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SUMMARY

Cancer is known as one of the leading causes of death in the world with diffi-
cult diagnose at early stages, poor prognosis and high mortality. Animal-based
experiments and clinical trials have always been the main approach for cancer
research, albeit they may have limitations and ethical issues. Mathematical mod-
eling as an efficient method is used to predict results, optimize experimental de-
sign and reduce animal use. Our work focuses on the phenomenological simula-
tion of cancer progression and therapies at the cell scale level.

Pancreatic cancer has a rare structure where cancer cells preferably accu-
mulate into clusters at early stages and cause a cancer-associated desmoplas-
tic extracellular matrix (ECM) to be produced circumferentially around it. This
desmoplastic ECM is anisotropic and plays as a physical defense for cancer cells
against the entry of some agents, e.g. immune cells, drugs, etc. To investigate
the impacts of anisotropic ECM on the migration of immune cell T-lymphocytes
at early stages, we develop a model on cell migration in T-lymphocytes medi-
ated antitumor response with an application to pancreatic cancer in Chapter 2.
Cell displacement is updated by solving a large system of stochastic differential
equations with the Euler-Maruyama method. As expected, our cell-based model
is able to show the phenomenon successfully, where T-lymphocytes can hardly
invade cancer cells under anisotropic ECM orientation. Furthermore, the ob-
structing effect of ECM orientation enhances the progression of the tumor with
the increase in the degree of anisotropy. In addition, the model predicts cancer
growth under various immune conditions.

As an extension in Chapter 3, the model is refined and applied to the stage
of treatment. Gemcitabine is known as the front-line drug for pancreatic cancer
therapy, which inhibits the proliferation of cancer cells. Since this drug is of-
ten used in conjunction with other drugs, we combine gemcitabine with another
drug that can weaken the anisotropic ECM orientation. The enzyme PEGPH20
aims at depleting hyaluronan in desmoplastic ECM and hence increases the pen-
etration of many different agents. Therefore, the therapeutic model of PEGPH20
+ gemcitabine is considered and compared with the corresponding mouse-based
experiments in the literature. The concentration of drugs is based on Green’s
fundamental solutions of the reaction-diffusion equation. The administration of
drugs is assumed to be given by injections, and the results show that PEGPH20
enzyme-mediated therapy facilitates the anti-tumor immune response. How-
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iv SUMMARY

ever, the likelihood of success of a cure relies on the stage of diagnosis and timely
treatment. To investigate the correlations of possibilities of success of the ther-
apy and uncertainties of input parameters, Monte Carlo simulations are per-
formed in a two-dimensional model. To conclude, the likelihood of healing sig-
nificantly reduces as the treatment is postponed. Moreover, the model is able to
predict the likelihood of success of the therapy and to provide a reference for ex-
periment design regarding the drug dose according to different stages of cancer
progression.

To mimic a larger scale like tissue level, we set up a three-dimensional cellu-
lar automata model with an application to pancreatic cancer in Chapter 4. This
chapter presents a simulation of oncolytic virotherapy, which employs geneti-
cally modified viruses that selectively kill cancer cells. The spread of viruses is
modeled by using the diffusion-reaction equation that is discretized by the finite
difference method and integrated by the IMEX approach. Furthermore, some
cell biomedical processes are dealt with using probabilistic principles. As we ex-
pected, this cellular automata model can simulate the cancer progression at early
stages and cancer attenuation under viral intervention well. Since the residual
viruses may have toxicity to patients, Monte Carlo simulations are performed to
investigate the correlations between input variables and numerical results (total
residual viruses and cancer area).

Albeit desmoplastic ECM inhibits the entry of agents, cancer cells are able
to degrade the ECM by secreting enzyme MMPs once they start to metastasis.
Metastasis is a major cause of cancer mortality, and cells normally undergo many
morphological changes during the transmigration. Therefore, we develop a model
of cell deformation where also the deformation of the nucleus is incorporated
in two and three-dimensions in Chapter 5. The movement of migrating cells is
chemotaxis/ durotaxis treated by using Green’s fundamental solutions and an
IMEX time integration method is used to update the displacement of cells. In
addition, Poisseuille flow is incorporated to simulate a microvascular flow, where
the bloodstream is treated as an incompressible fluid. As a result, this is a suc-
cessful model to describe morphological evolution of one cell and its nucleus
when it encounters the specific obstacles or paths during the metastasis. Anal-
ogously, Monte Carlo simulations are carried out to quantitatively evaluate the
impact of uncertainties on numerical results.

Mathematical modeling reshapes the understanding of cancer and it will def-
initely be a useful tool for the optimization of cancer therapy and for cancer re-
search in the future.



SAMENVATTING

Kanker is bekend als een van de belangrijkste doodsoorzaken met, als de kanker
in een vroeg stadium is, een moeilijke diagnose-stelling. Verder zijn de prognoses
voor patiënten veelal slecht en is de sterftekans niet zelden hoog. Dierproeven
en klinische proeven zijn altijd, ondanks hun beperkingen en ethische bezwaren,
de belangrijkste methoden geweest in wetenschappelijk onderzoek naar kanker.
Wij stellen dat wiskundig modelleren als een efficiënte methode gebruikt kan
worden om verschillende scenario’s te voorspellen, therapie te optimaliseren, en
om het aantal dierproeven te verminderen. Het huidige werk simuleert de ont-
wikkeling van kanker en therapie op cel niveau.

Alvleesklierkanker heeft een zeldzame eigenschap waarin kankercellen zich
in de vroege stadia bij voorkeur opéénhopen in groepjes (clusters) en daarmee
het aanmaken van een kanker-geassocieerd desmoplastische extracellulaire ma-
trix (ECM) rond een cluster tot stand brengen. Dit desmoplastische ECM is ani-
sotroop en manifesteert zich als een fysieke barrière die de kankercellen beschermt
tegen invloeden van buitenaf, zoals immuumcellen (T-lymphocyten), en medi-
catie. Om de invloed van het anisotrope ECM op de migratie van immuumcellen
in vroege stadia te kwantificeren, ontwikkelen we in hoofdstuk 2 een model voor
celmigratie van T-lymphocyten die werkzaam zijn tegen het ontstaan en ontwik-
kelen van alvleesklierkanker. De verplaatsing van cellen wordt berekend door het
oplossen van een groot stelsel stochastische differentiaalvergelijkingen met be-
hulp van de Euler-Maruyama methode. Zoals verwacht is ons celmodel in staat
om het verschijnsel, dat de T-lymphocyten nauwelijks de kankercellen kunnen
opruimen als de ECM anisotroop is, te reproduceren. Men ziet dat een meer
anisotrope oriëntatie van de ECM voor een snellere ontwikkeling van de tumor
zorgt. Verder voorspelt het model groei van kanker onder verschillende sterktes
van het afweersysteem van de patiënt.

In hoofdstuk 3 komt een uitbreiding van dit model aan de orde. Het mo-
del wordt verder verfijnd om de invloed van therapie door te rekenen. Gem-
citabine is een bekend medicijn om alvleesklierkanker te behandelen. Dit me-
dicijn verlaagt de intensiteit van deling van kankercellen. Omdat dit medicijn
vaak gebruikt wordt in combinatie met andere medicatie, wordt hier gemcita-
bine gecombineerd met een medicijn dat zorg draagt voor het terugbrengen van
de anisotropie van ECM. Het enzym PEGPH20 zorgt voor het verwijderen van
hyaluronan in desmoplastische ECM waardoor veel andere stoffen de kans krij-
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vi SAMENVATTING

gen om de ECM binnen te dringen. Daarom beschouwen we een therapeutisch
model van een cocktail van PEGPH20 en gemcitabine en vergelijken we de mo-
deluitkomsten met experimenten uit de literatuur op muizen. Het veld van de
concentratie van de medicijnen wordt berekend door middel van Greense fun-
damentaaloplossingen van de reactie-diffusie vergelijking. We nemen in de si-
mulaties aan dat het toedienen van de medicatie plaatsvindt door injecties, en
de resultaten laten zien dat PEGPH20 enzym-geinduceerde therapie de afweer
tegen kanker versterkt. De kans op succes van een behandeling hangt dan af van
het moment van diagnose en het moment waarop met de therapie wordt begon-
nen. Om de correlaties met een succesvolle behandeling en de onzekerheid in
de invoerparameters te onderzoeken, worden Monte Carlo simulaties gebruikt
in een twee-dimensionaal model. We kunnen hiermee in kaart brengen hoe de
kans op succes van de behandeling kleiner wordt als met de behandeling later
wordt begonnen. Het model is hiermee in staat richtlijnen te geven voor een be-
nodigde dosis medicatie om alvleesklierkanker te bestrijden als op verschillende
stadia begonnen wordt. Bij te laat beginnen met de medicatie is de kans op suc-
ces helaas verwaarloosbaar.

Om op een grotere fysische schaal te simuleren, hebben we in hoofdstuk 4
een drie-dimensionaal cellular automata model opgezet voor alvleesklierkanker.
Dit hoofdstuk beschrijft een simulatie van oncolytische virale therapie waarin
genetisch gemodificeerde virussen selectief kankercellen aanvallen. De versprei-
ding van virussen wordt gemodelleerd met een reactie-diffusie vergelijking die
we discretiseren met behulp van een eindige differentiemethode voor de plaat-
scoordinaten en integreren over de tijd met een IMEX methode. Andere cel-
gerelateerde processen als celmigratie, celdeling en celsterfte worden gemodel-
leerd met stochastische principes. Zoals verwacht kan dit cellulaire automata
model worden gebruikt om de ontwikkeling van kanker gedurende vroege stadia,
al dan niet in combinatie met virustherapie, modelleren. Omdat virussen toxici-
teitsproblemen kunnen opleveren voor patiënten, worden Monte Carlo metho-
den gebruikt om de correlaties tussen invoervariabelen en numerieke uitvoer
(zoals het totale aantal virussen dat overblijft na de behandeling en het uitein-
delijke volume/oppervlakte van de tumor) te onderzoeken.

Hoewel desmoplastische ECM het binnendringen van allerlei stoffen en cel-
len naar de tumor frustreert, kunnen kankercellen, als ze zich beginnen te ver-
spreiden naar andere delen van het lichaam (uitzaaien), de ECM degraderen
door het uitscheiden van enzymatische MMPs. Uitzaaiing van kanker is een zeer
belangrijke doodsoorzaak van kankerpatiënten. Kankercellen ondergaan grote
morfologische veranderingen (vormveranderingen) tijdens de migratie door de
ECM heen om andere delen van het lichaam te bereiken. Om dit in kaart te bren-
gen, wordt in hoofdstuk 5 een model beschreven voor zowel twee- als driedimen-
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sionale vormveranderingen (celdeformaties) van kankercellen en hun nuclei. De
verplaatsing van de cellen wordt gemodelleerd door chemotaxis of durotaxis mee
te nemen en in het model wordt gebruik gemaakt van Greense fundamentaal op-
lossingen om concentratievelden te berekenen en een IMEX tijdsintegratieme-
thode om de positie van gridpunten op het celoppervlak en het oppervlak van
de celkern te bepalen. Verder wordt de verspreiding in de bloedstroom van een
kleine ader gesimuleerd middels een Poisseuille stroming. Deze vereenvoudi-
ging neemt impliciet aan dat de stroming incompressibel is. Dit model beschrijft
succesvol de vormveranderingen van een cel en zijn nucleus als deze bepaalde
obstakels of paden tegenkomt tijdens de metastase (uitzaaiing). Hier worden
weer Monte Carlo methoden gebruikt om de invloed van onzekerheid op de nu-
merieke resultaten in kaart te brengen.

Kort samengevat: Wiskundig modelleren vernieuwt en vergroot het begrip
van kanker en dit modelleren is een bruikbaar stuk gereedschap voor het op-
timaliseren van behandeling van kanker en voor toekomstig wetenschappelijk
onderzoek naar kanker.
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1
INTRODUCTION

1.1. BACKGROUD
Cancer has become one of the leading causes of death in developed countries
and its global mortality rate is rising [2]. Cancer initiates and develops by a se-
ries of processes comprising cell mutation, abnormal proliferation, angiogenesis
and metastasis accompanied by the evolution of cell morphology. Many stud-
ies have utilized in vitro systems using primary cells or cell lines. While those
studies have provided important understanding of cancer, the interaction be-
tween cancer cells and their microenvironments is difficult to reproduce accu-
rately. Thus, for more physiologically relevant conditions, animal experiments
have been used.

Animal-based experiments have been crucially important in cancer research,
in particular in cancer pathology, tumor transplant, immunization and treat-
ment. However, the cruelty and ethical views caused by animal experiments have
caused a reduction in their use. In 1959, the conception of ‘Three Rs’ was pro-
posed as the principles of Replacement, Reduction and Refinement in The Prin-
ciples of Humane Experimental Technique and the concept has been a hot issue
in the EU legislation since 1986, aimed at protecting animals [3, 4]. Therefore, in
the wake of research requirements and experimental regulations, well designed
experiments are crucially important, which definitely need the input from vari-
ous disciplines like mathematics, physics, computer science, etc.

The contents of this chapter have been published in paper [1]: Jiao Chen, Daphne Weihs and Fred
Vermolen. "Computational Cell-Based Modeling and Visualization of Cancer Development and
Progression." New Developments on Computational Methods and Imaging in Biomechanics and
Biomedical Engineering. Springer, Cham, 2019. 93-119.

1
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2 1. INTRODUCTION

To validate developed hypotheses regarding biological processes occurring
during cancer development, it is necessary to assess experimental outcomes.
Since experimental results are usually represented in the form of patterns and
numbers, the developed hypotheses need quantification. This quantification
requires the translation of hypotheses into quantitative relations, which gener-
ally pose a set of mathematical relations. The combination of the mathemati-
cal relations constitutes the backbone of the mathematical model that is used
to simulate the biological process of interest. Mathematical models are capable
of reproducing situations that are beyond the measured data. Despite all ad-
vantages of mathematical modeling, one should be careful in the evaluation of
the results due to possible shortcomings in the model. Shortcomings in mathe-
matical models arise from neglecting several features in biological processes due
to lack of knowledge, as well as by uncertainty of parametric values. The latter
shortcoming requires parameter sensitivity analysis. Facing the societal burden,
mathematical modeling of cancer is a promising approach to combine with ex-
periments in vitro and in vivo, using both animal and human materials. On one
hand, the modeling results lead to predictions [5] and further description with
examples can be found in [6]. On the other hand, with computational modeling,
the number of animal trials could be reduced and the experiments can be de-
signed better, however, conversely, mathematical models could be validated by
corresponding experiments.

As early as in 1942, a book named ‘On Growth and Form’ by Thompson et al.
[7] cited the following quote from a statistician Karl Pearson (first published in
1901):

I believe the day must come when the biologist will - without
being a mathematician - not hesitate to use mathematical analysis
when he requires it

and presents mathematical principles in his book. A 100 years later, a paper in
‘The Economist’ (2004) stated that

If cancer is ever to be understood properly, mathematical models
such as these will surely play a prominent role.

1.2. MATHEMATICAL MODELING

1.2.1. MATHEMATICAL MODELING ON VARIOUS SCALES
Mathematical models have been developed for a broad spectrum of length-scales,
ranging from a molecular level (from a few atoms to multitudes of biomolecules)
to a tissue level. Fearon and Vogelstein [8] described a conceptual model show-
ing cancer evolution as a series of genetic mutation mainly in tumor oncogenes
and suppressor genes. With a further rigorous verification, Gatenby and Vin-
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3

cent [9, 10] found that environmental selection forces are dominated by com-
petition for limited substrate in the era of carcinogenesis. Next to genes, due
to a large amount of proteins involved in cancer development and progression,
where some of them even become the targets of new drugs, molecular modeling
is important and is able to provide details that would not be accessible if solely
experiments on the molecular dynamics were carried out [11]. For example, Im
ta al. [12] proposed Brownian dynamics for modeling the movement of ions
in membrane channels. Binding of proteins and DNA have been described by
Chen and Pettitt [13]. Furthermore, molecular mechanics have been described
in [14, 15], and other molecular models refer to a review paper by Friedman et al.
[11].

Cells constitue the fundamental, independent functional unit of organisms.
Cancerous cells display many different features compared to the characteristics
of normal constitutive cells, which have been incorporated in various mathe-
matical formalisms. In a cell-based modeling framework, the geometry of one
cell can be fixed, see for instance [16, 17]; whereas the cell morphology is also
changeable in reality. Rejniak et al. [18] utilized an immersed boundary ap-
proach with distributed sources to model the deformable boundary of cells at
early stages with application to ductal tumor. Moreover, deformation of cells
can also be realized through the simulation of cytoskeleton [19]. Furthermore,
the studies in [20, 21] treated the evolving geometry of the cell membrane by
combining a moving boundary problem with a system of coupled surface par-
tial differential equations, which are solved by the use of surface finite element
methods.

For the study of cancer progression and disease pathology, the modeling of
large ensembles of interacting cells in biological tissue is needed. A literature
study by Murray [22] proposed several partial differential equation-based models
to simulate various biological phenomena like wound healing, cancer develop-
ment, immune system response on the macro tissue scale. In the context of can-
cer dissemination and metastasis, clusters of cells have much higher metastatic
potentials than singular migrating cancer cells [23, 24]. Based on this, Dudaie et
al. described a model on the collective movement of cancer cells on a cell colony
level [25] and Jolly et al. developed a model for investigating cluster-based dis-
semination of breast cancer cells [24]. Taking the CPU time into consideration,
parallel computing platforms are feasible for tissue simulation involving large
numbers of interacting cells [26].
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1.2.2. MATHEMATICAL MODELING FROM A VIEW OF CANCER

PROGRESSION
Cancer development involves a chain of biophysical processes including initi-
ation, angiogenesis, metastasis and colonization, of which some of them are
sketched in Figure 1.1.

Figure 1.1: The transition from a benign tumor, see left, to a malignant tumor, see right. The
interaction of tumor growth and angiogenesis. Taken from Siemann DW, Vascular targeting agents.
Horizons in Cancer Therapeutics: From Bench to Bedside. 2002; 3 (2): 4-15 [27].

With a series of gene mutations, normal cells mutate into cancer cells and
obtain abnormal properties (i.e. dysfunctional excessive proliferation) [28]. Ac-
cording to the studies by NHS (National Cancer Intelligence Network), early di-
agnosis of cancer can increase the likelihood for survival significantly. However,
during this period cancer is usually difficult to detect. A literature review on cell-
based models in which the initial stages of cancer have been modeled is provided
in [29]. The importance of early diagnosis motivates the need of strengthening
scientific research on the early stages of cancer development both from clinical
and in-silico studies. To simulate cancer initiation, Vermolen et al. [30] devel-
oped various cell-based models and Enderling et al. [31] developed a model on
radiotherapy strategies targeting cancer during its early stages.

Angiogenesis triggers a key transition for tumors from being a dormant avas-
cular phase to reaching a soaring vascular phase [32], see Figure 1.1. Based on
this phenomenon, many experimental studies aim at preventing angiogenesis
or at cutting off oxygen sources to prevent further development and more im-
portantly metastasis of a tumor. For example, a drug named Avastin is regarded
as a powerful means for cutting off the tumor’s oxygen supply, however, tumors
become more aggressive as a result of further hypoxia [33]. To aid the experi-
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ments, mathematical modeling has yielded several contributions such as a 3D
angiogenesis model [34], a cellular automata model of growth of blood vessels
by Rens et al. [35] and other relevant works [36, 37]. An excellent review about
tumor-induced angiogenesis was written by Stephanou et al. [38].

Metastasis is responsible for as much as 90% of cancer-caused mortality [39].
In this case, the migration of cells often proceeds through mechanotaxis, which
can be classified into tensotaxis (movement according to mechanical tensions)
and durotaxis (migration towards a stiffness gradient). In tensotaxis migration,
cells exert forces on their ECM environment, and in turn the stresses, displace-
ments and strains due to cell-induced deformation of the microenvironment can
be sensed by neighbouring cells. Those neighbouring cells are then able to mi-
grate according to the mechanical signals. This was experimentally evidenced
and modeled in [40–42]. For durotaxis migration, cells tend to move in the di-
rection of a stiffness gradient, and especially cancerous cells show a preference
for a stiffer substrate or ECM [42, 43]. The works by Weihs et al. have also shown
that the stiffness of the substrate effects the ability of cancer cells to exert forces
related to adherence [44] and to mechanical invasiveness [45]. Regarding can-
cer metastasis, some existing mathematical models can be found in the works
[46–48].

The existence of the complexity and heterogeneity in various cancers poses
a big challenge to adequate treatments. For many decades, many studies have
been devoted to finding a breakthrough for cancer treatment. With the bound
of ethics as well as the increasingly loud voice of anti-animal experiments, bio-
logical experiments and clinical trials need to be closely integrated with mathe-
matics and high-speed development of computer technology. In this fast pace of
life, more and more people are suffering from chronic or emerging diseases and a
majority of cancers develop as a result of chronic inflammation [49]. Mathemati-
cal models provide an avenue to explore possible improved and alternative ther-
apies against cancer [50]. For instance the works [51, 52] modeled radiotherapy
of breast cancer and their work shows the possibility of investigating clinically
verifiable hypotheses for the influence of radiotherapy on cancer progression
through numerical simulation. Furthermore, Tanaka et al. [53] proposed a model
for prostate cancer which is helpful to scrutinize the application of hormone
therapy. Another modeling work, treating the influence of chemotherapy on can-
cer cells, was reported in [54]. Next to the traditional treatment approaches like
surgery, chemotherapy, radiotherapy, cancer immunotherapy has shown some
prospects [55, 56]. Therefore, the numerical simulation of immunotherapy has
become a research direction. Through boosting the immune system of individ-
uals to fight cancers, a model in terms of tumor-immune interaction was de-
veloped in [57]. A survey of several mathematical models and methods dealing
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with the tumor-immune interaction was provided in [58]. Moreover, any process
of cancer progression could be a therapeutic target and several therapy-related
models were introduced by Abbott and Michor [59]. Furthermore, smart health-
care has drawn a lot of attention, which is able to monitor a patient’s vital organs
and to guide doctors to perform surgery as well as to apply medications more ac-
curately. However, smart healthcare is non-separable from computer technology
with numerical simulation and it faces many mathematical challenges that need
to be solved. Therefore, mathematical modeling is a promising means to reduce
the cost and ethical burden of experimental tests for cancer research [50] and will
even contribute to quantify the impact of therapies against cancer. This quantifi-
cation will be used to improve and, even better, to optimize certain therapies by
computing the impact of new therapies against cancer.

1.2.3. MATHEMATICAL MODELING FROM A VIEW OF IDENTI-
FIED CANCER TYPES

There are currently more than a hundred distinctly types of identified cancers
[60]. According to the global cancer statistics given in [61], the cancer with the
highest mortality rate, as high as 19.4% in adults, is lung cancer. Regarding the
models on lung cancer, Chmielecki et al. [62] used an evolutionary model to op-
timize the dosing of drug treatment. Wang et al. [63] and Bianconi et al. [64]
proposed further mathematical models to simulate lung cancer by multi-scale
agent based and systems biology inspired formalisms for large tumors. Further-
more, other types of cancers were simulated mathematically like liver cancer
[65], breast cancer [24, 51], brain cancer [66, 67], avascular cancer [68], prostate
cancer [53, 69], etc. Some tumors develop in distinct architectural forms, e.g.,
preinvasive intraductal tumors in the breast or prostate, which were simulated
by Rejniak and Dillon [70]. Pancreatic cancer is notorious for its profuse stroma
with less than 4% 5-years survival rate [71], which was modeled in Chapter 2 and
Chapter 3.

1.2.4. MATHEMATICAL MODELING FROM A VIEW OF MODEL TYPES
Modeling mechanics of cancer cells and tissue is an emerging field with a broad
spectrum of patterns. Agent-based models are developed to understand the mu-
tual interplay of an individual cell and its surroundings on the micro-scale. These
models have a completely different nature compared to the macro-scale off-agent
models. The macro-scale models consider cell densities rather than an individ-
ual cell, which have a merit is their applicability to larger physical. The agent-
based models can be divided into several classes:

• Lattice-based models, which include cellular automata, lattice gas cellu-
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lar automata and cellular Potts models, which are described in the review
[72]. In cellular automata, cells may occupy a single lattice site, herewith
one is able to simulate a large population of cells [73, 74]. In comparison,
lattice gas cellular automata models include velocity channels next to their
positions [75]. Furthermore, the cellular Potts models are characterized by
energy functionals that determine the probability of a change of state at a
lattice point. More information can be found in the works by Merks and
Koolwijk [76], van Oers et al. [77] and the pioneering work by Glazier and
Graner [78];

• Particle models are formalisms where each cell is treated as an individual
particle with a fixed geometry (circles or spheres in the two- and three-
dimensional cases), and where the cells are allowed to migrate throughout
the region according to several chemical, mechanical or electrical signals.
For an overview, we refer the interested reader to consult Vermolen [79],
while for specific implementations, we refer to Kim et al. [80] and Ribeiro
et al. [81] in the modeling of filopodia. In particular, Ribeiro et al. [81]
report on how the filopodia contribute to cell migration. Furthermore,
Drasdo and Hoehme [82], Byrne and Drasdo [83], Vermolen and Gefen
[84, 85], and Vermolen et al. [30] elaborate on the context of the immune
system to fight cancer;

• Cell-shape evolving models are representations where the geometry of the
cell changes during its migration. This migration may result from vari-
ous signals. Here one should mention the approach by Madzvamuse and
George [86], which deals with the migration and movement of the cells
with a visco-elastic inner cell structure, the model by Borau et al. [87],
which is based on a voxel approach, as well as the approach by Vermolen
and Gefen [19] which is based on a division of the cell surface into mesh
points that are connected to each other and to the center of the cell. Ver-
molen et al. [88] extend the approach to a multicell and multi-physics en-
vironment to simulate the immune system;

• Hybrid discrete-continuum models, which are feasible models for large
multicellular systems [72]. This class, based on treating cells as individ-
ual entities and other signals through continuum-scale approaches, is ex-
plained further in [89]. Furthermore, the hybrid approach has been used
for simulation of would healing [90] and angiogenesis [91], etc.
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1.3. OUTLINE
Due to the overwhelming complexity in cancer research, the joint-effort has to
be accelerated. This thesis focuses on the mathematical modeling of pancre-
atic cancer with its treatment and uncertainty quantification. Albeit cancer dif-
fers even between patients, some underlying mechanisms are comparable and
therefore we generalize the similarities and simulate the biophysical processes
by using analogous mathematical frameworks and numerical methods.

This thesis is organized as follows. In Chapter 2, we set up a cell-based model
with an application to pancreatic tumor islets, where the influence of the colla-
gen orientation of desmoplastic stroma on T-lymphocytes migration is investi-
gated. As expected, the tumor-associated desmoplastic stroma, acting as a phys-
ical barrier, inhibits anti-tumor responses and drug treatments so that cancer
cells can survive and further proliferate at early stages. To investigate the desmo-
plastic stroma-targeted treatment, Chapter 3 introduces a model to mimic the
pancreatic cancer progression under a combined drug intervention PEGPH20 +
gemcitabine. With comparing the time of administration, the likelihood of cure
is predicted using a Monte Carlo simulations framework. To compare different
methods, an agent-based model cellular automata is introduced in Chapter 4,
which is used to simulate a larger cell cluster level. We incorporate virotherapy
in this study using a reaction-diffusion equation. As cancer progresses, partial
cells will start to metastasis and undergo massive deformations. In Chapter 5,
we develop a cell-based model for the evolution of cell morphology during can-
cer metastasis, where the likelihood of cancer cell metastasis is predicted based
on Monte Carlo simulations. Finally, several conclusions as well as prospects are
given in Chapter 6.
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A MODEL FOR CELL MIGRATION IN

NON-ISOTROPIC FIBRIN NETWORKS

WITH AN APPLICATION TO

PANCREATIC TUMRO ISLETS

Cell migration, known as an orchestrated movement of cells, is crucially important
for wound healing, tumor growth, immune response as well as other biomedical
processes. This chapter presents a cell-based model to describe cell migration in
non-isotropic fibrin networks around pancreatic tumor islets. This migration is
determined by the mechanical strain energy density as well as cytokines-driven
chemotaxis. Cell displacement is modeled by solving a large system of ordinary
stochastic differential equations where the stochastic parts result from a random
walk. The stochastic differential equations are solved by the use of the classical
Euler-Maruyama method. In this chapter, the influence of anisotropic stromal ex-
tracellular matrix in pancreatic tumor islets on T-lymphocytes migration in differ-
ent immune systems are investigated. As a result, tumor peripheral stromal extra-
cellular matrix impedes the immune response of T-lymphocytes through changing
the direction of their migration.

The contents of this chapter have been published in paper [92]: Jiao Chen, Daphne Weihs and
Fred Vermolen. "A model for cell migration in non-isotropic fibrin networks with an application
to pancreatic tumor islets." Biomechanics and modeling in mechanobiology 17, no. 2 (2018): 367-
386.
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2.1. INTRODUCTION
Cell migration is a directed movement of cells which typically includes amoeboid
and mesenchymal movement. Cell migration is driven by (combinations of) sev-
eral mechanisms: chemical cues (chemotaxis or haptotaxis where the cues are
in the fluid phase or extracellular matrix (ECM), respectively), mechanical cues
(mechanotaxis, being tensotaxis or durotaxis), electrical cues (electrotaxis), by
light activation and by random walk. Cell migration is an integral part of many
different biomedical processes, such as wound healing, organ development, tu-
mor growth and cancer metastasis. Moreover, it is critical in the framework of the
immune system responses which are indispensable for clearing the body from
hazardous chemicals, pathogens and mutated cells, such as cancer cells. There-
fore understanding cell migration is crucially important for finding ways to im-
prove therapies.

The immune response is essential for all living organisms. In antitumor im-
mune responses, tumor-specific T-lymphocytes, in particular CD8+, play an in-
dispensable role. However, some cancer cells are able to escape the engulfment
by T-lymphocytes through various mechanisms. One possibility could be that
the tumors build stromal barriers against immune cells. Pancreatic ductal ade-
nocarcinoma (PDAC) is known for its profuse desmoplastic stroma which is com-
posed of activated fibroblasts, collagen and ECM [93]. The desmoplastic stroma
plays an important role in the tumor progression, however its function is likely to
be dynamic over time since its cellular and noncellular constituents change over
time [94, 95]. In the literature, there is some controversy about whether stro-
mal constituents support or inhibit tumor progression. Rhim et al. [93] demon-
strate that at least some stromal constituents can act to physically restrain rather
than promote tumor progression. Whereas, according to Salmon and Donnadieu
[96], the stroma may support tumor progression by preventing the immune sys-
tem from reaching and destroying the tumor. They observe that tumor islets (T-
islets), which are surrounded by rich stromal networks, can form a major ob-
stacle for T-lymphocytes mediated antitumor activities. Moreover, Hanahan and
Weinberg [97] state that some stromal cells cause immune suppression and hence
promote tumor survival and growth. Therefore the effects of the tumor microen-
vironment, and specifically the stroma, on tumor progression are still unclear.
This could lay the foundation for the improvement of cancer therapy.

