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1. Als in de ontwikkeling van gestaggerde schema’s even veel tijd en geld zou zijn
geinvesteerd als in die van gecoloceerde schema’s, zouden cerstgenoemde nu dezelfde
shock capturing ability hebben als de beste gecoloceerde schema's.

2. De oplossing van het Riemann probleem met cen niet-convexe flux funktic in voor-
beeld 4.5 op bladzijde 60 van C.B. Laney’s Computational Gasdynamics (referentie
[563] uit dit proefschrift) is niet correct. De correcte oplossing volgt de convex omhul-
lende van de fluxfunctie, gegeven door de raaklijnen aan de fluxfunctie door w4 en
uy, cn het tussenliggende convexe gedeelte van de fluxfunctie (Fig.1).
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Figure 1: Niet convexe fluxfunctie voor voorbeeld 4.5.

3. De ontwikkeling van nicuwe CFD algorithimes wordt in te sterke mate bepaald door
de mogelijkheden van reeds beschikbare computer codes.



. Zwakke oplossingen berekend met de niet strict conservatieve Mach-uniforme dis-
cretisatiemethoden van Bijl en Wesseling (respectievelijk referenties [7] en [108] uit
dit proefschrift) voldoen niet exact aan de Rankine-Hugoniot relaties voor de Euler
vergelijkingen.

5. De Porsche 924 is evenals de 911 een echte Porsche en in bepaalde opzichten zelfs

superieur.

. Door heffing van accijns op vlees kan de overheid de vlecsconsumptie terugdringen.
Dit is gerechtvaardigd door de milieubelasting veroorzaakt door de intensieve vee-
houderij.

. Televisie kijken is een asociale bezigheid.

. De uitspraak ”Als het een puinhoop is op je bureau, is het ook een puinhoop in je
hoofd”, is niet noodzakelijk waar.

. In plaats van een conferentiebijdrage voor toelating te beoordelen op grond van cen
samenvatting zou het wetenschappelijk comité een beknopte versie van de presentatie
(transparanten) moeten bekijken.
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Chapter 1

Introduction

This thesis is devoted to investigation of the application of staggered finite volume schemes
for the discretisation of more general hyperbolic systems than the Euler equations of gas-
dynamics. Because state-of-the-art colocated schemes for the Euler equations have reached
a state of maturity and sophistication that cannot be matched (vet) by staggered schemes,
the former will be more robust and accurate for standard gasdynamic problems. However,
for nonstandard conditions, e.g. weakly compressible gasdynamic flow, or more general
hyperbolic systems, staggered finite volume schemes can be more efficient, accurate and
robust than colocated schemes.
We will consider two different hyperbolic systems:

e The equations of the homogeneous equilibrium model for cavitating hydrodynamic
flow,

e The equations of ideal magnetohydrodynamics.

These will be discussed in Part I and Part IT of this thesis, respectively.

Both systems share the special property of nonconvezity, that will be discussed shortly
after, and have a complicated flux function, which is not a homogencous function of first
order. The first system has the additional complication that the cquation of state is
nonlinear and gives rise to very strong variation in the speed of sound. The successful
application of staggered schemes to compute solutions to these very complicated hyperbolic
systems with Mach-uniform efficiency and accuracy illustrates the general applicability of
the approach.

1.1 Staggered schemes
Staggered schemes are discretisations, either of finite difference, finite volume or finite

elcment type, where variables are not colocated spatially or temporally. A classical example
of a staggercd finite volume scheme is the Hansen scheme [31]. The Hansen scheme applied




2 INTRODUCTION

Figure 1.1: The staggered placement of the control volume in the Hansen scheme.

to the linearised shallow-water equations reads:

1 n n+% _ n+%
G =4 +?1Uj+% Uiy _ 0 (1.1)
ot oz ’ '
nty ot n
R S L A (1.2)
ot oz ' '

where d, U, d and g are the water depth, velocity, average waterdepth and gravitational
acceleration respectively. The equation for d is integrated over the control volume centered
around j, whereas the equation for U is integrated over the control volume centered around
j+3 (Fig. 1.1). Note that in this case no interpolations are required to compute the fluxes
at the faces of both sets of control volumes. The scheme is second order accurate in space.
Furthermore, the temporal staggering of the unknowns raises the accuracy of the time-
integration. If d and U would be evaluated at the same discrete time levels, the scheme
would be only first order accurate in time (Sielecki scheme [81]). Another property of
staggered schemes is that no use is made of information about the characteristics of the
flux function, such as the eigensystem of the Jacobian of the flux function; this is a key
part of all colocated upwind schemes for hyperbolic systems. Convective terms can be
upwind biased easily, because the upwind direction is trivially contrary to the direction of
the convective velocity, but all other terms can be discretised centrally.

This type of scheme is fundamentally different from staggered schemes within the con-
text of predictor-corrector methods, e.g. the Richtmyer method (see e.g. [53]). In this case
the unknowns are advanced on the standard grid in the corrector step, after having been
mapped to the staggered grid in the predictor step.

Recently pseudo-staggered schemes have been introduced [3], where use is made of a
set of help-variables discretised on a staggered grid. The use of the discrete Stokes theorem
to update the staggered help-variables with the colocated primary variables enables one to
enforce a solenoidality constraint on a subset of the variables, as is encountered for example
in incompressible flow (V - u = 0) and in magnetohydrodynamics (V- B = 0). At the end
of the time step the help-variables are interpolated to the location of the primary variables.
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Because the primary variables are advanced in time in a colocated manner, these schemes
are not truly staggered schemes.

1.2 Nonconvex hyperbolic systems

A system is called nonconvex, if one of the characteristic fields is neither genuinely non-
lincar nor lincarly degencrate [30]. The most important differences between convex and
nonconvex hyperbolic systems are the possible occurrence of entropy condition satisfving
expansion shocks and the fact that simple wave solutions of the equation can be of compos-
ite type. This means that the simple wave solution can consist of a concatenation of shocks
and expansion waves of the same family. Both effects will also oceur in the scalar case. A
textbook example of a nonconvex hyperbolic equation is the Buckley-Leverett equation,
that describes the flow of two immiscible liquids in a porous medium, neglecting capillary
effects, see e.g. [59, 105]. We will discuss methods that are accurate and efficient for both
the convex and the nonconvex case.

1.3 Outline of this thesis

This thesis is divided into two parts. In Part I the development of a staggered scheme
to discretise the equations of the Homogeneous Equilibrium Model (HEM) is discussed.
The HEM is a simple model to describe two-phase liquid/vapor flow and is used to model
unsteady sheet cavitation on lifting surfaces. The second part is devoted to the formulation
of a staggered discretisation of the equations of ideal magnetohydrodynamics, that model
the dynamics of an inviscid plasma under the influence of a magnetic field.

We start with a brief discussion of some physical and technical aspects of cavitation.
Next an overview is given of the various approaches that are used to model cavitation
with the Euler and Navier-Stokes cquations. The HEM will turn out to be the most
generally applicable model, with modest assumptions. We continue with a review of the
method of Delannoy, who was the first to successfully apply the HEM to compute unsteady
cavitation. This approach forms the starting point of our method. The discussion will
highlight shortcomings in Delannoy’s approach and aims to supply some background for
some of his sparsely motivated but correct choices.

Before formulating our numerical method we supply information on specific details of
the HEM. We proceed with analyvzing the nonconvex equation of state of the HEM and
then discuss the Riemann problem for a general nonconvex equation of state. The solutions
of two Riemann problems will be used as simple testcases for the numerical scheme.

The choice of a suitable time integration method is placed in a formal framework, by
distinguishing between the target, the actual and the resolved discretisation. Although
a straightforward extension of the method for the Euler equations produces results for
Riemann problem test cases with accuracy comparable to a standard colocated scheme,
this method has to satisfy a severe stability restriction on the timestep when applied to



4 INTRODUCTION

the computation of cavitation. Originally this was blamed on the splitting error caused
by the sequential solution procedure, and a number of ways to reduce the splitting error
were devised. One way is to apply the iterative SIMPLE approach. However, stability
analysis revealed that the SIMPLE method does not owe its superiority to the absence of
the splitting error but to its favorable stability properties for high Mach number flow. Our
aim was to formulate a noniterative solution procedure, with stability properties for high
Mach number flow, comparable to the SIMPLE method.

To gain insight in the stability properties of these segregated solution procedures we
turn to von Neumann stability analysis. The simplicity of linear analysis allows inclusion
of details of the segregated solution procedure, e.g. linearisation and deferred/defect cor-
rection techniques. This analysis reveals a strong dependence of the maximum allowable
dimensionless timestep on the Mach number. It explains the severe restriction on the
time step of the original method for the high Mach number flow encountered in cavita-
tion simulations and leads the way to a time integration method with more uniformity of
the stability properties in the Mach number. Next we use this time-stepping method to
compute a number of applications.

In the sccond part we direct our attention to the equations of ideal magnetohydrody-
namics. A key aspect of the equations of ideal magnetohydrodynamics is that the discrete
magnetic field should remain solenoidal to avoid the occurrence of unphysical phenomena,
e.g. magnetic monopoles. Furthermore, in some astrophysical applications the plasma
flow is weakly compressible, but with physically important density variations. A staggered
scheme retains the solenoidality of the discrete magnetic field to machine precision and
its efficiency and accuracy in the low Mach number limit. This makes it very suitable for
computing weakly compressible MHD flow.

We start with a straightforward extension of a Mach-uniform method for the Euler
equations. However, because of the lack of conservation of the discretisation weak solutions
are not correctly approximated. For the Euler equations the deviations are very small. But
for the equations of ideal magnetohydrodynamic flow they become unacceptable. Therefore
we continue with constructing a conservative pressure correction method for the Euler
equations, that has Mach-uniform behavior similar to earlier nonconservative methods,
but produces more accurate approximations to weak solutions. This is illustrated with a
number of Riemann problems and with two two-dimensional testcases.

Next, extension of the method to ideal MHD is discussed. Different staggered arrange-
ments of the magnetic field are considered. The new method is shown to be able to produce
accurate results for a number of classic Riemann problems for magnetohydrodynamics and
for a two-dimensional test case: the rotor problem.




Part 1

Hydrodynamic Cavitation






Chapter 2

Physical background of cavitation

In this section a brief introduction is given to the phenomenon of cavitation. Cavitation
is the phenomenon that when the local pressure in a liquid drops below the (local) vapor
pressure, vapor filled bubbles or pockets are formed. We restrict ourselves to Aydrodynamic
cavitation, caused by the kinematics of the fluid, as opposed to acoustical covitation, caused
by an externally applied fluctuating pressure field. Furthermore, we restrict our attention
to situations, where thermodynamic effects are negligible. This is e.g. the case for the flow
of water at room temperature, but not for cavitation in liquefied gases.
Cavitating flow is characterized by the following dimensionless numbers:

e Froude number

e Reynolds number

e Cavitation number

Poo — Pvapor

TE T v
3P0 Voo

Although the Froude and Reynolds number have some influence on the shape and size
of the cavities, it is generally accepted that the influence of the cavitation number is
dominant. The cavitation number gives the difference between the ambient pressure and
the vapor pressure, nondimensionalised by the density and velocity of the fluid at freestream
conditions.

Theoretically, cavitation commences when ¢ is equal to —Cpy,,: when the dimension-
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less minimal pressure in the flow domain is equal to the dimensionless vapor pressure:

Pmin — Poo Pvapor — Poo Poo — Pvapor
CPmin = — = = - =—0 2.1
min %poovoé %pmvgo %Poovo% ( )

Two flow situations, geometrically equivalent and with the same o, show nearly the same
cavitation behavior. This will only hold if the cavitation is fully developed. The conditions
for cavitation inception, i.e. the moment at which the liquid flow ruptures, are influenced
substantially by the nuclei content of the fluid and the roughness of the surface under
consideration. If nuclei to start the vaporization process are nearly absent and the surface
of the container of the fluid is extremely smooth, cavitation commences only when Cpp;, <
—a.

2.1 Types of cavitation

In this Section we summarize the various forms in which hydrodynamic cavitation appears.
The first distinction is made between fixed and traveling cavitation. Sheet cavitation and
bubble cavitation remain stationary and adjacent to the wetted surface and are therefore
regarded as fixed cavitation. Vortex cavitation and cloud cavitation can move freely in the
flow domain and are regarded as traveling cavitation. Fig. 2.1 shows the different types of
cavitation as they occur on a hydrofoil at different angles of attack.

2.1.1 Bubble cavitation

Bubble cavitation (Fig. 2.1A) occurs when the minimum pressure does not occur in the
presence of a steep gradient, e.g. for a hydrofoil or blunt-nosed body at zero angle of attack.
As the point of minimum pressure is not sharply defined, the bubbles form randomly around
the position of maximum thickness of the hydrofoil.

2.1.2 Sheet and cloud cavitation

Sheet cavitation (Figs. 2.1B & C) is a type of fixed cavitation, which occurs if the minimum
pressure is reached after a steep gradient, c.g. for a hydrofoil under an angle of attack. The
cavity appears as a transparent sheet starting at the leading edge. If the cavity length is
smaller than the chord length, this is referred to as partial cavitation. If the length exceeds
the chord, we speak of a supercavitating hydrofoil.

For large values of o or small angles of attack the cavity appears to have a steady length
(Fig. 2.1B), although the vapor/liquid interface shows small amplitude high frequency
oscillations. For small values of o or large angles of attack the cavity has the following
cyclic behavior (Fig. 2.2). First the cavity starts to grow from the leading edge. During
this growth phase a reversed flow develops at the lower side of the trailing edge of the
growing cavity, called the reentrant jet. When this reentrant jet reaches the leading edge
of the cavity or when it touches the upper part of the cavity interface, a part of the
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Figure 2.2: Cyclic behavior of a sheet cavity for small o.
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Figure 2.3: Structure of sheet cavity [88].

cavitation bubble detaches and breaks up into a cluster of bubbles, resulting in so-called
cloud cavitation (Fig. 2.1C). While the detached part of the cavity is in the vicinity of
the body surface it will induce a rise of the pressure on the hydrofoil. This will cause
the attached part of the cavity to recede. After it has been convected a certain distance
from the section leading edge, the pressure recovers its undisturbed value and the cavity
will start to grow again. If there is a strong spanwise cross flow, a sheet cavity can be
steady. Recently, a number of experiments have been conducted studying the internal flow
structure of a sheet cavity [70, 88], for a venturi configuration. Both the velocity and the
void fraction inside the cavity where measured, for a number of testcases, including both
oscillating and steady cavities. First of all it was found that sheet cavities, independent of
the cavitation number, are not filled with pure vapor, because the measured void fraction
varies between 80 and 10 percent, from the lcading to the trailing edge of the cavity.
Furthermore, the flow pattern inside the cavity is found to be as sketched in Fig. 2.3. Even
in the steady case therc is a considerable region of reversed flow, as opposed to what is
stated in [36]. The reversed flow can extend towards the detachment point, which results
in the total cavity being shed. It is also possible that due to instabilities in the upper
vapor/liquid interface, the reversed flow and the free stream make contact and only the
aft part of the cavity is shed. Mass inflow into the cavity takes place across the forward
70 percent of the cavity interface.

2.1.3 Vortex cavitation

In the core of vortices the pressure is much lower than the ambicnt pressure. If the vortex
is sufficiently strong the core will start to cavitate. If the angle of attack of a hydrofoil is
beyond the stall angle, cavitation can occur in the separation vortices emanating from the
leading edge (Fig. 2.1D). Vortex cavitation often occurs in the strong vortices emanating
from the blade tips and hub of a propeller. Also very full-bodied ships, e.g. crude oil tankers
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and bulk carriers, can have cavitation in a vortex which results from the interaction between
the flow around the stern and the propeller, so called propeller-hull-vortez-cavitation.

2.2 Adverse effects of cavitation

The great economic consequences of cavitation motivate the continuing research to improve
cavitation models. From a structural point of view the cavitation model can be used in
two ways:

e To optimize design and operating conditions of hydraulic machinery to avoid or
minimize cavitation.

e If cavitation is unavoidable, to predict the structural damage of the cavitation in
time to come to an optimal service/maintenance program.

We list the most important adverse effects of cavitation.

2.2.1 Loss of performance

The most apparent effect of cavitation is loss of performance, encountered in turboma-
chinery and with ship propellers. In the case of propellers the thrust is only affected if
the cavitation is excessive, resulting in thrust breakdown. The most striking example of
this effect occured with the first turbine-driven ship Turbinia, which case formed a strong
impetus for cavitation research. For pumps the generation of cavitation bubbles affects
the mass flow rate.

2.2.2 Erosion

The violent collapse of shed bubbles when they reach a high pressure zone causes erosion
and eventually possible breakdown of the surface structure. During collapse of a bubble it
loses its spherical shape and a microjet is formed. This microjet causes a pressure pulse
of the order of a thousand bar on the surface. The velocities in the neighbourhood of the
microjet are so high, that the fluid becomes compressible and shock waves are formed,
which also cause excessive pressures on the surface.

2.2.3 Noise and vibrations

If the cavitation bubbles implode sufficiently close to the wall, the direct impact of the
microjet and the resulting shockwaves generate considerable noise. The circumvention of
cavitation induced noise is of prime interest in naval ship engineering. The collapse of large
detached sheet cavities can cause large pressure variations in the water. These in turn give
rise to vibrations of the structure if the collapse occurs sufficiently close to the surface.
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2.3 Beneficial effects of cavitation

The pressure on a hydrofoil underncath a steady sheet cavity is constant and equal to the
vapor pressure. This pressure distribution can result in an increase in lift, compared to the
noncavitating or fully-wetted case. Because the main flow is directed along the cavity and
the cavity interface acts as a free shear layer, the main flow experiences a freeslip boundary
condition and no boundary layer is formed. If this situation is stable, this mcans that for
a cavitating hydrofoil the lift to drag ratio can be higher than for a fully-wetted hydrofoil.
Numerical results [55] support this idea.

2.4 Concluding remarks

Hydrodynamic cavitation occurs when due to the flow dynamics the pressure falls below the
vapor pressure and a vapor filled bubble is formed. Depending on the cavitation number
and the shape of the pressure distribution, cavitation can take different forms. Cavitation
can degrade the performance of hydraulic installations and cause structural damage due to
crosion and vibration-induced fatigue. Only in very special circumstances cavitation can
have a positive effect on the lift to drag ratio of hydrofoils.






Chapter 3

Review of methods for numerical
modeling of cavitation with the Euler
and Navier-Stokes equations

3.1 Introduction

A bricf introduction is given to the plethora of methods currently used to model sheet
and cloud cavitation with the Euler and Navier-Stokes equations. For a more elaborate
discussion we refer to the review article of Schnerr et al. [76].

Basically, two approaches can be followed. The fundamental distinction between the
two methods is similar to the one encountered in supcrsonic steady flow computations
around blunt bodies. First of all one can try to track the position of the shock and then
divide the computational domain in an elliptic region and a hyperbolic region, applying
boundary conditions and jump conditions on the interface. On the other hand, one can
solve the unsteady equations until a steady state has been reached. Then the whole domain
is hyperbolic and the shock will develop in a natural way. The first approach is referred to
as interface tracking, the second one as interface capturing.

In the case of cavitation onc can try to iteratively find the position of the cavity in-
terface and divide the domain into an incompressible high density part (liquid) and an
incompressible low density part (vapor), applying a constant pressure boundary condition
on the interface (Section 3.2), or one can use an artificial compressible medium where the
cavity intcrface can develop in a natural way as a shock/shear layer (Section 3.3). To
specify the relation between density and pressure/enthalpy in the latter case, onc can use
steady state thermodynamical relations (Section 3.3.1), or more elaborate models based
on bubble dynamics (Section 3.3.2), that try to include the effects of noninstantaneous
interfacial mass transfer.
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Figure 3.1: Iterative solution of the cavity interface according to [13].

3.2 Interface tracking methods

Interface tracking algorithms are a natural extension of the cavity models used in combi-
nation with potential theory, for instance [47, 58], developed in the past and now used in
industry.

It is reasoned that due to the fact that the density inside the cavitation bubble is
several orders of magnitude smaller than in the liquid state, the influence of the internal
flow can be neglected. On the water/vapor interface the following boundary conditions are
imposed:

V.n = 0 (3.1)
P = Dvapor,effective- (32)

Here, pyaporefiective 1S Pvapor, corrected for the nuclei content of the water. The boundary
condition (3.1) implies that the flow through the cavity interface is neglected. However,
calculations based on interface capturing techniques (Sect. 3.3) indicate there is a sub-
stantial mass transfer through the cavity interface. The position of the cavity is found
iteratively. The calculation is started assuming the length of the cavity to be equal to the
length of the region where p < py,per and the cavity thickness equal to be zero. Then the
cavity interface is shifted in both normal and tangential directions to fulfill the boundary
conditions. If, for instance, this boundary is approximated by a sequence of straight line
segments, a rclation can be derived [13] between an increment in the angle between two
consecutive line segments and the pressure increment (Fig. 3.1). After each iteration the
geometry of the interface is updated in the following way:

a’:'lj—ll —_ a?—l +C (Pva.por - Pz) 3 (33)

where C' is a small empirically determined constant. The new radial location of the grid
points will be:

7‘?+1 = T?_+11 — (Zi - zi—-l) X cot (a?jll - ,3:‘_-{11 . (34)
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After the boundary location is updated the computational grid is rccomputed. More
sophisticated models employ a small dense separate grid for the cavity region [55]. Due to
the fact that the trailing edge of the cavity interface is not well-defined physically and that
in the case of a viscous calculation the free-slip boundary condition on the bubble does not
match the no-slip boundary condition on the solid surface, an artificial closure region has
to be specified with a spline or a trigonometric function to close the aft part of the cavity.

There is no clear benefit for using an Euler based interface tracking technique over a
much less costly potential flow calculation. Use of the Navier-Stokes equations can give a
better estimate of the position of the leading edge of the cavity, but viscosity effects can
also be included in the value of the effective vapor pressure. The method does not allow
for parts of the bubble being shed into the the free flow. Potential flow based methods
have been developed to allow for the growth of a reentrant jet [19], but the simulation
has to be stopped when the reentrant jet separates a part of the cavity. Because in most
cases sheet and cloud cavitation occur simultaneously in the flow domain, an interface
tracking method can never give a complete picture of the cavitation. Finally, the extension
of interface fitting methods to three spatial dimensions is not a trivial task, especially in
complex flow geometrics encountered in cavitating turbomachinery. Then the evolution of
an interface plane, instcad of an interface line, has to be computed.

3.3 Interface capturing methods

In interface capturing models, the two-phase flow is modeled as the flow of a homogeneous
mixture of liquid and vapor. The density of this artificial medium is equal to the density of
the liquid phase when the void fraction « is equal to zcro, and the density is equal to the
density of the vapor phase when the void fraction is equal to unity. There are two ways to
model the evolution of the void fraction.

The first approach is to assume thermodynamic cquilibrium and that both phases are
at saturation. Then the void fraction is a function of the pressure only. When the pressure
is above the vapor pressure the void fraction is equal to zero and the density cqual to
the liquid density and when the pressure is below the vapor pressure the void fraction
is equal to unity and the density equal to the density of the vapor phase. The vapor
pressure depends on the local temperature, so that o = «(p,T). Effectively this means
that mass transfer between the two phases occurs instantaneously. Although this is only
an approximation of the physical situation, in most cases the mass transfer takes place on
a time scale orders of magnitude smaller than the shedding period. This model is referred
to as the Homogeneous Equilibrium Model.

In the second approach the mass transfer between the two phases occurs in finite time.
This is the approach that has to be followed to simulate high frequency cavitation phe-
nomcna, where the time scale of the mass transfer is of the same order of magnitude as the
cavitation cycle. The behavior of the void fraction is governed by a convection equation
with a source term, that describes the interfacial mass transfer. The latter is either an
ecmpirical expression, or derived from a bubble dynamics model.
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Figure 3.2: The equation of state in the (P, V) space.

Principally, there is no difference in the application of these methods in two or three
space dimensions.

3.3.1 The Homogeneous Equilibrium Model

This approach starts with the pioneering work of Delannoy [20]. He chose to follow this
approach, because at the time being (1989) no accurate expressions were available to
describe the interfacial heat and mass transfer in the case of hydrodynamic cavitation.
Because in the case of cavitation of water, the flow can be regarded as isothermal, the void
fraction, and therefore the density, is a function of the pressure only. According to the
assumptions of the model, the relation between pressure and density should be according
to the isotherm shown in Fig. 3.2. This approach is followed in [97]. However, to improve
the robustness of the method the isothermal equation of state can be regularized (Fig. 3.2).
The slope of the equation of state in the transition region is matched with experimental and
theoretical values of the minimal speed of sound in a bubbly mixture. No large variations to
the equation of state are found in the literature and the precise specification of the equation
of state in the transition region does not seem to influence the solution significantly. The
main difference in the methods presented in the literature lies in the treatment of the
(nearly) incompressible liquid phase, either with artificial compressibility /preconditioning
methods or with projection methods like SIMPLE [66], ICE [32] or PISO [38].

Like in the review article [76] we present the procedures used in tabular form in Tables
1 and 2.
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Figure 3.3: The equation of state for the mixture.

