods for distributed heterogeneous computing systems. Different strategies are used to attack
this important but difficult problem, depending on aspects such as application, middleware,
algorithm, and target hardware.

Generally speaking, there are two main themes in this thesis: asynchronous preconditioning
and “traditional” synchronous preconditioning. For the readers’ convenience, an overview of the
different methods and middleware that are used in this thesis is given in Tab 1.6.

2http://graal.ens-lyon.fr/
3http://graal.ens-lyon.fr/~diet/
4http://graal.ens-lyon.fr/MUMPS/

http://graal.ens-lyon.fr/
http://graal.ens-lyon.fr/~diet/
http://graal.ens-lyon.fr/MUMPS/

1.14. Scope and outline 27

synchronous preconditioning asynchronous preconditioning

chapter # 2 4 3 3 4

middleware GridSolve Open MPI GridSolve CRAC CRAC

method CG IDR(s) GCR flexible CG IDR(s)

Table 1.6: Overview of the iterative methods and middleware used in this thesis.

In Section 1.2 of this chapter it was argued that the ultimate numerical algorithm for Grid
computing exhibits the following features: robust, efficient, coarse–grained, asynchronous, mini-
mal synchronisation, resource–aware, adaptive, and fault–tolerant. In this section it is explicitly
shown in which manner the algorithms presented in this thesis exhibit these features. This is
done by giving a description of each thesis chapter where each chapter is put in the general
context of the thesis. Chapters 1 through 4 of this thesis are all based on references that either
have been published or that have been accepted for publication. Portions of Chapter 5 have
been submitted for publication.

Chapter 1 contains a broad overview of the issues related to efficient iterative methods for
Grid computing, motivating the choices made in this thesis. This chapter has appeared as [41]:

T. P. Collignon and M. B. van Gijzen. Parallel scientific computing on loosely cou-
pled networks of computers. In B. Koren and C. Vuik, editors, Advanced Com-
putational Methods in Science and Engineering. Springer Series Lecture Notes in
Computational Science and Engineering, volume 71, pages 79–106. Springer–Verlag,
Berlin/Heidelberg, Germany, 2010.

The thesis continues by attacking the problem using more “traditional” approaches. In Chap-
ter 2 a case study is described on iteratively solving large linear systems on Grid computers using
standard block Jacobi (i.e., synchronous) preconditioning within the software constraints of the
Grid middleware GridSolve and within the algorithmic constraints of preconditioned Conjugate
Gradient–type methods. The algorithm presented in this chapter not only has minimal synchro-
nisation, but is also resource–aware and adaptive. The contents of this chapter has appeared
as [43, 40]:

T. P. Collignon and M. B. van Gijzen. Two implementations of the preconditioned
Conjugate Gradient method on heterogeneous computing grids. International Jour-
nal of Applied Mathematics and Computer Science, 20(1):109–121, 2010.

T. P. Collignon and M. B. van Gijzen. Implementing the Conjugate Gradient Method
on a grid computer. In Proceedings of the International Multiconference on Computer
Science and Information Technology, Volume 2, October 15–17, 2007, Wisla, Poland,
pages 527–540, 2007.

An efficient and robust preconditioner is crucial for rapid convergence of iterative methods
and in Chapter 3 the proposed asynchronous preconditioning approach is investigated in more
detail. The partially asynchronous algorithm is implemented on two different types of Grid
hardware applied to two different applications using two different types of Grid middleware. The
results from this chapter show that the method is very effective in solving large linear systems on
Grid computers and that the asynchronous preconditioner can adapt to changes in network load.
In order to increase the robustness of the algorithm, the asynchronous preconditioning iteration
is complemented with a coarse–grid correction in the form of a deflation step. In overall, this

28 Solving Large Linear Systems on Grid Computers

chapter shows that the use of an asynchronous preconditioner results in a algorithm that not
only has minimal synchronisation, but is also efficient, robust, coarse–grained, asynchronous,
adaptive, and fault–tolerant. This chapter has appeared as [44, 42]:

T. P. Collignon and M. B. van Gijzen. Fast iterative solution of large sparse linear
systems on geographically separated clusters. International Journal of High Perfor-
mance Computing Applications, 2011. (to appear).

T. P. Collignon and M. B. van Gijzen. Solving large sparse linear systems efficiently
on Grid computers using an asynchronous iterative method as a preconditioner. In
G. Kreiss, P. Lötstedt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathe-
matics and Advanced Applications 2009: Proceedings of ENUMATH 2009, the 8th
European Conference on Numerical Mathematics and Advanced Applications, Upp-
sala, July 2009, pages 261–268. Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

Chapter 4 brings everything together to focus on the key theme of this thesis: designing
efficient iterative methods for cluster and Grid computing. The IDR(s) method and its variants
are new and efficient iterative algorithms for solving large nonsymmetric linear systems. In this
chapter, four strategies are used to minimise global synchronisation in IDR(s) methods. Firstly,
an efficient and robust IDR(s) variant is presented that has a single global synchronisation point
per matrix–vector multiplication step. Secondly, the so–called IDR test matrix in IDR(s) can
be chosen freely and this matrix is constructed such that the work, communication, and storage
involving this matrix is minimised in multi–cluster environments such as the DAS–3. Thirdly,
a methodology is presented for a priori estimation of the optimal value of s in IDR(s). Finally,
the proposed IDR(s) variant is combined with an asynchronous preconditioning iteration as
analysed in Chapter 3. These four strategies result in IDR(s) variants that are very efficient in
solving large non–symmetric linear systems on Grid computers. The contents of this chapter
has appeared as [45, 138]:

T. P. Collignon and M. B. van Gijzen. Minimizing synchronization in IDR(s). Nu-
merical Linear Algebra with Applications, 2011. (published online: 14 january 2011).

M. B. van Gijzen and T. P. Collignon. Exploiting the flexibility of IDR(s) for Grid
computing. In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods,
Kyoto University, Kyoto, Japan, March 2010.

In the last part of Chapter 4 an asynchronous preconditioner is used by IDR(s), which means
that the IDR(s) method is treated as a flexible method. The original motivation for the work
performed in Chapter 5 was to begin analysing mathematically the effect of a varying precon-
ditioning operator on the convergence properties of IDR(s). This was done by interpreting the
IDR(s) method as a special type of deflation method, which in fact revealed several interesting
properties of IDR(s). This chapter has been submitted for publication as [39]:

T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen. Interpreting IDR(s) as a
deflation method. Journal of Computational and Applied Mathematics, 2011. Special
Issue: Proceedings ICCAM–2010 (submitted).

Last but not least, Chapter 6 lists the general conclusions of this thesis and gives directions
for future research.

1.15. Notational conventions and nomenclature 29

notation meaning

I identity matrix of appropriate dimension
0n,s all–zero matrix of dimension n× s
||v|| Euclidean norm of v
A∗ adjoint of A
N (A) nullspace of A
rankA rank of A
σ(A) set of eigenvalues of A
span(A) range of A
dimA dimension of the vector space A
A⊥ orthogonal complement to the column space of A
v ⊥ A v is orthogonal to all column vectors of A

φ(m:n) column vector [φm, φm+1, . . . , φn]
⊤

MV abbreviation of Matrix–Vector multiplication

R̃ s-dimensional initial shadow residual or IDR test matrix of IDR(s)
B “traditional” preconditioning matrix
ux partial derivative of a function u with respect to x
s number of vectors to generate in the subspaces G of IDR(s)
t number of “standard” deflation vectors
Kr(A,v) Krylov subspace of order r generated by a matrix A and a vector v, i.e.,

span(v,Av, . . . ,Ar−1v)
G IDR subspace
S Sonneveld subspace
ωk smoothing parameter in BiCGSTAB and IDR(s) in cycle k

Table 1.7: Notational conventions and nomenclature. Let A ∈ C
n×n and v ∈ C

n.

1.15 Notational conventions and nomenclature

Matrices and vectors are written in boldface (e.g., A and x), while scalars are written in italic
face (e.g., n and γ). Vector spaces are written in calligraphic font (e.g., G and S). A field is
written in blackboard font (e.g., C and N). A projection is always written as capital Π. For an
overview of additional notational convections, see Table 1.7.

Chapter 2

Conjugate Gradient Methods for
Grid Computing

This chapter has been published as:

T. P. Collignon and M. B. van Gijzen. Two implementations of the preconditioned Conjugate
Gradient method on heterogeneous computing grids. International Journal of Applied Mathe-
matics and Computer Science, 20(1):109–121, 2010.

T. P. Collignon and M. B. van Gijzen. Implementing the Conjugate Gradient Method on a
grid computer. In Proceedings of the International Multiconference on Computer Science and
Information Technology, Volume 2, October 15–17, 2007, Wisla, Poland, pages 527–540, 2007.

31

32 Conjugate Gradient Methods for Grid Computing

Overview

This chapter describes a case study on iteratively solving large sparse linear systems on Grid
computers within the software constraints of the Grid middleware GridSolve (Section 1.7.1 on
page 16) and within the algorithmic constraints of preconditioned Conjugate Gradient–type
(PCG) methods. The goal of this chapter is to efficiently solve linear systems on Grid computers
using techniques that are more “traditional”, such as synchronous preconditioning. We identify
the various bottlenecks induced by the middleware and the iterative algorithm. We consider
the standard CG algorithm of Hestenes and Stiefel, and as an alternative the Chronopoulos and
Gear variant, a formulation that is potentially better suited for grid computing since it requires
only one synchronisation point per iteration, instead of two for standard CG. In addition, we
improve the computation–to–communication ratio by maximising the work in the preconditioner.
In addition to these algorithmic improvements, we also try to minimise communication overhead
within the communication model currently used by the GridSolve middleware. We present
numerical experiments on 3D bubbly flow problems using heterogeneous computing hardware
that show lower computing times and better speed–up for the Chronopoulos and Gear variant
of Conjugate Gradients. Finally, we suggest extensions to both the iterative algorithm and the
middleware for improving the granularity.

2.1 Introduction

We study two different implementations of the Conjugate Gradient (CG) method [81] on a
heterogeneous computational grid. We use the GridSolve library [58], which is mature Grid
middleware for accessing remote computational resources. Load balancing is achieved using a
simple resource–aware data partitioning strategy. The number of synchronisation points in the
CG algorithm which is in its standard implementation equal to two, can be reduced to one by
using the implementation that has been proposed by Chronopoulos and Gear [37]. Chronopoulos
and Gear claim stability, based on numerical experiments using this variant.

We apply our approach to the bubbly flow problem which is an important example of a
moving boundary problem. Our numerical experiments show that by minimising the number of
synchronisation points and by devoting more work to the preconditioning phase, speed–up can
be achieved for the solution of systems of equations, despite the fact that for this application
the tasks are tightly coupled.

The remainder of this chapter is organised as follows. In the next section we describe in
detail our architecture–aware Conjugate Gradient algorithm. This includes a description of the
test problem and several details concerning our implementation of a sparse iterative solver on
Grid computers. Section 2.3 contains experimental results and in Section 2.4 we give concluding
remarks and some suggestions for improvements.

2.2 Heterogeneous sparse linear solvers in GridSolve

2.2.1 Motivation

We want to simulate general moving boundary problems using Grid computers. Examples of said
problems are the swimming of fish, airflow around wind turbine rotor blades, and bubbly flows.
These simulations involve numerically solving the governing fluid equations on a structured grid,
where the most expensive part usually consists of solving a large sparse linear system Ax = b at
each time step. When using a pressure–correction method [141] to solve the governing equations

2.2. Heterogeneous sparse linear solvers in GridSolve 33

for bubbly flows on a very fine mesh, such a large sparse linear system arises from a finite
difference discretisation of the following Poisson equation with discontinuous coefficients and
Neumann boundary conditions,

{
−∇ ·

(
1

ρ(x)∇p(x)
)
= f(x), x ∈ Ω,

∂
∂x

p(x) = g(x), x ∈ ∂Ω,
(2.1)

for some functions f and g. Here, Ω and ∂Ω denote the computational domain and boundary
respectively, while p and ρ represent the pressure and density. In this chapter we will consider
the 3D test problem taken from [135, 129]. It is a two–phase bubbly flow problem where we
have two separate fluids Γ0 and Γ1, representing water (high–density phase) and water vapour
(low–density phase) respectively. The corresponding density function has a large jump, defined
by

ρ(x) =

{
1, x ∈ Γ0;

τ, x ∈ Γ1,
(2.2)

where we typically have τ = 10−3. Such a discontinuity in the coefficient results in an ill–
conditioned system, making it a difficult problem for iterative methods. For the purpose of this
chapter we restrict ourselves to a cubical unit domain with a single bubble with radius 0.25
located in the center of the computational domain. For more details on applying the pressure–
correction method to bubbly flows the reader is referred to [135].

Applying standard finite differences to (2.1) on a structured nx×ny ×nz mesh results in the
linear system

Ax = b, (2.3)

where A is an n×n block pentadiagonal symmetric positive semi–definite (SPSD) sparse matrix
and n = nxnynz. This implies that the solution x is determined up to a constant. However,
it can be shown that for our particular case this does not pose any problem for the iterative
solver [128].

The reason that we chose to solve this system using a preconditioned Conjugate Gradient
(PCG) method is twofold: (i) it is the obvious choice for large and sparse SP(S)D systems, and (ii)
the CG method consists of three basic computational kernels (i.e., matrix–vector multiplication,
inner product, and vector update), which are simple to implement and relatively straightforward
to parallelise on (dedicated) parallel computers. Also, we combine CG with a (block) Jacobi
preconditioner due to its attractive parallelisation properties.

2.2.2 Resource–aware load balancing

We are interested in solving large sparse linear systemsAx = b using GridSolve with architecture–
aware dynamic load balancing. For this purpose it is insufficient to let the agent return a sorted
list based on problem complexity and available resources, as is normally being done in GridSolve.
Instead, we need to use a slightly different approach. Referring to Figure 1.5 on page 17, suppose
that the client (i.e., component 1 in Figure 1.5) wishes to use s servers (component 3) to solve a
linear system. The scheduler in the GridSolve agent (component 2) has been enhanced so that it
creates a simple (non–homogeneous) partitioning of the computational work over s servers using
information about currently available resources. It then returns the partitioning and a list of
said servers to the client, after which the client initiates a series of non–blocking calls explicitly
specifying the size and location of each task. Thus we ensure that the computational task is

34 Conjugate Gradient Methods for Grid Computing

Algorithm 2.1 Resource–aware Preconditioned Conjugate Gradient Algorithm; s servers

1: Agent partitions work based on available computational resources;
2: Client sets initial values and uploads initial vectors such as r0 to the IBP data depot; Set
k = 0;

3: while CG not converged and k < kmax do
4: Client assigns CG tasks to s servers and waits until tasks have completed;
5: Client repartitions work if significant change in workload and/or computational re-

sources has occurred;
6: Set k = k + 1;
7: end while
8: Client reads final answer from IBP depot;

being performed on the intended server, in accordance with our partitioning. Unfortunately the
fault–tolerance mechanism within the original GridSolve is now being circumvented, because the
tasks cannot be resubmitted to another server should a task fail.

Algorithm 2.1 shows the general resource–aware CG algorithm. Note that the tasks use DSI
file handles to manipulate the vectors on the IBP depot (component 4). The specific structure
of the CG tasks will be discussed in the next section. After each iteration step the client may
decide to repartition the work and assign the work to different computational servers in the
network accordingly.

2.2.3 Partitioning algorithm and CG schemes

The matrix originating from the 2D discretisation of a Poisson problem on a structured grid
is a block tridiagonal matrix. This matrix has a similar structure to the 3D discretisation of
our test problem. In both cases, the block–rows roughly contain the same number of non–
zeros, so we chose a simple non–homogeneous block–row partitioning. For illustration purposes,
Figure 2.1 shows a heterogeneous partitioning using four servers on a 8×8 grid for a 2D Poisson
problem. The partitioning of the block pentadiagonal matrix from the corresponding 3D problem
is performed similarly.

The input and output vectors, shown at the top and left side respectively, are distributed
in the same manner. More specifically, the effective speed of s servers is calculated using (1.8),
together with the total flop count of a single CG iteration step. The size of each task is then
determined accordingly.

The standard preconditioned Conjugate Gradient method was implemented first and is shown
in Algorithm 2.2 (cf. Algorithm 1.2 on page 10). There are two natural synchronisation barriers,
namely the two inner products for computing α and ρ. Note that synchronisation consists of
three separate steps. First, at the end of a subtask the relevant data is updated on the depot
(e.g., line 5). The subtask then returns the partial inner product to the client (line 6). Finally,
at the start of the next subtask, it reads the relevant data from the depot (line 7). As a result,
the depot contains a full copy of the vectors x, r, z,p, and q at all times. This ensures that in
case of a server failure during an iteration step, all essential data are preserved on the IBP depot
and the iteration process may continue (possibly at a later time) without any problem.

The scheme as it is depicted in Algorithm 2.2 suggests that there is an additional synchro-
nisation point at line 23. By simply rearranging terms this can be avoided. Note that in the
context of Grid computing and iterative methods, the number of synchronisation points should
be kept to an absolute minimum. In our case, synchronisation does not only involve returning
the partial inner products to the client, but also the (expensive) transfer of large vectors to and

2.2. Heterogeneous sparse linear solvers in GridSolve 35

Figure 2.1: Heterogeneous block–row partitioning for s = 4 and k = 8 for a 2D Poisson problem.

from the depot. Therefore, this rearrangement of terms is neither trivial nor futile.

To increase the granularity we have also implemented the Chronopoulos–Gear variant of
preconditioned CG [37, 56], which has a single synchronisation point, see Algorithm 2.3. This
scheme introduces an additional 2n flops in each iteration step compared to the original scheme.
Generating the matrix resulting from discretising the Poisson equation with varying density
requires a significant amount of computation. Since this matrix has to be regenerated in each
iteration step, this increases the granularity even further.

Preconditioning The efficiency of iterative methods depends heavily on the quality of the
preconditioner, especially for very large systems. In parallel computing, efficient parallelisation
of a sophisticated preconditioner is a difficult problem, but becomes even more difficult in the
context of Grid computing. We therefore chose two traditional preconditioners that do not
require any communication in the parallel context, which are Jacobi (diagonal scaling) and
block Jacobi. For block Jacobi, the subdomains are solved accurately using standard CG with
Incomplete Cholesky preconditioning.

36 Conjugate Gradient Methods for Grid Computing

Algorithm 2.2 Preconditioned CG; Task i with three subtasks.

input: File handles to vectors x, r, z,p,q on IBP data depot, parameter k, preconditioner B.
output: Approximation xi.
1: // Each server i performs the following:
2: Read ri from the depot
3: Solve zi from Bzi = ri

4: Compute ρi = (ri, zi)
5: Update zi on the depot
6: –SYNCHRONIZE– (Client sums ρi)
7: Read zi and pi from the depot
8: if k = 1 then
9: Set pi = zi

10: else
11: Set βi = ρ/ρold
12: Set pi = zi + βipi

13: end if
14: Compute qi = Api

15: Compute µi = (pi,qi)
16: Update pi and qi on the depot
17: –SYNCHRONIZE– (Client sums µi)
18: Compute α = ρ/µ
19: Read xi, ri,pi, and qi from the depot
20: Set xi = xi + αpi

21: Set ri = ri − αqi

22: Update xi and ri on the depot
23: Check convergence; continue if necessary
24: Clients sets ρold = ρ

2.2.4 Implementation details

In this section we will discuss some specific issues concerning the various implementations. In
the normal operation of GridSolve in combination with DSI, if an input parameter of a task is
a DSI file handle, the middleware automatically retrieves the relevant data from the IBP depot
before the task is started on the server. For our purposes a task needs full control over a DSI
file, so instead we pass the DSI file handle explicitly.

Also, in the current implementation of IBP, reading and writing from and to the IBP depot
are blocking operations [155]. Although read operations by different tasks can be performed
on the same DSI file concurrently, write operations cannot, even when the write regions do
not overlap. In the Chronopoulos and Gear scheme a task has to perform six write operations
sequentially. Hence if a single DSI file is used to store data, large communication imbalance may
occur in this case. We try to overcome this imbalance by using separate DSI files for each vector
and letting each task update the vectors in a random order. By using the DSI functionality, it
is also theoretically possible to interrupt the CG iteration process and restart at a later date,
using possibly different computational resources.

At the end of each iteration step of the Chronopoulos and Gear variant, it may happen that
DSI data is inadvertently overwritten. Specifically, we cannot guarantee that every task has
finished reading the data from the previous iteration before other tasks have updated the new
data. We therefore use two different DSI files representing the previous and current data and

2.3. Numerical experiments 37

Algorithm 2.3 Preconditioned CG; Chronopoulos and Gear variant; Task i.

input: File handles to x, r,w,p,q, and s on IBP data depot and parameters α and β. Pre-
conditioner B and initial values: Solve w from Bw = r; s := Av; ρ := (r,w);µ := (s,w);
α := ρ/µ.

output: Approximation xi.
1: // Each server i performs the following:
2: Read xi and pi from the depot
3: Depending on bandwidth of matrix read appropriate portions of vectors q, r,w, and s.
4: Set pi = wi + βpi

5: Set qi = si + βqi

6: Set xi = xi + αpi

7: Set ri = ri − αqi

8: Check convergence; continue if necessary
9: Solve wi from Bwi = ri

10: Compute si = Awi

11: Compute ρi = (ri,wi)
12: Compute µi = (si,wi)
13: Update xi, ri,wi,pi,qi, and si on the depot
14: Return ρi and µi to client
15: –SYNCHRONIZE–
16: Client sums ρi and µi for all i
17: Client sets β = ρ/ρold
18: Client computes α = ρ/(µ− ρβ/α)
19: Client sets ρold = ρ

let the client swap the corresponding file handles at the end of each iteration step.

Furthermore, each server node in our experimental setup has ATLAS [146] as a BLAS imple-
mentation which is used for the various axpy and inner product operations. Each task recomputes
its portion of the sparse coefficient matrix every iteration step and stores it using the incremental
compressed row storage (ICRS) format. The implementation of this format in C is somewhat
faster than that of CRS [25].

To avoid the additional overhead of communicating matrix elements, we used a matrix–free
approach. This is naturally suited for linear systems with specific classes of coefficient matrices,
such as Poisson and Toeplitz matrices.

2.3 Numerical experiments

2.3.1 Overview

In the previous sections we discussed several implementations and various suggestions for in-
creasing the granularity. In this section we will perform numerical experiments and investigate
the effect of these suggestions on the performance. The experiments are divided into three
parts. In the first part we investigate the difference between the standard CG method and the
Chronopoulos and Gear variant. Also, we experiment with some features of the DSI mechanism.
The implementation with the best results is then used for the remainder of the experiments.
The second part describes experiments in a heterogeneous computing environment and in the
last part we conduct overall performance experiments using two types of preconditioning.

38 Conjugate Gradient Methods for Grid Computing

The residual at iteration step k is defined as rk = b −Axk. As the starting vector we take
x0 = 0 and we use the termination criteria ||rk||2/||b||2 < 10−6.

In parallel and distributed computing, speed–up can be investigated by solving a problem
of fixed size using an increasing number of nodes (i.e., strong scaling). In the context of Grid
computing, it is more natural to fix the problem size per server and investigate the scalability
of the algorithm by adding more servers in order to solve bigger problems (i.e., weak scaling).
We will analyse the algorithm using both approaches.

2.3.2 Target hardware

In order to properly investigate the effectiveness of the proposed algorithm on Grid hardware,
two different Grid testbeds are used: a local non–dedicated cluster with varying workloads and
a dedicated multi–cluster of geographically separated clusters.

The first testbed is a local cluster of computers, which is a multi–user system consisting
of nodes with different processors and dynamic workloads. The servers in the network are ten
single core (AMD Athlon 64 Processor 3700 at 2.4GHz) and two dual core CPU nodes (Intel
Core 2 CPU 6700 at 2.66GHz) with 3 GB and 8 GB of memory respectively and running Linux
2.6. For more details on the local cluster, see Section 1.8.1 on page 19.

In some cases we aim to perform controlled and repeatable experiments so we use idle pro-
cessors and as a result the partitioning is fixed and homogeneous throughout these experiments.
In most of the experiments we measure the wall clock times of five CG steps for different values
of n.

The second testbed is the Distributed ASCI Supercomputer 3 (DAS–3), which is a cluster
of five geographically separated clusters spread over four academic institutions in the Nether-
lands [107]. The five sites are connected through SURFnet, which is the academic and research
network in the Netherlands. Four of the five local clusters are equipped with both Gigabit Eth-
ernet interconnect and high speed Myri–10G interconnect. The TUD site only employs Gigabit
Ethernet interconnect. Although each separate cluster is relatively homogeneous, the system as
a whole can be considered heterogeneous. For more details on the DAS–3, see Section 1.8.2.

On both testbeds, the client, the IBP server, and the agent are running on the same node
while the servers are started on the remaining nodes. In a typical Grid environment the client
program would be located on the users’ desktop machine. On the local cluster the depot is
started on a randomly chosen node, while on the DAS–3 the depot is located on the head node
of the VU site. As a result we expect significant communication overhead.

2.3.3 Preliminary testing

In these set of experiments on the local cluster we differentiate between the following three
implementations:

(i). Standard preconditioned CG using a single DSI file;

(ii). Chronopoulos and Gear scheme using a single DSI file; and

(iii). Chronopoulos and Gear CG using six separate DSI files for each vector which are manip-
ulated in a random order.

Jacobi preconditioning is used in every experiment and we fix the number of CG iterations to
five. Figure 2.2(a) shows the total wall clock time of the second implementation for different
values of n using up to eight servers. It also demonstrates that communication overhead is
particularly an issue for small n, which is hardly surprising. In this case using more servers does

2.3. Numerical experiments 39

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

180

200

number of servers

ti
m

e
(i
n

s
e
c
o
n
d
s
)

n=250.000
n=500.000
n=1.000.000
n=2.000.000
n=4.000.000

(a) Different problem sizes, implementation (ii), up to
eight servers.

1 2 3 4 5 6 7 8
140

160

180

200

220

240

260

number of servers

ti
m

e
(i
n

s
e
c
o
n
d
s
)

first implementation
second implementation
third implementation

(b) n = 4× 106, all three implementations, up to eight
servers.

Figure 2.2: Wall clock times of CG implementations in GridSolve on the local cluster.

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

task number

ti
m

e
 (

in
 s

)

(a) Utilising a single DSI file.

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

task number

ti
m

e
 (

in
 s

)

(b) Utilising multiple DSI files.

Figure 2.3: Breakdown of wall clock time of tasks in communication (bottom part) and compu-
tation, for n = 4× 106 and using seven servers.

not result in improved execution times, and even results in larger wall clock times due to the
communication overhead. For large n this implementation performs slightly better. The other
implementations give similar results for small n and we will therefore concentrate on results for
large systems.

In Figure 2.2(b) results are given of the three different implementations for n = 4 × 106.
Here we clearly see the improved performance of the Chronopoulos and Gear variants for a large
number of servers. In other words, our attempts to improve the granularity resulted in speed–up,
albeit modest. Nevertheless, in the context of Grid computing these are encouraging results.

40 Conjugate Gradient Methods for Grid Computing

Although we observe that using separate DSI files for the vectors only improved the overall
running time of the Chronopoulos and Gear scheme for some number of servers, we note that
in this case the tasks finish at roughly the same time, in contrast to the case of using a single
DSI file. This is illustrated in Figure 2.3 where the wall clock times of the separate tasks
for seven servers are shown after five CG steps of Chronopoulos and Gear, broken down in
computation and communication. Note that Figure 2.3(b) shows that by using separate DSI
files the communication becomes more balanced, which is an encouraging result. Unfortunately,
the total wall clock time is not reduced.

When using a single DSI file, Figure 2.3(a) reveals unbalanced wall clock times for each task,
which can be explained as follows. Although the client initiates a sequence of non–blocking calls,
at the end of (in particular) the first task the updates to the DSI file appears to block subsequent
updates by other tasks. These figures also clearly reveal the amount of communication overhead.

For the remainder of the experiments we will use the third implementation, which uses
separate DSI files for each vector.

2.3.4 Heterogeneous environment

In this section we perform heterogeneous experiments on the two testbeds. On the local cluster
we artificially simulate workload, which affects the partitioning of the computational work. On
the DAS–3 no workload is simulated, but the differences in processor speed has a similar effect
on the partitioning.

It is not trivial to perform repeatable experiments in a heterogeneous computing environment.
Instead, we will give a brief qualitative analysis of the processes involved and present a typical
execution of the resource–aware partitioning scheme and its effect on the CG iteration process.

On the local cluster, we artificially simulate varying workload by running a special process
on each server. This process alternates between repeatedly performing a large matrix–vector
multiplication and idling for a random number of seconds.

Note that the current resource–aware partitioning scheme is incompatible with block Jacobi
preconditioning, because in this case the work done by each server is disproportional to the
number of rows. As a result, Jacobi preconditioning is used for these experiments.

We fix the number of servers to four with approximately one million equations per server.
In Figure 2.4(a) the workload of each server is shown at the beginning of each iteration step
as observed by the GridSolve agent. Figure 2.4(b) shows the corresponding distribution of the
matrix and vector row blocks, where the tasks are numbered from top to bottom.

The graphs clearly show the effect of the varying workloads on the distribution. For example,
at the sixth iteration step, server number four is only slightly occupied and as a result task
number four has the largest size.

To investigate the effect of the partitioning strategy on the execution time of the algorithm
in an artificial heterogeneous computing environment, we measured the wall clock times of five
iteration steps using either a homogeneous partitioning or a heterogenous partitioning.

However, extensive experiments showed that the latter strategy only had a moderate effect
on the total execution time. Due to the low computation to communication ratio the current
partitioning algorithm mostly affects the amount of communication of each task with the depot.
As processor workload barely has influence on these kind of operations, the total execution
time does not decrease significantly when using a heterogeneous partitioning on heterogeneous
computational resources.

There are two possible solutions within the current context. Either incorporate network
bandwidth information in the partitioning algorithm, or try to increase the computation to

2.3. Numerical experiments 41

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

iteration step

w
o
rk

lo
a
d

#1
#2
#3
#4

(a) Workload.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

iteration step

d
is

tr
ib

u
ti
o

n
 o

f
b

lo
c
k
s

(b) Distribution.

Figure 2.4: Heterogeneous experiments with the 3D bubbly flow problem (local cluster).

communication ratio in combination with an appropriate computational resource–aware parti-
tioning strategy.

Since the DAS–3 is a dedicated machine, the nodes have zero workload. Therefore, the
partitioning on the DAS–3 is based solely on the heterogeneity in the processor speeds and is
fixed throughout the whole iteration process. Not surprisingly, the effect on the wall clock times
of five iteration step is similar to that of the local cluster results.

2.3.5 Parallel performance

In the previous sections, we investigated various aspects of the algorithm separately. In this
section, we present overall parallel performance results using two preconditioning techniques on
both the local cluster and on the DAS–3, without any workload. First, we fix the problem size
to n = 1203 and investigate speed–up using up to six servers on the local cluster. Figure 2.5(a)
shows the total wall clock time until convergence is obtained. In Figure 2.6(a) speed–up results
are given on the DAS–3 for n = 253. A server is started on a randomly chosen node on each
cluster of the DAS–3. The client is located on the head node of the VU site.

Using a more sophisticated preconditioning technique like block Jacobi improves the compu-
tation to communication ratio and reduces the total number of CG iterations. However, it also
negatively influences the manner in which the total number of CG iterations depends on the
number of subdomains. This is in contrast to using diagonal scaling as a preconditioner, where
the total number of iterations is independent of the number of subdomains.

We investigate the scalability of the algorithm by setting the problem size per server to
1,000,000 equations and performing five CG steps using both Jacobi and block Jacobi as a
preconditioner. This experiment gives an indication on how fast the communication overhead
grows. The results for the local cluster are given in Figure 2.5(b), while Figure 2.6(b) shows
results for the DAS–3.

Using Jacobi preconditioning results in an unfavourable computation to communication ratio
and the results show that (communication) overhead grows quite fast, which is not a surprising
result. On the other hand, the block Jacobi preconditioning has a more favourable ratio, which
is indicated by the reduced increase in execution time.

42 Conjugate Gradient Methods for Grid Computing

2 2.5 3 3.5 4 4.5 5 5.5 6
4000

4500

5000

5500

number of servers

to
ta

l
ti
m

e
(i
n

s
e
c
o

n
d
s
)

Jacobi preconditioning

block Jacobi preconditioning

(a) Speed–up experiments.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
100

150

200

250

300

350

400

number of servers

ti
m

e
fo

r
5

it
e
ra

ti
o
n

s
(i
n

s
e
c
o
n
d
s
)

Jacobi preconditioning

block Jacobi preconditioning

(b) Scaled experiments.

Figure 2.5: Comparison of two preconditioning techniques (local cluster).

2 2.5 3 3.5 4 4.5 5
100

150

200

250

300

350

number of servers

to
ta

l
ti
m

e
(i
n

s
e
c
o

n
d
s
)

Jacobi preconditioning

block Jacobi preconditioning

(a) Speed–up experiments.

2 2.5 3 3.5 4 4.5 5
50

100

150

200

250

300

350

number of servers

ti
m

e
fo

r
5

it
e
ra

ti
o
n

s
(i
n

s
e
c
o
n
d
s
)

Jacobi preconditioning

block Jacobi preconditioning

(b) Scaled experiments.

Figure 2.6: Comparison of two preconditioning techniques (DAS–3).

2.4 Concluding remarks

2.4.1 Conclusions

The efficient iterative solution of large sparse linear systems on aggregated computational re-
sources is a difficult problem. While the parallel implementation of iterative methods in the
context of dedicated parallel computing is relatively well–understood, the design of efficient it-
erative algorithms for the solution of large linear systems on non–dedicated and heterogeneous
networks of computers is still in its infancy and much research is needed.

The key algorithmic constraint of CG methods in Grid computing is the inner product. To
be more specific, the computation of an inner product in parallel iterative algorithms induces a

2.4. Concluding remarks 43

global synchronisation point. While such an operation can be complex even on dedicated and
homogeneous parallel computers connected by a high–speed network, it may become the critical
bottleneck in a non–dedicated and heterogeneous computing environment. For example, within
the context of GridSolve the non–persistent data model forces us to transfer at each synchroni-
sation point large amounts of data over a possibly unreliable and slow network connection.

In this work we have described two implementations of the preconditioned Conjugate Gra-
dient method using the mature Grid middleware GridSolve. We have evaluated the implemen-
tations on heterogeneous computing hardware, applied to a realistic test problem. Using the
middleware we have also implemented a simple architecture–aware partitioning algorithm to
divide the computational work. Furthermore, by using multiple DSI files we have attempted to
decrease the communication overhead within the bridge communication model currently used
by GridSolve. And finally, we have increased the granularity by (i) using the Chronopoulos and
Gear variant of CG which only has a single synchronisation point per iteration step and (ii) by
devoting more work to the preconditioning phase.

We have explored the combination of Grid computing and iterative methods within the soft-
ware constraints of the Grid middleware GridSolve. The main bottlenecks — in both middleware
and iterative method — were identified and algorithmic and software modifications for improving
the granularity were proposed and implemented, resulting in moderate improved performance
and speed–up. Although the experimental results were less than optimal, they can be considered
encouraging in the context of iterative solvers and Grid computing.

2.4.2 Suggestions for improvements

Naturally, there is room for improvement and we will give some suggestions.

The current implementation of GridSolve forces us to use bridge communication. SmartGrid-
Solve [29] is an extension of GridSolve, which performs similarly to SmartNetSolve [30], allowing
for communication between the computational servers as well as data persistence. By combin-
ing this with sophisticated (possibly weighted) hypergraph partitioning techniques such as used
in Mondriaan [142] we hope to greatly improve our load balancing algorithm. Another possi-
ble improvement is incorporating information about network throughput into the partitioning
algorithm.

Furthermore, possible hardware and software solutions to reduce communication overhead
include fast network connections to the IBP depot and using distributed IBP data depots [21].

The local subdomains in the block Jacobi preconditioner are solved accurately using another
iterative method. In [31] interesting results have been obtained with inaccurate subdomain
solutions. Applying this same strategy to our application would require us to use a method
that can handle a variable preconditioner, such as the flexible CG method [6]. As shown in the
next chapters, efficient parallelisation of such a method on Grid computers introduces additional
difficulties.