Much experimental work has been done on cancer and cancer cells. How-
ever, the tumor microenvironment and its immune mechanisms have only re-
cently become an important focus, and thus the availability of experimental data
and results are still limited. Therefore, there is an urgent need to strengthen
multidisciplinary tumor research including input from medicine, biology, en-
gineering and mathematics. Developing new insights into tumor behavior and
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response in connection with its environment as well as immune system inter-
actions requires a strong link between available experimental results and the
development of updated hypotheses. In order to facilitate this link and to be
able to forecast tumor behavior under various experimental circumstances that
lie beyond the currently available experimental results, a quantification of the
hypotheses into mathematical relations is indispensable. Mathematical mod-
els can be developed on several scales ranging from continuum-based macro-
models to cell-based micro-models. Since cell-based models often use measur-
able experiment-based quantities (like cell migration rates, etc.), they are very at-
tractive though their implementation over large domains is possibly expensive.
Since in this chapter, we are interested in the small spatial length scale of the
order of millimeters, the model that we currently work with is cell-based.

This chapter focus on the simulation of cell migration in T-lymphocytes me-
diated antitumor response with an application to pancreatic tumors. The work
by Salmon and Donnadieu [96] has shown that in many cases pancreatic carci-
noma consists of T-islets which are surrounded by stromal regions where colla-
gen is oriented parallel to the circumference of T-islets. Since T-lymphocytes mi-
grate faster in the direction of the orientation of collagen fibers, T-lymphocytes
merely circle around T-islets and thereby hardly enter them. Hence, T-lymphocytes
are unable to function in neutralizing cancer cells. To be able to identify ways to
change these circumstances, we have developed mathematical models that re-
produce the experimental phenomenon as much as possible and allow to simply
and rapidly develop and test hypotheses on the process mechanisms and predict
experimental outcomes. Using simulations, we propose and evaluate a possible
therapy, based on injecting or stimulating isolated endothelial cells that are not
connected to the blood vessel network and letting them invade T-islets through
the collagen network around them. The idea is to exploit endothelial cells ability
to degrade the network such that T-lymphocytes are able to invade T-islets and
be able to interact with and neutralize cancer cells. This idea has not been imple-
mented as a therapy to fight cancer, however, our aim is to simulate this process
to show its potential applicability.

In this chapter, we aim at a micro-scale phenomenological description that
T-lymphocytes migrate in the vicinity of T-islets. We extend the formalism by
Vermolen and Gefen [84] to non-isotropic fibrin networks where the formalism
by Cumming et al. [98] will be used and extended such that we can model geo-
metrically evolving cells in non-isotropic environments. Next to T-lymphocytes,
we will take into account the migration, proliferation, apoptosis of all other cells
as well as mutation of benign epithelial cells.
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2.2. MATHEMATICAL MODEL

The model addresses several biological processes, which will allow simulation of
the immune response to T-islets in different microenvironments. Specifically, we
include the migration, division, apoptosis, mutation of cells, the chemical signal-
ing as well as the immune reaction in a non-isotropic environment. In addition,
contractile forces exerted by cells are accounted for by a simplified mechanical
balance. To this extent, a domain of computation Ω ⊂ R2 is introduced where
ΩT ⊂ Ω denotes T-islets. The islet ΩT is surrounded by a stromal layer, which
contains a high density fibrin network with orientation parallel to the circumfer-
ence of ΩT, this subdomain is denoted by ΩF ⊂ Ω and it does not overlap with
ΩT.

To encode a mathematical model, the following procedures and assumptions
are used in the development of present formalism: 1) to keep the computations
short in CPU-time, we consider a 2D domain of computation; 2) all cells are
hemispherical and the projection onto the 2D substrate is a circle; 3) each cell
has two discrete states: viable or dead; 4) each viable epithelial cell exerts a trac-
tion force and is able to migrate or proliferate; 5) cells that collide repel each
other by contact forces that they exert in the normal direction. In the following
subsections, we provide the formalisms for each cell condition.

2.2.1. THE MIGRATION OF EPITHELIAL CELLS

Traction forces are crucial for adhesion and migration of cells and affect the in-
tercellular communication and as well as for, among others, shape maintenance
and mechanical signal generation, see experimental studies in [99, 100]. For the
sake of completeness of the model described in this manuscript, we present the
cell migration model that has been developed in [84]. The model formulation
for cell migration is based on experimental observations by Reinhart-King et al.
[100]. Firstly, we consider the distant communication of cells through traction
force. Later, we will deal with the repulsive force that is induced by physical con-
tact. Tensile forces are applied by cells to their microenvironment using the ac-
tomyosin machinery. Cells generate tensile forces internally as myosin motors
induce lateral, relative motion of two actin filaments. An actin filament may con-
nect to the microenvironment through trans-membrane integrins. The external
part of the integrin may then connect to the substrate or ECM, thus transmitting
the intracellular force [44]. Slight deformation of the substrate caused by stress
gives strain energy U , which reads as:

U = 1

2
Vσε = 1

2
V Eε2 = 1

2

V

E
σ2, (2.1)
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where V denotes the deformation volume, σ denotes stress, ε denotes strain of
the substrate at the center of cell and E is Young’s modulus from Hooke’s law,
given by

E = σ

ε
. (2.2)

We use M 0
i to represent the strain energy density, that is the energy per unit of

volume, which follows from the exertion force Fi at the position of cell i. Then
the strain energy density is dictated by

M 0
i = 1

2
σε = 1

2
Es(ri )ε2 = 1

2

σ2

Es(ri )
, for i ∈ {1, ...,n}, (2.3)

where Es(ri ) represents the local elastic modulus of the corresponding substrate.
Furthermore, we neglect the compressibility of ECM. This is motivated by the
experimentally observed Poisson ratio of 0.48 [44, 101]. The above relation is
able to handle the non-uniformity of the substrate stiffness. Further, ri denotes
the position of cell i. If we use L and d for the thickness and vertical displacement
of the deformed substrate, then ε is given by

ε = d

L
, (2.4)

and hence the strain energy density can be calculated by

M 0
i = 1

2
Es(ri )(

d

L
)2, for i ∈ {1, ...,n}. (2.5)

Hooke’s Law is used for a low strain by

ε = 1

Es(ri )

Fi

πR2 , for i ∈ {1, ...,n}. (2.6)

From the above equation and Hooke’s Law, we get

M 0
i = 1

2π2

F 2
i

Es(ri )R4 , for i ∈ {1, ...,n}, (2.7)

where R represents the cell radius. The finding by Merkel et al. [102] shows that
the strain energy density decays exponentially approximately with the decay fac-
tor given by

λi = Es(ri)

Ec
, for i ∈ {1, ...,n}. (2.8)

Here λi is used to represent the signal attenuation ratio of elasticity modulus of
substrate Es(ri ) and elasticity modulus of cell Ec . We calculate the strain energy
density Mi (r) due to the cell position r with center position ri by

Mi (r) = M 0
i exp{−λi

∥ r− ri ∥
R

}, for i ∈ {1, ...,n}. (2.9)
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As outlined in [84], the energy density is a scalar number, hence it can be summed
to obtain a total strain energy density M(r) due to all cells at position r as follows,

M(r) =
n∑

j=1
M j (r) =

n∑
j=1

M 0
j exp{−λ j

∥ r− r j ∥
R

}, for j ∈ {1, ...,n}. (2.10)

Thence for cell i at time t, its own sensed mechanical stimulus M(ri ) is repre-
sented by

M(ri ) =
n∑

j=1
M 0

j exp{−λ j
∥ ri − r j ∥

R
}

= M 0
i +

n∑
j=1 j 6=i

M 0
j exp{−λ j

∥ ri − r j ∥
R

}, for i , j ∈ {1, ...,n}.

(2.11)

Where ri and r j denote the position of cell i and cell j , respectively. Accord-
ing to Vermolen and Gefen [84], the displacement direction of a cell is a linear
combination of all the unit vectors between this cell i and others caused by their
mechanical signals. For cell i and cell j, the unit vector is ei j = ri−r j

∥ri−r j ∥ , and the

total displacement of cell i during a time step ∆t is parallel to

zi =
n∑

j=1 j 6=i

M j (ri (t ))ei j , for i , j ∈ {1, ...,n}, (2.12)

where ri (t ) is the cell i position at time t, and zi is a vector to guide the direction of
cell movement and hence the corresponding total unit vector is ẑi = zi

∥zi ∥ . Taking
the mechanical stimulus into consideration, total displacement over a time is
calculated by

dri (t ) =αi M(ri (t ))ẑi dt , for i ∈ {1, ...,n}, (2.13)

whereαi is a parameter with dimension [ m3

N s ] and the shear force is directed along
the substrate, which acts perpendicularly to the exertion force. For viable cells,
Gefen [103] achieves an expression for αi

αi = βi R3

µFi
, for i ∈ {1, ...,n}, (2.14)

where βi quantifies the mobility of the portion of the cell surface that is in phys-
ical contact with the substrate of a viable cell and µ is the cell-substrate friction
coefficient, which equals 0.2 according to Gefen [103]. Viable cells move accord-
ing to the mechanical stimulus that they sense, however they are also observed
to move (partly) according to a random walk and hence the magnitude of move-
ment should be revised to

dri (t ) =αi M(ri (t ))ẑi d t +
p

2DdW(t ), for i ∈ {1, ...,n}, (2.15)
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where dW(t ) is a vector-Wiener process and D is cell diffusivity.
Epithelial cells move under the influence of strain energy as well as a random

walk in the circle islet. The detection threshold ε is introduced as a minimum
strain energy signal for remote cells to detect each other. Therefore, the total
signal strength a cell senses should satisfy

Mi (r) = M 0
i exp{−λi

∥ r− ri ∥
R

} ≥ ε, for i ∈ {1, ...,n}. (2.16)

Reinhart-King et al. [100] find that the largest distance for a cell to detect is around
d̂ = 30 µm with different elasticity moduli of substrate (approximately 5 kPa) and
cell (approximately 0.5 kPa). This distance may depend on the phenotype of the
cell [104]. Hence the threshold ε is defined by

ε= M 0
i exp{−λi

d̂

R
} ≈ 1.99×10−54, for i ∈ {1, ...,n}. (2.17)

Here ε = 0 kg ·µm/min2 is used taking the rounding error of the computer into
account. Once cells come into physical contact with each other, the force react-
ing against invagination pushes cells away from one another. This is treated in
the next subsection.

2.2.2. THE REPULSION OF CONTACTING CELLS
Cells will not occupy the same space under normal circumstances. However,
cells can have direct mechanical and physical contact with their neighbors, which
is associated with shape changes in general. In this model, cells are allowed to
migrate towards each other and to prevent them from occupying too much com-
mon space, a repulsive force is added to our model with cells that remain circular
at all times.

Gefen [103] introduces a repulsive invagination force into the cell contact
force, which is also incorporated in the computational framework. The elasti-
cally impinging cells will generate a repulsive force to repel each other, which
is determined by the invagination distance and contact radius. This invagina-
tion force will translate to the concept of energy through the computation of the
amount of work. This has been worked out in [84]. Then the strain energy density
as a result of intercellular contact between cell i and cell j is given by

M i j = 4

15
p

2

Ec

π
(

h

R
)

5
2 , for i , j ∈ {1, ...,n}, (2.18)

where M i j and h, respectively, denote the strain energy density produced by the
elastic interaction and indentation distance between the two neighboring cells.
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We calculate h by

h = max(2R− ∥ ri j ∥,0), for i , j ∈ {1, ...,n}, (2.19)

where the ri j represents the distance between cell i and cell j , and total strain
energy density M̂i between cell i and cell j by

M̂i = M(ri )−M i j , for i , j ∈ {1, ...,n}. (2.20)

We phenomenologically assume that the repulsive motion is proportional to the
strain energy density that the cell experiences. Note that this phenomenologi-
cal treatment does not incorporate Newton’s Law. Note that the migration of the
cells contains two components. The first component follows from long-distance
communication. The second component, which only sets in if h > 0, results from
repulsive motion due to physical contact between the cells. Having two cells, this
will imply that an equilibrium is reached if M̂i = 0. This results in an equilibrium
distance between the positions of the cells. This also means that the cells me-
chanically touch over a certain area, and herewith one can phenomenologically
consider this as a measure of cell-cell adhesion. In the case of multiple cells that
are in mechanical contact, the M i j term has to be summed over all the cells that
are in mechanical contact with cell i. Imagine that cell i is in mechanical contact
with cells {i1, ..., ik } ⊆ {1, ...,n}, then the above equation is written as,

M̂i (r) = M(ri )−M mc
i (ri ), for i ∈ {1, ...,n}, (2.21)

where M mc
i (ri ) = ∑

j∈{i1,...,ik } M i j , which is the mechanical contact term of the
strain energy density. Note that the repulsive forces can be balanced with at-
tracting forces and hence the cells can partly overlap and be in physical contact.
Therewith the model allows treatment of collective cell migration.

2.2.3. THE DIVISION, APOPTOSIS AND MUTATION OF CELLS
Each cell has a life cycle that affects its ability to migrate, and is characterized by
the following stages: 1) G1, an increase of RNA and ribosome during this phase
the cell does not move actively; 2) S, synthesis of DNA. Furthermore, the cell is
mobile during this phase; 3) G2, synthesis of RNA and protein. During this phase,
the cell volume increases and the cell is mobile; 4) M, cell mitosis and during
this phase the cell does not move actively. We will incorporate this cell prolifer-
ation process in our simulation in the future. We model cell division, apoptosis
as well as mutation fully using stochastic principles. Using the same principles
given in [30] and [79], we assume that the probability of cell division, apoptosis
or mutation obeys a simple memoryless exponential distribution and that it is
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only affected by the total strain energy density a cell endures, which is given by
ftn (λ, t )∆t during the interval (tn , tn +∆t ). Here λ (λ > 0) is the probability per
unit of time (here per minute) of cell division, apoptosis or mutation after tn , and
ftn (λ, t ) is defined as,

ftn (λ, t ) =λ exp(−λ(t − tn)), (2.22)

and hence,

P (t ∈ (tn , tn +∆t )) =
∫ tn+∆t

tn

ftn (λ, t )d t

' 1−exp(−λ∆t ).

(2.23)

Note that if λ∆t ¿ 1, then

P (t ∈ (tn , tn +∆t )) =λ∆t +O(λ∆t )2, (2.24)

where O is Landau order-symbol to describe the limiting behavior of a function.
To realize it in the code, we let the system randomly generate a number ξ ∼

u[0,1] taken from an uniform distributution. The cell, respectively, divides, dies
or mutates if and only if

0 É ξÉ 1−exp(−λ∆t ), (2.25)

where, as mentioned earlier, λ stands for the probability rate parameter for cell
division, apoptosis or mutation.

In this model, cell proliferation, apoptosis as well as mutation happen under
the premise of satisfying two kinds of conditions:

• Firstly, we simulate cell proliferation, apoptosis as well as mutation using
the probability rates λd , λa and λm , respectively, which depend on the to-
tal strain energy density that the cell senses as a result of physical contact
with its neighbors. We hypothesize that when a cell in a monolayer is in
mechanical contact with six cells in 2D then it reaches a steady state. By
Equation (2.21), we calculate the value of M̂i (r) = M(ri )−M mc

i (ri ) that cor-
responding with a cell being surrounded and just being in physical contact
with six other cells such that the cell boundaries of each pair of cells co-
incide at one point has a value of approximately 0.0125 kg ·µm/min2. We
find that the equilibrium value of the strain energy density for one cell in
contact with one other cell is approximately 0.03 kg ·µm/min2 (see Fig-
ure 2.2). Herewith, we assume that one epithelial cell has sufficient space
to divide if ∥ M̂i (r) ∥< 0.03 kg ·µm/min2 and in the same way, a cancer cell
can divide if ∥ M̂i (r) ∥< 0.04 kg ·µm/min2. Furthermore, a cell is able to
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mutate or die with a bigger ∥ M̂i (r) ∥ if it is squeezed by other surrounding
cells. Followed by a preliminary study of parameters, we set,

λd =


10 min−1, if ∥ M̂i (r) ∥< 0.03 kg·µm

min2

0 min−1, if ∥ M̂i (r) ∥Ê 0.03 kg·µm
min2

for epithelial cells

λd =


10 min−1, if ∥ M̂i (r) ∥< 0.04 kg·µm

min2

0 min−1, if ∥ M̂i (r) ∥Ê 0.04 kg·µm
min2

for cancer cells

λa =


10 min−1, if ∥ M̂i (r) ∥Ê 0.1 kg·µm

min2

0 min−1, if ∥ M̂i (r) ∥< 0.1 kg·µm
min2

for epithelial cells

λm =


10 min−1, if ∥ M̂i (r) ∥Ê 0.05 kg·µm

min2

0 min−1, ifs ∥ M̂i (r) ∥< 0.05 kg·µm
min2

for epithelial cells

(2.26)

Here the corresponding probability is around 0.6321 by Equation (2.23)
within a time interval of ∆t = 0.1 min if the probability rate is 10 min−1.

• Secondly, we assume that there is a period of time, in which a new cell
grows. The length of this period is referred to as the growth time. After
growth, the cell is able to

- divide, if its growth time τd exceeds 5 minutes, that is τd ≥ 5 min;

- mutate, if its growth time τm exceeds 10 minutes, τm ≥ 10 min;

- apoptosis, if its growth time τa exceeds 10 minutes, τa ≥ 10 min.

Cells are allowed to slightly overlap other cells obtaining a repelling force and
then repel each other and move away. Moreover, the repelling force increases sig-
nificantly as the overlap distance goes up. In other words, cell contact inhibition
impedes the cell division probability rate. This is also demonstrated by Nelson
and Chen [105] and Chen et al. [106] who show that inhibition of cell division
follows the reduction in cell area by mechanical constraint. To make the prob-
lem tractable, we only consider the change in mitotic probability rate rather than
the change of cell area. The λd equals 10 min−1 after a time interval τd = 5 min
and drops from 10 min−1 to 0 min−1 if the mechanical force is sufficiently large
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which is ∥ M̂i (r) ∥Ê 0.03 kg ·µm/min2. Malumbres and Barbacid [107] report that
tumor cells have a proliferative advantage due to increased mitogenic signaling
and/or the lower threshold required for cell-cycle commitment. Therefore, the
threshold of strain energy density for λd of cancer cells is slightly changed to
0.04 kg ·µm/min2 based on the findings by Malumbres and Barbacid [107]. One
cell can divide into two cells and the daughter cell moves away from the mother
cell gradually because of the invagination force, to reach an equilibrium state for
their separation distance. Moreover, normal cells exhibit aging, with a limited
maximum time of division; such as a human somatic cell can divide approxi-
mately 50 to 100 times in culture [108]. In contrast, most cancer cells do not
possess a maximum number of division times, which leads to ‘immortal’ cells
with ‘infinite’ division chains.

Many epithelial cells are subject to cell-substrate contact-dependent prolif-
eration and a loss of cell-substrate contact is able to trigger a kind of selective
programmed cell apoptosis, called anoikis [109–112]. In the 2D simulation, we
impose that the epithelial cell starts to die with the probability rate of λa = 10
min−1 when it senses the value of contact force ∥ M̂i (r) ∥Ê 0.1 kg ·µm/min2 after
a growth period of τa = 10 min. In this case, one epithelial cell has been sur-
rounded by more than one layer of six cells in a large cell density over a consider-
able interval of time. For cancer cells, Delarue et al. [113] find that compressive
stress could decrease the division of carcinoma cells rather than increase apop-
tosis. Therefore, cancer cells are assumed to die as a result of engulfment by
T-lymphocytes instead of mechanical stimuli.

We also consider the condition where at times an error occurs in the copying
of the genes during cell division and a mutation is formed. In that case, a gene
has been damaged, lost or copied twice. The changes in genes could be a result of
one or more reasons from physical, chemical or biological factors that are men-
tioned in the introduction. According to [114], many developmental genes of
embryo cells are regulated by mechanical force. Kumar and Weaver [115] report
that the balance of mechanical forces, which originate from neighboring cells or
the ECM, can regulate a surprisingly wide range of cellular properties that are
all critical to tumorigenesis, including structure, motility, proliferation and dif-
ferentiation. For the principles of how the cell senses mechanical signals and
convert them into changes in cellular biochemistry, one can refer to [116] which
unites cellular mechanotransduction with oncogenic signaling. Regarding breast
cancer research in the work by Paszek and Weaver [117], tensional force plays a
potentially important role in mammary gland development and tumorigenesis.
On a molecular level, compression stress is able to alter the behavior of normal
cells by influencing the impact of some chemokines. Furthermore, compression
stress is able to alter the behavior of transformed mammary epithelial cells by
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changing gene and protein expression. Hence the mechanical signal implicitly
influences the mutation rate of epithelial cells to cancer cells. Since the mechan-
ical signals are dealt with using the strain energy density, we hypothesize that
the cell mutation with the probability rate of λm = 10 min−1 is only affected by
a large strain energy density, hence cells are allowed to mutate to cancer cells if
∥ M̂i (r) ∥Ê 0.05 kg ·µm/min2 after the time interval τm = 10 min.

2.2.4. THE MIGRATION OF T-LYMPHOCYTES IN THE NON-ISOTROPY

COLLAGEN NETWORK
In this study, the formalism by Cumming et al. [98] is used to describe the struc-
ture of the collagen and fibrin. To this extent, an orientation tensor Ψ(t ,x) is
introduced, where t and x, respectively, denote time and position in space. In
the 2D setting, the entries of the symmetric tensorΨ are arranged by its spectral
decomposition:

Ψ(t ,x) =
(
Ψxx Ψx y

Ψx y Ψy y

)
. (2.27)

Stroma prevents T-lymphocytes and drug delivery entering T-islets, which
causes their migration around the islets oriented parallel to the stromal ECM. On
the other hand, the movement of T-lymphocytes is also affected by the concen-
tration of chemokines [96]. Therefore, we suppose that T-lymphocytes are able
to enter the islets eventually with a high concentration of a chemokine secreted
by cancer cells. The orientation tensor is composed as the sum of its orthogo-
nal and tangential products, which are coming from the chemokine and stromal
components part, respectively. Thus the orientation tensorΨ can be represented
by

Ψ=λ1w1w1
T +λ2w2w2

T , (2.28)

where the eigenvalues λ1 and λ2 represent the corresponding weights and the
eigenvectors w1 and w2 are orthogonal and tangential components.

The research from Bougherara et al. [118] reveals that the density and orien-
tation of collagen fibers control the distribution and migration of T-lymphocytes
as well as their ability to infiltrate T-islets. Furthermore, their experiments illus-
trate that CD8+ T-lymphocytes migrate faster in a loose-collagen area and re-
duce its velocity once encountering an obstacle with densely distributed colla-
gen fibers. At present, we assume that the tumor peripheral collagen fibrin has
a uniform density and introduce a constant k that represents a measure for the
amount that anisotropy contributed to migration which is also a fixed attenua-
tion faction for the orthogonal velocity of a cell, which reads as

∂v

∂s
=−kv, (2.29)
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where s is the penetration depth with respect to outer peripheral region and v is
given by

v = v0e−ks , (2.30)

here v0 denotes the instantaneous velocity at which cells enter the outer bound-
ary. This approach is in line with the formalism by Cumming et al. [98]. There-
fore, the orientation tensorΨ is improved slightly to,

Ψ= v0e−ksλ1w1w1
T + v0λ2w2w2

T . (2.31)

The k value is investigated in relation to the different density gradient of col-
lagen and fiber in the computational framework. As the density gradient gets
higher, the faster the radial velocity decays. The real ‘peritumoral zone’ contains
a complicated mixture of neoplastic cells and tumor stroma which distribute in
irregular strands or septa [119]. In this case, the density of fibers is not uniform
where the Wiener process should be taken into the account.

2.2.5. CHEMOKINE MODEL
Chemokines are a class of cytokines that guide cells through chemotactic move-
ment. They are involved in many physiological and pathological processes through
combining with their corresponding receptors in cells, such as cell growth, dif-
ferentiation, tumor progression and immune activities, etc.

Tumors have been observed to produce a variety of chemokines and the tumor-
derived chemokines make an attractive target for tumor-reactive T-lymphocytes
to fight against them [120, 121]. Colombo and Trinchieri [122] report that chemokine
interleulin-12 (IL-12) acts on T-lymphocytes and NK-cells in anti-tumor immu-
nity and immunotherapy. Furthermore, Kershaw et al. [121] verify their hypoth-
esis that T-lymphocytes with receptor CXCR2 move towards a source of tumor-
derived chemokine, Gro-α. Therefore, it is assumed that only one kind of chemokine,
which is a cytokine secreted by cancer cells, is able to attract T-lymphocytes to
move towards cancer cells. As the number of cancer cells increases, T-lymphocytes
migrate in the direction of the gradient of the chemokine. The reaction-diffusion
Equation (2.32) is used to describe the rate of change in the concentration of the
chemokine as follows,

∂c

∂t
−Dc∇c = ∑

j∈K(t )
γ j (t )δ(r− r j (t )), j ∈K(t ), (2.32)

where c and Dc represent the concentration and diffusion coefficient of chemokine.
The δ(r) is Dirac Delta function for each cancer cell j at time t and γ j (t ) is the
corresponding chemokine secretion rate by cancer cells. Furthermore, K(t ) de-
notes the set of active cancer cells at time t . By solving the steady-state counter-
part of the partial differential equation, we get,
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c(r) =− ∑
j∈K(t )

γ j (t )

2πDc
log ∥ r− r j (t ) ∥, if ∥ r− r j (t ) ∥≤ 1, j ∈K(t ). (2.33)

This expression is used to model chemotaxis of T-lymphocytes towards can-
cer cells. Note that we only use the gradient of the above expression and that
the relation is only phenomenological. Using a full time-dependent solution of
Equation (2.32) requires the storage of positions at all times. This makes the
scheme expensive.

2.2.6. THE MIGRATION OF T-LYMPHOCYTES
We describe the migration of epithelial and cancer cells based on the traction
force as well as on random walk. T-lymphocyte cells migrate according to the
gradient of the concentration of chemokines [96] and collagen orientation [118]
instead of according to traction force. Here the displacement of T-lymphocytes
is expressed by

dr j (t ) =Ψ[β∇c(t ,r j (t ))dt +
p

2DdW(t )]− ∑
l∈{ j1,..., jk }

M j l dt , j ∈T(t ), (2.34)

where, the set { j1, ..., jk } defines the set of cells that are in mechanical contact
with cell j . Once again, dW(t) is a vector-Wiener process and β and D , respec-
tively, represent the chemotactic constant and diffusivity of the T-lymphocytes.
The set of T-lymphocytes is represented by T(t ).

Similarly, T-lymphocytes are not allowed to overlap too much under cell re-
pulsive force described by the second part in Equation (2.34), which describes
the contribution to T-lymphocytes migration as a result of invagination.

For an overview of the cross-talk among epithelial cells, cancer cells and im-
mune cells in the microenvironment of pancreatic T-islets, a pictorial diagram is
presented in Figure 2.1 which also includes the mathematical variables and the
direction of the mathematical relations.

2.3. NUMERICAL METHOD

2.3.1. EPITHELIAL AND CANCER CELLS
If cells just come into mechanical contact, then the higher-order derivatives of
strain energy density with respect to the intercellular distance are subject to a
discontinuity. Therefore we use the Euler-Maruyama method for time integra-
tion, which is a generalization of the ordinary Forward Euler method for initial
value problems to stochastic differential equations. Higher-order methods for
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Figure 2.1: Schematic representation of the cross-talk among epithelial cells, cancer cells and im-
mune cells in the microenvironment of pancreatic T-islets. The solid arrows represent the influ-
ence of a cell phenotype, where the corresponding mathematical variables have been indicated.
Dotted arrows indicate positive or negative regulations.

the time-integration do not seem to improve the accuracy because of the depen-
dence between Mi j and h. We evaluate the nonlinear parts at the previous time
step. In this way, we circumvent the need for solving a nonlinear problem at each
time step. Of course, this will induce some numerical stability criteria so that the
time step cannot be chosen arbitrarily large to avoid numerical instability. The
differential equation of the displacement is generally given by

dri (t ) =αi M̂i (r)ẑi dt +
p

2DdW(t), i ∈W(t ), (2.35)

whereαi denotes the rate parameter mentioned in the model section, D denotes
the cell diffusion coefficient and the random variable dW(t) denotes a vector-
Wiener process whose entries are identically distributed normal random vari-
ables with variance dt and expected value zero. Further, W(t ) represents the set
of epithelial cells and cancer cells. Therefore the actual position of cell i at time t
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can be obtained from,

rt
i = rt−1

i +∆tαi M̂i (rt )+
p

2D∆W. (2.36)

Here ∆W represents a 2D vector with independent stochastic variables from a
normal distribution with zero mean and variance ∆t .

Since the cells may collide into one another, they should not overlap each
other totally. Therefore, we require their displacement to be less than one-fourth
of their diameter. This criterion is quantified by

∥ rt
i − rt−1

i ∥= max ∥ vi ∥∆t ≤ R

2
, (2.37)

where R is the radius of epithelial or cancer cells and vi is the equilibrium velocity
of cell i. From Equation (2.37), the time step is determined by

∆t = min(0.1,
R

2max ∥ vi ∥
), (2.38)

here we use a default value 0.1 min for the time step. Whereas, if the migration
speed of the cells is large, then the time step is adjusted to ∆t = R

2max∥vi ∥ . This
limitation of the time step guarantees that the cells do not move too much over
a time interval and do not entirely coincide with each other. Furthermore, nu-
merical experiments indicate that numerical stability is also guaranteed if the
above criterion in Equation (2.38) is satisfied. This issue deserves some further
numerical consideration in mathematical rigor.

2.3.2. T-LYMPHOCYTES
We use the same Euler-Maruyama method for T-lymphocytes migration. The
displacement of T-lymphocytes is chemotaxis and we also incorporate the ran-
dom walk to form stochastic differential equations. With the explained parame-
ters in the former section, we calculate the actual positon of T-lymphocytes j at
time t by

rt
j = rt−1

j +Ψ[∇c(t ,xt−1
j )∆t +

p
2D∆W]− ∑

l∈{l1,...,lk }
M j l∆t j ∈T(t ), (2.39)

here the M j l represents repulsive force between T-lymphocytes j and a cancer
cell l .