3.3.2 Nonequilibrium models

In nonequilibrium models the interfacial mass transfer is explicitly described by an em-
pirical expression [52] or is derived from a bubbly flow model. In the latter approach the
flow is regarded at a macroscopic scale and a microscopic scale. In the microscopic model
the fluid is a mixture of well separated spherical bubbles filled with incompressible vapor,
surrounded by incompressible liquid. In the macroscopic model the density is averaged and
the fluidum behaves as a compressible liquid. The evolution of a spherical bubble is de-
scribed by the Rayleigh-Plesset equation (See for instance [5]). Assuming locally uniformly
distributed bubbles, an equation can be derived coupling the evolution of the pressure to
the evolution of the void fraction. An additional refinement is the inclusion of the effects of
the surface tension and the number of nuclei in the water. This approach started with the
work of Kubota [50, 89, 111] . In [82] it is brought forward, that in spite of the fact that
the model can predict a number of cavitation phenomena, the assumption of a fluid with
locally uniformly distributed bubbles that do not coalesce may not be uniformly valid. This
means that high void fraction is described as a situation with a larger number of smaller
bubbles than in the physical situation, where coalescence will increase the size but reduce
the number of bubbles [14]. In [50, 77, 89, 111] a modified form of the MAC-scheme is
applied. In [50, 89, 111] the bubble density n is fixed, whereas the method in [77] includes
an additional convection equation for n.

To explain the idea of the incorporation of bubble dynamics we describe the approach
of [77]. The semi-discretised momentum equation reads:

268) 4 N ((pu =~ (35)
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where N and G are the discrete (nonlinear) convection operator and the discrete gradient
opcrator respectively. By taking the discrete divergence D we get:

DGp"*t' = -D (%) — DN ((pu)™) = (3.6)

0
DGp*t! = fED (pu) — DN ((pu)").
By substitution of the semi-discretised mass conservation equation we obtain:
DGy™' = py — DN ((pu)"). (3.7)

Under the assumption of locally uniformly distributed spherical bubbles, py can be derived
from the Rayleigh-Plesset equation for a single bubble, as the bubble density is known.

A very ad hoc method to include nonequilibrium effects is to use the following relation
between pressurc and density [14]:

— =Co(p—m), (3.8)
with 'y > 1 and the value of Cy arbitrary, combined with the constraint:

P < Puapor- (3.9)

Small changes of the pressure with respect to the vapor pressure result in large changes of
the density, effectively causing a constant pressure in the cavity zone. Chen et al. [14] claim
that this formulation is more stable than prescribing the vapor pressure in the cavitating
regions directly. Secondly, the solution does not depend on the choice of the parameter
Ch, if it is taken sufficiently large.

3.4 Comparison between interface capturing and fit-
ting

We summarize the differences between the interface fitting and capturing approaches in
terms of applicability, accuracy and efficiency.

Applicability

An interface fitting method can only be applied to model isolated cavities. Although
in theory cloud cavitation can be modelled by an interface fitting method, in practice
tracking all individual bubbles is not feasible. Therefore, an interface fitting method cannot
describe all stages in the cavitation cycle described in Section 2.1. Furthermore, extension
of interface fitting methods to three spatial dimensions and complex geometries is not
straightforward.
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Accuracy

Although it seems that the liquid/vapor interface is much more accurately computed with
an interface fitting method than with an interface capturing method, the contrary is true.
In reality the interface is not well defined and consists of coalescing bubbles. Furthermore,
in interface fitting the mass transfer between phases is neglected.

Computational cost

Application of an interface capturing method will require a compressible/incompressible
flow solver, whereas an incompressible flow solver will suffice for an interface fitting method.
Standard colocated schemes for compressible flow are inefficient and inaccurate for com-
putation of incompressible flow. However, a staggered scheme can be formulated to have
efficiency and accuracy uniform in the Mach number. This scheme can nearly match the
efficiency of an incompressible flow solver. The development of a Mach-uniform scheme for
the HEM is one of the subjects of this thesis.

3.5 Conclusions

We have described the different capabilities and shortcomings of interface capturing and
interface fitting methods for the computation of cavitation. Interface capturing methods
are more accurate and have broader applicability than interface fitting methods. The
application of standard colocated schemes make interface capturing methods less efficient
than interface capturing methods. However, it is believed that a Mach-uniform staggered
scheme can improve the efficiency of interface capturing; this we will investigate.



Chapter 4

The interface capturing method of
Delannoy

4.1 Introduction

As a starting point for further development we choose the method developed by Delannoy
[20] for a number of reasons. First of all, it is the most generally applicable model. because
it can describe all types of cavitation mentioned in Chapter 2. Despite its simplicity, it
retains the key elements of two-phase flow: large variations in density and speed of sound.
Furthermore, the method can be readily implemented in the framework of a perfect gas
Mach uniform flow solver. Finally, the approach can be extended to incorporate viscous
effects and turbulence.

4.2 Governing equations

It is assumed that the flow can be regarded as isothermal and inviscid. Experiments show
that the flow at the aft end of the cavitation bubble is highly turbulent. However, well
established turbulence models for unsteady two-phase flow are not yet available. Therefore,
inviscid flow is assumed. In view of the high value of the Reynolds number ( typically 107¢,
based on the chordlength of the hydrofoil), this seems more appropriate than to assume
laminar viscous flow.

Although it is known that the leading edge position of the cavitation bubble on a
smooth body is indeed influenced by the boundary layer, this dependence is circumvented
in this study by choosing test cases, where the cavity develops at the downwind side of a
sharp corner, that fixes the position of detachment. The assumption of inviscid flow also
reduces the computational time with respect to viscous or turbulent computations.

In this study it is shown that cavitation in cold water can be decoupled in a thermody-
namic problem and a dynamic problem. Under the assumption of negligible mass transfer
between the two phases, the thermodynamic problem is removed and a purely dynamic,
isothermal, problem remains. It is argued that neglecting thermodynamics docs not infiu-



24 THE INTERFACE CAPTURING METHOD OF DELANNOY

ence the flow outside the cavity, but the flow inside the cavity and through the interface
is only roughly approximated.

The main idea is to model the two-phase flow as a homogeneous mixture, by averaging
in time and space. Under the assumption of thermodynamic equilibrium and neglecting
velocity slip, equations for the conservation of momentum and mass of the mixture are
derived, that turn out to be identical to the single phase isothermal Euler equations.
Furthermore, mass transfer between the two phases is neglected, and density and pressure
are related directly through a barotropic equation of state.

4.3 Equation of state

Starting point for the development of Delannoy’s method was assuming an isothermal
phase transition between water and vapor. This means that the speed of sound vanishes
at the point p = pyapor- This singularity is removed by assuming the fluidum to change
continuously from liquid to an intermediate two-phase state to come finally to the pure
vapor state. Two different approaches are considered to estimate the speed of sound in
this intermediate two-phase state, namely the dynamical approach by Jacobson [42] and
the thermal approach of Cooper [15]. The equation of state is chosen in the following way:

e The liquid state is incompressible down to an upper transition pressure.
e The vapor state is incompressible up to a lower transition pressure.

e The intermediate two-phase medium is modeled by the following relation between
pressure and density (see Fig. 4.1)

P = puapor + Ap + Apsin (”T_’%“i‘i’i) . (4.1)

‘min

The parameter ¢, is chosen between the values obtained for the models of Cooper and
Jacobsen. The jump in density Ap and the minimal speed of sound ¢y, together with the
requirement of C! continuity dictate the upper and lower transit pressure:

Pupp, transit = Pvapor + Ap,
plow,Atransit i L p.vaphor : AP7 ( 4.2)
p = 3 (phqu1d2 pvapor) )
Ap = %cminAp

4.4 Numerical method

We summarize the key features of Delannoy’s method. This reveals that the method is
similar to the Mach-uniform method presented in [7]:
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Figure 4.1: The equation of state according to [20] and [36].
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Staggered placement of the unknowns according to ARAKAWA-C arrangement.

Discretisation in general coordinates and primitive variables.

Scaling of the pressure, which removes the singularity for M | 0.

Higher order upwind scheme for both momentum and continuity equation.

Time stepping with SIMPLE type solution procedure.

These features are more elaborately discussed in the sections below.

4.4.1 Staggered placement of the unknowns

Most of the methods developed for cavitating flow are extcnsions of existing methods used
for incompressible flow. It appears that for cavitating flow the staggered approach is much
more commonly used than the colocated approach with Rhie and Chow regularization [72],
to treat the incompressible liquid phase.

The application of a staggered scheme by Delannoy to compute solutions of the HEM
already showed the capability of staggered schemes for computing highly supersonic flow,
although no reference was made to the extreme high Mach number in the computed solu-
tion.

4.4.2 Discretisation in general coordinates and primitive vari-
ables

In [21] the equations are discretised in the primitive variables w, v, p and p in general
coordinates, using a conventional approach to approximate the derivatives of the geometric
quantities. This means that the method will produce inaccurate results on rough grids, as
opposed to the method described in {105, 106, 107].

4.4.3 Scaling of the pressure

To remove the singularity of the compressible Euler equations in the limit M | 0 an
appropriate scaling has to be applied to the pressure. In [20] the dimensionless pressure
C, defined as

P— P

C =
P LpU2

(4.3)

replaces the pressure p as primitive variable. This is equivalent to the approach in [7].
It can be shown that this scaling removes the singularity of the equations and makes
the dimensionless density independent of the dimensionless pressure in the limit M | 0.
However, Delannoy makes no reference to this fact to motivate his choice.
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4.4.4 Higher order upwind schemes

As opposed to the ICE [32] and modified ICE [34] algorithm, which formed the basis of
Delannoy’s method, use is made of a higher order upwind scheme for both the momentum
and the mass conservation equation. This ensures better resolution in the vicinity of
discontinuities than the simple first order upwind or central interpolation used in the
earlier mentioned methods [32, 34].

4.4.5 SIMPLE type solution algorithm

Both the mass conservation equation and the momentum conservation equation are in-
tegrated using the implicit Euler method. This means that a nonlincar system has to
be solved, which is accomplished by making use of the compressible form of a SIM-
PLE/SIMPLER solution procedure. Although not as efficient for perfect gas applications
as the ICE or modified ICE method, it is shown in Appendix A that the method has
comparable cfficieney for the HEM.

Special attention is given to the treatment of the nonlinear equation of state. In the
derivation of the pressure correction equation in the ICE-algorithm, all increments in den-
sity arc replaced by:

1
dp= —0p (4.4)

However, for our strongly nonlinecar cquation of state this relation is only accurate if the
increments in pressure are very small, which implies a very small time step. To overcome
this difficulty the relation is underrelaxed: The next iterand for the density is approximated
by:

P = ok + o, (™) - p"). (4.5)
This can be regarded as effectively overrelaxing the speed of sound:

dpk-H . d_p
dp Pdp’

(4.6)

The solution strategy is most casily explained with an example. Consider a ccll, where the
pressure is slightly above the vapor pressure (P1 in Fig. 4.2). This means the density is
equal to the liquid density and the speed of sound is infinite, despite the underrelaxation,
because the state is regarded as incompressible. The pressure increment following from
the pressure correction equation gives a new pressurc (PO in Fig. 4.2), resulting in a state
where the fluidum is vapor. Now this pressure is under-rclaxed to a new value (P2 in
Fig. 4.2) and the density is under-relaxed between the old valuc and the new value, to give a
pressurc and density tuplet((pe,P2) in Fig. 4.2), which does not satisfy the equation of state.
Furthermore, when building the pressure correction equation, the effect of the increment in
density is disregarded because the speed of sound corresponding to the previous pressure
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Figure 4.2: Procedure to treat nonlinear equation of state [20].




4.4 NUMERICAL METHOD 29

is infinite. Despite the underrclaxation it is still possible that at certain cells the density
will flip between the value of the liquid state and the vapor state.

This is overcome by projecting the under-relaxed density/pressure tuplet ((p,P2) in
Fig. 4.2) on the equation of state ((p2,P3) in Fig. 4.2). If the density has an intermediate
value, the pressure is calculated by use of the inverse equation of state. The speed of
sound corresponding to this latter pressure will indeed have a finite value. This somewhat
awkward approach is reported to have a strong positive effect on the speed of convergence
of the iterative process within cach SIMPLE time step.

4.4.6 Testcases

Apart from standard tests with one-dimensional shocktube problems and a Laval tube
simulation, a number of internal cavitating cascs arc computed in [21]. Cavitating flow
is computed in a convergent-divergent channel with a kinked throat. This geometry was
experimentally investigated in [61]. As opposed to earlier experiments [28], no reentrant
jet is observed but an instability of the liquid/vapor interface that resulted in small parts
of the bubble being detached. It was observed that during the cycle of cavity splitting
convection of the detached part and collapse and contemporary growth of the new cavity,
the sum of the volumes of all bubbles remains constant. Furthermore, the period of the
cavity growth/ collapse cycle is proportional to the maximum length of the cavity just prior
to the cavity splitting. Both one- and two-dimensional computations have been performed

Start up procedure

All computations are started from the fully wetted condition. This means that the pressure
in the flow domain is higher than the vapor pressure. It is noted that the difference between
the transit pressures and the vapor pressure (Fig. 4.1) is negligible for an equation of state
with physically relevant values of the parameters.

The pressure at the outflow boundary is now lowered until at a certain point in the
domain the pressure falls below the vapor pressure and a cavity is formed. It is important
to note that, as opposed to [43], the parameters in the equation of state are kept constant.

The rate at which the pressure is lowered is related to the period of the cavity growth/
collapse cycle observed experimentally at the target cavitation number.

One-dimensional cavitation calculation

The geometry of [61] is modeled in one space dimension as a channel with linearly varying
cross section. First it is noted that upon decreasing the pressure at the outflow boundary,
the pressure will globally decrease in the channel, until the flow starts to cavitate at the
throat. Because the flow there is supersonic, further lowering of the outflow pressure will
not affect the pressure at the inflow boundary. Delannoy refers to this phenomenon as
sonic blockage.
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The cavity length will grow, even after the outflow pressure has reached its target
value, but will converge to a value that depends on the cavitation number. However, if
the pressure is lowered very slowly, the converged cavity length is different than when the
pressure is lowered more abruptly. This difference in cavity length is identified as a form
of quasi-static equilibrium, that can be circumvented if the slow lowering of the pressure
is ended with a short but steep decline of the pressure.

In the one-dimensional case it is observed that the length of the cavity does not change
when the parameters in the equation of state are altered in the range

Prapor/ Piquia € [0.010,0.10)

Cmin € [0.014,0.14] (4.7)

However, the time needed for the cavity to converge to steady state depends on the value
of ¢pin. This can be explained by the fact that the speed of the shock at the trailing edge
of the cavitating zone depends on ¢pi,. Buelow [11] observed a similar weak dependence
of the solution on the parameters in the equation of state in the two-dimensional case,
and explained it by the fact that below a certain threshold value of the density ratio the
momentum of the vapor in the bubble is so small that it cannot influence the flow outside
the cavity.

By integration of the momentum equation in Lamb-Gromeka, form it can be shown that
for an inviscid, steady barotropic flow the quantity H defined as:

_ [ 1 0
’H—/p+2|u| (4.8)

is conserved along streamlines. It is shown that H is indeed conserved in the whole flow
domain, but that A jumps at the shock at the trailing edge of the cavitating zone. The
relation above is obtained from the differential form of the momentum equation and is not
valid if the solution only exists in the weak sense.

Due to the effects of sonic blockage, the strong shock at the trailing edge and the
discontinuity in #, Delannoy argues that this one-dimensional case is not representative
for the case of two- or three-dimensional cavitating flow.

Two-dimensional cavitation calculation

In the two-dimensional case the same geometry is studied and a qualitative comparison is
made with the experimental results of [28, 61]. The same geometry as in the experiments
is used, but for the length of the channel, which is increased downstream to reduce the
influence of the outflow boundary conditions on the flow near the throat.

The first set of computations was made with a first order upwind scheme. A cavity
is formed at the downstream side of the throat. This grows, while at the same time a
reentrant jet is formed, that eventually detaches the complete cavity. The cavity contains
a vortex generated by the reentrant jet. Finally, the cavity is convected downstream and
a new cavity is formed. Due to the strong damping of the time integration scheme the
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cffects of the initial conditions are damped quickly and the flow becomes periodic. The
value of the Strouhal number:

Lcavity,nmx

S= (4.9)

k]
Uthroat ﬂ:}'(‘l(‘,sln(*(lding

is over-predicted by a factor of two.

These computations are repeated with a second order limited upwind scheme. The
computed velocity and pressure fields show less structure than for the first order scheme.
Instead of a reentrant jet, that scparates the complete cavity from the channel wall, as
observed by [28] experimentally. now the cavity is split in two picces. of which the aft one
is convected as observed in [61]. The reentrant jet moves upward before it has reached
the leading edge of the cavity. Furthermore, the forward part recedes and disappears, due
to the increase in pressure at the upwind side of the detached part of the cavity. At the
location where the bubble is split in two separate bubbles a small vortex, secondary to
the vortex contained in the detached part of the bubble, is formed. Delannoy argues this
has a purcly numerical background. Finally it is mentioned that there is an interaction
between the growing, collapsing and shed cavities in the flow domain. This means that
the detached bubbles while being convected to the outflow boundary, still influence the
pressure field and hence the growth of the new cavity.

4.5 Conclusions

In [20, 21] the author focussed on the feasibility of application of the HEM for the com-
putation of cavitation. We have highlighted the positive aspects of the algorithm utilized,
that illustrates the applicability of a staggered scheme for the computation of highly com-
pressible flow. Given the simplicity of the model and the numerical techniques utilized
the correlation between the computed results and experiments is acceptable, but for the
overprediction of the Strouhal number. Qur aim is to improve the efficiency and (temporal)
accuracy of the numerical method.






Chapter 5

Analysis of the equation of state

5.1 Introduction

In this chapter we consider isothermal phase transition as a basis for deriving an equation
of state for the water/vapor mixture. This basic mixture equation of state has to be for-
mulated in such a way the three laws of thermodynamics are satisfied and thermodynamic
stability is maintained.

5.2 The state diagram of water

Phase transition due to cavitation is not the same as due to boiling. The former is an adia-
batic process, while in the latter case the energy needed for the phase transition is supplied
by an external heat source and the process is isothermal. However, also for cavitation the
assumption of isothermal flow is often made, as the amount of heat transferred is very
small at 10 — 15°C. Fig. 5.1 shows an isotherm for 20°C in the pressure/specific volume
plane, for values of pressure intercsting from an engineering point of view. We distinguish
three zones:

1. The liquid phase:
p > pvz\por a'nd V < ‘ysaturation‘liquid'
Here the fluidum is almost incompressible.

2. The coexistence state:
P = Duapor and Vi,cucation tiquia < V< Vistusationvapor
The ratio of the water and vapor density is 60000 across the phase change. This
number increases with decreasing ambient temperature.

3. The vapor phase:
p < pvnpor and V > ‘/;Muration,vnpor'
For the vapor phasc the relation between pressure, temperature and specific volume
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Figure 5.1: Isotherm of HyO at 20°C

is given by the following standard form derived in the 1960s [2]. This relation involves
small corrections for deviation from behavior of a perfect gas (see Fig. 5.2):

v o= %Z + ao(T) + pay (T) + p'as(T). (5.1)

It is clear that in the limit of pressure to zero the vapor will behave like a perfect
gas, as opposed to the behavior implied by the cquation of state in [20].

Remarks:

o In real flow there will always be an amount of undissolved gas in the form of small
bubbles in the water, effectively making the liquid phase more compressible [37].

e The isotherm is not C' continuous across the phase transition.
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5.3 The equation of state

The equation of state in [20] and [63] is constructed from an empirical point of view. It is
known that the density of the mixture should be the density of the liquid above the vapor
pressure and it should be equal to the density of vapor well below the vapor pressure. The
transition region is modeled based on empirical knowledge of the speed of sound in a bubbly
mixture. As we only need the relation between pressure and density in the computational
process, an incomplete equation of state suffices [62]. In theory onc should first derive
an complete equation of state E(V,S), and therefrom an incomplete equation of state
P(V,E). The complete equation of state should obey the three laws of thermodynamics.
Completing an incomplete equation of state with an entropy function to obtain a complete
equation of state may not be possible or unique. Only if an incomplete equation of state
can be completed to a complete equation of state, the former can be regarded as a physical
constitutive relation [62]. In the isothermal case, an equation of state E(S,V) can be
characterized by the following two quantities: The adiabatic exponent:

V 6P
="Pav|, (5:2)
and the fundamental derivative:
g——_l PE/OV3|g _ 11/_2 8%P (5.3)
© 282E/9V?|g 24P OVZ|y’ '

and by the asymptotic behavior of the equation of state.
Remarks

e Obviously V should be strictly positive, as should P, because the fluidum cannot
sustain tension. Thermodynamic stability requires -y to be strictly nonnegative [62].
Therefore the function P(V) should be monotonically decreasing. As a result, a
mixture equation of state maintaining isothermal behavior during phase transition
will be thermodynamically unstable. This undesirable property can be avoided by
keeping a finite speed of sound in the transition region.

e Thermodynamics does not put a requirement on the sign of G [62]. However, if
G changes sign in the domain, simple wave solutions will have a more complicated,
so-called composite, structure, which is more elaborately discussed in chapter 6. Fur-
thermore, if G does not cxist, because there is a kink in the equation of state, dis-
continuous solutions will no longer be stable against shock-splitting [62]. This means
that, as opposed to the strictly convex case, a perturbation can split up a disconti-
nuity into two separate shocks.

e In the limit of vanishing specific volume a natural requirement is [62]:

lim P(V) = co. (5.4)

V=0
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e In the limit of vanishing pressure a natural requirement is [62]:

ll)inh\'(P) = 0, (5.5)

since this makes P(V) invertible in the presence of thermodynamic stability.

5.4 Conclusions

The structure of the isothermal phase transition and the requircments imposed by ther-
modynamics, which have to be applied so the mixture equation of state will have thermo-
dynamic stability, have been discussed.






Chapter 6

The Riemann problem for a
nonconvex hyperbolic system

6.1 Introduction

To test numerical schemes we will construct two analytical solutions. In one space di-
mension it is possible to construct exact solutions to a nontrivial initial value problem for
the isothermal Euler cquations, so-called Riemann problems, comprising two simple wave
solutions. First we discuss the structure of the simple waves and then we show how to
construct the solution to a nontrivial initial value problem, using the simple wave solutions
following the approach of [102].

6.2 Simple waves

By transforming the barotropic Euler equations :

om  Omu dp
RIS 6.1
ot + oz oz’ (6.1)
dp  Om
L2 = 6.2
ot + Ox 0, (6:2)
to a Lagrangian frame of reference:
t =t (6.3)
¢ = [ o (6.9
0
1
vo= -, (6.5)
P
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the well-known p-system is obtained:

Bu@

o + or 0, (6.6)
v _ou _
o or
Whereas the wave speeds in the Eulerian frame of reference are given by:
A=ut/(p(p)), (6.7)

in the Lagrangian frame they take the following simple form:

A=+V-([Pv), (6.8)

which makes a geometrical construction of the solution easy.

We will now give a brief overview of the construction of simple wave type solutions,
which is elaborately explained in [12]. Simple waves are so-called similarity or scale-
invariant solutions, so u = u(£), v = v(§); € = x/t. Substitution of this type of solution
in (6.7) transforms the system of PDEs to a system of ODEs:

du  dp(v)
—_f + = 0, 6.9
AT (6.9)

dv du
3 73 + ZE " 0. (6.10)

Following [12], any smooth solution to this system will satisfy:
=& pv) || du | _

[ sl =0 (6.11)

which leads to the right running rarefaction wave

£ = h=-V(-p[), (6.12)
ds du — \/(—p'(v))dv = 0, (6.13)

and the left running rarefaction wave

& = h=V(-p (), (6.14)
dr = du++/(—p'(v))dv=0. (6.15)

The requirement of thermodynamic stability on the adiabatic exponent 7y ensures that the
two wavespeeds will always be real.

Now the set of all left and right running rarefaction waves is defined by the integral
curves of (6.13) and (6.15), the rarcfaction curves v = R (uo, vg,v) and u = Ra(uo, v, v)
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respectively.

Similarly, the structure of discontinuous solutions follows from the Rankine-Hugoniot
conditions:

wlu] = [p], (6.16)
wlt]= = [ (6.17)

Here w denotes the speed of the shock, and [f] = fix — fuee denotes the jump in the
quantity f. For the right going shock this is equivalent to

¢ = wl:_(_%)', (6.18)

s = - (—%) ] =0, (6.9)

&
Il

and for the left going shock to

b

¢ = w:(_%> , (6.20)
S = [u]+(—%>é[v]=0. (6.21)

The set of all left and right running shocks is given by the shock relations (6.19) and (6.21),
namely the shock curves u = 8 (ug, vy, v) and u = Sy(ug, v, v) respectively.

The Lax characteristic condition states that characteristics should enter a shock from
both sides, if the shock respects the entropy condition. This means that some parts of the
shock and expansion curves are not physically realizable. Based on this consideration the
wave curves, comprising the entropy condition satisfying parts of the shock and rarefaction
curves are given, in the case of a convex equation of state by:

o _f Si(up,ve,v), 0<v <y
u = Wi (ug, v, v) = { Ri(uovo,v), o < 0 (6.22)

for the left going wave curve, and

o | Sa(ug, vo, v), v < v
u = Wh(ug, v, v) = { Ro(ug, 10, 0), 0 < v < v (6.23)

for the right going wave curve. The wave curves define all states lying to the right of the
state (ug,vo) by a left or right going simple wave, that satisfies the entropy condition. It
can be seen that in the convex case a state will always be expanded upon passage of an
expansion fan and always compressed upon passage of a shock.

In the case of a nonstrictly convex equation of state, the simple waves will have a
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Figure 6.1: The model equation of state

different structure, which is illustrated here with the model equation of state shown in
Fig. 6.1. The equation has identical structure to the isotherm discussed in the previous
section, but the kinks in the physical case have been removed to avoid shock splitting and
enhance numecrical stability.