2.4.3 General remarks

In metacomputing, using the appropriate middleware is of critical importance. Many different
types of Grid middleware exists and choosing the correct middleware depends on the application,
target hardware, and the (numerical) algorithm. The main reason for choosing GridSolve to
solve the current application is two–fold: (i) the GridSolve middleware is specifically targeted
to numerical computations and (ii) GridSolve allows for easy access to remote computational
resources.

44 Conjugate Gradient Methods for Grid Computing

In this chapter we have tried to realise the full potential of a completely synchronous parallel
subspace method for solving large sparse linear systems on Grid computers. Synchronous parallel
iterative algorithms are methods where at each iteration step information is needed from the
previous iteration step. As shown previously and as exemplified by the experimental results, the
fine–grain nature and potentially large number of synchronisations of said methods raises many
efficiency issues on Grid computers and limits the applicability of this approach to large–scale
problems.

An efficient and effective preconditioner is crucial for fast convergence of iterative methods.
Such a preconditioner is generally speaking the most difficult part to parallelise, especially in
heterogeneous environments as found in Grid computing. Within the fully synchronous context
considered in this chapter, we have maximised the amount of work that can be devoted to the
employed preconditioning, without introducing additional synchronisation points.

Parallel asynchronous iterative algorithms exhibit features that are extremely well–suited for
Grid computing, such as lack of synchronisation points and coarse–graininess. Unfortunately,
they also suffer from slow (block Jacobi method–like) convergence rates. We propose using said
asynchronous methods as a coarse–grain preconditioner in a flexible subspace method, where
the preconditioner is allowed to change in each iteration step. By combining a slowly converging
asynchronous inner method and a fast converging synchronous outer method, we aim to reap
the benefits and awards of both techniques.

Desynchronising the preconditioning phase in this manner has the advantage that: (i) the
preconditioner can be easily and efficiently parallelised on Grid computers, (ii) no additional
synchronisation points are introduced, and (iii) by devoting the bulk of the computational effort
to the preconditioner, the computation to communication ratio can be improved significantly,
while reducing the number of expensive (outer) synchronisations considerably. The resulting
partially asynchronous inner–outer method is investigated extensively in the next chapters, with
highly promising experimental results.

Chapter 3

Asynchronous Iterative Methods
as Preconditioners

This chapter has been published as:

T. P. Collignon and M. B. van Gijzen. Fast iterative solution of large sparse linear systems on
geographically separated clusters. International Journal of High Performance Computing Ap-
plications, 2011. (to appear).

T. P. Collignon and M. B. van Gijzen. Solving large sparse linear systems efficiently on Grid
computers using an asynchronous iterative method as a preconditioner. In G. Kreiss, P. Lötst-
edt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathematics and Advanced Appli-
cations 2009: Proceedings of ENUMATH 2009, the 8th European Conference on Numerical
Mathematics and Advanced Applications, Uppsala, July 2009, pages 261–268. Springer–Verlag,
Berlin/Heidelberg, Germany, 2010.

45

46 Asynchronous Iterative Methods as Preconditioners

Part I Part II

CRAC GridSolve
coupled iteration processes decoupled iteration processes
dedicated cluster of clusters (DAS–3) non–dedicated local clusters
2D and 3D bubbly flows 3D convection–diffusion
symmetric linear systems nonsymmetric linear systems
flexible CG (plus deflation, see Part III) GMRESR

Table 3.1: Differences in computational setting.

Overview

This chapter investigates experimentally an efficient iterative algorithm for solving large sparse
linear systems on Grid computers. The algorithm uses an asynchronous iterative method as a
preconditioner in a synchronous flexible method, where the preconditioner is allowed to vary in
each iteration step. Section 1.4 on page 11 contains a detailed description of this approach. This
chapter consists of three parts.

In the first part (Section 3.1–3.3), the asynchronous preconditioner is combined with the flex-
ible Conjugate Gradient (CG) method in order to solve on the DAS–3 multi–cluster large linear
systems originating from large 2D and 3D bubbly flow problems. Both the outer iteration and the
inner iteration are performed using the same (dedicated) computational resources, resulting in a
coupled iteration approach. The algorithm is implemented using the CRAC middleware, which
is specifically designed for easy implementation of (partially) asynchronous iterative algorithms
on a cluster of (possibly geographically separated) clusters.

In the second part (Section 3.4–3.6), an asynchronous iterative method is used as a pre-
conditioner in the flexible method GMRESR to solve large linear systems originating from a
3D convection–diffusion problem. In this case, the outer iteration is performed on stable and
homogeneous computational resources, while the inner asynchronous iteration is performed on
volatile, heterogeneous, and non–dedicated computational resources. This decoupled iteration
approach is implemented using the GridSolve middleware, resulting in an adaptive and a par-
tially fault–tolerant algorithm. For more discussion on this coupled/decoupled approach, see
Section 1.9 on page 21.

In the final part (Section 3.7–3.11), the asynchronous preconditioning iteration of flexible CG
from the first part is combined with a deflation step. It is shown that this results in increased
robustness of the total algorithm. In addition, a short experimental study is performed in
Section 3.10 on using asynchronous iterative methods as smoothers. Section 3.11 contains the
general conclusions of this chapter.

For the readers’ convenience, Table 3.1 presents a short overview of the differences in com-
putational setting of part I and II.

Part I: Coupled iterations

3.1 Introduction

In this part the partially asynchronous method is implemented using a coupled iteration ap-
proach.

3.2. Parallel implementation details 47

Algorithm 3.1 Flexible Conjugate Gradients (pure truncation strategy)

input: Parameters mmax, εin, Tmax; Set mk = min(k,mmax); Initial guess x0; Set r0 = b−Ax0.
output: Approximate solution to Ax = b.

1: for k = 0, 1, . . . , until convergence do
2: Evaluate u = B(rk, εin, Tmax); // Preconditioning step: Algorithm 3.2
3: Compute uk = ortho–mgs(u, ci,ui, k,mk); // Orthogonalisation step: Algorithm 3.3
4: Compute ck = Auk; // Matrix–vector multiplication

5: Compute αk =
u∗
krk

u∗
kck

;

6: Update xk+1 = xk + αkuk;
7: Update rk+1 = rk − αkck;
8: end for

The target hardware consists of the DAS–3 Grid computer, which is a cluster of five geograph-
ically separated clusters spread over four academic institutions in the Netherlands. The DAS–3
is designed for dedicated parallel computing and although each separate cluster is relatively
homogeneous, the system as a whole can be considered heterogeneous.

The algorithm is applied to a bubbly flow problem, which is an important and difficult
application from computational fluid dynamics in two–phase fluid flow [128]. This application
involves the solution of large sparse symmetric and positive definite systems, which leaves the
flexible Conjugate Gradient method [6, 96] as the method of choice for the outer iteration.

The algorithm is implemented using the CRAC library, which was developed within the
GREMLINS project [47, 46]. The aim of this project is to design efficient iterative algorithms
for solving large sparse linear systems on geographically separated computational resources. The
CRAC library can be used to easily implement (partially) asynchronous iterative algorithms on
such systems. For a more detailed description of CRAC, see Section 1.7.2 on page 18.

The experimental results on the DAS–3 multi–cluster demonstrate that the proposed algo-
rithm is very effective in the context of loosely coupled networks of computers. Furthermore, the
results show that the algorithm can adapt to a computational environment in which the network
load varies heavily.

3.2 Parallel implementation details

Listed in Algorithm 3.1 is the flexible CG method using a pure truncation strategy. Three
main phases can be distinguished, which are the preconditioning step (line 2), the orthogonalisa-
tion step (line 3), and the remaining operations such as the matrix–vector multiplication (line 4)
and the vector updates. In the following, the implementation of these phases will be discussed.

3.2.1 Asynchronous preconditioning

In standard preconditioned CG, the preconditioner is a fixed symmetric and positive definite
matrix B such that solving the residual equation Bu = r is “cheap” in some sense. In the
proposed algorithm, the preconditioning operation in line 2 of Algorithm 3.1 consists of an
asynchronous iterative method applied to the system Au = rk and is performed for a fixed
amount of time Tmax. The local systems within the asynchronous method are solved iteratively
and with accuracy εin. In other words, the preconditioning step consists of a random (typically

48 Asynchronous Iterative Methods as Preconditioners

Algorithm 3.2 Asynchronous block Jacobi iteration for CRAC task i.

output: ui = B(ri, εin, Tmax)

1: Wait until ri is updated; Set ui = 0;
2: Perform IC(0) decomposition of Aii;
3: while telapsed < Tmax do
4: Compute vi = ri −

∑
j Aijuj ;

5: Solve Aiipi = vi with accuracy εin;
6: Update ui = ui + pi;
7: Exchange ui asynchronously with neighbours;
8: end while

nonlinear) process,

u = B(rk, εin, Tmax), B : Rn → R
n, (3.1)

which varies from one iteration step k to the next. In Algorithm 3.2 the specific steps are shown
that are performed by the asynchronous preconditioning iteration processes (cf. Algorithm 1.1
on page 8).

If a fixed amount of time is devoted to each preconditioning step, there is no need for a —
possibly complicated and expensive — convergence detection algorithm for the asynchronous
preconditioning iteration. Convergence detection can be performed in the outer iteration.

The nonlinearity of the preconditioning step implies that the operator B does not correspond
to some symmetric positive definite matrix B. To minimise the number of expensive (outer)
synchronisations, the bulk of the computational work is to be performed by the preconditioner.

Note that the “standard” block Jacobi preconditioner corresponds to a single iteration step
of the synchronous block Jacobi iteration from Algorithm 1.1 on page 8 with initial guess x(0) ≡
0. In contrast, the preconditioning step from (3.1) consists of multiple asynchronous block
Jacobi “iterations steps”. These two types of preconditioning will be compared in the numerical
experiments. Also note that using the term “iteration step” for an asynchronous iterative method
is a slight abuse of language.

3.2.2 Orthogonalisation

The main difference with standard preconditioned CG is the additional orthogonalisation step
in line 3 of Algorithm 3.1. The newly obtained search direction vector u is orthogonalised with
respect to the A–inner product (i.e., 〈x,y〉A ≡ x∗Ay) against a number of previous search
directions.

For practical implementations of flexible methods a truncation or restart strategy has to be
applied. In this chapter a pure truncation strategy is employed, which basically means that
the new search direction vector is orthogonalised against mmax previous vectors, subsequently
replacing the oldest search direction vector. This variant will be denoted by FCG(mmax). Other
truncation or restart strategies are possible [96].

In the context of heterogeneous computing environments, choosing an appropriate orthogo-
nalisation procedure becomes critically important. Naturally, the (numerically stable) modified
Gram–Schmidt (MGS) procedure introduces expensive global synchronisation points. The hope
is that a low truncation parameter mmax is sufficient, thus keeping the number of expensive
synchronisations to a minimum.

3.3. Numerical experiments 49

Algorithm 3.3 Modified Gram–Schmidt.

output: uk = ortho–mgs(u, ci,ui, k,mk);

1: Set u
(k−mk)
k = u;

2: for i = k −mk, . . . , k − 1 do

3: Compute βi =
c∗iu

(i)
k

c∗iui

;

4: Set u
(i+1)
k = u

(i)
k − βiui;

5: end for
6: Set uk = u

(k)
k ;

Vice versa, the classical Gram–Schmidt algorithm has excellent parallel properties. Although
it may suffer from numerical instabilities, this may be remedied by using a (relatively compli-
cated) selective reorthogonalisation procedure [48, 26].

Since it is the intention to devote the bulk of the computational effort to preconditioning, the
number of expensive synchronisations induced by the MGS procedure will not pose a significant
bottleneck. Therefore, the MGS algorithm is chosen as the orthogonalisation procedure, which
is listed in Algorithm 3.3 for our case.

The vector updates do not require any communication, while the matrix–vector multiplication
for our case only requires nearest–neighbour communication.

3.3 Numerical experiments

3.3.1 Motivation

For completeness, we reproduce here the bubbly flow problem from Section 2.2.1 on page 32.
Note that our main goal is to simulate general moving boundary problems on Grid computers.
Examples of such problems are the swimming of fish, airflow around wind turbine blades, and
bubbly flows. These simulations involve solving the governing fluid equations on structured
grids, where the most expensive part consists of solving a large sparse linear system at each
time step. When using a pressure–correction method [141] to solve the governing equations for
bubbly flows on a very fine mesh, such a large sparse linear system arises from a finite difference
discretisation of the following Poisson equation with discontinuous coefficients and Neumann
boundary conditions,

{
−∇ ·

(
1

ρ(x)∇p(x)
)
= f(x), x ∈ Ω,

∂
∂x
p(x) = g(x), x ∈ ∂Ω,

(3.2)

for given functions f and g. Here, Ω and ∂Ω denote the computational domain and boundary
respectively, while p and ρ represent the pressure and density. In this chapter the test problem
from [135, 129] is considered. It is a two–phase bubbly flow problem with two separate fluids Γ0

and Γ1, representing water (high–density phase) and vapour (low–density phase) respectively.
The corresponding density function has a jump defined by

ρ(x) =

{
1, x ∈ Γ0;

τ, x ∈ Γ1,
(3.3)

50 Asynchronous Iterative Methods as Preconditioners

FCG(mmax) wall clock time (sec.) iterations number of vectors

0 > 1000 > 100 4
1 > 1000 > 100 6
3 839 87 10
5 636 68 14
10 572 62 24
15 515 61 34

Table 3.2: Influence of parameter m (Tmax = 5s, five nodes, 2D problem).

where typically τ = 10−3. Such a discontinuity in the coefficient results in an ill–conditioned
linear system, making it a difficult problem for iterative methods. For the purpose of this chapter
a unit domain is used containing a single bubble with radius 1

4 located at the center. For more
details on applying the pressure–correction method to bubbly flows the reader is referred to [135].

Both 2D and 3D experiments will be performed. Applying standard finite differences to
(3.2) on a structured nx × ny or nx × ny × nz mesh results in the linear system Ax = b where
A ∈ R

n×n is a penta or hepta–diagonal symmetric positive semi–definite (SPSD) sparse matrix
with n = nxny or n = nxnynz.

Note that this implies that the solution x is determined up to a constant. It can be shown
that this does not pose any problems for the iterative solver [128].

3.3.2 Target hardware and experimental setup

The Distributed ASCI Supercomputer 3 (DAS–3) is a multi–cluster consisting of five clusters,
located at four academic institutions across the Netherlands [107]. The five sites are connected
through SURFnet, which is the academic and research network in the Netherlands. Four of
the five local clusters are equipped with both Gigabit Ethernet interconnect and high speed
Myri–10G interconnect. The TUD site only employs Gigabit Ethernet interconnect. For more
information on the DAS–3, see Section 1.8.2 on page 21. Note that in this case the precondi-
tioning iteration and the outer iteration are performed using the same computational hardware.

The matrix is partitioned using a homogeneous one–dimensional block–row distribution, both
in the preconditioning iteration and in the outer iteration. The vectors are distributed accord-
ingly. Since a coupled iteration approach is used, it is natural to use the same data distribution
for both iteration processes. For more background on the employed data partitioning, see Sec-
tion 1.10.1 on page 22.

The preconditioning step in each outer iteration is performed for a fixed number of Tmax

seconds and the local systems are solved (inexactly) with relative tolerance εin = 10−1 using
standard CG preconditioned with an Incomplete Cholesky decomposition (without fill–in, i.e.,
IC(0)) [102].

Experiments reveal that solving the local subdomains more accurately does not result in im-
proved convergence rates. A possible explanation is that the asynchronous block Jacobi iteration
is an inherently slow process, which makes the accurate solution of the inner systems ineffectual.
The complete linear system is solved with relative tolerance εouter = 10−8.

In the context of Grid computing, it is natural to fix the problem size per node and investigate
the scalability of the algorithm by adding nodes in order to solve bigger problems (i.e., weak
scalability). The nodes are evenly divided between the five clusters with increments of five nodes,
starting with a single node on each cluster.

3.3. Numerical experiments 51

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

number of nodes

to
ta

l
ti
m

e
(i
n

s
e
c
o

n
d
s
)

synchronous

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(a) Lightly loaded network.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

number of nodes

to
ta

l
ti
m

e
(i
n

s
e
c
o

n
d
s
)

synchronous

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(b) Heavily loaded network.

Figure 3.1: Total execution time (3D problem).

In each 3D experiment, nx, ny, and nz are chosen such that the number of equations of
unknowns on each node is approximately 500,000. The largest experiments are performed using
100 nodes, which implies that the largest 3D problem solved consists of approximately fifty
million degrees of freedom. In the 2D experiments the number of unknowns on each node is
approximately 250,000.

Since the DAS–3 is solely intended for research purposes, the maximum allowed time for a
single job is sixty minutes. All the timing results shown are wall clock times. For comparison
studies, fully synchronous preconditioning is also performed, which involves performing a single
block Jacobi iteration step per preconditioning phase with zero initial guess. This corresponds to
the standard block Jacobi preconditioner. The effectiveness of the asynchronous preconditioner
depends on multiple (and random) factors, so these experiments are performed three times and
the average execution times are given.

To justify the use of a flexible method, results for a representative experiment using different
values of mmax are given in Table 3.2. The number of vectors that needs to be stored for
FCG(mmax) is also given, which is 2mmax + 4. Note that FCG(0) is a Richardson iteration
preconditioned with an asynchronous iterative method. In other words, this corresponds to the
(for all intents and purposes) completely asynchronous Jacobi iteration and Table 3.2 shows that
such a fully asynchronous method is impractical for this application. For mmax = 1, the method
corresponds to standard preconditioned CG, which also does not perform well. For mmax > 1,
the performance of the method starts to improve significantly. The results show that the use
of a flexible method is fully justified and that choosing mmax = 5 results in a good trade–off
between efficiency and memory requirements.

3.3.3 Experimental results

In order to properly investigate the effectiveness of the proposed algorithm on Grid hardware,
the experiments consist of two distinct parts:

1. Experiments using a 3D test problem and where the network load is varied for showing
that asynchronous preconditioning adapts to a heterogeneous network environment.

52 Asynchronous Iterative Methods as Preconditioners

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

number of nodes

re
la
ti
v
e
in
c
re
a
s
e
o
f
a
v
e
ra
g
e
ti
m
e
p
e
r
o
u
te
r
it
e
ra
ti
o
n
(i
n
s
e
c
o
n
d
s
) synchronous

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(a) Lightly loaded network.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

number of nodes

re
la
ti
v
e
in
c
re
a
s
e
o
f
a
v
e
ra
g
e
ti
m
e
p
e
r
o
u
te
r
it
e
ra
ti
o
n
(i
n
s
e
c
o
n
d
s
)

synchronous

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(b) Heavily loaded network.

Figure 3.2: Relative increase of time per outer iteration step (3D problem).

2. Experiments using a 2D test problem and varying network load for showing that asyn-
chronous preconditioning can outperform synchronous preconditioning independent of the
amount of network activity.

3D experiments

Figure 3.1(a) shows the total execution time until convergence for different values of Tmax ∈
{5, 10, 15, 20} on an lightly loaded network. For comparison, results using both asynchronous and
synchronous preconditioning are shown. In every experiment, synchronous preconditioning out-
performs asynchronous preconditioning. A key observation is that the amount of asynchronous
preconditioning does not seem to have a significant impact on the total computing time.

Figure 3.1(b) shows the total execution time until convergence using up to 100 nodes for
different values of Tmax ∈ {5, 10, 15, 20} on a heavily loaded network. To simulate a loaded
network, a special parallel application is used that continuously sends massive amounts of data
from all to all processes. Again for comparison, results using synchronous and asynchronous
preconditioning are given. In this case, the total execution time for synchronous preconditioning
increases significantly when using more than approximately 60 nodes. However, asynchronous
preconditioning remains highly effective. These results can be explained by the following two
observations.

(i) Time per outer iteration Keeping the problem size per node fixed implies that — in the
ideal case where communication overhead is negligible — the execution time per outer iteration
is constant. Figure 3.2 shows the relative increase of the average times per outer iteration for
both the single and the multi–cluster case. To be more precise, it shows the increase in time per
iteration relative to the time per iteration on 10 nodes.

The results given in Figure 3.2(a) for a lightly loaded network shows almost constant average
times per outer iteration for both synchronous and asynchronous preconditioning. This indicates
that in this case communication overhead is relatively small, which is not surprising.

As for the loaded network results, Figure 3.2(b) shows that the relative increase in time per

3.3. Numerical experiments 53

number of nodes synchronous async. (lightly loaded) async. (heavily loaded)

10 219 30 31
20 338 39 36
30 371 44 41
40 376 56 52
50 511 61 58
60 561 64 62
70 653 84 55
80 743 70 66
90 665 71 71
100 715 80 80

Table 3.3: Outer iterations for synchronous and asynchronous preconditioning (3D problem).

number of nodes synchronous async. (lightly loaded) async. (heavily loaded)

10 286 77 76
20 601 91 96
30 805 139 120
40 1060 124 128
50 1388 130 134
60 1473 138 176
70 1881 151 157
80 1905 174 164
90 2082 175 162
100 2332 195 175

Table 3.4: Outer iterations for synchronous and asynchronous preconditioning (2D problem).

outer iteration for synchronous preconditioning is far greater than with asynchronous precondi-
tioning.

(ii) Number of outer iterations Table 3.3 lists the total number of outer iterations for syn-
chronous and asynchronous preconditioning with Tmax = 15s. For asynchronous preconditioning,
results for a lightly loaded and a heavily loaded network are given. The table shows that when
using synchronous preconditioning, the number of outer iterations is relatively large. Combined
with the relatively large increase in time per outer iteration when using a loaded network, this
explains the major increase in total execution time as seen in Figure 3.1(b).

Vice versa, the relatively small number of outer iterations using asynchronous preconditioning
— for both a lightly loaded and a heavily loaded network — combined with the relatively small
increase in time per outer iteration results in significantly improved parallel performance in a
heterogeneous network environment. Again, the total execution time is not significantly affected
by the amount of asynchronous preconditioning.

54 Asynchronous Iterative Methods as Preconditioners

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

number of nodes

to
ta

l
ti
m

e
(i
n

s
e
c
o
n
d
s
)

synchronous

Tmax = 5

Tmax = 10

(a) Lightly loaded network.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

number of nodes

to
ta

l
ti
m

e
(i
n

s
e
c
o
n
d
s
)

synchronous

Tmax = 5

Tmax = 10

(b) Heavily loaded network.

Figure 3.3: Total execution time (2D problem).

2D experiments

In Figure 3.3 results are given using a 2D test problem for Tmax ∈ {5, 10} on both a lightly loaded
network and a heavily loaded network. Again, synchronous preconditioning is also included.
Note that in this case there is less communication between the subdomains.

The numerical results show that even when the network is lightly loaded (i.e., Figure 3.3(a)),
synchronous preconditioning is outperformed by asynchronous preconditioning when using more
than 40 nodes. For 100 nodes, the total execution time for synchronous preconditioning is almost
twice as long as for asynchronous preconditioning on a lightly loaded network. Not surprisingly,
on a heavily loaded network the synchronous preconditioning performs even worse (i.e., Fig-
ure 3.3(b)). Similar to the 3D experiments, the effectiveness of the asynchronous preconditioning
is practically unaffected by the increased network activity.

Similar to Figure 3.2, Figure 3.4 gives the relative “increase” in time per outer iteration step,
where it can be seen that there is initially a decrease for synchronous preconditioning, followed
by a small increase. We do not have a complete explanation for this behaviour. Despite the
fact that synchronous preconditioning does not show a relatively large increase in time per outer
iteration like in Figure 3.2(b), it is still outperformed by asynchronous preconditioning. This
can be explained by examining the number of outer iterations for Tmax = 10s, which are shown
in Table 3.4 for a lightly and heavily loaded network.

For synchronous preconditioning, using twice the number of nodes almost doubles the number
the outer iterations. In contrast, using asynchronous preconditioning increases the number of
outer iterations merely by a factor of approximately 1.4 for both a lightly loaded and heavily
loaded network. As a result, asynchronous preconditioning is also very effective for this test
case.

3.3.4 Discussion

Increasing the problem size by adding nodes has the following adverse consequences.

1. The coefficient matrix becomes increasingly ill–conditioned; and

3.4. Introduction 55

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

number of nodes

re
la
ti
v
e
in
c
re
a
s
e
o
f
a
v
e
ra
g
e
ti
m
e
p
e
r
o
u
te
r
it
e
ra
ti
o
n
(i
n
s
e
c
o
n
d
s
) synchronous

Tmax = 5

Tmax = 10

(a) Lightly loaded network.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

number of nodes

re
la
ti
v
e
in
c
re
a
s
e
o
f
a
v
e
ra
g
e
ti
m
e
p
e
r
o
u
te
r
it
e
ra
ti
o
n
(i
n
s
e
c
o
n
d
s
) synchronous

Tmax = 5

Tmax = 10

(b) Heavily loaded network.

Figure 3.4: Relative increase of time per outer iteration step (2D problem).

2. the number of subdomains in asynchronous block Jacobi increases.

Both these effects have a negative impact on the number of outer iterations. The first
consequence is inherent to the problem and the second effect applies to all block Jacobi–type
preconditioners. Despite these unfavourable conditions the experimental results show a fairly
limited increase in total computing time for increasing number of nodes, which suggests that the
asynchronous iterative method is an effective preconditioner in the context of Grid computing.

A possible third consequence is that the average number of Jacobi iteration steps per node
decreases due to increased communication. However, this was not observed in the experiments.

The experimental results also show that factors such as heterogeneity of the hardware and
variations in network activity hardly seem to have any impact on the effectiveness of the pre-
conditioner.

Part II: Decoupled iterations

3.4 Introduction

In this part the inner–outer algorithm described in Chapter 1 is implemented using the Grid
middleware GridSolve [58, 154], which allows for convenient decoupling of the two iteration
processes. The algorithm is a combination of the flexible iterative method GMRESR [137]
and an asynchronous iterative method as preconditioner. The outer iteration is performed
sequentially on the (stable) client machine, while the inner preconditioning iteration is performed
on (unstable) heterogeneous computing hardware.

Since global synchronisation is an expensive operation, the bulk of the computational work
is performed by the asynchronous preconditioning iteration. In this way, efficient use is made of
the available computational resources. Purely for comparison purposes, we have also evaluated
a parallel implementation of the outer iteration, resulting in a coupled iteration process as in
the first part.

56 Asynchronous Iterative Methods as Preconditioners

Algorithm 3.4 GMRESR (truncated version)

input: Parameters m, εin, Tmax; Initial guess x0; Set r0 = b−Ax0.
output: Approximate solution to Ax = b.

1: for k = 0, 1, . . . , until convergence do
2: Evaluate u = B(rk, εin, Tmax); // Preconditioning step: Algorithm 3.6
3: Compute c = Au; // Matrix–vector multiplication
4: Compute [ck,uk] = ortho–cgs(c,u, ci,ui, k,m); // Orthogonalisation step: Algo-

rithm 3.5
5: Compute γ = c∗krk;
6: Update xk+1 = xk + γuk;
7: Update rk+1 = rk − γck;
8: end for

We choose GMRESR as the flexible (outer) method, partly because the orthogonalisation
process can be easily truncated, which is essential for practical implementations. The truncated
variant of GMRESR is shown in Algorithm 3.4. The preconditioning step in line 2 consists of
computing some approximate solution to Au = rk using an asynchronous iterative method. The
obtained search direction is then orthogonalised in line 4 against m previous search directions.

Numerical experiments for a large 3D convection–diffusion problem demonstrate the effec-
tiveness of the algorithm.

3.5 Parallel implementation details

3.5.1 Brief description of GridSolve

For completeness, we briefly repeat the key components of GridSolve. The middleware consists
of the following components.

(i) The client, which can remotely execute tasks on computational servers using information
provided by the agent.

(ii) The agent, which actively monitors server properties such as CPU speed, memory size,
computational services, workload, and availability.

(iii) The computational servers, which can run predefined tasks. Any data that are read or
generated locally during the execution of a task are lost after the task completes, unless
the data are stored on the IBP data depot.

(iv) The IBP data depot, which acts as a storage device and is accessible by the client and the
servers. The client uploads (downloads) data to (from) the IBP data depot which is in close
proximity to the computational servers and tasks can then read (write) data from (to) the
depot. Therefore, using the IBP data depot induces bridge communication between the
client and the servers.

For a more detailed description of GridSolve, see Section 1.7.1 on page 16.

3.5.2 Decoupled iterations

The coarse–grain nature of the asynchronous preconditioning iteration makes this operation
naturally suited for distributed computing. Moreover, the preconditioning step can be performed

3.5. Parallel implementation details 57

Algorithm 3.5 Classical Gram–Schmidt

output: [ck,uk] = ortho–cgs(c,u, ci,ui, k,m);

1: Compute β = c∗c;
2: for i = max(0, k −m), . . . , k − 1) do
3: Compute αi = c∗ci;
4: end for

5: Compute β =
√
β −∑k−1

i=1 α
2
i ;

6: Compute ck = β−1
(
c−∑k−1

i=1 αici

)
;

7: Compute uk = β−1
(
u−∑k−1

i=1 αiui

)
;

Algorithm 3.6 Asynchronous block Jacobi iteration task for each GridSolve server i.

output: ui = B(ri, εin, Tmax)

1: Read ri from IBP depot; Set ui = 0;
2: Perform ILU decomposition of Aii;
3: while telapsed < Tmax do
4: Read relevant part of u from IBP depot;
5: Compute vi = ri −

∑
j Aijuj ;

6: Solve Aiipi = vi approximately with accuracy εin;
7: Update ui = ui + pi;
8: Write ui to IBP depot;
9: end while

on unreliable hardware. Stalling of one of the preconditioning servers will result in a less effective
preconditioning operation, but the main solution method will not break down.

However, the other operations (i.e., the matrix–vector multiplication, orthogonalisation, and
vector operations) are relatively fine–grain and need to be performed on stable hardware. It
may therefore be natural to perform the outer iteration on the (reliable) client machine. This
approach has an obvious limitation. Depending on the problem size and the number of servers,
the outer iteration may become a computational bottleneck. We have therefore also implemented
a parallel outer iteration using techniques described in Chapter 2.

Similar to the previous part, the matrix is partitioned using a homogeneous one–dimensional
block–row distribution, both in the preconditioning iteration and in the outer iteration. The
vectors are distributed accordingly. What follows are various implementation issues pertaining
to performing the outer iteration in sequential or parallel. Note that in both cases the inner
preconditioning is performed in parallel on heterogeneous computing hardware.

Sequential outer loop

All of the operations — with exception of the preconditioning iteration — are performed on the
client machine. There is a single GridSolve task for the preconditioning step, which implies that
there is a single global synchronisation point in each outer iteration step. The client machine
begins by updating the complete residual on the IBP data depot. Algorithm 3.6 shows the
specific steps performed by each server i in the preconditioning phase (cf. Algorithm 1.1 on
page 8).

At the beginning of task i, the appropriate portion of the residual is read and the task starts

58 Asynchronous Iterative Methods as Preconditioners

iterating on its portion of u. At the end of each block Jacobi iteration step, the server updates
the relevant portion(s) of u (i.e., the boundary points) on the IBP depot. This process continues
until some appropriate criterion is met, which is currently related to a simple time limit. Each
process then writes its part of u to the IBP depot and the complete vector u is read by the client
machine. The obtained search direction is then used to compute the new iterate and residual.
This procedure is repeated until convergence.

Parallel outer iteration

In this case, the only data that is communicated between the client and the computational nodes
are the results of the (partial) inner products. The classical Gram–Schmidt algorithm (CGS)
shown in Algorithm 3.5 was chosen for the orthogonalisation step, since it has favourable parallel
properties.

By combining operations as much as possible, three distinct GridSolve tasks can be con-
structed, giving three synchronisation points per outer iteration step. The first task consists of
two main operations: updating the iterate and residual and performing the asynchronous Jacobi
iterations. The second GridSolve task has two operations: computing the local matrix–vector
product and performing the first phase of the CGS algorithm. The third and last GridSolve task
performs the second phase of CGS and stores the newly computed search directions.

A disadvantage of this approach is that every GridSolve task should be performed on reli-
able hardware. That is, should any of the tasks fail, it is likely that important intermediate
information is lost, halting the entire outer iteration process.

3.6 Numerical experiments

We have conducted several experiments solving the following 3D convection–diffusion problem,

{
−∇2u+ (2p · ∇)u = f, u ∈ Ω,

u = g, u ∈ ∂Ω,
(3.4)

where p = [1, 2, 3], Ω is the domain, and f,g are given vectors. Discretisation by the finite differ-
ence scheme with a seven point stencil on a uniform nx ×ny ×nz mesh results in a sparse linear
system of equations Ax = b where A is of order n = nxnynz. Centered differences are used for
the first derivatives. The grid points are numbered using the standard (lexicographic) ordering,
resulting in a heptadiagonal coefficient matrix. The right–hand side vector b is generated from
the constant solution x = 1.

3.6.1 Target hardware and experimental setup

The experiments are performed using a local cluster, which is a multi–user system. It is mod-
erately heterogeneous in design, consisting of twelve nodes: six Intel 2.20 GHz machines, two
Intel 2.66 GHz machines, and four AMD Athlon 2.20 GHz machines. The nodes are equipped
with memory in the range 2–4 GB and the cluster is interconnected through 100 MB/s Ethernet
links. The experiments are performed on a typical work day, while other users perform their
computations. For more details on this cluster, see Section 1.8.1 on page 19.

The IBP depot is started on one of the nodes in the cluster. Also, instead of letting the
GridSolve agent assign the tasks, the client allocates tasks randomly to the servers. The Jacobi
sweeps are performed for a fixed number of seconds Tmax = 120s and we use matrix–free storage.
The inner iterations are solved inaccurately with relative tolerance εin = 10−4 using the IDR(s)

3.6. Numerical experiments 59

2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

number of servers/size of problem

to
ta
l
c
o
m
p
u
ti
n
g
ti
m
e
(i
n
s
e
c
o
n
d
s
)

sequential outer iteration

parallel outer iteration

synchronous preconditioning

(a) Total execution time.

2 4 6 8 10 12
0

50

100

150

200

number of servers/size of problem

a
v
e
ra
g
e
ti
m
e
p
e
r
o
u
te
r
it
e
ra
ti
o
n
(i
n
s
e
c
o
n
d
s
) sequential outer iteration

parallel outer iteration

synchronous preconditioning

(b) Time per outer iteration step.

Figure 3.5: Experiments on a large heterogeneous cluster with 250,000 equations per server.

method [120] with s = 4 and preconditioned with ILU. In the context of Grid computing, it is
natural to fix the problem size per server and investigate the scalability of the algorithm by adding
more servers in order to solve bigger problems. For each experiment, we take nx = ny = nz such
that the number of equations of unknowns per server is approximately 250,000.

The outer iteration is performed either sequentially on the client machine (decoupled ap-
proach) or in parallel using the same nodes as the preconditioning nodes (coupled approach).
The complete linear system is solved with relative tolerance ε = 10−8. To limit memory require-
ments, the truncation parameter is kept small (m = 5).

3.6.2 Experimental results and discussion

Five executions of the algorithm are performed, each time using a different and random set
of servers. Figure 3.5 shows experimental results obtained using up to twelve servers (i.e., for
problem sizes between 250,000 and three million), using both the sequential and parallel outer
iteration. For comparison, results for standard (synchronous) block Jacobi preconditioning with
inexact subdomain solves (using the parallel outer iteration) are also included.

Figure 3.5(a) shows the average execution times of the total iteration processes. The results
show that the execution time of the asynchronous method increases when servers are added. This
can be attributed almost completely to the increase in the number of outer iterations, which is
approximately 4 for 2 servers and 11 for 8 servers. Using the same arguments as in Section 3.3.4,
this increase in outer iterations is a result of the following two effects:

1. The coefficient matrix becomes increasingly ill–conditioned due to the increase of the prob-
lem size; and

2. the number of subdomains in asynchronous block Jacobi increases, which makes the pre-
conditioner less effective.