With cell contact inhibition, T-lymphocytes will be bounced once they collide
with each other. Therefore we suppose that the fourth of their diameter is the
maximum overlapping distance. We use the same criterion in Equation (2.38).
Furthermore, the same method is used to deal with the collision of T-lymphocytes
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Table 2.1: Parameter values

Parameter Meaning Value and unit Source

R Radius of cells 2.5 µm [25]
Rt Radius of T-lymphocytes 2 µm [25]
F Cell traction force (10 - 25)·102 kg ·µm/min2 [123, 124]
Es Substrate elasticity 5·10−5 kg/(µm ·min2) [25]
Ec Cell elasticity 0.5·10−5 kg/(µm ·min2) [25]
β Cell mobility coefficient 1 min−1 [84]
µ Friction coefficient 0.2 [25]
D Cell diffusivity 0.005 µm/min -
Dc Chemokine diffusivity 0.001 µm/min -
γ Secretion rate of chemokine 10 min−1 -

and epithelial as well as cancer cells. Since T-lymphocytes are smaller than the
other cells, we suppose that the maximum overlapping distance of them depends
on the radius of T-lymphocytes.

2.4. NUMERICAL SIMULATIONS

2.4.1. PARAMETER VALUES
To mimic tumor initiation and T-lymphocytes mediated immune response in
pancreatic T-islets as well as possible, we chose the parameter values based on
available sources in literature as much as possible. For those cases where litera-
ture values are not readily available, we make educational guesses based on the
expected behavior. Table 2.1 lists all parameters values.

2.4.2. RESULTS
For the 2D simulation, the projection of each cell is defined as a circle on the
substrate and a large circular domain with a radius of 35 µm is used to simulate
T-islets. Regarding cancerous mutation, in the simulations, we highlight the mu-
tation by a change of color from blue to red in the figures. In order to predict
the impact of the non-isotropic fibrin network in different immune responses
mediated by T-lymphocytes, we simulate T-islets under different conditions for
immunity with stromal ECM orientation and without stromal ECM orientation.

First of all, we investigate the changes in strain energy density as well as me-
chanical contact force in different situations with respect to the overlap distance
in Figure 2.2. The result in Figure 2.2(a) shows that the equilibrium overlap dis-
tance coming from strain energy density and mechanical repulsive force for two
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Figure 2.2: The red and blue lines represent mechanical contact force and strain energy
density, respectively. (a) compares the strain energy density with different cell traction
force F values. (b) compares the mechanical contact force and strain energy density of
one cell when it is surrounded by other one, three and six cells, respectively, for F = 10
kg ·µm/min2.

cells increases as the F value arises and the best reasonable choice for F is 10
kg ·µm/min2 considering the cell radius. Moreover, in Figure 2.2(b), the curves
of mechanical contact force vary a lot when one cell is surrounded by another
one, three and six cells and the maximum equilibrium overlap distance is ap-
proximately 2.35 µm when one cell is contacted by another one. This amount of
overlap is deemed acceptable.

T-ISLETS WITHOUT STROMAL ECM ORIENTATION

Firstly, we consider the simulation of T-islets without any anisotropic collagen
orientation, which means k = 0 in Equation (2.31), hence the migration of T-
lymphocytes is determined by the concentration gradient of chemokine.

With a large mechanical stimulus, an epithelial cell mutates to a tumor cell in
Figure 2.3(b) and it starts to divide subsequently. Since the tumor cells release a
chemokine, T-lymphocytes move to the islet from different directions according
to the chemokine signal. Cancer cells may be engulfed by T-lymphocytes when
they are in contact for some time, concurrently T-lymphocytes also have a cer-
tain probability of death. In this model, T-lymphocytes and epithelial cells are
not allowed to physically overlap as a result of mechanical interaction. Here, we
simulate two kinds of results with different immune responses as follows: 1) Fig-
ure 2.3 shows T-islets with a strong immune response in which T-lymphocytes
win eventually; 2) Figure 2.4 describes T-islets with a weak immune response so
that the tumor colony occupies the entire region in the course of time. Note that
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Figure 2.3: Snapshots of T-islets without anisotropic collagen orientation (k = 0) under a
strong immune reaction. The blue, red and green circles denote the epithelial, cancer
and T-lymphocytes, respectively.
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Figure 2.4: Snapshots of T-islets without anisotropic collagen orientation (k = 0) under a
weak immune reaction. The blue, red and green circles denote the epithelial, cancer and
T-lymphocytes, respectively.
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Figure 2.5: Comparison for change of the percentage of cancer cells in total cells in two sit-
uations. The red and blue lines represent the evolution of the percentage of cancer cells
in a weak immune system and a strong immune system, respectively (see (a)). Further-
more, the corresponding confidence intervals are showed in (b). The brown and light
blue lines denote the confidence intervals of a weak immune system as well as a strong
immune system in T-islets without anisotropic collagen orientation (k = 0), respectively.

for the differences between strong and weak immune systems, we describe the
strong and weak immune systems as follows

• Ns = 2Nw , here Ns and Nw denote the number of T-lymphocytes in the
strong immune system and weak immune system, respectively.

• T-lymphocytes have a probability rate λd = 10 to die if the distance be-
tween T-lymphocytes and cancerous cell satisfies ∥ rt − rc ∥≤ 2.5 µm over
a time interval τ = 10 min in weak immune system. Whereas, death of T-
lymphocytes with the same probability rate λd = 10 sets in if ∥ rt − rc ∥≤
3.5 µm over a time interval τ= 5 min in the strong immune system.

Figure 2.5 compares the evolution of the percentage of the cancer cells in to-
tal cells as a function of time in two situations. The number percent of cancer
cells accounts for a large advantage in a weak immune system compared with
the strong immune system. In order to find a confidence interval with 95% con-
fidence level, a sample for 10 runs has been chosen and results are shown in Fig-
ure 2.5. Figure 2.5(a) describes the average results and Figure 2.5(b) shows the
average results with corresponding confidence intervals. The weak immune sys-
tem fails to control the cancer cells although a small reduction appears around
τ= 250 min.
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T-ISLETS WITH STROMAL ECM ORIENTATION

Subsequently, we incorporate the anisotropic collagen orientation into this model
and the 15 µm thick annular grey region visualizes the ECM with rich fibers of
collagen and myofibroblasts. The function contribution of the desmoplastic stroma
is unknown and controversial, however, it is reported to have a suppressive role
for the immune response [93, 96]. Herein we model this phenomenon in order
to provide some ideas for further research.

With the same parameters, epithelial cells are allowed to mutate to cancer
cells (Figure 2.6(b)), which can arouse the immune T-lymphocytes chemotaxis
(Figure 2.6(d)). After T-lymphocytes enter into the stroma, they sense the local
orientation as well as chemokine signal and move to the place where normally
gathered many cancer cells, see Figure 2.6(e). The reason why T-lymphocytes
move along the collagen is because the anisotropic fibers are positioned parallel
to the T-islets boundary. Normally tissue has isotropic fibers which have a ‘basket
weave’ pattern with a fairly random orientation, whereas this stromal layer is de-
scribed with more aligned collagen fibers. By experiment observation, Bougher-
ara et al. [118] report that T-lymphocytes follow precisely the pre-defined col-
lagen scaffold and move between two fibers. Furthermore, compared with the
dense region, the loose-collagen areas have more CD8+ T-lymphocytes. There-
fore, T-lymphocytes migration is guided by collagen orientation and affected by
collagen density, however, here we suppose T-lymphocytes suffer some impedi-
ment in parallel collagen fibers with uniform density and get through the barrier
eventually with the increase of the number of cancer cells.

In this part, we also simulate two kinds of results. T-lymphocytes eliminate
cancer cells and reach a dynamic equilibrium with a strong immune reaction in
Figure 2.6 while cancer cells proliferate out of control in a weak immune system
in Figure 2.7.

Similarly, the percentage of cancer cells quantity in both situations is com-
pared over time in Figure 2.8 by using average data coming from a sample of 10
runs with 95% confidence level. This amounts to running ten simulations where
the parameters are taken randomly using the normal distribution. The 95% in-
terval of confidence is subsequently computed via (x −1.96× σp

n
, x +1.96× σp

n
).

After a while, the fraction number of cancer cells is apparently bigger in a weak
immune system. Furthermore, we compare the time responses with correspond-
ing 95% confidence intervals in both strong immune system with collagen and
without collagen (see Figure 2.9(b)). The figure shows that the anisotropic colla-
gen contributes a lot with k > 0 for migration of T-lymphocytes in the blue line,
which describes the strong immune response. Therefore, T-lymphocytes need
more time t2 to get the cancer cells in T-islets with collagen, and the correspond-
ing number of cancer cells reaches a higher level. Therefore, stromal collagen
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Figure 2.6: Snapshots of T-islets with anisotropic collagen orientation (k = 0.3) under a
strong immune reaction. The blue, red and green circles denote the epithelial, cancer
and T-lymphocytes, respectively.
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Figure 2.7: Snapshots of T-islets with anisotropic collagen orientation (k = 0.3) under a
weak immune reaction. The blue, red and green circles denote the epithelial, cancer and
T-lymphocytes, respectively.
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Figure 2.8: (a) comparison for change of the percentage of cancer cells in total cells in
two situations. The red and blue line represent the cancer cell percentage change in
a weak immune system and a strong immune system, respectively. Furthermore, the
corresponding confidence intervals are showed in (b). The brown and light blue lines
denote the confidence intervals of a weak immune system as well as a strong immune
system in T-islets with anisotropic collagen orientation (k = 0.3), respectively.
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Figure 2.9: (a) comparison for time to fight the cancer cells. The blue and red lines rep-
resent the strong immune system without anisotropic collagen orientation (with the re-
sponse time t1) and with anisotropic collagen orientation (with the response time t2), re-
spectively. Furthermore, the corresponding confidence intervals are showed in (b). The
light blue and brown lines denote the confidence intervals of strong immune systems
in T-islets without anisotropic collagen orientation (k = 0) as well as with anisotropic
collagen orientation (k = 0.3), respectively.
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Figure 2.10: (a) the relation between the maximum percentage of number of cancer cells
and the k value in T-islets with anisotropic collagen orientation. The red asterisks and
black lines represent average date and 95% confidence intervals. (b) the relation between
the time of T-lymphocytes to fight the cancer cells with and the k value.

impedes the immune response of T-lymphocytes.
Differences in collagen fiber density lead to different orientation effects. To

further investigate the effect of tumor surrounding collagen on T-lymphocytes
movement in varying degrees, we give ten different values to k from 0 to 0.9.
As we expected, the inhibitory effect of collagen increases with an increase of k
value. This inhibitory is presented mainly by the parallel aligned fiber barrier on
the attenuation of the cell radial velocity and orientation on the tangential di-
rection. Correspondingly, the immune response time of T-lymphocytes and the
maximum percentage of a number of cancer cells are two important criteria for
judging the inhibitory effect, which are compared in Figure 2.10. The mean of the
data for different k values is represented by red asterisks coming from a sample of
10 runs. Both the immune time and maximum number monotonically increase
significantly at the beginning and then they gradually stabilize. Figure 2.11 shows
the evolution of the number of cancer cells with respect to time for k = 0, 0.3, 0.6,
respectively.

In conclusion, specific T-lymphocytes mediated immunity plays an essential
role in T-islets progression. Pathologists have found that almost each individual
has cancer cells after a large number of autopsy and pathological examination.
However, most individuals only have very few cancer cells in vivo without any
symptoms, which are not able to form cancer. Few cancer cells only can be seen
under a microscope by a biopsy so that it is difficult to be diagnosed. Therefore
the immune-related theoretical principles and tumor microenvironment need
to be further simulated and researched.
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Figure 2.11: Evolution of percentage of number of cancer cells and immune time of T-lymphocytes
with respect to k = 0, 0.3, 0.6, respectively.

2.5. DISCUSSION
Cancer cells differ from normal cells with some characteristics, such as unlimited
growth, conversion as well as metastasis. Most individuals have a good balance
of proto-oncogene and anti-oncogene. However, this balance can be disturbed
by some carcinogens. Usually abnormal cells will be eliminated by the immune
system before they become cancerous. Therefore the immune response is very
important to fight cancer. However, tumors have many strategies to suppress or
escape the tumor-specific immunity.

In this chapter, we phenomenologically model T-islets in pancreatic cancer,
which uses the stroma to impede the immunity to some extent. As far as we
know, this is the first mathematical modeling study devoted to the simulation
of pancreatic cancer that takes into account the orientation of the surrounding
collagen. In order to predict this influence, we have three characteristics for the
comparative simulation study: 1) T-lymphocytes migrate to cancer cells with-
out stromal ECM orientation in a strong as well as a weak immune response.
It means T-lymphocytes sense the chemokine signal only and move according to
the concentration gradient; 2) stromal ECM orientation combined with chemokine
factor guide the movement of T-lymphocytes in two kinds of situations; 3) a pa-
rameter study of k value. Currently, we have three results listed as follows:

• The model quantifies the delay of invasion of T-lymphocytes into the cancer-
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affected area as a result of anisotropic collagen orientation, and hence it
quantifies the increase in time to battle the cancer cells;

• The model predicts the unlimited proliferation of carcinoma cells if the
immune system is weak, and a state of equilibrium where cancer cells are
eliminated if the immune system is sufficiently strong;

• As we expected, the obstructing effect of stromal ECM increases with the
increase of k value which is used to denote a measure for the amount that
anisotropy contributed to T-lymphocytes migration. Hence the number of
cancer cells is allowed to grow to larger values if the stromal ECM around
T-islets gets more woven parallel to the circumference of the islet.

Although this model presents the first description of cancer development in
the pancreatic under the influence of the orientation of the surrounding colla-
gen, and although the modeling looks sensible and meaningful in a qualitative
context, many details of cancer cells are ignored in order to get a simple, well-
tractable model for this preliminary study. The following items regarding the im-
provement of the model can be discussed:

- Developing 3D model
The computational framework that we currently present is in a 2D frame-
work. This large simplification has been carried out to save CPU-time.
The main objective of this chapter is to set up a formalism for the inhi-
bition of the immune system as a consequence of the orientation of the
stromal layer. However, a 3D model is more physiological to simulate the
real biomedical phenomenon. Although, our work is only in 2D, the main
conclusions remain the same. That is, the orientation of the stromal layer
poses a delay to T-lymphocytes to entering T-islets. Therewith, the organ-
ism will have some difficulty in fighting cancer. Furthermore, the conclu-
sions regarding the impact of the strength of the immune system on fight-
ing cancer will be the same regardless of the dimensionality of the model.
From a qualitative point, no significant changes are expected regarding di-
mensionality. However, if it comes to quantitative claims, then the dimen-
sionality will have considerable impact. Therefore, in the future, we plan
to develop a 3D model in a parallel computing environment.

- Improving the probability for cell division and death
In some studies, it has been found that the length of telomere DNA of cells
gradually shortens as the number of divisions of a cell increases. Lindsey
et al. [125] report that the telomere length of skin cells becomes shorter
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causing cell aging and lower division rates. This phenomenon is also ob-
served for epithelial cells, T-lymphocytes and hematopoietic stem cells later.
Allsopp et al. [126] observe that different individuals’ fibroblasts have dif-
ferent abilities to proliferate and that the maximum number of divisions
increases with increasing telomere length. Therefore a dynamic probabil-
ity for cell division or death could be incorporated into the modeling to
simulate initiation of cancer through an enhanced mutation rate of indi-
vidual cells. In the current model, cells divide or die depending on the
strain energy density as well as fixed probability rates after some time pe-
riods, however in future work we plan to incorporate this feature of the dy-
namic probability rates, which will be innovation with respect to the exist-
ing literature. A way to do this could be the following: let N be the number
of cell divisions, then we may set,

λN −λN−1 =CλN (1−λN /λ∞), (2.40)

where C is a positive constant and λN is the probability rate of cell division
after N divisions per unit. Furthermore, λ∞ stands for the probability rate
for cell division after an ‘infinite’ number of cell divisions. If C > 0, then
the number of cell divisions increases, the probability rates of mutation,
proliferation and death will gradually converge to λ∞, else convergence
towards zero will be obtained.

- Incorporating more chemical factors
In this study, the strain energy density as well as one chemokine are as-
sumed to be the only factors for cell proliferation, apoptosis, mutation,
etc. In reality, hormones, endostatin and other substances collectively in-
fluence the cell activity. Hence, one could incorporate oxygen content, nu-
trients, more chemokines, etc. This, however, would make the model less
tractable.

- Coupling with angiogenesis
Since the process of tumor growth is really complicated, it is not yet fully
understood how the tumor grows. Modeling is still in its early stage with-
out a unified theoretical basis. Angiogenesis plays a crucial role in tumor
growth and its spreading over different parts of the body; therefore, how
to build a proper model describing the angiogenesis mechanism is going
to be a complicated challenge. Innermost cancer cells of any colony are
most likely to die first, since the concentrations of oxygen and nutrients are
much lower than the concentrations on the rim of the tumor and further-
more, the mechanical contact force, they are exposed to, are much longer.
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We will take the concentrations of oxygen and nutrients into account for
apoptosis. Cancer cells releasing angiogenic factor activate vascular ep-
ithelial cells and promote proliferation and migration of epithelial cells. We
will simulate this part combined with tumor cell dynamics and associated
immune responses in future work. The reader is referred to [127], where
the current cell-based model was extended and applied to angiogenesis.

- Collagen degradation
With the growth of tumors, internal hypoxic cancer cells will die and dead
cells could initiate the mechanisms of angiogenesis by secretion of cytokines.
One of the first steps in neovascularization is degradation of membrane
collagens by endothelial cells, which move along the chemotactic stimu-
lus. Endothelial cells are able to degrade interstitial type I collagen by re-
leasing MMPs [128]. Therefore, we plan to incorporate this into the model
to explore the efficacy of degradation of collagen in immune response as
well as angiogenesis.

- A parameter variation study
Besides all these questions, all models need input parameters, which are
hard to find and which vary from individual to individual. Therefore, it is
also important to carry out a probabilistic parameter variation study and
try to get values from in vivo and in vitro measurements. Afterward, we
could quantify the probability of tumor initiation, growth and seeding to
other organs in terms of biophysical parameters, genetics and lifestyle in
realistic settings and geometries.

The techniques that we used here reside on continuum models solved by the
use of analytic expressions in terms of Green’s functions or approximations, as
well as stochastic principles for cell proliferation, mutation, death and migra-
tion. Combination with finite element strategies could improve the description
regarding mechanics as well as more complicated reaction-transport equations
for the chemokines. For cancer therapy, traditional methods are chemotherapy
and radiotherapy, which aim at cancer cells. However, they inevitably cause vary-
ing degrees of damage and toxicity for the human body. Nowadays, cancer im-
munotherapy has some new developments that enlists the immune system to
attack targeting tumors directly [129]. Thus our original model and further math-
ematical simulation is very meaningful and important for cancer immunother-
apy. Furthermore, it lays a foundation for cancer development and inhibition for
smart health care.
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COMPUTATIONAL MODELING OF

THERAPY ON PANCREATIC CANCER

IN ITS EARLY STAGES

More than eighty percent of pancreatic cancer involves ductal adenocarcinoma
with an abundant desmoplastic extracellular matrix surrounding the solid tumor
entity. This aberrant tumor-microenvironment facilitates a strong resistance of
pancreatic cancer to medication. Although various therapeutic strategies have
been reported to be effective in mice with pancreatic cancer, they still need to be
tested quantitatively in wider animal-based experiments before being applied as
therapies. To aid the design of experiments, we develop a cell-based mathematical
model to describe cancer progression under therapy with a specific application to
pancreatic cancer. The displacement of cells is simulated by solving a large sys-
tem of stochastic differential equations with the Euler-Maruyama method. We
consider treatment with the PEGylated drug PEGPH20 that breaks down hyaluro-
nan in desmoplastic stroma followed by administration of the chemotherapy drug
gemcitabine to inhibit the proliferation of cancer cells. Modeling the effects of
PEGPH20 + gemcitabine concentrations is based on Green’s fundamental solu-
tions of the reaction-diffusion equation. Moreover, Monte Carlo simulations are
performed to quantitatively investigate uncertainties in the input parameters as
well as predictions for the likelihood of success of cancer therapy. Our simplified
model is able to simulate cancer progression and evaluate treatments to inhibit

The contents of this chapter have been published in paper [130]: Jiao Chen, Daphne Weihs and
Fred J. Vermolen. "Computational modeling of therapy on pancreatic cancer in its early stages."
Biomechanics and modeling in mechanobiology (2019): 1-18.
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the progression of cancer.

3.1. INTRODUCTION
Cancer involves abnormal cellular proliferation and the disease has the potential
to spread to other parts of the body. There are over two hundred different types
of cancers including lung cancer, breast cancer, brain cancer, pancreatic can-
cer, etc. Most cancers have the same progression pattern in the sense that they
initiate from a series of gene mutations resulting in uncontrolled proliferation,
angiogenesis and metastasis. However, differences exist between cancer types
and individuals which necessitates that the treatment is patient-specific, which
normally is a combination of surgical resection, radiation therapy and systemic
therapy.

The main treatment for pancreatic cancer is surgical resection, yet there is
only a small resection rate of 15-20%. In addition, the cumulative 5-years sur-
vival rate after the first detection is around 20% [131] and the median survival
is under 6 months. That is because pancreatic cancer is typically diagnosed
late, and because of insensitivity to chemotherapy drugs, immune escape and
other characteristics. Salmon and Donnadieu [132] observe that solid tumors
look like islets (T-islets) surrounded by anisotropic desmoplastic extracellular
matrix (ECM) that can form a physical barrier to the antitumor immune sys-
tem response. At the early stage, mutated cancer cells in T-islets trigger massive
desmoplasia including a variety of cells and a dense ECM as a natural defense
that leads to vascular dysfunction and hence radiotherapy and systemic therapy
are significantly hindered. The desmoplasia causes high interstitial fluid pres-
sures that prevents drug diffusion. The high ECM density in pancreatic desmo-
plasia has been correlated to high concentrations of megadalton glycosamino-
glycan hyaluronan (HA) [133]. In pancreatic ductal adenocarcinoma, the HA ac-
cumulates in the ECM with a frequency as high as 87% [134]. Since the HA can
be depleted by the enzyme PEGPH20, a possible therapy could be based on the
administering of PEGPH20 with a gemcitabine drug for pancreatic cancer ther-
apy. Jacobetz et al. [135] show that combined therapy of PEGPH20 and gemc-
itabine inhibits tumor growth and improves survival of mice. Moreover, Proven-
zano et al. [133] experimentally demonstrate that PEGPH20 + gemcitabine alters
tumor biology and increases immune response as well as overall survival in mice.
Nevertheless, extended testing is necessary before the combined therapy can be
used or even tested in clinical practice.

Systemic toxicity, as a side effect of drug therapy, influences organs and nor-
mal tissues. Gemcitabine is used as the front-line drug for the treatment of non-
small cell lung cancer and pancreatic cancer, however, gemcitabine is toxic and
known to sometimes induce myelosuppression, liver dysfunction, nephrotoxic-
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ity, etc. Moreover, cancer recurrence and drug resistance of cancer cells have bot-
tlenecked recurrent or long-term chemotherapy. Therefore, the usage of drugs
has to be researched and tested massively on animals and even patients. While
animal-based experiments have benefited drug development, there are many
ethical concerns and preclinical drug restrictions when carrying out these ex-
periments. Mathematical modeling combined with well-designed experiments
provides an avenue for cancer therapy research that will allow reduction of the
number of animal experiments.

Mathematical modeling enables us to reshape our view of cancer from dif-
ferent perspectives. The process of establishing a mathematical model briefly
includes the following steps: choice of a real problem, simplification of a bio-
logical phenomenon, establishment of mathematical quantification, and perfor-
mance of numerical simulations. Compared with animal-based experiments, a
prominent advantage of mathematical modeling offers an ethical, fast and cost-
effective way to test various drug combination strategies, as well as various as-
sumptions and predictions for cancer therapy.

Computational modeling has been developed for a broad spectrum of scales
ranging from a few atoms to tissue level with applications to various stages of
cancer progression. As early as in 1981, Moolgavkar and Knudson [136] devel-
oped a model for carcinogenesis at a cellular level. Similarly, Beerenwinkel et al.
[137] develop a model to explore cancer initiation, in particular the genetic pro-
gression with an application to colorectal cancer is considered. Regarding the
larger scales, the possibilities to simulate the effects of radiotherapy and chemother-
apy for brain tumors by using mathematical modeling are studied by Powathil
et al. [66]. Other mathematical models on cancer therapy can be found in [54,
55]. In terms of mathematical modeling related to pancreatic cancer therapy, re-
sources like [138, 139] are rare, and therefore we develop a computational model
to investigate therapeutic combinational possibilities using a Bayesian parame-
ter sensitivity analysis [140].

This chapter describes a mathematical model that is a continuation of Chap-
ter 2. The innovations with respect to the aforementioned work are the follow-
ing: 1) the model has been extended to the simulation of administering drugs
that inhibit the proliferation of cancer cells and decay the densely packed, cir-
cumferentially oriented ECM around the cancer region; 2) an uncertainty quan-
tification has been carried on the basis of the model parameters to predict the
likelihood for successful therapy or further development of cancer. We expect
that these principles can be transferred to cancers of different nature. We first
consider the injection of enzyme PEGPH20 to degrade HA in the desmoplastic
ECM such that T-lymphocytes infiltration is increased. We then study the effects
of subsequent gemcitabine injection to inhibit the proliferation and growth of
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cancer cells. Injections of both enzyme and drug are modeled by using Green’s
functions as solutions of reaction-diffusion equations. Furthermore, the sensi-
tivity of the model with respect to various input parameters is investigated using
Monte Carlo simulations.

3.2. METHOD
In this chapter, we develop the mathematical formalism that is used in the cur-
rent study. We present the way that various cell types are modeled, in terms of
migration, cell death, proliferation and mutation. Next to various cell types, we
explain how the treatments are incorporated in the model.

3.2.1. MOTIVATION FROM EXPERIMENTAL OBSERVATIONS
Cell culture. Regarding Figure 3.1(a) and (b), we have used two commercially-
available human, pancreatic cell lines (ATCC, Manassas, VA): BxPC-3 (collected
from primary site with no evidence for metastasis) and AsPc1 (from metastatic
site, ascites). Cells were cultured in their appropriate media as recommended by
manufacturer. RPMI-1640 Medium (Biological Industries, Kibbutz Beit Haemek,
Israel) supplemented with 10 %vol. FBS (ThermoFisher Scientific, Waltham, MA),
1 %vol. of penicillin-streptomycin (Biological Industries, Kibbutz Beit Haemek,
Israel), 0.46 %vol. D-Glucose solution, 1 %vol. HEPES solution, and 0.66 %vol.
sodium bicarbonate solution (all from Sigma, St Louis, MO). Cells were main-
tained in a sterile incubator at 37 ◦C, 5 % CO2, and high humidity. Cells were
frozen at low passages from ATCC stock (i.e. 3-5), and for experiments cells were
thawed and used in passages 7-30 from the ATCC stock.

Microscopy and imaging. Cells seeded on 10 cm tissue culture plastic plates
were imaged using an inverted, epifluorescence Olympus IX81 microscope, with
a 20x/0.5NA differential interference contrast (DIC, Nomarsky optics) air-immersion,
objective lens. Cells at random locations were imaged while being maintained in
37 ◦C , 5 % CO2, and high humidity (90 %), in an on-stage an on-microscope incu-
bator (Life Imaging Services, Switzerland), to sustain their viability for prolonged
periods of time.

Assumptions. Many of the fundamental biological assumptions in the current
model are taken from Chapter 2, since the current chapter is an extension of
Chapter 2 where therapy is taken into account. We summarise biological as-
sumptions, which are needed to have a tractable model.

1. We only consider three phenotypes: epithelial cells, cancer cells and T-
lymphocytes;
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2. Each cell can be in the following two states: dead or viable;

3. Currently, we consider a two-dimensional (2D) domain of computation to
avoid very large computation times. Further, cell deformation is not taken
account for reasons of computational efficiency, and therefore all cells are
assumed to be circular;

4. Because of the lack of information regarding the composition of the desmo-
plastic stroma, we assume its density to be uniform. We do take into ac-
count the variability of the orientation of the desmoplastic stroma by using
the orientation tensor;

5. According to the experimental studies by Reinhart-King et al. [40], cells
are able to communicate by mechanical forces exerted on the surrounding
substrate. This mode of long-distance communication has been incorpo-
rated in the current chapter on the basis of the strain energy density. In the
modeling, the strain energy density impacts the direction of migration of
the cells;

6. Intercellular contact is simulated by modeling the cells as elastic, soft cir-
cles in the 2D framework. Here, Hertz contact mechanics has been used,
which is also proposed in the mouse experimental paper by Gefen [141],
which treats the invagination of viruses into cells;

7. Cells are subject to various modes of migration. In this chapter, we assume
that chemotaxis of T-lymphocytes migration results from the secretion of a
generic chemokine that is secreted by the cancer cells. Furthermore, since
the extracellular matrix always contains inhomogeneities, of which the ex-
act locations are unknown, we incorporate a random component to the
migrational vectors of the cells. This randomness is modeled by a random
walk, which is a very common approach in the literature [142];

8. Cumming et al. [143] model orientation effects of extracellular matrix in
the context of wound healing in the skin. Since Salmon and Donnadieu
[132] observe T-lymphocytes peripheral migration around T-islets in can-
cer, where the cells only exhibit very little movement in the direction per-
pendicular to the periphery, we follow the approach of [143] to incorporate
orientational variations of the desmoplastic stroma;

9. According to the experimental studies by Kar et al. [144], homogeneous
cultures of cell exhibit the same cell cycle if it comes to division and death.
However, the rates on which the cell cycles proceed differs from cell to cell.
Kar et al. [144] observe a random pattern which they catch in statistical
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distributions. Therefore, we incorporate cell division, mutation and death
as random processes.