The equation of state is characterized by four values of the specific volume. Two
inflection points ¢pl and ip2 mark the beginning and the end of the concave zone and two
points denoted by L1 and L2 help to define the convez hull of the equation of state, which
plays an important role in defining the structure of the composite waves. First of all, in
the concave zones, physical expansion shocks can occur, as is shown by Bethe [62]:

1 '2
AS = —59% (AV/V)} 1+ O(AV/V)], (6.24)
where AS is the jump in entropy across the shock. This means that where G is positive,

an entropy condition satisfying shock is compressive, and when §G is negative the fluid will
expand on passage of the discontinuity.
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Similarly, the following relation can be derived for an expansion fan [62]
dé = d(u £ ¢) = FpcGdV = £G[P/p]. (6.25)

This means that in the concave case (G > /) a state will be compressed upon passage of an
expansion fan. We will now explain the construction of a composite wave, following the
approach of [102].

Right running composite wave Consider the state (v, p.,). which has to be connected
to the state (Vg Dugn) With a right running wave (c¢f. Fig. 6.2. In the convex case
both states would be connected by a a right running shockwave, as indicated by the
Rayleigh line 0 in Fig. 6.2. This would, however, in the case of Fig. 6.2 violate the
entropy condition, which takes the following form [102]:

Av) <o < A(w), (6.26)
P—Do

V=

o=o(v,v) = , (6.27)

which states that in this case the Rayleigh line should lie above the equation of state.
Hence, all states between (v, p..) and (¥in, Pia ) can be connected to (v, p.) by a
single shock. However for v > v,,, the condition ( 6.27 ) is not fullfilled, and we have
to continue in another way from the state (Vi P ). Between the state (Ui, Pin)
and the inflection point ip2 the cquation of state is concave. This means that for this
right running wave the charactcristics are diverging, so state (v, P ) can be con-
nected to any state between (v, P ) and the inflection point ip2 by a right running
rarcfaction wave. For states with v > ip2 this cannot be accomplished because the
fundamental derivative cannot change sign within an expansion fan (6.25). States
left of the inflection point should be connected to states between the state (vin, Pin)
and the inflection point by means of a right running shock. This has to be done such
that the speed of the shock matches the characteristic speed at the boundary of the
expansion fan. This is accomplished, if a Rayleigh line is constructed intersccting
the final state (Vg Puae) @nd being tangent to the cquation of state somewhere
between the state (., ) and the inflection point (Rayleigh line 2 in Fig. 6.2).
Summarizing, the state (v,,p,) and the state (Vign, Puge) are connected by a shock,
followed by an expansion fan and another shock.

Left running composite wave Consider the state (v, Pien), which has to be connected
to the state (v,,p.). If the concave zone between Ipl and Ip2 was not there, the
two states would be connected by a single expansion fan. However an expansion
fan started at (Viee,Pien) can not be extended bevond the inflection point Ipl, as
otherwise ¢ would change sign within the expansion fan.

The concave zone has to be bridged by a shock in a way such that the shockspeed
matches the signal speed at the boundary of the expansion fan. Then another ex-
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Figure 6.2: Simple wave solution in the nonconvex case, right running.

pansion fan can be followed to reach the final state (v, p..), as the equation of state
is concave there. Also in this case the shockspeed has to be in accordance with the
signal speed at the boundary of the second expansion fan. This shock is drawn in
Fig. 6.3 as the Rayleigh line tangent to the equation of state at both L1 and L2.
This special Rayleigh line belongs to the convex hull of the equation of state.

In the for the HEM relevant case of an equation of state with two points of inflection. The
following composite waves are possible:

1.
2.

A T

Single shock.

Single expansion fan.

Shock followed by an expansion fan.

Expansion fan followed by a shock.

Expansion fan followed by a shock followed by another expansion fan.

Shock followed by an expansion fan followed by another shock.
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Figure 6.3: Simple wave solution in the nonconvex case, left running.
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Figure 6.4: Structure of the Riemann problem for the barotropic Euler equations.

If the equation of state is smooth, a composite wave cannot have two neighboring shocks
or expansion fans. It is clear from the relations presented in the previous section that in
that case, both simple waves can always be regarded as one single wave.

Based on these considerations the composite wave curves, comprising the entropy con-
dition satisfying parts of the composite shock and composite rarefaction curves can be
constructed:

_ | 8Ci(ug,ve,v), 0<v <
u= WCl(uo, 'Uo,’U) = { 'RCl(uo,uo,v), v < U (628)
for the left going composite wave curve, and
_ ' _ | 8Calug,v0,v), we<w
u = WCx(uo, o, v) = { RCo(ug, vo,v), 0 < v < (6.29)
for the right going composite wave curve.
6.3 The Riemann problem
A Riemann problem is an initial value problem of the following structure:
= e }»a <0 (6.30)
U = Vs
Urighe }7; >0 (6.31)
vo= Uright

We will consider the convex case, because after construction of the composite wave curves,
both cases are completely analogous. The solution will have the structure of Fig. 6.4
Let us choose the left and middle states. Then the right state is found as follows. The
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R2(um,vm,v) Ri(uleft,vleft,v)
R2(uleft.vleft.v)

um

uleft
uright

vleft v vright

S1(uleft,vleft,v) S2(um,vm,v)

S2(uleft,vieft,v)

Figure 6.5: Construction of the isothermal Riemann problem

middle state (iy,, vm) is on the right side of the state (% i, vier), 50 We can choose any
statc on the left going wave curve ( either on Ry (e, Vi, ¥) OF 0D S (Uretss Ve, ©)) from
the left state to define our middle state. Having found the middle state we can proceed
with choosing the right state as any state which lics on the right going wave curve of the
middle state (upm, vm) ( cither on Re (U, Um, v) OF 0N Sa(Um, Um, v)). The structure of the
left and right running wave is of course dependent on the part of the wave curve where
the states are chosen. If we choose a state on the R part of the wave curve, the states are
connected by an expansion fan, otherwize by a shock. This construction is illustrated in
the phase plane in Fig. 6.5.

6.4 Construction of a test case

Using the methodology discussed in the previous section two test cases were constructed,
using a model cquation of state of shape similar to the equation of state of water (two
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points of inflection).

6.4.1 The model equation of state

An equation of state has been constructed, which has more paramecters to control its
properties than the equation of state of [20].
The following properties can be adjusted:

1. Compressibility of the liquid state,

2. Compressibility of the vapor state,

3. The two transition pressures,

4. Continuity from C! to C® in the transition region.

Although pure water is almost incompressible, a small amount of undissolved gas, that
is always present in industrial applications, can change the speed of sound considerably.

As opposed to the equation of state in [20, 63], we treat the vapor phase as compressible,
to match the asymptotic behavior of the isotherm, discussed in section 5.2 for the limit of
vanishing pressure.

A high degree of smoothness of the equation of state across the transition region di-
minishes the chance of shock splitting due to numerical accuracies. The latter process may
occur only when the wave curves have a kink [62].

The equation of state has the following form:

p = po+cp ; P<pn
p = ptapte*f§+tezxgll) 5 pp<p<p2 (6.32)
p = s+ ¢4 (p~p2) ;. p<p
where f(£) and g(£) are given by:
P—N
= — 6.33
¢ P2—M ( )
£ o) L E< )
— 1— A-™(1-ce(1-8)) : > 1
f(f) _ 1 m+1 i m—1 . g - % (634)
g(é) = § 2™ (1 - 262 i €<y
9(6) = —+E-f@-2m (mREH ) e
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The following parameters have a direct, physical interpretation.
1
¢ = a (6.35)
1 ap
¢ = — (6.36)
Cliquid

Ap = jump in density across the phase transition. (6.37)
(6.38)

The following parameters can be chosen:
m = lower transit pressure, (6.39)
pa = upper transit pressure, (6.40)
m = defines the C™ !continuity, m < 9, (6.41)
po = density for p=0. (6.42)

To simulate the equation of state in [20] [63] it is necessary to incorporate a nonzero p

for p = 0.
The remaining parameters are defined as:

1
Co = Ap et 563 -G (PZ - pl)v
c3 = (p2—m)(ca—c1),

1
Cs = potcCipz+ca+ 56
n—1
Ci =
6 n+17
_ 2*(36
C7 = 2—n

6.4.2 Testcase 1, zero initial velocity

The following set of parameters was chosen to define the equation of state:

c = 4.00 n _ 9

;“ - g'ig Ap = 4.00

p; _ o7g M = 010
The initial conditions are given by:

Pee = L1 w = 0.0

Prigne = 0.1 Uy = 0.0

(6.43)
(6.44)

(6.45)
(6.46)

(6.47)

(6.48)

(6.49)
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SOLUTION OF RIEMANN PROBLEM IN THE x-t PLANE

Figure 6.6: Testcase I, structure of solution in Lagrangian frame of reference.

The construction of the solution and its topology are shown in Fig. 6.7. The left going
wave curve of the left initial state is plotted together with the inverse right going wave
curve for the right state. The inverse wave curve defines all states lying to the right of
the initial state, that can be connected to this state by a composite wave. The different
symbols indicate different composite waves, that can define the connection between two
states.

The intersection point of the left going wave curve and the inverse right going wave
curve defines the unknown intermediate state. It is clear that after the wave curves have
been constructed the solution can be obtained in cxactly the same way as for the strictly
convex case. The introduction of the inverse right going wave curve is only necessary to
construct a solution where the initial state can be freely chosen, as opposed to the casc
discussed for the convex case, where we chose to define the left and middle state and then
calculate the unknown right state. Note that the wave curves are monotone, thus ensuring
uniqueness of the solution.

The topology of the solution is shown in Fig. 6.6. The left state is connected to the
middle state by a long expansion fan followed by a shock and another short expansion fan.
The middle state is connected to the right state by a single shock.

Fig. 6.8 shows the solution in the Eulerian frame of reference for ¢t = 0.2.
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EQUATION OF STATE

12+ (v1,p1)

pressure p

0 0.5 1 1.5 2 2.5 3
specific volume v

1-WAVE CURVE & 2-INVERSE WAVE CURVE

velocity u
[\+]
T

L

1 1 1 1 I 1

0 0.5 1 15 2 2.5 3
specific volume v

Figure 6.7: Testcase I, construction and solution in Lagrangian frame of reference.
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Figure 6.8: Testcase I, solution in Eulerian frame of reference for ¢t = 0.2.

6.4.3 Testcase 2, nonzero initial velocity

The second test case uses the same equation of state but has a nonzero initial velocity:

1

p(prert) 6.50
Pright = 0.1 Urighy = p(pigm) ( )

Pt = 1.1 TUen

It is clear that the initial conditions define a continuous initial distribution of the
momentum. The structure of the solution is shown in Fig. 6.9. The left state is connected
to the intermediate state by a left going expansion fan followed by an expansion shock
and another expansion fan. The middle state is connected to the right state by a single
expansion fan. Fig. 6.10 shows the solution for ¢ = 0.2 in the Eulerian frame of reference.
Testcase II is more demanding than testcase I as the two consecutive expansion fans tend
to smear out, as opposed to a shock that is ”selfsteepening”.

Note the small peak in the solution of the Mach number caused by the expansion shock
and note the fact that the density in the middle constant state is less than either of the
two initial statcs.

6.5 Conclusions

For the one-dimensional barotropic Euler equations in combination with a strictly con-
vex equation of state solutions to the Riemann problem consist of simple waves, namely
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SOLUTION OF RIEMANN PROBLEM IN THE x-t PLANE

Figure 6.9: Testcase 11, topology of solution in Lagrangian frame of reference.

expansion fans and shock discontinuities.

In the case of a nonconvex equation of state solutions to the Riemann problem in general
consist of composite waves, which may consist of shocks, expansion fans and compression
fans. The construction of these composite waves has been discussed following the approach
of [102]. To test potential discretisation schemes, two test cases have been constructed,
that exhibit the special behavior associated with nonconvex equations of state: composite
waves and expansion shocks.
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Figure 6.10: Testcasc II, solution in Eulerian frame of reference for ¢ = 0.1.
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EQUATION OF STATE

1.2 (vi,pl)

pressure p

specific volume v

1-WAVE CURVE & 2-INVERSE WAVE CURVE

velocity u

2 1 I L 1 1 )
0 1 2 3 4 5 6

specific volume v

Figure 6.11: Testcase 11, construction and solution in Lagrangian frame of reference.






Chapter 7

Development
of a discretisation scheme

7.1 Introduction

In this chapter we discuss the development of a suitable discretisation and solution pro-
cedure for the HEM. We start with defining three stages of discretisation. Next the re-
quirements imposed by the HEM are listed and a scheme is chosen as starting point for
further development. This is applied to two test problems and the results are compared
with results obtained with a classic gasdynamic scheme.

From the results presented by Delannoy, we know solutions to the HEM will have the
following characteristics:

o Highly unsteady

e Discontinuities two orders of magnitude stronger than in acrospace engineering ap-
plications

o Large regions where the flow is nearly incompressible.

e Regions where the flow is highly compressible.

7.2 The notions of target scheme, actual scheme and
resolved scheme

For derivation and analysis of our scheme it is convenient to distinguish between the target,
the actual and the resolved discretisation.

The target discretisation is the discretisation of the given system of nonlinear partial
differential equations. The actual discretisation is obtained from the target discretisation
by linearisation. The resolved discretisation is the scheme that is actually solved when
a finite number of computing steps is applied to solve the actual scheme approximately.
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The difference between target and actual discretisation is due to lincarization and other
requirements set by the solution method. The difference between actual and resolved
scheme results from the segregated solution procedure applied.

Only in the case of an iterative method, e.g. SIMPLE [ref] where the equations are
separately solved until the residue due to the splitting and linearization crrors present in
the actual discretisation has vanished, the target discretisation is solved. Note that this
difficulty is only encountered in unsteady problems, because for a steady state solution
errors due to the splitting and linearization in time will also vanish.

When results of numerical experiments performed with the actual solution method,
here pressure correction, have to be interpretated, it is difficult to distinguish between
effects due to the approximations introduced by the solution method and those originating
from the numerical approximation of the target discretisation. The best way is to separate
these effects by first constructing a target scheme within a framework of a solution method
that can cxactly (iteratively) solve the discrete equations. Then, after a satisfactory target
discretisation has been developed, a solution algorithm with optimal efficiency can be de-
signed that is able to approximate the solution of the target discretisation with satisfactory
accuracy. When the target discretisation can only be approximated sufficiently accurate
by the actual discretisation through a too expensive solution procedure, a new target dis-
cretisation has to be chosen. After this new target scheme has shown its capabilities a new
attempt can be made to develop an appropriate actual discretisation.

7.3 The target scheme

Various methods are currently used for discretisation of the HEM equations:

The MacCormack scheme [74],

Real gas extensions of flux splitting schemes: AUSM+ (25],

Real gas extensions of approximate Riemann solvers: Roe [91], Osher [104]

e Jameson type schemes [36],

Staggered schemes [21, 20, 75], and current approach.

Over the last ycars a number of approximate Riemann solvers and flux vector splitting
schemes, like the Roe and the AUSM+ scheme, have been extended to real gases with a
van der Waals equation of state. This equation of state is very similar to the equation
of state of the HEM. But the variation of density is much smaller for the van der Waals
equation of state. In [104] an extension of the Osher scheme to a general equation of state is
presented. In this case the fluxes have to be numerically cvaluated from integral relations,
rendering the scheme computationally much more expensive than for the perfect gas case.

Schemes of Jameson type can be trivially extended to the HEM, because no use is made
of the complicated (duc to the nonconvexity of the equation of state) eigen-structure of the
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Jacobian of the flux-function. But a difficulty lies in the adjustment of the artificial viscosity
parameters for a very large range of Mach numbers and shocks an order of magnitude
stronger than generally encountered in acrospace engineering calculations.

Although these schemes are well suited for applications where the Mach number is of
order 1 in the whole flow domain, ¢.g. cavitation in fuel line nozzles [75] or in the wake
of detonation driven underwater projectiles [74], a major drawback of these is associated
with the behavior for low Mach number flow. To handle the stiffness of the system for
Ma << 1, some form of artificial compressibility/time-derivative preconditioning is needed,
that will destroy the temporal accuracy of the scheme. Because in our case the solution is
time-dependent, each physical time-step has to be solved for by stepping in pseudo-time
until convergence. This makes both types of schemes computationally expensive, the more
so because there is still limited knowledge of optimal preconditioners for the HEM.

Unlike the last two schemes, the staggered discretisation of [7] for the Euler equations
is a Mach-uniform method. It has computational cost and accuracy uniform in the Mach
number. Although this approach may be more costly in an application where the Mach
number allows the use of standard compressible schemes, the bulk of the fluid is the liquid
phase with a Mach number of the order of 0.001. Thercfore, it makes sense to choose a
method that treats the large low Mach number region cfficiently and the very small high
Mach number region a little less efficient. instead of the other way around.

We impose the following requirements on our discretisation to obtain Mach-uniform accu-
racy and cfficiency:

e For M = 0 the discretisation reduces to the classic MAC-Scheme of [35].
e The limit M | 0 is regular.
e The discretisation is conservative.

The first requirement is imposed, because the MAC-scheme is a well established, accurate
and efficient scheme for computing incompressible flow. The staggered discretisation is the
natural discretisation for incompressible flow, because no regularization terms are required
to prevent odd-even decoupling. The second requirement is imposed to have a regular tran-
sition from the compressible to the incompressible Euler cquations. The final requirement
is imposed to ensure that weak solutions satisfy the Rankine-Hugoniot conditions.

How these requirements can be met is discussed in the next sections. We conclude with
formulating a target discretisation that will form the basis for further development.

7.3.1 Spatial discretisation

The fulfill the first requirement the spatial discretisation is performed on a staggered
grid. The placement of the unknowns is chosen according to the Arakawa-C arrangement
(Fig. 7.1).

In the case of discontinuitics, it is required that the spatial discretisation satisfics both
the Rankine-Hugoniot jump conditions and the entropy condition. This ensures that only
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Figure 7.1: Staggered placement of unknowns according to Arakawa-C arrangement.

genuine shocks are resolved. The entropy condition will be fullfilled if a certain amount of
numerical viscosity is added to the scheme. This can be accomplished by using a (limited
higher order) upwind discretisation. For the staggered discretisation scalar upwind schemes
are used. The convected quantity is upwind biased in the flow direction.

7.3.2 Temporal discretisation

As the flow is (nearly) incompressible in large parts of the flow domain, it is essential to
require that in the limit M | 0 te discretisation reduces to the incompressible MAC-scheme.
This means that the pressure has to be taken implicitly in the momentum equation, so it
can act as a Lagrange multiplier to fulfill the solenoidality constraint in the incompressible
limit. In this case stability conditions for the (semi-)implicit scheme demand a CFL-like
condition based on the flow velocity, instead of on the signal speed. The latter would lead
to very small time steps in the incompressible limit.
The cavitating flow has two timescales:

o The large timescale T}, which is the characteristic timescale of the period of the cycle
of cavity growth, detachment and collapse for small ¢ and the time to reach a quasi-
steady cavity from the fully wetted condition, when o is large cnough. The large
timescale is most relevant for industrial applications.

e The small timescale T}, which is the characteristic timescale of the highly oscillatory
behavior of the liquid/vapor interface.

Furthermore, the pressurc distribution should be resolved with high accuracy to give the
correct position of the cavity leading edge. This is accomplished by using a locally refined
grid. As a consequence, an explicit scheme would require a very small timestep for stabil-
ity. Steady statc or periodic behavior of the cavity is only obtained after a large number
of cavity cycles has passed from the start with the fully wetted solution. Therefore, the
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application of an implicit discretisation of the convective terms is appropriate when study-
ing cavitation phenomena characterized by 7. However, to study the oscillatory behavior
of the interface an explicit discretisation of the convective terms is more efficient.

7.3.3 Starting point

As astarting point the scheme of [7] has been chosen, because it has been shown to fulfill all
of the above requirements. A formulation in the primitive variables m, p and p is chosen.
For brevity, the scheme is formulated for the one-dimensional case, and v > 0 is assumed
when specifying upwind approximations. The target discretisation is given by:

n+1l _ n

pj '[).1 1 sl n+1 j+% _ -
T a( m )’j_%_.()7 ({1)
n+1 n
mito—ml o , 1 .
Jt3 Jts o n+lon+1y )t L gl -
—— + o (u m )II =5 P |j , (7.2)
. P !
<]+l) = Jh . (73)
2 /)j+%
Here p and p are defined as follows:
1
Pivy = 5 (Pi+pin1), (7.4)
Bivt = P : First order upwind discretisation (7.5)
i+ L(pi+pin) Central discretisation '

Mass conservation equation

In the limit A | 0 the mass conservation reduces to the solenoidality constraint. On the
other end of the Mach spectrum, for supersonic flow and hypersonic flow it is desired the
mass conservation equation bchaves like a convection equation for the density, as is the
case in standard compressible formulations. This is accomplished by the introduction of ¢,
the ratio between the density cvaluated at the location of m and the value of the density
interpolated with a directional bias to the location of the cell face.

A first order upwind discretisation is specified in (7.5). For a higher order discretisation
a limited x-scheme is used to interpolate Pisl-

It is observed that it is essential to combine a higher order scheme in the momentum
cquation with a higher order scheme in the mass conservation equation to avoid wiggles in
the velocity distribution. This can be expected, because the velocity is a function of both
the momentum and the density distribution.

Momentum equation

In the momentum equation the following first order upwind schemes were studied:
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e Scheme 1

(um) "'l(u 1+ u a)m LU 1=2Lj+§l—
j+1 7~ i+35 i+3 j+3? j+s =
J 2 Jt3 Ity JT3 T3 p] + ﬂj+l
e Scheme 2
(um);y = (um),, 1, uj+%=———2ﬂt%’—
2 pj + Pi+1

e Scheme 3

2
m?
i+3

um),, , =
( j+1 Pit1

Extension of these schemes to higher order can be done in a straightforward way by replac-
ing the zeroth order interpolation by a first order interpolation of the unknowns (k-scheme).

Scheme 1 produces wiggles in the vicinity of strong discontinuities, but gives more
accurate results than Scheme 2 for smooth solutions. Scheme 3, which takes full advantage
of the staggering of the unknowns, gives good results for the first order scheme, but fails to
give monotone results when a limited higher order upwind scheme is applied. This can be
explained by noting that the variation of momentum through a discontinuity is solely due
to the speed of the shock, because momentum is conserved through a stationary shock,
according to the Rankine-Hugoniot jump conditions:

[777.] = Cshock [p] (7.6)

Therefore, the limited version of Scheme 3 does not introduce sufficient hyperviscosity in
the vicinity of strong stationary shocks.
We have chosen for Scheme 2.

7.4 Actual discretisation

To design an actual discretisation it is necessary to define certain conditions that the
discretisation has to meet. First a number of conditions are set, that have to be met by the
discretisation, and the choice of variables. Then it is shown that the actual discretisation
chosen fullfills the requirements.

7.4.1 The momentum equation

The following requirements are imposed on the momentum equation:

¢ lincarity,
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e compact (3 point) stencil for the implicit part of convection operator,
e implicit discretisation of the pressure gradient in the momentum equation.

To fullfill the first demand, the convective terms have to be lincarised. Due to the second
one it is only possible to use a higher order limited kappa scheme in a deferred or defect
correction formulation.

Linearisation of the convective terms

In the original formulation in [7] the inertia terms are linearised as
wtt gyt (7.7)

This linearisation is of first order accuracy in time.

Higher order discretisation by deferred/defect correction

A very simple way to achieve higher order spatial accuracy with a compact stencil is by
cither deferred or defect correction.

Deferred correction means that the higher order flux is approximated in the following
way: Consider the scalar convection equation:

n+1 n
(bj Y + (Ud)nJrl _ U¢n+l) =0 (7 8)
ot Jty o Timg ’

The value of ¢ at the cell faces is now taken as:

n+1

1 -
g =@y, fese order T 4 (¢j+%7 higher order | — (f)j+%. first ordern) (7.9)

It is clear that in the case of a steady calculation the spatial discretisation will indeed
be of higher order upon convergence. In the unsteady case this is will only be true
for a sufficiently small timestep.

Defect correction is a multistep procedure, but it can be shown that sccond order ac-
curacy can be obtained in two steps. The first step consists of solution of the first
order system to obtain the intermediate value é. Next this value is substituted in
the deferred correction scheme to give the value of the flux at the interfaces:

. . .
¢7?:LL% = (ﬁjJr%, irst order” 7L 4 (¢j+%7 higher order — (f)]»+ 1y frst order) (7.10)

Deferred correction has the advantage over defect correction, that it is a single step
procedure. Furthermore it is shown in [46] the procedure is unconditionally stable. However
defect correction can be shown to attain second order spatial accuracy in only two steps.
Deferred correction is currently employed.
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In both cases the stencil of the implicit operator for the convective terms is:

1+u;/|u
( 2’” J|) urm;_y+ (7.11)

J=
(1 + uj+1/|u.l+1| 1- UJ/|“9|)
2

L —uji/[ujpl

J+1m+1+

2

Clearly, the second requirement is satisfied.

7.4.2 The mass conservation equation

The demands imposed on the mass conservation equation are:
e linearity
e compact (3 point) stencil for the pressure correction equation for all Mach numbers.
o pressure based upwind biased convection equation for high Mach number flow.

All three demands are related to the high Mach number situation where the mass
conservation equation will act as an implicit convection equation for the density. Through
the demand of compactness also this convection equation can only be discretised with a
higher order limited upwind scheme through the method of deferred or defect correction.