Like before, factors that could also have a large impact on the effectiveness of the precon-
ditioner are the heterogeneity of the hardware, the differences in workload, and fluctuations

60 Asynchronous Iterative Methods as Preconditioners

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

outer iteration number

n
u

m
b

e
r

o
f

J
a

c
o

b
i
s
w

e
e

p
s

(a) Four nodes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

outer iteration number

n
u

m
b

e
r

o
f

J
a

c
o

b
i
s
w

e
e

p
s

(b) Nine nodes.

Figure 3.6: Jacobi sweeps performed by each server during outer iteration steps.

in network load. In the current computational environment and using the aforementioned pa-
rameters, the number of Jacobi sweeps during a single preconditioning step ranged between
approximately 120 on a fully dedicated server and 30 on a fully occupied server. However, be-
cause the tasks are assigned to different servers in each outer iteration step, these effects are
averaged out and the spread in total execution times remained within ten percent. Similar to the
observations from the coupled approach in the first part, it seems that in the decoupled setting
the asynchronous preconditioner is also robust with respect to the factors mentioned above.

Keeping the problem size per server fixed implies that — in the ideal case where overhead is
negligible — the execution time per outer iteration remains constant. This is demonstrated in
Figure 3.5(b), were we show the average times per outer iteration step. The results indicate that
for the sequential outer loop the overhead is rather small. Also, for the parallel outer loop the
increase in overhead due to the additional work and the (GridSolve) communication overhead is
quite limited. In this case, the overhead grows more rapidly with increasing number of servers
— compared to the sequential outer iteration.

For synchronous block Jacobi preconditioning, the total execution time grows significantly
faster than for the asynchronous preconditioning if the number of servers is increased. This is a
combination of two effects. Firstly, the number of iterations is higher for the synchronous pre-
conditioner. That is, from 41 on 2 servers to 72 on 8 servers. A possible explanation is that, in
contrast to asynchronous preconditioning, there is no exchange of information between the sub-
domains for synchronous preconditioning. Secondly, the time per iteration grows faster for the
synchronous preconditioner. Since one synchronous preconditioning step requires much less com-
putations than an asynchronous preconditioning step, the computation–to–synchronisation ratio
is more favourable for asynchronous preconditioning. As a result, the asynchronous method out-
performs the synchronous preconditioning technique. Moreover, this difference in performance
becomes increasingly more significant for higher number of servers.

For illustrative purposes, Figure 3.6(a) and Figure 3.6(b) demonstrate the effect of varying
workload and heterogeneity of hardware on a typical execution of the algorithm. It shows the
number of Jacobi iterations performed by each server per outer iteration step, using four and
nine servers respectively. Certain nodes exhibit an increased workload and its effect is clearly

3.7. Motivation 61

visible.

Part III: Deflation and smoothing

In this part it is shown how deflation techniques can be combined with an asynchronous precon-
ditioning iteration. In Section 3.7 the main motivations behind combining a deflation method
with an asynchronous iterative method are discussed. Section 3.8 describes deflation methods
and in Section 3.9 numerical experiments are performed that show the effectiveness of adding a
deflation step to the flexible CG method from the first part of this chapter for solving the bub-
bly flow problem. In Section 3.10 the possibility of using asynchronous iterations as smoothers
is briefly investigated experimentally. Section 3.11 formulates the general conclusions of this
chapter.

3.7 Motivation

Asynchronous iterative methods methods are closely related to domain decomposition tech-
niques. Large problem sizes implies a large number of processors, which corresponds to a large
number of subdomains. To improve the robustness and scalability of the complete algorithm,
some form of coarse grid correction such as deflation may be appropriate. The main idea is that
high–frequency components of the residual are handled by the asynchronous preconditioning
iteration, while low–frequency components can be handled by a coarse-grid correction step.

There are many types of deflation methods. In most (traditional) deflation variants, the
“problematic” eigenvalues are deflated to zero. Perturbations such as roundoff errors, perturbed
starting vectors, inaccurate preconditioning solves, and inaccurate Galerkin solves can transform
these zero eigenvalues to near zero eigenvalues, which can hamper convergence severely. For our
application, the so–called adapted deflation variant 2 (A–DEF2) was chosen [127, Section 2.3.4],
which was shown to be robust. In an adapted deflation method, the eigenvalues are shifted to
one instead of zero. As a result, any perturbations will transform the unit eigenvalues into near
unit eigenvalues, which are harmless to the convergence process. Since our preconditioning step
is a highly variable process where the subdomains are solved inexactly, it is absolutely essential
that the employed deflation method is robust with respect to such variations.

Another important choice are the deflation vectors, whose effectiveness depends on the ap-
plication. For solving bubbly flow problems on Grid computers using our method, subdomain
deflation using piecewise–constant, disjoint and orthogonal deflation vectors is a very effective
choice. Some of the reasons are as follows (cf. [130, Section 4.2]):

• As mentioned before, asynchronous iterations are closely related to domain decomposition
methods. In subdomain deflation, each of these subdomains can be made to correspond
to one or multiple deflation vectors. The deflation vector consists of ones for grid points
inside a subdomain and zero for grid points outside the subdomain.

• In the outer iteration, the deflation steps are parallel synchronous operations. Since sub-
domain deflation vectors are disjoint, the deflation steps can be performed efficiently in
parallel, minimising the overhead in the outer iteration. In addition, it is shown below that
(sequential) subdomain deflation can also be used within the asynchronous preconditioning
iteration.

• It can be shown that subdomain deflation vectors approximate the eigenspace correspond-
ing to the unfavourable eigenvalues of the coefficient matrix from the bubbly flow test
problem.

62 Asynchronous Iterative Methods as Preconditioners

The coefficient matrix A originating from the bubby flow problem is singular and symmetric
positive semidefinite. Although the standard preconditioned CG method can handle singular
matrices [83], applying a deflated CG method to a singular matrix will result in a singular
Galerkin matrix. This means that solving the Galerkin systems using direct methods may pose
difficulties. The coefficient matrix can be made invertible by perturbing the lower right element
of the coefficient matrix, which in essence means that a Dirichlet condition is imposed on one
point in the domain. This results in a near–singular coefficient matrix, which can increase the
condition number. However, in [129] it was shown that applying deflated PCG either directly to
the original singular system or to the modified near–singular system results in similar favourable
convergence behaviour.

For ease of implementation, we use a near–singular matrix, since it allows for solving the
coarse Galerkin systems using direct methods. For larger problem sizes (i.e., more subdomains),
the number of deflation vectors will increase. As a result, the size of the Galerkin systems also
increases and iterative methods may be employed to solve these systems (possibly inexactly).
This allows us to work with singular coefficient matrices directly.

In our application, subdomain deflation is applied on two different levels: in the outer itera-
tion and in the local subdomain solves of the asynchronous preconditioning iteration. These two
strategies can contribute to the reduction of the total number of outer iterations. The strategies
are connected in the following manner.

• Outer deflation. Without deflation, the total number of outer iterations is critically de-
pendent on the number of bubbles present in the problem and the number of subdomains.
Additionally, the effectiveness of the asynchronous preconditioner in heterogeneous com-
puting environments may fluctuate considerably and thus the number of outer iterations.
Not only will adding outer deflation remove unfavourable eigenvalues associated with the
bubbles, it will also increase robustness with respect to inexact and fluctuating precon-
ditioning steps. This reduces the number of outer iterations considerably. It is expected
that this will only work if the asynchronous preconditioner handles the larger eigenvalues
and the outer deflation handles the smaller eigenvalues.

• Inner deflation. By using deflation in the local subdomain solves, the number of iterations
for solving the subdomains on each processor will be roughly the same and desynchronisa-
tion of the Jacobi processes may be reduced. As a result, it is expected that the operator B
from (3.1) will increasingly approximate some SPD matrix B−1. This could also allow for
a smaller truncation parameter, resulting in reduced memory requirements. In this case,
load balancing also becomes less complicated.

3.8 Deflation methods

It is not our intention to give a complete discussion of deflation–type methods in this section.
For more detailed information on deflation methods, see Chapter 5 of this thesis or [127].

In most deflation methods, two different kinds of preconditioners are combined: a tradi-
tional (first-level) preconditioner and a coarse-grid (second-level) correction step. The following
definitions are needed to derive the A–DEF2 deflation method [127]. The deflation matrices

Π, Π̂ ∈ R
n×n, the correction matrix Q ∈ R

n×n, and the Galerkin matrix σ ∈ R
t×t are defined

as follows:

Π ≡ I−AQ and Π̂ = Π∗ ≡ I−QA where Q ≡ Zσ−1Z∗ and σ ≡ Z∗AZ, (3.5)

where Z ∈ R
n×t is a full-rank matrix consisting of t deflation vectors.

3.9. Numerical experiments 63

Algorithm 3.7 Computation of u = Padef2rk
1: w1 = Qrk
2: w2 = B(rk, εin, Tmax) (cf. (3.1))

3: w3 = Π̂w2

4: u = w1 +w3

Algorithm 3.8 Computation of Π̂y

1: y1 = (AZ)∗y
2: Solve σy2 = y1

3: y3 = Zy2

4: Π̂y = y− y3

The A–DEF2 method can be seen as the combination of two preconditioners. Let C1 and C2

be two preconditioners. Given an initial guess for the iterate x0, consider the two–step stationary
iterative method for k ∈ N0:

x′
k = xk +C1(b−Axk);

xk+1 = x′
k +C2(b−Ax′

k),
(3.6)

which can be combined to obtain xk+1 = xk +P(b−Axk), where

P = C1 +C2 −C2AC1. (3.7)

In the A–DEF2 deflation method, a standard preconditioner B−1 is applied first, followed by
a coarse-grid correction step Q. In other words, let C1 ≡ B−1 and C2 ≡ Q. The complete
deflation operator of A–DEF2 is then

Padef2 = Π̂B−1 +Q. (3.8)

Note that in our application, the preconditioning step B−1r is the result of applying the operator
B(r) from (3.1).

For any full rank matrix Z, we have Padef2AZ = Z, so that the matrix Padef2A has t unit
eigenvalues. In “traditional” deflation methods, the operator Q is omitted from (3.8), which
means that the eigenvalues are shifted to zero instead.

The deflation step can be easily added to the flexible CG method by replacing the precondi-
tioning step in line 2 from Algorithm 3.1 with the operation u = Padef2rk. In addition, a special
starting vector x0 = Qb+ Π̂x0 has to be used. The other operations of flexible CG remain the
same.

The specific steps of the operation u = Padef2rk are shown in Algorithm 3.7. Note that steps
1 and 3 of Algorithm 3.7 are synchronous operations performed by the outer iteration, while step
2 is the asynchronous inner iteration. The operation Π̂y for some vector y is performed using
the steps in Algorithm 3.8. The small matrix σ and the sparse matrix (AZ)∗ can be computed
once and stored beforehand. When using subdomain deflation, the application of Z and Z∗ to
some vector can be computed efficiently without storing the matrix Z explicitly.

3.9 Numerical experiments

For the outer iteration, the A–DEF2 deflation method is used with flexible CG and precondi-
tioned with an asynchronous iterative method. The small systems with σ in the deflation step

64 Asynchronous Iterative Methods as Preconditioners

10 nodes (5× 106 equations) 20 nodes (107 equations)

Tmax (s) without deflation with deflation without deflation with deflation

0 170 134 301 230
5 55 (275) 45 (225) 107 (535) 71 (335)
10 35 (350) 26 (260) 41 (410) 43 (430)
15 25 (375) 20 (300) 42 (630) 34 (510)
20 18 (360) 19 (380) 40 (800) 28 (560)

Table 3.5: Number of outer iterations (3D problem).

are solved using a precomputed Cholesky decomposition. The deflation vectors correspond to
the subdomains used in the asynchronous preconditioning iteration, which are horizontal slices
across the z-axis. The number of deflation vectors is equal to the number of total grid points in
the z-direction. That is, the height of the deflation subdomains is one grid point. The truncation
parameter of flexible CG is set to mmax = 5.

In the asynchronous preconditioning iteration, the local system of the subdomain is solved
using standard CG preconditioned with incomplete Cholesky and using A–DEF2 deflation. Sim-
ilar to the outer deflation, the number of (local) deflation vectors is equal to the number of grid
points of the subdomain in the z-direction.

The deflation steps are implemented in a sequential outer iteration, while the asynchronous
preconditioning iteration is performed in parallel. As before, the number of equations per node
is fixed to 500,000 equations.

Table 3.5 shows experimental results for the deflation method A–DEF2 applied to the 3D
bubbly flow problem on a lightly loaded network. Not surprisingly, the additional overhead of the
deflation step in the (sequential) outer iteration results in a large computing time per iteration
step. Therefore, only the number of iterations are relevant and experiments using only 10 and
20 nodes are performed (or equivalently, for problem sizes of five and ten million equations).
The results shown are the minimum number of iteration steps of four different experimental
runs. For completeness, the theoretical total computing time (i.e., zero overhead in the outer
iteration) is shown between brackets.

This shows that the larger the problem size, the more effective the deflation step. A possible
explanation is that for larger problem sizes, the number of unfavourable eigenvalues increases
and a coarse grid correction step will become more effective. Also, the results show that the
more asynchronous preconditioning, the less effective the deflation step. This is not surprising,
since information is exchanged between the subdomains in the asynchronous preconditioning.
This interfers with the main objective of a coarse grid correction, which is to tie the subdomains
together as well.

In general, the deflation step has a rather small effect on the number of iterations. A possible
explanation is that the bulk of the (predominately large) eigenvalues of the symmetric coeffi-
cient matrix are efficiently handled by the asynchronous inner iteration, while the relatively
small number of difficult eigenvalues may be removed by a small number of (nondeflated) outer
iterations. However, increasing the number of bubbles will result in an increase of outer itera-
tions when using the same amount of asynchronous preconditioning. For this case, a deflation
step (with appropriate deflation subdomains) will be more effective.

Currently, the deflation vectors correspond to the subdomains originating from the asyn-
chronous preconditioning iteration, which are horizontal slices across the z-axis. Naturally,
more sophisticated subdomains such as cuboids can be used for the deflation vectors, which will

3.10. Using asynchronous iterative methods as smoothers 65

(a) Point Jacobi: after 1 smoothing step. (b) Point Jacobi: after 5 smoothing steps.

(c) IC(0): after 1 smoothing step. (d) IC(0): after 5 smoothing steps.

Figure 3.7: Point smoothers.

increase the effectiveness of the deflation step.

3.10 Using asynchronous iterative methods as smoothers

To further investigate the limited effect of the deflation step, we will investigate experimentally
the smoothing properties of asynchronous iterative methods.

In multigrid, the preconditioner is often a weak fine–scale smoother (e.g., Jacobi or Gauss-
Seidel) combined with a coarse–scale correction over a relatively large space. Since the asyn-
chronous preconditioning iteration is a relatively strong fine-scale preconditioner as we will show
below, using asynchronous relaxation in multigrid may not be entirely appropriate.

Since the preconditioning matrix B−1
k is not explicitly available in each outer iteration step k,

it is not trivial to investigate the effect of the asynchronous iteration on the spectrum σ(B−1
k A).

We will therefore compare and illustrate experimentally the error reducing properties of the fol-
lowing four smoothers: asynchronous block Jacobi iteration, standard (synchronous) block Ja-

66 Asynchronous Iterative Methods as Preconditioners

(a) Block Jacobi: after 1 smoothing step. (b) Block Jacobi: after 5 smoothing steps.

(c) A-BJ: After 1 smoothing step. (d) A-BJ: After 5 smoothing steps.

Figure 3.8: Smoothing for block Jacobi and for asynchronous iterations (A-BJ).

cobi, standard point Jacobi, and Incomplete Cholesky decomposition without fill-in (i.e., IC(0)).
Note that the first two methods are block smoothers and will be performed in parallel, while the
latter two are point smoothers and are performed sequentially. We start with a random initial
solution and solve for a singular system Ax = b from a 2D bubbly flow problem of dimension
n = 1002 with a single bubble centered in the middle. Richardson is used as the outer iteration
and for the block smoothers the domain is partitioned into five equally–sized rectangular strips.

For the asynchronous smoother, performing a single sweep (or smoothing or relaxation step)
means in our case that the asynchronous iteration is stopped when one of the asynchronous
processes has performed a maximum of five local iteration steps. Note that due to the randomness
of the asynchronous iteration process, the number of iterations the other asynchronous processes
has performed when the iteration is stopped will vary for each sweep.

Shown in Figure 3.7 and Figure 3.8 is the error x− xk after one sweep and after five sweeps
using the four smoothing methods. Note that the bubble can be observed at the center. This
shows that for this particular test case, point Jacobi (Figure 3.7(a) and Figure 3.7(b)) has less
smoothing capabilities than the IC(0) method (Figure 3.7(a) and Figure 3.7(b)). For point

3.11. Conclusions 67

Jacobi, the error is still oscillatory even after five sweeps.
The block Jacobi method (Figure 3.8(a) and Figure 3.8(b)) has slightly better smoothing

properties compared to the IC(0) method. After one sweep, the smoothness of the error is
comparable to IC(0). However, after five sweeps the error for block Jacobi is completely smooth,
while with IC(0) some oscillations can still be observed. Also, the five domains in block Jacobi
can be seen clearly. For unknown reasons, the subdomain that contains the bubble is already
completely smooth after a single sweep of the block Jacobi method (Figure 3.8(a)).

For the asynchronous method (Figure 3.8(c) and Figure 3.8(d)), the error after one smoothing
step (Figure 3.8(c)) is comparable to block Jacobi after five (synchronous) sweeps (Figure 3.8(b)).
Although the error inside the subdomains is extremely smooth, at the boundary oscillatory
behaviour can clearly be observed. Also, slow oscillations can be seen within the subdomains,
which suggests that using deflation techniques in the local subdomain solves may be beneficial.

After five sweeps the total error is reduced substantially in comparison to the other smoothers
and the artifacts at the boundaries have disappeared. Since the error is quite smooth even after
a small number of asynchronous sweeps, it is expected that a coarse-grid correction from a
small dimensional subspace (e.g., equal to the number of subdomains) can be very effective.
This further motivates the idea that it is more natural to combine asynchronous iterations with
deflation techniques than with multigrid.

These results contradict the remarks in [59, p. 7], where it is argued that asynchronous
relaxation methods will never really work as (standard) smoothers, because the small number of
smoothing iterations will make it difficult to exchange enough information between neighbouring
subdomains. However, [59] also states that the smoothing of the error will only occur within a
subdomain, which is exactly what our experiments showed.

3.11 Conclusions

In the coupled iteration approach, the CRAC library allows for easy implementation of the
partially asynchronous iterative algorithm on a multi–cluster. Also, extensive numerical ex-
periments using approximately 100 nodes divided between five geographically separated and
dedicated clusters showed that:

1. Using the partially asynchronous algorithm is more efficient than (i) using a fully syn-
chronous method or (ii) using a fully asynchronous method;

2. The asynchronous preconditioner adapts to a computational environment in which the
network is heavily loaded;

In the decoupled iteration approach, GridSolve allows for straightforward physical separation
of the two iteration processes. The inner preconditioning iteration is performed on unreliable
(heterogeneous and distant) computational resources, while the outer (and main) iteration is
performed on stable (homogeneous and local) hardware. This results in an algorithm that is
partially fault–tolerant. In this manner, efficient use of existing and non–dedicated resources
can be achieved. Similar to the coupled approach, using the partially asynchronous algorithm is
more efficient than using a fully synchronous method.

Also, GridSolve is originally intended for purely coarse–grain numerical algorithms, but we
successfully applied it to a fine–grain iterative solution approach. Despite the inherent limitations
of the employed middleware GridSolve and the extremely volatile nature of the computational
resources, encouraging experimental results are obtained.

The numerical experiments showed that both approaches (coupled and decoupled) were ro-
bust with respect to heterogeneity in hardware and changes in network load. It can therefore be

68 Asynchronous Iterative Methods as Preconditioners

concluded that the proposed partially asynchronous algorithm is highly effective in iteratively
solving large–scale linear systems within the context of heterogeneous networks of computers.

The ideas presented in this chapter were applied in the context of Grid computing. However,
the asynchronous preconditioning approach may also be of interest for parallel computing with
multi–core processors, where connections between cores on the same processor are much faster
than connections between the processors.

Complementing the asynchronous preconditioning step with a coarse grid correction is rela-
tively straightforward. However, the subsequent decrease in number of outer iterations is rather
mild. Nevertheless, the results are promising and it is expected that increasing the number
of bubbles and using more sophisticated deflation vectors will increase the effectiveness of a
deflation step.

Small test cases suggest that asynchronous smoothing can be beneficial for multi–level pre-
conditioning and in particular for deflation–type methods. However, larger experiments did not
corroborate these findings and more research is needed to explain this.

Chapter 4

IDR(s) for Grid Computing

This chapter has been published as:

T. P. Collignon and M. B. van Gijzen. Minimizing synchronization in IDR(s). Numerical Linear
Algebra with Applications, 2011. (published online: 14 january 2011).

M. B. van Gijzen and T. P. Collignon. Exploiting the flexibility of IDR(s) for Grid computing.
In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods, Kyoto University,
Kyoto, Japan, March 2010.

69

70 IDR(s) for Grid Computing

Overview

IDR(s) is a family of fast algorithms for iteratively solving large nonsymmetric linear systems.
With cluster computing and in particular with Grid computing, the inner product is a bottleneck
operation. In this chapter, four techniques are investigated for alleviating this bottleneck. Firstly,
a recently proposed IDR(s) algorithm that is efficient and stable is reformulated in such a way
that it has a single global synchronisation point per matrix–vector multiplication. Secondly, the
so–called IDR test matrix is chosen so that the work, communication, and storage involving this
matrix is minimised in multi–cluster environments. Thirdly, a methodology is presented for a
priori estimation of the optimal value of s. Finally, the reformulated IDR(s) variant is combined
with the asynchronous preconditioning technique as described in Chapters 1 and 3. Numerical
experiments applied to a 3D convection–diffusion problem are performed on the DAS–3 Grid
computer, demonstrating the effectiveness of our approach.

4.1 Introduction

The recently proposed induced dimension reduction (IDR) method [120] and its variants are short
recurrence Krylov subspace methods for iteratively solving large nonsymmetric linear systems

Ax = b, A ∈ C
n×n, x,b ∈ C

n. (4.1)

In [78, 115, 120] it is shown that for s = 1, IDR(s) is mathematically equivalent to the ubiquitous
Bi–CGSTAB [136] method. For important classes of problems and for relatively small values of
s > 1 (e.g., s = 4 or 6), the IDR(s) algorithms outperform Bi–CGSTAB, see for example [120,
Section 6] and [140].

The IDR(s) method has attracted considerable attention and we will give a short overview
of some IDR(s) related papers. The IDR approach to solving nonsymmetric linear systems
is quite nonstandard and in [78, 115] the connections between the IDR(s) method and more
traditional Krylov subspace methods are explained. Several algorithmic variations are proposed
and analysed in for example [97, 98, 139, 140], while [45, 138] aims to optimise IDR(s) methods
in a parallel and Grid computing context. In [117], the strengths of BiCGstab(ℓ) [113] and
IDR(s) are combined, resulting in the superior IDRstab method. A related approach is used
in [131]. In [112] the IDR(s) method is interpreted as a Petrov–Galerkin method and in [79]
the IDR approach is used for eigenvalues computations. More recently, an in–depth convergence
analysis of IDR(s) using statistical arguments was performed in [119]. Several interesting results
related to the algebra of induced dimension reduction are discussed in [116].

The goal of this chapter is to construct an efficient IDR(s) algorithm for cluster and Grid
computing. Global synchronisation is a bottleneck operation in such computational environments
and to alleviate this bottleneck, four techniques are investigated:

(i.) The efficient and numerically stable IDR(s)-biortho method from [140] is reformulated in
such a way that it has one global synchronisation point per MV. The resulting method is
named IDR(s)-minsync;

(ii.) Using a parallel performance model, a priori estimation of the optimal parameter s and
number of processors is performed to minimise the total computing time using only the
problem size and machine–dependent parameters such as latency and bandwidth;

(iii.) Piecewise sparse column vectors for the IDR test matrix are used to minimise computation,
communication, and storage involving this matrix in multi–cluster environments.

4.2. IDR(s) variant with one synchronisation point per MV 71

(iv.) The IDR(s)-minsync variant mentioned above is preconditioned using an asynchronous
iterative method, which is an effective preconditioner in the context of Grid computing,
as shown in Chapter 3.

Extensive experiments on a 3D convection–diffusion problem show that the performance
model is in good agreement with the experimental results. The model is successfully applied to
both a single cluster and to the DAS–3 multi–cluster. Comparisons between IDR(s)-biortho and
IDR(s)-minsync are made, demonstrating superior scalability and efficiency of the reformulated
method IDR(s)-minsync.

Techniques for reducing the number of synchronisation points in Krylov subspace methods
on parallel computers has been studied by several authors [37, 49, 75, 76, 152, 151, 153, 87].
With the advent of Grid computing, the need for reducing global synchronisations is larger than
ever. The combination of the four strategies used in this chapter results in an efficient iterative
method for solving large nonsymmetric linear systems on Grid computers.

Note that the prototype method IDR(s)-proto from the original IDR(s) paper [120] also has
a single global synchronisation point per MV, except when computing a new ω each s + 1st
step, which requires two global synchronisations. However, the IDR(s)-biortho method exhibits
superior numerical stability and has less floating point operations per IDR(s) cycle. Therefore,
the IDR(s)-biortho method was used as a basis for the new IDR(s)-minsync variant.

The index k always refers to the kth IDR(s) cycle. Note that one IDR(s) cycle consists of
s+ 1 MVs.

This chapter is organised as follows. In Section 4.2 the IDR(s)-minsync variant with a single
global synchronisation point per MV is presented. Section 4.3 explains how IDR(s) methods
are parallelised in this chapter. Section 4.4 describes the parallel performance model that is
used to estimate the optimal value of s. It also describes a technique of using piecewise sparse
column vectors for the test matrix to minimise work involving this matrix on a multi–cluster. In
Section 4.5 the IDR(s)-minsync variant is discussed within the context of asynchronous precon-
ditioning and it is shown that the key recursions of IDR(s) methods remain consistent within
this context. Section 4.6 contains extensive experimental results on the DAS–3, which show the
effectiveness of the four strategies. Concluding remarks are given in Section 4.7.

4.2 IDR(s) variant with one synchronisation point per MV

The IDR(s)–based methods are new iterative algorithms for solving large nonsymmetric sys-
tems and much research is needed on efficient parallelisation on distributed memory computers.
When applying the so–called IDR(s) theorem to derive practical algorithms, certain choices
can be made. This freedom allows for efficient tuning of the numerical algorithm to specific
computational environments. In this section the numerically stable IDR(s)-biortho method is
reproduced from [140] and used as a basis for the IDR(s)-minsync method, which has a single
global synchronisation point per MV.

Given an initial approximation x0 to the solution, all IDR(s) methods construct residuals rk
in a sequence (Gk) of shrinking subspaces that are related according to the following theorem.

Theorem 4.1 (Induced Dimension Reduction (IDR)). Let A ∈ C
n×n, let B ∈ C

n×n be a

preconditioning matrix, let R̃ ∈ C
n×s be a fixed matrix of full rank, and let G0 be any non–trivial

invariant linear subspace of A. Define the sequence of subspaces (Gk) recursively as

Gk+1 ≡ (I− ωk+1AB−1)(Gk ∩ R̃⊥) for k = 0, 1, . . . , (4.2)

72 IDR(s) for Grid Computing

where (ωk) is a sequence in C. If R̃⊥ does not contain an eigenvector of AB−1, then for all
k ≥ 0

• Gk+1 ⊂ Gk;

• dimGk+1 < dimGk unless Gk = {0}.

Ultimately, the residual is forced in the zero–dimensional subspace Gk = {0} for some k ≤ n.
For a proof the reader is referred to e.g., [120, 115, 117].

Iterative algorithms based on the IDR(s) theorem can be seen as being divided into two steps,
which constitute the kth cycle of an IDR(s) method (i.e., s+ 1 (preconditioned) matrix–vector
multiplications):

1. The dimension reduction step: given s vectors in Gk and a residual rk ∈ Gk, a residual rk+1

in the lower dimensional subspace Gk+1 = (I − ωk+1AB−1)(Gk ∩ R̃⊥) ⊂ Gk is computed
after selecting an appropriate ωk+1;

2. Generating s additional vectors in Gk+1.

In the next chapter these two steps are discussed in a more general setting than in this
chapter and it is argued that the dimension reduction step should be seen as consisting of two
separate phases. That is, the projection used in forming a residual in Gk∩R̃⊥ is a key projection
in IDR(s) and this should be seen as a separate step. However, for the purpose of this chapter,
it is sufficient to consider an IDR(s) cycle as consisting of the two steps shown above.

It can be shown that in the generic case, IDR(s) methods terminate within n
s
dimension

reduction steps in exact arithmetic, or equivalently, within n(1 + 1
s
) (preconditioned) matrix–

vector multiplications [120, Section 3]. In practical applications, the iteration process will exhibit
much faster convergence rates according to n̂

s
IDR(s) cycles, where n̂≪ n.

Shown in Algorithm 4.1 is the (right) preconditioned IDR(s)-biortho variant [140], which
not only has slightly less operations but is also numerically more stable than the IDR(s)-proto
variant. The elements of the small s × s matrix M are denoted by µi,j for 1 ≤ i, j ≤ s and
M is initially set to the identity matrix. The dimension reduction step (i.e., lines 32–37 in
Algorithm 4.1) consists of one preconditioned matrix–vector product, two vector updates, and
two inner products. Combined with the operations for constructing s vectors in Gk (i.e., lines 6–
31 in Algorithm 4.1), this amounts to s+1 preconditioned matrix–vector products, s(s+1)+ 2
inner products, and 2(s(s + 1) + 1) vector updates per cycle of IDR(s). The computation of
the (combined and separate) inner products is highlighted by boxes, which shows that there are
1
2 (s(s+ 1)) + 2 global synchronisation points per IDR(s) cycle.

In the IDR(s)-biortho method, certain bi–orthogonality conditions with the columns of R̃ are
enforced that result in improved numerical stability and in reduced number of vector operations
compared to IDR(s)-proto. To be more specific, let rn+1 be the first residual in Gk+1. In
IDR(s)-biortho, vectors for Gk+1 are made to satisfy

gn+j ⊥ r̃i, i = 1, . . . , j − 1, j = 2, . . . , s, (4.3)

and intermediate residuals (also in Gk+1) are made to satisfy

rn+j+1 ⊥ r̃i, i = 1, . . . , j, j = 1, . . . , s. (4.4)

In the implementation presented in Algorithm 4.1, these conditions are enforced using a
modified Gram–Schmidt (MGS) process for oblique projection (lines 15–24 in Algorithm 4.1).
The disadvantage of this approach is that the inner products cannot be combined, which poses

4.2. IDR(s) variant with one synchronisation point per MV 73

Algorithm 4.1 IDR(s)-biortho with bi–orthogonalisation of intermediate residuals.

input: A ∈ C
n×n;x,b ∈ C

n; R̃ ∈ C
n×s; preconditioner B ∈ C

n×n; parameter s; accuracy ε.
output: Approximate solution x such that ||b−Ax|| ≤ ε.
1: // Initialisation
2: Set G = U = 0 ∈ C

n×s;M = [µi,j] = I ∈ C
s×s;ω = 1

3: Compute r = b−Ax
4: // Loop over nested Gk spaces, k = 0, 1, . . .
5: while ||r|| ≥ ε do
6: // Compute s linearly independent vectors gj in Gk

7: φ = R̃∗r , φ = (φ1, . . . , φs)
⊤ // s inner products (combined)

8: for j = 1 to s do
9: Solve Mγ = φ for γ, γ = (γj , . . . , γs)

⊤

10: v = r−∑s
i=j γjgi

11: ṽ = B−1v // Preconditioning step
12: uj =

∑s
i=j γiui + ωṽ

13: gj = Auj

14: // Make gj orthogonal to r̃1, . . . , r̃j−1

15: for i = 1 to j − 1 do

16: α = r̃∗i gj/µi,i // j − 1 inner products (separate)

17: gj = gj − αgi

18: uj = uj − αui

19: end for
20: // Update column j of M

21: µi,j = r̃∗i gj for i = j, . . . , s // s− j + 1 inner products (combined)

22: // Make the residual orthogonal to r̃1, . . . , r̃j
23: β = φj/µj,j

24: r = r− βgj

25: x = x+ βuj

26: // Update φ = R̃∗r
27: if j + 1 ≤ s then
28: φi = 0 for i = 1, . . . , j
29: φi = φi − βµi,j for i = j + 1, . . . , s
30: end if
31: end for
32: // Entering Gk+1. Note: r ⊥ R̃
33: ṽ = B−1r // Preconditioning step
34: t = Aṽ
35: ω = (t∗r)/(t∗t) // Two inner products (combined)

36: r = r− ωt
37: x = x+ ωṽ
38: end while

74 IDR(s) for Grid Computing

a bottleneck in parallel computing environments. By using a classical Gram–Schmidt (CGS)
process for these projections, this bottleneck can be alleviated. The general idea is that all the
inner products can be recursively computed with a one–sided bi–orthogonalisation process using
solely scalar updates.

In the standard Gram–Schmidt algorithm, a full set of mutually orthogonal vectors is formed.
In our case, the Gram–Schmidt process is used for orthogonalising a vector with respect to a
fixed set of vectors (i.e., the IDR test matrix R̃). Classical GS is known to be less robust than
modified GS. However, it is not immediately apparent whether using the classical GS process
for orthogonalising a vector with respect to a fixed set of vectors is also less stable than using
the modified GS process. In any event, in none of the experiments stability problems were
encountered related to the use of a CGS process instead of a MGS process. For a more detailed
discussion on using either CGS or MGS for the oblique projections, see [78].

Shown in Algorithm 4.2 is the reformulated variant IDR(s)-minsync. In the following, the
two phases of the new IDR(s) variant are discussed separately, where we often specifically refer
to line numbers of both Algorithm 4.1 and Algorithm 4.2.

1. The dimension reduction step. In the following, let rn be the last intermediate residual
in Gk before the dimension reduction step. In accordance with condition (4.4), this residual is

orthogonal to all columns of R̃ (cf. rn+s+1 from (4.4)) and therefore we have rn ∈ Gk ∩ R̃⊥.
Using the IDR Theorem (i.e., Theorem 4.1) the first residual rn+1 in Gk+1 (also known as the
primary residual, see Section 5.2.1 for more details) is thus computed as

rn+1 = (I− ωk+1AB−1)rn. (line 35 of Algorithm 4.2) (4.5)

Premultiplying this expression with A−1 results in the corresponding recursion for the iterate

xn+1 = xn + ωk+1B
−1rn, (line 36 of Algorithm 4.2) (4.6)

which is essentially preconditioned Richardson. A typical (minimal residual) choice of ωk+1 is

ωk+1 = argmin
ω

||(I− ωAB−1)rn|| (4.7)

=
(AB−1rn)

∗rn

(AB−1rn)∗AB−1rn
. (4.8)

By reordering operations, the computation of ωk+1 can be combined with the computation of

φ = R̃∗r in line 7 from Algorithm 4.1 as follows. Premultiplying the recursion for computing
the new residual (4.5) with R̃∗ gives

R̃∗rn+1 = R̃∗rn − ωk+1R̃
∗AB−1rn (4.9)

= −ωk+1R̃
∗AB−1rn, (4.10)

since R̃∗rn = 0 by construction. Setting tn = AB−1rn, the computation of t∗nrn, t
∗
ntn, and

R̃∗tn can then be combined (line 34 of Algorithm 4.2).