Next, we incorporate the assumptions behind the therapy, which is based on
the administering of the cocktail of PEGPH20 and gemcitabine. This therapy has
been tested on mice, which results in an improvement of survival of mice subject
to pancreatic cancer. We model the impact of therapy by the use of the following
assumptions:

1. We consider a circular domain of computation, which is in line with the
pancreatic experimental observations [145, 146]. Our Figure 3.1(b) also
demonstrates this circular domain, where an early circular cluster of densely
packed cancer cells is observed with edge-cells exhibiting a unique mor-
phology. This is also found in the studies by Salmon and Donnadieu [132].
Therefore, a circular cancer domain with a circumferentially ring-shaped
desmoplastic stroma is modeled and depicted in Figure 3.2(b);

2. Jacobetz et al. [135] indicate that PEGPH20 can possibly be used to degrade
the desmoplastic stroma. Therefore, we assume that PEGPH20 makes the
orientation of the desmoplastic stroma more isotropic, and hence the T-
lymphocytes migration into T-islets is enhanced;

3. Gemcitabine is a very general drug for chemotherapy against pancreatic
cancer. This chemical is known to inhibit DNA synthesis, and hence cell
proliferation is frustrated [147]. Therefore, we assume that gemcitabine
suppresses the proliferation of cancer cells;

4. Since it is hard to obtain constitutive relations for the diffusivities of the
various chemicals (drugs and cancer cell-secreted chemokine), we assume
that diffusion of all chemicals is based on Fick’s law for linear diffusion.
Furthermore, we are only interested in the qualitative behaviors of dif-
fusion, and therefore we use Green’s functions to describe the concen-
tration fields. A further motivation for this approach is that the Green’s
functions easily provide explicit relations for concentrations and their gra-
dients, which are needed for modeling chemotaxis, without the need of
mapping from finite-element meshes (which possibly results into a loss of
accuracy).

3.2.2. MIGRATION OF EPITHELIAL AND CANCER CELLS
Cancer initiates from genetic mutations, therefore we consider the normal ep-
ithelial cells, which can mutate to cancer cells, and cancerous cells in a bounded
computational domain Ω ⊂ R2. The set of epithelial and cancerous cells at time
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t is denoted byW(t ). Cells migrate in the domainΩ and interact with each other
as well as with its microenvironment, e.g. substrate in 2D or ECM in 3D. Gener-
ally, cell migration is classified into amoeboid or mesenchymal movement. Can-
cer cells have the ability to change state between these two migrational modes
in order to adapt to environmental changes. In this chapter, we assume that
cells migrate according to mechanical signals as a result of substrate deforma-
tion caused by neighbor cells’ adhesion and traction [148]. For completeness, we
present some of the equations from [41]. Slight deformation of substrate gives
strain energy U as

U = 1

2
V Eε2, (3.1)

where V and E denote the deformation volume and Young’s modulus. Note that
ε defines strain of the substrate given by ε = d

L with d in deformed vertical dis-
placement and L in the thickness of the substrate. Then the strain energy density
(total energy per unit of volume) M 0

i is calculated by

M 0
i = 1

2
Es(ri )ε2, for i ∈W(t ). (3.2)

Here Es(ri ) denotes Young’s modulus of substrate at the center of cell i and ri =
(xi , yi ) is its corresponding position. If Equation (3.2) is combined with Hooke’s
Law ε= 1

Es(ri )
Fi

πR2 , then we get

M 0
i = 1

2π2

F 2
i

Es(ri )R4 , for i ∈W(t ). (3.3)

For cell i with radius R, Fi represents the exerted force on the substrate. The total
strain energy density that a cell detects, originates from itself as well as from the
other neighboring cells. Cells are able to detect signals from other cells if a certain
threshold is exceeded for the strain energy density [40, 92]. Since the mechanical
signal decays with the distance, we compute the attenuation of the signal from
another cell j by

Mi (r j ) = M 0
i exp{−λi

∥ ri − r j ∥
R

}, for i , j ∈W(t ). (3.4)

The attenuation factor λi can be approximated by λi = Es (ri)
Ec

[149], where Ec is
Young’s modulus of the cell. Since the strain energy density is a scalar, the total
value of one cell at position ri can be obtained by summing, that is

M(ri ) = ∑
j∈W(t )

M j (ri ) = M 0
i +

∑
i , j∈W(t ) j 6=i

M 0
j exp{−λ j

∥ ri − r j ∥
R

}. (3.5)
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Based on the work by Vermolen and Gefen [41], the displacement direction of
a cell is determined by the unit vector between itself and other cells, for exam-
ple, ei j = ri−r j

∥ri−r j ∥ for cell i and cell j . At time t , the final displacement direction

zi of cell i can be obtained by the following linear combination of unit vectors
obtained through the interconnection vectors between the cells,

zi =
n∑

j=1 j 6=i

M j (ri (t ))ei j , for i ∈W(t ). (3.6)

Under the mechanical stimulus, the total displacement of a cell per time step dt
is given by

dri (t ) =αi M(ri (t ))ẑi dt , for i ∈W(t ). (3.7)

In Equation (3.7), ẑi is a unit vector (ẑi = zi
∥zi ∥ ) and the velocity parameter αi fol-

lows from [141] and is given by

αi = βi R3

µFi
, for i ∈W(t ), (3.8)

where µ is the cell-substrate friction coefficient and βi represents the mobility
coefficient of the area of one cell that is in contact with the substrate.

Cell contact inhibition is a biological mechanism to inhibit cell proliferation
and to decrease mobility. As a result, the migration speed can be dampened if
two cells collide. Therefore, we incorporate a repulsive invagination force M i j

between cell i and cell j as introduced in [141], which increases with the imping-
ing distance. The equation reads as

M i j = 4

15
p

2

Ec

π
(

h

R
)

5
2 , for i , j ∈W(t ). (3.9)

The variable h is the distance of impingement given by h = max(2R− ∥ ri j ∥,0),
where ri j defines the distance between cell i and cell j . Note that this equation
guarantees that any number of cells will not overlap too much during the colli-
sion.

Taking the unpredictability of cell migration into account, we extend the model
with a temporal stochastic process in the form of a Wiener process (W ∼N (0,dt )).
In summary, the displacement of epithelial and cancer cells is determined by
the strain energy density, total repulsive force M mc (ri ) and random walk, and
thereby the revised equation is written as

dri (t ) =αi M̂i (r)ẑi dt +ηdW(t ), for i ∈W(t ), (3.10)
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where M̂i (r) is the total mechanical signal, which is given by M̂i (r) = M(ri ) −
M mc (ri ) and η represents a constant in this random walk. Further, dW(t ) repre-
sents a vector with independent samples from N (0,dt ). In R2 and R3, the num-
ber of components of dW(t ) is two and three, respectively. To solve the problem,
we use the Euler-Maruyama method [150], which boils down to the ordinary for-
ward Euler method combined with the Wiener process:

rn
i = rn−1

i +∆tαi M̂i (rn)+η∆W(t ), for i ∈W(t ). (3.11)

Here, ∆W(t ) represents a vector with independent samples from N (0,∆t ). The
above equation contains a time-integration in which a part is random from the
Wiener process. Using a higher-order method makes the numerical error smaller
than the actual uncertainty. Therefore, we decided to use the ordinary Euler-
Maruyama method in which the deterministic part is treated by a first-order for-
ward Euler method. However, to ensure the numerical stability, the time step
cannot be chosen arbitrarily large. If we restrict the displacement of a cell step to
one-fourth of the cell diameter, then, the time step is bounded by ∆t ≤ R

2max∥vi ∥
with vi denoting an equilibrium velocity of cell i .

3.2.3. MIGRATION OF T-LYMPHOCYTES
Migration of cells can be driven by several cues. Such cues can be chemicals,
electricity, mechanical properties (such as stress or elasticity) and light. For the
locomotion of T-lymphocytes, we take chemotaxis and small range impingement
into account. According to [151, 152], immune cells like cytotoxic T-lymphocytes
move towards the gradient of chemokines secreted by cancerous cells. We use
K(t ) andT(t ) to represent the set of cancer cells and the T-lymphocytes at time t ,
respectively. Each cancer cell is modeled as a point source, therefore we consider
the Dirac Delta distribution δ(r) to model the chemokine secreted by each cancer
cell. Then, the concentration of the chemokine change is described as

∂c

∂t
−Dc∆c = ∑

j∈K(t )
γ j (t )δ(r− r j (t )), for j ∈K(t ). (3.12)

In Equation (3.12), c, Dc and γ j (t ) denote chemokine concentration, diffusivity
and secretion rate by cancer cells at time t . For the sake of simplicity and ap-
plicability of the Green’s functions and in order to avoid the enlargement of the
parameter space in the model, we take all diffusion coefficients constant over
the various subdomains in all the simulations. Regarding the time-dependent
scheme, it takes computational time and memory to store all the positions of
cancer cells at all times. Therefore we solve the steady-state part of Equation (3.12),
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which results into

∂c

∂x
(x, y) =− ∑

j∈K(t )

γ j (t )

2πDc

x −x j (t )

∥ r− r j (t ) ∥2 ,

∂c

∂y
(x, y) =− ∑

j∈K(t )

γ j (t )

2πDc

y − y j (t )

∥ r− r j (t ) ∥2 .

(3.13)

Analogously, any two T-lymphocytes are not allowed to overlap too much, thus
the contact inhibition is considered by using mechanical repulsion M mc in Equa-
tion (3.9). Furthermore, the random walk is incorporated as well to mimic the
unpredictable migratory behaviors of T-lymphocytes. However, the remote me-
chanical cues are disregarded for the migration of T-lymphocytes. Then the dis-
placement of T-lymphocytes is written as

dr j (t ) =β∇c(t ,r j (t ))dt +ηdW(t )−M mc(r j )z j dt , for j ∈T(t ), (3.14)

where β defines the chemotactic constant. Similarly, dW(t ) is a vector Wiener
process. The displacement of T-lymphocytes is dealt with by using the same
Euler-Maruyama method expressed by

rn
j = rn−1

j +∇c(t ,rn−1
j )∆t +η∆W−M mc(rn−1

j )zn−1
j ∆t , for j ∈T(t ). (3.15)

For an overview of cross-talk between cells and microenvironment, the reader is
referred to Figure 2.1 in Chapter 2.

3.2.4. STOCHASTIC PROCESSES: CELL DIVISION, MUTATION AND

DEATH
Cell proliferation, mutation and death are some of the fundamental processes
of cells regulated by genes, intracellular interaction and microenvironment. To
simplify the model, stochastic processes are considered to simulate the probabil-
ity of cell division, mutation and death [153]. We hypothesize that the probability
of cell division, mutation and death is only influenced by the total strain energy
density one cell endures. Then the probability density for t > tn is given by

ftn (λ, t ) =λexp(−λ(t − tn)), for t > tn , (3.16)

where λ > 0 is the probability rate of cell division, mutation or death per hour.
This probability density is common in modeling waiting times of discrete phe-
nomena, see [154](page 95). Hence, the probability is achieved by time integra-
tion

P (t ∈ (tn , tn +∆t )) =
∫ tn+∆t

tn

ftn (λ, t )dt

' 1−exp(−λ∆t ).

(3.17)
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Note that the incidence of cell division, mutation or death is determined by ξ as

0 ≤ ξ≤ 1−exp(−λ∆t ), (3.18)

where ξ∼ u[0,1] is generated from an uniform distribution. Since most chemother-
apy drugs target on DNA generation and thereby inhibit cell division, the proba-
bility rate λ of cancer cells division and mutation reads as

λ=
{
λ0

λ(c(t )) =λ0exp(−Acdrug)
, (3.19)

where λ0 denotes the initial probability rate and λ(c(t )) represents the probabil-
ity rate for cancer cell proliferation under the influence of drug therapy.

3.2.5. DESMOPLASTIC ECM
Despite the enormous number of cellular studies, the interaction between can-
cer cells and the microenvironment is still poorly understood. In pancreatic can-
cer, the components of the desmoplastic ECM around T-islets are likely dynamic
and thus its function is controversial. Some studies [132, 155] suggest that the
desmoplastic ECM supports cancer progression, whereas some studies hint to
the contrary [156]. However, there is a consensus that cancer cells in the pan-
creas are able to reshape the normal ECM to adapt to their survival needs. Some
of the properties of the desmoplastic ECM can be generalized as, 1) profuse fibers
that are arranged in parallel to the circumference of the T-islets that leads to an
anisotropic environment; 2) abundant regeneration of HA results in local, stiff
tissue; 3) the stiff desmoplastic ECM acts as a solid defense that hinders the en-
try of many agents, e.g. immune cells, blood vessel generation, drugs, etc.

Due to chemotaxis, T-lymphocytes tend to move towards the gradient of the
concentration of chemokines secreted by cancer cells [132]. However, their mi-
gration is guided by the desmoplastic ECM orientation once T-lymphocytes enter
the anisotropic desmoplastic ECM [157]. As a result, T-lymphocytes preferably
migrate in the tangential direction and slow down in the radial direction, which
results in the behavior that cells are migrating around the tumor, and hence the
cells do not penetrate the tumor. To model the orientation in the 2D framework,
we introduce an orientation tensorΨ(t ,x) [143]

Ψ(t ,x) =
(
Ψxx Ψx y

Ψx y Ψy y

)
. (3.20)

The tensor is symmetric according to the tangential and radial directions. Thereby
the orientation tentor is calculated by

Ψ= v0e−ksλ1w1w1
T + v0λ2w2w2

T , (3.21)
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where w1 and w2 are orthogonal eigenvectors denoting the radial and tangential
components [143]. The eigenvalues λ1 and λ2 are the corresponding weights.
Furthermore, there is an attenuation in radial speed with rate constant k reading
as ∂v

∂s = −kv . Here s represents the penetration depth and finally v is given by
v = v0e−ks with an initial velocity v0 on the ECM external boundary, see Equa-
tion (3.21). Finally, the displacement of T-lymphocytes under the influence of
collagen orientation is adjusted to

rn
j = rn−1

j +µ jΨ(∇c(t ,rn−1
j )∆t +η∆W)−M mc(rn−1

j )zn−1
j ∆t , for j ∈T(t ), (3.22)

where µ j denotes the chemotactic mobility rate.

At present, we have relevant experimental results shown in Figure 3.1 to sup-
port our simplified model. As above-mentioned, pancreatic cancer is typically
diagnosed at late stages with a high metastasis risk. Highly metastatic pancreatic
cancer cells, already in their invasive state, are more likely to remain as individ-
uals especially during the invasion, see Figure 3.1(a). In contrast, non-invasive
cancer cells accumulate into dense clusters on plates, likely emulating rapid pro-
liferation in the early stages of tumor growth (see Figure 3.1(b)). We consider the
structure of the cluster of cancer cells, with its highly dense cells, as already sim-
ilar to a circular islet, which is surrounded by tangentially oriented desmoplastic
ECM.

Figure 3.1: Pancreatic cancer cells on plastic tissue culture dishes. (a) high metastatic potential
cell line (AsPC-1). (b) low metastatic potential or locally invasive cell line (BxPC-3). The periphery
of the cluster is structured differently than its interior. Scale bar is 100mm.
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3.2.6. ENZYME AND DRUG INJECTION
Pancreatic cancer frustrates the human immune system and builds a physiolog-
ical barrier to protect itself [133, 158]. These two properties render chemother-
apy pointless, since most chemotherapy drugs are given by intravenous injection
and subsequently arrive at the tumor via the bloodstream [159]. Compared with
other types of cancers, the regeneration of new blood vessels does not take place
in the anisotropic ECM in pancreatic cancer, whereas cancer cells are capable of
surviving under conditions with few nutrients due to insufficient blood supply
[160]. Therefore, in our simulations, we initially mimic a treatment that in the
first step aims at the degradation of the ECM that will then allow drug delivery to
the cancer cells.

Jacobetz et al. [135] show that abundant HA impairs vascular function and
hinders drug delivery, and hence degradation of HA combined with chemother-
apy drugs could be an option for treatment. The enzyme PEGPH20 is considered
here to degrade HA rapidly and efficiently and is administered by injections. The
injection can be regarded as a source point when using the Dirac Delta distribu-
tion δ and the corresponding concentration cen diffuses based on

∂cen

∂t
−Den∆cen = ∑

p∈P(t )
γen(t )δ(r− rp (t )), (3.23)

where Den and P(t ) denote the enzyme diffusivity and the set of multiple injec-
tions. The injection rate γen(t ) of each injection site is defined as

γen(t ) =
{
γ0, if t0 < t ≤ t1

0, else
, (3.24)

which means that PEGPH20 is injected at time t0 until time t1 and no more en-
zyme is given afterward. A schematic timeline of T-islet model in the domain Ω
with important marks is shown in Figure 3.2(a), where the time of drug adminis-
tration is referred to [135]. When the percentage of cancer cells amount in total
cells amount exceeds 35%, the PEGPH20 starts to be injected and time is marked
as t0. To simplify the description of the process, we assume that the enzyme is
injected once at position rp nearby T-islets and thence the concentration of en-
zyme with respect of time t at location r is

cen(r) =
∫ t

0

γen(t )

4πDen(t − s)
e

∥r−rp ∥2

4Den(t−s) ds =
∫ t1

t0

γ0

4πDen(t − s)
e

∥r−rp ∥2

4Den(t−s) ds. (3.25)

The second equality sign results after applying Equation (3.24). Once the drug
has been injected, it diffuses to its surroundings according to

∂cdrug

∂t
−Ddrug∆cdrug =

∑
q∈D(t )

γdrug(t )δ(r− rq (t )), (3.26)
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where Ddrug and D(t ) denote the drug diffusivity and the set of multiple injec-
tions. Subsequently, the injection rate γdrug of chemotherapy drug gemcitabine
during time interval (t2, t3) as well as afterward is given by

γdrug(t ) =
{
γ0, if t2 < t ≤ t3

0, else
, (3.27)

and using Equation (3.27) its diffused concentration cdrug at position r with in-
jected position rd in desmoplastic ECM is expressed as,

cdrug(r) =
∫ t

0

γdrug(t )

4πDdrug(t − s)
e

∥r−rd ∥2

4Ddrug(t−s) ds =
∫ t3

t2

γ0

4πDdrug(t − s)
e

∥r−rd ∥2

4Ddrug(t−s) ds. (3.28)

In pancreatic cancer, gemcitabine targets on inhibiting the proliferation of
cancer cells. Moreover, this model can be extended to immunotherapy in the
form of an injection of antibodies to boost the immune system or by the use of
immune checkpoint inhibitors, etc. Cancer cells enable the immune checkpoint
protein (like CTLA-4, PD-1, PD-L1, etc.) of T-lymphocytes to be over-expressed
which is not conducive to the activation of T-lymphocytes.

(a) (b)

Figure 3.2: Schematic figures. (a) the timeline of T-islets model in domainΩ. (b) a circular desmo-
plastic ECM, which is divided into ten subdomains (indexed from 1 to 10) for computation.

To consider the variation in concentration of enzyme or drug, the circular
desmoplastic ECM (see Figure 3.1(b)) is divided into subdomains as shown in
Figure 3.2(b). In each subdomain, the middle point is used to sense the enzyme/
drug concentration given by
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xi = (
R1 +R2

2
cos(2π

(i −1)

N
),

R1 +R2

2
sin(2π

(i −1)

N
)), for i ∈ {1, . . . ,N}. (3.29)

Here R1 and R2 are the radii of the inner and outer boundaries, respectively,
which are divided by N = 10 points. We only use the subdomains during the
treatments since the enzyme and drug concentrations exhibit variations over the
periphery of the ECM around the tumor.

In experiments [135], PEGPH20 treatment leads to a significant increase in
fenestrae, interendothelial gaps and macromolecular permeability. Moreover,
Shepard [134] demonstrates that PEGPH20 treatment stimulates immune NK
cells and trastuzumab penetration. Thereby the antitumor response is boosted.
The penetration of immune cells and macromolecular structure benefit from less
HA in ECM, which additionally weakens the impact of desmoplastic ECM orien-
tation on cell migration. In our previous chapter, we used constants for eigenval-
ues λ1 and λ2 in Equation (3.21) to calculate the desmoplastic ECM orientation.
In the current work, λ2(t ,r), denoting the tangential orientation component at
position r in ECM, is adjusted over time by

∂λ2(t ,r)

∂t
= L(λ1 −λ2(t ,r))cen(t ,r), (3.30)

where L is a rate constant. Let n be the time index, then subsequently λn+1
2 (r)

can be approximated from the previous time step by

λn+1
2 (r) =λn

2 (r)+L(λ1 −λn
2 (r))cn

en(r)∆t . (3.31)

Furthermore, the attenuation factor e−ks of radial velocity in Equation (3.21) be-
comes time-dependent as well, where k(t ,r) is changed to

∂k(t ,r)

∂t
=−Lk(t ,r)cen(t ,r). (3.32)

Analogously, the kn+1(r) is updated by

kn+1(r) = kn(r)−Lkn(r)cn
en(r)∆t . (3.33)

To locate each T-lymphocyte and to determine where they are at time t if they
are in the desmoplastic ECM region, we compute the angle of the line segment
between cell position and the center (0,0) and the horizontal axis by

θ j =
atan(

y j

x j
), if y j ≥ 0

π+atan(
y j

x j
), if y j < 0

, for j ∈T(t ), if R1 <∥ r j ∥< R2. (3.34)

For each subdomain, the angle is 2π
N and the j -th subdomain has a range of an-

gles given by

θ j ∈ [( j −1) · 2π

N
, j · 2π

N
], for j ∈ {1, ...,N}. (3.35)



3

54 3. A MODEL OF DRUG ORIENTED THERAPY

3.2.7. MONTE CARLO SIMULATIONS
One of the advantages in our model is the efficiency in computational time, there-
fore we carry out Monte Carlo simulations to quantitatively investigate the prop-
agation of uncertainties in the parameters. Parameters are sampled from a nor-
mal distribution N (µ, σ2), where µ and σ denote the mean value and the stan-
dard deviation. The investigated variable X ∈ {F,D,β,k} is given by

X ∼µ+σN (0,1). (3.36)

Each simulation is terminated at 80 h or 150 h, then we investigate the final frac-
tion of cancer cells fc as an evaluation criterion for cancer development. After-
ward, the sample correlation coefficient ρ between variables and the final frac-
tion of cancer cells fc reads as

ρ =

Ns∑
j=1

(X j − X̄ )( f j
c − f̄c )

[
Ns∑
j=1

(X j − X̄ )2
Ns∑
j=1

( f j
c − f̄c )2]

1
2

. (3.37)

In Equation (3.37), X̄ and f̄c represent the average values. Note that the linear
sample correlation coefficient ranges in [−1, 1].

3.3. NUMERICAL RESULTS
Since we have not yet access to clinical data, we estimate the input parameters
based on the range of data provided in the references, which are listed in Ta-
ble 3.1. Furthermore, we use mathematical intuition to approximate some of the
parameters not available in the literature, e.g. diffusivity of enzyme PEGPH20,
which is a kind of protein and its value refers to a study with a range of diffusion
coefficients of proteins [161]. Moreover, the elasticity of T-lymphocytes is much
bigger than the elasticity of epithelial cells, which results in a larger repulsive
force if T-lymphocytes mechanically collide with other cells. Since variations of
some parameters may have a significant impact on the numerical results, Monte
Carlo simulations are carried out to evaluate the uncertainties and correlations
among variables, as well as the likelihood that cancer develops up to a prescribed
extent. For a couple of parameters, we use sampling from a normal distribution,
see Table 3.2 for details.

3.3.1. T-ISLETS WITH ANISOTROPIC DESMOPLASTIC ECM AND

MONTE CARLO SIMULATIONS
Pancreatic ductal adenocarcinoma is notorious for the extensive and stiff desmo-
plasia surrounding the tumor, which is thought to be rare in other types of can-
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Table 3.1: Input values

Parameter Notation Value and Units Source

Radius of cells R 8 µm [162]
Radius of T-lymphocytes Rt 5 µm Estimated
Cell contraction force F 30 kg ·µm/h2 Estimated
Substrate elasticity Es 5 kg/µm ·h2 Estimated
Cell elasticity Ec 0.5 kg/µm ·h2 Estimated
Elasticity of T-lymphocytes Et 250 kg/µm ·h2 Estimated
Cell mobility coefficient β 60 h−1 Estimated
Friction coefficient µ 0.2 [41]
Cytokine diffusivity Dc 5E3 µm2/h [163]
PEGPH20 diffusivity Den 1E1 µm2/h [161]
Drug diffusivity Ddrug 1E4 µm2/h [164]
Secretion rate γ 5E6 mol/h ·µm3 [165]
Injection rate γ0 5E6 mol/h ·µm3 Estimated
Time step dt 0.01 h Estimated
Inner radius of T-islet R1 120 µm Estimated
Outer radius of t-islet R2 200 µm Estimated

Table 3.2: Mean and standard deviation in the Monte Carlo simulation sampling

Parameter F D β Inhibitor k

Value (30, 32) (5E3, (5E2)2) (60, 62) (0.3, 0.12)

cers. Most studies have shown that this abnormal desmoplasia facilitates cancer
initiation, survival and further metastasis [132, 166].

In our previous chapter [92], we develope a cell-based model to describe the
influence of anisotropic desmoplasia on the locomotion of T-lymphocytes. Due
to the stiffness and anisotropy of the desmoplastic ECM, T-lymphocytes likely
become trapped in the desmoplasia area and then preferably move in the di-
rection of the fiber arrangement. Bougherara et al. [157] demonstrate that the
distribution and migration of T-lymphocytes rely on the density and orientation
of collagen fibers.

Since a chemotherapeutic drug administration cycle is typically one week, we
restrict each simulation to 150 h. To make the problem tractable, we assume that
the density of the collagen is uniform everywhere and that initially its arrange-
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ment is parallel to the T-islets circumference. Several consecutive snapshots of
the numerical simulation are shown in Figure 3.3, where epithelial cells, cancer
cells, T-lymphocytes and anisotropic collagen are visualized by blue, red, black
and grey colors, respectively. Due to the guide of the anisotropic orientation Ψ,
T-lymphocytes tend to accumulate in a certain area where the cancer cells se-
crete chemokine is maximal in the stromal layer. The tangential oriented ECM
makes T-lymphocytes unable to reach cancer cells. As a result, the proportion of
cancer cells of the total cells increases significantly within T-islets. Our result is
consistent with experimental observations in a study by Bougherara et al. [157]
on non-small cell lung cancer and ovarian cancer, where T-lymphocytes prefer-
entially accumulate in the stroma rather than infiltrating into the cancer nest.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Snapshots of T-islets with desmoplastic ECM orientation. The epithelial cells, cancer
cells, T-lymphocytes and anisotropic collagen are visualized by blue, red, black and grey colors,
respectively.

To investigate the influence of input parameters on simulated results, Monte
Carlo simulations are carried out, where input variables are sampled from statis-
tical distributions, e.g. normal, uniform, Pareto, lognormal, exponential, etc.[167].
To guarantee an acceptably small error, 5000 samples are used for the cell con-
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traction force F , cytokine diffusivity Dc , cell mobility coefficient β and desmo-
plastic ECM inhibitor k. For the sake of saving computational time while ensur-
ing that the results are not affected, we consider 80 h.

In Figure 3.4, we plot a histogram of 5000 samples for the fraction of cancer
cells at the final time of the simulation fc and a cumulative distribution func-
tion (CDF) of the estimated probability that fc is lower than a certain number on
the horizontal axis. As an example, the proportion of the cases where fc is no
more than 50%, is approximately 51%. The probability rate of cell division, mu-
tation and death in Equation (3.17) is 100/h such that mutation happens during
the interval of a time step in each simulation with a probability 0.63. For smaller
probability rates for the mutation, we observed several cases in which no mu-
tation, that is, no cancer, occurred. Moreover, this figure shows that most cases
end with a large number of cancer cells as a result of ineffective T-lymphocytes
infiltration.

(a) (b)

Figure 3.4: Histogram and CDF plot of outcomes at time of Monte Carlo simulations with 5000
samples. (a) there is no drug intervention. The x-axis shows the final fraction of cancer cells in total
cells fc and the y-axis is its corresponding frequency of occurrence. (b) cumulative probability
f < fc based on the histogram in Figure 3.4(a), where f is the dynamic fraction of cancer cells at
time.

Subsequently, several scatter plots are listed in Figure 3.5 showing the sample
correlations between each input parameter with the estimated fraction of cancer
cells fc . In comparison, significant impacts of the desmoplastic ECM inhibition
k (in particular for small values) and cell contraction force F on fc , cannot be
excluded, where other two variables, i.e. cytokine diffusivity Dc and cell mobil-
ity β, have no obvious correlations with fc . As expected, cancer cells grow and
divide within T-islets protected by the anisotropic desmoplastic ECM with influ-
ence from input parameters. The radical inhibition of the desmoplastic ECM
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becomes stronger as the desmoplastic ECM inhibition factor k increases and
thereby the fraction fc becomes relatively large. Note that there is a dramatic
increase between 0 and 0.15, which means that the migration of T-lymphocytes
is highly sensitive to the accumulation of HA, collagen, fibroblast and etc. in the
early stages.

(a) (b)

(c) (d)

Figure 3.5: Scatter plots of the final fraction of cancer cells fc at time = 80 h versus parameters
F , Dc , β and k, respectively. The ρ in each subfigure corresponds to its correlation coefficient. In
comparison, (d) exhibits a significant correlation between fc and the desmoplastic ECM inhibition
faction k from 0 to 0.15.

3.3.2. PEGPH20 INJECTION
Accumulated HA functions as a core polymer of the cancer-associated ECM to
provide a hydrated viscoelastic gel-like matrix in collagenous fibers, and forms
the main barrier to chemotherapy delivery and vasculature [168, 169]. PEGPH20
is a type of enzyme aiming at depleting abundant HA in the anisotropic desmo-
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plastic ECM to improve vascular perfusion and to increase the effectiveness of
anti-cancer therapeutics. Thompson et al. [168] describe their experiments show-
ing that PEGPH20 has an ability to remove the accumulated HA as well as to re-
model the tumor microenvironment. Thence we propose a simplified enzymatic
depletion model of tumor stroma with PEGPH20 intervention to predict the in-
teraction of cancer cells and its microenvironment.

To evaluate the variations of ECM orientation in different areas in Figure 3.1(b),
the modeled anisotropic stroma is divided into 10 subdomains in Figure 3.2(b).
Each center of subdomains acts as a point to monitor the concentration of PEGPH20
that results in ten different concentration signals. Typically, PEGPH20 is given by
intravenous injection in clinical trials while experimentally cell lines in vitro are
fed with PEGPH20 in culture cell media. To develop a simplified model, we sup-
pose that the injection site is just outside T-islets near subdomain 5. Normally
when patients have any symptoms, the pancreatic cancer is already in advanced
or late stages, which poses a challenge for the improvement of the prognosis.
Since the model is developed for the early stage, we suppose that a high concen-
tration of PEGPH20 is given when the number of cancer cells accounts for 35% of
the total number marked as time t0. The injection lasts 1 h to time t1 and atten-
uation of ECM orientation on T-lymphocytes migration within 10 subdomains
is shown in Figure 3.6. The orientation degree λ2 of subdomains is set to ten
initially and subsequently decays during the time interval (t0, t1), respectively,
where the area near the injection site decays faster. Thereby the T-lymphocytes
in the PEGPH20-treated subdomains move faster in the radial direction at the
beginning compared with in the rest subdomains. Note that eventually the ori-
entation of the ECM has no significant influence on T-lymphocytes migration.