7.4.3 Starting point

With the requirements imposed, the actual discretisation takes the following form:

mt —m? 41
J+3 Jt3 L 10\ [+ _ 1 1 c
#—— +o (u"m"*1) P o i j + (7.12)
1 o k=j+1
{E ((unmn)k_% - (u"mr‘)k)‘kzj }»
k=j+3
16p; 1 ut ! Opy_1
25 o (4 i 5 (0py +0pey ) — (Cu")y ) - (1)
k=j-1
1 ) ) k=ity
(e (G- ) w)[ 7
where we have used
d 1
&L (7.14)
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The terms between curly braces are the deferred correction terms, that are omitted for the
first order scheme. We use the following discretisation for the higher order flux:

(wh) 4 = ('u'm)_H% +¥(r, H%) ((um)H% - (um)k%) . (7.15)

(um)H,% - (um)ﬁ%

it = - . T.16
mts (um) 1 — (um); 1 (7.16)

i

Piet = pi+ W, o) (o — pja)- (7.17)
Pivl — Py -
pooao= B (7.18)
PITE T pi = pin

where the limiter function ¥ is chosen as the ISNAS-limiter [116]:

_ P2+ 3r

7.5 The resolved scheme

For efficiency, cquations (7.13, 7.12) are not solved as they stand, but approximately,
balancing efficiency, truncation error and stability. In the limit M | 0, the efficiency should
not deteriorate, but match the efficiency of standard incompressible schemes. To this end
we base ourselves on a pressure correction method.

7.5.1 Starting point: compressible pressure correction

The compressible pressure correction scheme of [7] is a natural extension of the incom-
pressible pressure correction schemes as discussed in [35. 93]. For brevity we will discuss
the solution procedure for the one-dimensional case with first order upwind discretisation.

A two step procedure is followed: First a tentative momentum ficld is calculated using
the old pressure:

j__ =—-= p"|;.+1. (7.20)

1 n,o %
* dx ()] o

bl 23]

This is solved accurately by preconditioned GMRES [99, 100]. The momentum field m*
will not satisfy the mass conservation equation, or be solenoidal in the incompressible
casc. Therefore, a correction is introduced. This correction is obtained by subtracting the
equation for the tentative momentum field from the momentum equation. This gives:

mf;ji RO j+1 a
3 = P (pu+1 _ p")|j — (LL"('ITL"+1 - 771*))[;
ot

j—

[OEECE
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The last term is neglected, which gives

n+1 *
m; —m.
]+% J+§

at

6])';:-4-1 , 517 = pn+1 _ pn. (721)

The resolved scheme consists of (7.20), (7.21) and the mass conservation equation (7.13).
It is solved as follows. Substitution of the equation for the momentum correction into the
mass conservation equation gives:

Cj,lb'pj a1+ depj + Cj+15pj+] = fj‘ (722)
where
n 1
Ci= —/\Cyﬂ e ( »,% Cu)]_) (7.23)
1 1 1 n Loy
Cj‘/\(C],_ +<J+ ) )\‘f’u 2 —‘E ((C’U);H (C“‘)j+%) y (124)
Cir1 =~ + 573 (CU") (7.25)
fi=- (Cm )Ij_z (7.26)
where ( is defined in (7.3), and
_ ot _ n+1 n
A= op= (" —p"). (7.27)

After solution of the pressure correction equation the momentum and pressure are updated:

m’?:i = m;.+% - 6t6p|;+1 , (7.28)
it = pi+dp; (7.29)

Very little is still known about compressible pressure correction. In the incompressible
case, where the mass conservation equation reduces to the divergence free constraint, it is
known that the pressure correction method will not affect the temporal order of accuracy
of the velocity field [93]. The pressure field is only approximated to first order accuracy,
irrespective of the temporal accuracy used for the momentum equation.

7.5.2 Preliminary numerical results

Weak solutions of hyperbolic systems are made unique by imposing the requirements, that
shocks satisfy the jump condition (Rankine-Hugoniot), and that characteristics converge
into and do not emanate from shocks (entropy condition). It is well-known that numer-
ical schemes easily violate one or both of these conditions. Therefore convergence of the
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staggered scheme needs to be validated. A theory of convergence is lacking, as for many
commonly used schemes for hyperbolic systems. We will carry out validation by compar-
ison with exact solutions and with another scheme. Standard finite volume schemes for
the Buler equations are of colocated tvpe and use explicit artificial numerical viscosity or
some form of Hux-splitting or approximate Riemann solution for the numerical flux at cell
boundaries. For two rcasons we select the Osher scheme [64] for comparison. First, it
applies to general hyperbolic systems and is not restricted to the Euler equations for a
perfect gas. Second, there is a proof [64] that it gives numerical solutions that satisfy the
jump and entropy conditions, if shocks are sufficiently weak.

\We have computed results with the present method for the two Riemann problems
described in Section 6.4, For both testeases the two schemes converge to the correet solution
with the same accuracy in the eveball-norm (Figs. 7.2 and 7.3). However, due to the fact
that the Osher scheme requires calculation of the eigenvectors and numerical evaluation of
integral relations to obtain the Riemann-invariants, it is a few hundred times slower than
the staggered scheme. Lo avoid evaluation of the integral relations, the Riemann invariants
could be tabularized, but even then the Osher scheme would still be more costly to apply.

Next, the staggered scheme was applied to compute cavitation with the HEM. The
model equation has qualitatively the same behavior as the equation of state of the HEM,
but the transition region is narrowed to get good resolution of the cavitation bubbles. The
scheme failed to converge.

7.6 Improvements

Principal differences between the equation of state in the Riemann test cases and the HEM
application are:

e Much higher curvature close to transition region.
¢ Much higher compressibility in transition region.

The first means that the linearization of the density is inaccurate. The pressure-based
mass conservation equation has to be solved nonlincarly. Thercfore, we present an actual
discretisation of the mass conservation cquation that approximates the target discretisation
more closely together with a nonlincar pressure correction algorithm to solve it. The second
means that the maximum Mach number encountered in the application is much higher.
The nonlinear pressure correction algorithm was succesfully applied to compute cavitation.
However, the algorithm only converged for very small time step size and lacked general
robustness. Initially it was reasoned that this effect could be ascribed to the splitting error
of the segregated solution procedure in the high Mach number flow, because the coupling
between momentum and mass conservation equation is stronger for highly compressible
flow. Therefore, we consider two mecthods that lack any splitting crror (cf. Appendix
B. The first one is an adaptation of the SIMPLE-algorithm, the other uses an explicit
discretisation of the convective term in the momentum equation. Both methods have
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been succesfully applied to compute solutions to the HEM, but are considered only for
development purposes. The SIMPLE-algorithm requires multiple solves of the nonlincar
pressure correction cquation per timestep, while in the second approach the maximum
timestep is severly limited by stability for high Mach number flow. In Chapter 8 we will
see that stability of the actual discretisation is the cause of the timestep restriction and
not the splitting error.

7.6.1 Nonlinear pressure correction

In the case of a perfect gas, using the relation p(p) = ¢ ?p leads to a linear pressurc
correction equation. It is clear that in the case of the HEM equation of state, the pressure
based mass conservation equation:

"+ 0p;) — P}

7.30
5 (7.30)
1 n n
3z (Ckmk“ tu (p(émg Peey) = ess T P0OP s+ Picy) — i)
n k=j+3
= (Cu"), (p(épk_% +Pe-y) - pk_%)) ‘k:j_% =

1 - k=its
(& (g -m) )21,

has to be solved nonlinearly due to the strong nonlinearity of the relation p(p). After
introduction of the pressure correction formulation in (7.30) the nonlinear system

p(p" +dp;) — P} N

7.31
5 (7.31)
1 ., ot .
sz (6 (mi = 5 (s =om) ) +
u" ((p(ép,”; +Pryl) - pk+§) + (p(dpk~% +Pr-1) - pk—%))
n k:j+%
— (Cu")y, (P(‘spk—% +pk—§) - Pk—%))'kzj_% =
7 ~n n k:j+%
{ ((pk*% B pk) u") lk:j-;} ’
can be represented as:
Adp + Bp(p" + ép) =1, (7.32)

with A and B matrices. Although a number of robust methods exist for solving nonlinear
scalar equations, most of these are not trivially extended to the case of nonlincar systems.
We uncouple the original system by solving it with a nonlinear Gauss-Seidel algorithm,
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in which we can choose a very robust method for solving the individual nonlinear scalar
equations. Application of Gauss-Seidel gives scalar equations of the following form:

Fop* 1 4 Kp(p™ + 6p*' 1) = £ — Gop® — Lp(p” + 6p*)), (7.33)

where '+ G = A4 and K + L = B arc Gauss-Seidel splittings of 4 and B respectively.
This system can be solved recursively at a price of one scalar nonlinear solve per step. We
choose a Dekker-type algorithm [9], which guarantees convergence if the function values in
the end points of the search interval have opposite sign and gives superlinear convergence
when the iterate approaches the solution. To improve efficiency, cach scalar equation is
first linearised, and when both the new and the old pressure are in the same linear branch
of the equation of state, the solution is accepted. If either the initial pressure or the
newly calculated pressure is in the transition region, the solution of the lincarised equation
is rejected and use is made of the Dekker-tvpe algorithm to solve the nonlinear scalar
equation.

On large multi-dimensional grids the Gauss-Seidel method converges very slowly. To
overcome this difficulty we accelerate the algorithm by using intermediate linearized steps,
as follows: Define

opt + 6p' = dp*in, (7.34)

ol

where dp3 is the solution of one Gauss-Seidel iteration on (7.33). Substitution of (7.34) in
(7.33) leads to

A (5p% +5p1) + Bp (p" +dp? +(5p1) =f (7.35)

Equation (7.35) is lincarized to get a linear system for ép':

(100 (2)

To overcome the strong nonlinear behavior of p(p) the exact derivative (—‘:ﬁ is replaced by
an estimate ¢’ according to the secant method:

) 6p' =f — Adpz — Bp(p" + 6p3) (7.36)
p=pn t6p}

g =Pt op?) — p(p" + 5p®)
Spz — Splk)
](51)% —5p®| > plp® + sp®|;
L el ) (p" + 6p™)) — p(p™ + 6p)
a pp*)
16p2 — 6p™)| < pulp" + 5p®],

, (7.37)

N

where y is chosen in relation to the parameters in the equation of state, = v (ps — py).
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typically » = 107%. Because the choice of §' does not influence the solution, we are free
to adapt the value of §' to obtain maximum convergence rate. This is done on heuristic
arguments in [98]; we believe the use of 5p% to estimate the speed of sound to be more
robust.

The resulting system

(A+ Bp)op' = f — Adp?® — Bp(p" + 6p?) (7.38)
or Hép' =g (7.39)

is solved by GMRES with a multigrid [94] or ILU preconditioner until a relative accuracy
of 107! Finally the total pressure correction dp**tt) = Jp% + op' is computed and used
as an initial vector for the next iteration step.

The algorithm takes the following form:

while|| A (5p<k>) +B (p( P+ 5p<k))) o > €

1. update (5p% = op®
2. calculate 6p? from (7.33) by nonlinear Gauss-Seidel

3. calculate p* from (7.38) by preconditioned GMRES

4. calculate the total pressure correction sp*+? = 6p% +opt

end while

It is clear that upon convergence the right-hand side of the system (7.38) vanishes and
16p? |0 is zero.

H in (7.39) is the Jacobian of the nonlinear system (7.31). In the case of isothermal
perfect gas flow, H will be weakly diagonally dominant, if the variation in speed of sound
is relatively small. In the case of the HEM, where the relative variation of the (pscudo)
speed of sound is of the order of 1000, the diagonal dominance is lost. This means that
the nonlinear Gauss-Seidel algorithm is not guaranteed to converge. In practice we found
that if the intermediate lincarized steps are omitted, Gauss-Seidel will diverge. However
the accelerated algorithm will converge in about 10 global iterations, requiring an equal
amount of iterations of GMRES per global iteration.

In each time-step the solution of the nonlincar pressure correction equation is found to
take up to 95% of the computational time.

7.7 Conclusions

When developing a discretisation scheme for a particular application, it is helpful to distin-
guish three different levels of discretisation: The target, the actual and the resolved scheme.
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Descending one level introduces additional simplifications that can change the behavior of
the scheme with respect to the previous level. When this behavior is unacceptable, and no
suitable modification can be found to repair this, one has to go up one level to change the
underlying discretisation, until an acceptable resolved scheme can be obtained.

A nonlinear pressure correction algorithm is presented that can accurately solve the
nonlinear pressure correction equation of the HEM. The latter algorithm has to respect
a severc restriction on the time step. Therefore, two different solution procedures are
presented in the next chapter that do not have a splitting error. The actual and resolved
discretisation are identical. Both methods were considered too inefficient for practical
application, but were used for development purposes.






Chapter 8

Stability analysis of segregated
solution methods

8.1 Introduction

The main results of this chapter have appeared in [92]. Because we are not satisfied with
the stability properties of the schemes described in the previous chapter, we will investigate
the cause of the instabilities in the case of strongly compressible flow.

A frequently used heuristic stability analysis of numerical schemes for hyperbolic sys-
tems works as follows. The system is replaced by a simple equation:

U 4+ ap, =0, (8.1)

where the constant a is the maximum signal speed occuring in the svstem: for the Euler
cquations , a = sup (Ju| + c). Stability analysis of schemes for (8.1) can be carricd out using
Schur-Cohn theory or Fourier methods, as in [103]. For the first order upwind scheme, the
implicit Euler method is found to be unconditionally stable, and the explicit Euler method
is stable under the following condition:

adt/or < 1. (8.2)

Practical experience shows that this approach gives useful conditions for colocated schemes
for systems. But for staggered schemes with pressure correction we found condition (8.2) to
be much too weak for high Mach numbers. Therefore, we will analyze our system directly,
and not use the drastic simplification given by (8.1). In Scction 8.2 we analyze stability of
four different discretisations. For two of these a simple necessary, but not sufficient stability
condition is derived in Section 8.3. In Section 8.4 the stability conditions are verified by
numerical experiments. Although linear stability analysis has only limited applicability, its
simplicity allows incorporation of the approximations that are made to derive a resolved
discretisation from the target discretisation. In Section 8.5 it is shown that in thosc cases
where the resolved discretisation differs from the target discretisation, it is essential to base
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the analysis on the resolved discretisation. Finally, we consider higher order schemes in

Section 8.6.

8.2 Fourier stability analysis of schemes for systems.

Because Fourier stability analysis of the systems that we wish to consider is somewhat
tedious and involved, we will provide full details. Rather than explain the method in
general, we proceed by example, The following schemes will be analyzed:

1. Momentum equation: first order upwind convection explicit,
Continuity equation: no upwind bias.

2. Momentum equation: first order upwind convection implicit
Continuity equation: no upwind bias.

3. Momentum equation: first order upwind convection explicit
Continuity equation: upwind bias.

4. Momentum equation: first order upwind convection implicit
Continuity equation: upwind bias.

No upwind bias for density
Inertia explicit

We start with the following scheme:

Pt =+ A (m'.‘ﬂ - m;.‘fi) =0, \=dt/dz,
2

1+

2
m.;.‘j; ! + A [( ) /pJJrl - (m]_l) /p'.’_%:l =-A (pﬁll

pirt = (pjv1+p5) /2.
We postulate small perturbations dp, dm and linearize:
St —8p + X 5m| =0,

7 1 ]+q
Smie = omy,y + X [2(u"6m”) - (u")” 57" I [ ()

We freeze the coefficients:

(5 n+1 ()p] + A (5m"+1|J =0,

vl»—M-‘

|

bj

J+1

J

n+1)

gmiMy —dml, + A [2(Usm") - U%ép" [} %*2 + A c2opnt! |?]ﬁ+1 =0.

i+3

E]

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)
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Next we postulate a Fourier mode:

bply = pret?’, omil,, = = pnetlitd)e (8.9)
This gives:
24t
4 T sin(@/2)mmt ! = 8.10
d ox
2c25t

—isin(0/2)p" " + "t =

475t ) "
; i sin(()/2)v_’”/“’> m",
o

728

U

dr

i sin(f)e” 20 (1 -

or in operator form:

1 “—‘s'mm (6/2) pit!
[ %ism((}/‘Z) 1 ( it ) o (8.11)

| 1 0 P
Dtigin(@)e s 1 - Latisin(0/2)e= 12 mt

System (8.11) can be summarized by the relation

i
! G ( T':’?:ll ) =G, ( ,/,);," ) (8.12)

where the amplification matrix is G5 'G). The scheme is stable in the sense of von Neumann

if
“)‘1,2”05‘1(;1 <1 (8.13)
With the notation:
24t
a = Eisin(()/iz). (8.14)
g = Ueﬂ'o/z’
%5t )
k= /51. isin(@)e™/2,

we obtain:

1 a [)'Hl . 1 0 ")n ]
[ac2 1 ] ( et ) - [ k 1- 2ag] ( ) (8.15)
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The determinant of G — AGs is
det (Gy — A\Gy) = (1—a’c®) A+ X(2ag — 2+ ak) + (1 — 2ag). (8.16)
So the eigenvalues are

2 —2ag — ak
D = —_——— .1‘-.
/\1,2 9 (1 — (112(32) (8 ‘)

1 -
+ T V4a2g? + 4a?gk — dak + a2k? + 4a2c? — 8adgc?.

These eigenvalues are further analyzed in Section 8.3

No upwind bias for density
Inertia implicit

In the next scheme to be analyzed the inertia term is taken implicit. Only the linearisation
for the inertia term is presented . The derivation of the amplification matrices proceeds
in the same way as above. The only term that differs from the preceding scheme is the
inertia term given by:

(mn,,nn+l/pn+1)|j+’12' (8.18)

-

Linearization in small perturbations dm, dp gives:

[(mPém™t! + m™ém™) /p"] ‘jﬁ — [m*m™*16p"/ "] {;fi (8.19)
2

Now we can proceed in the same way as in Section 8.2 to find the following system:

1 a '[A)""H _ 1 0 ﬁ" ‘
[(102 1+ag](fn"+l)—[k 1_09](mn ’ (820)

which leads to the following characteristic polynomial:

((1+ag) — a®c®) N + (ak —2) A + (1 - ag) . (8.21)
The roots are
2 —ak
AMp = ————=¢ .22
L2 2(1+ ag — a’c?) (8.22)
1

S S /vy~ s
2(1 + ag — a*c?) Vialg? —dak + a?k + daPc — daic’y.
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Upwind bias for density
Inertia explicit

In the third scheme to be analyzed we apply upwind bias in the mass conservation equation,

and take the inertia term explicit.
The mass conservation equation is given by:
n+1 n Lt 1, ntl
AN 1P e P
ot dx ot ]
pj_'_% p
pivr = (pi+pi1) /2.

=0,

P-4

The linearized form is:

n+1 nitl n+1 n+1, nil

n+16 °
TRIMET 4+ mT T 0pk FTm
n+1 n Pj ]+}§ j 5% Pj Pj J+§ ¢ n+l
dpiT —6p7 + A — —
Pj Pj W 2 0P 41
Pivy (en11) '
Jjt3

J J73 ¢ n+l

2 j_l
n+1 2
i-3

7i+1 n+l n+lg¢ n+l ntl n+l
pj_lém 21 +m],*%()pj_1 P mi Ty

7+
pyt

Pl =

Freezing the coefficients gives:
n+l n S+l 5 ntl
8p; api + A [(énz,j+% Omjf%) +
1 T T
FU (=005 + 2005+ — apjj})] =0,

Postulating a Fourier mode, as before, we obtain:

. . s ot /. o 1
pn+1ez]0 — pnezjo = 6_ (Tnn+let]+20 _ 7nn+lez] 50) _
x

Uét N ) )
—ﬁ (_[A)n-i-lgljflﬂ + 2ﬁn+16119 _ An+1€z]+[g) .
This is equivalent to:
vot 2%t 1
~n+1 1 — cos 2wt 1 i |
P <1+ o ( u)b(ﬂ))) + e 5111(20)m 0
Define:
Uét
b= 55 (1= cos(®))

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)
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The system of equations takes the form:

1+b a]( " 10 Vi
[ac2 1](m"+1 Tk 1-2a9 |\ ) (8.29)

The characteristic polynomial is :
(L= A(1+b))(1—2ag—A) — (—ad) (k — dac®) = (8.30)
1=2ag — A= A(1+b)+2(1+b)ag+ (1 +b) A* + akc — a®c®\?
((1+b6) —a®®) XN+ A(2(1+b)ag — 2~ b+ ak) + (1 — 2ag).
The roots are:
_ 1
T 2((1+b) — a2¢?)
¢(4 (1 +b)?a2g? — 4b(1 + b) ag + da2kg (1 + b) — dak

M [2-2(1+b)ag—ak+b+ (8.31)

+b% — 2abk + a®k? + 4a’c? — 8asgc2)].

Upwind bias for density
Convection implicit

The fourth scheme to be considered differs from the third, in that the inertia term is taken
implicit, as in the second scheme. In the same way as before we have:

145 a MY 10 » .
[ ac? 1+ag](ﬁz"+l |k 1l-ag me (8.32)

which leads to the following characteristic polynomial:

A ((1+b)(1+ag) — a®c®) + A(=2+ ak — b(1 — ag)) + (1 — ag) (8.33)
with roots:
1
Ma =g (D) (01 ag) — ) [2—ak+b(1—ag)+ (8.34)

\/(4¢12g2 — dak + a’k? + 4a’¢* - 4a3cPg +
2b ((2 — ak) (1 — ag) — (1 + ag) + 2a°¢?)

Summary of stability properties

Approximate stability properties for the four schemes discussed, obtained by inspection of
the plots of [A;2(8)| are summarized in Table 8.1, where CFL = Uét/éx. Note:
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scheme moment}un d(?nsity. M=4 M=20
convection upwind bias
1 explicit no 0.485 < CFL < 0.505 | uncond. unstable
2 explicit ves CFL < 0.253 CFL < 0.068
3 implicit no uncond. unstable uncond. unstable
4 implicit yes CFL < 3.315 CFL < 2.1

Table 8.1: Stability properties of four time integration schemes.

e For scheme 1 and M = 4 both an upper and a lower bound on the CFL-number
should be satisfied, which is impractical.

e Although scheme 2 is more diffusive than scheme 1, due to the density upwind bias,
the former is actually stable for a smaller CFL-number than the latter for M = 4.

e Only the schemes with density bias 2 and 4 can be used for practical computations.

e Although scheme 3 is discretised more implicitly than scheme 1, the latter actually
has a stability window, whereas the former has not.

o By implicitly discretising the convective terms in the momentum equation, we can
raise the stability bound by a factor 10 or more. Moreover, the dependence of the
stability on M of the implicit scheme is much weaker than for the explicit case.

e The CFL-number threshold for scheme 4 of O(2), is what one would expect for an
explicit scheme, not for an almost fully implicit scheme.

We will verify the anomalous behavior of schemes 1 and 3, and the stability bound for
scheme 4, for the case of M = 4 in Section 8.4 by numerical experiments.

8.3 Derivation of a stability condition

From Table 8.1 it is clear that there is a strong relation between the maximum allowable
CFL number and the Mach number. Our aim is to provide simple formulas for estimating
the maximum allowable CFL number as a function of the Mach number. First of all these
can be used as a guideline for choosing the time step for a simulation. Secondly thesc can
help to reflect the essence of the Mach dependent behavior, which can be used to adapt
time integration schemes for specific regions of the Mach number.

A nccessary and sufficient condition for stability is to require:

¥ 0 such that %IW)I —0: AO)| <1 (8.35)

Howcver, even for these simple schemes, the application of this condition will lead to
very complicated expressions. Therefore, a simpler approach is chosen. We will settle for a
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Figure 8.1: Absolute value of eigenvalucs as function of 8, casc of linear instability.

necessary condition, that is sufficiently close to a sufficient condition to be of practical value.
As an example, we will derive a necessary stability condition for Scheme 2. Inspection
of the absolute value of the eigenvalues as a function of # shows that for certain values of
velocity and Mach number the absolute value of the eigenvalues has a local minimum at
6 = 0 (Figure 8.1) and for other cases a local maximum (Figure 8.2); all four schemes are
found to show qualitatively the same behavior. Consistency of the discretisation requires :

Alpo = 1. (8.36)

If a local minimum is present for the absolute value of one of eigenvalues at 8 = 0, then
for this eigen value

dAll  _ _
i 0, (8.37)
AP
%l_)ll(l) R 0, (8.38)
because |A(8)] € C?. This means that
[AlL2 > 116 € (—€,0) U (0,€), (8.39)

and the discretisation will be unstable. This gives us the following necessary, but not
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and
AVB = ——\/717|e| (no - %9 —ar ) +O(6%). (8.55)
so that
AVB+ AVB = %\/%191 (ao + %0 + ro) O, (8.56)
Finally,
VBVB = \/ ébgO? + %bg()i‘ + 0(01)\/ %bze‘z + %b3()i* +0(8Y) (8.57)
- %rzbgwl’ +0(6).
and
1 = L (1 Qg 0(03)) . (8.58)
C* (co+Leab? 4+ 0(6%)° b e
Substitution of (8.52)-(8.58) in (8.43) shows that
M\ = CI—U (1 - %02 + 0(03)> (aﬁ + (o2 + |ai|*) 6° + (8.59)
\/ﬁm (“"“0 n 2(119) —|2b2|0'2 + 0(0-’*)) .
Since
AN0) =1+ = 113(1) d;(j}e{ (8.60)
comparison of (8.59) and ( 8.60) shows that:
% = é ((aoaz + |ai|?) + %\/sz (f’—:j + m) Sleal - aofz) (8.61)
(o) e s () )
) ez X

2,2

AT

r? uT
A 4 +2
h? (617

h2

)
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which finally gives:

2\ ur  ulr? _cArt ) udr?
ol B O A L R S .
|, ( oz TR TP T e ) (8.63)
and substitution of (8.63) in (8.41) gives:
2 Udt
-— M)]—X< .
(4 ET ) = <3, (8.64)

which should be satisfied for both the + and — sign. For 0.5 < M < 1.5 we found that,
although |\ 2 < 1 for |0] < ¢, we can have |A;2| > 1 for § = £x. Therefore, we add the
following constraint:

/\i/\—i'G::{:n < 1’

which leads to the following conditions:

Udt M2 - MVIM?Z2 -4 2
—_ -<M .65
i < T oMz ' 3 <M, or (8.65)
Uét S M2 + MVOM? — 4 2<M
ox 1—2M2 3 '
For scheme 1 we can similarly derive from (8.41):
2 Uét
- = < .
(4 Ve + 2M) 5 = 2+ M, (8.66)
together with:
Uét 2
W < M*+MvM?2 -~ 1, 1<M, or (867)
Z—it > M2-MVM2-1, 1<M.