2. Generating s additional vectors in Gk+1. In addition to the standard orthogonalisation

step performed in IDR(s) for computing a vector v ∈ Gk ∩ R̃⊥ (line 9–11 in Algorithm 4.2), the
goal is to enforce the extra orthogonality conditions (4.3) and (4.4) to the newly computed vectors
g and residuals r in Gk+1 ⊂ Gk. In practice, this means that there are now essentially two main

4.2. IDR(s) variant with one synchronisation point per MV 75

Algorithm 4.2 IDR(s)-minsync with bi–orthogonalisation of intermediate residuals and with a
single synchronisation point per MV.

input: A ∈ C
n×n;x,b ∈ C

n; R̃ ∈ C
n×s; preconditioner B ∈ C

n×n; accuracy ε.
output: Approximate solution x such that ||b−Ax|| ≤ ε.
1: // Initialisation
2: G = U = 0 ∈ C

n×s;Ml = I ∈ C
s×s,Mt = Mc = 0: see (4.18); ω = 1

3: Compute r = b−Ax
4: φ = R̃∗r, φ = (φ1, . . . , φs)

⊤

5: // Loop over nested Gk spaces, k = 0, 1, . . .
6: while ||r|| > ε do
7: // Compute s linearly independent vectors gj in Gk

8: for j = 1 to s do
9: // Compute v ∈ Gk ∩ R̃⊥

10: Solve Mlγ(j:s) = φ(j:s)
11: v = r−∑s

i=j γigi

12: ṽ = B−1v // Preconditioning step
13: ûj =

∑s
i=j γiui + ωṽ // Intermediate vector ûj

14: ĝj = Aûj // Intermediate vector ĝj

15: ψ = R̃∗ĝj // s inner products (combined)

16: Solve Mtα(1:j−1) = ψ(1:j−1)

17: // Make ĝj orthogonal to r̃1, . . . , r̃j−1 and update ûj accordingly

18: gj = ĝj −
∑j−1

ℓ=1 αℓgℓ, uj = ûj −
∑j−1

ℓ=1 αℓuℓ

19: // Update column j of Ml

20: µl
i,j = ψi −

∑j−1
ℓ=1 αℓµ

c
i,ℓ for i = j, . . . , s

21: // Make r orthogonal to r̃1, . . . , r̃j and update x accordingly
22: β = φj/µ

l
j,j

23: r = r− βgj

24: x = x+ βuj

25: // Update φ ≡ R̃∗r
26: if j + 1 ≤ s then
27: φi = 0 for i = 1, . . . , j
28: φi = φi − βµl

i,j for i = j + 1, . . . , s
29: end if
30: end for
31: // Entering Gk+1. Note: r ⊥ R̃
32: ṽ = B−1r // Preconditioning step
33: t = Aṽ

34: ω = (t∗r)/(t∗t);φ = −R̃∗t // s+ 2 inner products (combined)

35: r = r− ωt
36: x = x+ ωṽ
37: φ = ωφ
38: end while

76 IDR(s) for Grid Computing

orthogonalisations that need to be performed. Since Gk+1 ⊂ Gk, these two orthogonalisations
use vectors g that are either in both Gk+1 and Gk or only in Gk.

In the following, let j = 1, 2, . . . , s and let R̃j ≡ [r̃1, . . . , r̃j]. Suppose that after n + j
iterations we have exactly s− j+1 vectors gi, i = n+ j− s− 1, . . . , n− 1 in Gk and j− 1 vectors
gi, i = n+1, . . . , n+ j− 1 in Gk+1, which gives a total of s vectors gi. In addition, suppose that
we have s corresponding vectors ui such that gi = Aui for all i.

From the dimension reduction step we have a residual rn+1 ∈ Gk+1. Also, let ĝn+j ∈ Gk+1.
Then the two main orthogonalisations that need to be performed are
{
vn+j = rn+j −

∑s
i=j γign+i−s−1 ∈ Gk ∩ R̃⊥; (“standard”, line 11 of Algorithm 4.2)

gn+j = ĝn+j −
∑j−1

i=1 αign+i ∈ Gk+1 ∩ R̃⊥
j−1. (additional, line 18 of Algorithm 4.2)

(4.11)

The γi’s are chosen such that vn+j ∈ Gk ∩ R̃⊥ and the αi’s are chosen such that gn+j ∈
Gk+1 ∩ R̃⊥

j−1 (i.e., condition (4.3)).
The intermediate update ûn+j for the iterate and the intermediate vector ĝn+j ∈ Gk+1 using

explicit multiplication by A are computed according to
{
ûn+j =

∑s
i=j γiun+i−s−1 + ωk+1B

−1vn+j ; (line 13 of Algorithm 4.2)

ĝn+j = Aûn+j . (line 14 of Algorithm 4.2)
(4.12)

In the implementation of IDR(s)-biortho from Algorithm 4.1, the vector ĝn+j is subsequently
orthogonalised against r̃1, . . . , r̃j−1 using a MGS process (lines 15–19 in Algorithm 4.1), while
vn+j is orthogonalised using a CGS process (lines 9–10 in Algorithm 4.1).

By performing both oblique projections in (4.11) using a CGS process, it will be shown that
in each iteration step j only s (combined) inner products have to be computed and that the rest
of the inner products can be computed using scalar updates.

Using the orthogonality condition (4.3), define the (s−j+1)× (s−j+1) and (j−1)× (j−1)
lower triangular matrices Ml and Mt as

Ml ≡
[
µl
i,k

]
=

{
r̃∗i gn+k−s−1 for j ≤ k ≤ i ≤ s;

0 otherwise,
(g ∈ Gk) (4.13)

and

Mt ≡
[
µt
i,k

]
=

{
r̃∗i gn+k for 1 ≤ k ≤ i ≤ j − 1;

0 otherwise,
(g ∈ Gk+1 ⊂ Gk) (4.14)

respectively. Using the orthogonality condition (4.4), define the s×1 column vectors φ and ψ as

φi =

{
r̃∗i rn+j for j ≤ i ≤ s;

0 otherwise,
(4.15)

ψi = r̃∗i ĝn+j , for 1 ≤ i ≤ s. (line 15 of Algorithm 4.2) (4.16)

Using these definitions, the following two small lower triangular systems have to be solved in
order to perform the oblique projections (4.11):

{
Mlγ(j:s) = φ(j:s); (line 10 of Algorithm 4.2)

Mtα(1:j−1) = ψ(1:j−1). (line 16 of Algorithm 4.2)
(4.17)

4.2. IDR(s) variant with one synchronisation point per MV 77

Here, the notation φ(m:n) denotes the column vector [φm, φm+1, . . . , φn]
⊤
.

Most of the inner products that are computed during iteration step j can be stored in a
single lower triangular matrix M. To be more precise, define at the start of iteration step j the
following s× s lower triangular matrix M, consisting of the three submatrices Mt,Ml, and Mc:

M ≡
[
Mt ∅

Mc Ml

]
=

µt
1,1 0 0 0
...

. . . 0
...

µt
j−1,1 . . . µt

j−1,j−1

. . .
...

µc
j,1 . . . µc

j,j−1 µl
j,j 0 0

...
...

...
. . . 0

µc
s,1 . . . µc

s,j−1 µl
s,j . . . µl

s,s

, (4.18)

where Mc is defined as the (s− j + 1)× (j − 1) block matrix

Mc ≡
[
µc
i,k

]
= r̃∗i gn+k for j ≤ i ≤ s, 1 ≤ k ≤ j − 1. (4.19)

We are now ready to compute the vector vn+j ∈ Gk ∩ R̃⊥ as follows. If

γ(j:s) = M−1
l φ(j:s), vn+j = rn+j −

s∑

i=j

γign+i−s−1, (lines 10–11 in Algorithm 4.2) (4.20)

then

vn+j ⊥ r̃1, . . . , r̃j . (4.21)

Also, to compute the vector gn+j ∈ Gk+1 ∩ R̃⊥
j−1 and corresponding update un+j , let

α(1:j−1) = M−1
t ψ(1:j−1); (4.22)

gn+j = ĝn+j −
j−1∑

ℓ=1

αℓgn+ℓ; (4.23)

un+j = ûn+j −
j−1∑

ℓ=1

αℓun+ℓ, (4.24)

then

gn+j ⊥ r̃1, . . . , r̃j−1 and un+j ⊥A r̃1, . . . , r̃j−1, (4.25)

which is exactly condition (4.3).
To efficiently compute the new column j of M using a scalar update, premultiply the recur-

rence for gn+j with r̃∗i to obtain

r̃∗i gn+j = r̃∗i ĝn+j −
j−1∑

ℓ=1

αℓr̃
∗
ℓgn+ℓ (4.26)

µl
i,j = ψi −

j−1∑

ℓ=1

αℓµ
c
i,ℓ for i = j, . . . , s, (4.27)

78 IDR(s) for Grid Computing

where the second expression uses the block matrix Mc from (4.18).

To summarise, this gives for step j while referring to the line numbers in Algorithm 4.2:

ψ = R̃∗ĝj ; (line 15, s combined inner products)

α(1:j−1) = M−1
t ψ(1:j−1); (line 16, lower triangular system M−1

t)

gn+j = ĝn+j −
j−1∑

ℓ=1

αℓgn+ℓ; (line 18, orthogonalise against r̃1, . . . , r̃j−1)

un+j = ûn+j −
j−1∑

ℓ=1

αℓun+ℓ; (line 18, A–orthogonalise against r̃1, . . . , r̃j−1)

µl
i,j = ψi −

j−1∑

ℓ=1

αℓµ
c
i,ℓ, i = j, . . . , s. (line 20, new column j of M using Mc)

In accordance with condition (4.4), the updated residual rn+j+1 can be made orthogonal to
r̃1, . . . , r̃j by

rn+j+1 = rn+j −
φj
µl
j,j

gn+j , (line 23 of Algorithm 4.2) (4.28)

since

r̃∗jrn+j+1 = r̃∗jrn+j −
φj
µl
j,j

r̃∗jgn+j (4.29)

= r̃∗jrn+j − r̃∗jrn+j = 0. (4.30)

Premultiply (4.28) with A−1 to obtain the corresponding update to the iterate

xn+j+1 = xn+j +
φj
µl
j,j

un+j . (line 24 of Algorithm 4.2) (4.31)

Finally, premultiplying (4.28) with r̃∗i for i = j + 1, . . . , s gives the scalar update for the vector
φ,

φi = φi −
φj
µl
j,j

µl
i,j , i = j + 1, . . . , s, (line 28 of Algorithm 4.2) (4.32)

which concludes the generation of the s vectors for Gk+1.

Therefore, in each iteration step j the s combined inner products R̃∗ĝj in the vector ψ have

to be computed. The remaining inner products R̃∗r in the vector φ and the inner products R̃∗g
in the small matrix M can then be computed using solely scalar updates.

As with Algorithm 4.1, the computation of the (now solely combined) inner products is
highlighted by boxes in Algorithm 4.2. The small systems in lines 10 and 16 of Algorithm 4.2
involving Ml and Mt respectively are lower triangular and can be solved efficiently using forward
substitution. Note that the system in line 16 involves the first j−1 elements of the column vector
ψ, while in line 20 the remaining elements are used. This shows that there is now a single global
synchronisation point per MV. The number of operations is the same as the original IDR(s)-
biortho method from Algorithm 4.1.

4.3. Parallelising IDR(s) methods 79

4.3 Parallelising IDR(s) methods

Similar to other iterative subspace methods, the IDR(s) variants in Algorithm 4.1 and Algo-
rithm 4.2 are composed of several key building blocks (cf. Section 1.10 on page 22). These are
(referring to line numbers of Algorithm 4.2): matrix–vector multiplications (lines 14 and 33),
preconditioning operations (lines 12 and 32), vector updates (lines 11, 13, 18, 23, 24, 35 and
36), inner products (lines 15 and 34), and scalar operations plus small system solves involving
M (lines 10, 16, 20, 22, 28, 37). All these operations can be straightforwardly parallelised on
distributed memory computers by making a block partitioning of the coefficient matrix and of
the vectors:

A =

A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App

 and x =

x1

x2

...
xp

 . (4.33)

Note that in the type of application we are interested in almost all off–diagonal blocks are zero.
Each block is assigned to a processor; all data corresponding to a block is processed by its
corresponding processor and are stored in the processors local memory. Using this approach,
the different operations can be parallelised as follows:

• The vector updates are performed locally: every processor performs the update for its part
of the vector without communication.

• The inner products are computed by computing the local inner products and broadcasting
the results to all other processors. This is an inherently global operation.

• The matrix–vector products are computed by performing local products with the sub-
matrices. Multiplication with a diagonal block Aii does not require communication, but
multiplication with an off–diagonal block requires communication with another processor.

• The scalar operations and small system solves involving M are inexpensive and are not
parallelised, but are performed by all processors.

• In some experiments performed in this chapter, the preconditioning operation consists of
a parallel asynchronous preconditioning as described in Sect 4.5.

For our type of application, the communication for the matrix–vector multiplication is nearest–
neighbour only and does not require global synchronisation. The inner products do require
global communication, involving all the processors, and are therefore synchronisation points in
the algorithm. In the IDR(s)-minsync algorithm shown in Algorithm 4.2 the operations are
organised so that all communication for the inner products can be combined. As a result, there
is only one global synchronisation point per MV.

4.4 Choosing s and R̃

The parameter s and the test matrix R̃ can be chosen freely in IDR(s) methods. In this
section this freedom is exploited in order to minimise parallel execution time. In Section 4.4.1
performance models will be given that are used to estimate the optimal s in IDR(s) methods.
Section 4.4.2 describes a method of minimising the work and storage involving operations with
the test matrix R̃ in a multi–cluster environment.

80 IDR(s) for Grid Computing

4.4.1 Parallel performance models for IDR(s)

Performance models are derived to estimate the total execution time of the IDR(s)-biortho
variant and the IDR(s)-minsync variant. The model is applied to both a single cluster and to
a multi–cluster. After first presenting a general model for the total execution time of paral-
lel IDR(s) methods, specific expressions are given for the communication steps of the IDR(s)
algorithms.

A general model. The overall performance model is based on message passing communica-
tion. It is assumed that no load imbalance occurs and as a result the parallel computing time
for a fixed–sized problem on p processors can be described in general by

Ttotal(p) =
T (1)

p
+ Tcomm, (4.34)

where Tcomm denotes the total communication time of the algorithm and T (1) the computation
time on a single processor.

Generally speaking, there are two operations that require communication in parallel iterative
methods, which are the inner product (both single and combined) and the matrix–vector product.
The first operation requires global communication, whereas the second operation requires nearest
neighbour communication for the current application. No preconditioning is included in the
performance model.

The following simple linear model for the time to communicate a message of k bytes length
is assumed,

Tmess = l + k/b, (4.35)

in which l is the latency and b the bandwidth. Using this linear model, expressions for the com-
munication time of inner products (denoted by Tdots) and matrix-vector multiplication (denoted
by Tmmult) in each IDR(s) cycle can be derived. These expressions will in general depend on
both p and s.

To formulate the complete performance model, the total number of IDR(s) cycles has to be
determined. As mentioned before, it can be shown that in the generic case, IDR(s) methods
terminate within n(1 + 1

s
) matrix–vector multiplications in exact arithmetic, or equivalently,

within n
s

dimension reduction steps [120, Section 3]. In practical applications, the iteration

process will exhibit much faster (superlinear) convergence rates according to n̂
s
, where n̂ ≪ n.

Note that the parameter n̂ can be estimated using a single experiment. However, it is shown
below that this parameter is not needed to compute the optimal s.

To summarise, the total theoretical computing time on p processors for a given value of s is
then (cf. (4.34))

Ttotal(p, s) =
n̂

s
×
[
T̃ (1, s)

p
+ Tdots(p, s) + Tmmult(p, s)

]

︸ ︷︷ ︸
time of a parallel IDR(s) cycle

, (4.36)

where T̃ (1, s) is the computing time of one sequential IDR(s) cycle. This quantity is a function
of s and can be estimated by counting the number of floating point operations and using the
value for the computational speed of a single processor.

By minimising (4.36), the optimal value of s and p for solving the test problem in a minimal
amount of time can be estimated. Note that since the parameter n̂ is a constant, it does not
play any role in minimising (4.36) and only a priori information is needed.

4.4. Choosing s and R̃ 81

Models for different architectures. The performance model (4.36) will be applied to a
single cluster and to a multi–cluster for both IDR(s) variants as follows.

For the single cluster model, the values for latency, bandwidth, and computational speed of
that cluster are used. In this way, the model is used to compute the optimal s and corresponding
number of nodes p in a cluster.

In multi–cluster architectures, intercluster latencies are often several orders of magnitude
higher than intracluster latencies. For the DAS–3 multi–cluster, these latencies differ by three
orders of magnitude, while the values for the bandwidth differ by one order of magnitude. In
the model for multi–clusters, intracluster latency and bandwidth is therefore excluded and each
cluster is treated as a single entity. In this way, the model is used to compute the optimal s
and corresponding number of clusters P in the DAS–3 multi–cluster. The intercluster latency
and bandwidth of the DAS–3 multi–cluster are then used by the performance model. This also
means that in the performance model, the computational speed of a cluster is taken to be the
combined computational speed of all the nodes in that cluster.

In the following, specific expressions for the communication time of the inner products Tdots
and the matrix–vector multiplication Tmmult will be presented.

The communication time of a properly implemented inner product on a single (tightly–
coupled) cluster is given by

Tdot = ⌈log2(p)⌉(l + 8/b). (4.37)

In the algorithms, some inner products can be combined. The communication time of the
combined broadcasting of c partial inner products is then

Tcdot = ⌈log2(p)⌉(l + 8c/b). (4.38)

For the multi–cluster model, we note that the network topology of the DAS–3 multi–cluster
is structured like a ring (see Section 4.6.1 for more details). However, the number of clusters
that is used is always relatively small, so it is assumed that the hierarchical model for the inner
product also applies to the multi–cluster setting.

A minimal residual strategy is used to compute ω, so the total communication time Tdots(p, s)
spent on inner products in each cycle of IDR(s)-biortho is then

T biortho
dots (p, s) = ⌈log2(p)⌉

[(
1
2s(s+ 1) + 2

)
l + 8

(
s2 + s+ 2

)
/b
]

(4.39)

= ⌈log2(p)⌉
[
O(s2)l +O(s2)/b

]
(4.40)

and for the new IDR(s)-minsync variant it is

Tminsync
dots (p, s) = ⌈log2(p)⌉

[
(s+ 1)l + 8

(
s2 + s+ 2

)
/b
]

(4.41)

= ⌈log2(p)⌉
[
O(s)l +O(s2)/b

]
. (4.42)

The expressions (4.40) and (4.42) show that for relatively large values of bandwidth b, the
communication time spent on inner products in each cycle grows differently with s in the two
variants. For larger values of latency l, the time per cycle is almost linear in s for IDR(s)-minsync,
while the time per cycle behaves quadratically in s for IDR(s)-biortho.

Expressions for the communication time of the matrix–vector multiplication Tmmult(p, s)
can be derived in a similar manner. For a single cluster, the cubical domain is partitioned
into rectangular cuboids and each subdomain is assigned to a single node. Supposing that
nx = ny = nz, the communication time spent on the s+1 matrix–vector multiplications in each
IDR(s) cycle for an interior subdomain is (in both IDR(s) variants)

Tmmult(p, s) = 6(s+ 1)

(
l +

8n2
x

b 3
√
p

)
. (single cluster) (4.43)

82 IDR(s) for Grid Computing

Considering again the fact that the DAS–3 network has a ring structure, the domain parti-
tioning in the multi–cluster setting can be seen as two–dimensional. That is, each subdomain is
assigned to a single cluster. Also, each interior subdomain has two neighbouring subdomains,
which gives for the matrix–vector multiplication (again in both IDR(s) variants)

Tmmult(s) = 2(s+ 1)(l + 8nxny/b). (multi–cluster) (4.44)

Note that this expression is independent of the number of clusters.

Using this information, the expression (4.36) can then be minimised which allows for a priori
estimation of the optimal parameter s and corresponding number of nodes/clusters using only
problem and machine–based parameters.

This also shows that the performance model can be as complex as one desires, depending
wholly on the type of architecture and application. For example, the Multi–BSP model from [134]
is a hierarchical performance model for modern multi–core architectures and could be used to
find the optimal s of IDR(s) methods on such architectures.

In Section 4.6 the performance models given here will be compared to numerical experiments
on the DAS–3 multi–cluster. For experiments using nodes from one cluster, the model for a
single cluster is used. When using more than one cluster, we switch to the performance model
for multi–clusters.

4.4.2 Using piecewise sparse column vectors for R̃

In multi–cluster environments such as the DAS–3, the latency between clusters may be several
orders of magnitude larger than the intracluster latency. The majority of the inner products in
the algorithm consist of computing R̃∗r for some vector r. The n × s matrix R̃ can be chosen
arbitrarily and this freedom can be exploited [120, Section 4.1]. By using sparse column vectors

for R̃, the total cost of the inner products may be reduced significantly in the context of a multi–
cluster environment. However, such a strategy may influence the robustness of the algorithm
and this phenomenon will be illustrated experimentally.

The outline of the algorithm for the computation of R̃∗r using sparse column vectors for
R̃ is as follows. Each cluster in the multi–cluster is considered as one (large) subdomain. The

columns of R̃ are chosen in such a manner that they are nonzero on one of these subdomains
and zero on the other subdomains.

A coordinator node is randomly chosen on each cluster and each node computes its local
inner product with its local part of r. A reduction operation is then performed locally on each
cluster and the result is gathered on the coordinator node. The coordinators exchange the partial
inner products across the slow intercluster connections, combining them to make the total inner
product. Finally, this result is broadcasted locally within each cluster. Therefore, the number
of times that data is sent between the clusters is reduced considerably.

For ease of implementation, the value s is chosen as an integer multiple of the total number
of clusters γ in the grid. Using sparse column vectors decreases the computational work and the
storage requirements on each cluster. Instead of computing s inner products of length n, the
total computational cost is reduced to s inner products of length n/γ. Note that this approach
is valid for arbitrary s.

As an example, suppose that there are three clusters in the multi–cluster and that each
cluster has two nodes, giving six nodes {a, b, c, d, e, f} in total. If s = 6, the computation of R̃∗r

4.5. Combining IDR(s) with asynchronous preconditioning 83

for j = 1 to s do
v = r−Gγ
u = ωv+Uγ
g = AB−1u
r = r− g
y = y+ u

end for
r = r− ωAB−1r
y = y+ ωr

for j = 1 to s do
v = r−Gγ
B−1u = ωB−1v+B−1Uγ
g = AB−1u
r = r− g
B−1y = B−1y+B−1u

end for
r = r− ωAB−1r
B−1y = B−1y+ ωB−1r

for j = 1 to s do
v = r−Gγ
u = ωB−1v+Uγ
g = Au
r = r− g
x = x+ u

end for
r = r− ωAB−1r
x = x+ ωB−1r

Figure 4.1: Varying preconditioner in IDR(s), shown for a single IDR cycle.

using the sparse column vectors r̃1, . . . , r̃6 for R̃ has the following form:

R̃∗r =

r̃a1 r̃b1
r̃a2 r̃b2

r̃c3 r̃d3
r̃c4 r̃d4

r̃e5 r̃f5
r̃e6 r̃f6

×

ra

−
rb

rc

−
rd

re

−
rf

. (4.45)

In this case, parts of two columns of R̃ are nonzero on one cluster and zero on the remaining two
clusters. Therefore, two partial local inner products are computed by each node and the results
are gathered on one of the two nodes of the cluster. These results are then exchanged between
the three clusters and broadcasted locally to the two nodes in each cluster.

4.5 Combining IDR(s) with asynchronous preconditioning

Asynchronous preconditioners are attractive in the context of Grid computing since they do not
require global synchronisation and can adapt to changes in computational load and network load
(for more details, see Chapters 1 and 3). Referring to the IDR(s)-minsync algorithm in Algo-
rithm 4.2, asynchronous preconditioning can be performed by applying a parallel asynchronous
iterative method to the system Aṽ = v (line 12 in Algorithm 4.2) and to Aṽ = r (line 32 in
Algorithm 4.2) for a fixed amount of time Tmax.

The asynchronous preconditioning step consists of a random (typically nonlinear) process
(cf. (3.1) on page 48),

ṽ = B(r), B : Cn → C
n, (4.46)

which differs from one iteration to the next. The IDR(s) algorithm, however, is designed for
constant preconditioners, and its theoretical properties rely on this. So the question arises
whether we can use IDR(s) with a non–constant preconditioner, i.e., can we use IDR(s) as a
flexible method?

In the following it is shown that the recursions of IDR(s) remain valid within the context
of a varying preconditioner. In addition, it also shows how a right preconditioner is introduced

84 IDR(s) for Grid Computing

into IDR(s) methods. Given in Figure 4.1 are the simplified recursions of IDR(s) methods (e.g.,
without the additional bi–orthogonalisation steps of Algorithm 4.1 and Algorithm 4.2), showing
the three steps of incorporating a right preconditioner in IDR(s). To be more precise, applying
a right preconditioner B−1 to the system Ax = b gives

AB−1y = b, x = B−1y. (4.47)

Applying the simplified IDR(s) recursions to the preconditioned system (4.47) gives the leftmost
part of Figure 4.1, where the final solution is obtained by x = B−1y. The main problem with this
approach is that if the preconditioner B changes in each iteration step, the computed iterates y
do not correspond to the computed residuals r.

This inconsistency can be remedied by premultiplying y with B−1, scaling back the iterates
(middle part of Figure 4.1). Again the final solution is obtained by x = B−1y. Note that
as a result, the update u is also scaled back. Defining u = B−1u for the new updates and
setting x = B−1y gives the correct right-preconditioned recursions for IDR(s) (rightmost part
of Figure 4.1). The iterate x and residual r are now computed in a consistent manner (and
basically independent of how the update u is constructed).

Note that according to the theoretical finite termination property of IDR(s), finite termina-
tion at the exact solution should occur in the generic case within n+ n/s MVs [120]. However,
this no longer holds if IDR(s) is used as a flexible method. Nevertheless, the method is still
finite for s = n, since in that case a complete set of basis vectors for C

n is generated and the
method terminates at the exact solution after n MVs.

4.6 Numerical experiments

In this section, four parallel implementations of IDR–based methods will be investigated:

(i) The IDR(s)-biortho variant given in Algorithm 4.1 using a dense matrix R̃ (with B ≡ I);

(ii) The IDR(s)-minsync variant given in Algorithm 4.2 using a dense matrix R̃ (with B ≡ I);

(iii) The IDR(s)-minsync variant given in Algorithm 4.2 using a sparse matrix R̃ as described
in Section 4.4.2 (with B ≡ I);

(iv) The IDR(s)-minsync variant given in Algorithm 4.2 using a dense matrix R̃ and an asyn-
chronous preconditioner as described in Sect 4.5 (with B ≡ B from (4.46)).

Note that in exact arithmetic, the first two variants produce residuals that are identical in every
iteration step. Also, the first three variants do not include preconditioning.

This section is divided into two parts. In the first part (Section 4.6.1–4.6.4), general infor-
mation is given about the experimental setup which involves some small sequential experiments.
The second part (Section 4.6.5–4.6.8) contains results from large parallel experiments using the
four variants given above.

In Section 4.6.1 and Section 4.6.2 a description is given of the target hardware and test prob-
lem, respectively. In Section 4.6.3 the parameter n̂ for this test problem using unpreconditioned
IDR(s) is estimated, along with the (true) computational speed of a single core. In Section 4.6.4
the optimal parameter s using again unpreconditioned IDR(s) for a particular computational
environment is computed a priori using the performance model from Sect 4.4.1.

In Section 4.6.5 the performance model is compared to the numerical results using variants
(i) and (ii). In Section 4.6.6 the experimental results are investigated more closely by comparing
the time per cycle to the performance model using variants (i), (ii), and (iii). In Section 4.6.7,

4.6. Numerical experiments 85

LU site

1–way latency MPI (µsec) 2.7
max. throughput (MB/sec) 950
Gflops (HPL benchmark [101]) 6.9

DAS–3

WAN latencies (µsec) (average) 990
WAN bandwidth (MB/sec) 5,000

Table 4.1: Specifications DAS–3: all values (except WAN latencies) are obtained from [16].

both strong and weak scalability results are given, again using using variants (i), (ii), and (iii).
Finally, Section 4.6.8 contains experimental results using variant (iv).

Experimental setup

4.6.1 Target hardware

The numerical experiments are performed using the distributed ASCI Supercomputer 3 (DAS–
3), which is a cluster of five clusters, located at four academic institutions across the Nether-
lands [107]. The five sites are connected through SURFnet, which is the academic and research
network in the Netherlands. Each local cluster is equipped with both 10 Gbps Ethernet and high
speed Myri–10G interconnect. However, the TUD site only employs the Ethernet interconnect.
If an experiment includes the TUD site, the other sites will automatically switch to the slower
Ethernet interconnect. For more details on the five DAS–3 sites, see Section 1.8.2 on page 21.

The network topology of the DAS–3 cluster is structured like a ring, connecting the five sites
as follows: TUD, LU, VU, UvA, UvA–MN, and again to the TUD site. Although nodes on
some sites may contain multiple cores, we always employ a single core on each node for our
computations. Table 4.1 lists values obtained from [16] on latency and bandwidth for the LU
site and for the wide–area bandwidth on all five clusters. These values were corroborated by the
authors using the Intel MPI Benchmarks suite (IMB v2.3). The value for the WAN latency in
Table 4.1 is the average value from several IMB benchmarks performed at different times during
the day and is similar to (albeit somewhat below) the values given in [144].

The three unpreconditioned variants are implemented using Open MPI v1.2.1 [71] and level
3 optimisation is used by the underlying GNU C compiler (see Sect 1.7.3 on page 19). The
preconditioned variant (iv) is implemented using the CRAC library [47], which is specifically
designed to build (partially) asynchronous applications (see Sect 1.7.2 on page 18). All four
implementations are matrix–free: the coefficient matrix is not explicitly formed and stored.

4.6.2 Test problem

Consider the following three–dimensional elliptic partial differential equation taken from [113]:

∇2u+ wux = f(x,y, z), (4.48)

defined on the unit cube [0, 1]× [0, 1]× [0, 1]. The predetermined solution

u = exp(xyz) sin(πx) sin(πy) sin(πz) (4.49)

86 IDR(s) for Grid Computing

nodes px × py × pz # equations

1 1× 1× 1

1283

2 2× 1× 1
4 2× 2× 1
8 2× 2× 2
16 4× 2× 2
32 4× 2× 4

64 4× 4× 4
96 6× 4× 4
128 8× 4× 4

Table 4.2: Processor grids and problem size for the strong scalability experiments.

nodes
px × py × pz # equations

first strategy second strategy

30 5× 3× 2 1× 6× 5 3983

60 5× 4× 3 2× 6× 5 5013

90 5× 6× 3 3× 6× 5 5743

120 5× 6× 4 4× 6× 5 6313

150 5× 6× 5 5× 6× 5 6803

Table 4.3: Processor grids and problem sizes for the weak scalability experiments.

defines the vector f and Dirichlet boundary conditions are imposed accordingly.

Discretisation by the finite difference scheme with a seven point stencil on a uniform nx×ny×
nz grid results in a sparse linear system of equations Ax = b where A is of order n = nxnynz.
Centered differences are used for the first derivatives. The grid points are numbered using
the standard (lexicographic) ordering and when not specified otherwise then the convection

coefficient w is set to 100. The IDR test matrix R̃ consists of s orthogonalised random vectors.
The (outer) iteration is terminated when ||rn||/||r0|| ≤ ε ≡ 10−6 and the initial guess is set
to x0 ≡ 0. At the end of the iteration process convergence is verified by comparing the true
residual with the iterated final residual.

Unpreconditioned variants (B ≡ I). The experiments for investigating strong scalability
are performed using the four sites that employ the fast interconnect. On each cluster, 32 nodes
are used, which gives a total of 128 nodes for the largest experiment. Experiments that use less
than 32 nodes are performed on the LU site and in each subsequent experiment 32 nodes are
added with each additional site, in the following order: VU, UvA, and UvA–MN. In this way,
the ring structure of the DAS–3 wide–area network is obeyed. The number of grid points in each
direction is nx = ny = nz ≡ 128, which gives a total problem size of approximately two million
equations.

For the weak scalability experiments, 30 nodes per site are used and the TUD cluster is
included, which means that in this case the slower interconnect is used on every cluster. The
number of equations per node is set to approximately two million equations, yielding the problem
sizes shown in Table 4.3.

The computational domain is partitioned using a three–dimensional block partitioning, where

4.6. Numerical experiments 87

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

s

ID
R

 c
y
c
le

s

no preconditioning

fit to N/s

(a) Total IDR cycles, fitted to n̂/s with n̂ ≈ 218.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

s

w
a
ll

c
lo

c
k
 t
im

e
 (

in
 s

e
c
)

measurements variant (ii)

model

(b) Modeling computing times single node.

Figure 4.2: Estimating model parameters: n̂ and processor speed.

the subdomains are arranged in a Cartesian grid px×py×pz. The nodes are numbered according
to

p(i, j, k) = pkz + (pjy − 1)pz + (pix − 1)pypz (4.50)

with pix×pjy×pkz ∈ [1, px]×[1, py]×[1, pz]. The nodes are mapped sequentially across the clusters,
one cluster after another. In the multi–cluster experiments, the domain is partitioned along the
x–direction. This partitioning divides the domain into slices and in our experiments, each slice
is mapped onto a cluster. Partitioning in this way ensures that adjacent slices in the domain
correspond to adjacent clusters in the DAS–3 multi–cluster. Also, this partitioning corresponds
to the multi–cluster performance model as discussed in Section 4.4.1.

Using this strategy, Table 4.2 and Table 4.3 list the dimensions of the processor grid for each
number of nodes used in the strong and weak scalability experiments, respectively.

As shown in Table 4.3, the problem size for the weak scalability experiments will be increased
using two different strategies. In the first strategy the nodes are equally divided between the
five DAS–3 sites, starting with 30/5 = 6 nodes per site for the smallest experiment. This means
that there are always five slices, one for each cluster. Also, this allows comparing the use of a
dense test matrix R̃ and of a sparse test matrix R̃.

In the second strategy, one whole site is added each time, starting with the LU site and
ending with the TUD site. Here, the number of slices corresponds to the number of clusters.
Also, for this experiment only a dense test matrix R̃ is used.

Preconditioned variant (B ≡ B from (4.46)). For the asynchronous preconditioning exper-
iments, the domain is partitioned in horizontal slices along the z-direction. For all experiments
we use 60 computing nodes, distributed evenly over all five sites. The (fixed) problem size in this
case is n = 1803 ≈ 6, 000, 000 equations and the local systems in the preconditioning iteration
are solved using (truncated) GCR(100) [60] with relative accuracy 10−1.

4.6.3 Estimating parameters of performance model

Although the parameter n̂ is not needed to compute the optimal s, we will use it estimate the
computational speed of a single core.

88 IDR(s) for Grid Computing

variant (i) variant (ii)

nodes optimal s wall clock time optimal s wall clock time

1 2 66.14 2 66.14
2 2 33.15 2 33.15
4 2 16.64 2 16.64
8 2 8.378 2 8.376
16 2 4.235 2 4.233
32 2 2.156 2 2.153
64 2 1.111 2 1.107

Table 4.4: A priori estimation of s for the LU cluster.

In order to estimate n̂ for the test problem, the total number of dimension reduction steps
for s ∈ {1, 2, . . . , 16} are shown in Figure 4.2(a). These experimental data are obtained using
variant (ii) on a single LU node. Variant (i) gives the same results and the data are fitted to the
curve n̂/s, giving n̂ ≈ 218. This shows that the number of IDR(s) cycles behaves in accordance
with the theoretical estimate. Interestingly, the value for n̂ is of the same order of magnitude as
the number of grid points in each direction nx = ny = nz ≡ 128. Note that a single (possibly
parallel) experiment is sufficient to estimate the parameter n̂.

In order to estimate the effective computational speed of a single core, wall clock times of two
executions of variant (ii) on an LU node for each value of s are shown in Figure 4.2(b). Since
variants (i) and (ii) have the same number of operations, only results from the second variant are
given. The theoretical computing time of the algorithm on a single node is equal to (cf. (4.36))

Ttotal(1, s) =
n̂

s
× T̃ (1, s). (4.51)

Using the obtained value of n̂, the value for the computational speed is estimated by fitting the
measurements to the model (solid line in Figure 4.2(b)), which gives a value of 3× 10−1 Gflops.
According to the HPL benchmark (i.e., Table 4.1), the peak performance of a single core is 6.9
Gflops. However, it is not uncommon that only a fraction of the processor’s peak performance
can be attained in practice. These results also indicate that when using a single core, setting
s = 2 results in the fastest computing times.

4.6.4 A priori estimation of optimal parameter s

By using the expression for the theoretical computing time (4.36) from Section 4.4.1, the optimal
parameter s that minimises the total execution time can be computed. Note that every parameter
needed to compute these optimal values can be obtained a priori. In particular, the parameter
n̂ is not required.