Some consecutive snapshots are shown in Figure 3.7 in which pancreatic
cancer starts with epithelial cell mutation and triggers an immune response af-
terward. With ECM orientation, T-lymphocytes are trapped in peripheral ECM.
After PEGPH20 is injected, T-lymphocytes are no longer hindered by the anisotropic
desmoplastic ECM orientation in the solid stromal region, and finally invade into
the interior of the T-islets. However, the fraction of cancer cells remains stable in
Figure 3.7 when t = 150 h despite that the immune responses are boosted, since
the cancer cells keep dividing without drug intervention. Therefore, drugs or an-
tibodies are crucially important to fight uncontrolled cell division or to enhance
the efficiency of the immune responses.

3.3.3. PEGPH20 + GEMCITABINE INJECTION
The aberrant desmoplasia is a result of activated pancreatic stellate cells which
lead to the production of collagen, laminin and fibronection [170]. As a conse-
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Figure 3.6: Variation ofλ2, which is the tangential component of desmoplastic ECM orientation, in
ten subdomains (see Figure 3.2(b)) during time interval (t0, t1). Since the injection site of PEGPH20
is chosen at the middle of subdomain 5 and 6, but outside of the desmoplastic ECM, the orienta-
tion λ2 of subdomain 5 and 6 decrease faster as a result of sensing a higher PEGPH20 concentra-
tion.

quence, cancer stroma exhibits abundant HA, increased stiffness and elevated
hydrostatic pressure which collaborate to suppress the intratumoral drug de-
livery [133]. With the enzymatic depletion of HA in the stromal region, the in-
terstitial fluid pressure, which restores the vessel appearance and drug delivery
into the carcinoma, decreases. Provenzano et al. [133] experimentally study the
combinations of enzyme PEGPH20 and drug gemcitabine for the treatment of
pancreatic cancer in the mice. To provide more predictions and possibilities, we
develop a PEGPH20 + gemcitabine model for the treatment of pancreatic cancer.

Gemcitabine is the first-line drug for pancreatic cancer, which inhibits pro-
cesses required for DNA synthesis and causes cell death [147]. In our earlier
chapter, the probabilistic division of cancer cells can happen under the follow-
ing conditions: 1) sufficient time interval for growth; 2) suitable strain energy
density. We assume that the probability rate during a time interval remains un-
changed for cell mutation, division and death. Since the drug impedes cancer
cell proliferation, we hypothesize that the probability rate λ of cell mutation and
cancer division depends on the concentration of gemcitabine λ= λ(c(t )). In the
simulations, drug injection (indicated by a red filled square) lasts 1 h such that
the concentration of gemcitabine increases during an hour and subsequently
goes down. Consequently, the probability of mutation and division of cancer de-
creases and then the T-lymphocytes are more likely to eliminate cancer cells. The
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Snapshots of T-islets with PEGPH20 intervention. The epithelial cells, cancer cells, T-
lymphocytes and anisotropic ECM are visualized by blue, red, black and grey colors, respectively.
Moreover, the black asterisk is visualized as an injection site. Before PEGPH20 intervention, T-
lymphocytes are trapped in peripheral ECM and accumulate in a certain area as a result of cancer-
mediated chemotaxis and ECM orientation.

resulting behaviors are shown by some snapshots in Figure 3.8, where PEGPH20
is injected around t = 45 h. Due to the stochastic nature of the model, each sim-
ulation varies from others and thereby the injection time changes with t = 49 h
in Figure 3.7 and t = 45 h in Figure 3.8. Therefore we vary the fraction of cancer
cells when injecting PEGPH20/ PEGPH20 + gemcitabine. The injection point is
visualized as a black asterisk and 10 h later [135], gemcitabine is administered.
Compared to Figure 3.8, the final fraction of cancer cells fc is much smaller in
Figure 3.8 at t = 150 h, which means that the combination of PEGPH20 + gemc-
itabine is more effective than the use of PEGPH20 only in order to facilitate con-
current immune response and chemotherapy.

In animal-based experiments, the size of a solid pancreatic tumor has been
compared before and after the combined treatment, respectively [133]. We al-
ternatively compare the fraction of cancer cells fc in T-islets before and after
treatment, for simplicity of calculation. Figure 3.9 shows the comparison of fc
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Snapshots of T-islets with intervention of PEGPH20 + gemcitabine. The epithelial cells,
cancer cells, T-lymphocytes and anisotropic collagen are visualized by blue, red, black and grey
colors, respectively. Moreover, the black asterisk is visualized as PEGPH20 injection site and the
red filled square denotes gemcitabine injection site. Before PEGPH20 intervention, T-lymphocytes
are trapped in peripheral ECM and accumulate in a certain area as a result of cancer-mediated
chemotaxis and ECM orientation.

in T-islets with PEGPH20 intervention only and with combined PEGPH20 + gem-
citabine, respectively. Each simulation is restricted to 150 h, where PEGPH20 is
given once, the initial cancer cell proportion is 35% and gemcitabine is injected
10 h later in the combined treatment referring to [135]. In Figure 3.9(a), the num-
ber of cancer cells increases to the maximum capacity of the modeled T-islets
(approximately 250 in the current simulation domain) because T-lymphocytes
are trapped in the desmoplastic ECM area. With early PEGPH20 intervention,
T-lymphocytes are capable of penetrating the enzyme-depleted ECM to engulf
cancer cells and thereby the fraction of cancer cells slightly drops firstly and then
gradually rebounds into a growing trend towards roughly 42% in the end. Next,
the combined PEGPH20 + gemcitabine is considered, as we expected, only a few
cancer cells are finally left with a fraction of 11% after 150 h.

Aside from physical barriers, the influence of the injection time of PEGPH20/
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(a) (b)

Figure 3.9: Comparisons of the final fraction of cancer cells fc during 150 h evolution in T-islets
for three cases. Three cases are: without treatment, with PEGPH20 alone and with PEGPH20 +
gemcitabine, respectively. (a) treatment starts as soon as the fraction of cancer cells is 35%. (b)
treatment starts as soon as the fraction of cancer cells is 50%.

PEGPH20 + gemcitabine on the progression of cancer is crucially important. If
the injection time is delayed until the cancer cells have accounted for 50% of the
total cells, the corresponding result is shown in Figure 3.9(b). In terms of the fi-
nal proportion of cancer cells fc , the PEGPH20 alone could restrict the fraction
of cancer cells with a dynamic equilibrium for a short period. Furthermore, the
follow-up progression of cancer depends on the patient’s own immune response.
Whereas, PEGPH20 + gemcitabine could control the fraction of cancer cells to
some extent due to the functions of the drug. The model predicts roughly a frac-
tion of 31% when t = 150 h, see Figure 3.9(b), where probably more PEGPH20
+ gemcitabine is needed for further treatment. During the cancer progression
and therapy, the likelihood of cancer metastasis increases over time and thereby
personalized therapeutic strategies are necessary, which can benefit from com-
putational modeling.

To investigate the fraction of cancer cells on which the combined treatment
starts and the dose of the drug on the final fraction of cancer cells, Monte Carlo
simulations are incorporated with 5000 samples. Note that a dose of the drug is
calculated by γdrug × τ, where γdrug is a constant injection rate and τ is a time
interval. Therefore, the initial fraction of cancer cells when starting treatment as
well as the time interval τ are sampled from a normal distribution with (0.5, 0.12)
and (2, 12) h, respectively. The result in Figure 3.10 shows a three dimensional
scatter plot of the initial fraction of cancer cells when starting treatment, injec-
tion time interval and the final fraction of cancer cells fc , where a horizontal color
bar specifies the final fraction of cancer cells. If we aim that fc does not exceed
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20% in the pancreatic T-islets, the fraction of cancer cells at which the treatment
is started when injection PEGPH20 + gemcitabine should never be larger than
40%. Hence if this fraction exceeds 40%, then fc will never be lower than 20%
after 150 h. By applying Equation (3.37), the sample correlation coefficient of
fraction at which the treatment is started and fc equals ρ = 0.8785. This result
gives the prediction about the likelihood of a cure for specific patients after com-
bining these two drugs. Probably other therapies should be incorporated in if a
patient is diagnosed at very late stages, or treatments should last longer.

Figure 3.10: A three dimensional scatter plot of fraction of cancer cells fc at which the treatment is
started, injection time interval and final fraction of cancer cells. The color bar indicates the final
fraction of cancer cells. Blue colors indicate low final fractions of cancer cells, whereas yellow col-
ors indicate high fractions of cancer cells. Hence blue colors are favorable, whereas yellow colors
are not.

Subsequently, Figure 3.11 shows correlations between the injection time in-
terval and the final fraction of cancer cells fc under various treatment times. It
hints that within our chosen range there is an obvious influence with a corre-
lation coefficient ρ = −0.2753 of doses of the drug on the final results. In other
words, big doses of drugs are necessary if the treatment starts when the fraction
of cancer cells exceeds 40%. Furthermore, the potential consequences are di-
vided into two parts by a dashed line, where the likelihood of cure in the left side
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is higher, whereas the right side means a high risk of malignant cancer and prob-
ably metastasis. Taking the toxicity of the drug into consideration, large drug
doses could be problematic for other parts of the body, and we think that this
model is good for making choices of drug dosage.

Figure 3.11: Scatter plot of the fraction of cancer cells on which the treatment starts, injection time
interval and final fraction of cancer cells. Blue colors indicate low final fractions of cancer cells,
whereas yellow colors indicate high fractions of cancer cells (see color bar). Hence blue colors
are favorable, whereas yellow colors are not. A dashed black line is used to divide the potential
consequences into two parts, where the likelihood of cure in the left side is higher, whereas the
right side part hints a high risk of malignant cancer and even metastasis.

3.4. CONCLUSION AND DISCUSSION
Pancreatic cancer is a lethal disease mainly due to late diagnosis, low resection
rate, high recurrence, metastasis and chemotherapy resistance. Unfortunately,
there is currently no standard program for screening patients who have a high
risk [171]. Combined with surgical resection, cytotoxic therapy plays an essential
role in the standard treatment and in the prolongation of survival of pancreatic
cancer. The front-line therapies normally involve the administering of gemc-
itabine combined with other drugs like cisplatin, epirubicin, 5-FU, etc. For a
review of therapeutic strategies we refer to [172]. However, the increased toxicity



3

66 3. A MODEL OF DRUG ORIENTED THERAPY

and various ethical concerns hinder the investigation and clinical administer-
ing of single and combined drugs. Mathematical modeling can shed light on the
quantitative effects of drug combinations as well as provide reliable predictions.

We have developed a model for drug-oriented therapy of pancreatic cancer
based on the simplification of the phenomenon and assumptions mentioned in
Section 3.2. On the cellular level, our model is able to show the initial cancer pro-
gression and its interactions with the micro-environment. The normal epithelial
cells are able to mutate to cancer cells under certain circumstances, which subse-
quently remodels the peripheral ECM and triggers T-lymphocytes-mediated im-
mune response by secreting cytokines. In normal situations, the migration of the
T-lymphocytes is guided by the desmoplastic ECM such that cancer cells in the T-
islets can proliferate out of control because of lacking T-lymphocytes infiltration.
After a PEGPH20 intervention, the enzyme-mediated degradation of ECM en-
hances T-lymphocytes penetration and thereby the cancer cells that are exposed
to be T-lymphocytes are eliminated, however, this enzyme-mediated therapy is
suitable for patients with an early diagnosis without immunodeficiency. For pa-
tients with advanced diagnosis, it is necessary to combine PEGPH20 with the
drug gemcitabine, which is much more efficient for clearing the cancer cells. Ad-
ditionally, this cell-based model could be upscaled to a large cell colony or even
an organ scale, while the time at which the treatment starts, as well as the length
of the time period of administration of different therapies can be personalized.

Furthermore, Monte Carlo simulations facilitate our model to investigate the
uncertainties of input parameters and to predict the likelihood of a cure with
various diagnosis stages. As a conclusion, the initial fraction of cancer cells when
injecting the PEGPH20 has a significant sample correlation coefficient as high
as 0.8785 with the final fraction of cancer cells. In contrast, sufficient doses of
drugs could reduce the final fraction of cancer cells in the current model with a
sample correlation coefficient -0.2753. In summary, this therapy model is able
to aid design the drug administering in the experiments. Further, the model can
be extended to other therapy strategies like PEGPH20 + antibodies, PEGPH20 +
cancer-targeted virus, PEGPH20 + cancer-targeted drugs, etc.

Albeit the computational models have their drawbacks like being too sim-
plified, the mathematical modeling can be very helpful for the sake of predic-
tion. For instance, Enderling et al. [31, 52] develop models of breast cancer that
are beneficial for radiotherapy. Moreover, [53] propose a mathematical model
which is helpful to prostate cancer therapy. On the other hand, animal-based ex-
periments have moral concerns and systemic drugs normally have toxicity and
strict restrictions regarding administering. Therefore, mathematical models can
be used to optimize drug therapies and further perform pre-validation studies
before testing in animals or humans.



4
A CELLULAR AUTOMATA MODEL OF

ONCOLYTIC VIROTHERAPY IN

PANCREATIC CANCER

Oncolytic virotherapy is known as a new treatment to employ less virulent viruses
to specifically target and damage cancer cells. This chapter presents a cellular au-
tomata model of oncolytic virotherapy with an application to pancreatic cancer.
The fundamental biomedical processes (like cell proliferation, mutation, apop-
tosis) are modeled by the use of probabilistic principles. The migration of in-
jected viruses (as therapy) is modeled by diffusion through the tissue. The result-
ing diffusion-reaction equation with smoothed point viral sources is discretized by
the finite difference method and integrated by the IMEX approach. Furthermore,
Monte Carlo simulations are done to assess the correlations between the various
input process parameters and the extent of inhibition of cancer and the amount of
residual viral particles shortly after the viral treatment.

4.1. INTRODUCTION
Oncolytic virotherapy is a novel cancer treatment where natural or genetically
modified viruses infect cancer cells and then self-replicate until host cancer cell
lyses (see Figure 4.1). Ruptured cancer cells release chemicals like tumor anti-
gens, which make cancer cells easily recognizable by the immune system. More-
over, the released viruses can infect more cancer cells to trigger a chain reaction
and effectively acting as a follow-up treatment. As early as in 1912, De Pace [173]

The contents of this chapter have been submitted.
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identified a tumor regression after inoculation of an attenuated rabies vaccine in
a patient with uterine cervical carcinoma. Later on, an animal-based test [174]
and a human trial [175] were conducted in 1920 and 1940, respectively, where
both experiments yielded an obvious partial remission [176]. In the subsequent

Figure 4.1: A schematical figure of oncolytic virotherapy. The viruses can specifically infect cancer
cells and then replicate themselves until cancer cells rupture. Subsequently, the newborn viruses
are released to infect more cancer cells.

decades, more works [177–179] demonstrated that oncolytic virotherapy lead to
tumor attenuation. Some milestones in the development of oncolytic virother-
apy are shown in Figure 5.2 [173, 180–182].

Pancreatic ductal adenocarcinoma (PDA), recognized as the most common
pancreatic cancer, is a lethal disease due to late detection, a low resectability rate,
medication resistance and poor prognosis [169, 183]. Currently, pancreatic can-
cer is the seventh leading cause of cancer death worldwide and its 5-year sur-
vival rate is less than 5 % [158, 184]. Compared with other types of cancer, PDA
has more cancer-associated fibroblasts (CAFs) resulting in abundantly desmopl-
asitic stroma that constitutes up to 90 % of a solid tumor volume [146, 185]. The
profuse desmoplasia in the stroma produced by CAFs acts as a physical barrier to
drug delivery and leads to medication resistance [133, 186]. However, CAFs make
cancer cells more susceptible to be infected by oncolytic viruses. Ilkow et al. [187]
experimentally demonstrated that the cross-talk between cancer cells and CAFs
facilitates the oncolytic virus-based therapies. Therefore, oncolytic virotherapy
offers an avenue for the cure of pancreatic cancer.

The ideal oncolytic virus for pancreatic cancer should be able to selectively
replicate in cancer cells without damaging normal somatic cells (see Figure 4.1).
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Figure 4.2: Historical milestones in the development of oncolytic virotherapy.

A couple of studies [176, 188, 189] summarised advantages and disadvantages of
various replication-competent oncolytic viruses proposed for pancreatic cancer
therapies, e.g. adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses
and paramyxoviruses. Many types of viruses have been tested in animal-based
xenograft models, however, only a few kinds of viruses have reached clinical tri-
als. In particular for pancreatic cancer, relevant studies are rare, among which
Fu et al. [190] observed that an oncolytic virus produced antitumor effects in
human pancreatic cancer xenografts. Moreover, Sunamura et al. [188] carried
out adenovirus therapy in immunodeficient mice with human pancreatic can-
cer xenografts that resulted in a remarkable inhibition of tumor growth under
consecutive injections of the virus. Typically, if animal testing is successful, the
new drug will reach clinical trials that are classified into four phases: 1) phase
I determines on healthy subjects if a new drug is safe to check the efficacy; 2)
phase II demonstrates whether a drug can have any efficacy against the disease;
3) phase III checks in a randomized multi center tests if a drug has the right ther-
apeutic effect; 4) phase IV post-marketing surveillances long-term effects of a
drug. Regarding the clinical applicability, Kasuya et al. [176] stated that a clini-
cal trial of viruses adenovirus ONYX-015 (phase I and II) has been conducted in
pancreatic cancer patients, where half of the patients (phase II) exhibited either
tumor reduction or stabilization. In contrast, a phase I trial of the efficacy of sev-
eral oncolytic herpes viruses (such as G207, 1716 and OncoVEX GM-CSF) have
tested against various tumors and the herpesvirus exhibited a good tolerance at
all dosages. Although oncolytic virotherapy has been proposed for decades, a
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thorough understanding of the interactions of virus, tumor and microenviron-
ment in vivo is still needed to be further researched, like a proper viral dose for
a specific virus, how to control of virulence and etc. Therefore we develop a
three-dimensional (3D) mathematical Markov Chain cellular automata model to
mimic pancreatic tumor (pancreatic cancer at early stages) progression and cor-
responding oncolytic virotherapy. The model presents the cancer progression
and the subsequent recession under the interference of oncolytic viruses. In ad-
diton, the model can be used to quantify the impact of virotherapy with different
viral doses, viral infectivity and levels of immunity in patients with pancreatic
cancer.

Cellular automata models are lattice-based models that facilitate analysis of
the spatio-temporal dynamics based on the interplay between cells and their mi-
croenvironment. The cellular automata model has been introduced as a com-
puter model of self-reproduction by John von Neumann and Stanislaw Ulam
[191]. In the past decades, cellular automata, in addition to self-reproduction,
have been extended to other model applications successfully with a wide spec-
trum of biology, physics, chemistry and other sciences [192]. Regarding the can-
cer modeling in cellular automata, Reis et al. [193] proposed a model that could
capture the Gompertzian behavior of tumor growth. Hatzikirou and Deutsch
[194] developed a model of tumor invasion dynamics. In addition, a couple of
studies demonstrated applications of cellular automata in cancer therapy, e.g.
radiotherapy [195], and chemotherapy [196]. However, the computational mod-
els for virotherapy are rare. Presently, no virotherapy model with an application
to pancreatic cancer has been reported yet.

Therefore, we develop a cellular automata model to phenomenologically show
cancer initiation and its subsequent recession under oncolytic virotherapy. Fur-
thermore, the 3D model of pancreatic cancer is combined with Monte Carlo sim-
ulations to quantitatively investigate the sensitivity and uncertainties of input
values.

4.2. MATHEMATICAL FORMALISM
Cellular automata models consist of a class of lattice-based models, where lattice
approaches are classified as: 1) a single lattice site is occupied by one cell only;
2) a single lattice site is occupied by a cluster of cells; 3) one cell takes many
lattice sites. They are all capable of investigating biological processes with single
cell or multiple cells, where division, death or other biomedical phenomenons
are modeled by stochastic processes [72]. In contrast, the first two categories
are typically used to describe volume effects, whereas the last category is able to
capture the morphological evolution of cells.

In our simulations, each lattice represents a volume element filled with mul-
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tiple cells in a 3D computational domainΩ⊂R3, which is divided into a set of lat-
tice points N = {1, ...,n}. The lattice point i has a finite number of discrete states
Si that indicates the state of cells in the corresponding volume, which reads as

Si =


0, lattice point i is in unoccupied state/ necrotic cancer cell state

1, lattice point i is in epithelial cell state

2, lattice point i is in cancer cell state

3, lattice point i is in infected cancer state

.

(4.1)
Assigning an initial state for each lattice point, and subsequently adjusting the
state of the specified lattice at position xi = [xi , yi , zi ] at subsequent times is cor-
related with the states of its neighborhood marked in Figure 4.3. Subsequently,

Figure 4.3: A specified lattice point i at position xi = [xi , yi , zi ] with its neighborhood in the 3D
simulations.

we consider fundamental biological processes like cell division, mutation, infec-
tion and death modeled as stochastic processes. The likelihood of changing a
state of a lattice i to another state satisfies a memoryless exponential distribu-
tion which is given by f (λi , t )∆t during a time period (t0, t0 +∆t ). Here λi is the
probability rate per unit of time of changing state, which from a biological point
is determined by mechanisms like cell division, mutation, infection and death,
and f (λi , t ) reads as,

f (λi , t ) =λi exp(−λi (t − t0)), (4.2)

and hence the transition probability P within a time interval of length∆t is given
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by

P =
∫ t0+∆t

t0

f (λi , t )dt ' 1−exp(−λi∆t ). (4.3)

In [197], it is proved that the likelihood of a change of state depends on the states
of the neighbors for a simple binary case that has been applied to modeling the
progression of skin cancer. All lattice points in the domain are initialized to the
epithelial cell state {Si = 1} or unoccupied state {Si = 0}. During the growth of ep-
ithelial cells, cancer mutation happens as a result of exposure to carcinogenic
factors like genetic inheritance, chemical carcinogens, electromagnetic radia-
tion, or viral infection. The very complicated biological process is simplified by
the application of a transition probability from epithelial cells to cancer cells, that
is from {Si = 1} to {Si = 2} (cancer cell) over a time interval ∆t with a likelihood
following {

P (Si (t0 +∆t ) = 2 | Si (t0) = 1) ' 1−exp(−λmu∆t )

P (Si (t0 +∆t ) = 1 | Si (t0) = 2) = 0
. (4.4)

Here λmu represents the mutation probability rate per unit of time and the sec-
ond part of Equation (4.4) reflects that this transition is irreversible. Since both
epithelial cells and cancer cells are able to proliferate and to migrate, lattice points
are allowed to change their states from {Si = 0} to {Si = 1,2}. The likelihood for
these transitions over a time interval ∆t are given by

P (Si (t0 +∆t ) ∈ {1,2} | Si (t0) = 0) ' 1−exp(−λpro∆t ), (4.5)

where λpro denotes the probability rate of transition from ‘not occupied by any
cells’ to being ‘occupied by either epithelial cells or cancer cells’. Note that the
probability rate λpro is determined based on the number of neighbors that are in
cancer/ epithelial cell state. That is λpro = λmax

n12
h , where n12 denotes the num-

ber of lattice points that are either in state 1 or in state 2. The distance between
two lattice points is represented by h andλmax is a constant to regulate the overall
growh rate of cells (including epithelial and cancer cells). Whether a free lattice
point will be occupied by multiple epithelial cells or cancer cells depends on the
states of the surrounding lattice points. Consider an unoccupied node i at time
t , that is Si (t ) = 0. We denote the number of neighboring lattice points that are
in state 1 by n1. We further denote the likelihood that the lattice point i , given
that it changes state to either state 1 or 2, changes state to state 1 by α=α0 · n1

n12
,

where α0 ∈ [0,1] is a constant. This fraction α is used to determine the transition
probability of node i , which is given by{

P (Si (t0 +∆t ) = 1 | Si (t0) = 0) =αP (Si (t0 +∆t ) ∈ {1,2} | Si (t0) = 0)

P (Si (t0 +∆t ) = 2 | Si (t0) = 0) = (1−α)P (Si (t0 +∆t ) ∈ {1,2} | Si (t0) = 0)
. (4.6)
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Apoptosis is programmed death of cells, however, cancer cells are able to prolif-
erate uncontrollably and to resist cell apoptosis. In the current model, oncolytic
viruses are incorporated to infect and damage cancer cells. We let cancer cells
jump from state {Si = 2} (cancer state) to state {Si = 3} (infected state) as soon as
the virus concentration exceeds ĉ. Hence, we have

P (Si (t0 +∆t ) = 3 | Si (t0) = 2) = 1, if ci > ĉ, (4.7)

If the viral concentration does not exceed the threshold ĉ, then we disregard the
release of viruses. Therefore, the likelihood of a lattice point i to be infected by
viruses, which is the state transition from {Si = 2} to {Si = 3}, depends on the
released viruses from the neighborhood and the local concentration of viruses.
Subsequently, infected cells are, like epithelial cells, subject to possible cell death.
Hence a node i is allowed to change from a cell state {Si = {1,3}} to an unoccupied
state {Si = 0}, which is given by the following likelihood

P (Si (t0 +∆t ) = 0 | Si (t0) ∈ {1,3}) ' 1−exp(−λde∆t ). (4.8)

Here λde denotes the probability rate that an infected cancer or an epithelial cell
dies.

Oncolytic virotherapy is initiated when the fraction of tumor constitutes up
to 100 % of the computational domain (that is, the tissue). In animal-based ex-
periments, the viruses are given by injections [188]. Therefore, we consider one
or multiple injections, denoted by V(t ), as source points at position xp by using
the Dirac delta function δ(x) at time t . Then the delivery of viruses is simulated
by the reaction-diffusion equation written as

∂c(r)
∂t −D∆c(r) = ∑

p∈V(t )
γ(t )δ(x−xp )+u(r)

D ∂c(r)
∂n +T c(r) = 0, on ∂Ω

, (4.9)

where c(r), D and γ denote the concentration, diffusivity and injection rate of
virus. Moreover, T represents the mass transfer rate coefficient between the
computational domain and its environment. Since viruses infect cancer cells,
copy themselves until host cells lysis, infected cancer cells act as sources where
viruses originate. We define Ωi c (t ) to denote the portion of the computational
domain that is occupied by virally infected cancer cells. The function u(r) in
Equation (4.10) is utilized to model an increase in production of viruses released
by dead cancer cells. With respect to time evolution, u(r) increases as

u(r) =
{

βc(r)(1− c(r)
Nv

), if r ∈ Ωi c (t )

0, else
, (4.10)

where β and Nv denote the proliferation rate of virus and a burst size of viruses
from a dead cancer cell.
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4.3. NUMERICAL METHOD

4.3.1. DISCRETIZATION
We first consider a 2D or 3D domain that is occupied by cancer cells, where a
dose of oncolytic viruses is injected into the computational domain as part of
the therapy. Subsequently, viruses diffuse and thereby spread throughout the
domain. At a lattice point r, the change in concentration of viruses is modeled
by the reaction-diffusion equation{

∂c(r)
∂t = D∆c(r)+γ(t )δ(x−xp )+βc(r)(1− c(r)

Nv
)

D ∂c(r)
∂n +T c(r) = 0, on ∂Γ

, (4.11)

To solve the problem in 2D, the Laplace operator is discretized by the finite dif-
ference method (FDM) as,

∆c(x, y, t ) ' c(x +h, y, t )+ c(x −h, y, t )+ c(x, y +h, t )+ c(x, y −h, t )−4c(x, y, t )

dx2 ,

(4.12)
where h is the distance between adjacent lattice points. If the computational
domain is extended to three dimensions, the above equation needs to be revised
to

∆c(x, y, z, t ) ' 1

dx2 (c(x +h, y, z, t )+ c(x −h, y, z, t )+ c(x, y +h, z, t )+ c(x, y −h, z, t )

+ c(x, y, z +h, t )+ c(x, y, z −h, t )−6c(x, y, z, t )).
(4.13)

If a lattice point on boundary Γx=0, then the point (−h, y, z) is assumed as a vir-
tual point out of the computational domain. The Robin boundary condition in
Equation (4.11) is dealt with using the FDM as,

c(−h, y, z, t )− c(h, y, z, t )

2h
=−T

D
c(0, y, z), (4.14)

and thereby the viral concentration at the virtual point is calculated by,

c(−h, y, z, t ) = c(h, y, z, t )− c(0, y, z, t )(1− 2T

D
h). (4.15)

Analogously, the viral concentration on the other virtural points can be obtained
by {

c(x,−h, z, t ) = c(x,h, z)− c(x,0, z, t )(1− 2T
D h), on Γy=0

c(x, y,−h, t ) = c(x, y,h)− c(x, y,0, t )(1− 2T
D h), on Γz=0

. (4.16)
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Similarly, if a lattice point is located on boundary Γx=xn , Γy=yn or Γz=zn , the viral
concentration at the corresponding vitural point is estimated by

c(xn +h, y, z, t ) = c(xn −h, y, z, t )− c(xn , y, z, t )(1− 2T
D h), on Γx=xn

c(x, yn +h, z, t ) = c(x, yn −h, z, t )− c(x, yn , z, t )(1− 2T
D h), on Γy=yn

c(x, y, zn +h, t ) = c(x, y, zn −h, t )− c(x, y, zn , t )(1− 2T
D h), on Γz=zn

. (4.17)

Furthermore, the injection of viruses is simulated by a point source that is math-
ematically inspired by the Dirac Delta function δ(x), which is mollified by using
the normal distribution,

δ(x | xp ,ε2) = (
1

2πε2 )d/2exp(−∥ x−xp ∥2

2ε2 ), (4.18)

where ε and d , respectively, denote the source width and the dimensionality.

4.3.2. TIME INTEGRATION
To update the concentration of virus on each lattice at the next time step, an
IMplicit-EXplicit(IMEX) time integration is utilized, where the linear parts and
nonlinear parts are treated by a Euler backward method and a Euler forward
method, respectively. Thereby the concentration of virus c is updated by

cn+1(r) = cn(r)+∆t (D∆c(r)+γ(t )δ(x−xp )+βcn(r)(1− cn+1(r)

Nv
)). (4.19)

Note that this IMEX approach avoids the need of inner iterations to solve a non-
linear problem at each time step.

4.3.3. MONTE CARLO SIMULATION
Monte Carlo simulations are widely used in many quantitative probabilistic and
statistical investigations that permeates much of finance, engineering and con-
temporary sciences [198]. To obtain quantities of interest, such as (cumulative)
probability distributions of output variables and correlations, Monte Carlo sim-
ulations enable random sampling of input parameters from predefined proba-
bility distributions and extensive repetitive experiments.