Taking the limit M | 0 in (8.64) or (8.66), one finds unconditional stability. However, this
stability prediction does not carry over to the multi-dimensional case. The onc-dimensional
case is special, because in the incompressible limit the mass conservation reduces to the
solenoidality constraint, which in one space dimension means:

om

— =0=m=m(t 8.68

- ), (5.68)
and this means that the momentum field is fully represented by the Fourier mode 6 =
0. For a consistent discretisation the amplification factor of the § = 0 mode is unity
by definition, and therefore the scheme is unconditionally stable. However, the multi-




8.4 VERIFICATION OF STABILITY THRESHOLDS 87

5
4 45 — 3
4
3 35
F 3
5 g3
2 o
2.5¢
1 2
15 7
86 08 1 12 14 066 0665 D067 0675  0.68
Ma Ma
(a) Stability conditions (8.64) and (b) Zoom of 8.3(a).

(8.65).

Figure 8.3: Stability conditions for Scheme 2.

dimensional equivalent of (8.68),i.e. div m = 0, has a nontrivial solution and the previous
argument 1o longer holds. In the multi-dimensional case we find indeed experimentally
that for very small Mach numbers the scheme is not unconditionally stable. But practical
experience shows that for M > 0.3 the above necessary stability conditions give practically
uscfull predictions of the stability propertics in the multi-dimensional case, if the above
conditions are applied on a component-by-component basis (Section 8.4).

In Figure 8.3(a) the two conditions (8.64) and (8.65) are shown. For stability it is
necessary that (M, CFL) is in the intersection of the regions between the axes and the
curves.

8.4 Verification of stability thresholds

We will first verify experimentally the stability conditions (8.64) and (8.65) for test cases
with increasing Mach number. The test case is a one-dimensional Riemann problem for
the isothermal Euler equations, with the left and right states close together, so that we
have a small perturbation of homogeneous initial conditions. The solution is computed
on a uniform mesh covering [— Lieqy, Lrign,], with in the supersonic cases Lyer, < Liigh. On
[—Liest, 0] the initial conditions are pieg, Prefe, tien, and on (0, Lyignt] Prights Prights Uright-

The initial conditions and the speed of sound for the various testcases are given in Table
8.2; M is based on urigy.

Table 8.3 shows the predicted threshold for the CFL number together with the small-
est CFL number tested that induced instability and the largest CFL number tested that
preserved stability for a range of Mach numbers. Tt is clear that the predicted stabil-
ity threshold is pretty sharp and can be safely used in practice. For the casc M=1 the
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Figure 8.4: Stability conditions for Scheme 2.

5

10
Mach number

additional condition (8.65) becomes active.

Figs. 8.5 and 8.6 show results for the testcase M = 5. At the start of the computation,
stability is dominated by nonlinear effects, due to the discontinuous initial condition. An
initial overshoot is created, but when the CFL number is chosen within the stability limits,
it is eventually damped out.

In order to further investigate the predictive capability of Fourier analysis for stability
properties of our nonlinear schemes, we will now verify experimentally the stability thresh-
olds obtained in Section 8.2 and listed in Table 8.1 for a testcase with M = 4, specified in
Table 8.4. First we choose scheme 1, for which both an upper and a lower bound on the
CFL-number should be fulfilled. Figurc 8.7 shows results for CFL = 0.43, slightly below
the lower bound. The wiggles are clearly amplified. Next we choose CFL = 0.493, halfway

15

20

M Pleft | Pleft Uieft, Pright | Pright | Uright | €
0.1]1.01 1.1 | 00.099 1 1.09 | 01 |1
1 | 101 1.1 | 00.990 1 1.09 1 1
5 [1.01 ] 1.1 | 04.950 1 1.09 1
10 1 1.01 ] 1.1 | 09.901 1 109} 10 |1
15 11.01 | 1.1 | 14.851 1 1.09 15 |1

Table 8.2: Initial conditions for Riemann problems.
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(a) |10 as function of time. (b) Solution u at t=100, t=300, t=500
and t=700.

Figure 8.5: Stable integration of M = 5 testcase, CFL = 0.20.
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Figure 8.6: Unstable integration of M = 5 testcase, CFL = 0.25.
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4.4;
4.35f
4.3
4.25¢
4.2r
4.15
4.1
4.05¢

550 600 650
X

Figure 8.7: Unstable integration with scheme 1, CFL = 0.430.

between the upper and lower bound. Although wiggles occur during the startup phase,
they are clearly damped out in time (Figure 8.8). Next scheme 3 is used, again with
CFL = 0.493. Although this scheme is more implicit than scheme 1, Figure 8.9 shows that
it is unstable, in complete agreement with our analysis! Finally, we will verify the stability
threshold for scheme 4. Figure 8.10 shows a computation with CFL = 3.19, and Figure
8.11 with CFL = 3.61. In the first case the solution remains stable, whereas in the second
case a smooth wiggle is gencrated. The smoothness of this overshoot is due to the fact
that the absolute value of the eigenvalues of the amplification matrix exceeds unity in the
low frequency domain, near # = 0. We conclude that Fourier stability analysis gives useful

CFL-number
M stablo prediction by (8.64),(8.65) pred.ict.ion by (8.2) unstable
(present approach) (heuristic approach)

0.1 ] 4.000 00 0.009 —

1 | 0.600 0.618 0.500 0.650
5 | 0.200 0.215 0.833 0.250
10 | 0.080 0.125 0.909 0.170
15 | 0.060 0.088 0.938 0.100

Table 8.3: Numerical verification of the stability thresholds (8.64), (8.65) and (8.2) for
onc-dimensional testcase.
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Figure 8.8: Stable integration with scheme 1, CFL = 0.493.
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Figure 8.9: Unstable integration with scheme 3, CFL = 0.493.
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Figure 8.10: Stable integration with scheme 4, CFL = 3.19.
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Figure 8.11: Unstable integration with scheme 4, CFL = 3.61.
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tns = 4.1666 | Ungn, = 4.1584

Pre = 1.2000 | progn = 1.0000

P = 11000 | pr = 0.9000
¢ = 1.0000

Table 8.4: Initial conditions for M = 4 Riemann problem.

1wmax CFLmax,stahl(‘ CFLmax,predicted(8-64) (865)
1.1 0.74 0.66
1.8 0.48 0.43
3 0.60 0.37

Table 8.5: Numerical verification of the stability thresholds (8.64) and (8.65) for two-
dimensional testcase.

stability predictions for the nonlinear schemes considered here.

Finally we look at a two-dimensional testcase. The inviscid isothermal flow in a two-
dimensional channel with a 10% circular bump is computed for a number of inflow Mach
numbers. Taking into account that in this testcase the transversal velocity is much smaller
than the longitudinal velocity, we impose our one-dimensional stability criterion on the
CFLmax based on the maximum longitudinal velocity. The predicted one-dimensional sta-
bility threshold and the actual stability threshold are listed in Table 8.5. It is clear that
the one-dimensional criterion gives a conservative estimate of CFL,,,. To get a more ac-
curate prediction of the stability threshold, the present analysis can be extended to two
dimensions in a straightforward manner, but we will not do this.

8.5 Inclusion of solution procedure in stability analy-
sis
In the pressure correction method, the momentum at the new timestep is calculated as:

m™ =m* =t (p"t - p") = (8.69)

m™t = m* — §te? (p"“ -o").
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We introduce this relation in the analysis to make it conform more closely to the actual
algorithm. The discrete mass conservation equation can be written as:

ixl
P = gt A Fl;ii’ A = 6t/dx, (8.70)
2
with
2/)7'”—1 * ot 1 -
P = st (i~ g2 (@ =) ~ (3 =) 87)
; ; T

Perturbation with dp, dm and ép gives a linearized perturbation 6 F with

N * p 1 n j+1 7117 -
8Fj .y = bmj,, — ()\cz + 5U) SpmH [T AP spn it (8.72)
Substitution of the Fourier modes p; = pe?, m* , = mrei(i3)0 gives:
J J+3
= i (o3 —eTB) L UM (1- ) + (8.73)

%U)‘[’" (€7 =€) + AN (—e +2-e7) -

62)\2/3" (_eio +92— e—i@) — 0’

or
(L+ag—1+c%s)p" = (1+c%s) p" — ari”, (8.74)

where
s = 1-—2cos(), (8.75)
p = %U)\ (7 —7e7® +3+¢"), (8.76)
a = 2\isin(8/2), (8.77)
I = U\isin(#). (8.78)

The Fourier transform of the pressure-correction scheme takes the following form:

Predictor step:
1 0 o l 0 P
( —k 1+ 2(19 ) ( m* ) - ( —ac2 1 ) ( mt ) » (879)
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1.4

target discretisation )
1.2 resolved discretisation

Figure 8.12: Dependence of |\, 2(G5'G))| on @, with (resolved discretisation) and without
inclusion of the pressure correction algorithm (terget discretisation).

Corrector step:
l+ag—1+c?s 0 prtt
( ac? 1 ) T (8.80)

L+c% 0 i + 0 —a o
ac? 0 m" 0 1 m* )
We write this as follows:

G = Gor", (8.81)

Gt = Gau* + G
Hence, the amplification matrix is given by:
Gt (Gg + G-ZGIIGO) .
For stability we require that
[Aa(Gt (G;, + GgGl’ng))I < 1.

Fig. 8.12 shows the dependence of | 2(G5'G))| on 6, for a particular case for Scheme
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4, both with (resolved discretisation) and without (actual discretisation) inclusion of the
pressure correction algorithm. The different behavior of resolved and target discretisation
as obscrved in Fig. 8.12 shows that it is necessary to study the stability properties of the
resolved discretisation to make a correct estimate of the stability thresholds.

8.6 Higher order spatial discretisation

Two different approaches can be followed to choose a suitable time discretisation for a
TVD spatial discretisation. The first approach uses the heuristic argument that the stabil-
ity domain of the time integration method should contain the stability regions of both the
first order and higher order method between which the limiter switches. The second ap-
proach is to choose a time integration method, which has been proven to be total variation
diminishing, since this implies stability. Proofs arc available only for (nonlinear) scalar
equations [80]. Because for our schemes stability properties have to be analyzed for the
coupled system, only the first approach can be followed.

In this example we include the pressure correction method in the stability analysis
together with the necessary deferred correction steps, required to obtain a high order
spatial discretisation on a compact stencil. The solution procedure is now as follows: First
the momentum predictor equation is solved with the k—scheme in a deferred correction
manner:

1 n
5 . +E(F‘j+1‘“-Fj) =3z (0F —2}),

* n n
i = m. —Uu,, 1m.
Fin 1Ml u]+% n]+%+
Kk—1 4- 2k k+1
n n T T n n
u, . U, 1M, U, 3MmM. | .
( 1 ]7%777,]?%4— 1 ]+% ]+%+ 1 ]+% J+%

Application of the k—scheme to the mass conservation equation in a deferred correction
manner leads, after lincarisation, to the following pressure correction equation:

+1 n
P 1 _
5t oz (GH% "GJ'—%) =90,

_ n *
Gj+§ = Oj41/2,H0M4172 T

o *) (dp) (dp)
————|m — | dp;+{ — op; +
<4p202 9z | j+l/2( dp/, Pj dp) Pj+1
1 dp dp ot
——|m* — opiz1— | — ) op; | — o — (6p;41 — Op;
( 2p " |>j+1/2 ((dp>j+1 Pin (dp>j pj) UJH/{ZHOAW( Pis pi)

o —oh m* d d
+ ((_g02+0)) ( (d—p) opj+1 + (_d/’) 5Pj)7
P J+1/2 P/ P/
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where

97

&—1 _n 42k
ot _ 2 ( 1 P + 4 4
j+3,HO — n n ’
I Py T P

20"
o" , _ “p.l
j+s,LO T n no
2 oyt Pin

pgl + N+1p]n_,+l)

Application of the Fourier analyvsis procedure leads to the following system of equations:
Predictor step

1 0 N 1 0 "
0 l+ag m* )

‘ P
—q—-a® 1+ag—1p m* )
Corrector step

l+ag—I1+s 0 oy
m;l 1 7;ln+1 -
1+s 0 o L w- v —a o
ac® 0 ' 0 7

1 n* )’

where we have introduced the following abbreviations:

s =1—2cos(8), p=

|

—UA(e™ = 7e7® +3+3¢),  1=Uhisin(6),
Loy gt 2516 -13i0 - Lio 1i0 1446
QZEU)\/) (—6 467 +4e” 2 — be? —362).
Or in operator form:

m'

P _ o

Gl(rh* ) ’G“(m")’
~n-t | ~n

G4(£n+l>:G3<e,>+G2(

The amplification matrix is now given by:

(;Zl (Gg + GzG;lco) .
For stability we require that

IM2(G7' (Gs + GaGT'Gy))| € 1.

We have not succeeded yet in deriving from this simple necessary stability conditions, as

in the first order casc. Instead, we compute |A; 2(8)] for a sufficiently fine distribution of

—1 < # < m. For a scalar convection diffusion cquation, we know [46] that stability is
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14 T

k=1/2 scheme
1.2} 1-storder scheme

Figure 8.13: Dependence of |\ 2(G,'G1)| on 6, for Ist-order upwind scheme with and
without higher order upwind deferred correction.

not affected by a deferred correction step. Figure 8.13 shows, however, that in the case
of a system the functional dependence of |A; 2| on 8 is qualitatively different from that for
the first order upwind scheme. Generally the CFL-number threshold for the higher order
upwind scheme is much smaller than for the first order upwind scheme.

8.7 Formulation of a discretisation
with optimal stability properties

All schemes that were analyscd above have only limited applicability for the HEM, because
they all have to respect severe stability restrictions for highly compressible flow M > 4.
Using the methodology of stability analysis presented before we are able to formulate a time
integration scheme that has stability properties nearly uniform in the Mach number for
0 < M < 20. This scheme will be used to compute cavitation with the HEM in Chapter 9.

8.7.1 Momentum equation

It is reasoned that the limited stability domain of scheme 4, which is almost fully implicit,
is caused by the semi-implicit first order linearized discretisation of the convective terms
in the momentum equation: u;' +%7n]":§ . This can be avoided by using a Newton linearized
fully implicit formulation of the convective terms, where the density at the new time level
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is found from a density predictor cquation, that is casily solved at low cost. The Newton-
linearized convective term takes the following form:

n+l, n+l jb%? n+l, .n n,, nijl n, n j*%2 <
(u m )|7-,1 ~ (u m" + "t m" T —um )|) 1= (8.82)
i3 i3
m" it m" AL
<<—”+1 + u") m - ‘11,"m,”> = (( — + 11”) mt— u"m") ,
P i3 r i-%
where p* is found from the solution of:
* n

= p 1 v
T + E II}I+%/); — 11317%[); )= \] (883)

8.7.2 Mass conservation equation

In this section the influence of various temporal discretisations for the mass conservation
on the stability propertics of the coupled system is discussed. Small differences may have
a large influence on stability. We will compare two schemes, namely scheme 4 and a
modification of scheme 4, consisting in a change of the scheme for the mass conservation
equation. To bring out the difference in the two schemes for the mass conservation cquation,
we rewrite this cquation in the following form:

h=j

= g A (] ) ‘k:H =0, \=dt/oa, (8.84)

whereas the modified version of scheme 4 uses

k=
o= ()| =0 (8.85)
The discretisation (8.85) is not suited for low Mach number flow, because in the limit M | 0
it docs not reduce to the zero divergence constraint on u"*!. Fig. 8.14 shows the absolute
values of the cigenvalues of the amplification matrix as a function of the wavenumber 6,
obtained by Fourier analysis for both schemes for a typical case.

We remark the following:

o The implicit discretisation effectively damps the high frequency modes,
—T<#< —% U % < # < 7, but is unstable for low frequency modes in the vicinity
of 6 =0.

e The semi-implicit discretisation effectively damps the low frequency modes, —5 <
6 < 5. but is unstable for the high frequency modes —7 <8 < -JUF <0 <m.
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e

- M-

Figure 8.14: Dependence of the absolute values of eigenvalues of the amplification matrix on
wavenumber 8 for implicit(left) and semi-implicit(right) discretisation of mass conservation
equation.

We therefore propose to use the following weighted average of (8.84) and (8.85):

n+1 n
Pj Py 1 n-+1 +1
T e (ur o - + (8.86)

1 ﬂ 70 4 7
(1—5)5( Tt —u .+}p,+11) =0.

Figure 8.15 shows the dependence of the absolute values of the eigenvalues of the ampli-
fication matrix for this scheme with 8 = % and the same case as in Figure 8.14. It is clear
that now there is sufficient damping for the whole frequency domain.

The stability analysis for this scheme shows that it is (nearly) unconditionally stable
for all Mach numbers for CFL < 30 and beyond.
Based on heuristics we choose the following relation for 3:

\I/(ij+)<0 = ﬁ:%,
B=1; 0 <M <4,
8.87
U(r,41) >0 = B=14% 3 <M <8, (8:87)
B=4 8 <M.

8.8 Conclusions

We used von Neumann stability analysis to gain insight in the behavior of different time
integration schemes. For simple schemes a relation between the Mach number and the
maximum allowable CFL-number, following from a necessary stability condition, can be de-
rived, that can be used in practice. The sequential solution procedurc and deferred/defect
correction strategies can be included in the analysis in a straightforward manner. The
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(L

Figure 8.15: Dependence of the ahsolute values of the eigenvalues of the amplification

matrix on wavenumber 6§ for (8.86), 3 = %

lincar analysis shows that the stability properties of the resolved discretisation can differ
considerably from the properties of the target discretisation. Using the lincar stability
analysis we were able to formulate a time integration scheme with (nearly) unconditional
stability for 0 < M < 25. The latter scheme is used for the computations described in
[Chapter 9].






Chapter 9

Applications

9.1 Introduction

We will present results obtained with the modified pressure correction scheme described
in Scction 8.7 for three different test cases. Use was made of the higher order upwind
r~scheme. First we compute steady sheet cavitation on a NACAG6 hydrofoil and compare
the obtained cavity length with results obtained with an interface fitting method. Next a
comparison is made between computed results for the unsteady cavitation in a channel with
the present method and results obtained with a method based on the SIMPLE algorithm.
Finally we look at a simulation of unsteady sheet cavitation on the EN-hydrofoil.

9.2 Problem specification

The model has been implemented in the DeFT package [106], which is a structured finite
volume code. The code uses discretisation in general (boundary fitted) coordinates and is
fully parallelized under MPI [101].

Table 9.1 summarizes the parameter values that have been used to obtain all presented
results.

Boundary conditions

At the inflow boundary and at the far-field boundary the two components of momentum
Mg, m, are prescribed. At the outflow boundary the pressure is prescribed. On the
hydrofoil and the walls of the channel a nonpermeability condition is imposed. No special
measures have been taken to avoid spurious wave reflections from the far field boundary.

Initialisation

Each computation of cavitating flow is started from a steady state solution. The pressure
at the outflow boundary is prescribed high cnough to ensure that the pressure is well above
the vapor pressure in the whole computational domain. At the start of the calculation the
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relative tolerance nonlinear Gauss-Seidel | 107°

relative tolerance pressure correction 10~

relative tolerance momentum equation | 1076

Equation of state
) 2.5.107% | | Ambient conditions
¢ 1251073 | [Uy,x 1
P2 — M 0.1 U, y 0
pi/po 100 Poo 10
cr n=9

Table 9.1: Parameter values of physical model and computing method.

o | experiment | current approach | interface fitting approach 23]
1.00 .20 32 .20
0.91 .36 .40 32
0.84 .60 .65 .64

Table 9.2: NACA66-209 hydrofoil, computed cavity length, a = 4°,144220 cells.

pressure is lowered until the desired cavitation number has been reached. As opposed to
[36] we maintain the equation of state constant during the startup phase.

9.3 Steady cavitation

9.3.1 NACAG66 hydrofoil

We computed steady cavitation on a NACA66-209 hydrofoil [1]. The results where obtained
with the first order upwind scheme. The mesh contains 144 x 20 cells, as shown in Figure
9.1. Table 9.2 compares the length of the computed cavitation region as fraction of chord
length with the experimental values of [78], and the results of the interface fitting approach
of [23]. In the case of an interface fitting method, the definition of the cavity length is
rather arbitrary, because the aft end of the cavity is smoothly conneccted to the hydrofoil
surface by an artificial transition region. Taking into account the simplicity of the HEM,
the correlation is satisfactory.
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Figure 9.1: NACAGG6 hydrofoil, grid with 144 x 20 cells.

9.4 Unsteady cavitation

9.4.1 Converging/diverging channel.

We consider the same geometry as studied experimentally in [61] and numerically in [20, 24].
The geometry consists of a channel with a sharp bump on the bottom and is given in
Figure 9.2. The detachment point of the cavity is fixed at the top of the bump. The
grid consists of 113 x 20 cells. In [20] results are presented obtained with a SIMPLE-type

67.18 mmn 128.08 mm
-

Figure 9.2: Converging/diverging channel, gcometry and mesh.

solution procedure. A comparison is made with experimental results of [61]. Delannoy
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Lcavity, max / Lreference
o | experiment | current approach | Delannoy {20] | Dieval et al.[24]

2.7 — 2.00 2.0 ~—
2.5 — 1.75 2.0 ——
2.0 — 0.50 1.5 ~—

Strouhal number
o | experiment | current approach | Delannoy [20] | Dieval et al.[24]

2.7 .28 —— 170 -
2.5 28 .10 179 ——
2.0 .28 .09 154 0.235

Table 9.3: Converging/diverging channel, comparison of results.

[20] observed a qualitative difference in the shedding process between the results obtained
with a first order upwind and a higher order upwind scheme. With the first order scheme
the whole cavitation bubble was detached and convected downstream, whereas with the
second order modified SMART-scheme [29] the cavity was cut into two by the re-entrant
jet and only the aft part was detached. In the current simulation we observe the latter
behavior. The maximum obtained cavity length and the Strouhal number here defined as:

L.
S — cavity,max , (9. ].)

Uthroatnhedding

are identical for both schemes and are given in Table 9.3. For ¢ = 2.7 the cavity remained
very small and highly fluctuating in a nonperiodic manner. Figure 9.3 shows the time-
history of the pressure at the top of the channel just aft of the top of the bump. Strong
pressure peaks indicating the moment of collapse of the shed part of the cavity are clearly
noticeable. The large discrepancy between the experimentally observed and computed
Strouhal number, both for the current approach and the method of [20] can be attributed
to the usc of a first order time-integration method. Future rescarch will focus on the
extension of the time-stepping method to second order. Dieval et al. [24] studied only the
casc 0 = 2.0. Their more accurate prediction of the Strouhal number is obtained by using
a second order BDF-method for the (physical) time-integration.

9.4.2 E.N.-hydrofoil

The E.N.-hydrofoil is a simple geometry, which has been studied experimentally in [51]
and numerically in [69, 110]. The geometry is given by:

2
y= :I:E\/w (0.6 — x);0.0000 < r <0.4187 (9.2)
y = £ (—0.05746z + 0.06079) ;0.4187 < z < 1.0000 (9.3)
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Figurc 9.3: Converging/diverging channel, time history of pressure, ¢ = 2.5

Because the hydrofoil has a finite trailing edge thickness, we extended the hydrofoil surface
linearly to x = 1.059, to facilitate generation of the C-type grid. The parameters of the

oy 6.2°
Lovora 150 mm
Uw 8 m/s

o 1.2

Table 9.4: Input parameters for the experiments conducted in [51].

experimental setup used in [51] are summarized in Table 9.4. For comparison the resulting
cavity length and shedding cycle frequency have been nondimensionalised with U, and
L toea- In [69] and the current work the cavitation number is lowered to o = 1.1 to
obtain the experimentally observed cavity length. This means the model underestimates
the experimental cavity extent. Approximately 400 time-steps are required to simulate one
cycle (Figure 9.6). The experimentally observed dimensionless period of the evele is 2.1.
In the results we have computed an average dimensionless period of 2.0. To be able to
represent the formation of a re-entrant jet, the mesh resolution in radial direction is chosen
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Figure 9.4: Converging/diverging channel, density levels, o = 2.5.
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Figure 9.5: E.N.-hydrofoil, geometry and detail of mesh.

much smaller than normally required for inviscid airfoil computations. Furthermore, the
grid spacing is increased near the hydrofoil trailing edge. This is done to ensure sufficient
damping when a vortex generated by bubble collapse passes ncar the trailing edge. In
this case the Kutta condition is momentarily no longer fullfilled and the fluidum will flow
around the sharp trailing edge, introducing high velocities. In [69] artificial viscosity is
added ncar the trailing edge to avoid instability.