As described in Section 4.4.1, estimates for both a single cluster (the LU site) and for a
multi–cluster (the DAS–3) will be given. Using the data from Table 4.1, the optimal (rounded
value of) s for a given (theoretical) number of nodes of the LU cluster are computed and shown
in Table 4.4 for variants (i) and (ii), respectively. Similarly, Table 4.5 shows the optimal s for a
given (theoretical) number of clusters in the DAS–3 multi–cluster — with 32 nodes per cluster
— for variants (i) and (ii), respectively. Also shown are the corresponding wall clock times.

According to Table 4.4, the optimal s for using one node on the LU cluster is s = 2 for
both variants. This is in agreement with results from Figure 4.2(b) from Section 4.6.3, where

4.6. Numerical experiments 89

variant (i) variant (ii)

clusters optimal s wall clock time optimal s wall clock time

1 2 2.058 2 2.058
2 2 2.231 3 1.968
3 2 2.203 3 1.772
4 2 2.255 4 1.69
5 2 2.325 4 1.657
6 2 2.398 5 1.639
7 2 2.469 5 1.633

Table 4.5: A priori estimation of s for the DAS–3 multi–cluster.

the computing times on a single node were given (i.e., latency equal to zero). For that case the
optimal value was also s = 2.

Table 4.4 also shows that for all number of nodes the optimal value of s is always s = 2. In
this case, latency is low and the communication cost for generating the vectors of the nested
subspaces Gk is relatively small. Apparently the reduction in number of cycles for larger s is not
worth the increased cost of generating more vectors in Gk. Also, there is practically no difference
in optimal s and wall clock time for both variants. The reason is that for s = 1, both variants
are equal in cost and that for very low s > 1, the differences in cost are only marginal.

For the multi–cluster model the latency value is much higher. In this case, the differences
between the two variants become more apparent, as illustrated by Table 4.5. For variant (i),
s = 2 is again the optimal value for all number of clusters, but the wall clock time grows with
increasing number of clusters. In contrast, using variant (ii) not only gives lower wall clock
times, it also shows that increasing the number of clusters (and correspondingly the value of s)
results in improved execution times.

Numerical results

4.6.5 Validation of the parallel performance model

Shown in Figure 4.3 using a log–log scale are the predicted total computing times defined
by (4.36) in Section 4.4.1 for variants (i) and (ii) using s ∈ {1, 3, 5, 10} and using up to (in
theory) 512 nodes (i.e., sixteen clusters). Experiments that use up to 32 nodes employ the LU
site and corresponding parameters in the performance model. In the larger experiments, a clus-
ter consisting of 32 nodes is added each time and the corresponding multi–cluster performance
model is used. Also shown are the measured wall clock times using up to 128 nodes (i.e., four
clusters of the DAS–3) for s ∈ {1, 3, 5, 10}.

Communication overhead on the LU site (i.e., using less than 32 nodes) is relatively small.
As a result, the total wall clock time scales almost linearly with the number of nodes in both
variants. This holds for both the model and the measurements. Note that Table 4.4 also shows
this linear scaling behaviour for s = 2. However, when more clusters are added (i.e., using more
than 32 nodes), the effect of communication begins to play a larger role. In this case, the optimal
s and number of nodes differ for both variants.

According to the measurements from Figure 4.3(a), the optimal value of s for solving this
test problem using variant (i) lies between s = 1 and s = 3. The corresponding number of nodes
lies between 32 and 64 nodes (i.e., between one and two clusters). This is in accordance with the
predictions from Table 4.5, which showed that the estimated optimal value of s is s = 2 using

90 IDR(s) for Grid Computing

1 2 4 8 16 32 64 128 256 512
10

0

10
1

10
2

nodes

w
a

ll
c
lo

c
k
 t

im
e

 (
s
e

c
)

s=1, model

s=3

s=5

s=10

s=1, measured

s=3

s=5

s=10

(a) IDR(s)-biortho (i.e., variant (i)).

1 2 4 8 16 32 64 128 256 512
10

0

10
1

10
2

nodes

w
a

ll
c
lo

c
k
 t

im
e

 (
s
e

c
)

s=1, model

s=3

s=5

s=10

s=1, measured

s=3

s=5

s=10

(b) IDR(s)-minsync (i.e., variant (ii)).

Figure 4.3: Performance model results for variants (i) and (ii) using 32 nodes per cluster.

one cluster.

The measurements from Figure 4.3(b) show that for variant (ii) using 128 nodes (i.e., four
clusters) gives the minimum computing times. The trend seems to be that using more than four
clusters only results in a marginal reduction in wall clock time. The corresponding value of s is
between s = 3 and s = 5. Indeed, the predictions from Table 4.5 show that using more than
four clusters results in small reductions in total time. Correspondingly, the estimated optimal
value of s is s = 4.

These results nicely illustrate the fact that there is an optimal value of s and number of
nodes for solving this test problem in a minimal amount of time.

4.6.6 Comparing the time per IDR(s) cycle to the performance model

To investigate the relation between the value of s and the time per IDR(s) cycle, the following
experiment is performed. Figure 4.4 shows results of experiments using the three unprecondi-
tioned variants and using a total of 64 nodes, divided equally between the four DAS–3 sites that
employ the fast interconnect.

When using sparse column vectors for R̃ (i.e., variant (iii)), the iteration did not converge
for values of s > 8 for this particular test case due to numerical stability issues. For this reason
and because s has to be a multiple of the number of clusters in the grid for variant (iii), only
results for s = 1, 4, and 8 are given.

For completeness, the total number of IDR cycles for s ∈ {1, . . . , 16} is shown in Figure 4.4(a),
which is practically identical for all three unpreconditioned variants. As before, the total number
of IDR cycles is fitted to the curve n̂/s, which gives in this case n̂ ≈ 211. Naturally, this value
is almost identical to the previously obtained value for n̂ from Section 4.6.3.

More interestingly, Figure 4.4(b) shows the wall clock time per IDR cycle for increasing values
of s. As mentioned in Sect 4.4.1, the performance model (i.e., expression (4.42)) predicts that
for larger bandwidth values, the time spent on inner products per cycle in variant (ii) scales
almost linearly with s. The measurements are in agreement with this prediction.

Similarly, expression (4.40) from Sect 4.4.1 shows that the time per IDR(s) cycle in variant
(i) has a more quadratic behaviour in s, which is also in agreement with the measurements from

4.6. Numerical experiments 91

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

s

ID
R

 c
y
c
le

s

variant (i)

variant (ii)

variant (iii)

fit to N/s, variant (i)

(a) Total IDR(s) cycles, n̂ ≈ 211.

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

s

ti
m

e
 p

e
r

ID
R

 c
y
c
le

 (
s
e

c
o

n
d

s
)

variant (i)

variant (ii)

variant (iii)

model: variant (i)

model: variant (ii)

(b) Time per IDR(s) cycle.

Figure 4.4: Investigating s–dependence for s ∈ {1, . . . , 16} using 64 nodes, four sites, and fast
network.

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

nodes

a
b
s
o
lu

te
s
p
e
e
d
u
p

IDR(1)

IDR(3)

IDR(5)

IDR(10)

(a) IDR(s)-biortho (i.e., variant (i)).

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

nodes

a
b
s
o
lu

te
s
p
e
e
d
u
p

IDR(1)

IDR(3)

IDR(5)

IDR(10)

(b) IDR(s)-minsync (i.e., variant (ii)).

Figure 4.5: Strong scalability results, scaled to number of iterations, n = 1283.

Figure 4.4(b). As a result, there is a significant increase in time per iteration with increasing s
for variant (i).

In general, the performance model is in good agreement with the measurements. The outlier
for s = 1 for variants (i) and (ii) seems related to C compiler optimisations, since disabling these
optimisations reduced the time per cycle. For some reason, variant (iii) conforms well to the
performance model for s = 1 when using the compiler optimisations.

4.6.7 Parallel speedup results

In this section strong and weak scalability of the three unpreconditioned variants is investigated.

92 IDR(s) for Grid Computing

32 64 128
1

2

4

8

nodes

s
p
e
e
d
u
p

IDR(1)

IDR(3)

IDR(5)

IDR(10)

(a) IDR(s)-biortho (i.e., variant (i)).

32 64 128
1

2

4

8

nodes

s
p
e
e
d
u
p

IDR(1)

IDR(3)

IDR(5)

IDR(10)

(b) IDR(s)-minsync (i.e., variant (ii)).

Figure 4.6: Strong scalability results, scaled to number of iterations, n = 2563.

Strong scalability

The standard definition for strong scalability S is used, i.e.,

S(p) =
T (1)

T (p)
, (4.52)

where T (1) is the execution time of the parallel algorithm on one node and p is the number of
nodes. Figure 4.5 shows strong scalability results using variants (i) and (ii) for s ∈ {1, 3, 5, 10},
in Figure 4.5(a) and Figure 4.5(b) respectively. The scalability results of variant (iii) is similar
to that of variant (ii) and are therefore omitted. Optimal speedup S(p) = p is also shown.

The near to linear speedup of both variants using up to 32 nodes on the LU site is not
surprising, considering the fact that in this case communication overhead is almost negligible.
However, as more sites are added, the results show that IDR(s)-minsync (i.e., variant (ii)) scales
much more favourably than IDR(s)-biortho (i.e., variant (i)). Since for s = 1 variants (i) and
(ii) almost have the same implementation, speedup is roughly identical. In addition, the results
show that variant (i) exhibits the same (bad) scalability for all values of s, while increasing s in
variant (ii) gives significant gains in scalability.

For completeness, Figure 4.6 shows strong scalability results for a bigger test problem, where
n = 2563 ≈ 17, 000, 000. In this case, the smallest experiment uses p = 32 nodes on one cluster
(i.e., T (1) ≡ T (32) in (4.52)). Similar to the results in Figure 4.5, the single synchronisation
point in IDR(s)-minsync results in superior parallel speedup compared to IDR(s)-biortho, in
particular for higher values of s. Also, the total number of iterations of both variants for this
test problem is shown in Table 4.6, which shows that the number of iterations is almost equal.

Weak scalability

To investigate the weak scalability of IDR(s)-minsync, the number of equations per node is fixed
to approximately two million and a fixed number of iterations of 275 is performed. The TUD
site is also used in this case and the number of nodes in each experiment is 30, 60, . . . , 150. The
corresponding total problem sizes are listed in Table 4.3. Note that for variant (iii), the value

4.6. Numerical experiments 93

s IDR(s)-biortho IDR(s)-minsync

1 1422 1362
3 916 948
5 882 870
10 737 737

Table 4.6: Total number of iterations.

30 60 90 120 150
100

150

200

250

300

350

400

nodes

to
ta

l
c
o
m

p
u
ti
n
g

ti
m

e
(i
n

s
e
c
o
n
d
s
)

IDR(5): dense test matrix

IDR(5): sparse test matrix

IDR(10): dense test matrix

IDR(10): sparse test matrix

(a) Comparing sparse and dense test matrices (first
strategy).

30 60 90 120 150
100

150

200

250

300

350

400

nodes

to
ta

l
c
o
m

p
u
ti
n
g

ti
m

e
(i
n

s
e
c
o
n
d
s
)

IDR(5): dense test matrix

IDR(10): dense test matrix

(b) Using a dense test matrix (second strategy).

Figure 4.7: Weak scaling experiments on the DAS–3.

of s has to be a multiple of the number of clusters in the grid. In the ideal case, the time per
iteration is constant for increasing number of nodes.

As explained in Section 4.6.2, the problem size is increased using two different strategies.
Figure 4.7 shows the weak scalability results for s ∈ {5, 10}. In Figure 4.7(a) results are given

when employing the first strategy, showing that using the sparse matrix R̃ gives increased gains
in execution time for increasing s.

Figure 4.7(b) gives results using the second strategy. Not surprisingly, adding the second
cluster results in a large jump in execution time, because the relative increase in communication
time is rather high in this case. However, adding subsequent clusters show weak scalability
results comparable to Figure 4.7(a).

4.6.8 Results for IDR(s) with asynchronous preconditioning

We will consider the following values for the convection parameter: w = 180, yielding a mesh-
Péclet number of Pe = 0.5, w = 360, which gives Pe = 1, and w = 1440, which gives Pe = 4.
We apply asynchronous preconditioning for Tmax = 0s (i.e., no preconditioning), Tmax = 5s,
Tmax = 10s, Tmax = 15s, and Tmax = 20s.

In realistic Grid computing environments, network load may vary extensively and can result
in very expensive global synchronisation. In order to simulate such an environment, network load
will be varied artificially. Similar to the experiments performed in Chapter 3, the experiments
here are performed on both a lightly loaded global network and on a heavily loaded global network.

94 IDR(s) for Grid Computing

The results are displayed in Figure 4.8. If a result for a particular experiment is missing, it means
that the iteration did not converge.

We can make the following observations:

• In all experiments with preconditioning, after the convergence criterion was satisfied, the
required accuracy was indeed achieved. This shows that the asynchronous preconditioner
can be used with IDR(s) without compromising the final accuracy.

• For the lower Péclet numbers Pe = 0.5 and Pe = 1, the unpreconditioned algorithm is
fastest, but the unpreconditioned method does not converge for Pe = 4 for any of the
values of s that we tested. With asynchronous preconditioning IDR(s) converges for all
experiments except for Pe = 0.5, s = 10 with Tmax = 5 or Tmax = 10. Moreover, the
performance becomes better for increasing mesh-Péclet number.

• The asynchronous preconditioner is robust against changes in network load: little change
in performance can be observed between the results with preconditioning for low and high
network load. Synchronisation is more expensive if the network load is high. As a result,
the computing times of unpreconditioned IDR(s) are importantly higher if the network
load is high. The preconditioned method therefore performs relatively better in this case.

• IDR(s) without preconditioning performs better for higher s. With asynchronous precon-
ditioning, choosing a higher s negatively affects the convergence if Tmax is chosen too small.
In this case the preconditioner varies too much. This also explains the non-convergence in
the cases metioned above (Pe = 0.5, s = 10 with Tmax = 5 or Tmax = 10). For higher Tmax,
the variations in the preconditioner are smaller, and the theoretical properties of IDR(s)
are less compromised.

4.7 Conclusions

The recent IDR(s) method is a family of fast algorithms for solving large sparse nonsymmetric
linear systems. In cluster computing and in particular in Grid computing, global synchronisation
is a critical bottleneck in parallel iterative methods. To alleviate this bottleneck in IDR(s)
algorithms, four strategies were used.

Firstly, by reformulating the efficient and numerically stable IDR(s)-biortho method [140],
the IDR(s)-minsync method was derived which has a single global synchronisation point per
iteration step. Experiments on the DAS–3 multi–cluster show that the new IDR(s)-minsync
method exhibits increased speedup for increasing values of s. In contrast, the original IDR(s)-
biortho variant has no speedup whatsoever on the DAS–3 multi–cluster for our test problem.

In addition, the test matrix in IDR(s)-minsync was chosen in such a way that the work,
communication, and storage involving this matrix is minimised on the DAS–3 multi–cluster.
Experiments on the DAS–3 show that this approach results in reduced execution times, albeit
relatively moderate. However, the experiments also showed that this technique of using a sparse
test matrix in IDR(s) methods can result in numerical instabilities, in particular for larger values
of s. Given the fact that the reduction in execution times was limited, we do not recommend
using sparse test vectors in the context of IDR(s) methods and multi–clusters.

Also, the presented parallel performance models were utilised for a priori estimation of the
optimal value of s and corresponding number of nodes. This approach can be used to minimise
the total execution time of parallel IDR(s) methods on both a single cluster and on a multi–
cluster. The estimates were in good agreement with the experimental results. It is interesting
to see that in (parallel) IDR(s) algorithms the optimal value of s can be determined in such a

4.7. Conclusions 95

1 3 5 10
0

200

400

600

800

1000

1200

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Tmax = 0

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(a) w = 180, P e = 0.5, lightly loaded network.

1 3 5 10
0

200

400

600

800

1000

1200

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Tmax = 0

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(b) w = 180, P e = 0.5, heavily loaded network.

1 3 5 10
0

100

200

300

400

500

600

700

800

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Tmax = 0

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(c) w = 360, P e = 1.0, lightly loaded network.

1 3 5 10
0

100

200

300

400

500

600

700

800

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Tmax = 0

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(d) w = 360, P e = 1.0, heavily loaded network.

1 3 5 10
0

50

100

150

200

250

300

350

400

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Tmax = 0 (NC)

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(e) w = 1440, P e = 4.0, lightly loaded network.

1 3 5 10
0

50

100

150

200

250

300

350

400

s

to
ta

l
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Tmax = 0 (NC)

Tmax = 5

Tmax = 10

Tmax = 15

Tmax = 20

(f) w = 1440, P e = 4.0, heavily loaded network.

Figure 4.8: A-synchronous preconditioning, total computing time (NC denotes ‘no convergence’).

96 IDR(s) for Grid Computing

manner. Note that it is possible to apply the techniques for estimating the optimal s when a fixed
preconditioner such as a block incomplete LU factorisation is used. This can be accomplished
by adding the communication and computational cost of the preconditioner to the performance
models.

Finally, we have discussed the combination of IDR(s) with an asynchronous preconditioner.
Experiments on the DAS–3 multi–cluster for a large 3D convection–diffusion problem show that
this combination is particularly effective for high Péclet numbers. Moreover, the asynchronous
preconditioner makes the performance of the solution algorithm robust against variations in
network load.

By using IDR(s) as a flexible method, some of its theoretical properties are lost. Because
of this, choosing s high does not result in a faster convergence, as is normally the case with
unpreconditioned IDR(s). This also means that the technique for computing the optimal s
cannot be used in this case, since it depends on the finite convergence behaviour of IDR(s).
By making the preconditioning step more accurate, the theoretical properties can in part be
recovered. How accurate the preconditioning step should be, or more precisely, for how long an
asynchronous preconditioning step should be performed is at this moment still an open question.

Chapter 5

IDR(s) as a Deflation Method

This chapter has been submitted as:

T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen. Interpreting IDR(s) as a deflation
method. Journal of Computational and Applied Mathematics, 2011. Special Issue: Proceedings
ICCAM–2010 (submitted).

97

98 IDR(s) as a Deflation Method

Overview

In this chapter the IDR(s) method is interpreted in the context of deflation methods. It is
shown that IDR(s) can be seen as a Richardson iteration preconditioned by a variable deflation–
type preconditioner. The main result of this chapter is the IDR projection theorem, which
relates the spectrum of the deflated system in each IDR(s) cycle to all previous cycles. The
theorem shows that this so–called active spectrum becomes increasingly more clustered. This
clustering property may serve as an intuitive explanation for the excellent convergence properties
of IDR(s). These remarkable spectral properties exist whilst using a deflation subspace matrix
of fixed rank. Variants of explicitly deflated IDR(s) are compared to IDR(s) in which the IDR
deflation subspace matrix is augmented with “traditional” deflation vectors. The theoretical
results are illustrated by numerical experiments.

5.1 Introduction

In the previous chapter the IDR(s) method was investigated extensively in a parallel context.
This included using a parallel asynchronous iterative method as a preconditioner, which means
that IDR(s) was treated as a flexible method. In order to gain more understanding into the
convergence behaviour of IDR(s), we interpret the IDR(s) method as a deflation method in this
chapter. In doing so, it is hoped that we can analyse the effect of a varying preconditioner on
the convergence properties of IDR(s).

We again consider nonsymmetric linear systems:

Ax = b, A ∈ C
n×n, x,b ∈ C

n. (5.1)

It is shown in Section 5.2 that the IDR(s) method can be viewed as a so–called adapted deflation
method [127, Section 2.3.3]. The method can be seen as a Richardson iteration preconditioned
by a variable deflation–type preconditioner, where the preconditioner is updated in each cycle
with new spectral information. This interpretation leads to more insight into the structure of
IDR(s) methods. In particular, it leads to the IDR projection theorem given in Section 5.3
(Theorem 5.17), which relates the spectrum of the deflated system of a particular cycle to the
spectra of the deflated systems of all the previous cycles.

An IDR(s) cycle consists of s+ 1 (preconditioned) matrix–vector multiplications and in the
kth cycle a new smoothing parameter ωk can be chosen. These parameters play the same role
as the ω’s in the Bi-CGSTAB method: to obtain smoother convergence behaviour. Note that
for Bi-CGSTAB we have s = 1 and for this method the ω is therefore updated every other
matrix–vector multiplication step.

Assume that ωk 6= 0 and put µk ≡ ω−1
k . The IDR projection theorem states that in the

kth cycle, s eigenvalues of A are shifted to µk. Moreover, each ν ∈ {µ0, µ1, . . . , µk−1} is an
eigenvalue of the deflated system in cycle k each with geometric multiplicity s. This implies
that the spectra of the deflated systems becomes increasingly clustered for increasing k. Quite
remarkably, this is accomplished using a deflation subspace matrix of fixed rank equal to s. The
deflation subspace built in cycle k retains spectral information from all previous IDR(s) cycles.
It is argued that the effectiveness of IDR(s) methods comes from the clustering of the spectra of
the deflated systems. Possible consequences of this interpretation are discussed in this chapter.
With the exception of certain extreme cases, these results also suggest that the value of µk itself
plays a relatively small role in the convergence process, especially for larger s.

It can be shown that in the generic case, IDR(s) methods compute the exact solution in
exact arithmetic within n/s cycles [120, Section 3]. In this case the spectrum of the deflated
system in the final cycle solely consists of n/s eigenvalues each with geometric multiplicity s.

5.2. Relation between IDR and deflation 99

Deflation for iterative methods has been investigated by many authors, see for example [62,
67, 94, 95, 126]. A typical deflation procedure consists of three steps: identifying some particular
subspace that hampers convergence, finding a suitable approximation to this space, and removing
the influence of this space on the iteration process. Usually, this subspace is the eigenspace
corresponding to eigenvalues of A that are in some sense “undesirable”.

In Section 5.4 two variants of explicitly deflated IDR(s) methods are compared to IDR(s)
in which the IDR deflation matrices are augmented with traditional deflation vectors. Spectral
comparisons between the deflated systems of these three approaches are performed.

The IDR(s) method adaptively constructs a deflation–type preconditioner. This is not a new
concept: for example, methods such as described in [32, 61, 7] explicitly construct deflation vec-
tors based on spectral information gathered by the Arnoldi process during iterations of restarted
GMRES(m). The goal there is to approximate invariant subspaces associated with a specific set
of eigenvalues (e.g., eigenvalues that are small in magnitude). These methods differ in how the
approximate invariant subspaces are constructed and how they are incorporated in the iteration
process. In general, the dimension of the invariant subspace grows during the iterative process.
In order to limit memory cost, the dimension of the invariant subspace has to be fixed, which
can reduce the effectiveness of the preconditioner.

In contrast, IDR(s) constructs the deflation preconditioner implicitly. Furthermore, the
deflation subspace in IDR(s) is unrelated to any specific spectral components of A. Nevertheless,
new spectral information seems to be continuously injected in the iteration process, all the while
keeping the dimension of the deflation subspace fixed. In this sense IDR(s) can be seen as an
efficient deflation–type method.

This chapter shows that interpreting IDR(s) as a deflation method has resulted in new
insights into the structure of IDR(s) methods and Section 5.5 lists the main conclusions.

Preliminaries

The following notational conventions, terminology, and definitions will be used in this chapter.
If V is a linear subspace of Cn, then an n-vector v is orthogonal to V, v ⊥ V, if v is orthogonal

to all w ∈ V. The space of all n-vectors v that are orthogonal to V is denoted by V⊥.
If R̃,V1, . . . ,Vk are matrices with column vectors of size n, then span(V1, . . . ,Vk) is the

subspace of Cn spanned by all columns of all Vj . We put V1, . . . ,Vk ⊥ R̃ if span(V1, . . . ,Vk) ⊂
span(R̃)⊥. Then we say that the V1, . . . ,Vk are orthogonal to R̃. [V1, . . . ,Vk] is the matrix
with column vectors the columns of the matrices Vj . We identify n-vectors v and n×1 matrices
[v]. We call the columns of V a basis of span(V) ⊂ C

n.
An MV is a matrix-vector multiplication Av, where v is an n-vector. The multiplication

AV with V ∈ C
n×s requires s MVs. The index k refers to the kth IDR(s) cycle. When not

specified otherwise, we assume that the coefficient matrix A is nonsingular.
For a reminder of other notational conventions used in this chapter, see Table 1.7 on page 29.

5.2 Relation between IDR and deflation

In Section 5.2.1 IDR methods are discussed, while Section 5.2.2 presents the structure of adapted
deflation methods. Section 5.2.3 unifies these two concepts by showing how the IDR method
can be interpreted as a deflation method. Lastly, Section 5.2.4 contains some remarks related to
IDR algorithms.

In the following, let R̃ be an n× s matrix; R̃ is the s-dimensional initial shadow residual or
IDR test matrix. It is assumed that the value of s is fixed during the iteration process.

100 IDR(s) as a Deflation Method

5.2.1 IDR methods

Induced dimension reduction (IDR) methods iteratively construct residuals in a sequence (Gk)
of shrinking subspaces: in each cycle k, we start from a residual in Gk and construct a residual
in Gk+1. Ultimately, the residual is forced in the zero–dimensional subspace Gk = {0} for some
k ≤ n. These IDR subspaces are recursively defined as follows:

Definition 5.1. Let G0 be a linear subspace of Cn such that AG0 ⊂ G0 (for example, the full
Krylov subspace K(A,v) ≡ span{Akv | k = 0, 1, . . .} for some v ∈ C

n). For a sequence (µk) in
C, let the sequence (Gk) of IDR subspaces be defined by

Gk ≡ (A− µkI)(G′
k−1), where G′

k−1 ≡ Gk−1 ∩ R̃⊥ (k ∈ N). (5.2)

The following result states that the sequence (Gk) of IDR subspaces forms a strict chain of
nested linear subspaces. For a proof, see [115, 120].

Theorem 5.2 (IDR). With Gk as in Definition 5.1, we have for k, ℓ ∈ N0

Gk ⊂ Gℓ (ℓ ≤ k).

If A has no eigenvector in R̃⊥, then Gk = Gℓ (ℓ < k) if and only if Gk = {0}.
The IDR subspaces Gk are a special case of a wider class of spaces called Sonneveld subspaces

defined below.

Definition 5.3 (cf. [117]). Let G0 be as in Definition 5.1. For a polynomial P of exact degree

k, the Sonneveld subspace S(P,A, R̃) is defined by

S(P,A, R̃) ≡ {P (A)v | v ∈ G0,v ⊥ Kk(A
∗, R̃)}, (5.3)

where

Kk(A
∗, R̃) ≡

k−1∑

j=0

(A∗)jR̃γj | γj ∈ C
s

 (5.4)

is the (block) Krylov subspace of order k (generated by A∗ and R̃). Note that the dimension of

the Sonneveld subspace S(P,A, R̃) is in general (generic case) equal to n− ks. Also, note that

v ⊥ Kk(A
∗, R̃) ⇔ R̃∗Ajv = 0 for all j < k. (5.5)

The following result explicitly relates the Sonneveld subspaces to the IDR subspaces. For a
proof and additional interesting results on Sonneveld subspaces, see [115].

Theorem 5.4. Let Pk(λ) ≡
∏k

j=1(λ− µj). With Gk as in Definition 5.1, we have

Gk = S(Pk,A, R̃). (5.6)

The residual that arrives first in an IDR subspace Gk is called a primary residual. This ter-
minology is consistent with the existing literature on IDR(s) methods. In addition, we introduce
here the term secondary residual, which is also always formed and which lives in the subspace
Gk∩R̃⊥. For observations on the uniqueness of these residuals, see [116, 120]. We call any other
residuals that may be constructed during a cycle auxiliary residuals. For example, this includes
the intermediate residuals generated in Algorithm 4.1 and Algorithm 4.2.

Continuing the discussion of Section 4.2 on page 71, iterative algorithms based on the IDR
theorem (i.e., Theorem 5.2) essentially consist of three key steps, which constitute the kth cycle
of an IDR method (i.e., s+1 MVs). Let k ∈ N0. Given a full rank n×s matrix Vk with columns
in Gk and a primary residual rk ∈ Gk, we have:

5.2. Relation between IDR and deflation 101

(i) The projection step: the secondary residual r′k is formed in G′
k ≡ Gk ∩ R̃⊥ using an oblique

projection involving Vk. This step consists of s MVs.

(ii) The dimension reduction step: given the secondary residual r′k ∈ G′
k and after selecting a

scalar ωk+1 ≡ 1/µk+1, the next primary residual rk+1 in the lower dimensional subspace
Gk+1 ⊂ Gk is computed as rk+1 = (I− ωk+1A)r′k. This step consists of 1 MV.

(iii) The search matrix step: a full rank n × s matrix Vk+1 with columns in Gk+1 of the form
AUk+1 with the so–called search matrix Uk+1 explicitly available is constructed. This
matrix is used for the next projection step.

To summarise, one full cycle of IDR(s) consists of s+ 1 MVs:

primary residual
s MVs−−−−→ secondary residual

1 MV−−−→ next primary residual

rk ∈ Gk r′k ∈ Gk ∩ R̃⊥ rk+1 ∈ Gk+1

. (5.7)

Following the discussion of [120, Section 4], three fundamental choices can be distinguished
when deriving practical IDR(s) algorithms. These choices are directly related to the three steps
given above. Not only do these choices influence the numerical stability and efficiency of the
resulting IDR(s) algorithm, they can also drastically affect parallel scalability. These choices
are:

(i) Choosing the IDR test matrix. In IDR(s) algorithms the computation of most of the inner

products pertains to the columns of R̃. To reduce the amount of computational work
(and communication) involving the IDR test matrix, sparse column vectors for R̃ may
be used. A possible disadvantage is that such an approach can have an adverse effect
on robustness. For a study on using sparse column vectors for R̃ and other methods of
minimising communication in parallel IDR(s) algorithms, see Chapter 4 of this thesis.

(ii) Selecting ωk+1 in the dimension reduction step. In the dimension reduction step the value
of ωk+1 can be chosen freely. Similar to other short–recurrence methods such as Bi–
CGSTAB, smoother convergence may be achieved by choosing ωk+1 in such a way that the
next residual is minimised in norm. For certain problems the (standard) linear minimal
residual step causes break–down of the iteration process and sophisticated repair techniques
such as used in Bi–CGSTAB(ℓ) are required [114, 113]. In Bi–CGSTAB(ℓ) stabilisation
polynomials of degree ℓ are used and recently this technique has been combined with
IDR(s) [117].

(iii) Constructing vectors for the space Gk+1 in the search matrix step. Vectors for Gk+1 can
be generated by a number of ways. For example, using GCR–type methods [139]. Also,
vectors for Gk+1 can be made to satisfy (one–sided) bi–orthogonality relations with the

columns of R̃ [140]. Furthermore, one can either derive variants that only compute primary
and secondary residuals (e.g., [117]) or variants that also construct auxiliary residuals
(e.g., [139, 140]). For more details on this type of freedom, see [116].

Note that different strategies for the last choice result in mathematically equivalent IDR(s)
methods, while different strategies for the first and second choice result in fundamentally different
iterative processes.

5.2.2 Deflation methods

In this section the structure of a particular deflation–type method called adapted deflation is
presented. The discussion follows that of [127, Section 2]. We will first look at general deflation
methods.

102 IDR(s) as a Deflation Method

General deflation

We start with some terminology (cf. Definition 5.5) and a related result (cf. Lemma 5.6).

Definition 5.5 (cf. [62, 94, 116, 127]). Let A ∈ C
n×n be nonsingular and let U, R̃ ∈ C

n×s

be suitable deflation subspace matrices of full rank. Then the oblique projections (or deflation

matrices) Π, Π̂ ∈ C
n×n, the correction matrix (or coarse grid correction) Q ∈ C

n×n, and the
invertible (Galerkin) matrix E ∈ C

s×s are defined as

Π ≡ I−AQ and Π̂ ≡ I−QA, where Q ≡ UE−1R̃∗ and E ≡ R̃∗AU. (5.8)

In the next section we will sometimes relate an operator or matrix with a specific IDR cycle k
by adding a subscript k, e.g., Uk and Qk. Analogously, if a projection belongs to an IDR cycle
k, we write e.g., Πk.

Lemma 5.6 (cf. [62, 127]). Note that the following properties hold for arbitrary full–rank ma-

trices A,U, and R̃. In particular, we do not assume that the columns of U or R̃ are (approxi-
mations of) eigenvectors. Let j, k ∈ N0. Then

(i) Π2 = Π, Π̂2 = Π̂, (AQ)2 = AQ, (QA)2 = QA

(ii) ΠA = AΠ̂ = ΠAΠ̂

(iii) Π̂U = ΠAU = 0n,s

(iv) R̃∗Π = R̃∗AΠ̂ = 0s,n

(v) AQ = I−Π,QA = I− Π̂

(vi) QAU = U,QAQ = Q

(vii) ΠQ = QΠ = ΠAQ = AQΠ = QAΠ̂ = QΠA = 0n,n

(viii) (I− Π̂)x = Qb

(ix) R̃∗AQ = R̃∗

Proof. We only show property (iii). The other properties can be derived similarly. For (iii),

note that ΠAU = AU−AU(R̃∗AU)−1R̃∗AU = AU−AU = 0n,s.

Note 5.7. The following observations can be made.

• The operator Π is an oblique projection along span(AU) onto the orthogonal complement

of R̃ (or onto span(R̃)⊥ = N (R̃∗)). The operator AQ is an oblique projection along the

orthogonal complement of R̃ onto span(AU).

• The operator Π̂ is an oblique projection along span(U) onto span(A∗R̃)⊥ = N (R̃∗A). The

operator QA is an oblique projection along span(A∗R̃)⊥ onto span(U).

• Πv ⊥ R̃ for all v, AΠ̂v ⊥ R̃ for all v, Πv ∈ N (R̃∗) for all v, U ∈ N (ΠA), U ∈ N (Π̂),

ΠA ∈ N (R̃∗).

• Both projections Π and Π̂ have s zero and n − s unit eigenvalues, since ΠAU = 0n,s and

Π2Y = ΠY for full rank Y ∈ R
n×(n−s) satisfying span(Y) = span(R̃)⊥. Vice versa, both the

projections AQ and QA have n− s zero eigenvalues and s unit eigenvalues.

5.2. Relation between IDR and deflation 103

• Note that dim span(Π) = dimN (AQ) = dim span(R̃)⊥ = dimN (R̃∗) = n− s.

• Note that dimN (Π) = dim span(AQ) = dim span(AU) = s.

• Note that dim span(Π) + dimN (Π) = (n− s) + s = n = rankΠ.

Adapted deflation methods

In an adapted deflation method [127, Section 2.3.3], two different preconditioners C1,C2 ∈ C
n×n

are combined as follows. Let k ∈ N0. Given x0, consider the two–step stationary iterative method
(cf. predictor/corrector–type method, see also Section 3.8 on page 62)

{
x′
k = xk +C1(b−Axk);

xk+1 = x′
k +C2(b−Ax′

k),
(5.9)

which can be combined to obtain

xk+1 = xk +P(b−Axk), (5.10)

where

P = C1 +C2 −C2AC1. (5.11)

Using Definition 5.5, let C1 ≡ Q and C2 ≡ B−1 where B is an arbitrary (but fixed) matrix.
Then P = B−1Π+Q and the deflated linear system can be written as

PAx = Pb, (5.12)

which can be solved using an iterative method. This particular deflation variant is called the
adapted deflation variant 1 (A–DEF1) and is described in [127, Section 2.3.3]. A common ap-

proach is to take U equal to R̃, consisting of s eigenvectors belonging to the smallest eigenvalues
in norm. Additionally, B−1 is a traditional preconditioner such as an Incomplete LU factori-
sation. As a result, these s eigenvalues of A are then shifted to one in PA, removing their
influence from the iteration process (assuming that an appropriate scaling has taken place).

Note that premultiplying (5.9) with −A and adding b gives the corresponding recursions for
the residuals

{
r′k = (I−AC1)rk;
rk+1 = (I−AC2)r

′
k.

(5.13)

In the following, we mainly focus on the recursions for the residual. The corresponding recursions
for the iterate can normally speaking be constructed easily.