Due to the variety of viruses and variations from patient to patient, many
variables can hardly be determined or measured. For instance, the dose of a virus
γ may depend on its effectiveness and toxicity, which varies among viruses. In
addition, some variables, such as the concentration threshold at the time of viral
infection ĉ, the reproductive rate of the virus in cancer cells α and human im-
mune strengthβ, may all depend on patient lifestyle, gender and genetic pattern,
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and hence vary from patient to patient. However, the above-mentioned variables
may be quantitively correlated to viral treatment outcomes, and thereby Monte
Carlo simulations are performed on X ∈ {γ, ĉ,α,β}. We assume that X follows a
normal distribution X ∼ N (µ,σ2) with the mean value µ and the standard devia-
tion σ. Therefore, the stochastic variable X with a number of samples Ns follows

X ∼µ+σN (0,1). (4.20)

Taking the computational time into account, Monte Carlo simulations are per-
formed in 2D simulations. Furthermore, Monte Carlo algorithms tend to be scal-
able and rely less on computational dimensionality. Referring to our previous
work in Chapter 5, the accuracy of Monte Carlo simulation is proportional to the
reciprocal of the square of the number of samples Ns , therefore 5000 samples are
chosen to guarantee a small error.

4.4. NUMERICAL RESULTS
Since most clinical data is not available and some parameters have even never
been measured, we estimate a couple of input parameters. The values have been
listed in Table 4.1.

Table 4.1: Input values

Parameter Notation Value and Units Source

Computational domain Ω 15×15×15 mm3 -
Virus diffusivity D 0.01 mm2/h [199]
Injection rate γ 1E4 pfu/(mm3 ·h) [200]
Time step dt 0.1h Estimated
Probability rate of cell mutation λmu 5 h−1 Estimated
Probability rate of cell death λde 5 h−1 Estimated
New burst size of viruses Nv 100 -
Vival infection threshold ĉ 10 pfu/mm3 Estimated

4.4.1. CANCER PROGRESSION
We consider a cubic domain to represent the tissue in the pancreas. The 3D do-
mainΩ= 15×15×15 mm3 has been divided into N = 30×30×30 lattice points.
Each lattice point is occupied by multiple cells and the volume of the solid tumor
V (t ) at time t can be easily calculated by

V (t ) = Nc (t )×Vol(Ω)

N 3 (mm3), (4.21)
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where Vol(Ω) is the domain volume and Nc (t ) denotes the number of lattice
points in cancer state {Si = 2} at time t . To model cancer mutation occurring
at the edge of a tissue or organ and its competitive growth with epithelial cells,
a small number of lattice points are generated randomly in one octant of the
domain only (see Figure 4.4(a)). Those lattice points are initiated with epithe-
lial cell state indicated by blue color. Due to mutation, several lattice points
change their states from {Si = 1} to {Si = 2} that are visualized by the red dots
(see Figure 4.4(a)). Typically, normal cells stop dividing once they contact with
each other during division as a result of contact inhibition, which can prevent ex-
cessive proliferation. Contrarily, mutated cancer cells often show uninterrupted
growth that is called ‘autonomous growth’. Moreover, cancer cells disperse more
easily and invade the neighborhood tissue. Therefore, they have a larger growth
and division rate despite limited space and nutrient supply. In the current sim-
ulation, the probability of mutation, proliferation and death is based on Equa-
tion (4.3) and several consecutive snapshots are shown in Figure 4.4. After 1600

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Consecutive snapshots of cancer progression, where blue color and red color are visu-
alized as epithelial and cancer cells, respectively. The 3D domain 15×15×15 mm3 meshes into
30×30×30 lattices. As a result, cancer cells occupy the entire computational domain when t = 1600
h.

hours (approximate 67 days), cancer cells occupy the entire computational do-
main and its corresponding growth curve with the respect of time indicated in
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red color is shown in Figure 4.5(a). According to Equation (4.6), the growth of
cancer cells is influenced by α, which can be decided by α = α0 · n1

n12
. To investi-

gate the impact of α0 on the tumor growth curve, multiple values (i.e. 0.75, 0.95,
0.98, 1) are used and the results show that growth of tumor volume slows down
with the increase of α0 value. Therefore, small variations of α0 value facilitate
our numerical model fitting experimental results.

(a) (b)

Figure 4.5: Growth curves of pancreatic tumor under different situations. (a) A comparison of
growth curves of pancreatic tumors with various α0 value (see Equation (4.6)), where λmax = 5×
10−3; (b) A comparison of numerical results with experimental results refering to [201], where
control and gem in the legend denote tumor growth without drug and with gemcitabine drug,
respectively. In the simulation with curve 1, λmax and α0 are equal 1×10−3 and 0.94, respectively.
However, to calibrate the model to curve 2, λmax decreases to 5.5×10−4 and α falls to 0.85.

As an example, Figure 4.5(b) shows experimental results of tumor growth
curve from the work by Durrant et al. [201], where pancreatic cancer cells are
inoculated into immunodeficient mice, where the inoculation site is subcuta-
neous. Implanted cancer cells are allowed to grow during two weeks before the
initiation of gemcitabine drug treatment (100µg/kg) and its growth curve is indi-
cated by the blue curve in Figure 4.5(b). As a control experiment, the black curve
in Figure 4.5(b) exhibits the growth of inoculated tumor without treatment. To
mimic the tumor progression in this situation, we set up a model with a num-
ber of cancer cells initially in the domain. With minor variations of λi in Equa-
tion (4.4), our model is able to simulate various growth modes of pancreatic tu-
mor (indicated by the red lines in Figure 4.5(b)), which fits the experimental re-
sults well. Over 50 days, our numerical results regarding the increase in tumor
volume show a consistency with the experimental work [201].
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4.4.2. ONCOLYTIC VIROTHERAPY
Oncolytic virotherapy has been recognized as a promising cancer treatment ap-
proach. We first develop a phenomenological model of oncolytic virotherapy in
3D, where the intratumoral injection of the virus is taken into consideration. The
spread of viruses is simulated by the reaction-diffusion equation that is solved
by using the FDM method. As a result, the diffusion of viruses in two different

(a) (b)

Figure 4.6: A comparison of viruses diffusion by using the FDM method with a color bar indicating
the concentration of viruses, where red color represents a high concentration of virus, dark blue
hints a neglectable viral concentration and other colors denote values in between. (a) No cancer
cells are present and viral infection is not simulated, which means no new proliferating viruses.
Therefore, most viruses are mainly concentrated in the center ; (b) In the presence of cancer cells,
viral infection ensues, viruses replicate leading to rupture of cancer cells, which then releases the
viruses. The viruses are thus found also at distant locations. The isosurface in grey color has a
concentration value of slightly less than 100 pfu/mm3.

situations at time t = 50 h are compared in Figure 4.6. Due to the very different
doses of virus administration [200, 202], we assume that the injection is carried
out during a time span of 0.5 h with a total dose of approximate 3.6×105 pfu vi-
ral particles. Figure 4.6(a) shows viruses spread with the absence of cancer cells
and new breeding viruses, whereas Figure 4.6(b) gives the distribution of viruses
at time t = 50 h with the viral infection and newly generated viruses. A few iso-
surfaces are plotted with a color bar indicating the concentration of viruses. In
contrast, viruses remain in the core of the computational domain and the high-
est concentration of viruses is up to 9.43×102 pfu/mm3 in Figure 4.6(a). This is
mainly due to a slow viral diffusivity [199] and insufficient viruses supply. The
isosurface Figure 4.6(b) indicates that a small amount of viruses has spread near
the boundary. Note that irregular isosurface in grey color has a concentration
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value of slightly less than 100 pfu/mm3 since the new burst size of viruses when
a cancer cell cracks is 100 pfu/mm3 in the current model. Due to viral infection,
the highest concentration of viruses in the core is 1.69×102 pfu/mm3.

(a) (b)

(c) (d)

Figure 4.7: Consecutive slice plots of viral spread. No cancer cells are present and viral infection is
not simulated, which means no new proliferating viruses. The slices are taken from the angle of a
z-axis top view, which is located in the middle of the computational domain. A color bar indicates
the concentration of viruses.

In addition, viral diffusion with the time evolution (when t = 1,10,50,100 h)
of each situation is shown by slices in Figure 4.7 and Figure 4.8, respectively.
The slices are taken from the angle of a z-axis top view, which is located in the
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middle of the computational domain. Figure 4.7 presents a slow and relatively
smooth diffusion phenomenon, with no viruses on the computational boundary
at t = 100 h. However, viral spread in Figure 4.8 is faster as a result of the supply
new breeding viruses from cancer cells and seems to be more random, which we
think to be more in line with the infection and spread of viruses in reality. Even-
tually, some viruses spread to the edge and are dissipated from the border of the
domain. Dissipated or remaining viruses after treatment might be removed by
immune cells or, in worse cases, be virulent to healthy tissue. Therefore, it is vital
to assess the toxicity of the remaining viruses after treatment.

To visualize the modeling progression of oncolytic virotherapy, some consec-
utive snapshots are shown in Figure 4.9. An extension of the model in Figure 4.4,
where the computational domain Ω = 15× 15× 15 mm3 has been divided into
N = 30×30×30 lattices. The domain is filled with cancer cells at time t = 0 h, see
Figure 4.9(a). Typically, viruses are injected intratumorally if cancer occurs under
the epidermis [203], otherwise, intravenous injection is the main approach for vi-
rotherapy [200]. However, the intravenous injections could cause many viruses
to infect other tissue outside of the tumor, or be removed by the immune system
or be dissipated before reaching the cancer area. To make the problem tractable,
we consider one dose of intratumoral injection, which is given at the center of the
domain. Subsequently, internal cancer cells will start to get infected, indicated in
black color, and subsequently die, which is indicated by the white color, see Fig-
ure 4.9(b) and Figure 4.9(c). Local cells at lattice point i may get infected once the
local concentration of viruses exceeds the threshold, which is ĉ = 10 pfu/mm3.
Afterwards, infected cancer cells (black color in Figure 4.9) are able to die (unoc-
cupied (white) grid nodes) and release new breeding viruses with a burst size
Ns = 100 pfu/mm3. The dead lattice sites at state S = 0 are reminiscent to a
wound. Then a chain reaction is triggered such that the virotherapy speeds up.
Since internal lattice points are released after the death of cancer cells, we sup-
pose that the normal constitutive cells around the cancer region will migrate to
this area and fill the wound by proliferation, see Figure 4.9(d), Figure 4.9(e) and
Figure 4.9(f).

The model describes an ideal virus type with a small dose to kill cancer cells,
however, the role of the viral dose remains unclear. Since some viruses, like NDV,
lead to a significant therapeutic benefit at high doses, whereas other viruses do
not [200]. However, the residual viruses after therapy may be toxic, which varies
from viral type to type. The risk could be tiny symptoms, such as flu or fever [204],
and also could be severe like fatal muscle toxicity or neurotoxicity [205]. There-
fore, the evaluation of residual viruses after treatment is crucially important. In
our model, according to the boundary condition in Equation (4.9), viruses will
dissipate from the boundary to other tissues or organs. Thereby we estimate the
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(a) (b)

(c) (d)

Figure 4.8: Consecutive slice plots of viral spread. In the presence of cancer cells (cancer cells are
not shown for clarity), viral infection ensues, viruses replicate leading to rupture of cancer cells,
which then releases the viruses. The slices are taken from the angle of a z-axis top view, which
is located in the middle of the computational domain. A color bar indicates the concentration of
viruses.

remaining viruses in the modeled area and ignore the dissipated viruses when
t = 100 h. Figure 4.10(a) and b show changes in total viruses and cancer volume,
respectively, in the domain with the evolution of time. At the beginning, a total
dose 0.18×105 pfu (injection rate r = 0.5× 104 pfu/h) is given (see the enlarged
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Consecutive snapshots of oncolytic virotherapy. The blue, red and black color are visu-
alized as epithelial, cancer and infected cancer cells, respectively. In addtion, white color means
the dead cells or unoccupied lattice points. A small scale of cancerous tissue that returns to normal
tissue by cell reproduction or migration under the oncolytic virotherapy after t = 110 h.

view in Figure 4.10(a)), where the domain is fully occupied by cancer cells with a
volume as large as 3375 mm3 (see Figure 4.10(b)). Once cancer cells get infected

(a) (b)

Figure 4.10: (a) Changes in viral quantity in the compuational domain with the evolution of time;
(b) Changes in cancer volume with time.
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by viruses, successful viruses begin to replicate themselves until the host cancer
cells crack, which results in a significant increase in viral quantity and decrease
in cancer volume. When time approaches 80 h, the number of viruses in the
domain have accumulated to a peak (see Figure 4.10(a)), whereas most cancer
cells are damaged (see Figure 4.10(b)). Furthermore, Figure 4.10(a) shows that
the number of viruses gradually decreases after 80 h and this is mainly because
a fraction of viruses escapes from the domain boundary. Note that there is a
minor decline in the numer of viruses (see the enlarged view in Figure 4.10(a)),
which may be due to the fact that the actual number of viruses present exceeds
the carrying capacity of viruses. In order to investigate whether there is a maxi-
mum capacity of viruses in a limited domain, various injection rates (i.e. 1×104,
0.5×105, 1×105 pfu/h) are compared. The results given in Figure 4.11 show that
a larger viral dose leads to a greater decline in total particles after injection and
do not affect the eventual result because of the maximum capacity of viruses in
the computational domain. The results suggest that if a certain threshold is ex-
ceeded for the amount of injected viruses, then its temporal evolution is more or
less the same.

(a) (b) (c)

Figure 4.11: (a) Changes in viral quantity as the evolution of time with an injection rate r = 1×104

pfu/h; (b) Changes in viral quantity as the evolution of time with an injection rate r = 0.5× 105

pfu/h; (c) Changes in viral quantity as the evolution of time with an injection rate r = 1×105 pfu/h.

4.4.3. MONTE CARLO SIMULATIONS

Kelly and Russell [206] showed that immunosuppressed patients normally have
a better therapeutic benefit than those who have an intact immune system in on-
colytic virotherapy. However, a defective immune system would lead to a large
number of viruses, which is associated with unacceptable toxicity in most cases
[205]. To make our model applicable to a wide range of virus species, the antivi-
ral immune response is incorporated in the Monte Carlo simulations as one of
the input variables, which we sample from a probability distribution. Therefore,
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Equation (4.9) is revised slightly to
∂c(r)
∂t −D∆c(r) = ∑

p∈V(t )
γ(t )δ(x−xp (t ))+βc(r)(1− c(r)

Nv
)−ηc(r)

D ∂c(r)
∂n +T c(r) = 0, on ∂Ω

, (4.22)

where ηc(r) represents the neutralization process by immune cells and η denotes
the neutralization rate. Therefore, the antiviral immune strength is investigated
by variation of the η parameter. Since the appropriate dose of a specific virus is
still unclear, the total dose of viral injection is considered by varying the injec-
tion rate r . Moreover, the infection threshold ĉ is used to evaluate the ability of

Table 4.2: Mean and standard deviation in the Monte Carlo simulation sampling

Parameter r ĉ η

Value (1×104, (0.4×104)2) (15 52) (1×10−2, (1×10−2)2)

viral infectivity regarding its impact on the final total particles of the remaining
viruses and cancer area. To perform the Monte Carlo simulations, 5000 samples
are chosen for the injection rate r , infection threshold ĉ and immune strength η,
where sampling parameters follow the normal distribution. The mean and vari-
ance of the sampling parameters have been listed in Table 4.2. Taking CPU time
into consideration, we limit each simulation up to 50 h and then compare total
particles of the remaining viruses and cancer area in the computational domain.
Based on 5000 samples, Figure 4.12(a) and Figure 4.12(b) show the histograms
of the total particles of the remaining viruses and cancer area, respectively in 2D
simulations with a total area of the domain of 225 mm2 (15 mm × 15 mm). Of
5000 samples, 700 simulations end with few residual viruses, see Figure 4.12(a)
and thereby there are around 700 cases with a cancer area above 200 mm2 in Fig-
ure 4.12(b). These cases mean a failed virotherapy, which may be caused by a
combination of low injection rate, high infection rate and a strong antiviral im-
mune response.

Since the simulation is limited to 50 h, most cases end with a large cancer area
compared with the original area, which is from 100 to 200 mm2. Correspond-
ingly, there is a large portion of simulations that have the remaining viral quan-
tity ranging from 1×104 to 3×104 pfu at t = 50 h. To see the correlations between
variables and the numerical results, several scatter plots are shown in Figure 4.13,
Figure 4.14 and Figure 4.15. The role of viral dose is tested by using the injection
rate r in Figure 4.13, which shows that there is no obvious correlation between
the injected virus dose and the remaining viral quantity and cancer area. This
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(a) (b)

Figure 4.12: (a) Histogram of residual viruses in Monte Carlo simulations on parameters r , ĉ and
η; (b) Histogram of cancer area in Monte Carlo simulations on parameters r , ĉ and η.

is probably because of an insufficient simulation time period or the maximum
capacity of viruses in a limited domain (see Figure 4.11 as an illustration for this
claim). In contrast, the infection threshold, which is used to represent the ability

(a) (b)

Figure 4.13: (a) Scatter plot of injection rate r and residual viruses. The corresponding correlation
coefficient is R = 0.0665; (b) Scatter plot of injection rate of r and the final cancer area with a
correlation coefficient R =−0.0668.

of viral infectivity, shows a significant correlation with the remaining viral quan-
tity and cancer area in Figure 4.14. The higher the threshold value, the higher
the concentration of the virus is needed to infect the cancer cells, which hints at
a lower ability of the viral infectivity. From Figure 4.14(a), the number of resid-
ual viruses decreases with increasing infection threshold since viruses with low
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(a) (b)

Figure 4.14: (a) Scatter plot of infection threshold ĉ and residual viruses. The corresponding corre-
lation coefficient is R =−0.8413; (b) Scatter plot of infection threshold ĉ and the final cancer area.
The correlation coefficient of infection threshold ĉ and the final cancer area is R = 0.9210.

infection ability are not able to damage cancer cells, but they can be eliminated
by the antiviral immune response. Therefore, antiviral immune and insufficient
newborn viruses facilitate cases with few residual viruses after 50 h. Certainly,
the cancer area will not reduce significantly if the viral infection ability is weak.
Viruses with a good infectivity (ĉ ≤ 5) are able to neutralize cancer cells within
a period of t = 50 h. Based on Equation (4.22), the term ηc(r) reflects the im-
mune strength, therefore, the immune strength is investigated through variation
of immune reduction rate η. Note that the value of c(r) is quite large and thereby
the η is chosen very small (from 0 - 0.06) to guarantee a simulation with a like-
lihood of success. A large η denotes a strong antiviral immune response that
would result in the death of most viruses. According to Figure 4.15(a), in the case
of immunodeficiency, the residual viruses could accumulate to a large amount,
while the amount falls as the immunity increases. When the antiviral response
is strong like η > 0.04, viruses will be eliminated by immune cells completely in
the domain. On the contrary, the cancer area has declined with the intervention
of residual viruses if the antiviral immune is defective (see when η arppoches to
0). However, the cancer area is more likely to be large in size when the immune
response is strong, like η > 0.04. This indicates that patients with a weaker im-
mune response may benefit from a larger reduction of the tumor size. However,
at the same time, patients with a weak immune system are sensitive to have large
amounts of residual viruses in their bodies.
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(a) (b)

Figure 4.15: (a) Scatter plot of immune strength and the remaining viral quantity. The correlation
coefficient of immune strength and the remaining viral quantity is R =−0.4320; (b) Scatter plot of
immune strength and the final cancer area. The correlation coefficient of immune strength and
the cancer area is R = 0.2978.

4.5. CONCLUSION
Many animal-based experiments and clinical trials yielded a remarkable tumor
attenuation by using oncolytic viruses [173, 176]. However, currently, viruses are
not deemed as a useful means to stop or inhibit cancer since there is no effec-
tive way to control the virulence and retaining their replication capability in can-
cer cells [206]. We have developed a cell-based model in pancreatic cancer at
early stages in Chapter 2, which is subsequently extended to therapy model in
Chapter 3. However, compared to classical treatments for pancreatic cancer like
surgery, radiotherapy, chemotherapy, virotherapy has its own limitations, which
needs further scientific assessment. In particular, the limitations include an-
tiviral immune responses, inefficient delivery of virus as well as the poor virus
spread in tumor area [189]. Therefore, more research in terms of oncolytic vi-
rotherapy is needed.

In the present study, we develop a 3D cellular automata model for oncolytic
virotherapy. As we expected, the model is able to simulate cancer progression
at early stages, which include the biological processes such as mutation, prolif-
eration and death. Within 1600 h (appropriate 67 days), cancerous cells mutate
from healthy somatic cells and then colonize the computational domain as big
as 15× 15× 15 mm3. Certainly, the model is scalable and the speed of cancer
progression can be adjusted by variation of input parameters. Therefore, differ-
ent growth trends have been compared and one numerical result of our model
could fit experimental results very well. Subsequently, oncolytic virotherapy is
phenomenologically simulated in the same domain that is completely occupied
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by cancer cells. The migration and proliferation of the virus is modeled by using
a reaction-diffusion equation, which is solved by a FDM method. Since viruses
specifically infect and damage cancer cells, the model predicts cancer attenu-
ation as time evolves. Eventually, normal somatic cells fill in the gap through
migration and proliferation.

In addition, Monte Carlo simulations are performed in a 2D model to quanti-
tatively investigate the correlations between several input variables and numer-
ical results. Among 5000 samples, there are 700 simulations end with few resid-
ual viruses and large cancer area, which dues to failed virotherapy probably as
results of the extreme parameter values. The results indicate an insignificant
correlation between the injection dose of viruses and simulated results (total
residual viruses and cancer area), and that is probably because of an improper
value range of injection rate, an insufficient simulation time period or a lim-
ited computational domain. However, we believe that this result is acceptable,
since some virus species, such as NDV, show a high correlation between given
doses and therapeutic benefits, whereas others do not [200]. Further, the viral
infection threshold has a significant correlation with total amount of remaining
viruses and with the final cancer area, which means that viruses with low viral
infectivity likely allow a large cancer area with just few viruses left. Moreover, the
anti-viral immune response presents an obvious correlation with the numerical
results. Specifically, most simulations end up with relatively fewer viruses if the
anti-viral reaction is strong and thereby the corresponding residual cancer area
is also larger.

Due to gene mutation (i.e. RAS, TP53), the anti-viral infection ability of can-
cer cells is weakened, which gives the oncolytic viruses a chance [207] to infect
the cancer cells. Research in oncolytic viruses is not limited to cancer therapy
research, also in studies that combine other treatments, such as immunotherapy
[208] and chemotherapy [209]. In order to optimize the viral therapy in terms of
fighting cancer, and leaving as few viral particles post-therapy as possible, fur-
ther experimental studies are necessary. The required quantification in order to
optimize viral therapy implies that mathematical modeling is a necessary and
very helpful step.





5
A PHENOMENOLOGICAL MODEL

FOR CELL AND NUCLEUS

DEFORMATION DURING CANCER

METASTASIS

Cell migration plays an essential role in cancer metastasis. In cancer invasion
through confined spaces, cells must undergo extensive deformation, which is a ca-
pability related to their metastatic potentials. Here, we simulate the deformation
of the cell and nucleus during invasion through a dense, physiological microenvi-
ronment by developing a phenomenological computational model. In this chap-
ter, cells are attracted by a generic emitting source (e.g. a chemokine or stiffness
signal), which is treated by using Green’s fundamental solutions. To incorporate
the microvascular bloodstream, Poisseuille flow in a small blood vessel is consid-
ered. We use an IMEX integration method where the linear parts and the non-
linear parts are treated by using a Euler backward scheme and a Euler forward
method, respectively. We develop the numerical model for an obstacle-induced de-
formation in 2D or/and 3D. Considering the uncertainty in cell mobility, stochastic
processes are incorporated and uncertainties in the input variables are evaluated
using Monte Carlo simulations. This quantitative study aims at estimating the
likelihood for invasion and the length of the time interval in which the cell in-

The partial contents of this chapter have been published in the paper [210]: Jiao Chen, Daphne
Weihs, Marcel Van Dijk, and Fred J. Vermolen. "A phenomenological model for cell and nucleus
deformation during cancer metastasis." Biomechanics and modeling in mechanobiology 17, no.
5 (2018): 1429-1450.

91



5

92 5. A MODEL OF CELL DEFORMATION

vades the tissue through an obstacle. Subsequently, the 2D cell deformation model
is applied to simplified cancer metastasis processes to serve as a model for in vivo
or in vitro biomedical experiments.

5.1. INTRODUCTION
Cell locomotion is closely involved in various physiological and pathological pro-
cesses. For example, the migration of leukocytes is important for the inflamma-
tory response and movement of fibroblasts and also vascular endothelial cells
are essential for wound healing [211]. On the contrary, cell migration can play
a detrimental role during cancer metastasis, where the dissemination of cancer
cells initializes the invasion-metastasis cascade as introduced by Chambers et al.
[212], Fidler [213], Lambert et al. [214].

The diversity of cancers exceeds 200 distinct disease entities, which have
differences in the normal cells of origin and similarities in subsequent cancer
metastasis. Compared to primary tumors, metastatic cancers cause the over-
whelming majority of cancer-associated deaths as high as 90% [214–216]. Dur-
ing the metastatic spreading of tumors, cancer cells can undergo transitions be-
tween two forms of movement, which are the amoeboid mode and the mes-
enchymal mode to optimize their invasiveness [217, 218]. Moreover, Pinner and
Sahai [219] observe that cancer cells are able to move quickly (up to 15 µm/min)
like some leukocytes and rapidly change their shapes and directions of migration
in an amoeboid manner with intravital confocal microscopy technology. The
amoeboid movement could happen in the absence of matrix protease [220, 221]
where cancer cells alternatively generate large contractile force pushing fibers
of matrix away and squeeze between small paths. However, if the contractile
force is insufficient to deform the stiff extracellular matrix (ECM), the matrix-
metallo proteases (MMP’s) will be secreted by cancer cells to degrade the ECM
and thereby invade further [222, 223]. In summary, cancer cells frequently chem-
ically and/or mechanically ‘dig’ their ways through ECM in order to reach the
distinct parts of the body.

When a single cancer cell is metastasizing through a narrow cavity, it must
deform its morphology by extending its membrane into an elongated protrusion;
this is often driven by external signals such as chemotaxis, durotaxis or tenso-
taxis. Large cell deformations will also induce changes in the nucleus morphol-
ogy. Extensive deformation of the nucleus can induce damage, and reduce the
nuclear envelope integrity, see for instance the work by Denais et al. [224]. How-
ever, the cancer cell is also capable of repairing its ruptured nuclear envelope
and damaged DNA after the penetration. Then the cell may be able to further
promote cancer development. Thus, as noted by Denais et al. [224], the stage
of nuclear envelop rupture could represent a particularly fragile point, thereby
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providing an opportunity to develop new anti-metastatic cancer drugs to inhibit
DNA repair and increase cell death. Cell deformation during cancer metastasis
has been difficult to study in detail both in vivo and vitro, and further under-
standing of cell deformation mechanisms is crucially important. In cases where
the pore sizes are much smaller than the size of the nucleus, the nucleus mostly
arrests and fails to penetrate the pore due to defective nuclear deformability. On
the contrary, with pore diameters above a threshold, e.g. 7 µm in the work [223],
MMP-independent migration in dense ECM relies on the hourglass-shaped de-
formation of the nucleus. Hence, in this chapter, we develop a mathematical
model to investigate the correlation between the deformation of a cell and of
its nucleus, and show the dynamic changes in cell mechanostructure that occur
during the invasion process.

Mathematical modeling has been shown to be an important tool to quan-
tify the relations in many biomedical processes such as wound healing, cell mi-
gration and tumor progression in various scales. Cell deformation and migra-
tion models exist in the colony scale, e.g. in the works by Rey and Garcia-Aznar
[225], Byrne and Drasdo [17], and Vermolen and Gefen [41], where the cell ge-
ometry is fixed to be circular or spherical, respectively, in 2D and 3D simula-
tions. On a smaller scale, one looks at the deformation of individual cells, and to
this extent, cellular automata models have been developed and combined with
finite-element strategies by Borau et al. [226] and van Oers et al. [227]. Other
cell deformation models are based on phase-field models, like in the work by
Marth and Voigt [228], or on visco-elasticity with moving meshes as in [20]. A
phenomenological approach to cell migration and deformation is proposed in
Vermolen and Gefen [229] and Vermolen et al. [230], where in the latter work
cell migration and deformation have been modeled in relation with the immune
response system where white blood cells migrate out of the venules and transmi-
grate through the venule walls to chase and engulf pathogens. Moreover, Oden-
thal et al. [231] introduce a deformable cell model to describe mechanical com-
munication among the interacting cells and between the cell and its environ-
ment. Another deformable model regarding the interactions with an emphasis
on the relationship between varying matrix geometries and adhesion, contrac-
tility as well as cell velocity can be found in [232]. In terms of the nucleus de-
formable models, Moussavi-Baygi et al. [233] establish a coarse-grained model
of the nuclear pore complex to simulate the nucleocytoplasmic transport. As the
increasing attention in the cell mechanics, agent-based models are booming, see
[72], where three types of agent-based models are described.

Cao et al. [234] develop a chemomechanical model to investigate the impacts
of transmigration through confined interstitial spaces on the geometrical and
mechanical features of the cell nuclei. In their model, the shape alterations of
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the cell and nucleus during the transendothelial migration driven by actomyosin
contraction force can perturb the genomic organization, which in turn affects
the behavior of cells. More nuclear profiles regarding chromatin deformations
and nuclear envelope deformations during transmigration are further investi-
gated. This mechanical model successfully predicts the morphological evolution
when one cell transmigrates an endothelial gap [234]. In comparison, our model
extends the process and behavior of cell transmigration driven by a chemical/
stiffness signal during cancer metastasis, whereas the most inner cellular me-
chanical properties are neglected for the sake of simplicity.

None of the aforementioned studies, however, have taken into account the
Monte Carlo uncertainty quantification in the cell deformation modeling. This
chapter aims at modeling the interaction between cell deformation (due to mi-
gration) and the deformation of the nucleus as well as quantitative analysis of un-
known parameters by Monte Carlo simulations. We quantify the correlation be-
tween nuclear deformation relaxation and the cell’s ability to penetration through
narrow passages, which is important in the context of metastatic invasion. Sec-
tion 5.2 describes the mathematical model in terms of the equations, subse-
quently, the numerical method is presented in Section 5.3, which is followed by
the description of the results in Section 5.4. Finally conclusions are drawn in
Section 5.5.