In each cycle a part of the cavity is shed. In this detached bubble cloud the fluidum
rotates clockwise in a vortex like manner. The vortex is convected downstream to the
hydrofoil trailing edge, where it collapses. Zhang et al. [115] observed that the detached
bubbles indeed collapse close to the attached cavitation region and leave powerful eddics
behind. The first shed bubble initiates separation just upstrcam of the trailing edge and
each new bubble causcs the separation point to move further upstream. After a large
number of cycles has passed a stcady massive separation zone has formed behind the hy-
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Experimental [51] | Reboud et al.[69] | DeFT
o 1.2 1.1 1.1

Uso At/ L pora - 0.005 0.005
U Lenora/ fenedding 2.099 1.75 — 2.00 2.0
L vuiny/ Letora 0.4 0.4 0.35

Table 9.5: E.N.-hydrofoil, nondimensionalised results compared with [51] and [69].

|
|
Figure 9.6: EN-wing, density levels, o = 6.2°, ¢ = 1.2.

drofoil (Figure 9.7). This separation zone decreases circulation and increases the minimum
pressure at the leading edge, thus decreasing the size of the cavitation bubble. Both the
first order upwind scheme and the third order ISNAS-scheme converge to the stationary
solution shown in Figure 9.7. The formation of a steady separation zonc was not reported
in the numerical work of [69] and in the observations of [51] and [115].

Solutions to the Euler equations are not unique. We believe that in this case the
solution is shifted to one of the many nonphysical branches by the vorticity generated
by the collapsing bubbles. The incorporation of viscous effects would possibly damp the
eddies and prevent the shear layer to arise.

9.5 Concluding remarks

For both the internal and the external flow configuration the agreement between the com-
puted and experimental values of the cavity length is rcasonably good. Extension of the first
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Figure 9.7: Steady separation zone at E.N.-hydrofoil

order time-integration method to higher order will improve the accuracy of the Strouhal
number. Although the HEM presents an excellent opportunity to show the Mach uniform
accuracy and efficieny of staggered schemes, the accuracy with which the model describes
the interphase mass transfer in cavitating flow is, understandably, limited. Recently, more
accurate models [52, 63] have appearcd, that incorporate explicit expressions for the inter-
facial mass transfer. These models show more robust behavior and will offer a more fruitful
starting point for further development as a method to compute cavitating flow than the
HEM. In cases where a nonconvex equation of state corresponds to physical reality (as for
nonperfect gases), the method presented here is attractive, cf. [71].
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Magnetohydrodynamics






Chapter 10

Low Mach number ideal
magnetohydrodynamics.

10.1 Introduction

The second part of this thesis is devoted to the development of a Mach-uniform method
for the equations of ideal magnetohydrodynamics. These share the property of nonconvex-
ity with the equations of the HEM. Although a lot has been written about Mach-uniform
schemes for the Euler equations of gasdynamics, this field is more or less untrodden. There-
fore the mcthods discussed here have to be considered as a mere start.

10.2 The equations of ideal magnetohydrodynamics

The equations of ideal magnetohydrodynamics describe the dynamics of an inviscid electri-
cally conducting fluid, a so-called plasma. The MHD model describes the flow in internal
parts of stars, e.g. the sun, the solar wind and the interstellar medium. Numerical simula-
tions of MHD flow are used to gain insight into numerous astrophysical phenomena. The
equations are given by:

Op _
P9 =0, (10.1
dm mm® 1 _ ., ) .
—a-t— + (V . (T + §|B| I-BB )) = -Vp, (102)
a_BzvX(%xB):_vXE, (10.3)

at
27 T
9F L v. ((pE“’) m + (——IB| d pZBB )m) =0, (10.4)
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V-B =0, (10.5)
p=(y—1)pe (10.6)

Equations (10.1),(10.2),(10.4) are the conservation equations for density p , momentum
m and total energy E respectively, while (10.3) is the induction equation, relating the
evolution of the magnetic field B to the electric field E. The magnetic field has to respect
the solenoidality constraint (10.5). The system is closed with the equation of state (10.6),
relating the thermal pressure p to the density and the internal energy e. The ideal MHD
equations reduce to the Euler equations if initial and boundary conditions B = 0 are
prescribed.

10.3 Analytical aspects

For briefness we will restrict the analysis to the onc-dimensional case. Nondimensional-
isation can be done in many different ways [114]. We choose to introduce the following
normalization:

5 i z t B
p:—f)—,u:#,:}::’_——,t::——,p:_ﬁ-,B: = (107)
Pret Uref Lref Tref Dref Bt

where the dimensional quantities are denoted by a tilde and the reference quantities are
chosen in the following way:

ﬁref = Pinflow
r&r(\.f = Ug,inflow
Ty = L,
P vy (10.8)
) Uref
éref = Pout
Bs = Bz,out.
With this scaling the equations take the following form:
dp Om
L4 =0, 10.9
ot + Ox (10.9)
om, 0 (m? 1 /1
— = ~{ <Az + =0, 10.10
o (v (5 07)) (10:10)

o .
Imy D (m‘my 4 Ay) =0, (10.11)
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om, 08 (mym, 1
—_— =+ —=A,) =0, .
Bt +0x< PRI ) (10.12)
OpE 10 du
2
— —(A- — =0, .
M: ( ot + (u (pE + p))) 3% (A-u) + e 0 (10.13)
0B,
5 =0, (10.14)
oB, )
o+ 5 (uB, —vB,) =0, 15
a +d (uB, —vB;) =0 (10.15)
0B, 0
B, —w = .
0+ 3 (B~ wB,) =0, (10.16)
where
1 2 2 2 -
Ay = = (B:+ B: - B}). (10.17)
1 1
\,=~-B:B,, \.=-LBD. (10.18)

I\’IAr = \/prefufcf/Bfef, (10.19)

‘ I\'1Ar
8=— .
8= (10.20)

are the Alfvén number and the plasma 3 respectively. The plasma 3 expresses the balance
between the thermal pressure and the components of the magnetic stress tensor as driving
force. A distinction is made (See e.g. [114]) between the three cases 8 < 1, 8 = 1 and
8> 1. Note that with the introduction of the scaling the relation between the total energy
E and the thermal pressure p has changed accordingly.

Diagonalisation of the dimensional system of equations gives the following signal speeds
for the different characteristic fields, (following the notation of [10]) in nonascending order:

U+cp, U+Chy UFC U, U—Cg U Cq U Cfy (10.21)

where cf. ¢,, ¢, are the fast, Alfvén and the slow characteristic speeds respectively, given
by:

¢ =B/p, (10.22)

o= % ((C*)2 + /() = 40203) : (10.23)
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where ¢* = (yp+ |B%) /p. For the special case By, < B, B, < B,, described in {10],
the scaled characteristic speeds take the form:

¢t = max(M%, 7'M %), ¢ = min(M;?, 87IM;?). (10.24)

In [10] it is shown that the hyperbolic system of the equations of ideal magnetohydrody-
namics is nonconvex. Similar to the equations of the HEM, compound waves can occur.

10.4 Weakly compressible magnetohydrodynamic flow

In many astrophysical applications, weakly compressible magnetohydrodynamic flow is en-
countered. Because of the stiffness of the equations in the low Mach number limit, standard
(explicit) magnetogasdynamics schemes become very inefficient [54]. To circumvent this a
number of approximate models have been developed to incorporate compressibility effects
in an ’incompressible’ formulation. These are, among others:

e The anelastic approach [54]
e The 4-equation weakly compressible model [6]
e The equations of reduced magnetohydrodynamics [112, 113, 114]

Most of these are restricted to low Mach number flow only and/or to a certain 3—regime.
Furthermore, additional conditions are imposed e.g. on the structure of the magnetic field.

Instead of adapting the model, our approach will be to develop a numerical scheme
with Mach-uniform behavior for the equations of ideal MHD. Eq. (10.24) shows that in
the case of low acoustic Mach number MHD flow, max |A| ~ M2 for the case 8 > 1, but
that for the cases 8 ~ 1, B < 1, max|A| ~ 87M;2. This means that in the first case
it suffices to take all terms related to the thermal pressure implicitly to handle the low
Mach number stiffness of the equations, while in the latter case all terms related to the
magnetic field should be taken implicitly as well. We will start with the development of a
Mach-uniform scheme for the case 3 > 1. Unfortunately, this S—regime is of only limited
physical importance: inappropriate for the description of the heliosphere, with the possible
exception of the polar regions above and below the sun [114].

10.5 A staggered scheme for MHD

There are three rcasons that make staggered schemes attractive to compute weakly com-
pressible magnetohydrodynamic flow:

e Simple flux function, irrespective of the complexity of the hyperbolic system to be
solved.
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e Mach-uniform properties, that retain efficiency and accuracy in the weakly compress-
ible case.

e Very cfficient and accurate handling of the solenoidality of the diserete magnetice field.

The flux function

A key feature of the staggered scheme is that no use is made of the cigensystem of the
Jacobian of the flux function. This results in very simple expressions for the flux, cven
for a rather complicated hyperbolic system like the equations of magnetohvdrodynamics.
The convective terms are upwind interpolated in the direction of the fluid velocity, while
nonconvective terms are centrally discretised. Like in the case of the HEM discussed in the
first part, extensions of classic schemes to the MHD-system., c.g. the Roe scheme [10], are
much more complicated than their gasdynamic counterparts. The application of staggered
schemes for the computation of MHD flow is discussed in [27, 86, 87].

Mach-uniform properties

The main recason for the application of staggered schemes in [27, 86, 87], was their straight-
forwardness, and their possibility to retain solenoidality of the discrete magnetic field. We
believe that the Mach-uniform staggered schemes for the Euler equations presented in
(7, 109] can be extended to the MHD cquations and be a more efficient alternative to
classic gasdynamic schemes and a more versatile alternative to the approximate models
discussed above.

The solenoidality constraint

Different techniques to imposc the solenoidality constraint are extensively discussed in
[90]. Although the use of a staggered discretisation is crucial for Mach-uniformity, stag-
gered placement of the components of the magnctic field has an extra advantage, namely
accurate and efficient treatment of the solenoidality constraint on the magnetic field B.
If solenoidality of the magnetic field is not guaranteed, unphysical effects, e.g. magnetic
monopoles [4], will arise. The constrained transport method of [27] uses a discrete version
of the Stokes theorem to discretise the induction equation on a staggered grid in a way that
guarantees solenoidality of a staggercd magnetic field to machine precision. For simplic-
ity we illustrate the approach for a coplanar problem discretised on a uniform Cartesian
mesh (Fig. 10.1). Under the condition that V - B® = 0, straightforward finite difference
discretisation of (10.3) and summation leads to:
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Figure 10.1: Illustration of the constrained transport approach.

- (B"+1 , — B" ) % (Bzij — Ezij-1)

Tij—3} zij—3
(B::u—% - B:i+1j—§) = —% (Biv1j = Bzivij)
- B;l:rl%j—l - B;H%j—l = ~5 (Baisrj1 — Ezija) (10.25)
(B~ Bpuss) = iBwu-Bw) -
Vv - Bnt! — 0

To impose the solenoidality constraint, two other ways can be followed: an advanced form
of the Hodge projection [8] or the nonconservative approach of Powell (68]. The first
approach will substantially increase the computational cost, because an additional Poisson
equation has to be solved, while the second approach is reported to give unsatisfactory
results for strong shocks [90].

Because the constrained transport method is so attractive this has led to the devel-
opment of algorithms that combine extensions of popular colocated schemes for the Euler
equations as base schemes with a constrained transport method to update the staggered
help variable b, using the discrete Stokes theorem [4, 18]. To compute the fluxes for the
base scheme the help variable b is interpolated to the cell centers. In the review paper [90],
a variation to this approach is described that circumvents the explicit use of the staggered
help variable b altogether.

The aim of these methods is clearly to mimic the advantageous behavior of staggered
schemes, while using the proven technology of standard characteristic based colocated
schemes. This is based on the gencral (mis)conception that staggered schemes are inher-
ently less accurate and robust for fully compressible flow than colocated schemes and that
staggered discretisation in general coordinates is inaccurate. However, in {7, 105, 106, 107]
a staggered scheme for the Euler and Navier-Stokes equations is presented that is accurate
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on nonsmooth nonorthogonal grids.

10.6 Conclusions

Staggered schemes are highly suitable for the computation of magnetohydrodynamic flow,
because of their ability to retain solenoidality of the discrete magnetic field and their
straightforward flux function. Moreover, we believe the Mach-uniform formulation of stag-
gered schemes can be uscful for efficient and accurate computing of weakly compressible
magnetohydrodynamic flow, commonly encountered in astrophysical applications.






Chapter 11

A Mach-uniform scheme for ideal
magnetohydrodynamaics.

11.1 Introduction

Our starting point will be the method of Wesseling [109]. As opposed to the method
presented in [7], a pressure based formulation of the energy equation is used. For two
reasons, this method is preferred over the method in [7]. First of all, the formulation of
the Mach-uniform method is simpler and more elegant than the formulation of [7]. Fur-
thermore, the solenoidality constraint follows from the energy equation instead of the mass
conscrvation equation, in accordance with the small Mach number asymptotic expansion
of the equations, see e.g. [48]. However, both methods lack conservation. It will turn
out in Section 11.5 that a direct extension of the method produces inaccurate numerical
approximations of weak solutions. The deviations are small for the Euler equations but
become unacceptable for the strong shocks encountered for the equations of ideal mag-
netohydrodynamics. The fact that these discrepancies are masked by numerical viscosity
and only manifest themselves on a sufficiently fine mesh has left the consequences of this
lack of conservativity unnoticed in earlier publications. In Chapter 12 we will present a
conservative Mach-uniform pressure based formulation.

11.2 A staggered scheme

The equations of idcal MHD in conservative variables are:

3]
-+ p (m,) =0, (11.1)

. 2
ome 2 (ﬁ + P) =0, (11.2)
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om, 0 [mymy
Y4 A = .
= +6m< p + y> 0, (11.3)
om d (mym
z v ity ALY = 11.
df+az< P +1__) 0, (14)
OpE 0 _ .
ot + or (urpE + u P+ uyAll +u:A;) =0, (11.5)
0Bz
pral 0, (11.6)
OBy 0
0Bz 0
%2, 2 (1,5, - ) =0 (19
where
1 1
E=e+§(ui+u§+uf)+%(B§+B§+Bf), (11.9)
1
P= — (B + B? — B? 11.1
P+ 87 ( y T 5; I) ’ ( 0)
1 1
Ay = _EBxBy, Az = _ﬁBsz- (11'11)

Here E is the total energy of the fluid and B is the magnetic flux vector. We have used
the fact that V-B = 0.

We use a staggered placement of the unknowns: p, p, my, m;, By, B, are placed at point
7, whereas m,, B, are placed at point j + %, cf. Fig. 11.1. Straightforward discretization
of (11.1- 11.8) on the staggered mesh using an upwind scheme for the incrtial terms and
central discretisation for all nonconvective terms gives a scheme that we will refer to as the
fully conservative scheme. The discretisation corresponds to:

k=3
+1 .
PN\ (uﬂépk) 'k:j_l, (11.12)
i+3 j+1
m:;i% -m} jartA (uzmz)lj,_g =-API, (11.13)
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k=j

n+1 n _ J+1
m*T —m .1+/\(11, LA, ,c)’ =-2AN
vits y ity LKA I ) P yl]

i

n+1 n 7+1
mtt = m” +\(u, 11T )\ =-AA.}}
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k=j

where A = dt/dz, and

Ay 3 T 1/2(Ayz jn+ Ay 5}
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Figure 11.1: Staggered placement of the unknowns of the equations of ideal MHD (1D).
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We use the following 4-stage fourth order explicit Runge-Kutta method [84] to advance in
time:

¢* = ¢"—1/4rLng", (11.21)

¢ = ¢" —1/31Lypg", (11.22)
o™ = ¢" —1/2rLps™, (11.23)
g™t = "= TLug™, (11.24)
(11.25)

This scheme will be used to compute reference solutions for validation of the Mach-uniform
discretisation because, as opposed to the Euler equations, no analytical solution can be
derived for the Riemann problem.

11.3 Pressure based formulation

To obtain a Mach-uniform pressure based formulation we start from the equations of ideal
magnctohydrodynamics formulated in conservative variables (11.1, 11.2, 11.3, 11.4, 11.6,
11.7, 11.8). For brevity we discuss the case where the solution depends only on z and t.
Formulating the equations in flux form gives:

du 0

E + 5.’1'_,f (ll) = 0, (11.26)

where

T—

l.l=[U1 U2 U3 U4 U5 Uﬁ U7 Ug] = (1127)
[p mgy my m; pE B, B, B, ]T,

f(u)= (11.28)
_ m, -
7".2 < 5 B
T+ (v —mlz)mpe + i%" (B; + B? — B?)
o 4m (B:By)

mm. _ 1 (B, B,)

() B+ (m2) ((v—V)pe + & (B2 + B? ~ B2)) ~ B, B, - "B,B, |

14 4mp




11.3 PRESSURE BASED FORMULATION 125
where
pe = | pE — l,o|v|2 - L|B|2 (11.29)
2 8w
Rewritten in the components of u this gives:
[ Uy
2 - " >
(- Da+ g (U + U =13
s L,
WUy _ 1 grgqs
Lls 4 o 1”1 2 4"5’26(‘18 2 UylUglUz _ UsligUs (11.30)
e (V= D+ (U + U -U)) - -
0
U, U
L Uy 251
where
102+ U240 1, .
=|Us— 222 - —(U+U2+13) ). .
q ( 5= 3 i 5o (U + U7 +15) (11.31)
The Jacobian f (u)’ is given by:
Row 1:
[0100000O0], (11.32)
Row 2:
vz (-2 UIHUEUE .
R R (1139
~(v-DRE (y-1) —EUs -0, -2 (11.34)
Row 3:
UsUy U U U X
[ bl U S i = (11.35)
Row 4:
UUy U Uy U v
{ - 0w 0 -7 0 (11.36)
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Row 5:
_GUs (v =DUUs | (v =D (U + U5 + U | (v = YUe (U + U7 + Ug)
Uz U} Up . 8nlU12
(11.37)
_Uz (U72 -+ U82 - Uﬁz) UsUsUr,  UyUsUsg
8} 4nU? 4nU}
GUs _ O-DEUHURHUR)  (-D(UEHUFHUR) | U24UZ-UR (-UOWalUs | Ugly
T 207 - 8l + U2 T Tl
_GoUUU Ul ()l 4 U _=UUslh _ Usth | UsUn _ Ual
i a7 [TA Il U, U, 4l
_(=0)Uals | UgUp _ UslUs _ (v=1)U2Us | UsUs _ UslUg
4l 4Anlh 4rlly 47l 47l 4xlly ?
Row 6:
[0000000O0O], (11.38)
Row 7:
Upliy—UylUs U U Ug U
[ -t oo B B2 oo, (11.39)
Row 8:
UUs—UglUs U U U. U
it U U U (11.40)

In order to obtain a pressure based formulation, we transform from u to W, given by:

w, p
W, My
W My
I/V4 m,
W= W, | = P (11.41)
W B,
Wy B,
L Ws ] | B: |
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We have du = d“—%dw, with the transformation matrix ;’i“,‘v given by:

1 6o 0 0 0 0 0
0 1 0 0 o0 0 0 0
0 0o 1 0 0o 0 0 0
0 0 0 1 0o 0 0 0
0 0o 0 0 0 1 ) 0
0 0o 0 0 0 0 0
i 0 0 0 0 0 0 L]
The inverse dd‘:’ is given by
i 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
(v- DEREENE (ol (- (-1
0 0 0 0
0 0 0 0
i 0 0 0 0
0 0 0 0 T
0 0 0
0 0 0 0
0 0 0 0
(7 _ l) . (7—4172145 _ ('yillzlh _( 74172“,{
0 1 0 0
0 0 1 0
0 0 0 1 i

With the primitive variables W the system is given by:

oW -, 0W

T =0
where

2, v AW , du

(11.42)

(11.43)

(11.44)

(11.45)
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We find
fuw' = (11.46)
[ 0 1 0 0 0 0 0 0 7
B B, B
—u? 2u 0 0 1 5 2 £
~uv v u 0 0 ——ﬁ—”?i -5 9
—uw w 0 u 0 - 0 —%r.
(y—1)yuD —(y—1)yD 0 0 u (y—1)eBerldvl: 0 |’
0 0 0 0 0 0 0 0
———”——7“8:"3" B ~%ﬂ 0 0 —v u 0
| l"f—'”& ﬁ;} 0 —%ﬂ 0 —w 0 w |
where
—8pEm + 4pr (u? + v? + w?) + B2 + B? + B2
p=_2" pr )+ B+ B+ B (11.47)
8pm
P
. (11.48)
p(y—1)
With
N (11.49)
p
the Jacobian of the flux function f(u)’ can be rewritten as follows:
) 0 1 0 0 O 0 0 0 ]
B B
—u? 2» 0 0 1 —%f 2 &
—uv v U 0 0 I —%’rﬂ 0
—uw w 0 u 0 - 0 ~%} 11.50
w @0 0w (y—1)MEERBgwE 5 g (11.50)
0 0 0 0 0 0 0 0
——“—’uB:”n’ B —% 0 0 —v u 0
| =uBorube éf} 0 -2 0 —w 0 u |
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Using (11.50), we find that (11.44) can be written in the following form:
Jp Bm
L = 11.5
py 0, (11.51)
om, O m"'
— | —=+P 11.52
(')f+('3.1‘(p+ ) (11:52)
omy 0 (g
il : Al = R
e ( S y> (11.53)
om, d [mym,
-+ — T rA ) = 11.54
ot ox ( p * ”) 0, (11.54)
ap dp 50U uB, + vB, + wB, 0B,
— -1 ), 11.55
c'?t+ ox tec oz +0 ) s Or = (11.55)
0B,
= 11.5
ot (11.56)
aB, 0
— 4+ — =0. 11.57
a1 +0 (uBy, —vB;) =0 (LL.57)
0B, 9 .
o 6_ (uB, —wB;) = 0. (11.58)
Taking into account that:
vV-B=90 (11.59)
and
pct = yp (11.60)
these equations can be rewritten as:
8p am
=0, 11.61
oo T (11.61)
om, 0 [m?
—|—=+P 11.62
ot oz ( + ) 0 (11.62)
omy 0 (mgm,
el A, ) = 11.63
ot +(‘)1’< p + 1’) 0 ( )
Om; O (""*‘mz + Az) =0, (11.64)
P

ot ox
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%Jr%(up)ﬂvﬂ 1)10% =0, (11.65)
_3% ~ 0, (11.66)

% + (% (uB, —vB;) =0, (11.67)
aafiz + % (uB, — wB,) = 0. (11.68)

In this pressure based formulation the energy equation is identical to the energy equation
for the Euler equations. This makes this approach very attractive for the extension of a
Mach-uniform equation for the Euler equations. Note that also in the multidimensional case
solenoidality of the discrete B field in the pressure points is guaranteed due to the staggering
of the components of B, and therefore the accuracy of the scheme is not jeopardized by
explicitly using (11.59) in the derivation.

11.4 Mach-uniform formulation

We apply the following Mach-uniform scaling to the equations:

5 @ i 3 5— b B
p:'~—p—!u: T = )t:~—7p:p..—_‘.pr_ef)B2= g9 (1169)
Pref Uref Lref tref Preflhref PrefUrer

where the dimensional quantititics are denoted by a tilde and the reference quantities are
chosen in the following way:

Pref = Piaflow

- 'Emf = il
Uret == Ug,inflow ~ _ Uref (1170)
fi"ref = Lmax Pref = Pout

With this scaling the equations take the following form:

dp  Om _
E+EI_ =0, (11.71)

omy a (m?
=4 pP)= .72
5 + 57 ( + ) 0, (11.72)
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%g+%(ﬁ@+M)ﬂx (1L.73)
%%47%(m$”+&>:0, (11.71)

% =0, (11.75)

% + % (uB, — vB,) = 0. (11.76)

‘953 ai (uB, — wB,) = 0. (11.77)

M (‘9; + %(up) + - 1)pg—z> + % =0, (11.78)

Egs. (11.71)—(11.77) are discretized identically to (11.12) (11.17). The pressure-correction
equation (11.78) is discretised in the following way (assuming u; 41> 0 for brevity):
M (0p; + A (e — o)) + (11.79)

Aty = 1)p} (u;’:} ;”’1)) + A ( ntl —uf

2

-3
P

which can be rewritten as
MZp; + A ([Mfef( + (v = 1)p}) + 1] urt - (11.80)
[M2e (0 + (= ) + ] 2} ) =0,

Substitution of the pressure correction postulate:

L 1. i
1;: = F (mzﬁé — A (0pjp — 6pj)) , (11.81)
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gives:

1
M2dp; + ) ([Mfef (5 + (= 09) +1] =z (mlyy = A Gpyr = 0p)) = (1182)

7

1
(Mt (01 + (= 0p) +1] e (33 — A (6ms - 5pj—1))) =0,
-1

or rearranged:

/\2
[Mir (1 o (] + 70 0) + (0 + ) (- 1)p§-’)> +  (11.83)
J=1r3
oyt + ot
ottt

/\2 5])]' +

/\2
[—pn—ﬁ (M2 (0} + (v — 1)p3) + 1)] Opj+1 +
J

A2 n
[—F (M2 (07 + (v — Dpd) + 1)} opj-1 =

-1
A 2 7 (3 * A 2 7 n *
N (M (5 + (v = 1)pj) +1) Uit P! (Mze (Pf1 + (v = 1)p}) +1) Uj_1-
J Jj-1
The solution procedure consists of the following steps:
o Advance Egs. (11.71)-(11.77) with the Runge-Kutta method (11.21-11.24).

¢ Solve the pressure correction equation (11.83).

¢ Update momentum and pressure.