5.2.3 Interpreting IDR(s) as a deflation method

In this section, the three steps of an IDR(s) method given in Section 5.2.1 will be discussed
in the context of the adapted deflation variant given in Section 5.2.2. For reference purposes,
Algorithm 5.1 lists a complete IDR(s) algorithm for solving a system Ax = b by generating pri-
mary and secondary residuals with corresponding iterates, illustrating the three distinct phases
of IDR(s). In Algorithm 5.1, a sequence of subspaces of Gk is generated, i.e., span(rk,Vk) ⊂ Gk

for k ∈ N0 (see also Proposition 5.13). Note that this variant is purely intended for illustrative
purposes and that it should not be used to solve linear systems in practice. Also, this variant
does not produce auxiliary residuals. In the discussion below we sometimes specifically refer
to line numbers in Algorithm 5.1. The projection step and the dimension reduction step are
discussed together. After that, the search matrix step is discussed separately.

104 IDR(s) as a Deflation Method

Algorithm 5.1 IDR(s) as a deflation method: generating a sequence of subspaces of Gk.

input: A ∈ C
n×n;x0,b ∈ C

n; R̃ ∈ C
n×s; preconditioner B ∈ C

n×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ tol

1: // Initiation
2: Compute r0 = b−Ax0

3: Select an n× s matrix V0 ≡ AU0 with U0 explicitly available such that [r0,V0] spans the
Krylov subspace Ks+1(A, r0)

4: // Loop over nested Gk spaces
5: for k = 1, 2, . . . do
6: // (i) Projection step:
7: // Generate unique secondary residual r′k−1 ∈ G′

k−1 with corresponding iterate x′
k−1

8: let Πk−1 ≡ I−AQk−1 and Π̂k−1 ≡ I−Qk−1A where Qk−1 ≡ Uk−1(R̃
∗Vk−1)

−1R̃∗

9: x′
k−1 = xk−1 +Qk−1rk−1

10: r′k−1 = Πk−1rk−1

11: // (ii) Search matrix step:

12: // generate a basis U′
k−1 of Ks(Π̂k−1B

−1A, Π̂k−1B
−1r′k−1)

13: // generate a basis V′
k−1 of Ks(Πk−1AB−1,Πk−1AB−1r′k−1)

14: // for example, a power basis:
15: let v′

0 ≡ r′k−1

16: for i = 1 to s do
17: u′

i = Π̂k−1B
−1v′

i−1

18: v′
i = Au′

i = Πk−1AB−1v′
i−1 ∈ G′

k−1 ≡ Gk−1 ∩ R̃⊥

19: end for
20: let U′

k−1 ≡ [u′
1, . . . ,u

′
s] and V′

k−1 ≡ [v′
1, . . . ,v

′
s]

21: // Entering Gk

22: // (iii) Dimension reduction step:
23: Select a scalar ωk, e.g., ωk = argminω ||(I− ωAB−1)r′k−1||
24: // Compute search matrix Uk for next IDR projection step with Vk ∈ Gk

25: Uk = U′
k−1 − ωkB

−1V′
k−1

26: Vk = (I− ωkAB−1)V′
k−1

27: // Compute next primary residual rk ∈ Gk and corresponding iterate xk

28: xk = x′
k−1 + ωkB

−1r′k−1

29: rk = (I− ωkAB−1)r′k−1

30: if ||rk|| ≤ tol then break end if
31: end for

Projection step and dimension reduction step

Proposition 5.8 below shows that the IDR(s) method can be seen as a combination of two very
specific operators C1 and C2. It explains how to move from a primary residual rk to the next
primary residual rk+1.

To form the secondary residual r′k in G′
k ≡ Gk∩ R̃⊥ from the primary residual in Gk, we need

a full rank n× s matrix with columns also in Gk. In order to be able to update the approximate
solution associated with rk this n × s matrix has to be of the form AUk with Uk explicitly
available: the update for the approximate solution is a linear combination of the columns of Uk.
This is also expressed in Proposition 5.8 (cf. (5.15) and line 9 of Algorithm 5.1). We call an
n× s matrix Uk a search matrix if it has full rank and span(AUk) ⊂ Gk.

5.2. Relation between IDR and deflation 105

Proposition 5.8. Consider a k ∈ N0. Assume rk ∈ Gk with rk a residual, rk = b − Axk,
with approximate solution xk, where xk is explicitly available. Also, assume span(AUk) ⊂ Gk,
with Uk explicitly available. Select a scalar µk+1 6= 0 and put ωk+1 ≡ 1/µk+1. Let B ∈ C

n×n

be a “traditional” preconditioning matrix. In the projections Π, Π̂ and in the operator Qk of

Definition 5.5, let R̃ be the IDR test matrix and let U = Uk. In (5.13), let C1 ≡ Qk (cf.
a correction matrix) and C2 ≡ ωk+1B

−1 (cf. modified preconditioned Richardson, smoothing
step). In particular, assume that span(AQk) ⊂ Gk. The recursions for computing the primary
and secondary residuals of a single IDR cycle are (cf. (5.13))

{
r′k = (I−AQk)rk; (see line 10 of Algorithm 5.1)

rk+1 = (I− ωk+1AB−1)r′k, (see line 29 of Algorithm 5.1)
(5.14)

where the secondary residual r′k = Πkrk in G′
k ≡ Gk ∩ R̃⊥ (i.e., step (i), the projection step,

cf. (5.8)) and the next primary residual rk+1 in Gk+1 (i.e., step (ii), the dimension reduction
step). The corresponding recursions for the iterates are

{
x′
k = xk +Qkrk; (see line 9 of Algorithm 5.1)

xk+1 = x′
k + ωk+1B

−1r′k. (see line 28 of Algorithm 5.1)
(5.15)

Note that the update for x′
k is a linear combination of the columns of Uk. The resulting operator

Pk is (cf. (5.11))

Pk = Qk + ωk+1B
−1 − ωk+1B

−1AQk = ωk+1B
−1Πk +Qk. (5.16)

The complete recursions for the residual and iterate are
{

rk+1 = rk −APkrk;
xk+1 = xk +Pk(b−Axk).

(5.17)

Proof. Use Definition 5.1 and Definition 5.5.

This proposition also shows that the IDR(s) method can be seen as a Richardson iteration
with a varying deflation–type preconditioner. In particular, the operator Pk is analogous to the
A–DEF1 deflation method described above and in [127, Section 2.3.3]. Also, note that P2

k 6= Pk

and that PkA is non–symmetric even if A is symmetric. The matrix ΠkA is singular, but the
matrix PkA is not. It is shown in [120] that the primary residuals rk (and therefore also r′k) are
unique. If there is no risk of ambiguity (that is, if it is clear within which IDR subspace k we
are operating or if it is irrelevant), we will sometimes drop the index k of for example Pk and
Πk.

Note 5.9. The error–propagation operator (or iteration matrix) belonging to IDR(s) is

I−PkA = I− ωk+1B
−1ΠkA−QkA (5.18)

= Π̂k − ωk+1B
−1AΠ̂k (5.19)

= (I− ωk+1B
−1A)Π̂k, (5.20)

where (I−ωk+1B
−1A) can be seen as a (post–)smoother and Π̂k a coarse–grid correction oper-

ation [127]. Note that the iteration matrix changes in each cycle k.

Note 5.10. In IDR(s), a single Richardson step is applied in each cycle k to the (deflated and
nonsingular) system (cf. (5.17))

PkAxk = Pkb. (5.21)

106 IDR(s) as a Deflation Method

y′ = y+Qr
r′ = Πr
for i = 1 to s do
u′ = Π̂v′

v′ = AB−1u′

end for
y′′ = y′ + ωr′

r′′ = (I− ωAB−1)r′

B−1y′ = B−1y+B−1Qr
r′ = Πr
for i = 1 to s do

B−1u′ = B−1Π̂v′

v′ = AB−1u′

end for
B−1y′′ = B−1y′ + ωB−1r′

r′′ = (I− ωAB−1)r′

x′ = x+Qr
r′ = Πr
for i = 1 to s do
u′ = Π̂B−1v′

v′ = Au′

end for
x′′ = x′ + ωB−1r′

r′′ = (I− ωAB−1)r′

Figure 5.1: Left: solve AB−1y = x. Middle: premultiply y and u by B−1. Right: substitute
x = B−1y.

The role of the preconditioner B−1 in Algorithm 5.1 may not be entirely apparent so we will
discuss this in some detail. In Figure 5.1 the three steps of introducing a (right) preconditioner
B−1 into the IDR(s) method from Algorithm 5.1 are shown. In Figure 4.1 on page 83 a similar
discussion is performed, but here we use the deflation language of this chapter. Like before, we
only show a single IDR(s) cycle and we drop the index k, starting with a primary residual r,
generating the secondary residual r′ and finally the next primary residual r′′.

In the left part of Figure 5.1, the IDR(s) method from Algorithm 5.1 is applied to the
preconditioned system AB−1y = b with x = B−1y as the final solution. In the middle part
the vectors y and u are premultiplied by B−1 and again we have the final solution x = B−1y.
Finally, in the right part we set u′ = B−1u′ and the transformed iterates y are scaled back

to the iterates x of the original system Ax = b. The notation Π̂ underlines the fact that this
projection uses the preconditioned search matrix U ≡ B−1U. The same holds for the operator
Q. In the listing of Algorithm 5.1, this distinction in notation is not explicitly made.

Note that in the right part of Figure 5.1, the projection Π̂ is operating within the original
solution space (x), while Π operates within the transformed solution space (y).

For ease of notation, we will often take B = I in the remainder of this chapter.

Search matrices

In the search matrix step (i.e., step (iii)), we need to generate a full rank n × s matrix with
columns in Gk+1 of the form AUk+1 with Uk+1 explicitly available. We have to construct this
matrix from vectors in Gk. In this IDR subspace, we only have the subspace span(rk,AUk)
available with Uk an n × s matrix. The vector y for which Ay = rk will not be available
(because that would require to solve a linear system with A). Therefore, the vector rk is not
helpful. However, in the computation of rk+1 ∈ Gk+1, we also computed Ar′k, which also belongs
to Gk (use Theorem 5.2, now with µk = 0). Hence, we can use vectors from span(Ar′k,AUk).

Using the projection Πk, Π̂k from Proposition 5.8 we have in particular: Πk(Av) is in G′
k

if Av ∈ Gk and Πk(Av) is of the form Au with u explicitly available: u = Π̂kv. Moreover,

Πk(Av) = Av −AUβ with β ≡ E−1R̃∗Av and for the same β we have that Π̂kv = v −Uβ:

the projection Π̂k requires vector updates, but no additional inner products.
With s ∈ C

n and Ũ a full rank n × s matrix such that [s, Ũ] spans an s + 1 dimensional

subspace of span(r′k,Uk), we can use Ũ and AŨ in the projections Πk and Π̂k of (5.8) and take
s to start the construction of Uk+1. However, for ease of notation, we formulate Proposition 5.12

for Ũ = Uk and we suggest to use s = r′k.

Lemma 5.11. If s ∈ G′
k, then ΠkAs = AΠ̂ks ∈ G′

k.

5.2. Relation between IDR and deflation 107

Proof. From Theorem 5.4 we learn that As ∈ A(G′
k) ⊂ Gk, whence ΠkAs ∈ G′

k. ΠkAs =

AΠ̂ks follows from Lemma 5.6:(ii).

Proposition 5.12. AΠ̂kr
′
k ∈ G′

k. Let u′
1 ∈ C

n (for instance, u′
1 = Π̂kr

′
k, see line 15 of

Algorithm 5.1).

If Au′
1 ∈ G′

k, and U′
k is a matrix with columns in Ks(Π̂kA,u

′
1), then

span(AU′
k) ⊂ Ks(ΠkA,Au′

1) ⊂ G′
k and span(A(µk+1I−A)U′

k) ⊂ Gk+1.

Proof. The first claim follows by combining Proposition 5.8 and Lemma 5.11. The inclusion
Ks(ΠkA,Au′

1) ⊂ G′
k follows from Lemma 5.11 and an induction argument. Further,

AKs(Π̂kA,u
′
1) = Ks(AΠ̂k,Au′

1) = Ks(ΠkA,Au′
1) (5.22)

(use Lemma 5.6:(ii)).

The proposition tells us that any set of s linearly independent vectors in Ks(Π̂kA,u
′
1) forms

a matrix U′
k for which the columns of A(I − ωA)U′

k are in Gk+1: Uk+1 ≡ (I − ωA)U′
k forms

an appropriate search matrix for the next IDR step (see line 25 of Algorithm 5.1).
In Algorithm 5.1, a power basis for the Krylov subspaces is generated. For larger values of

s (as s > 4) a more stable basis might be required. The choice of such a basis and its efficient
computation is considered in detail in [116].

5.2.4 IDR algorithms

In this section we will make some general remarks about IDR(s) algorithms. Algorithm 5.1
describes a way to recursively generate s+ 1 dimensional subspaces of Gk:

Proposition 5.13. If [rj ,Vj] has rank s+ 1 for j ≤ k, then span(rk,Vk) ⊂ Gk.

Proof. Clearly, span(r0,V0) ⊂ G0. Assume that span(rk−1,Vk−1) ⊂ Gk−1. Then Πk−1rk−1 ∈
G′
k−1 and, by Lemma 5.11, Ks+1(Πk−1A,Πk−1rk−1) ⊂ G′

k−1. Hence, span(rk,Vk) ⊂ (A −
µkI)G′

k−1 = Gk.

The listing of Algorithm 5.1 is somewhat different from more “common” listings of IDR(s)
algorithms, such as the IDR(s) listings in Chapter 4 of this thesis. To give a concrete example,
Algorithm 5.2 shows such a traditional listing of an IDR(s) algorithm using the deflation lan-
guage of this chapter. For comparison purposes, the preconditioner B is explicitly added. Like
Algorithm 5.1, this listing is one of the most basic formulations of an IDR(s) algorithm and it is
not intended for practical applications. It was chosen to facilitate comparing with Algorithm 5.1.
For efficient and stable variants of IDR(s) algorithms, see Chapter 4 of this thesis and also [140].
We will now discuss the differences and similarities between Algorithm 5.1 and Algorithm 5.2.

In Algorithm 5.2, the vectors gi are directly lifted to the (primary) IDR subspace Gk, while
Algorithm 5.1 explicitly generates s (secondary) vectors v′

i in the (secondary) IDR subspace

Gk−1 ∩ R̃⊥. The main goal of traditional listings such as Algorithm 5.2 is to generate linearly
independent vectors (often denoted by g as in Algorithm 5.2) in the IDR subspace Gk of unknown
(possibly large) dimension. These vectors do not form a basis of the subspace Gk. In contrast,
the vectors v′ are explicitly generated to form a basis of Ks(Πk−1AB−1,Πk−1AB−1r′k−1). To
underline these distinctions, we use different letters for these sets of vectors.

However, it can be shown that in both listings we are in fact generating vectors ui for a basis
of the same Krylov subspace. In particular, the columns of Ua ≡ Uk in line 25 of Algorithm 5.1
form a basis of the Krylov subspace (I − ωkB

−1A)Ks(Π̂k−1B
−1A, Π̂k−1B

−1Πk−1rk−1), while
the columns of Ub ≡ Uk in line 14 of Algorithm 5.2 form a basis of the Krylov subspace
Ks(Pk−1A,Pk−1rk). The following proposition shows that these subspaces are identical.

108 IDR(s) as a Deflation Method

Algorithm 5.2 IDR(s) as a deflation method: a “traditional” listing.

input: A ∈ C
n×n;x0,b ∈ C

n; R̃ ∈ C
n×s; preconditioner B ∈ C

n×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ tol

1: // Initiation
2: Π−1 = I;Q−1 = 0;ω0 = 1
3: Compute r0 = b−Ax0

4: // Loop over nested Gk spaces
5: for k = 0, 1, . . . do
6: // Compute s independent vectors g in Gk using vectors from Gk−1

7: let Πk−1 = I−AQk−1 where Qk−1 = Uk−1(R̃
∗Gk−1)

−1R̃∗

8: let Pk−1 = ωkB
−1Πk−1 +Qk−1

9: let g0 = rk // (cf. line 15 of Algorithm 5.1)
10: for i = 1 to s do
11: ui = Pk−1gi−1 // (cf. eq. (5.16))
12: gi = Aui ∈ Gk // (cf. line 18 of Algorithm 5.1)
13: end for
14: let Uk = [u1, . . . ,us] and Gk = [g1, . . . ,gs]

15: let Πk = I−AQk where Qk = Uk(R̃
∗Gk)

−1R̃∗

16: x′
k = xk +Qkrk // (cf. line 9 of Algorithm 5.1)

17: r′k = Πkrk // (cf. line 10 of Algorithm 5.1)
18: // Entering Gk+1

19: ωk+1 = argminω ||(I− ωAB−1)r′k|| // (cf. line 23 of Algorithm 5.1)
20: // Compute next primary residual rk+1 ∈ Gk+1 and corresponding iterate xk+1

21: xk+1 = x′
k + ωk+1B

−1r′k // (cf. line 28 of Algorithm 5.1)
22: rk+1 = (I− ωk+1AB−1)r′k // (cf. line 29 of Algorithm 5.1)
23: if ||rk+1|| ≤ tol then break end if // (cf. line 30 of Algorithm 5.1)
24: end for

Proposition 5.14. Let P,Π, and Π̂ be as in Prop 5.8 and let B = I. Then we have

Ks(Pk−1A,Pk−1rk) = (I− ωkA)Ks(Π̂k−1A, Π̂k−1Πk−1rk−1). (5.23)

Proof. Using Lemma 5.6 and Proposition 5.8, we have that

Pk−1rk = (ωkΠk−1 +Qk−1)(I− ωkA)Πk−1rk−1

= ωkΠ
2
k−1rk−1 − ω2

kΠk−1AΠk−1rk−1 +Qk−1Πk−1rk−1 − ωkQk−1AΠk−1rk−1

= ωk(I− ωkΠk−1A−Qk−1A)Πk−1rk−1

= ωk(Π̂k−1 − ωkAΠ̂k−1)Πk−1rk−1

= ωk(I− ωkA)Π̂k−1Πk−1rk−1.

Using these arguments, it can be shown that for Ub of Algorithm 5.2 we have

span(Ub) = Ks(Pk−1A,Pk−1rk)

= Ks((ωkΠk−1 +Qk−1)A, ωk(I− ωkA)Π̂k−1Πk−1rk−1)

= (I− ωkA)Ks(Π̂k−1A, Π̂k−1Πk−1rk−1)

= span(Ua),

5.2. Relation between IDR and deflation 109

Algorithm 5.3 IDR(s) as a deflation method: the IDR(s)-biortho variant from Algorithm 4.1.

input: A ∈ C
n×n;x,b ∈ C

n; R̃ ∈ C
n×s; preconditioner B ∈ C

n×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ ε

1: Q−1 = 0 ∈ C
n×n;ω0 = 1

2: Compute r = b−Ax
3: for k = 0, 1, . . . do
4: // Compute s independent vectors g in Gk using vectors from Gk−1

5: for i = 1 to s do
6: let Πk−1 ≡ I−AQk−1 where Qk−1 ≡ Uk−1(R̃

∗Gk−1)
−1R̃∗ and R̃ ≡ [r̃1, . . . , r̃s]

7: let Pk−1 ≡ ωkB
−1Πk−1 +Qk−1

8: ûi = Pk−1r
9: ĝi = Aûi ∈ Gk

10: let G ≡ [g1, . . . ,gi−1], U ≡ [u1, . . . ,ui−1], and R̃ ≡ [r̃1, . . . , r̃i−1] for i > 1

11: let Π ≡ I−AQ and Π̂ ≡ I−QA where Q ≡ U(R̃∗G)−1R̃∗

12: ui = Π̂ûi ⊥A R̃

13: gi = Πĝi ∈ Gk ∩ R̃⊥

14: let G ≡ [g1, . . . ,gi], U ≡ [u1, . . . ,ui], and R̃ ≡ [r̃1, . . . , r̃i]

15: let Π ≡ I−AQ and Π̂ ≡ I−QA where Q ≡ U(R̃∗G)−1R̃∗

16: x = x+Qr
17: r = Πr ∈ Gk ∩ R̃⊥

18: end for
19: // Search matrix Uk for next IDR projection step and Gk with columns in Gk:
20: let Gk ≡ G and Uk ≡ U
21: // Entering Gk+1

22: ṽ = B−1r
23: t = Aṽ
24: ωk+1 = argminω ||(I− ωAB−1)r||
25: // Compute next primary residual r ∈ Gk+1 and corresponding iterate x
26: x = x+ ωk+1ṽ
27: r = r− ωk+1t
28: if ||r|| ≤ tol then break end if
29: end for

for Ua of Algorithm 5.1. Therefore, both sets of vectors span the same Krylov subspace, which
proves the proposition.

Note that the secondary residual r′k is explicitly generated in both listings, since it is needed
to perform the dimension reduction step.

Also, the “traditional” listing of the IDR(s)-biortho method from Algorithm 4.1 (and Algo-
rithm 4.2) on page 75 uses the letter v (line 10 of Algorithm 4.1 and line 11 of Algorithm 4.2) to

denote vectors that are orthogonal to R̃, which is consistent with the notation of Algorithm 5.1.

For both completeness and illustrative purposes, we reproduce in Algorithm 5.3 the IDR(s)-
biortho method from Algorithm 4.1 (and thus also the IDR(s)-minsync method from Algo-
rithm 4.2) using the deflation language of this chapter. Note that this variant also computes
auxiliary residuals.

110 IDR(s) as a Deflation Method

5.3 The IDR projection theorem

In the previous section it has been shown that the IDR(s) method can be seen as a Richardson
iteration preconditioned by a variable deflation–type preconditioner. Therefore, it makes sense
to investigate the spectra of the sequence of deflated systems, i.e.,

σ(PkA), k = 0, 1, (5.24)

The system PkA is called the kth active system of the iteration process.
In Section 5.3.1 the spectrum of the active system is investigated for a single IDR(s) cycle.

Section 5.3.2 contains the main result of this chapter, which relates the spectra of the active
systems of multiple IDR(s) cycles. We will show that in IDR(s) the spectrum of PkA become
increasingly more clustered with increasing k. Also, the spectrum of PkA is related to the
active spectra of all the previous cycles 0, . . . , k − 1. Section. 5.3.3 contains numerical examples
to illustrate the IDR projection theorem. In Section 5.3.4 some possible interpretations of the
IDR projection theorem are discussed.

5.3.1 Single IDR(s) cycle

In the following, we partly follow [62] and [127]. We will first show some properties of the active
system of a single IDR(s) cycle k. Therefore, the index k is dropped in this section.

Lemma 5.15 (cf. Lemma 2.5 [62]). Let A and B be nonsingular. For all full ranked rectangular

matrices U and R̃, B−1ΠA and PA have s eigenvalues equal to 0 and 1, respectively.

Proof. From Lemma 5.6 it follows that B−1ΠAU = 0n,s and (B−1Π + Q)AU = U. Ad-
ditionally, U = [u1, . . . ,us] are the eigenvectors of B−1ΠA and (B−1Π +Q)A associated with
the eigenvalues 0 and 1, respectively.

Theorem 5.16 (cf. [127], cf. Theorem 2.8 [62]). For all cycles we have

σ(B−1ΠA) = {0} ∪ {λ′s+1, . . . , λ
′
n} (5.25)

⇔
σ((B−1Π+Q)A) = {1} ∪ {λ′s+1, . . . , λ

′
n}, (5.26)

where the eigenvalues 0 and 1 both have multiplicity s.

Proof. For the implication ⇐, see [62, Theorem 2.8]. For the implication ⇒, note that for ui

with i = 1, . . . , s where U = [u1, . . . ,us] we have (B−1Π +Q)AU = U and B−1ΠAU = 0n,s,
so the eigenvectors U of (B−1Π +Q)A corresponding to the unit eigenvalues are the same as
those corresponding to the zero eigenvalues of B−1ΠA.

For i = s + 1, . . . , n, suppose that the eigenvectors {vi} satisfy B−1ΠAΠ̂vi = λiΠ̂vi with
corresponding eigenvalues {λi}. Then (using (vii) from Lemma 5.6)

(B−1Π+Q)AΠ̂vi = B−1ΠAΠ̂vi +QAΠ̂vi (5.27)

= λiΠ̂vi. (5.28)

So the eigenvalues of (B−1Π+Q)A are the same as the eigenvalues of B−1ΠA, with eigenvectors

Π̂vi.

In other words, (B−1Π+Q)A has eigenvectors Π̂vi, with Π̂vi the eigenvectors of B−1ΠA.

5.3. The IDR projection theorem 111

5.3.2 Main result: IDR projection theorem

Since the spectra of PkA and ΠkA merely differ in the sense that the zero eigenvalues of ΠkA
are shifted to one in PkA (cf. Theorem 5.16), we will mainly focus on the spectrum of ΠkA
from now on. We first state the main result of this chapter: the IDR projection theorem. It
describes the complete spectrum of the active IDR(s) systems ΠkA, relating the spectrum of
the active system of cycle k to all the previous cycles.

Theorem 5.17 (IDR Projection Theorem). Let k ∈ N0 and let W be an n× s matrix such that

W ⊥ Kk(A
∗, R̃). The eigenvalues of ΠkA are in

σ(ΠkA) = {0} ∪ {λ | P (λ) = 0} ∪ {λ | det(R̃∗(A− λI)−1W) = 0}, (5.29)

where the polynomial P (λ) ≡ ∏k
j=1(λ−µj) as defined in Theorem 5.4. The zero eigenvalue and

the zeros µj of the polynomial P are all eigenvalues of ΠkA that have geometric multiplicity at
least s.

Before we give the proof of the IDR projection theorem, we will give some preliminary results.
Let V be an n× s matrix such that R̃∗V is non-singular. Define (cf. Definition 5.5)

Πk ≡ I−VE−1R̃∗ where E ≡ R̃∗V. (5.30)

Note that
R̃∗Πk = 0. (5.31)

In particular, we have V ≡ AUk in IDR (cf. Algorithm 5.1 and Prop 5.13).

Proposition 5.18. Assume span(V) ⊂ Gk. Then each ν ∈ {µ1, . . . , µk} is an eigenvalue of
ΠkA with geometric multiplicity at least s.

Proof. The equality in (5.6) tells us that V = (A − νI)W for some n × s matrix W ⊥ R̃.
Hence

(ΠkA− νI)W = (A− νI)W(I−E−1R̃∗AW).

Since E = R̃∗V = R̃∗(A− νI)W = R̃∗AW, we see that W is in the kernel of ΠkA− νI, that
is, span(W) consists of eigenvectors of ΠkA with eigenvalue ν.

Again using the equality in (5.6), we know that there exists a W ⊥ Kk(A
∗, R̃) such that

V = P (A)W for some polynomial P of exact degree k. In the following, let W be such a matrix

and assume E ≡ R̃∗V is non–singular.

Proposition 5.19. Assume λ ∈ C is not an eigenvalue of A and λP (λ) 6= 0. Then, a non-
trivial vector x is an eigenvector of ΠkA with eigenvalue λ if and only if x = (A−λI)−1Vα for

some α ∈ C
s, α 6= 0 such that R̃∗(A− λI)−1Wα = 0.

Proof. Assume ΠkAx = λx. Since ΠkAx = Ax−VE−1R̃∗Ax, we see that Ax− λx = Vα
for some α ∈ C

s (actually, α = E−1R̃∗Ax). The scalar λ is not an eigenvalue of A. Therefore,
x = (A− λI)−1Vα. Hence,

α = E−1R̃∗A(A− λI)−1Vα = E−1R̃∗Vα+E−1R̃∗λ(A− λI)−1Vα.

Since E = R̃∗V, this is equivalent to 0 = λE−1R̃∗(A− λI)−1Vα. Therefore,

0 = R̃∗(A− λI)−1Vα. (5.32)

112 IDR(s) as a Deflation Method

Here, we used that, by assumption λ 6= 0. Conversely, if (5.32) holds, then it is easy to check
that x = (A− λI)−1Vα defines an eigenvector of ΠkA.

Note that (A − λI)−1(A − µI) = I + (λ − µ)(A − λI)−1. Since, P (ζ) = γΠk
j=1(ζ − µj)

(ζ ∈ C) for certain scalars µj ∈ C (the zeros of P) and a scalar γ ∈ C (a scaling factor), and

W ⊥ Kk(A
∗, R̃), we see that R̃∗(A − λI)−1P (A)W = P (λ)R̃∗(A − λI)−1W. Hence, (5.32)

holds if and only if P (λ) = 0 or R̃∗(A− λI)−1Wα = 0.

Note 5.20. Note that the above proof relies on the fact that W ⊥ Kk(A
∗, R̃).

Note 5.21. Note that the above arguments also prove Proposition 5.18: Because, if λ = µi for
some zero µi of P , then, for any α ∈ C

s, we have that P (λ)R̃∗(A − λI)−1Wα = 0 and any
x ≡ (A− λI)−1Vα is an eigenvector of ΠkA.

We can now give a proof of Theorem 5.17:
Proof. [Proof of IDR Projection Theorem] Use (iii) of Lemma 5.6 and use Proposition 5.19.

The proposition belows shows that in IDR the latter set of (5.29) is independent of P :

Proposition 5.22. In IDR, W depends on k but is independent of P , that is, independent of
µ1, . . . , µk.

Proof. The projection Πk applied to some vector forms vectors of the form Pk(A)s −
Pk(A)Wα = Pk(A)(s − Wα) ⊥ R̃. If s,W ⊥ Kk−1(A

∗, R̃), then the orthogonality condi-

tion from Πk is equivalent to requiring s−Wα ⊥ Kk(A
∗, R̃). In particular, the vector s−Wα

is independent of P if s and W are independent of P .
Following the inductive construction of the V matrices in IDR (as we saw in Theorem 5.2),

the above argument proves the proposition.

5.3.3 Numerical examples

To illustrate the clustering effect of IDR(s) algorithms, we will inspect the spectra of A and ΠkA
of each cycle k while solving a small test problem using the IDR algorithm from Algorithm 5.1.
In other words, we take V = AUk in the projection Π from (5.30). We will use either a minimum
residual strategy for computing ωk or set ωk = 1 in each cycle k > 0.

The test problem is a finite difference discretisation of 1D convection–diffusion problem using
central differences for the first derivative. The system has size n = 20 and the mesh Péclet
number ph is equal to 1/2. To more precise, the diagonal elements of the coefficient matrix A
are equal to 2, while on the subdiagonal and superdiagonal the values are equal to −1− ph and
−1+ph, respectively. The right–hand side vector is equal to b = [1+ph, 0, . . . , 0, 1−ph]⊤. Also,
we put s = 5, so the iteration converges in n/s = 20/5 = 4 cycles in exact arithmetic and we set
x0 = 0.

Figure 5.2 shows the spectra of the active systems if a minimum residual strategy for com-
puting ωk for k > 0 is used. Put µ0 = 0. This gives µk ∈ {0} ∪ {2.9, 2.5, 2.2} for k = 0, 1, 2, 3,
resulting in the final clustered spectrum shown in Figure 5.2(d), which solely consists of four
eigenvalues each with multiplicity s = 5.

Shown in Figure 5.3 are the spectra of the active systems for all four cycles if µk = 1 for
k = 1, 2, 3. As a result, the active system has 10, 15, and 20 unit eigenvalues in cycle 1, 2, and 3,
respectively.

These results also indicate that the (total) spectrum seems to increasingly converge towards
the values of µk with each cycle.

Also, it can be observed from these experiments that the “non–clustered” part of the spectrum
is independent of the choices for µ1, . . . , µk, as indicated by Proposition 5.22.

5.3. The IDR projection theorem 113

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π0A)

(a) Cycle 0, µk ∈ {0}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π1A)

(b) Cycle 1, µk ∈ {0} ∪ {2.9}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π2A)

(c) Cycle 2, µk ∈ {0} ∪ {2.9, 2.5}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π3A)

(d) Cycle 3 (converged), µk ∈ {0} ∪ {2.9, 2.5, 2.2}.

Figure 5.2: B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {2.9, 2.5, 2.2} for k = 0, 1, 2, 3.

5.3.4 Discussion

In each IDR(s) cycle k, s additional eigenvalues of PkA are shifted to µk and the matrix PkA
(and therefore ΠkA) has k+ 1 eigenvalues of geometric multiplicity s. The IDR projection the-
orem holds independently of the way a basis for Ks(Πk−1AB−1,Πk−1AB−1r′k−1) is computed.

In standard deflation methods, the deflation subspace matrices U and R̃ are often equal to
each other and consists of (approximate) eigenvectors belonging to eigenvalues of A that are
small in norm. Also, the matrix B is a traditional preconditioner that deals with the extremes
of the spectrum. In IDR(s), the space span(Uk) is not related to any specific components of the
spectrum of A. What is important is that s new eigenvalues of PkA are deflated in each cycle.
In this context, the ideal role of the preconditioner B is less clear.

In the multigrid context (for elliptic problems), the matrix B−1 should act as a smoothing (or
relaxation) step that eliminates the high–frequency errors. Interestingly, in IDR(s) the operator
C2 = ωk+1B

−1 acts similarly, “smoothing” the new primary residual rk+1 in norm.

During the IDR(s) iteration process, new spectral components of PkA are continuously

114 IDR(s) as a Deflation Method

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π0A)

(a) Cycle 0.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π1A)

(b) Cycle 1.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π2A)

(c) Cycle 2.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
a

g
in

a
ry

 p
a

rt

σ(A)
σ(Π3A)

(d) Cycle 3 (converged).

Figure 5.3: B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {1} for all k.

projected out of the residual, while retaining spectral information from all previous cycles.

Note that if we take s = n, then σ(Π0) = σ(Π0A) = {0} and σ(P0A) = {1}, which means
that the iteration terminates within a single cycle.

5.4 Explicitly deflated IDR(s)

Similar to other Krylov subspace methods, IDR(s) methods can be explicitly preconditioned
with deflation methods. In Section 5.4.1 a comparison is made between two variants of explicitly
deflated IDR(s) and IDR(s) where the IDR deflation matrics are augmented with traditional

deflation vectors. These results suggest possible “good” choices of R̃ and ωk, which are dis-
cussed in Section 5.4.2. Numerical experiments that illustrate the theoretical results are given
in Section 5.4.3.

5.4. Explicitly deflated IDR(s) 115

5.4.1 Deflation vs. augmentation

Deflation

In standard deflation methods, the deflation matrices are defined as follows (cf. Definition 5.5
and Section 3.8 on page 62)

Πdef ≡ I−AQdef and Π̂def ≡ I−QdefA where Qdef ≡ Z(Z∗AZ)−1Z∗ (5.33)

where Z ∈ C
n×t is a deflation–subspace matrix of full rank and Edef ≡ Z∗AZ is assumed to be

invertible. Note that we have (cf. Lemma 5.6)

ΠdefAZ = 0n,t and QdefAZ = Z. (5.34)

To distinguish the standard deflation projection from the IDR projection, a superscript is added.
Using this notation, the IDR(s) operator is written as (cf. (5.16))

Pidr
k = ωk+1Π

idr
k +Qidr

k , (5.35)

where Πidr
k and Qidr

k are the same as Πk and Qk in Prop 5.8.
Two variants of so–called “explicitly deflated” IDR(s) will be considered. The first one is

based on the DEF1 variant [127, Section 2.3.2] where IDR(s) is used to solve the deflated system

ΠdefAx′ = Πdefb. (5.36)

The solution x′ to the system (5.36) is related to the solution x of the original system Ax = b
as follows:

x = Qdefr0 + Π̂defx′, (5.37)

where r0 = b − Ax0. Also, note that the system (5.36) is singular, since ΠdefAZ = 0n,t. A
singular system can still be solved as long as it is consistent, i.e., b ∈ span(A), see [82]. This is
true for our case, since the same projection is applied to both sides of (5.36).

The second deflation method is based on the A–DEF1 variant [127, Section 2.3.3], where
IDR(s) is applied to the deflated system

Padef1Ax = Padef1b, (5.38)

where Padef1 = Πdef + Qdef (cf. Section 5.2.2 and also Section 3.8 on page 62). The only
difference between A–DEF1 and DEF1 is that the zero eigenvalues of ΠdefA are shifted to one
in Padef1A.