5.2. MATHEMATICAL MODEL
This section introduces the model in terms of mathematical relations. We start
with the deformation of the cell and its nucleus in two dimensions and extend
the formalism to three spatial dimensions subsequently. Moreover, the model is
applied to simplified physiological transmigration of cancer cells and six param-
eters are studied by Monte Carlo simulations.

5.2.1. THE MODEL IN TWO DIMENSIONS

Table 5.1: Comparison of CPU-time and the cell penetration time τ

N 10 30 50 100
CPU-time 2.43 s 5.07 s 7.81 s 14.85 s

τ 0.3771 hour 0.3735 hour 0.3812 hour 0.3906 hour

The nucleus must move in coordination with the cell cytoskeletal dynamics
at the front edge and rear end [235]. To mimic cell’s cytoskeleton, a cell is treated
as a collection of 30 parallel nodal points that are located on the cell membrane
and on the outer boundary of the nucleus. We have compared the number of
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nodal points N (N = 10, 30, 50, 100) and we found that if the cell is freely moving
that the pattern is hardly influenced by the number of springs, whereas the CPU-
time increases proportionally with the number of springs. With a large number of
springs, the time-step needs to be adjusted if the cell is in contact with an obsta-
cle. In particular, it may happen if the resolution is too high that the nodal points
on the cell boundary overtake each other when they are in (partial) contact with
a rigid boundary. Taking the model in Figure 5.6 as an example (no perturbation
of the random walk), the CPU-time and penetration time τ are compared with
various N in the following Table 5.1. The table shows that CPU-time increases,
whereas the cell penetration time τ is comparable with the increase of N . Each
node on the cell membrane is connected to its corresponding node on the sur-
face of the cell nucleus. On each of the nodes on the cell membrane surface,
an external signal, such as a concentration gradient in the case of chemotaxis or
durotaxis, is computed. This signal determines the movement of the nodal point.
Next to this signal, the migration of the nodal point is determined by its position
relative to its corresponding point of the nucleus boundary via the deformation
relaxation of the cell’s cytoskeleton. In this way the deformation and migration
of the cell are modeled and sketched in Figure 5.1.

Figure 5.1: A schematic of the distribution of the nodal points on the cell boundary membrane and
the surface of the nucleus. The cytoskeleton is represented as a collection of springs. The red dots,
xi , xn

i and xc , denote nodal points on the cell membrane, nucleus surface and x coordinate of the
cell center of mass, respectively. The vectors x̂i and x̂n

i are represented in red arrows.

We consider a generic signal, of which the gradient determines the migra-
tion of the nodal points on the cell boundary membrane. This signal could be
the extracellular stiffness or the concentration of a chemoattractant or a light in-



5

96 5. A MODEL OF CELL DEFORMATION

tensity for instance. In the work by Massalha and Weihs [148], the gel-stiffness-
dependent differences among cells with various metastatic potentials have been
observed to be correlated with cancer invasiveness, where the metastatic cells
apply a wide spectrum of traction forces (100 - 600 nN) for their adhesion to a
stiffer gel. For the sake of presentation, we denote the intensity of the signal by
c(t ,x), where t and x, respectively, denote time and spatial position. The signal,
as well as its gradient, can be obtained from a given relationship in which the gra-
dient is determined either analytically or numerically. A numerical evaluation in
a finite-element framework could be carried out by for instance gradient recov-
ery techniques or by mixed finite-element formulations. In the present chapter,
we consider a chemical attractant, such as a generic growth factor that attracts
the cells. For the sake of illustration, we consider a point source since this al-
lows for a simple treatment using Green’s fundamental solutions. To this extent,
let the emitting source of the chemoattractant by positioned on xS , then on an
unbounded domain, we solve

−D∆c = γSδ(x(t )−xS(t )). (5.1)

Here, D and γS represent the diffusion coefficient of the chemokine and the se-
cretion rate of the source. Moreover, δ is the Delta Dirac function, while x(t ) and
xS(t ) denote positions of the nodal points on the cell membrane and the source.
The fundamental solution to this equation in an unbounded domain is used in
two spatial dimensions as follows,

c(t ,x) =− γS

2πD
ln(x(t )−xS(t )). (5.2)

In the presence of multiple cells, the superposition principle is used to con-
struct the solution. We note that the signal can be taken as generic as one wishes.
The above equation just serves as an illustration. Note that the above equation
predicts negative values for the concentration if the distance between the point
of observation and the source is too large. In our simulations, the distances are
such that the above expression predicts nonnegative values only. Let the set xi (t )
and xn

i (t ), respectively, denote the nodal points on the cell boundary membrane
and on the surface of the nucleus of the cell. Then, the migration of the nodal
points on the cell boundary membrane is determined by

dxi (t ) =β∇c(t ,xi(t ))dt +α(
xn

i (t )+ x̂i −xi (t )
)

dt +ηdW(t ), i ∈ {1, . . . , N }. (5.3)

Here x̂i represents the vector connecting the initial position of nodal point i on
the cell boundary membrane to the initial position of point i on the cell nucleus
(see Figure 5.1). This vector defines the equilibrium cell shape. In this text, we
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only consider circular and spherical cells, however, this formulation allows to
consider cells of generic shapes such as dendritic shapes. Furthermore, β stands
for the cell’s response to external signals, andα> 0 denotes the cell’s deformation
relaxation. Over a spectrum of cell types, the mobility of the cell boundary has
a locally persistent random character [211], thus the last term takes care of the
randomness movements of each node, where η is a constant and dW(t ) denotes
a vector Wiener process with independent samples from a normal distribution
with zero mean and variance dt . The above equation warrants convergence to
the equilibrium cell shape if there is no external stimulus for the deformation
and migration of the cell.

Next, we introduce the equation of motion for the nodal points on the sur-
face of the nucleus. We proceed similarly to the previous treatment of the nodal
points on the cell boundary membrane, where we link the positions of the nodal
points on the surface of the nucleus to their counterparts on the boundary mem-
brane as well as to the position of the midpoint of the cell nucleus. To this extent,
we obtain for i ∈ {1, . . . , N }

dxn
i (t ) =αn (

xc (t )+ x̂n
i −xn

i (t )
)

dt −α(
xn

i (t )+ x̂i −xi (t )
)

dt +ηdW(t ). (5.4)

Here αn , xc and x̂n
i , respectively, stand for the deformation relaxation of the nu-

cleus, the position of the center of the nucleus and the vector connecting the
initial position of point i on the surface of the nucleus to the initial center of
the nucleus (see Figure 5.1). Furthermore, the random character of the mobil-
ity of the boundary of the nucleus has been taken into account. This treatment
of the points on the surface of the nucleus provides the interaction between the
nucleus and the cell membrane. However, this interaction such that the defor-
mation of the nucleus is delayed and damped with respect to the deformation of
the membrane.

In order to maintain the right orientation of the cell, we also introduce the
rotation matrix after rotation of an angle φ relative to the x-axis:

B(φ) =
(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
, (5.5)

which tranforms a vector x ∈R2 to

x −→ B(φ)x. (5.6)

The rotation matrix B(φ) is used to determine the new equilibrium points of
the cell boundary membrane and of the surface of the nucleus. Therefore, one
cell is able to converge to its initial shape as well as to its rotation as a result of
its migration to simulate the cell morphological polarization, see Figure 5.2 for a
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Figure 5.2: An example of movement and polarity of the cell.

sketch. The angleφ is determined such that it is closest to the current position of
all the nodal points on the cell boundary membrane:

φ= argmin
φ∈[0,2π)

(
N∑

i=1
||B(φ̃)x̃i −xi (t )||2

)
, (5.7)

where x̃i represents the initial position of the i-th node on the cell membrane
surface with the cell center position at time t . After the above problem has been
solved, then the angle of rotation of the cell with respect to the x-axis is known.
This angle, φ, is substituted into the equations of motion for all nodal points on
the cell membrane surface and on the surface of the cell nucleus, which gives for
i ∈ {1, . . . , N }:

dxi (t ) =β∇c(t ,xi(t))dt +α(
xn

i (t )+B(φ)x̂i −xi (t )
)

dt +ηdW(t ), (5.8)

and

dxn
i (t ) =αn (

xc (t )+B(φ)x̂n
i −xn

i (t )
)

dt −α(
xn

i (t )+B(φ)x̂i −xi (t )
)

dt +ηdW(t ).
(5.9)

Next we consider the treatment of an obstacle. Imagine that the surface or con-
tour (in 2D) of the obstacle is given by ∂Ω and let the unit normal vector be given
by n, then we require that the component of the migration vector, dxi (t ) has no
component in the normal direction of the obstacle’s surface, hence we require
that the inner product of dxi (t ) and n vanishes, that is

(dxi (t ),n(xi (t ))) = 0, if xi (t ) ∈ ∂Ω. (5.10)

From this we subtract the component of dxi (t ) in the direction of n, hence this
gives the following adjustment

dxi (t ) ←− dxi (t )− (dxi (t ),n(xi (t )))n(xi (t )), if xi (t ) ∈ ∂Ω. (5.11)
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Note that herewith the obstacle slows down the migration of cells. This principle
is also applied if cells are colliding into each other. The current model simplifies
the mechanics of the cell considerably. Inertial effects would change equations
(3,4,8,9) into second order equations with respect to the time derivative. The first
term with the first-order time derivative is generally associated with friction or
damping. Since in most studies inertia is neglected compared to friction terms
[236–238], we are faced with a system of first-order differential equations. Note
that the incorporation of more complex mechanics also increases the parameter
space of the model, where input parameters are often hard to get.

5.2.2. EXTENSION TO THREE SPATIAL DIMENSIONS
Chemotaxis migration is modeled by using the Green’s function as a solution of
Equation (5.1). However, compared to the 2D model, the Green’s functions in 3D
changes to,

c(t ,x) = γS

4πD‖x(t )−xs(t )‖2 , (5.12)

where both of x(t) and xs(t ) have x, y and z components.
The surface of the outer membrane and the nuclear surface are divided into

mesh points. For this case, superpositions of the 3D Green’s fundamental so-
lutions are used, as well as the same principles for collision with obstacles and
other cells. Further, the rotation can be imposed around all the three coordinate
axes, and to this extent, the rotation matrix B(φ), entailing a rotation about the z-
axis, whereφ denotes the angle with respect to the x–axis, we extend the rotation
matrix to all three coordinate axes:

B(φx ,φy ,φz ) = Bx (φx ) ·By (φy ) ·Bz (φz ). (5.13)

Here Bq (φq ) denotes the rotation matrix about the q–axis (q ∈ {x, y, z}), given by

Bx (φx ) =
1 0 0

0 cos(φx ) −sin(φx )
0 sin(φx ) cos(φx )

 ,

By (φy ) =
cos(φy ) 0 −sin(φy )

0 1 0
sin(φy ) 0 cos(φy )

 ,

Bz (φz ) =
cos(φz ) −sin(φz ) 0

sin(φz ) cos(φz ) 0
0 0 1

 .

(5.14)



5

100 5. A MODEL OF CELL DEFORMATION

All other principles remain the same and rotation is determined using a mini-
mization with respect to the three coordinate angles.

5.2.3. THE APPLICATION TO CANCER METASTASIS

The ECM has pre-existing pores (diameter varies from 1 µm to 20 µm) or fiber-
like (ranging from less than 3 µm to 30 µm in width) and channel-like (varying
from 100 µm to 600 µm) tracks [239]. Furthermore, cells are viscoelastic objects
such that morphological deformation happens frequently during the cancer in-
vasion process [240]. Thence, our model for cell and nucleus deformation is ap-
plied to a simplified process occurring during cancer metastasis in a pore and a
channel-like microenvironment. During the invasion, a cancer cell is normally
able to squeeze obstacles like cells, tissue, capillary-sized vessels and deform it-
self as well as its nucleus to penetrate and seed in other organs. In the model, we
use a constraint cavity with varying roughnesses to simulate the microenviron-
ment during cancer spread, which is mimicked using a trigonometric function
as follows.

y =±(y0 + ε sin(ωx)), (5.15)

where y depicts the rough tube bounds and y0 is a constant used to adjust the
width of a tube. Through changing ε and ω, different roughnesses (varying am-
plitudes and frequencies) can be simulated.

5.3. NUMERICAL METHOD

5.3.1. TIME INTEGRATION

We describe the 2D case and provide information for the 3D case if it substan-
tially differs from the 2D case. Initially the cell outer membrane surface is divided
into N mesh points with respect to the cell center located on (xc , yc ) as follows

xi (0) = (xc +R cos(2π
(i −1)

N
), yc +R sin(2π

(i −1)

N
)), i ∈ {1, . . . , N }. (5.16)

where we assume the cell to be circular in 2D with radius R. The counterparts of
the mesh points on the nuclear surface are given by

xn
i (0) = (xc +Rn cos(2π

(i −1)

N
), yc +Rn sin(2π

(i −1)

N
)), i ∈ {1, . . . , N }, (5.17)
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where Rn < R represents the radius of the cell nucleus. The 3D spherical cell is
described analogously for i ∈ {1, . . . , N } and j ∈ {1, . . . , M }

xi , j (0) =(xc +R cos(2π
(i −1)

N
)sin(π

( j −1)

M
), yc +R sin(2π

(i −1)

N
)sin(π

( j −1)

M
),

zc +R cos(π
(i −1)

M
)),

(5.18)
and on the nuclear surface by

xi , j (0) =(xc +Rn cos(2π
(i −1)

N
)sin(π

( j −1)

M
), yc +Rn sin(2π

(i −1)

N
)sin(π

( j −1)

M
),

zc +Rn cos(π
(i −1)

M
)).

(5.19)
These initial values can be applied to the multi-cell configuration similarly.

To determine the positions of the nodal points on the outer membrane surface,
we use an IMplicit-EXplicit (IMEX) time integration to update the positions at the
next time-step in such a way that the linear parts are treated in a Euler backward
method, whereas the nonlinear parts are treated using a forward Euler method.
This treatment has been chosen to avoid the need of solving a nonlinear system
using an iterative procedure. This treatment results in the following equation (for
the single-cell 2D case) for the nodes on the outer membrane

xi (t p+1) = xi (t p )+∆t · (β∇ci (t p+1)+α(xn
i (t p )+ x̂i −xi (t p+1)))+η∆W, (5.20)

and

xn
i (t p+1) = xn

i (t p )+∆t ·(−α(xn
i (t p )+x̂i−xi (t p+1))+αn(xc (t p )+x̂n

i −xn
i (t p+1)))+η∆W,

(5.21)
for the nodes on the nuclear surface, for i ∈ {1, . . . , N }. Here, ∆W is a 2D Wiener
process with variables from a normal distribution with zero mean and ∆t vari-
ance. For the definition and introduction of the vector-Wiener process, one can
refer to [241]. For the gradient of the concentration (or any other signal that
triggers cell migration and deformation), we use the following IMEX convention
based on the Green’s fundamental solutions in 2D (in 3D analogously)

∇cp+1
i = γS(t p+1)(xS(t p+1)−xi (t p+1))

πD||xS(t p )−xi (t p )||2 . (5.22)

5.3.2. CELL SHAPE
In order to compute the coordinate of the cell mass center, we need the area or
volume of the cell and nucleus. The area A(t ) in 2D is computed by realizing that



5

102 5. A MODEL OF CELL DEFORMATION

the cell is a polygon, which follows from

A(t ) =
∫
∂Ω

x(t )nx (t )dΓ

≈ 1

2

[ ∑
i∈{1,...N−1}

(xi+1 +xi )(yi+1 − yi )+ (x1 +xN ))(y1 − yN )
]
.

(5.23)

For the 3D counterpart, we divide the cell into triangles (in order to allow any
finite-element surface mesh), and compute the volume V (t ) of the cell by

V (t ) =
∫
∂Ω

x(t )nx (t )dS = ∑
j∈{1,...,Nel }

∫
∂Ω j

x(t )nx (t )dS

≈ ∑
j∈{1,...,Nel }

|∆ j |nx

6
· ∑

m∈{ j1, j2, j3}
xm ,

(5.24)

where Nel denotes the number of triangles that are used to approximate the cell
(or nuclear) surface, and j1, j2 and j3 refer to the indexes of the vertices of trian-
gle j . Further, 1

2 |∆ j | denotes the area of the j –th triangle, where we compute ∆ j

by
|∆ j | = ||(x j 2 −x j 1)× (x j 3 −x j 1)||, (5.25)

and the unit outward normal vector by

n j =
(x j 2 −x j 1)× (x j 3 −x j 1)

||(x j 2 −x j 1)× (x j 3 −x j 1)|| , (5.26)

and hence to compute |∆ j |nx , it suffices to take the x–coordinate of (x j 2 −x j 1)×
(x j 3 −x j 1).

For the 3D-case, we note that the area is computed by summing the areas of
all the triangles, that is

Ab(t ) ≈ 1

2

∑
j∈{1,...,Nel }

||(x j 2 −x j 1)× (x j 3 −x j 1)||. (5.27)

5.3.3. MONTE CARLO SIMULATIONS
In our model, most experimental data is difficult or even impossible to collect,
therefore, we refer to other literature data or estimate the input data and thereby
evaluating the quantification of the propagation of uncertainty in the variables
is very important. To investigate the output influence and correlation among
variables, Monte Carlo simulations are carried out based on the model of cancer
metastasis. There, a cell transmigrates through a narrow rough tubular path to
get from one part of the surrounding tissue to another part. Passage through
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the tube requires deformation of the cells’ cytoplasm and nucleus and affects the
corresponding penetration time τwhich is quantified under different conditions.

Suppose the variable X ∈ {D,β,α,αn} follows a normal distribution X ∼ N (µ,σ2),
whereµ andσ represent the mean of the distribution and the standard deviation.
Then, the stochastic variable X could be generated by

X = (randn(Ns ,1)×σ)+µ, (5.28)

here Ns denotes the number of samples. The strength of the linear association
between every variable and penetration time τ is quantified by the correlation
coefficient r given by

r =

N∑
j=1

(X j − X̄ )(τ j − τ̄)

[
N∑

j=1
(X j − X̄ )2

N∑
j=1

(τ j − τ̄)2]
1
2

. (5.29)

Note the correlation coefficient is always bounded by [−1,1], where -1 or 1, re-
spectively, indicates a perfect negative or positive linear correlation.

5.3.4. ERROR ANALYSIS
Numerical methods yield approximate results, where the numerical error E arises
from the IMEX method and the Monte Carlo simulations. The IMEX time inte-
gration error Et i is defined by

‖Et i‖ = ‖τ̂− τ̂∆t‖ ÉC ·∆t , (5.30)

here C represents a positive constant, τ̂ and τ̂∆t denote the real mean penetra-
tion time and numerical mean penetration time, respectively. The numerical
result becomes accurate with the limitation of a sufficiently small time step ∆t .
Furthermore, the accuracy of the Monte Carlo simulations depends on the num-
ber of samples Ns and this error Emc is achieved by

‖Emc‖ = ‖τ̂∆t − τ̂∆t
Ns
‖ ' Snp

Ns
, (5.31)

where Sn denotes the sample standard deviation and τ̂∆t
Ns

is the sample mean

as a result of Ns samples, which is τ̂∆t
Ns

=
∑N

j=1 τ
∆t
j

Ns
. Here τ∆t

j denotes the pene-
tration time of sample j , and the sample standard deviation is given by Sn =[∑Ns

j=1(τ∆t
j −τ̂∆t

Ns
)2

Ns−1

] 1
2

. Note that this error decreases with increasing number of trials.
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Therefore, the total error E is given by

‖E‖ = ‖τ̂− τ̂∆t
Ns
‖ É ‖τ̂− τ̂∆t‖+‖τ̂∆t − τ̂∆t

Ns
‖

.C ·∆t + Snp
Ns

.
(5.32)

To keep the numerical approximation as accurate as possible, the time step should
be small enough and the number of samples should be sufficiently large. Take
the Monte Carlo simulations with six parameters as an example. If we fix all the
six parameters and set the random walk parameter to zero, then the computa-
tion is fully deterministic. The time step is 0.0001 hour and the constant C can
be estimated using Richardson error estimation by{

τ̂= τ̂∆t +C ·∆t

τ̂= τ̂2∆t +C ·2∆t ,
(5.33)

where C = τ̂∆t−τ̂2∆t

∆t = 133, which is a mean value of ten times calculations. With
10000 Monte Carlo (with sampling in the six parameters and using random walk)
samples, the analytical error analysis can be derived as,

‖E‖ É 1.33×10−2 + 0.0687p
10000

' 1.40×10−2,
(5.34)

where 0.0687 is the sample standard deviation Sn . Therefore, the total error in
the Monte Carlo simulations with six parameters is bounded by 0.014 hour.

5.4. NUMERICAL SIMULATIONS
First we describe the simulations in which one cell migrates towards the gradient
of an increasing stimulus along with obstacles in 2D and 3D. Subsequently, this
deformation model of the cell and its nucleus is applied to a simplified cancer
metastasis phenomenon. Furthermore, six parameters are studied and analyzed
by Monte Carlo simulations.

5.4.1. PARAMETER VALUES
Most often the experimental parameter values are not available to us, therefore
estimating input values based on experimental literature is essential. For exam-
ple, we use 10 µm in 2D and 16 µm in 3D for diameters of the nucleus referring to
the work by Friedl et al. [235], where the diameter of the nucleus varies from 10
∼ 20 µm in 2D and 5 ∼ 15 µm in 3D. Analogously, other default input values are
listed in Table 5.2, as well as the sources from the literature whenever possible.
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Table 5.2: Parameter values

Parameter Notation Value and unit Source
Radius of a circular cell in 2D R 12.5 µm [242]
Radius of a spherical cell in 3D R 10 µm [242]
Radius of a circular nucleus in 2D Rc 5 µm [235]
Radius of a spherical nucleus in 3D Rc 8 µm [235]
Cell deformation relaxation α 250 hour−1 -
Nucleus deformation relaxation αn 2500 hour−1 -
Diffusivity of the chemokine D 3600 µm2/hour [243]
Mobility of points on cell membrane β 60 hour−1 [41]
Secretion rate of the chemokine γs 1.2 ×106 mol/hour ·µm3 [165]
Time step in 2D ∆t 0.0001 hour [219]
Time step in 3D ∆t 0.01 hour -
Number of nodes on a 2D cell N 30 -
Number of circles on a 3D cell Nc 30 -
Pressure difference d p 1 kPa/100 µm -
Viscosity µ 0.1 Pa·hour -

5.4.2. CELL MIGRATION ALONG A RIGID OBJECT IN 2D AND 3D
ONE CELL MIGRATING ALONG A RIGID OBJECT IN 2D

In solid tumors, cell migration shows trends in its direction according to the pres-
ence of chemotactic gradients or other external cues. Since there are many par-
allels existing in the mechanisms underlying the movement of cancer cells and
immune cells within tissues as well as in the blood circulation [219], the modeled
cell can be an immune cell with a chemical source of antigen or a cancer cell with
a source of oxygen or substrate/ECM stiffness.

The cell moves according to the gradient of chemokine. Snapshots at dif-
ferent stages of the migration are shown in Figure 5.3, where the red, green and
grey objects visualize the cell, nucleus and a rigid obstacle, respectively. Fur-
thermore, the signal source location is represented by an asterisk. To pass a stiff
barrier or overcome an obstacle, the migrating cell has to reshape and adapt the
mechanostructure of the cytoplasm and the membrane. That is done via exerting
contractile forces or withstanding the stresses from neighbor cells, which are me-
diated by the cell cytoskeleton [244]. According to the experimental observation
of Brunner et al. [244], one migrating cell could push a small obstacle upwards
by exerting forces and crawl underneath this obstacle. Given a larger obstacle
in our simulation, the cell and nucleus are more likely to crawl along the rigid
boundary by morphological adjustments to different extents. Ultimately, the cell
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(a) (b)

(c) (d)

Figure 5.3: Consecutive snapshots of one cell migrating along a rigid obstacle in a 2D simulation.
The cell, nucleus and obstacle are visualized by red, green and grey colors, respectively. A blue
asterisk denotes a source secreting a chemokine with the secretion rate of 2×105 mol/hour ·µm3.
The CPU time of this model takes 2.20 seconds.

and nucleus are able to return to their initial shapes due to cell polarity once the
source is no longer active.

ONE CELL MOVING ALONG A RIGID OBJECT IN 3D
In three-dimensional interstitial tissues, cells typically utilize one of two mech-
anisms for invasion: mesenchymal or amoeboid, respectively, involving degra-
dation of the surrounding ECM or squeezing through sub-cell-size pores in the
ECM; these mechanisms require, respectively, proteinases that can degrade the
ECM or deformations of the cell shape [235]. To simplify the problem and make it
time-efficient to solve, we only consider the mechanical deformability of the cell
in this model rather than deformability of both the environment and the cell.
The degradation of the ECM is hence modeled implicitly in the β-term in Equa-
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(a) (b)

(c) (d)

Figure 5.4: Consecutive snapshots of one cell migration along a rigid obstacle in 3D simulation.
The cell, nucleus and obstacle are visualized by red, yellow and blue colors, respectively. A black
asterisk denotes any type of sources. The CPU time of this model is 21.77 seconds.

tion (5.3). Note that if the ECM decay-rate would be zero, then the β-parameter
would be zero as well. Hence theβ-parameter accounts for the decay of ECM and
the mobility of the node. In a future study, the decay process of the ECM could
be modeled more explicitly so that the migration and deformation process of the
cell can be modeled to be rate-determined by the slowest process. We model a
3D cell with a spherical equilibrium geometry that travels over an obstacle to-
wards a source that secretes a chemokine, e.g. for immune cells the source may
be a pathogen. In Figure 5.4, consecutive snapshots of a 3D cell that reaches a
source and engulfs it are shown. It can be seen that the cell deforms mechanos-
tructurally and that the cell shape returns to its equilibrium spherical shape once
the stimulus has been removed. Note that the cell is still attached to the obsta-
cle once the source has disappeared. Due to this mechanical attachment and
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cell elasticity, the cell deforms back to its equilibrium and thereby pushes itself
away from the obstacle such that there is only attachment at one point of the cell
boundary to the obstacle. This is a characteristic of the current model in which
steady-state adherence has been neglected. The figures illustrate how the model
takes into account the hard mechanical impingement between the cell and the
rigid obstacle.

In general, dimensionality does not affect the expected numerical result in
this case. Furthermore, the computational time of a 2D model is much shorter as
a result of the need for fewer gridpoints on the boundaries of the cell and nucleus,
and thereby we use a 2D model for further application and analysis in this work.

5.4.3. APPLICATION TO CANCER METASTASIS IN 2D
There are pre-existing openings (pores, fiber-like or channel-like tracks) in ECM
that enable cancer cells to migrate with the independence of MMP’s [239]. In
this section, we apply the model to the transmigration of cancer cells through
pores and channels to migrate from one part to another part of the tissue without
degrading ECM.

SIMULATION ON PENETRATION OF A CELL THROUGH A CAVITY

We initially consider a single cell penetrating through a cavity, which is formed
by two circular obstacles, without secreting proteolytic enzymes and remodeling
the ECM; i.e. the cell migration is assumed to utilize the amoeboid mode. The
initial state is shown in Figure 5.5 (top-left). The cell is attracted to an imag-
inary source (indicated by the blue asterisk) that releases a chemokine or an
ECM stiffness signal. The migration of the cell is directed up the gradient of
the chemokine, and it is limited by the presence of the two physical obstacles.
Further, it can be seen that the cell is mechanically compressed as a result of its
shrinkage due to its migration through the cavity and the nucleus deforms when-
ever the size of the pore is smaller than the size of the nucleus, see Figure 5.5. As
soon as the cell exits the constriction and is no longer mechanically compressed,
the nucleus returns to its equilibrium circular shape. Once the source has been
engulfed, the cell shape returns to its equilibrium circular shape. The model only
incorporates temporary adherence to the obstacle, no permanent adherence. Af-
ter the disappearance of the source, the only restoration of the cell shape is mod-
eled.

SIMULATION ON PENETRATION OF A CELL THROUGH A TUBE CHANNEL

Cell deformation is normally studied in vitro by using microfluidic devices [245–
247]. In the latter work, discord-shaped red blood cells have been shown to be
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(a) (b)

(c) (d)

Figure 5.5: Consecutive snapshots of one cell penetration a cavity made of two obstacles in 2D sim-
ulation. The cell, nucleus and obstacles are visualized by red, green and grey colors, respectively.
A blue asterisk denotes any type of sources. The CPU time of this model is 2.18 seconds.

able to repeatly deform when penetrating through microcapillaries with a diam-
eter of 2.5 µm or even less. As mentioned in Section 5.2.3, there are abundant
pre-existing fiber-like and channel-like tracks formed by the alignments of the
collagen architecture in interstitial tissues and organs, which guide or inhibit cell
migration [239, 248]. In Figure 5.6, a schematic representation of an endothelial
cell wall with a channel of approximate 10 µm in width is depicted [239]. This
value is considered here to guarantee that the cell is able to penetrate through it
in most cases.

Mechanical boundaries could regulate some biomedical processes and Mak
et al. [245] demonstrate that if the confined dimensional modulation of a mi-
crofluidic device has a mechanical barrier smaller than the cell nucleus, then
metastatic breast adenocarcinoma cells likely deform in elongated morpholog-
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(a) (b)

(c) (d)

Figure 5.6: Consecutive snapshots of one cell penetration through an endothelial cell wall in 2D
simulation. The migrating cell, nucleus and endothelial cells are visualized by red, green and grey
colors, respectively. A blue asterisk denotes any type of sources. The CPU time of this model is
6.05 seconds.

ical states and invade distinct sites. Here, taking mechanical boundaries into
account, we use the trigonometric function (from Equation (5.15)) to simulate
the different roughnesses through changing the value of parameter ε and ω. A
highly rough boundary of the channel is defined if the perturbation (see Equa-
tion (5.15)) has a high frequency or/and a big amplitude, which is determined
by the surface of the endothelial cells. Whereas a lower frequency (also a lower
amplitude) as we depict in Figure 5.6 could show where each cell is located. The
discrepancy between the endothelial cellular surfaces and the channel through
which cancer (or immune) cell migrates, could be a consequence of the extracel-
lular matrix around the cells. Then the boundary of the channel can have vari-
ous roughnesses, which combined with other parameters, are analyzed by using
Monte Carlo simulations based on this model. To investigate how the cell speed
changes in the current scenario, the speed evolution with the respect of time is
plotted in Figure 5.8(a) without the perturbation of vector Wiener process. As
we expected, the cell speed slows down when it starts to squeeze the opening
and subsequently accelerates to move toward the emitting source. When the τ
equals approximate 0.37 hour, the instantaneous speed reaches a peak and drops
to zero after the engulfment of the source and cell shape recovery. During the
transmigration in the tube, the cell migrates with a speed vibrating up and down
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at 200 µm/hour, which is in the range 1-5 µm/min for the typical speed of amoe-
boid movement observed in vivo in the work [219]. Moreover, cell speed can be
controlled under various conditions, like the number of emitting sources, the
diffusion coefficient, cell mobility, etc.