Note that because no special measures are taken for the contribution of the magnetic field,
this formulation can only be expected to have Mach-uniform behavior for the case 5 > 1,
as discussed in Sect. 10.4.

11.5 Validation

To validate the scheme we consider two classic Riemann problems for the equations of
ideal MHD: The Riemann problem of Brio & Wu [10] and the one of Dai & Woodward
[17]. Figs. 11.2 and 11.3 show results for the Brio & Wu testcase on a grid with 200 cells
on the unit interval, obtained with the conservative staggered scheme (Sect. 11.2) and the
Mach-uniform staggered scheme respectively. The full line is not the exact solution, but
a high-resolution reference solution obtained with the conservative scheme. The results
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obtained with the Mach-uniform method show a small deviation of the shockspeed and
hence an incorrect jump at the discontinuity.

Figs. 11.4 and 11.5 show results for the Dai & Woodward testcasc on a grid with
200 cells on the unit interval, obtained with a staggered scheme and the Mach-uniform
staggered scheme respectively. In both cases an artificial viscosity was added to stabilize
the solution in the region where u, &~ 0. A future improvement will be to utilize a RK-
method that more effectively dampens the high frequency modes, e.g. one used in dual
time-stepping methods. In this case the nonconservative Mach-uniform method produces
completely erroneous results.

Because the nonconservative energy equation is identical to the energy equation for the
Euler equations, we made a close inspection of results for various Riemann problems for
the latier cquations. It was found that the methods of [7] and [109] produce inaccurate
results for strong discontinuitics for the Euler equations as well. These discrepancies had
been earlier wrongly identified as the result of nwmerical diffusion.

These results show, that to guarantee that numerical solutions converge to the cor-
rect weak solution, strict conservation has to be maintained in accordance with the Lax-
theorem. However, the simplicity of this pressure based formulation makes it very attrac-
tive for th computation of smooth MHD flow.

In the next chapter we present a conservative pressure-correction scheme for the Euler
equations. In Chapter 13 we present the extension of that method to MHD.

11.6 Conclusions

We have presented a Mach-uniform pressure based formulation of the equations of ideal
MHD. However, due to lack of conservation the scheme produces inaccurate approximations
to weak solutions. Close inspection of earlier results obtained with the Mach-uniform
method for the Euler equations that forms the basis of the method discussed revealed that
that method suffers from the same deficiency.






Chapter 12

A conservative pressure correction
scheme for the Euler equations

12.1 Introduction

We discuss extension and improvement of the schemes proposed in [7, 108] for computing
flows at all Mach number, with accuracy and efficiency uniform in the Mach number. These
methods use a staggered scheme and a pressure correction solution procedure, similar to
the classic ICE method [33]. To facilitate application of the pressure correction method,
use is made of a nonconservative discretisation of the energy equation. Extending the
method of [7, 108] to ideal magnetohydrodynamics we found that the nonconservative
discretisation of the energy equation leads to a discrepancy in the shock speed. This effect
is more pronounced in ideal magnetohydrodynamics than in gasdynamiecs, because the
shocks encountered are much stronger. Furthermore, both methods proposed in [7, 108]
suffer from small wiggles in the presence of a moving contact discontinuity. We believe
these are also caused by a lack of conservation. Here we discuss a Mach-uniform scheme,
that incorporates two improvements with respect to the methods of [7, 108]:

1. The method is derived from the Euler equations in conservation form. Numcrical
experiments show that solutions converge to genuine weak solutions.

2. The method gives monotone solutions for moving contact discontinuities.
g

The outline of the paper is as follows. In Section 12.2 the need for conservative Mach-
uniform discretisations is briefly discussed. In Section 12.3 the requirements we impose
on a Mach-uniform method are presented. A dimensionless pressure-based formulation
is discussed, that forms the basis of the conservative Mach-uniform pressure correction
scheme presented in Section 12.4. In Section 12.5 we show by numerical experiments, that
solutions to a number of Riemann problems obtained with the present method converge to
genuine weak solutions for the Euler equations. In Section 12.6 we consider two-dimensional
test cases, to demonstrate the Mach-uniform behaviour of the present method.
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12.2 Mach-uniform accuracy and efficiency

Mach-uniform methods are required when in one flow domain weakly compressible and
compressible regions occur simultancously, as for instance in flow inside internal combustion
engines and in the flow around aircraft in take-off or landing conditions. Computation of
weakly compressible flow in a standard density-based compressible formulation gives rise to
loss of accuracy due to weak coupling between pressure and density and loss of efficiency
due to the stiffness of the system of equations, when the Mach number is below 0.3.
Furthermore, in the incompressible limit M | 0 the coupling between density and pressure
vanishes, and leaves the pressure undetermined. Although both effects can be neutralised
to some degree by time-derivative preconditioning/pseudo-compressibility techniques, this
gives a significant increase in computing time, and choosing an cffective preconditioner
remains something of an art and has to be reconsidered for cach new physical situation
(c.g. different geometry, nonconvex equation of state, magnetohydrodynamics). For a
survey of the state-of-the-art, sce Chap. 14 of [105].

On the other hand, incompressible methods can be extended to incorporate compress-
ibility following the approach of Harlow and Amsden [33]. Intended originally for the
computation of weakly compressible flow, these methods show remarkable capability for
efficient computation of compressible flow as well. However, to correctly compute shocks
the discretisation has to be conservative [56].

Although a Mach-uniform conservative formulation can be easily obtained for an iter-
ative method, e.g. SIMPLE [67], or a semi-iterative method e.g. PISO [39, 40], this is not
trivially achieved for an efficient time-accurate single step sequential solution procedure.
Either a nonconservative formulation is adopted [7, 108], or the special case of isothermal
flow is assumed [33] in the formulation of the pressure correction equation.

12.3 Mach-uniform methods

In formulating the requirements for a Mach-uniform method we distinguish between three
flow regimes:

1. M = 0: incompressible flow, but with variable density.
2. 0 < M < 0.3: weakly compressible flow.

3. 0.3 < M: fully compressible flow.

M = 0.3 is generally accepted as a threshold, below which the flow can be regarded as
incompressible, because the density variations are less than 5% of the freestream value [44].
We will now formulate requirements for a Mach-uniform method for cach regime.

12.3.1 Incompressible flow

For incompressible flow we require that the discretisation reduces to the well-known MAC-
scheme of Harlow and Welch [35]. Therefore, a pressure-based formulation and a staggered
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scheme arc required. The MAC-scheme is accurate and efficient for incompressible nonsta-
tionary flows. The staggered scheme is the natural discretisation for incompressible flow,
in the sense that it does not require regularization to prevent odd-even decoupling.

12.3.2 Weakly compressible flow: 0 < M < 0.3

To make the Euler equations dimensionless we choose units tyer, Lyery pror and Ty for
velocity, length, density and temperature, respectively. If we take prer from the equation
of state of a perfect gas:

Preft = /)refRTref‘ (121)

and choose the unit of time as trof = Lyeg/ Urer, then the dimensionless momentum equation
is found to be, in Cartesian tensor notation,

0 (pua) 1 Uref
— ") = ———Pa, M= ——, 12.2
p + (puqug) 4 ’)’z’\[fefp’ = o RTa (12.2)

where v = ¢,/c, is the ratio of specific heats. Of course, the reference quantities are
chosen equal to values representative of the flow under consideration, for example equal to
conditions at infinity, so that Mg | 0 for weakly compressible flow. For a Mach-uniform
method this limit must be regular, so that a different nondimensionalisation is required. If
acoustic effects are not present, the asymptotic behaviour of p* (dimensional nonreference
quantities are denoted by an asterisk) is given by:

Pt x) = py(t*) + epi(t'. %) + O(%), e=yM2, (12.3)

cf. Sect. 14.4 of [105] and [48]. If there is no global compression or expansion, as for the
flow around a body, p{(t*) = constant = prg, which is assumed here. By postulating a
similar asymptotic expansion for p* and u}, it is easily seen that pj is of the same order as
pyus - ug. We therefore define a dimensionless pressure variable as follows:

o P* — Pref

. 12.4
prefuzef ( )

This makes the singular factor 1/yM2; disappear from the dimensionless momentum cqua-
tion. Noting that for a perfect gas we have for the internal cnergy p*e* = p*/(y — 1), we

find that the dimensionless conscrvative pressure-based form of the Euler equations is given
by:

9p _ 125
at + (pua)’a = 0’ (120)
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Opuq
ot

+ (puatig) 5 = —Pas (12.6)

1} 1 . -1 .
M2, (Z’)_t <p+ —2—p|u|2) + ('ypu(, + ’YTplan,,) ) + Upq = 0. (12.7)

Note that as M J 0 the solenoidality condition on the velocity field for incompressible
flow follows from the cnergy equation. The dimensionless equation of state for a perfect
gas can be written as

P 1
p(p,T) = ’YMrifT + T (12.8)
We see that density becomes independent of pressure in the limit M, | 0, as expected for
incompressible flow without acoustics.

12.3.3 Compressible flow: 0.3 < M

For compressible low we require that the scheme is conservative. This ensures that if
the discrete solutions converge, they converge to a genuine weak solution that satisfies
the jump condition, according to the well known Lax-Wendroff theorem [56]. The Mach-
uniform methods of [7] and [108] are not in conservation form. This lack of conservation is
found to only manifest itself when shocks are sufficiently strong and the mesh sufficiently
fine, otherwise numerical diffusion will mask the small discrepancy between exact and
computed shock speed (Section 12.5).

12.4 Discretisation and pressure correction method

For brevity and clarity we will discuss the solution procedurc for a discretisation in Carte-
sian coordinates. Appendix C lists the equations discretised in gencral coordinates, used
for the two-dimensional test cases in Section 12.6. Equations (12.5-12.7) are discretised on
the staggered grid shown in Fig. 12.1. Convective terms are discretised with a first order
upwind scheme, whereas the pressure gradient is discretised with a central scheme. Higher
order upwind discretisation of the convective terms can be obtained with the MUSCL
strategy {95, 96], using deferred correction in a straightforward way. The time-stepping
method takes the following form: First the mass conservation equation is solved:

n+l _ .n
% + (0" 'ul) =0, (12.9)
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Figure 12.1: Staggered placement of unknowns.

Next, a prediction of the momentum field m* = p**lu* is computed using the pressure at
b) p x p [¢3
the previous time level:

mp, —mg .
—5 (maup) 4, = —la- (12.10)
The following pressure correction is postulated:

.0t .
umt =l e (" - pn)ya. (12.11)

The postulate is substituted in the energy equation:

A{2 ( o 1) 1 @ . %plb+l|u* _ %'V(Splz _ %pn|un|2
ref 7 y =10t 5t

v 1 &t ot
——(p" + 6p) + " ut — —V§ 2) (u;—o Q)}
[(7_1( p)+ 50" P Pl )]

., Of
+ | up — —6dpg =0.
p a

B

+ (12.12)

We use central interpolation of the velocity (12.11) at the cell faces to obtain the kinctic
encrgy in the cell centers. Newton linearisation in ép leads to a linear equation for the
pressure correction. However, the resulting stencil (Fig. 12.2 Version A) for the pressure
equation is larger than the stencil for the classic MAC-scheme (Fig. 12.2 Version B), which
is not efficient. It is clear that the a4 term has to be discretised implicitly, to have the
scheme reduce to the classic MAC-scheme. Close inspection of the scaled energy equation
(12.7) shows that the us4 term stems from the convection velocity of the pressure. We
require that the unscaled and scaled cquations give identical results for moderate Mach
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Figure 12.2: The stencil of the pressure correction equation.

number. This means that we have to discretise the convection velocity in the pressure
equation at the new time level. If the kinetic energy is discretised at the predictor * level,
the resulting pressure correction equation has the standard 5-point stencil of the classic
MAC-scheme in Cartesian coordinates (Fig. 12.2 Version B). Taking the kinetic energy at
the x level instead of the new time level will not affect the scheme in the limit M, | 0.
Neither does it reduce the temporal order of accuracy. The pressure correction equation
now takes the following form:

-1 n+1u*_ﬂ5v 2 _ nun2
Mif{ap (v = 1)p+H|u* = 26Vp|* — p7| I+

3 + 251 (12.13)

-1 . ot
[('r(zf‘ +0p) + 7—p"+1|u*|2) (HZ - —&m)] }
2 p o
+ (u; - ﬁ61)@‘) =0.
p o

i

The linearised pressure correction equation is solved by GMRES, preconditioned with ILU
[99, 100]. Finally, pressure and momentum are updated:

p" T = p" 4 6p, (12.14)

mptt = m? — 0tép 4. (12.15)
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12.5 Validation with Riemann problems

We will compare the conservative Mach-uniform method with the nonconservative method
of [108] and with the classic Osher scheme [65] for a number of Riemann problems. The
method of [7] shows behavior very similar to the method of {108]. To exhibit the difference
between the various methods use is made of a relatively fine mesh of 400 cells on the unit
interval. The following test cases are discussed:

1. The shock tube problem of Sod [83],
2. The shock tube problem of Lax [57].

3. Nonstationary contact discontinuity.

For both Sod’s and Lax’s Riemann problem the Mach-uniform method of [7] and [108] do
not give exactly the correct shock speed. Differences between solutions of the conservative
and nonconservative method manifest themselves most clearly for different quantities in
the various shock tube problems.

The definition of the initial condition for a Riemann problem on the staggered grid is as
follows: The discontinuity is defined on the common face of two adjacent control volumes
for the pressure. Variables at the location of the discontinuity are defined as:

(17U + Miright) - (12.16)

| o~

Udisc = Uleft;, TMdisc =

The convection velocity Ueenter takes the upwind value, whereas the momentum is centrally
interpolated to the interface. This apparently arbitrary specification has been designed
to propagate a contact discontinuity exactly with our first order upwind scheme during
the first time step. We cmphasise that our goal here is to show that the conservative
Mach-uniform mcthod converges to the genuine weak solution.

12.5.1 The shock tube problem of Sod

Figures 12.3, 12.4 and 12.5 show results obtained with the three methods for Sod’s shock
tube problem. The dimensionless time step in each case is chosen to ensure stability of
the explicit Osher scheme, resulting in 6¢/6x = 0.45 (how to find stable values for §t/éx
is discussed in Sect. 10.6 of [105]). In Sod’s shock tube problem the improvement
with respect to the nonconscrvative method is most clear for the enthalpy. Although the
staggered scheme shows more smearing at the discontinuities than the Osher scheme, this
can be overcome in a straightforward manner by using a higher order interpolation for the
fluxcs (MUSCL), instead of the first order upwind scheme used in these experiments. The
small overshoot in the entropy is associated with the staggering of the jump in velocity
and the scalar quantities at the location of the shock.
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Figure 12.3: Sod’s Riemann problem, nonconservative Mach-uniform discretisation.
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Figure 12.4: Sod’s Riemann problem, conservative Mach-uniform discretisation.
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Figure 12.5: Sod’s Riemann problem, Osher scheme.

12.5.2 The shock tube problem of Lax

Figures 12.6, 12.7 and 12.8 show results obtained with the three methods for Lax’s shock
tube problem. The dimensionless timestep in each case is chosen to ensure stability of
the explicit Osher scheme, resulting in §¢/dr = 0.25. In Lax’s shock tube problem the
improvement with respect to the nonconservative method is most clear for the density.

12.5.3 Nonstationary contact discontinuity

Figures 12.9, 12.10 and 12.11 show results obtained with the three methods for a nonsta-
tionary contact discontinuity. The dimensionless timestep in each case is chosen to ensure
stability of the explicit Osher scheme, resulting in §¢/8x = 0.4.

In {7} and [108] two different Mach-uniform discretisations were presented. With
both schemes oscillations arose in pressure and velocity close to the contact discontinuity.
Clearly, in the conservative method the wiggles have disappeared. The staggered scheme
shows more smearing of the contact discontinuity than the Osher scheme, but requires
considerably less computational cost.
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Figure 12.6: Lax’s Riemann problem, nonconservative Mach-uniform discretisation.

DENSITY VELOCITY PRESSURE

35

25

0.5

-
- n

- @ N

- N 12 o

05 15
0 0 05
0 05 1 0 05 1 o 05 1
MACHNUMBER ENTHALPY ENTROPY
30 25

08 2 2

20
06
04

02

o o w
bed =
[ — o

©

05

o

0.5 1

o

05

Figure 12.7: Lax’s Riemann problem, conservative Mach-uniform discretisation.



12.6 NUMERICAL RESULTS 149

DENSITY VELOCITY PRESSURE
14 2 4
1.2 351
, 15 3
25
08 1
2
06 05 15
o4l TN 1
02 o 0 05
0 05 1 0 05 1 0 05 1
MACHNUMBER ENTHALPY ENTROPY
1 30 25
25 N
0.8 2
20
06 15
15
0.4 1
10
02 5 o5 S
[ 0 0 e
0 05 1 0 05 1 0 05 1

Figure 12.8: Lax’s Riemann problem, Osher scheme.

12.6 Numerical results

We present two test cases to show the ability of the present method to compute flow at
all speeds. The first is the standard test case of a two-dimensional channel with a bump,
for a range of Mach numbers. This case is discussed in e.g. [7, 26, 41, 45, 49]. The
second test case is the flow around a NACAQ0012 airfoil for a range of Mach numbers, from
incompressible flow to transonic flow.

12.6.1 Channel with bump.

We look at a channel with a 10 % circular bump for different inflow Mach numbers ranging
from the incompressible to the supersonic case. The mesh with 90 x 25 cells is shown in
Fig. 12.12. In the case of supersonic inflow it is necessary to apply a Dirichlet boundary
condition for the pressure at the inflow boundary. For all Mach numbers the numerical
scheme is identical. Table 12.1 lists the computing time on a 500 MHz, Pentium III
processor to reach a steady state solution within 1% accuracy. The timestep in the subsonic
test cases was chosen to achieve fast convergence to steady state. For the supersonic test
case, the timestep was limited by the stability of the time-stepping method. It is clear that
the computing cost is nearly independent of the Mach number, except for the supersonic
test case, which is due to the decrease in timestep.

Because the density variations are of the order of the reference Mach number, the
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Figure 12.9: Nonstationary contact discontinuity, nonconservative Mach-uniform discreti-
sation.

accuracy of the iterative linear solver has to be chosen much smaller than the reference
Mach number to resolve the density distribution. In practice, this is not necessary, because
the almost constant density will be satisfactorily obtained when the iterative solver is only
partially converged. To show the capability of the method to accurately compute this low
Mach number density field we have computed the cases listed in the table to convergence
up to machine accuracy in the time-stepping algorithm. The resulting contour plots for
the density are shown in Fig. 12.13. Note there is no visible difference between the density
distributions at M = 0.0001 and M = 0.01, as it should be. We have compared our results
for the case M = 0.675 with those presented in [22]. For this case [22] reports a maximum
Mach number of 1.43, with the shock located at 75% of the length of the bump. Fig. 12.14
shows the Mach number distribution at the lower side of the channel computed with the
present method and with the nonconservative method of [7] for a mesh with 270 x 75 cells.
We find the shock to be positioned at 75% of the length of the bump and a maximum
Mach number of 1.40, in good agreement with [22]. Note that the nonconservative method
of [7] produces a small discrepancy in the position of the shock.

12.6.2 NACAO0012 airfoil

The present method is used to compute the flow on a NACA 0012 airfoil under an angle of
attack of 2°. The H-type grid with two blocks of 180 x 30 cells is shown in Fig. 12.15. The
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Figure 12.10: Nonstationary contact discontinuity, conservative Mach-uniform discretisa-
tion.

Mach | CPU-time s | number of time steps | timestep
0 17s 51 0.5
101 17s 51 0.5
0.01 20s 62 0.5
0.5 18s 61 0.5
0.675 20s 73 0.5
1.65 36s 130 0.1

Table 12.1: CPU time for channel with bump for different Mach number.
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Figure 12.11: Nonstationary contact discontinuity, Osher scheme.

Figure 12.12: 90 x 25 mesh for channel with bump.

total number of cells on the section is 120. For this application use was made of the third
order ISNAS-scheme [116], by means of a deferred correction strategy. Results arc shown
in Fig. 12.16. Computing work per timestep was found to depend only weakly on the
Mach number. To confirm the conservativity of the method, we computed the flow around
the NACA 0012 airfoil at zero angle of attack and for an inflow Mach number of 0.85. This
is one of the testcases considered at a GAMM Workshop on the computation of inviscid
transonic flow [73]. The dimensionless pressure distribution, computed on a mesh with 120
cells on the upper side of the airfoil, is shown in Fig. 12.17. We found the shock to be
located at 73% of the chord length, in close resemblance with the average value reported
in [73]. However, a value of 0.84 was found for —Cppax, Which is smaller than the average
value of 0.90 reported in [73]. We believe that this pressure loss is a result of the meagre
quality of the H-type grid in the vicinity of the leading edge of the airfoil.
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Figure 12.13: Iso-lines of density for channel with bump for different Mach numbers.
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Figure 12.14: Mach number distribution on bottom of channel, for the method of 7] (I)
and the present method (II).

12.7 Conclusions

With a Mach-uniform method one is able to compute flow with a Mach number ranging
from the incompressible flow to the supersonic regime with nearly uniform accuracy and
efficiency. To correctly compute weak solutions to the Euler equations, the scheme has to
be in conservation form, in accordance with the theorem of Lax and Wendroff [56].

We have presented a conservative staggered pressure correction scheme, that has Mach-
uniform properties similar to earlier nonconservative methods. Furthermore, weak solutions
computed with the present method are found to converge to the correct weak solutions for
a number of Ricmann problems. Two-dimensional applications show that the computing
work is nearly independent of the Mach number.
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Figure 12.15: H-type grid with two blocks of 180 x 30 cells for NACA0012 airfoil.
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Figure 12.16: Density contours for NACA0012 airfoil for different Mach numbers.
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Chapter 13

A conservative Mach-uniform scheme
for ideal magnetohydrodynamics

13.1 Introduction

Starting from the conservative pressure correction scheme for the Euler equations of Chap-
ter 12 the extension to the equations of ideal magnetohydrodynamics is straightforward.
We describe this extension and results for the Riemann testcases described in Chapter
11. Furthermore results arc presented for two classic two-dimensional testcases: the rotor
problem and the Orzag-Tangh vortex (see e.g. [90]).

13.2 A conservative pressure-correction method for
MHD flows

The contributions of the magnetic energy and the work done by the magnetic pressure is
included in the formulation of the pressure correction equation. Because the magnetic field
is solved for in advance of the total energy, the former is available at the new time level.
The pressure correction equation for magnetohydrodynamic flow reads:

5 (,y _ l) pn+llu* _ o_}rvémz _ pnlun| + |Bn~H|2 _ an|2
2 P F;
Mg q 50+ o + (13.1)

. -1 ot . }
[(’y([)n +48p) + WT (,0""'1|u*]2 + |B"“|2)) (u; - ;()p,{,) +(y-1) (Aaﬁug)] }

ot
+ (u,f1 - —61),0) =0,
p @
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where we used the same scaling as in (11.78) and
Aas = BaBs (13.2)
Pressure and momentum are updated in the same way as for(11.78):

p"t = p" + 8p, (13.3)
nH = mk — 5t0p 4. (13.4)

fa -

m

13.3 Numerical results

As in the case of the Euler equations, the staggered scheme does not produce solutions to
standard magnetohydrodynamic problems with accuracy and efficiency superior to colo-
cated schemes. We intend to show that for standard testcases the staggered scheme has
accuracy comparable to colocated schemes. Furthermore its Mach-uniform propertics make
it more versatile than colocated schemes.

Unfortunately there are no experimental results available to compare with. Standard
testcases are of academic nature. This is because the conditions, in which the assumptions
of MHD flow are valid, are very difficult to realize on a laboratory scale. In astrophysical
flow the weakness of the magnetic field is compensated by the vastness of the length scale
of the phenomena.

Riemann problems

In Figs. 13.1-13.2 we present results for both Riemann problems discussed in Sect. 11.5. It
is clear that the conservative Mach uniform scheme converges to the correct weak solution.

The rotor problem

This test case is used to qualitatively judge the behavior of different schemes in [90], with
emphasis on their ability to retain solenoidality of the discrete magnetic field. It consists of
a dense rotating disk of fluid, surrounded by much less dense fluid at rest. The centripetal
acceleration of the plasma in the spinning disk is altered by the magnetic forces. The initial
condition is as follows: thermal pressure and magnetic field are uniform:

p=p, B:=DBy, B,=0, (13.5)
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Figure 13.2: The Riemann problem of Dai and Woodward, Mach-uniform scheme, 200 cells, A = 0.05, tenq = 0.14.
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Figure 13.3: Thermal pressure p for the rotor problem. 200 x 200 cells, tgng = 0.15.

while the velocity is given by:

uy = ug ( — 0.5) /ro uy = fuo (x —0.5) /1o

u, =0 N
lly:() }|T1 <,

Uy = —Ug (y - 0.5) /7'0 } |r < Tp. Uy = —fug (y - 0.5) /7‘0 } |T0 <r<n (13.6)

where
r=+ar+y? f=(r—7)/(r1—ro) (13.7)
and we chose
v=2, p=11ry=01, »r;=0115 By =25, (13.8)

which corresponds to the first rotor problem in [90]. The computational domain is the
unit square —0.5 < z,y < 0.5. Results are shown in Figs. 13.3 13.3. Taking into account
the first order accuracy of the scheme, the correspondence with results presented in [90] is
quite good. However, the characteristic based schemes are better in retaining the cilindrical
shape of the inner part of the disk, compared to the dimensionally split staggered scheme.