The main motivation behind using an adapted deflation method such as A–DEF1 instead of
DEF1 is as follows. It is known that perturbations (roundoff errors, perturbed starting vectors,
inaccurate preconditioning solves, inaccurate Galerkin solves) can transform the zero eigenval-
ues of ΠdefA into near–zero eigenvalues, making them potentially harmful to the convergence
process. In an adapted deflation method, the corresponding near–unit eigenvalues are harmless.

Augmentation

We have shown that IDR(s) itself can be seen as an adapted deflation method. Therefore, a
natural way to combine deflation–type preconditioners with IDR(s) is to augment the deflation

subspace matrices U and R̃ with the deflation subspace matrix Z as follows:

U
k
≡ [Uk Z] and R̃ ≡ [R̃ Z]. (5.39)

116 IDR(s) as a Deflation Method

The IDR(s) deflation matrices are then

Πidr′

k ≡ I−AQidr′

k , where Qidr′

k ≡ U
k
E−1

k
R̃

∗
and E

k
≡ R̃

∗
AU

k
, (5.40)

with dimensions

|U
k
| = |R̃| = n× (s+ t) and |E

k
| = (s+ t)× (s+ t). (5.41)

The corresponding augmented IDR(s) operator is

Pidr′

k = ωk+1Π
idr′

k +Qidr′

k . (5.42)

We call this approach “augmented IDR(s)”.

Comparisons

Since IDR(s) is analogous to the A–DEF1 method, we will compare augmented IDR(s) to IDR(s)
explicitly deflated with A–DEF1. For completeness, comparisons are also made with the DEF1
method.

Unless stated otherwise, no assumptions are made on the columns of Z or R̃. However, in
some cases we make one of the following assumptions:

Assumption 5.23. The matrix R̃ is orthogonal to the matrix Z.

Assumption 5.24. The matrix R̃ is orthogonal to the matrix AZ.

In the following, let (cf. Theorem 5.17)

Λk ≡ {λ | Pk(λ) = 0} ∪ {λ | det(R̃∗(A− λI)−1W) = 0} (5.43)

Proposition 5.25. We distinguish between three deflation–type iterative processes of IDR(s):

(i) Augmented IDR(s): We have for arbitrary Z

σ
(
Πidr′A

)
= {0} ∪ Λk (5.44)

where the zero eigenvalue has geometric multiplicity s+ t and

σ
([

Πidr′ +Qidr′
]
A
)
= {1} ∪ Λk (5.45)

where the unit eigenvalue also has geometric multiplicity s+ t

(ii) IDR(s)-DEF1: Let A1 = ΠdefA. We have for arbitrary Z

σ
(
Π

idr
A1

)
≡ σ

(
(I−A1U(R̃∗A1U)−1R̃∗)A1

)
= {0} ∪ Λk (5.46)

where the zero eigenvalue has geometric multiplicity s+ t and

σ
([

Π
idr

+Q
idr

]
A1

)
= {0} ∪ {1} ∪ Λk (5.47)

where the zero eigenvalue has geometric multiplicity t and the unit eigenvalue has geometric
multiplicity s. The overlines of the operators signify the fact that they employ vectors based
on the projected system.

5.4. Explicitly deflated IDR(s) 117

(iii) IDR(s)-ADEF1: Let A2 = (Πdef +Qdef)A. Given Assumption 5.23, we have

σ
(
Π

idr
A2

)
= {0} ∪ {1} ∪ Λk (5.48)

where the zero eigenvalue has geometric multiplicity s and the unit eigenvalue has geometric
multiplicity t. Also, we have

σ
([

Π
idr

+Q
idr

]
A2

)
= {1} ∪ Λk (5.49)

where the unit eigenvalue has geometric multiplicity s+ t.

Proof. We have using Theorem 5.16:

(i) Augmented IDR(s): For (5.44) we have

Πidr′AU = 0n,s+t (5.50)

and for (5.45) we have

Qidr′AU = U
n,s+t

(5.51)

(ii) IDR(s)-DEF1: For (5.46), we have

A1Z = 0n,t (5.52)

Π
idr

A1U = 0n,s (5.53)

and for (5.47) we have

Q
idr

A1U = U(R̃∗ΠdefAU)−1R̃∗)ΠdefAU (5.54)

= Un,s (5.55)

(iii) IDR(s)-ADEF1: Assumption 5.23 implies that R̃∗Z = 0s,t, so for (5.48) we have

Π
idr

A2U = 0n,s (5.56)

Π
idr

A2Z = Π
idr

(Πdef +Qdef)AZ (5.57)

= (I−A2U(R̃∗A2U)−1R̃∗)Z (5.58)

= Zn,t (5.59)

For (5.49) we have

Q
idr

A2U = U(R̃∗(Πdef +Qdef)AU)−1R̃∗)(Πdef +Qdef)AU (5.60)

= Un,s (5.61)

This concludes the proof.

Proposition 5.25 implies that in the generic case and in exact arithmetic all three variants
compute the exact solution in at most n−t

s
IDR cycles.

In iterative process (iii), IDR(s) is applied to a system with n − t + 1 distinct eigenvalues.
If we do not make Assumption 5.23, the exact solution for this case is computed in at most
⌈n−t+1

s
⌉ cycles. Another possibility is to use t+ 1 deflation vectors for Z.

118 IDR(s) as a Deflation Method

Ideally, the deflation vectors in Z approximate the eigenspace corresponding to the un-
favourable eigenvalues of A, e.g., eigenvalues small in magnitude. Depending on the deflation
technique, these eigenvalues will be shifted to zero or one, removing them from the IDR(s) it-
eration process. In this way, techniques from domain decomposition and deflation can be easily
used in IDR.

Note that augmenting the matricesU and R̃ with deflation vectors is different from increasing
s in “standard” IDR(s). Also, if in IDR(s) we would set U = R̃ = Z, we obtain a standard
Richardson iteration deflated with A–DEF1.

For most applications we have t ≫ s, which would make the augmented Galerkin matrix
too big to solve directly. To avoid this problem, note that in augmented IDR(s) the augmented
Galerkin matrix E

k
has the following form:

E
k
=

[
R̃∗

Z∗

]
A

[
Uk Z

]
=

[
R̃∗AUk R̃∗AZ
Z∗AUk Z∗AZ

]
=

[
E11 E12

E21 E22

]
=

{
|s× s| |s× t|
|t× s| |t× t|

}
. (5.62)

If Z consists of subdomain deflation vectors, then Z∗AZ is a diagonal band matrix. To
compute x = E−1

k
b for some b, one can make use of the Schur complement as follows

(E11 −E12E
−1
22 E21)x1 = b1 −E12E

−1
22 b2 |x1| = |b1| = s (5.63)

E22x2 = b2 −E21x1 |x2| = |b2| = t (5.64)

Note that there are three instances where we have to solve systems involving E22. Also, we have

E11 −E12E
−1
22 E21 = R̃∗A(I− Z(Z∗AZ)−1Z∗A)Uk (5.65)

= R̃∗AΠ̂defUk (5.66)

= R̃∗ΠdefAUk (5.67)

which is exactly the (deflated) Galerkin system of IDR(s)-DEF1.

Let b1 = R̃∗A and b2 = Z∗A. Then we have (omitting the subscript k)

Πidr′A = (I−AUE−1R̃
∗
)A (5.68)

= A−A(Ux1 + Zx2) (5.69)

= (I−ΠdefAU(R̃∗ΠdefAU)−1R̃∗)(I−AZ(Z∗AZ)−1Z∗)A (5.70)

= Π
idr

A1 (5.71)

This implies that the spectrum of Πidr′A is the same as the spectrum of Π
idr

A1, which is in
accordance with Proposition 5.25, i.e., properties (5.44) and (5.46). However, it is expected that
in practical applications the IDR(s) processes will behave differently, since in augmented IDR(s)
s + t eigenvalues of the active systems are shifted to one, while in IDR(s)-DEF1 t eigenvalues
remain zero.

That is, perturbations (roundoff errors, perturbed starting vectors, inaccurate precondition-
ing solves, inaccurate Galerkin solves) can transform the zero eigenvalues of the active systems
in IDR(s)-DEF1 into near–zero eigenvalues, which may result in numerical instabilities. This
suggests that augmented IDR(s) will be numerically more stable than IDR(s)-DEF1. A similar
argument can be used to show that IDR(s)-ADEF1 is numerically more stable than IDR(s)-
DEF1.

Some of the advantages of using augmented IDR(s) as opposed to IDR(s)-DEF1 or IDR(s)-
ADEF1 are:

5.4. Explicitly deflated IDR(s) 119

Algorithm 5.4 Computation of Πidr′y

1: b1 = R̃∗y
2: b2 = Z∗y
3: Solve (Z∗AZ)b3 = b2

4: b4 = R̃∗(AZ)b3

5: b5 = b1 − b4

6: Solve (R̃∗AUk − R̃∗AZ(Z∗AZ)−1Z∗AUk)x1 = b5

7: b6 = Z∗(AUk)x1

8: b7 = b2 − b6

9: Solve (Z∗AZ)x2 = b7

10: y1 = AUkx1

11: y2 = AZx2

12: Πidr′y = y− y1 − y2

theory implementation

method Πdefy Qdefy IP/MV AXPY GSS
IDR(s)-DEF1 1 0 2 1 1
IDR(s)-ADEF1 1 1 3 1 1
augmented IDR(s) n/a n/a 3 1 1

Table 5.1: Extra computational cost per MV compared to “standard” IDR(s).

• Possible increased numerical stability, since unfavourable eigenvalues are shifted to one
instead of zero.

• It is a natural way of introducing deflation–type preconditioner into IDR(s) algorithms.

• Given a specific choice of R̃ (see Section 5.4.2), the two by two block augmented Galerkin
system (5.62) can be inverted efficiently.

• Because IDR(s)-ADEF1 is applied to a system with n − t + 1 distinct eigenvalues, it
converges in more cycles than augmented IDR(s) in exact arithmetic (i.e., (n − t + 1)/s
cycles instead of (n− t)/s) if no special assumptions are made.

To apply the operator Πidr′y to some vector y, we need to perform the steps shown in
Algorithm 5.4. For efficiency, the following (small) matrices can be computed/factored and
stored beforehand:

(Z∗AZ)−1, AZ, and R̃∗AZ(Z∗AZ)−1. (5.72)

Note that the matrices Z∗AUk and R̃∗AUk have to be recomputed in each cycle k, but they can
be reused within a cycle. The matrix AUk is readily available and does not require additional
MVs.

In practical algorithms, the operation Qidr′y also has to be computed. This can be done
efficiently by reusing quantities from Πidr′y, similar to the A-DEF1 method.

120 IDR(s) as a Deflation Method

Algorithm 5.5 Computation of Πidr′y with special choice for R̃.

1: b1 = R̃∗y
2: b2 = Z∗y // IP/MV #1

3: Solve (R̃∗AUk)x1 = b1

4: b3 = (Z∗AUk)x1

5: b4 = b2 − b3

6: Solve (Z∗AZ)x2 = b4 // GSS #1
7: y1 = (AUk)x1

8: y2 = (AZ)x2 // IP/MV #2
9: Πidr′y = y− y1 − y2 // AXPY #1

5.4.2 Choosing R̃ and ωk

Choice of R̃

Inspection of the Galerkin matrix E
k
from (5.62) belonging to augmented IDR(s) shows that

the submatrices R̃∗AUk and Z∗AUk have to be recomputed each cycle. The non–zero matrix
Z∗AZ is fixed. However, the matrix R̃ can be chosen such that R̃∗AZ = 0 using an orthogonal
projection such as (cf. Assumption 5.24):

R̃′ = (I−AZ((AZ)∗AZ)−1(AZ)∗)R̃ ⇔ R̃′ ⊥ AZ. (5.73)

The resulting Galerkin matrix is then lower block diagonal:

E
k
=

[
E11 ∅

E21 E22

]
, (5.74)

which simplifies the computation of x = E−1
k

b. Using forward substition, we can compute

E11x1 = b1 (5.75)

E22x2 = b2 −E21x1. (5.76)

Note that |x1| = s and that |x2| = t. The corresponding computation of Πidr′y using this choice

of R̃ is given in Algorithm 5.5.

As before, for the computation of Qidr′y quantities from Πidr′y can be reused. Also, the
matrices (Z∗AZ)−1 and AZ can be computed and stored beforehand. The matrices Z∗AUk

and (R̃∗AUk)
−1 can be computed at the start of cycle k and reused during a cycle. Also, the

matrix AUk is readily available and does not require additional MVs.
Table 5.1 lists the additional computational cost of the three deflation approaches compared

to a non–deflated IDR(s) method. The term GSS denotes a “Galerkin System Solve” such as
computing the solution to (Z∗AZ)x = y for some y. Also, depending on the type of deflation
vectors, an operation involving Z either counts as a MV or as an inner product (IP). Note that

the third IP/MV for augmented IDR(s) is included in the application of Qidr′ .

Choice of µk

Generally speaking, the goal of a preconditioner is to cluster the spectrum of the preconditioned
system around one (after an appropriate scaling). Choosing µk = 1 for all k would be the

5.4. Explicitly deflated IDR(s) 121

0 1 2 3 4 5 6
10

−15

10
−10

10
−5

10
0

10
5

IDR cycle

n
o
rm

 o
f
re

s
id

u
a
l

(1) no deflation

(2) augmented

(3) DEF1

(4) A−DEF1

(5) A−DEF1

(a) Let ωk = 1 for all k and t = s.

0 1 2 3 4 5 6
10

−15

10
−10

10
−5

10
0

10
5

IDR cycle

n
o
rm

 o
f
re

s
id

u
a
l

(1) no deflation

(2) augmented

(3) DEF1

(4) A−DEF1

(5) A−DEF1

(b) Let ωk = 1 for all k and t = 2s.

Figure 5.4: Residual norms for IDR(s), n = 25, s = 5,B = I, showing primary “∗” and secondary
“◦” residuals.

most effective spectral choice, since in this case the spectrum of the active system will become
increasingly more clustered around one. That is, we have (in exact arithmetic) for k ∈ N0:

σ(PkA) = {1} ∪ {λ | det(R̃∗(A− λI)−1W) = 0} (5.77)

where the eigenvalue 1 has geometric multiplicity (k + 1)s and

σ(PmA) = {1} (5.78)

where m = n/s− 1 and where the eigenvalue 1 has geometric multiplicity n. However, if at the
same time the remaining eigenvalues of an active system are located close to zero, convergence
of the iteration process within that cycle may be hampered. Numerical experiments seem to
indicate that even though this can happen in some particular cycle, this will generally not be
the case in the next cycle.

Continuing this line of reasoning, it can be argued that the value of µk does not significantly
affect the convergence process, in particular for large s. The key property of IDR(s) methods is
that the spectrum of the active system becomes increasingly more clustered. The location of the
clustered spectrum (i.e., the values of µk) is less important. Nevertheless, using a near–zero µk

should be avoided, since it could result in a badly conditioned active system.
For smaller s, the clustering property is much less pronounced and choosing an appropriate

value of µk will be more important. This effect is observed in many experiments, see for ex-
ample [120, Section 6.4] and [119]. For a detailed mathematical analysis of the influence of the
factors µk on the IDR iteration process, see [119].

5.4.3 Numerical examples

In the following experiments, the matrix Z consists of random and orthogonalised vectors. These
experiments are for illustrative purposes only and the test problem is the 1D convection–diffusion
problem from Section 5.3.3 with n = 25 and s = 5. We use the IDR method from Algorithm 5.1
and set ωk = 1 for all k. The finite convergence behaviour of the following five iteration processes
will be compared:

122 IDR(s) as a Deflation Method

(1) Non–deflated IDR(s) (i.e., t = 0).

(2) Augmented IDR(s) with Assumption 5.24 in order to efficiently invert the two by two block
system (5.74), see Section 5.4.2.

(3) IDR(s)-DEF1.

(4) IDR(s)-ADEF1 with an additional deflation vector for Z.

(5) IDR(s)-ADEF1 with Assumption 5.23.

Shown in Figure 5.4(a) and Figure 5.4(b) are the logarithms of the norms of the primary and
secondary residuals using t = s and t = 2s deflation vectors for Z, respectively. The ticks on
the horizontal axis represent the number of MVs. Note that one IDR cycle consists of s + 1
MVs: computing a secondary residual r′k−1 (“◦”) involves s MVs, while the computing the next
primary residual rk (“∗”) uses one MV (see also Section 5.2.1). For iteration process (4), an
additional deflation vector is used and the following observations can be made:

• Since the iteration matrices of the four iterative processes are different (and hence the
“initiation” matrix V0), the residual norms are different.

• According to the theory, the four iteration processes (2)–(5) should converge within (n −
t)/s = (25− t)/5 cycles, i.e., within four and three cycles for t = s and t = 2s, respectively.
The non–deflated process converges within five cycles. This is in accordance with the
numerical results.

• If we do not make Assumption 5.23, then iteration process (5) converges in at most (n −
t+ 1)/s IDR cycles.

5.5 Conclusions

By interpreting IDR(s) as a deflation method, interesting properties of the IDR(s) method have
been revealed. Firstly, this has lead to the IDR projection theorem, which shows that the
spectrum of the deflated systems in IDR(s) become increasingly more clustered. This can be
seen as an intuitive explanation for the excellent convergence properties of IDR(s).

Based on this interpretation, one cycle of IDR(s) can be seen as consisting of three key
steps: constructing a unique primary residual, constructing the unique secondary residual, and
constructing vectors for a basis of a very specific Krylov subspace.

It also shows that the IDR(s) method is an instantiation of a specific deflation method: a
so–called adapted deflation method. The deflation subspace matrix in IDR(s) is updated in each
cycle with new information while retaining information from all previous IDR(s) cycles.

Although this interpretation did not yet lead to insights into the effect of a varying precon-
ditioner on the convergence of IDR(s), interesting properties on the structure of IDR(s) have
been revealed.

Lastly, this interpretation allows for the efficient inclusion of standard deflation–type precon-
ditioners into IDR(s) methods.

Chapter 6

General Conclusions and Outlook

Overview

In this chapter the main results presented in this thesis are summarised and related to the
general field of heterogeneous parallel computing. In addition, the issues that were raised but
not addressed in this thesis are listed and suggestions for further research are given.

6.1 Aim of research

In order to solve big “Grand Challenge”–type problems [77], it is absolutely necessary that
computational resources from many different sources are combined, resulting in highly heteroge-
neous computing systems as found in Grid computing. The main objective of this research was
to design efficient iterative methods for solving large sparse linear systems on such computing
platforms. This difficult but important problem was attacked by first identifying the key theo-
retical properties of an ideal and iterative (possibly wide–area) algorithm for Grid computing,
which are: robust, efficient, coarse–grained, asynchronous, minimal synchronisation, resource–
aware, adaptive, and fault–tolerant. All of the algorithms presented in this thesis exhibit these
features in one way or another.

To gain practical experience with solving this problem, a real–world case study was per-
formed where we tried to solve sparse linear systems on heterogeneous computing systems using
“conventional” techniques. Among other things, this lead to the conclusion that the key ob-
stacle in designing efficient algorithms for heterogeneous computing systems is the high cost of
global synchronisation. In order to alleviate this bottleneck, three main techniques were then
considered:

• Exploiting the hierarchical structure of multi–clusters. Computational grids usually consist
of several different clusters with fast intracluster communication and relatively slow inter-
cluster wide-area communication. As an example, the freedom in choosing the IDR test
matrix in IDR(s) was exploited in order to efficiently perform operations with this matrix
on multi–clusters. In addition, the parallel performance model for computing an optimal
s in IDR(s) also exploits the hierarchy in multi–clusters.

• Using asynchronous communication to make the algorithm latency-tolerant. With such
techniques, computations can be overlapped with wide-area communication. This was
achieved by using an asynchronous inner iterative method as a preconditioner in a flexible

123

124 General Conclusions and Outlook

outer iterative method, where the preconditioner is allowed to change in each outer iteration
step.

• Minimising the inner products that induce global synchronisation points as much as possi-
ble. This was done by reformulating existing iterative methods and by spending most of
the computational effort on the preconditioning iteration.

Although these optimisations are well–known in the literature, they had not been applied and
combined in the manner as done in this thesis. By using these three techniques it is shown
in this thesis that it is possible to iteratively and efficiently solve large sparse linear systems
on heterogeneous computing systems. It can therefore be concluded that the main goal of the
research has been achieved.

6.2 Research challenges and principal findings

The fact that an asynchronous iterative method was used for the preconditioning operation on
heterogeneous computing hardware means that it is an unpredictable and random operation.
As a result, variable preconditioning in flexible iterative methods became an important research
issue. For symmetric systems, variable preconditioning had been investigated extensively for the
flexible CG method by many other people so these issues were not too difficult to overcome. For
nonsymmetric systems the flexible GCR/GMRES–type methods were used, which had also been
investigated in the past.

Since IDR(s) was a relatively new method for solving nonsymmetric systems, it made sense to
investigate IDR(s) in the broad context of heterogeneous computing. This turned the direction
of the research process to IDR(s) methods and we found that the freedom one has in deriving
algorithmic variants of IDR(s) made it extremely suitable for constructing efficient IDR(s) algo-
rithms for parallel and Grid computers. Combining asynchronous preconditioning with IDR(s)
was the next logical step, which introduced the problem of using IDR(s) as a flexible method.

The main motivation behind interpreting IDR(s) as a deflation method was as follows. IDR(s)
was a new method and its convergence behaviour was not yet completely understood. In par-
ticular, it was hoped that this interpretation would result in true flexible variants of IDR(s).
Although this interpretation led to key insights into the structure of IDR(s) algorithms, it is not
yet clear how these insights can be used to analyse the effect of a varying preconditioner on the
convergence behaviour of IDR(s).

Improving the effectiveness of the asynchronous preconditioner was another big challenge.
Complementing the asynchronous iterative method with a coarse–grid correction had been less
successful than we initially hoped. It is interesting to further investigate the exact causes and
to look also at other solutions, such as using overlap in the asynchronous iteration.

Efficient resource–aware partitioning was also a difficult issue and this was briefly touched
on at the beginning of the research. In theory, the flexibility of the GridSolve middleware makes
dynamic resource–aware repartitioning of the work in each outer iteration step possible. However,
the relatively large communication overhead in GridSolve hindered the practical applicability of
such an approach. Future versions of GridSolve or other middleware that are similar may have
less overhead, which could make dynamic repartitioning more effective.

The original motivation for this research was to solve moving boundary problems using the
Immersed Boundary Method, in which structured meshes are employed. That is why the main
focus in this thesis is on solving problems on Cartesian meshes, which results in coefficient
matrices that are sparse and regular. Using the techniques and experience presented in this
thesis as building blocks, problems on unstructured meshes can also be solved.

6.3. Broader implications 125

Generally speaking, the research presented in each chapter of this thesis exhibits a fairly even
balance between theory and practice. Towards the end of the research, the focus shifted to being
primarily theoretical due to the interpretation of IDR(s) as a deflation method.

This thesis shows that using the partially asynchronous algorithm is more efficient than using
either a fully synchronous method or a fully asynchronous method. Considering the less than
successful past attempts in using asynchronous iterative method to iterative solve sparse linear
system on heterogeneous computing systems, it was somewhat surprising that they could be
used in the way as done in this thesis. Also rather surprisingly, we found that the asynchronous
preconditioner remains highly effective in a computational environment where network load
varies heavily. This once again proves that finding an efficient parallel preconditioner is crucial
for solving large computational problems. This thesis shows that asynchronous methods —
whose study dates back as far as 1969 — can be used in new and different ways. Also, of all the
three techniques mentioned in the beginning for alleviating the synchronisation bottleneck, we
found that using an asynchronous iterative method as a preconditioner bore the most fruit.

The experiences obtained in this research re-enforces the general opinion that the future
of parallel scientific computing truly lies in hybrid algorithmic approaches. That is, the most
effective approach for our case was not purely asynchronous or purely synchronous: it was semi–
asynchronous. In other words, hybrid/heterogeneous computing requires hybrid/heterogeneous
algorithms. Such heterogeneous computing systems are becoming more and more common,
whether it is a local cluster of different machines, a multi–cluster, a cluster of GPUs, a multi–
core system, a traditional supercomputer, or some combination of all of the above.

Although the algorithms presented in this thesis exhibit the properties of the ideal algorithm
for Grid computing listed in the beginning in some way or another, the main goal now is to
design algorithms that exhibit all of these features. The results presented in this thesis provide
a strong foundation to build on in order to achieve that goal.

6.3 Broader implications

The short–term implications of this research are that by using existing computational resources
more effectively, larger, more accurate, and more efficient numerical simulations can be per-
formed. In the long–term, the techniques in this thesis can be used to construct efficient al-
gorithms for GPU–based computing platforms, resulting in both environmentally friendly and
cheaper simulations. As a concrete example of such a platform, the Little GREEN Machine [148]
is a Beowulf cluster with a GPU in each node and will be part of the DAS–4 project, the next gen-
eration of the DAS–3 multi–cluster. The experiences with designing and implementing iterative
algorithms on the DAS–3 can be used with the DAS–4.

According to the TOP500 list [91], the fastest known supercomputer as of October 2010 is the
Tianhe–1A machine located at the National Supercomputing Center in Tianjin, China, which
combines general purpose GPUs and multi–core CPUs in order to obtain a peak computing rate
of 2.5 petaFLOPS. Even with the high–speed interconnect used by such machines, synchronisa-
tion cost will always be a bottleneck. In order to reach the claimed peak computing rates for
practical applications, techniques such as presented in this thesis can help.

Another issue that is becoming more and more critical in high performance computing is en-
ergy consumption. In addition to the “traditional” TOP500 list that measures supercomputers’
performance in terms of floating-point operations per second (FLOPS), the Green500 list [63]
aims to raise awareness to other equally important performance metrics, such as performance
per watt. To quote the description of the Green500 list: “to ensure that supercomputers are only
simulating climate change and not creating climate change.” From the beginning, GPU com-
puting has been advertised as being eco–friendly and with the top eight places of the Green500

126 General Conclusions and Outlook

list all being GPU accelerated supercomputers as of June 2010, this claim seems to be valid.
The point is that heterogeneous computing platforms are widespread in high performance

computing and occur at many different scales. For example, the presented techniques can be
used for wide–area systems and local nondedicated systems as done in this thesis, for smaller
architectures such as single node GPU computing and multi–core computing, and for dedicated
accelerator–based supercomputers such as the Tianhe–1A.

Curriculum Vitæ

• March 2011: Metrology Software Design Engineer at ASML in Veldhoven

• November 2006 – November 2010: PhD researcher in Numerical Analysis, Department
of Applied Mathematical Analysis, Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, The Netherlands. Financially supported
by the Delft Centre for Computational Science and Engineering. Title of dissertation:
Efficient Iterative Solution of Large Linear Systems on Heterogeneous Computing Systems.
Advisers: Prof.dr.ir. C. Vuik and dr.ir. M. B. van Gijzen

• May 2010: Visiting researcher, department of Mathematical Information Science, Tokyo
University of Science, Tokyo, Japan, host: prof. Emiko Ishiwata

• April 2010: Visiting researcher, faculty of Economics and Information, Gifu Shotoku Uni-
versity, Gifu, Japan, host: prof. Kuniyoshi Abe

• September 2006: M.Sc. in Scientific Computing, Utrecht University

• September 2005: B.Sc. in Mathematics, Utrecht University

• September 1991 – September 1997: Stedelijk Gymnasium, Haarlem

• Born on April 1, 1979 in Haarlem, the Netherlands

127

Scientific Résumé

Publications

Refereed journal papers

• T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen. Interpreting IDR(s) as a de-
flation method. Journal of Computational and Applied Mathematics, 2011. Special Issue:
Proceedings ICCAM–2010 (submitted).

• T. P. Collignon and M. B. van Gijzen. Minimizing synchronization in IDR(s). Numerical
Linear Algebra with Applications, 2011. (published online: 14 january 2011).

• T. P. Collignon and M. B. van Gijzen. Fast iterative solution of large sparse linear sys-
tems on geographically separated clusters. International Journal of High Performance
Computing Applications, 2011. (to appear).

• T. P. Collignon and M. B. van Gijzen. Two implementations of the preconditioned Conju-
gate Gradient method on heterogeneous computing grids. International Journal of Applied
Mathematics and Computer Science, 20(1):109–121, 2010.

Book chapter

• T. P. Collignon and M. B. van Gijzen. Parallel scientific computing on loosely coupled
networks of computers. In B. Koren and C. Vuik, editors, Advanced Computational Methods
in Science and Engineering. Springer Series Lecture Notes in Computational Science and
Engineering, volume 71, pages 79–106. Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

Conference proceedings

• T. P. Collignon and M. B. van Gijzen. Solving large sparse linear systems efficiently on
Grid computers using an asynchronous iterative method as a preconditioner. In G. Kreiss,
P. Lötstedt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathematics and Ad-
vanced Applications 2009: Proceedings of ENUMATH 2009, the 8th European Conference
on Numerical Mathematics and Advanced Applications, Uppsala, July 2009, pages 261–268.
Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

• M. B. van Gijzen and T. P. Collignon. Exploiting the flexibility of IDR(s) for Grid com-
puting. In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods, Kyoto
University, Kyoto, Japan, March 2010.

129

130 Scientific Résumé

• T. P. Collignon and M. B. van Gijzen. Implementing the Conjugate Gradient Method on a
grid computer. In Proceedings of the International Multiconference on Computer Science
and Information Technology, Volume 2, October 15–17, 2007, Wisla, Poland, pages 527–
540, 2007.

Technical reports

• T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen. Interpreting IDR(s) as a deflation
method. Technical report, Delft University of Technology, Delft, The Netherlands, 2010.
DUT report 10–21.

• M. B. van Gijzen and T. P. Collignon. Exploiting the flexibility of IDR(s) for Grid com-
puting. Technical report, Delft University of Technology, Delft, The Netherlands, 2010.
DUT report 10–11.

• T. P. Collignon and M. B. van Gijzen. Fast solution of nonsymmetric linear systems on
Grid computers using parallel variants of IDR(s). Technical report, Delft University of
Technology, Delft, The Netherlands, 2010. DUT report 10–05.

• T. P. Collignon and M. B. van Gijzen. Fast iterative solution of large sparse linear systems
on geographically separated clusters. Technical report, Delft University of Technology,
Delft, The Netherlands, 2009. DUT report 09–12.

• T. P. Collignon and M. B. van Gijzen. Parallel scientific computing on loosely coupled net-
works of computers. Technical report, Delft University of Technology, Delft, The Nether-
lands, 2008. DUT report 08–12.

• T. P. Collignon and M. B. van Gijzen. Solving large sparse linear systems efficiently on
Grid computers using an asynchronous iterative method as a preconditioner. Technical
report, Delft University of Technology, Delft, The Netherlands, 2008. DUT report 08–08.

• T. P. Collignon and M. B. van Gijzen. Implementing the Conjugate Gradient method on a
grid computer. Technical report, Delft University of Technology, Delft, The Netherlands,
2007. DUT report 07–11.

Other

• T. P. Collignon. Fast iterative solution of large linear systems on Grid computers. MaC-
Hazine: W.I.S.V. “Christiaan Huygens”, 14(3):33–34, March 2010

Presentations

Talks

• “Efficient Iterative Solution of Large Linear Systems on Geographically Separated Clus-
ters”, Shell, the Hague, the Netherlands, August 25, 2010.

• “IDR(s) for Grid Computing”, ICCAM 2010: 15th International Congress on Computa-
tional and Applied Mathematics, Leuven, Belgium, July 8, 2010.

• “IDR(s) for Grid Computing”, Ishiwata group talk, Tokyo, Japan, April 27, 2010.

131

• “Fast solution of nonsymmetric linear systems on Grid computers using IDR(s) methods”,
NW group talk, Delft, The Netherlands, February 5, 2010.

• “Solving Large Linear Systems on Grid Computers using an Asynchronous Method as
Preconditioner”, ENUMATH 2009: European Conference on Numerical Mathematics and
Advanced Applications, Uppsala, Sweden, June 29, 2009.

• “Solving Large Linear Systems on Grid Computers using an Asynchronous Method as Pre-
conditioner”, VECPAR 2008: 8th International Meeting on High Performance Computing
for Computational Science, Toulouse, France, June 26, 2008.

• “Efficient Iterative Solution of Large Sparse Linear Systems on a Cluster of Geographi-
cally Separated Clusters”, PMAA 2008: 5th International Workshop on Parallel Matrix
Algorithms and Applications, Neuchâtel, Switzerland, June 22, 2008.

• “Immersed Boundary Methods on Heterogeneous Networks of Computers”, NW group talk,
Delft, The Netherlands, May 21, 2007.

Posters

• “Interpreting IDR(s) as a deflation method”, The Thirty–fifth Woudschoten Conference,
Zeist, the Netherlands, October 6–8, 2010.

• “Parallelisation of IDR(s) on Cluster and Grid Computers”, The Thirty–fourth Woud-
schoten Conference, Zeist, the Netherlands, October 7–9, 2009.

• “Efficient Iterative Solution of Large Sparse Linear Systems on a Cluster of Geographically
Separated Clusters”, The Thirty–third Woudschoten Conference, Zeist, the Netherlands,
October 8–10, 2008.

• “Numerical Analysis”, DCSE Customer Day 2008, Delft, The Netherlands, September 19,
2008.

• “Solving Large Sparse Linear Systems on Grid Computers using an Asynchronous Iterative
Method as a Preconditioner”, JMBC Burgersdag 2008, Delft, The Netherlands, January
10, 2008.

• “Implementing the Conjugate Gradient Method on a Grid computer”, CANA 2007: Com-
puter Aspects of Numerical Algorithms, Wisla, Poland, October 16, 2007.

• “Implementing the Conjugate Gradient Method on a Grid computer”, The Thirty–second
Woudschoten Conference, Zeist, the Netherlands, October 3–5, 2007.

• “Design and analysis of novel numerical algorithms for heterogeneous computing plat-
forms”, DCSE Symposium 2007, Delft, The Netherlands, March 30, 2007.

Conferences

• ICCAM 2010: 15th International Congress on Computational and Applied Mathematics,
Leuven, Belgium, July 5–9, 2010.

• ENUMATH 2009: European Conference on Numerical Mathematics and Advanced Appli-
cations, Uppsala, Sweden, June 29 – July 3, 2009.

132 Scientific Résumé

• VECPAR 2008: 8th International Meeting on High Performance Computing for Compu-
tational Science, Toulouse, France, June 24–27, 2008.

• PMAA 2008: 5th International Workshop on Parallel Matrix Algorithms and Applications,
Neuchâtel, Switzerland, June 20–22, 2008.

• CANA 2007: Computer Aspects of Numerical Algorithms, Wisla, Poland, October 15–17,
2007.

• Annual Woudschoten Conferences of the Dutch & Flemish Numerical Analysis Communi-
ties, Zeist, The Netherlands, 2007–2010.

Bibliography

[1] S. Akhter and J. Roberts. Multi-Core Programming: Increasing Performance Through
Software Multi-threading. Intel Press, Santa Clara, CA, USA, 2006.

[2] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a
research framework for high–performance grid programming environments. In J. C. Cunha
and O. F. Rana, editors, Grid Computing: Software environments and Tools, pages 230–
256. Springer–Verlag, Berlin/Heidelberg, Germany, 2005.

[3] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. V.
van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott, E. Seidel, and B. Ullmer. The grid
application toolkit: Towards generic and easy application programming interfaces for the
grid. Proceedings of the IEEE, 93(3):534–550, March 2005.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for
the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home: an
experiment in public–resource computing. Communications of the ACM, 45(11):56–61,
2002.

[6] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York, NY,
USA, 1994.

[7] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned GMRES
algorithms. SIAM Journal on Scientific Computing, 20(1):243–269, 1998.

[8] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel Iterative Algorithms: from
sequential to grid computing. Numerical Analysis & Scientific Computing Series. Chapman
& Hall / CRC, Boca Raton, FL, USA, 2007.

[9] J. M. Bahi, R. Couturier, and P. Vuillemin. Asynchronous iterative algorithms for compu-
tational science on the grid: three case studies. In M. J. Daydé, J. Dongarra, V. Hernández,
and J. M. L. M. Palma, editors, High Performance Computing for Computational Science -
VECPAR 2004, 6th International Conference, Valencia, Spain, June 28-30, 2004, Revised
Selected and Invited Papers, volume 3402 of Lecture Notes in Computer Science, pages
302–314. Springer–Verlag, Berlin/Heidelberg, Germany, 2005.