SIMULATION ON CANCER METASTASIS

Immune cells and cancer cells similarly deform in chemically or mechanically in-
duced locomotion. The work by Springer [249] reports that leukocytes can attach
to the wall of a blood vessel by binding to adhesion molecules of the endothelial
cells, subsequently the leukocytes flatten themselves, and then squeeze through
openings which are much smaller than themselves among the endothelial cells.
Analogously, metastatic cells utilize similar mechanisms when intravasting into
or extravasating out of blood vessels. Cancer metastasis is a multi-step cascade
that can be divided into the following steps, 1) escape from the primary tumor
site; 2) survive transit in the bloodstream or lymphatic vessels after successful in-
travasation; 3) disseminate and extravasate subsequently; 4) start to proliferate
and colonize secondary sites at distant organs [250, 251]. We attempt to simu-
late the steps of intravasation and extravasation and several consecutive snap-
shots showing the shape changes of cell and nucleus are provided in Figure 5.7,
where a schematic diagram of a capillary-sized channel is depicted. In order to
get around hypoxia (or lack of nutrition) as a result of competitive growth in can-
cer cell colonies or as a response to a stiffness gradient, metastatic cells show mi-
gratory exploratory behavior towards regions outside the colony they reside in.
This migration can be inspired by gel-stiffness-dependent differences in traction
forces or strain energies in [148]. Therefore cancer cells are capable of penetrat-
ing through small openings in endothelium. This process is highly inefficient,
and during this dissemination, the majority of cancer cells would die and only
< 0.02% of them are able to seed at distant sites successfully [252, 253].

Since we are assuming a slow flow in the capillary-sized vessel, it is natural
to consider laminar flow. Note that we only consider a component in the axial
direction of the blood flow velocity to simplify the phenomenon. Considering
the pressure-induced Poisseuille flow, where the bloodstream is treated as an in-
compressible fluid, the solution reads as

uz (r ) =−∂p

∂z
· R2

t

4µ
· (1− r 2

R2
t

), inΩb , (5.35)

where, p, µ and Rt denote the pressure, viscosity of fluid and half width of the
blood vessel. Within the vasculature domainΩb , the distance between one nodal
point and vessel boundary r decides the axial velocity of the nodal point, which
gives a parabolic profile. This straightforward phenomenological treatment of
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the blood flow can also be found in [88]. Then the position of a nodal point Xi (t )
is determined by

dxi (t ) =β∇c(t ,xi (t ))dt+α(
xn

i (t )+B(φ)x̂i −xi (t )
)

dt+uz (ri )dt+η1dW(t ). (5.36)

and the motion of a nodal point on the surface of the nucleus is given by

dxn
i (t ) =αn (

xc (t )+B(φ)x̂n
i −xn

i (t )
)

dt −α(
xn

i (t )+B(φ)x̂i −xi (t )
)

dt +η2dW(t ).
(5.37)

We note that the current formalism is two-dimensional and that real world sit-
uations are three-dimensional. In a three-dimensional setting a cell is able to
migrate around a venule and hence it is able to reach a location behind a small
blood vessel without having to be transported through a vessel. The current sim-
ulation should be considered as phenomenological in the sense that the cur-
rent model provides a formalism that can be used to use the following chain:
(1) transmigration of (cancer) cells through a vessel, (2) transport through the
small blood vessel to a remote location, and (3) the subsequent transmigration
through a vessel wall, triggered by an external signal, to exit the blood vessel. Fi-
nally, the cell can possibly colonize through possible successful proliferation in
its environment. This is one of the scenarios in which cancer can spread from
one tumor to different locations in the body of an organism.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Consecutive snapshots of one cell about intravasation and extravasation of a blood or
lymphatic vessel in 2D simulation. The migrating cell, nucleus and the vessel are visualized by red,
green and grey colors, respectively. A blue asterisk denotes any type of sources. The CPU time of
this model is 355.09 seconds.

We model the intravasation of a metastatic cell through a preexisting pore in
endothelium, where the exact underlying mechanism is still poorly understood.
Some studies suggest that cell intravasation is regulated by tumor-stromal cell
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interactions [254], biochemical factors (like tumor necrosis factor alpha TNF-α)
or other cell-cell communications [255]. Therefore, we assume that a cancer cell
is attracted to translocate into the bloodstream by a biochemical signal (see Fig-
ure 5.7(a)). Due to the flow of microfluid in the vessel, the migrating cell is ad-
vected at a velocity whenever subject to the flow. Note that there is no slip on the
vessel wall, hence the blood velocity is zero on the vessel boundaries. To visualize
the blood flow, some imaginary particles indicated in red color have been plotted
in Figure 5.7, which have no influence on the migrating cell. Subsequently, the
cell is capable of moving towards the emitting source (chemokine or stiffness)
to complete the extravasation in Figure 5.7(d). Once the source is engulfed, the
cancer cell is no longer mechanically deformed and hence the cell (and also its
nucleus) returns to its equilibrium circular shapes.

Furthermore, the cell speed evolution of this model is shown in Figure 5.8(b),
the speed is around 200 µm/hour in the channel and reaches to a peak instan-
taneously when the cell gets close to the source. The reason for this peak is the
singularity in Equation (5.2) at the position of the source, which gives a very large
gradient of the concentration near the source. This peak could be regularised by
either adding a time-dependency (through an analytic solution or through a nu-
merical solution of the concentration) or by replacing the chemotaxis by a fac-
tor such that the velocity stays bounded. All these approaches make the model
more complication and since the objective was a construct a simple model, this
has been omitted. At the final stages, the speed decreases to zero due to lack of
attraction signals and the vector Wiener process. We also remark that the large
variations in Figure 5.8(b) are caused by the cell having to pass through the aper-
tures and having to migrate along the wall of the channel. This interaction be-
tween the cell boundary and obstacle causes the switch between repulsion and
migration along the tangent of the obstacle and attraction as a result of a com-
ponent normal to the tangent of the boundary of the obstacle. This effect of this
discontinuous switch mechanism can only be inhibited by choosing a smaller
time step.

5.4.4. PARAMETER STUDY WITH MONTE CARLO SIMULATIONS
If certain input values contain uncertainties, Monte Carlo simulations could be a
way to evaluate the impacts of output. This method enables us to estimate of the
impact from variables ranging from various statistical distributions like Pareto,
uniform, normal, lognormal, chi-square, exponential, etc. [167]. Furthermore,
Monte Carlo simulations have been used over a spectrum of systems, which is
typically concluded in the following four steps, 1) generate the input random
values based on their probability distribution functions; 2) calculate samples; 3)
repeat the above-mentioned steps with a number of trials Ns ; 4) calculate the
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(a) (b)

Figure 5.8: (a).The cell speed evolution in cell penetration model (Figure 5.6); (b) The cell speed
evolution in cell metastasis model (Figure 5.7).

mean and construct a relative frequency distribution of the simulated results
[167, 256]. Furthermore, one can estimate the correlation between the various
input and output parameters.

The model introduced in the Section 5.4.3 is used in Monte Carlo simula-
tions, with the channel boundary of 60 µm in length and approximately 10 µm in
width. The transit time interval that starts once one of the cell’s boundary points
enters the channel and lasts until the last point exits the channel is defined as the
penetration time τ. In this section, the influences of several parameters on the
penetration time τ are investigated.

As we discussed in the Section 5.3.4, the accuracy of the simulation result
depends on the number of samples. To achieve an accurate approximation, the
number of samples is tested that is shown in Figure 5.9.

Note that the axes represent the logarithm of sample count and the mean of
transit time, respectively. If the sample count in the Monte Carlo simulations
is too small, then the average penetration time has not yet converged (see Fig-
ure 5.9 for Ns < 200). We observe that using 10000 samples only gives very small
fluctuations in the average penetration time (see Figure 5.9). The result has con-
verged sufficiently to approximate 0.356 hour. However, to evaluate the uncer-
tainty of input data quantitatively, 10000 samples are chosen in our simulation
which gives acceptable computation times in the order of hour. Using Equa-
tion (5.31), the Monte Carlo error is estimated by ‖Emc‖ = ‖τ̂∆t − τ̂∆t

Ns
‖ ' Snp

Ns
.

MONTE CARLO SIMULATIONS ON PARAMETERS D , β, α, αn

We start with the Monte Carlo simulations on four input parameters which are
the diffusion coefficient of the chemokine D , cell point mobility β, cell deforma-
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Figure 5.9: Sample quantity test for convergence of average penetration time τ. The penetration
time is in hours.

tion relaxation α and the nucleus deformation relaxation αn . We sample them
from the normal distribution, then they can be generated by Equation (5.28) with
the default values in Table 5.3. The mean value of each is the same as the value in

Table 5.3: Parameter values

- D β α αn

Value N ∼ (600,302) N ∼ (60,32) N ∼ (250,402) N ∼ (2500,1252)

Table 5.1 and corresponding standard deviation reflects the degree of dispersion
among samples. The values have been chosen mathematically based on exten-
sive testing. In Figure 5.10, we plot a histogram of 10000 samples as well as a cu-
mulative distribution function (CDF) of the estimated probability of penetration
time τ. Thence, the x-axis denotes the consecutive variable penetration time τ
and the y-axis represents the frequency of occurrence or the probability Pn(t ≤ τ)
of the corresponding variable depending on the chart considered in Figure 5.10.

Taking different roughnesses of the channel boundary into consideration,
various values of ε (ε = 0, 0.5, 1.0, 1.5 µm) and ω (ω = 0, 0.25, 0.5, 0.75 µm−1)
are set and compared in Figure 5.11. The ε parameter manifests the magnitude
of vertical fluctuation, i.e. the amplitude; while ω determines the frequency of
the fluctuations of the boundary. A smooth boundary has a small ω value, then
one cell is able to move through it much faster than through a rough channel.
In Figure 5.11(a), we observe four cumulative distribution functions with differ-
ent slopes f (τ), which represents the probability density. Thus, any probability
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Figure 5.10: The histogram (a) and CDF plot (b) of cell penetration time τ in Monte Carlo simula-
tions on parameters D , β, α, αn .

Pn of a time interval [τ− ∆t
2 ,τ+ ∆t

2 ] occurring can be calculated by the formula
Pn(τ− ∆t

2 ≤ τ̂ ≤ τ+ ∆t
2 ) ≈ f (τ) ·∆t . Conversely, with the same probability, taking

Pn = 0.5 for an example, we can get the information about the transit time of
one cell with 50% probability in various conditions, where τ1(ε = 0 µm) < τ2(ε =
0.5 µm) < τ3(ε = 1.0 µm) < τ4(ε = 1.5 µm). Analogously, Figure 5.11 (b) show-
ing four cumulative distribution functions of the penetration time τ are com-
pared under different conditions with varying ω. With 50 % probability, one cell
takes penetration time τ1 with a straight boundary ω = 0 µm−1, the penetra-
tion time rises to τ2, τ3 and τ4 with the increase in roughnesses ω = 0.25 µm−1,
ω= 0.5 µm−1 and ω= 0.75 µm−1, respectively. In conclusion, both the standard
deviation in the arrival times and the mean arrival time increase with increas-
ing values of ε and ω. Subsequently, we fix the roughness parameter values to
ε = 1.0 µm and ω= 0.5 µm−1, then the impacts of four parameters D,β,α,αn on
the penetration time τ are investigated and the correlation analysis are shown
in Figure 5.12. Based on the results, there is some positive correlation between
the penetration time τ and both D and α with correlation coefficient r equal to
0.6068 and 0.49772, respectively. Moreover, β has a negative linear correlation
with τ, whereas, the nucleus deformation relaxation has no obvious correlation
with penetration time in this situation. However, the nucleus is the stiffest cel-
lular component, which inhibits the confined cell migration if the pore diameter
in the ECM is below a critical threshold [223, 257]. Therefore, the correlation be-
tween the penetration time and nucleus stiffness is expected to be highly positive
if the width of channel is smaller than a critical threshold.
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Figure 5.11: Figure (a) compares the CDF plots of cell penetration time τ in terms of various ε
(ε = 0, 0.5, 1.0, 1.5 µm) with a fixed ω value (ω = 0.5 µm−1). Figure (b) compares the CDF plots
of cell penetration time τ in terms of various ω (ω = 0, 0.25, 0.5, 0.75 µm−1) with a fixed ε value
(ε = 1.0 µm).

MONTE CARLO SIMULATIONS ON PARAMETERS ε AND ω

We next analyzed the other two parameters ε and ω, which reflect the amplitude
and frequency of the channel boundary. Suppose ε andω are too large, i.e. ε ,ω>
2 in our simulations, the trigonometric functions probably would trap migrating
cells due to sharp peaks or corners. Therefore, ε and ω are generated carefully
with uniform normal distribution by the following equation,{

ε ∼ U (0.5, 1.5),

ω ∼ U (0, 0.6).
(5.38)

This above equation guarantees the value of ε and ω are uniformly distributed
and bounded by (0.5, 1.5) and (0, 0.6). Based on the 10000 samples, Figure 5.13(a)
shows the corresponding histogram, which looks like a log-normal chart and
fits from a qualitative point of view with the experimental results by Abuhat-
tum and Weihs [258], where the migration speeds of single preadipocytes with-
out chemoattractants follow a log-normal distribution. A cumulative percentage
of the number of occurrences regarding the cell penetration time τ is plotted in
Figure 5.13(b).

Analogously, scatter diagrams about ε andωwith penetration time τ indicat-
ing their correlations are shown in Figure 5.14. With the increase of roughness,
one cell travels a longer time to penetrate the channel in most cases. Further-
more, the increment ofωmakes a contribution to the total travel time of one cell.
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Figure 5.12: Scatter plots of cell penetration time τ with respect to various variables D , β, α, αn .

This is also reflected by the correlations of r = 0.4310 and r = 0.7100 between the
penetration time and ε and ω, respectively.

To test the essential variables simultaneously, all six parameters D , β, α, αn ,
ε and ω are analyzed by Monte Carlo simulations. The histogram of the penetra-
tion time τ is shown in Figure 5.15(a) which can be fitted to a lognormal distri-
bution. Furthermore, a CDF result is shown based on a sample of 10000 times
simulations in Figure 5.15(b).

MONTE CARLO SIMULATIONS ON PARAMETERS D , β, α, αn , ε AND ω

To investigate the impacts of variables on output results and analyze the cor-
relations of each variable with penetration time τ, a couple of scatter plots are
shown in Figure 5.16, respectively. Adding some control variables that are statis-
tically distributed yields more uncertainty to the system. The increase in uncer-
tainty generally decreases the correlation. Therefore, in the current simulation
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Figure 5.13: The histogram (a) and CDF plot (b) of cell penetration time τ in Monte Carlo simula-
tions on parameters ε and ω.

of six parameters, the correlation of parameters D , β, α, ε and ω with time τ de-
crease slightly compared with the simulations with the variation of four param-
eters. The correlation between τ and αn is still negligible. Further, Figure 5.16
shows that the roughness (ε and ω) dominantly influences the cell travel time.

5.5. CONCLUSION AND DISCUSSION

In this chapter, we develop a cell-based model to describe the morphological
evolution of the cell and nucleus in a phenomenological way. The cell cytoskele-
ton spanning between the nucleus and the cell membrane is simulated by 30
springs. As we expected, an immune cell or a single cancer cell can deform ac-
cording to the specific obstacles or paths when it encounters a stiff obstacle in
a 2D or 3D environment. Compared with some existing models, e.g. a model
investigating the role of nucleus deformation in the cell deformation under dif-
ferent geometrical and fluid flow conditions [259] and a 3D model describing nu-
cleus mechanics during cell migration and deformation [260], one of the major
advantages of our modeling is its efficiency regarding CPU time, which enables
to carry out Monte Carlo simulations for evaluation of parameter sensitivity. A
further merit of the current model is its simplicity. If one is able measure the
velocity of points on the surface of the cell under the influence of (the gradient
of) a generic (being a concentration or a stiffness for instance) signal, then the
β-parameter can be determined. If one further is able to measure the retraction
speed on the boundaries of the cell and the nucleus once the signal has disap-
peared, then it can fit the α parameters.

The uncertainties in the input values necessitate us to study the impact of
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Figure 5.14: Scatter plots about cell penetration time τ with respect to various variables ε and ω.

uncertainty by carrying out Monte Carlo simulations. With 10000 samples, the
correlations of each variable D , β, α, αn , ε and ω with cell penetration time τ are
analyzed. The results show that αn has no significant correlation with the pene-
tration time in the current situation, where the reason probably is the low range
of parametric values in our simulations. A larger range, with variations over a
lognormal distribution could give a higher correlation. The use of very high val-
ues of αn in the model when the cell is penetrating through an aperture needs
more investigation. Moreover, Serrano-Alcalde et al. [259] state that a small cell
nucleus does not play a crucial role in cell deformability-based experiments un-
der fluid flow. Therefore, the deformability of the nucleus could be impacted by
the size of the nucleus, and thereby influence the penetration time. Whereas,
other variables influence the cell penetration time τ to varying degrees, where
the correlation of roughness is the most significant.

To make the problem tractable, some assumptions are made based on the
simplified biomedical phenomenon, which are: 1) the equilibrium morphology
of the cell is circular in 2D and spherical in 3D, respectively; 2) the cell is not al-
lowed to die, which means the cell cannot be removed, in any extreme narrow
scenarios; 3) cell mobility is simulated by a source secreting a single cytokine
evenly and continuously until it is consumed, which makes the model consist of
a system of ordinary differential equations; 4) the obstacles are absolutely stiff
such that they cannot deform and thereby we do not need to consider the degra-
dation of substrate/ ECM on the obstacles. Further, the introduction of elastic
obstacles also needs the inclusion of mechanical balance based on Newton’s law
for the objects. Although this would be an interesting extension of the model,
we omit this in the current chapter since this extension enlarges the parameter
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Figure 5.15: The histogram (a) and CDF plot (b) of cell penetration time τ in Monte Carlo simula-
tions on parameters D , β, α, αn , ε and ω.

space for the Monte Carlo simulations. In order to improve the model, the fol-
lowing aspects could be considered in future work.

- Compared to a 2D model, a 3D model is more physiological, however, there
is no significant qualitative difference in terms of expected numerical re-
sults. Moreover, taking the Monte Carlo simulations into account, the CPU
time for simulating the 2D model is much more reasonable. However, a 3D
model will still be an interesting research direction in the future.

- Amoeboid and mesenchymal movement, as the two basic forms of cell lo-
comotion, mutually transform and participate in the process of cell migra-
tion. The former is also called pseudopodia movement including lamel-
lipodia and filopodia, which normally takes place close to the cell front
as a result of cell polarization [211, 239, 261]. Since the interconversion
between the amoeboid model and the mesenchymal model due to the cy-
toskeleton rearrangement happens during cancer cell migration [262], the
filopodia that is an extension of the active membrane of cell front and rear
might be considered in future work.

- In the current work, we define constant values for the cell deformation re-
laxationα and cell mobility β everywhere, while they in general depend on
chemokines. Therefore, to introduce surface-resident chemical species,
some surface partial differential equations can be incorporated such that
it describes the evolution of the chemical signals over the membrane sur-
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Figure 5.16: Scatter plots about cell penetration time τ with respect to various variables.

face. This amounts to solving

at +∇Γ · (va)−Da∆Γa = f (a),

v = d

dt
x(t ), (t ,x(t )) ∈R+×Γ(t ).

(5.39)

This is an interesting and relevant research direction, which will be taken
into consideration in future work.

- A tumor is typically surrounded by a dense network of collagen fibers, which
are normally utilized by motile cancer cells to guide their paths [263]. Fur-
thermore, mutated cancer cells are capable of remodeling the normal ECM
around them, abnormal ECM or the density of fibers preferably reshapes
aligned direction in a parallel arrangement, which forms an anisotropic
medium and thereby has a significant impact on cell migration. If we for-
malize this directional dependence through the so-called orientation ten-
sor Ψ. Then we get the following revision on the response to the external
signal of the migration equations:

dxi (t ) = (β0I+β1Ψ)∇c(t ,xi(t ))dt +α(xn
i (t )+ x̂i −xi (t ))dt +ηdW(t ),

i ∈ {1, . . . , N },
(5.40)
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where β0 and β1 are two constants andΨ can be obtained by

Ψ(t ,x) =
(
Ψxx Ψx y

Ψx y Ψy y

)
. (5.41)

For the formalism, one can refers to the work by Cumming et al. [98] and a
further application in the work [264].

- We note that the relaxation parameter of the nucleus has little correlation
with the transmigration time. This finding seems counter-intuitive. Ac-
cording to the studies of [259], the stiffness of the nucleus hardly plays
a role in cell-deformability experiments if the nucleus is relatively small.
However for larger sizes, this deformability of the nucleus may become
more important.

Over the past several decades, significant progress has been made in medical
technology and attempts have been made to investigate the complexity of can-
cer initiation and progression. For example, cell deformability has been shown
to have certain correlations with disease states of cells and metastatic potentials
[240, 265]. Nonetheless, the biological mechanisms of a multi-step metastatic
cancer still remain poorly understood [214]. To make a contribution, our group
will continue to work on biological mathematical modeling to predict the behav-
ior of cells in the microenvironment and aid the biological experiments for the
further understanding of cancer and drug development.





6
CONCLUSION AND DISCUSSION

6.1. CONCLUSION
Mathematical simulations with a wide range of techniques can be applied to
many different practical problems and its importance on cancer research has
been increasingly recognized in recent decades. Differential equation-based con-
tinuum models are able to cover relevant scales from 102 µm to 10 cm, whereas
hybrid models including cellular automata, and agent-based techniques can span
scales from microns to millimeters [34]. Normally, mathematical modeling is a
process of several steps: 1) choose a specific problem and computational do-
main; 2) make some simplifications using assumptions and convert this real-
world problem to a mathematical problem through quantification; 3) establish
mathematical equations, which enable to describe the relationship between the
relevant quantities; 4) calculate the solution to the actual problem quickly and
accurately using computing technology, software and other tools. Certainly, a
sound mathematical model in this context must be analyzed (i.e. well-posedness,
stability, error, etc.), validated in vitro or in vivo and applied to obtain further
understanding of the fatal disease or any other biophysical or biomedical phe-
nomenon.

CONCLUSIONS ON CHAPTER 2
Specific T-lymphocytes play an essential role in anti-tumor response in cancer.
However, pancreatic cancer has immune tolerance, where T-lymphocytes are
trapped in the desmoplastic stroma that hardly can neutralize cancer cells. In
Chapter 2, our cell-based model presents the T-lymphocytes mediated immune
response in pancreatic cancer at early stages. The model quantifies the delay
of invasion of T-lymphocytes, which is caused by the stromal orientation and
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predicts the potential cancer progression in patients with different strengths of
immune response.

The migration of T-lymphocytes is cytokines-driven chemotaxis modeled by
solving a steady-state reaction-diffusion equation, whereas, mechanotaxis of other
cells’ movement is dealt with using the strain energy density. An orientation ten-
sor and a vector Wiener process are used to simulate the anisotropic guidance of
desmoplastic stroma and random walk of cells. To update the displacement of
cells, a large system of stochastic differential equations is solved by the classical
Euler-Maruyama method.

CONCLUSIONS ON CHAPTER 3
Based on the numerical results in Chapter 2, early targeted treatment can obvi-
ously increase the likelihood of success of pancreatic cancer therapy. Therefore,
we extend the model to a stage of treatment in Chapter 3, where two different
drugs are given at an early stage. The model shows that the drug PEGPH20 breaks
down the orientation of desmoplastic stroma and the drug gemcitabine slows
down the proliferation of cancer cells. In addition, the cell-based model predicts
the therapeutic effects of various strategies including various drug doses and dif-
ferent times when treatment starts.

Analogously, the migration of cells is modeled by using a large system of
stochastic differential equations. For diffusion of drug, the steady-state reaction-
diffusion equation is taken into consideration, which is solved based on Green’s
fundamental solutions. Moreover, Monte Carlo simulations are performed to
quantitatively investigate the propagation of uncertainties in the input parame-
ters, which predicts the likelihood of a successful therapy with various diagnosis
stages and treatment strategies.

CONCLUSIONS ON CHAPTER 4
In Chapter 4, we set up a cellular automata model that is different from the cell-
based model. Cellular automata models enable each computational lattice point
to be occupied by one cell or multiple cells, which upscales the simulation to a
tissue level. The model successfully exhibits pancreatic cancer progression at
an early stage and subsequent cancer recession under application of oncolytic
virotherapy in a tissue level. Taking the viral toxicity into account, this model
also investigates the viral therapeutic effects in various scenarios and residual
viruses.

The fundamental cell processes (like cell mutation, cell proliferation, etc.) is
modeled by using probabilistic principles. The virus is injected intratumorally
and its diffusion is modeled by the time-depended reaction-diffusion equation,
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which is discretized by the finite difference method and integrated by the IMEX
approach. Furthermore, Monte Carlo simulations are used to investigate the in-
fluences of input parameters on numerical results.

CONCLUSIONS ON CHAPTER 5
In previous chapters, the shape of cells are fixed circular, however, Chapter 5
presents a cell-based deformable model. The model phenomenologically shows
the morphological evolution of the cell and its nucleus when encountering stiff
obstacles. To mimic cancer metastasis, a microvascular bloodstream is incorpo-
rated and the cancer cell shows a dynamic cell shape. This chapter also gives the
estimation of the likelihood of (cancer) cell metastasis.

Cells are attracted by an imaginational source (like chemokine or stiffness
signal), which is dealt with using Dirac delta functions and Green’s fundamen-
tal solutions. To mimic the deformable shape of the cell and its nucleus, each
cell boundary is treated as a collection of a series of nodal points, and springs
connecting the cell boundary and nucleus. To update the location of each nodal
point, an IMEX-time integration method is used and parameters are quantita-
tively studied with Monte Carlo simulations. Moreover, the error of the IMEX-
time integration method and Monte Carlo simulations are analyzed in this chap-
ter.

6.2. DISCUSSION

Since biomedical studies often involve extensive experimental data in terms of
patterns and numbers, the quantified hypotheses pose mathematical challenges,
which are the backbone of mathematical models. The mathematical models can
be used to investigate case studies that do not exactly fit within the experimen-
tal outcomes. A major advantage of mathematical modeling is that the number
of animals or in vitro experiments can be reduced. Many mathematical models
are based on the abstraction of biological phenomena into sets of partial differ-
ential equations, stochastic processes or even combinations of both. The ap-
proximate solutions are obtained by using numerical methods such as combi-
nations of time integration, finite element methods, Green’s functions, or using
stochastic processes. In the case of probabilistic models, the model results need
a statistical assessment in terms of intervals of confidence, correlations or other
statistical tests.

In our future studies, we will develop models with more physiological fea-
tures, such as the formation of abnormal stroma caused by cancer, the inter-
action of innate immunity and adaptive immunity for cancer, angiogenesis and
network models for cancer metastasis, as well as other processes. Through the
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combination of various stages of the models of cancer, the complete model is
expected to be applied in various aspects of cancer research. To keep the CPU
time of the model low, a small number of cells is considered in two and three di-
mensions currently. However, parallel computing makes it possible to increase
the number of cells in size to achieve large-scale quantitative simulation of cells.
Therefore, we might use parallel computing facilities to simulate human tissue
and even organs in a 3D environment to make the model as realistic as possible.

Existing models by us and others will also need to be expanded to include
more complexity and physiological aspects. One aspect is sensitivity analysis of
input values, due to the uncertainties, the study of parametric variation is cru-
cially important. In our statistical evaluation of results, we use Monte Carlo sim-
ulations, which enable us to simultaneously and quantitatively investigate the
input variables and correlations among them [167, 256]. It could be useful to
compare our statistical outcomes in terms of probabilities, correlations and sig-
nificance with large data sets from experimental and clinical studies and to in-
vestigate whether similar trends arise.

Another important matter is the accessibility to realistic values of the input
parameters, currently most of the parameters in our simulations have been cho-
sen on the basis of the literature or by estimation. Hopefully, more realistic input
values will be available to us such that we are able to validate our modeling re-
sults better with available experimental outcomes. Thence it is crucial to coop-
erate with biomedical labs or hospitals to realize the validation, evaluation and
application of our models, which definitely enable to enhance further under-
standing of the progression and inhibition of cancer. Another important issue
concerns the variations of the input from patient to patient due to age, genetic
pattern, lifestyle and gender. This makes that many of the simulated results con-
tain uncertainties despite possibly well-measured data in generic patients. These
uncertainties require a probabilistic modeling approach and hence a statistical
assessment of the simulation results is indispensable.

Last but not least, next to common surgical therapies where tumors are re-
moved or where chemotherapy is applied, therapies could be directed to paralyz-
ing cancer cells in terms of motility and invasiveness by reducing cell deforma-
bility and/or by reducing the durotactic signal through de-stiffening certain body
parts. Further treatments could target cancer cells by decreasing their prolifer-
ation rate and by increasing mortality rates. This is often done in chemothera-
pies. Alternatively, one could investigate and quantify the treatment of cancers
by Nano-particles that only target the cancer cells. Modeling studies and frame-
works could help investigate the impact and feasibility of the aforementioned
treatments. Our cellular automata model for oncolytic virotherapy could be a
starting point for these modeling studies.
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In this thesis, we illustrated the importance of mathematical modeling to
the cancer research community. A large advantage of mathematical modeling
is the availability of a tool to predict outcomes from conditions that are beyond
the measured and observed values. Biological and clinical researchers normally
have limited training in mathematics, conversely, applied mathematicians often
poorly understand the complicated multiscale dynamics that characterize the
processes studies in the life sciences [5]. As a fact, typically medical biologists
and clinicians show little interest in mathematical modeling, and thereby limited
data are accessible to mathematicians. Another problem is that often mathemat-
ical modelers ask for parameters that are hard or even impossible to measure by
medical biologists.

The evolutionary nature of cancer is undoubtedly important for oncologists
to hack cancer disease, where mathematical modeling is able to aid us to obtain
a better understanding of how cancer evolves and how it adapts to the environ-
ment. Moreover, mathematical modeling can help clinicians optimize the drug
treatment strategies, and further do the pre-validation studies on a computer
with a few seconds before administering therapy to patients [6]. This can also
be helpful for experimentalists to reduce the number of clinical trials on animals
or humans. At later stages, the mathematical models will be used to improve
existing therapies and to quantify the impact of new therapies against cancer.
To summarize, mathematical modeling has brought new insights into the un-
derlying mechanisms of cancer evolution and provides prospects for oncology
research and it facilitates a decrease in the number of animal experiments.
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