The value of (V- B),,.. = 2.5.107", as guaranteed by the constrained transport method.
The large numerical diffusion of the first order upwind scheme causes loss of point symmetry
of the solution.
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Figure 13.4: Density p for the rotor problem, 200 x 200 cells, teng = 0.15.
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Figure 13.5: Mach number for the rotor problem, 200 x 200 cells, tenq = 0.15.
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Figure 13.6: Magnetic energy |B|? for the rotor problem, 400 x 400 cells, teng = 0.15.

The Orzag-Tang vortex

The Orzag-Tang vortex is another popular test case for two dimensional MHD flow, that
has been studied for different initial Mach numbers. Different schemes are judged by
comparing the resolution of the shockwaves and their ability to retain solenoidality of the
discrete magnetic field. To test standard gasdynamic schemes the initial pressure field is
chosen to have an initial Mach number of order 1. In [16] results arc presented for initial
Mach numbers 0 — 0.6, obtained with a spectral code, to study the effect of compressibility
on the solution. The inital condition for the problem is a velocity vortex superimposed by
a magnetic vortex [60] given by:

u, = —sin(y+m) B, = —sin(y+7) P 25/9
u, = sin(fz+m) ' By = sin2(z+n)’ p vy = 5/3°

(13.9)

where we have used a scaling length L,y = 27, compared with the initial conditions
described in [90]. The configuration is strongly unstable, and the resulting waves will form
a complicated structure. The valuc of (V-B) = 4.8.1071° as guarantced by the
constrained transport method.

max
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Figure 13.8: Density p for the Orzag-Tang vortex, 200 x 200 cells, t.,q = 3.14.
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Figure 13.10: Magnctic energy |B|? for the Orzag-Tang vortex, 200 x 200 cells, feng = 3.14.
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13.4 Discussion

We have presented a potentially Mach uniform scheme for the equations of ideal magneto-
hydrodynamics for the case 8 > 1. However, many more testcases are nceded to confirm
the Mach uniform behavior. Furthermore, to have Mach-uniform behavior in the regimes
B~ 1 and # < 1 the induction equation and magnetic pressures have to be discretised
implicitly. Finally, to have a fair comparison with other schemes for ideal magnetohydro-
dynamics the method has to be extended to second order spatial accuracy, but this can be
achieved in a straightforward way using the MUSCL-approach for the inertia terms.
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Appendix A

Some remarks on spatial
discretisation on a staggered grid in
general coordinates

A.1 Introduction

Discretization of the Navier-Stokes equations on a staggered grid in general coordinates
is extensively discussed in [105, 106, 107]. However, in these publications emphasis is
on discretisation with central schemes. In the casc of the Euler equations an upwind
scheme is used to introduce artificial viscosity to ensure that numerical solutions converge
to weak solutions that satisfy the entropy condition. Here we consider one detail of the
discretisation of the compressible Euler cquations: the inertia term in the momentum
equation. The momentum equation in coordinate invariant form is given by:

tow 10 (ymy—_ L0 m Al

where

Integration of the momentum equation over the shifted control volume €2, depicted
in Fig. A.1 leads for the inertia terms to:

0

—1\55? (uh®) d. (A2)
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Figure A.1: The controlvolume for the contravariant velocity V1.

The integral consists of two parts:

1 it 141
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The integrals are approximated by the midpoint rule:

Iy ~ A (uV?)[77, (A.5)
Lo~ A" (V2. (A.6)

To form an equation for the contravariant momentum flux component le+e1 the integrals
are premultiplied by ag-lﬁel. In both cases we have to approximate a§1+)el (uV?) in the
integration points. We will not discuss the derivation of the momentum equation for the
contravariant flux component V1'2+e1 because its treatment is completely analogous.

Two different upwind schemes for the convective term in the momentum equation where

discussed in [7]:

o partial upwind, where the convective flur V* is centrally interpolated and the con-
vected velocity u is upwind interpolated.

o full upwind, where both the convective flur V' and the convected velocity u are
upwind interpolated.

Fig.A.2 and Fig.A.3 show results for partial upwind and full upwind respectively, for a
Riemann problem, with initial condition e = 1, Urgne = 0.5 for the inviscid Burgers
equation on a regular mesh with 40 x 7 cells. Only the full upwind scheme gives a monotone
solution. For the Euler equations the partial upwind scheme will give more crisp resolution
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Figure A.2: Velocity at the center line, partial upwind discretisation on regular mesh.

Figure A.3: Velocity at the center line, full upwind discretisation on regular mesh.
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of shocks than the full upwind scheme. However, linear stability of the full upwind scheme
is better than for the partial upwind scheme (Chapter 8). Because stability of the scheme
is our main concern in this application we use the full upwind scheme in all numerical
experiments both in one and two space dimensions.

Discretisation in general coordinates is done following the approach of [105, 106, 107].
First the vector equation is integrated over a control volume, before the equation is pro-
jected in the contravariant direction. This avoids the discretisation of the Christoffel sym-
bols, which leads to loss of accuracy on nonsmooth grids.

We will first discuss an improved discretisation of the convective flux for the full upwind
scheme in general coordinates. Next the approach of [107, 105, 106] is extended for a higher
order limited k—scheme for the convected velocity.

A.2 Improved discretisation of the convective flux for
full upwind scheme.

On nonsmooth grids the direct one-sided interpolation of the contravariant velocity in the
full upwind scheme provides an inaccurate approximation of the contravariant velocity at
the cell face, because the variation in geometric quantities is not taken into account. A
more accurate interpolation to the different integration points is described below.

We will consider the approximation in the integration point j + 2el:
¢ Partial upwind discretisation:
1
1 1
ag-zcluj-ﬂelvjl-md = §a§‘+)e1 * Ujtel (VﬁLa + “"j]+3e1) > (A7)

e Full upwind discretisation:

1 1
a;lelu.‘f+2ﬁ‘vjil+2(’.l = a§'+)e1 " Wjtel (—3(2)J+2e1 @ “j+e1) ) (A8)
where:
e = ——— (3 V" + 2 V?) (A.9)
j+el = < . 5 .
\/g_j+e1 Thel
and we have used:
1, .
V1‘2+e1 =13 (‘/j2+e2 + ij—e‘z + ‘/jz<|-2cl+82 + ‘/j2+2e1—e2) ) (A.10)

1
Anjter = 7 (ayjse2 + aQ)j—e2 + BQ)j42e11e2 + A(1)j42e1-e2) - (A.11)
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Figure A.4: Irregular mesh to test the improved upwind scheme.

Note: the previously used implementation of the full upwind discretisation is given by:
(1) -1 _ .M ) -1 2 ‘
AL Wize1 oot = A5 Winet Vg (A.12)

which gives large crrors on nonsmooth grids. Computation of the flux for the integration
point j can be done analogously.
The approximation in the integration point j + el + e2 is as follows:

a§2e1u1+€1+82‘/}2+el+62 = %agljm “Wytel (‘;isz + ‘;‘2+2e1+e2) ) (A.13)
where:
Ujper = ﬁ1+e1 (awV' +amV?), ., (A.14)
and we have used:
Vi = 1 e+ Vi + Virrer + Visaoa) (A15)
A(l)jrer = % (Bjrez + Agayj—e2 + B1)j 4201 4e2 + B(1)j42e1-2) - (A.16)

Computation of the flux for the integration point j + el — e2 can be done analogously.

We compare the original and the improved discretisation of the convective flux for the
inviscid Burgers equation on the nonsmooth mesh of Fig. A.4, with 40 x 7 cells, 0.5 < x <
0.5, 0 < y < 0.02 . The initial condition is chosen as Wef=1, Uright=0.5. The solutions for
time t = {At,7 = 1...10 arc shown for the original and improved discretisation in Figs. A.5
and A.6 respectively.

A.3 A higher order limited x—scheme in general co-
ordinates
In the case of a higher order upwind discretisation the variables arc interpolated with a

limited #x-scheme to the integration points. We will consider a V! cell, where we have to
approximate the fluxes in the four integration points j, j+2el, j+el —e2 and j +el +¢2.
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Figure A.5: Velocity at the center line, original fully upwind discretisation on the mesh of
Fig. A.4.

Figure A.6: Velocity at the center line, improved fully upwind discretisation on the mesh
of Fig. A4.
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The base veectors a'® and a(q) are defined in Appendix C.
In integration point 7 + 2el we have to approximate:

a51+)el ) uj'F'ch‘/;1+2€1' (A7)
This is done by defining:

‘~] ter = Wjtel 'a§‘1+)9.1: (A.18)

1
‘] el — u] el ” a_(7'+)elv (Alg)
‘ J4+3el — u] +3el © a;?eh (A.'ZO)
ag'l-:el *Uj42e1 = ‘y}l-}-Zel = f"]'l-{-el + \I}(TjJrcl) (":‘;1_4.5\1 ‘71 el) N (*\21)

13 V3
Pjpe = 2Lt (A.22)

Vi = Vica
1 r+3

U(r)==(r+|r)) ——=, A.23
)= 50+ (A.23)

where ¥(r) is the ISNAS-limiter of [116]. It was found that interpolation of the components
of the Cartesian velocity, instead of the projected velocity does not give substantially
different results.

The convective flux is discretised in the following way:

e Partial upwind discretisation

v} jt+2el = (V el T ‘;+3e1) (A.24)

NJH—A

e Full upwind discretisation
Here we have to make a higher order upwind interpolation to the integration point
for V}l+2e1- This is done in the following way:

‘A'}1+e1 = Ujse1 ® A2)j42¢1, (A.25)

‘j el = Qj—el & a(2)j42el> (‘A26)

‘]+‘k’] = Wjit3e1 @ A2)j+2€1, (A.27)

"}l+2e1 = ‘;;'14—2(-1 = "A}l+e1 + \I’(Tj+e1) (le+e1 - le_el) , (A.28)
11 _Vi

Tjtel = _gt3el kel (A.29)

S
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Construction of the flux for the integration point j can be done in an analogous way.
In integration point j + ¢l + ¢2 we have to approximate:

1 2
a§'+)e1 “Witerve2Viierper- (A.30)
This is done by defining:
. | %
V6 = ujta -a(lfe, = el (A.31)
e ! \/§j+el
= 1
‘/jl-Hel~2e‘2 = Wjte1—2e2 a§'+)(:11 (A.32)
Y 1
“'jl+e1+202 = Wjiel+2e2 a§'+)en (A.33)
1 (7 4 ¥ ¥ y
aszel *Witel4e2 = ‘/j1+81+e‘2 = ‘/j1+el + \D(Tj+€1+€2) ("jl+el - /jl+el—292) ’ (A34)
v 1 22_‘7’1 1
Titel+e2 = w, (A.35)
"'j+e1 - V}+el—2€2
2 1 V2 1 A
Vj+el+e2 = 5 ( j+e2 + Vj+2el+c2) . ( 36)

Construction of the flux for the integration point j + el — €2 can be done in an analogous
way. We have applied the higher order ISNAS-scheme to compute the solution to the
Riemann problem described in Sect. A.2. The timestep is chosen §t = 0.002. Fig. A.7
shows the solution for the classic discretisation in general coordinates using Christoffel
symbols, whereas Fig. A.8 shows results for the present discretisation.

A.4 Conclusions

Two different upwind discretisations for the convective term of the momentum equation arc
discussed. Only the full upwind scheme gives monotone solutions for the inviscid Burgers
equation and will be shown to have better stability properties than the partial upwind
scheme.

An improved discretisation of the first order full upwind scheme in general coordinates is
discussed and the extension of the full upwind scheme to a limited higher order xk—scheme.
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Figure A.7: Velocity at the center line, classic higher order upwind discretisation on the
mesh of Fig. A4.

Figure A.8: Velocity at the center line, improved higher order upwind discretisation on the
mesh of Fig. A.4.






Appendix B

Two pressure correction schemes

SIMPLE type iterative pressure correction
for implicitly discretised momentum equation

With a SIMPLE type solution method, the actual discretisation becomes:

m™ —mn" | L _
Jts = J+s + (un+1mn+1) ;12 - _ pn+l|;+1‘ (B.l)
n+1 n S
— +1
&% + (C77l)n+l|;_; = 0. (B.2)

Note that now the convective term is taken fully implicit. To eliminate all errors due to
lincarisation and segregation of the system in an attempt to solve the target discretisation
accurately, we have to use an iterative method. Altough very costly, this provides a means
to check the suitability of a target discretisation.

For brevity we will discuss the case without the density upwind bias, and assume that
the resulting pressure correction equation can be linearized. In practice the nonlinear
pressure correction equations are solved by the algorithm discussed in Sect. 7.6.1.

The system (B.1),(B.2) is solved by a sequence of pressure correction steps. Each iter-
ative step commences with the implicit calculation of a tentative momentum field mrE+1)
using the pressure and velocity from the previous iteration:

m D —pn 1 ! 1
L S £ S R SR ] o
= + = (u m )|j—% =% p ;o (B3)

Similar to the single step solution procedure, the momentum correction is postulated as

(k+1)  a(k+1)
mj-f-% mj+% _ _i (PUHI) . p(k)) |j+1
i’

I T (B4
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and this is substituted in the mass conservation equation to obtain:

—a 1
p(p;"H—l)) - p(p;l) _ l ot ( (k+1) _ p( )lH‘% A - __l_ 7n*(k+l) j+%
5t o5z \az P -4 , ox i+

=54

Now subtract the term p(p¥))/6t left and right to obtain:

_aa1
p®) — o) 1 ("t (P — p®)) ’+%> I

St gz \ oz -3

—

2
k
*(k+1)| p(p§ )) - p(p?) )

——m ik it
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The iterative pressure correction method to solve this equation is given by:

p§k+1) (k) _ 5p] 7
dp 6p(k) 1 (5t 6 (k) l+é _
dp|,_ 0 Gt oz "% -
J
_}_ m*(k+1)|]+2 plp k)) -
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Finally, we put

m®HD = ® _ ot 5p®) IJ:H
] b

J+ 3 ]"’ z Oz
and
m (k+1)
(k+1) _ ity

U, . =
J+3 k+1 k+1
il (p§ +)+P§+1 )))

(B.5)

(B.6)

The sequence is started with the values of the previous timestep. Upon convergence the
right-hand side of the iterative pressure correction will vanish as will the pressure correc-
tion itself. This means that the tentative momentum field alrcady fullfills the continuity
constraint and no further projection is needed. Both the pressure and momentum update
are underrelaxed. According to [66], this is essential to avoid divergence. This is confirmed
by numerical experiments. To avoid a strongly nonsolenoidal tentative momentum field,
it is underrelaxed in the following way. The fully discretised momentum equation can be
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expressed as the following linear system:

Am*(k+1) — b,
n
*(k+1 +(k+1
A,v,fm.,-( +n = — Z :1,‘]”1‘1-( +)+1),“
J=Lj#
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Aii
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Aii

Now the increment in the momentum is underrelaxed with a factor o:

. S AT g, .
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This leads to the following modified system
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(B.9)

(B.10)

(B.11)

(B.13)

(B.14)

(B.15)
(B.16)

(B.17)

where « is chosen between 0.5 and 1. The pressure correction is underrclaxed in the

following way:

pEHD = ) | gapk)

(B.18)

where 3 is chosen in the same range as . Because the nonlinear pressure correction has

to be solved in each iteration, this modified SIMPLE method is very expensive.

Compressible pressure correction
for explicit momentum equation

A different way to circumvent the errors induced by the lincarisation and segregation of
the equations is to change the target schemec, by using an cxplicit discretisation of the
convective terms in the momentum equation. The system will then be what is called
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semi-implicit. Now the target discretisation is:

1
N -m? ,

mi 1 ) 1 ,
It its i nomyJdte _ n+1]7+1
5 T (u"m )|j+% =5 |j , (B.19)
nitt+ly 7
pr™) — ole”) )5 —* ®") | pmrt =0, (B.20)

The semi-implicit system is solved in the same way as discussed in Section 7.6.1. First a
tentative momentum field is calculated:
m*

n
j+’;‘ j+% i n,.n j+% _ _i nyj+1
— 5 15 (u"m )|j_% ==5 P . (B.21)

—-—m

The pressure correction equation can now be obtained by subtracting the equation for the
tentative momentum field from the target momentum equation which gives:

m—-m 1 :

% = (p™+t — p7) |;+1. (B.22)
The pressure correction equation is the same as in the implicit case. Note that the deriva-
tion of the pressure correction equation is eract so that the resolved scheme is identical to
the target scheme. This scheme has to satisfy a more severe restriction on the timestep
than its implicit counterpart. Because the additional cost of the solution of the implicit
momentum equation is negligible with respect to the cost of the solution of the nonlinear
pressure correction equation, this semi-implicit scheme is not very efficient.

il




Appendix C

Conservative pressure correction
solution algorithm in general
coordinates

To compute flows in general domains the equations are brought in coordinate invariant
form, using tensor notation:

dp o
a9p = 1
o + (pU)%, =0, (C1)
(pU)a ayrf _ af,
5T (pU°U”) ;= = (9"p) 5. (C.2)
g2 1 dp splul?
MZ(y-1) (7 — T it (C.3)

1 .
(—LU‘*M v (rp|u|2)> ) + U =0,
v—1 2 o ’

where |u|? = g,sUU?, and (pU)* = a'® - (pu) are the contravariant momentum compo-
nents, and where the contravariant metric tensor and base vectors are defined as:

g = 2@ a0 gl = 9E (C.4)
{ ’ ox | ’

and similarly the covariant metric tensor and base vectors are defined as:

ox
Gop = A(w) " 8p)  Ae) = Fea- (C.5)
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The coordinate invariant pressure correction algorithm takes the following form:
First the mass conservation equation is solved:

pn+1 - pn ntlrra n _ C
g (o), =0 (C.6)
Next a prediction of the momentum field m®* is computed from:

(m®)* —m®

axrrBn . aff, n -
5 + (m™U ),,———(g p)’ﬂ. (C.7)

8
The following pressure correction is postulated:

U« n+l _ Ue = 1 N .
= 0 =), (8)

The postulate is substituted in the energy equation and taking the kinetic energy at the
tentative * level, one obtains the following pressure correction equation:

M2y -1y [P, Pt — g Vol —
r Y14t 251

((U" "6t (906p) ,) (7—11(17" +ép)+ %p""‘lu"l2 )) ]

+ (v — ot (g"ﬂép)’ﬂ)’a =0,

(C.9)

For dctails on spatial discretisation in general coordinates we refer to [105, 106, 107].




Summary

This thesis is divided into two parts. In the first part the development of a staggered
scheme for the equations of the Homogeneous Equilibrium Model (HEM) is discussed.
The HEM is a simple model to deseribe two-phase liquid/vapor flow and is used to model
unsteady sheet cavitation. The sccond part is devoted to the formulation of a staggered
discretisation of the equations of ideal magnetohydrodynamics, that modecl the dynamics
of an inviscid plasma under the influence of a magnetic field.

We discuss physical aspects of cavitation. An overview is given of cavitation models.
The HEM turns out to be the most generally applicable model, with modest assump-
tions. We review Declannoy’s classic method, the first successful application of the HEM
to compute cavitation, because it forms the starting point of our method.

We analyze the nonconvex cquation of state of the HEM and discuss the Riemann
problem for a general nonconvex cquation of state. Solutions of two Riemann problems
are used as testcases for the numerical scheme.

The choice of a suitable time integration method is clarified by distinguishing between
the target, the actual and the resolved discretisation. Although a straightforward extension
of our staggered scheme for the Euler equations produces results for Riemann problem
test cases with accuracy comparable to a standard colocated scheme, this scheme has
to satisfy a severc stability restriction on the timestep when applied to the computation
of cavitation. Qur aim is to formulate a noniterative solution procedure, with stability
properties for high Mach number flow, comparable to the iterative SIMPLE method used
by Delannoy. To gain insight in the stability properties of segregated solution procedures,
we turn to von Neumann stability analysis. The simplicity of linear analysis allows inclusion
of details of the segregated solution procedure. This analysis reveals a strong dependence
of the maximum allowable dimensionless timestep on the Mach number. It cxplains the
severe restriction on the time step of the original method for the high Mach number flow
encountered in cavitation simulations and leads the way to a time integration method with
more uniformity of the stability properties in the Mach number. We use this time-stepping
method to compute a number of applications.

In the second part we consider the equations of ideal magnetohydrodynamics. A key
aspect of numerical simulation of magnetohydrodynamics is retaining solenoidality of the
discrete magnetic field. Furthermore, in some astrophysical applications the plasma flow
is weakly compressible, but with physically important density variations. A staggered
scheme retains the solenoidality of the discrete magnetic field to machine precision and
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its efficiency and accuracy in the low Mach number limit. This makes it very suitable for
computing weakly compressible MHD flow.

The straightforward extension of a Mach-uniform method for the Euler equations pro-
duces inaccurate approximations to weak solutions, because of lack of conservation of the
discretisation. For the Euler equations the deviations are very small. But for the equa-
tions of ideal MHD they become unacceptable. We construct a conservative Mach-uniform
pressure correction method for the Euler equations, that produces more accurate approxi-
mations to weak solutions.

Next, extension of the method to ideal MHD is discussed. Two staggered arrangements
of the magnetic field are considered. The new method’s ability to produce accurate results
for a number of classic Riemann problems and for a two-dimensional test case is shown.

Duncan Roy van der Heul




Samenvatting

Dit proefschrift bevat twee delen. In het eerste deel wordt de ontwikkeling van een gestag-
gered schema voor de discretisatic van de vergelijkingen van het Homogeneous Equilib-
rium Model (HEM) besproken. Het HEM is een eenvoudig model voor de beschrijving van
vloeistof/damp twee-fasen stromingen en wordt gebruikt voor de modellering van insta-
tionnaire vlies cavitatie. Het tweede deel is gewijd aan de formulering van een gestaggerde
discretisatie van de vergelijkingen van de ideale magnetohydrodynamica, welke de dynam-
ica van een niet visceus plasma onder de invloed van een magnetisch veld beschrijven.

We bespreken fysische aspecten van cavitatie. Een overzicht van cavitatiemodellen
wordt gegeven. Het HEM blijkt het meest algemeen toepasbare model te zijn, met beschei-
den aannames. Wij nemen de methode van Delannoy, de cerste succesvolle toepassing van
het HEM voor de berekening van cavitatie, opnieuw in ogenschouw, omdat ze de basis
vormt van onze methode.

We analyseren de niet-convexe toestandsvergelijking van het HEM en bespreken twee

séndimensionale gelijkvormigheids oplossingen voor een algemene nict-convexe toestandsvergeli-

jking. De geconstrueerde oplossingen zijn gebruikt als als test gevallen voor het discretisatie
schema.

De keuze van ecn passende tijdsintcgratiemethode wordt verhelderd door onderscheid
te maken tussen de target, de actual cn de resolved discretisation. Hoewel cen directe
uitbreiding van ons gestaggerde schema voor de vergelijkingen van Euler resultaten pro-
duceert voor de téndimensionale testgevallen met cen nauwkeurigheid die vergelijkbaar
is met een standaard gecolloceerd schema, moet dit schema voldoen aan een sterke sta-
biliteitsheperking van de tijdstap wanneer het wordt toegepast voor de berekening van
cavitatie.

Ons doel is om een nict-iteratief tijdstap algorithme te formuleren, met stabiliteit-
seigenschappen vergelijkbaar met die van het SIMPLE algorithme, dat wordt gebruikt
door Delannoy. Om inzicht te verkrijgen in de stabiliteits-cigenschappen van ontkoppelde
oplosmethoden maken we gebruik van analyse volgens de methode van von Neumann. De
cenvoud van lineaire analyse laat toe dat details van de ontkoppelde oplosmethodick kun-
nen worden meegenomen. De analyse laat zien dat er cen sterke afhankelijkheid bestaat
tussen de maximum toelaatbare dimensieloze tijdstap en het getal van Mach. Ze verk-
laart de sterke stabiliteitsheperking van de tijdstap van de oorspronkelijke methode voor
de sterk samendrukbare stroming in de cavitatic simulaties en wijst de weg naar een tijd-
stapmethode met meer uniformiteit in de stabiliteitseigenschappen in het getal van Mach.
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We gebruiken deze tijdstapmethode voor het berekenen van een aantal praktisch relevante
caviterende stromingen.

In het tweede deecl bekijken we de vergelijkingen van ideale magnetohydrodynamica
(MHD). Een belangrijk aspect van numerieke simulatie van magnetohydrodynamica is
het behouden van de solenoidaliteit van het discrete magnetische veld. Daar komt nog
bij dat in sommige astrophysische toepassingen de plasma stroming zwak compressibel
is, maar fysisch relevante dichtheidsvariaties heeft. Een gestaggered schema behoudt de
solenoidaliteit van het discrete magnetische veld tot machine nauwkeurigheid en efficiency
en hoge nauwkeurigheid in de limiet naar nul van het getal van Mach. Dit maakt het
schema bijzonder geschikt voor de berckening van zwak compressibele MHD stromingen.

Een rechtstreekse uitbreiding van een niet conservatieve Mach-uniforme methode voor
de vergelijkingen van Euler produceert onnauwkeurige benaderingen van zwakke oplossin-
gen. Voor de vergelijkingen van Euler zijn de afwijkingen zeer klein, maar voor de vergelijk-
ingen van ideale MHD zijn ze onaanvaardbaar groot. We construeren een conservatieve
Mach-uniforme druk correctie methode voor de Euler vergelijkingen, die meer nauwkeurige
benaderingen van zwakke oplossingen produceert.

Vervolgens bespreken wij de uitbreiding van de methode voor ideale MHD. Twee ver-
schillende gestaggerde plaatsingen van het magnetische veld worden overwogen. Het gestag-
gerde schema geeft nauwkeurige resultaten voor een aantal klassicke Riemann problemen
en voor een twee-dimensionaal testgeval.

Duncan Roy van der Heul
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