[10] J. M. Bahi, J. C. Miellou, and K. Rhofir. Asynchronous multisplitting methods for non-
linear fixed point problems. Numerical Algorithms, 15(3–4):315–345, January 1997.

133

134 BIBLIOGRAPHY

[11] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Asynchronism for iterative algorithms
in a global computing environment. In HPCS ’02: Proceedings of the 16th Annual In-
ternational Symposium on High Performance Computing Systems and Applications, pages
90–97, Washington, DC, USA, 2002. IEEE Computer Society.

[12] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Coupling dynamic load balancing with
asynchronism in iterative algorithms on the computational grid. In IPDPS ’03: Proceedings
of the 17th International Symposium on Parallel and Distributed Processing, pages 40–48,
Washington, DC, USA, 2003. IEEE Computer Society.

[13] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Dynamic load balancing and efficient
load estimators for asynchronous iterative algorithms. IEEE Transactions on Parallel and
Distributed Systems, 16(4):289–299, 2005.

[14] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of the asynchronous iterative
algorithms in the context of distant heterogeneous clusters. Parallel Computing, 31(5):439–
461, 2005.

[15] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Performance comparison of parallel
programming environments for implementing AIAC algorithms. The Journal of Supercom-
puting, 35(3):227–244, 2006.

[16] H. Bal. DAS–3 opening symposium, 2007. http://www.cs.vu.nl/das3/symposium07/

das3-bal.pdf. Retrieved 05/02/2009.

[17] H. Bal and K. Verstoep. Large–scale parallel computing on grids. Electronic Notes in
Theoretical Computer Science, 220(2):3–17, 2008.

[18] B. Barán, E. Kaszkurewicz, and A. Bhaya. Parallel asynchronous team algorithms: Conver-
gence and performance analysis. IEEE Transactions on Parallel and Distributed Systems,
7(7):677–688, 1996.

[19] D. E. Baz. A method of terminating asynchronous iterative algorithms on message passing
systems. Parallel Algorithms and Applications, 9:153–158, 1996.

[20] D. E. Baz, P. Spiteri, J. C. Miellou, and D. Gazen. Asynchronous iterative algorithms
with flexible communication for nonlinear network flow problems. Journal of Parallel and
Distributed Computing, 38(1):1–15, 1996.

[21] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T. Moore,
G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, and R. Wolski. Middleware for the use of
storage in communication. Parallel Computing, 28(12):1773–1787, 2002.

[22] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal of Com-
putational Physics, 182(2):418–477, 2002.

[23] F. Berman, G. Fox, and A. J. G. Hey. Grid Computing: Making the Global Infrastructure
a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[24] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice–Hall, Englewood Cliffs, NJ, USA, 1989. republished by Athena Scien-
tific, 1997.

[25] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP and
MPI. Oxford University Press, New York, NY, USA, 2004.

http://www.cs.vu.nl/das3/symposium07/das3-bal.pdf
http://www.cs.vu.nl/das3/symposium07/das3-bal.pdf

BIBLIOGRAPHY 135

[26] Å. Björck. Solving linear least squares problems by Gram–Schmidt orthogonalization. BIT,
7:1–21, 1967.

[27] K. Blathras, D. B. Szyld, and Y. Shi. Timing models and local stopping criteria for asyn-
chronous iterative algorithms. Journal of Parallel and Distributed Computing, 58(3):446–
465, 1999.

[28] B. Boghosian, P. Coveney, S. Dong, L. Finn, S. Jha, G. Karniadakis, and N. Karonis. NEK-
TAR, SPICE and Vortonics: using federated grids for large scale scientific applications.
Cluster Computing, 10:351–364, September 2007.

[29] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve: Achiev-
ing higher performance by improving the GridRPC model. In GRID ’08: Proceedings
of the 2008 9th IEEE/ACM International Conference on Grid Computing, pages 49–56,
Washington, DC, USA, 2008. IEEE Computer Society.

[30] T. Brady, E. Konstantinov, and A. Lastovetsky. SmartNetSolve: High level programming
system for high performance Grid computing. In Proceedings of the 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes Island, Greece,
25-29 April 2006 2006. IEEE Computer Society. CD-ROM/Abstracts Proceedings.

[31] E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incompressible
Navier– Stokes equations: solving subdomain problems accurately and inaccurately. In
Domain Decomposition Methods in Sciences and Engineering, pages 443–451. John Wiley
& Sons, Inc., New York, NY, USA, 1997.

[32] K. Burrage and J. Erhel. On the performance of various adaptive preconditioned GMRES
strategies. Numerical linear algebra with applications, 5(2):101–121, March/April 1998.

[33] E. Caron, B. Del-Fabbro, F. Desprez, E. Jeannot, and J.-M. Nicod. Managing data per-
sistence in network enabled servers. Scientific Programming, 13(4):333–354, 2005.

[34] E. Caron and F. Desprez. DIET: A scalable toolbox to build network enabled servers on the
Grid. International Journal of High Performance Computing Applications, 20(3):335–352,
2006.

[35] U. V. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph partitioning tool,
Version 3.0. Bilkent University, Department of Computer Engineering, Ankara, Turkey.
PaToH is available at http://bmi.osu.edu/~umit/software.htm, 1999.

[36] D. Chazan and W. L. Miranker. Chaotic relaxation. Linear Algebra and its Applications,
2:199–222, 1969.

[37] A. T. Chronopoulos and C. W. Gear. S–step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics, 25(2):153–168, 1989.

[38] T. P. Collignon. Fast iterative solution of large linear systems on Grid computers. MaC-
Hazine: W.I.S.V. “Christiaan Huygens”, 14(3):33–34, March 2010.

[39] T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen. Interpreting IDR(s) as a
deflation method. Journal of Computational and Applied Mathematics, 2011. Special
Issue: Proceedings ICCAM–2010 (submitted).

http://bmi.osu.edu/~umit/software.htm

136 BIBLIOGRAPHY

[40] T. P. Collignon and M. B. van Gijzen. Implementing the Conjugate Gradient Method on a
grid computer. In Proceedings of the International Multiconference on Computer Science
and Information Technology, Volume 2, October 15–17, 2007, Wisla, Poland, pages 527–
540, 2007.

[41] T. P. Collignon and M. B. van Gijzen. Parallel scientific computing on loosely coupled
networks of computers. In B. Koren and C. Vuik, editors, Advanced Computational Meth-
ods in Science and Engineering. Springer Series Lecture Notes in Computational Science
and Engineering, volume 71, pages 79–106. Springer–Verlag, Berlin/Heidelberg, Germany,
2010.

[42] T. P. Collignon and M. B. van Gijzen. Solving large sparse linear systems efficiently on
Grid computers using an asynchronous iterative method as a preconditioner. In G. Kreiss,
P. Lötstedt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathematics and Ad-
vanced Applications 2009: Proceedings of ENUMATH 2009, the 8th European Conference
on Numerical Mathematics and Advanced Applications, Uppsala, July 2009, pages 261–268.
Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

[43] T. P. Collignon and M. B. van Gijzen. Two implementations of the preconditioned Conju-
gate Gradient method on heterogeneous computing grids. International Journal of Applied
Mathematics and Computer Science, 20(1):109–121, 2010.

[44] T. P. Collignon and M. B. van Gijzen. Fast iterative solution of large sparse linear sys-
tems on geographically separated clusters. International Journal of High Performance
Computing Applications, 2011. (to appear).

[45] T. P. Collignon and M. B. van Gijzen. Minimizing synchronization in IDR(s). Numerical
Linear Algebra with Applications, 2011. (published online: 14 january 2011).

[46] R. Couturier, C. Denis, and F. Jézéquel. GREMLINS: a large sparse linear solver for grid
environment. Parallel Computing, 34(6–8):380–391, July 2008. Parallel Matrix Algorithms
and Applications.

[47] R. Couturier and S. Domas. CRAC: a Grid Environment to solve Scientific Applications
with Asynchronous Iterative Algorithms. In 21th IEEE and ACM Int. Symposium on
Parallel and Distributed Processing Symposium, IPDPS’2007, pages 289–296, Long Beach,
CA, USA, March 2007. IEEE Computer Society.

[48] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization. Mathematics of Computa-
tion, 30:772–795, 1976.

[49] E. de Sturler. A performance model for Krylov subspace methods on mesh–based parallel
computers. Parallel Computing, 22(1):57–74, 1996.

[50] E. de Sturler. Truncation strategies for optimal Krylov subspace methods. SIAM Journal
on Numerical Analysis, 36(3):864–889, 1999.

[51] F. Desprez and E. Jeannot. Improving the GridRPC model with data persistence and
redistribution. In ISPDC ’04: Proceedings of the Third International Symposium on Par-
allel and Distributed Computing/Third International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks, University College Cork, Ire-
land, (ISPDC/HeteroPar’04), pages 193–200, Washington, DC, USA, 2004. IEEE Com-
puter Society.

BIBLIOGRAPHY 137

[52] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek. Parallel
hypergraph partitioning for scientific computing. In Proceedings of 20th International
Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 2006.

[53] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik,
J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Applied
Numerical Mathematics, 52(2-3):133–152, 2005.

[54] S. Dong, G. E. Karniadakis, and N. T. Karonis. Cross–Site Computations on the TeraGrid.
Computing in Science and Engineering, 7(5):14–23, 2005.

[55] J. Dongarra and A. Lastovetsky. An overview of heterogeneous high performance and
Grid computing. In B. DiMartino, J. Dongarra, A. Hoisie, L. Yang, and H. Zima, editors,
Engineering the Grid: Status and Perspective, Stevenson Ranch, CA, USA, February 2006.
American Scientific Publishers.

[56] J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical Linear Algebra
for High Performance Computers. SIAM, Philadelphia, PA, USA, 1998.

[57] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, editors.
Sourcebook of Parallel Computing. Morgan Kaufmann, 2003.

[58] J. Dongarra, Y. Li, Z. Shi, D. Fike, K. Seymour, and A. YarKhan. Homepage of Net-
Solve/GridSolve, 2007. http://icl.cs.utk.edu/netsolve/.

[59] C. C. Douglas. A review of numerous parallel multigrid methods. In G. Astfalk, editor,
Applications on Advanced Architecture Computers, pages 187–202. SIAM, Philadelphia,
PA, USA, 1996.

[60] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for non-
symmetric systems of linear equations. SIAM Journal on Numerical Analysis, 20:345–357,
1983.

[61] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation. Journal
of Computational and Applied Mathematics, 69(2):303–318, 1996.

[62] Y. A. Erlangga and R. Nabben. Deflation and balancing preconditioners for Krylov sub-
space methods applied to nonsymmetric matrices. SIAM Journal on Matrix Analysis and
Applications, 30(2):684–699, 2008.

[63] W.-C. Feng and T. Scogland. The green500 list: Year one. In 5th IEEE Workshop on
High-Performance, Power-Aware Computing (in conjunction with the 23rd International
Parallel & Distributed Processing Symposium), Rome, Italy, May 2009.

[64] Folding. Folding@home distributed computing. http://folding.stanford.edu/.

[65] I. Foster and C. Kesselman. The Grid: Blueprint for a new Computing Infrastructure.
Morgan Kaufman Publishers, San Fransisco, USA, second edition, 2004.

[66] I. Foster. Globus toolkit version 4: Software for service–oriented systems. In H. Jin,
D. Reed, and W. Jiang, editors, Network and parallel computing: IFIP international con-
ference, NPC 2005, Beijing, China, November/December 2005, volume 3779 of Lecture
Notes in Computer Science, pages 2–13. Springer–Verlag, Berlin/Heidelberg, Germany,
2005.

http://icl.cs.utk.edu/netsolve/
http://folding.stanford.edu/

138 BIBLIOGRAPHY

[67] J. Frank and C. Vuik. On the construction of deflation–based preconditioners. SIAM
Journal on Scientific Computing, 23(2):442–462, 2001.

[68] A. Frommer, H. Schwandt, and D. B. Szyld. Asynchronous weighted additive Schwarz
methods. Electronic Transactions on Numerical Analysis, 5:48–61, 1997.

[69] A. Frommer and D. B. Szyld. Asynchronous iterations with flexible communication for
linear systems. Calculateurs Parallèles Réseaux et Systèmes Répartis, 10:421–429, 1998.

[70] A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Computational and
Applied Mathematics, 123:201–216, 2000.

[71] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[72] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies in Math-
ematical Sciences). The Johns Hopkins University Press, October 1996.

[73] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message–Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[74] W. Gropp, E. Lusk, and R. Thakur. Using MPI–2: Advanced Features of the Message–
Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[75] T.-X. Gu, X.-Y. Zuo, X.-P. Liu, and P.-L. Li. An improved parallel hybrid bi–conjugate
gradient method suitable for distributed parallel computing. Journal of Computational
and Applied Mathematics, 226(1):55–65, 2009.

[76] T.-X. Gu, X.-Y. Zuo, L.-T. Zhang, W.-Q. Zhang, and Z. Sheng. An improved bi–conjugate
residual algorithm suitable for distributed parallel computing. Applied Mathematics and
Computation, 186(2):1243–1253, 2007.

[77] J. Gustafson. The program of Grand Challenge problems: Expectations and results. In
N. Mirenkov, Q.-P. Gu, S. Peng, and S. Sedukhin, editors, Proceedings of the 2nd AIZU
International Symposium on Parallel Algorithms and Architecture Synthesis, March 17–21,
1997, Aizu–Wakamatsu, Fukushima, Japan, PAS ’97, pages 2–7, Washington, DC, USA,
1997. IEEE Computer Society.

[78] M. H. Gutknecht. IDR Explained. Electronic Transactions on Numerical Analysis, 36:126–
148, 2010.

[79] M. H. Gutknecht and J.-P. M. Zemke. Eigenvalue computations based on IDR. Technical
report, Seminar für Angewandte Mathematik, ETH Zürich, SAM, ETH Zürich, Switzer-
land, 2010. Research Report No. 2010–13.

[80] Y. Hassen and B. Koren. Finite–volume discretization and immersed boundaries. In B. Ko-
ren and C. Vuik, editors, Advanced Computational Methods in Science and Engineering.
Springer Series Lecture Notes in Computational Science and Engineering, volume 71, pages
229–268. Springer–Verlag, Berlin/Heidelberg, Germany, 2010.

[81] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for solving linear systems.
Journal of Research of National Bureau Standards, 49(6):409–436, 1952.

BIBLIOGRAPHY 139

[82] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. American Mathematical
Monthly, 105:889–899, 1998.

[83] E. F. Kaasschieter. Preconditioned Conjugate Gradients for solving singular systems.
Journal of Computational and Applied Mathematics, 24(1-2):265–275, 1988.

[84] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduc-
tion to the Cell multiprocessor. IBM Journal of Research and Development, 49(4.5):589–
604, July 2005.

[85] N. T. Karonis, B. Toonen, and I. Foster. MPICH–G2: A Grid–enabled implementation of
the Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5):551–
563, 2003. Special Issue on Computational Grids.

[86] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting
hierarchy in parallel computer networks to optimize collective operation performance. In
IPDPS ’00: Proceedings of the 14th International Symposium on Parallel and Distributed
Processing, Cancun, Mexico, May 1-5, 2000, pages 377–384, Washington, DC, USA, 2000.
IEEE Computer Society.

[87] B. Krasnopolsky. The reordered BiCGStab method for distributed memory computer
systems. Procedia Computer Science, 1(1):213–218, 2010. ICCS 2010.

[88] A. Lastovetsky, X. Zuo, and P. Zhao. A non–intrusive and incremental approach to enabling
direct communications in RPC-based grid programming systems. In V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors, Computational Science -
ICCS 2006: 6th International Conference, Reading, UK, May 28-31, volume 3993, pages
1008–1011. Springer–Verlag, Berlin/Heidelberg, Germany, 2006.

[89] C. Lee, H. Nakada, and Y. Tanimura. GridRPC Working Group, 2007. http://forge.

ogf.org/sf/projects/gridrpc-wg/.

[90] G. Mercier. MPICH–Madeleine. an MPI implementation for heterogeneous clusters of
clusters, 2006. http://runtime.futurs.inria.fr/mpi/.

[91] H. W. Meuer. The top500 project: Looking back over 15 years of supercomputing experi-
ence. Informatik–Spektrum, 31(3):203–222, June 2008.

[92] J. C. Miellou, D. E. Baz, and P. Spiteri. A new class of asynchronous iterative algorithms
with order intervals. Mathematics of Computation, 67(221):237–255, 1998.

[93] B. Mirghani, M. Tryby, D. Baessler, N. Karonis, R. Ranhthan, and K. Mahinthakumar.
Development and performance analysis of a simulation–optimization framework on Ter-
aGrid linux clusters. In The 6th LCI International Conference on Linux Clusters: The
HPC Revolution 2005. Chapel Hill, NC, USA, April 26-28 2005.

[94] R. Nabben and C. Vuik. A comparison of deflation and coarse grid correction applied to
porous media flow. SIAM Journal on Numerical Analysis, 42(4):1631–1647, 2004.

[95] R. Nabben and C. Vuik. A comparison of deflation and the balancing preconditioner.
SIAM Journal on Scientific Computing, 27(5):1742–1759, 2006.

[96] Y. Notay. Flexible Conjugate Gradients. SIAM Journal on Scientific Computing, 22:1444–
1460, 2000.

http://forge.ogf.org/sf/projects/gridrpc-wg/
http://forge.ogf.org/sf/projects/gridrpc-wg/
http://runtime.futurs.inria.fr/mpi/

140 BIBLIOGRAPHY

[97] Y. Onoue, S. Fujino, and N. Nakashima. Improved IDR(s) method for gaining very accurate
solutions. World Academy of Science, Engineering and Technology, 55:520–525, 2009.

[98] Y. Onoue, S. Fujino, and N. Nakashima. An overview of a family of new iterative methods
based on IDR theorem and its estimation. In S. I. Ao, O. Castillo, C. Douglas, D. D. Feng,
and J.-A. Lee, editors, Proceedings of the International MultiConference of Engineers and
Computer Scientists 2009 Vol II IMECS 2009, March 18 - 20, 2009, Hong Kong, pages
2129–2134, 2009.

[99] V. S. Pande. A simple theory of protein folding kinetics. Physical Review Letters, Jul 2010.

[100] V. Pereyra. Asynchronous distributed solution of large scale nonlinear inversion problems.
In Selected papers of the second Panamerican workshop on Applied and computational
mathematics, pages 31–40, Amsterdam, The Netherlands, 1999. North-Holland Publishing
Co.

[101] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL – a portable implementation
of the high–performance Linpack benchmark for distributed–memory computers, 2008.
Available at http://www.netlib.org/benchmark/hpl/.

[102] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA,
2003.

[103] Y. Saad. A flexible inner–outer preconditioned GMRES algorithm. SIAM Journal on
Scientific Computing, 14(2):461–469, 1993.

[104] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7(3):856–869, 1986.

[105] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison–Wesley Professional, 1st edition, July 2010.

[106] M. Sato, T. Boku, and D. Takahashi. OmniRPC: a Grid RPC system for parallel pro-
gramming in cluster and Grid environment. In CCGRID ’03: Proceedings of the 3rd In-
ternational Symposium on Cluster Computing and the Grid, Tokyo, Japan, pages 206–213,
Washington, DC, USA, 2003. IEEE Computer Society.

[107] F. J. Seinstra and K. Verstoep. DAS–3: The distributed ASCI supercomputer 3, 2007.
http://www.cs.vu.nl/das3/.

[108] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. NetSolve: Grid enabling scientific
computing environments. In L. Grandinetti, editor, Grid Computing and New Frontiers
of High Performance Processing. Elsevier, New York, NY, USA, 2005.

[109] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview
of GridRPC: A Remote Procedure Call API for Grid Computing. In M. Parashar, editor,
GRID ’02: Proceedings of the Third International Workshop on Grid Computing, Balti-
more, MD, USA, November 18, 2002, volume 2536 of Lecture Notes in Computer Science,
pages 274–278. Springer–Verlag, Berlin/Heidelberg, Germany, 2002.

[110] V. Simoncini and D. B. Szyld. Flexible inner–outer Krylov subspace methods. SIAM
Journal on Numerical Analysis, 40(6):2219–2239, 2002.

http://www.netlib.org/benchmark/hpl/
http://www.cs.vu.nl/das3/

BIBLIOGRAPHY 141

[111] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace
methods for linear systems. Numerical Linear Algebra with Applications, 14:1–59, 2007.

[112] V. Simoncini and D. B. Szyld. Interpreting IDR as a Petrov–Galerkin method. SIAM
Journal on Scientific Computing, 32(4):1898–1912, 2010.

[113] G. L. G. Sleijpen and D. Fokkema. BiCGstab(ℓ) for linear equations involving unsymmetric
matrices with complex spectrum. Electronic Transactions on Numerical Analysis, 1:11–32,
1993.

[114] G. L. G. Sleijpen and H. A. van der Vorst. Maintaining convergence properties of BiCGstab
methods in finite precision arithmetic. Numerical Algorithms, 10(3–4):203–223, 1995.

[115] G. L. G. Sleijpen, P. Sonneveld, and M. B. van Gijzen. Bi–CGSTAB as an induced
dimension reduction method. Applied Numerical Mathematics, 60(11):1100–1114, 2010.
Special Issue: 9th IMACS International Symposium on Iterative Methods in Scientific
Computing (IISIMSC 2008).

[116] G. L. G. Sleijpen and M. B. van Gijzen. The algebra for induced dimension reduction. In
The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods, Kyoto University,
Kyoto, Japan, March 2010.

[117] G. L. G. Sleijpen and M. B. van Gijzen. Exploiting BiCGstab(ℓ) strategies to induce
dimension reduction. SIAM Journal on Scientific Computing, 32(5):2687–2709, 2010.

[118] B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cam-
bridge, 1996.

[119] P. Sonneveld. On the convergence behaviour of IDR(s). Technical report, Delft University
of Technology, Delft, The Netherlands, 2010. DUT report 10–08.

[120] P. Sonneveld and M. B. van Gijzen. IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric linear systems. SIAM Journal on Scientific Computing,
31(2):1035–1062, 2008.

[121] T. Sterling, E. Lusk, and W. Gropp, editors. Beowulf Cluster Computing with Linux. MIT
Press, Cambridge, MA, USA, 2003.

[122] D. B. Szyld. Different models of parallel asynchronous iterations with overlapping blocks.
Computational and Applied Mathematics, 17:101–115, 1998.

[123] D. B. Szyld and J. A. Vogel. FQMR: A flexible quasi–minimal residual method with
inexact preconditioning. SIAM Journal on Scientific Computing, 23(2):363–380, 2001.

[124] D. B. Szyld and J.-J. Xu. Convergence of some asynchronous nonlinear multisplitting
methods. Numerical Algorithms, 25:347–361, 2000.

[125] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf–G: A reference
implementation of RPC–based programming middleware for Grid computing. Journal of
Grid Computing, 1(1):41–51, 2003.

[126] J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik. A comparison of two–level
preconditioners based on multigrid and deflation. SIAM Journal on Matrix Analysis and
Applications, 31(4):1715–1739, 2010.

142 BIBLIOGRAPHY

[127] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level precondi-
tioners derived from deflation, domain decomposition and multigrid methods. Journal of
Scientific Computing, 39(3):340–370, 2009.

[128] J. M. Tang and C. Vuik. Efficient deflation methods applied to 3-D bubbly flow problems.
Electronic Transactions on Numerical Analysis, 26:330–349, 2007.

[129] J. M. Tang and C. Vuik. On deflation and singular symmetric positive semi–definite
matrices. Journal of Computational and Applied Mathematics, 206(2):603–614, 2007.

[130] J. M. Tang. Two–Level Preconditioned Conjugate Gradient Methods with Applications to
Bubbly Flow Problems. PhD thesis, Delft University of Technology, 2008.

[131] M. Tanio and M. Sugihara. GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization
polynomials. Journal of Computational and Applied Mathematics, 235(3):765–784, 2010.

[132] J. D. Teresco, K. D. Devine, and J. E. Flaherty. Numerical Solution of Partial Differ-
ential Equations on Parallel Computers, chapter Partitioning and Dynamic Load Bal-
ancing for the Numerical Solution of Partial Differential Equations. Springer–Verlag,
Berlin/Heidelberg, Germany, 2005.

[133] A. Toselli and O. B. Widlund. Domain Decomposition: Algorithms and Theory, volume 34.
Springer–Verlag, Berlin/Heidelberg, Germany, 2005.

[134] L. G. Valiant. A bridging model for multi–core computing. In D. Halperin and
K. Mehlhorn, editors, Algorithms - ESA 2008, 16th Annual European Symposium, Karl-
sruhe, Germany, September 15-17, 2008. Proceedings, volume 5193 of Lecture Notes in
Computer Science, pages 13–28. Springer–Verlag, Berlin/Heidelberg, Germany, 2008.

[135] S. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass–conserving Level–Set method
for modelling of multi–phase flows. International Journal for Numerical Methods in Fluids,
47:339–361, 2005.

[136] H. A. van der Vorst. Bi–CGSTAB: A fast and smoothly converging variant of Bi–CG for
the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 13(2):631–644, 1992.

[137] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Nu-
merical Linear Algebra with Applications, 1(4):369–386, 1994.

[138] M. B. van Gijzen and T. P. Collignon. Exploiting the flexibility of IDR(s) for Grid com-
puting. In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods, Kyoto
University, Kyoto, Japan, March 2010.

[139] M. B. van Gijzen and P. Sonneveld. An IDR(s) variant with minimal intermediate residual
norms. In The Proceedings of the International Kyoto–Forum on Krylov Subspace methods,
Kyoto University, Kyoto, Japan, pages 85–92, 2008.

[140] M. B. van Gijzen and P. Sonneveld. An elegant IDR(s) variant that efficiently exploits
bi–orthogonality properties. Technical report, Delft University of Technology, Delft, The
Netherlands, 2010. DUT report 10–16 (revised version of DUT report 08–21).

[141] J. van Kan. A second–order accurate pressure correction scheme for viscous incompressible
flow. SIAM Journal on Scientific and Statistical Computing, 7(3):870–891, 1986.

BIBLIOGRAPHY 143

[142] B. Vastenhouw and R. H. Bisseling. A two–dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.

[143] F. Vernier, J. M. Bahi, S. Contassot-Vivier, and R. Couturier. A decentralized convergence
detection algorithm for asynchronous parallel iterative algorithms. IEEE Transactions on
Parallel and Distributed Systems, 16(1):4–13, 2005.

[144] K. Verstoep, J. Maassen, H. E. Bal, and J. W. Romein. Experiences with fine–grained
distributed supercomputing on a 10G testbed. In CCGRID ’08: Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID),
pages 376–383, Washington, DC, USA, 2008. IEEE Computer Society.

[145] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, Ltd., Chichester,
UK, 1992.

[146] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting
persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February
2005.

[147] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The potential of
the cell processor for scientific computing. In CF ’06: Proceedings of the 3rd conference
on Computing frontiers, pages 9–20, New York, NY, USA, 2006. ACM.

[148] L. Wolters, S. P. Zwart, A. Doelman, B. Koren, J. Batenburg, G. Barkema, R. Bisseling,
G. Cats, K. Oosterlee, and K. Vuik. The Little GREEN Machine, 2010. http://www.

littlegreenmachine.org/.

[149] R. Wyrzykowski, N. Meyer, and M. Stroinski. Concept and implementation of CLUS-
TERIX: National cluster of linux systems. In The 6th LCI International Conference on
Linux Clusters: The HPC Revolution 2005. Chapel Hill, NC, April 2005.

[150] R. Wyrzykowski, N. Meyer, T. Olas, L. Kuczynski, B. Ludwiczak, C. Czaplewski, and
S. Oldziej. Meta–computations on the CLUSTERIX grid. In B. K̊agström, E. Elmroth,
J. Dongarra, and J. Wasniewski, editors, Applied Parallel Computing: State of the Art
in Scientific Computing, 8th International Workshop, PARA 2006, Ume̊a, Sweden, June
18-21, 2006, Revised Selected Papers, volume 4699 of Lecture Notes in Computer Science,
pages 489–500. Springer–Verlag, Berlin/Heidelberg, Germany, 2006.

[151] L. Yang and R. Brent. The improved BiCGStab method for large and sparse unsym-
metric linear systems on parallel distributed memory architectures. In 5th International
Conference on Algorithms and Architectures for Parallel Processing, pages 324–328, Los
Alamitos, CA, USA, 2002. IEEE Computer Society.

[152] T. Yang. The improved CGS method for large and sparse linear systems on bulk syn-
chronous parallel architecture. In ICA3PP ’02: Proceedings of the Fifth International
Conference on Algorithms and Architectures for Parallel Processing, pages 232–237, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[153] T. Yang and H.-X. Lin. The improved quasi–minimal residual method on massively dis-
tributed memory computers. In L. O. Hertzberger and P. M. A. Sloot, editors, High-
Performance Computing and Networking, International Conference and Exhibition, HPCN
Europe 1997, Vienna, Austria, April 28-30, 1997, Proceedings, volume 1225 of Lecture
Notes in Computer Science, pages 389–399. Springer–Verlag, Berlin/Heidelberg, Germany,
1997.

http://www.littlegreenmachine.org/
http://www.littlegreenmachine.org/

144 BIBLIOGRAPHY

[154] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra. Recent developments in
GridSolve. International Journal of High Performance Computing Applications, 20(1):131–
141, 2006.

[155] Y. Zheng, A. Bassi, M. Beck, J. S. Plank, and R. Wolski. Internet Backplane Protocol:
C API 1.4. Technical report, Department of Computer Science, University of Tennessee,
Knoxville, TN, USA, December 2004.

[156] X. Zuo and A. Lastovetsky. Experiments with a software component enabling NetSolve
with direct communications in a non–intrusive and incremental way. In 21th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2007), Proceedings, 26-30
March 2007, Long Beach, California, USA, pages 1–8, Washington, DC, USA, 2007. IEEE
Computer Society.

Index

0n,s, 29
A∗, 29
A⊥, 29
B, 29
I, 29
ux, 29
G, 29
Kr(A,v), 29
N (A), 29
S, 29
span(A), 29
dimA, 29
ωk, 29
φ(m:n), 29
rankA, 29
σ(A), 29

R̃, 29
s, 29
t, 29

ASSIST, 16
asynchronous block Jacobi iteration, 8

CRAC task, 48
GridSolve task, 57

bandwidth, 80
DAS–3, 85
LU site, 85

block Jacobi iteration, 7
asynchronous, 8
synchronous, 8

bubbly flows, 32, 49

Cell computing, 3
classical iteration, 6
Conjugate Gradient method, 10

Chronopoulos and Gear variant of, 32, 37
flexible, 47
preconditioned, 10, 36

resource–aware, 34
convection–diffusion problem, 58, 85
CRAC, 18
CRS, 37

DAS–3, 21
deflation methods, 62, 101

A–DEF1, 103, 115
A–DEF2, 61
adapted, 103
DEF1, 115

dimension reduction step, 72, 101
direct methods, 4
domain decomposition, 7
DSI, 18

GAT, 15
GbE, 21
Gigabit Ethernet, 21
Globus Toolkit, 19
GMRESR method, 56

truncated, 56
GPU computing, 3, 125
Gram–Schmidt method

classical, 57
modified, 49

Grand Challenge Problems, 123
Grid computing, 3
GridRPC, 16
GridSolve, 16, 56

Hermann Schwarz, 7
hypergraph partitioning

Mondriaan, 22
PaToH, 22

IBP, 18
ICRS, 37
IDR residual

145

146 INDEX

auxiliary, 100
intermediate, 72
primary, 74, 100
secondary, 100

IDR test matrix, 29, 70
IDR(s) cycle, 72, 100
IDR(s) method, 10

bi–orthogonalisation of intermediate resid-
uals variant of, 73

minimal synchronisation points variant of,
75

prototype variant of, 71
IDR(s) theorem, 71, 100
Immersed Boundary Method, 24

Jacobi iteration, 6

latency, 80
DAS–3, 85
LU site, 85

matrix partitioning, 34
message crunching, 18
middleware, 15

CRAC, 18
GridSolve, 16, 56
Open MPI, 19

MPI library, 19
MPICH–G2, 19
MPICH–Madeleine, 19
Open MPI, 19, 85

multi–core, 3, 68, 82
MV, 29
Myri–10G, 21

NetSolve, 16

Open MPI, 19, 85

partitioning, 22
matrix, 22

performance model, 80
preconditioning, 10, 23

asynchronous, 11, 48, 83
IC(0), 50
ILU, 59
variable, 11, 48, 83

projection, 10
oblique, 72

Richardson iteration, 6

RPC, 15

scalability
strong, 5
weak, 5

search matrix step, 101
Sonneveld subspace, 100
subspace methods, 10

flexible, 11
SURFnet, 21

	Acknowledgments
	Summary
	Samenvatting
	Contents
	List of Figures
	List of Tables
	Solving Large Linear Systems on Grid Computers
	Part I: Efficient iterative methods in Grid computing
	Introduction
	The problem
	Iterative methods
	Simple iterations
	Impatient processors: asynchronism
	Acceleration: subspace methods

	Hybrid methods: best of both worlds
	Some experimental results
	Part II: Efficient implementation in Grid computing
	Introduction
	Grid middleware
	Description of GridSolve
	Description of CRAC
	MPI–based libraries

	Target hardware
	Local heterogeneous clusters
	DAS–3: ``five clusters, one system''

	Coupled vs. decoupled inner–outer iterations
	Parallel iterative methods: building blocks revisited
	Matrix–vector multiplication (or data distribution)
	Preconditioning
	Convergence detection
	Vector operations

	Applications
	Further reading
	Part III: General thesis remarks
	Related work and main contributions
	Scope and outline
	Notational conventions and nomenclature

	Conjugate Gradient Methods for Grid Computing
	Introduction
	Heterogeneous sparse linear solvers in GridSolve
	Motivation
	Resource–aware load balancing
	Partitioning algorithm and CG schemes
	Implementation details

	Numerical experiments
	Overview
	Target hardware
	Preliminary testing
	Heterogeneous environment
	Parallel performance

	Concluding remarks
	Conclusions
	Suggestions for improvements
	General remarks

	Asynchronous Iterative Methods as Preconditioners
	Part I: Coupled iterations
	Introduction
	Parallel implementation details
	Asynchronous preconditioning
	Orthogonalisation

	Numerical experiments
	Motivation
	Target hardware and experimental setup
	Experimental results
	Discussion

	Part II: Decoupled iterations
	Introduction
	Parallel implementation details
	Brief description of GridSolve
	Decoupled iterations

	Numerical experiments
	Target hardware and experimental setup
	Experimental results and discussion

	Part III: Deflation and smoothing
	Motivation
	Deflation methods
	Numerical experiments
	Using asynchronous iterative methods as smoothers
	Conclusions

	IDR(s) for Grid Computing
	Introduction
	IDR(s) variant with one synchronisation point per MV
	Parallelising IDR(s) methods
	Choosing s and R"0365R
	Parallel performance models for IDR(s)
	Using piecewise sparse column vectors for R"0365R

	Combining IDR(s) with asynchronous preconditioning
	Numerical experiments
	Target hardware
	Test problem
	Estimating parameters of performance model
	A priori estimation of optimal parameter s
	Validation of the parallel performance model
	Comparing the time per IDR(s) cycle to the performance model
	Parallel speedup results
	Results for IDR(s) with asynchronous preconditioning

	Conclusions

	IDR(s) as a Deflation Method
	Introduction
	Relation between IDR and deflation
	IDR methods
	Deflation methods
	Interpreting IDR(s) as a deflation method
	IDR algorithms

	The IDR projection theorem
	Single IDR(s) cycle
	Main result: IDR projection theorem
	Numerical examples
	Discussion

	Explicitly deflated IDR(s)
	Deflation vs. augmentation
	Choosing R"0365R and k
	Numerical examples

	Conclusions

	General Conclusions and Outlook
	Aim of research
	Research challenges and principal findings
	Broader implications

	Curriculum Vitæ
	Scientific Résumé
	Bibliography
	Index

