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Propositions

belonging to the dissertation

Meshless Numerical Methods Applied to
Multiphysics and Multiscale Problems

by Alexander Lukyanov

1. Meshless methods can be considered as both truly physical modeling techniques and as mathe-
matical interpolation methods.
Chapters 3, 4, 5 of this thesis.

2. The thermodynamically consistent visco-elasto-plastic damage model for anisotropic constitu-
tive equations are constructed which represent mathematical and physical generalizations of the
conventional constitutive equations for isotropic materials and reduce to the conventional con-
stitutive equations in the limit of isotropy.
Chapter 3 of this thesis.

3. The optimum new discretization scheme presented in the thesis enhances the Laplace approx-
imation (e.g., Brookshaw’s scheme 1). It also has a better properites than Schwaiger’s scheme
2 used in the SPH community for thermal, viscous, and pressure projection problems with an
isotropic elliptic operator.
Chapter 4 of this thesis.

4. The sufficient monotonicity condition for the new SPH scheme is the strongest theoretical result
for the SPH discretization schemes of this class.
Chapter 4 of this thesis.

5. The multiscale, reduced order model, deflation and multigrid solver techniques are combined to
build meshless multiscale solving techniques leading to a speed up of the solution strategies.
Chapter 5 of this thesis.

6. Monotonicity and high order accuracy of the linear discretization schemes are two competitive
mathematical properties and they converge to each other only at the continuum limit.

7. There is no ”free lunch” in the numerical methods and, hence, researchers specializing in numer-
ical analysis should look for drawbacks in the methods rather than CPU times.

8. The Dutch numerical scientists tend to avoid slow numerical algorithms - to them it’s a waste of
good canal hopping time.

9. Both the Dutch and the English share a vast love of the sea but, let’s be frank, the English have
a mild dislike to the raw herrings.

10. The current scientific progress is also driven by re-inventing a wheel and, hence, perydynamics 3

is a version of the SPH method.

These propositions are regarded as opposable and defendable, and have been approved as such by the
supervisor prof. dr. ir. C. Vuik

1 BROOKSHAW, L. ”A method of calculating radiative heat diffusion in particle simulations”. Proceedings of the
Astronomical Society of Australia 6(2), 1985, 207–210.

2SCHWAIGER, H. ”An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary
conditions”. International Journal for Numerical Methods in Engineering 75, 2008, 647–671.

3SILLING, S. A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids,
48(1), 2000, 175–209.
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SUMMARY

IN many fields of science and engineering, such as fluid or structural mechanics, and nanotechnology, dy-
namical systems at different scale need to be simulated, optimized or controlled. They are often described
by discretizations of systems of nonlinear partial differential equations yielding high-dimensional discrete

phase spaces. For this reason, in recent decades, research has mainly focused on the development of sophis-
ticated analytical and numerical (linear and nonlinear) tools to help understand the overall multiscale system
behavior. Various models and numerical methods have been developed to simulate different physical processes
at different scales. The choice of these methods will depend largely on the problem, the available computational
resources and constitutive equations.

Smoothed particle hydrodynamics (SPH) was developed a few decades ago to model inviscid fluid and gas
flow dynamics in astrophysical problems. The SPH is an interpolation-based numerical technique that can be
used to solve systems of partial differential equations (PDEs) using either Lagrangian or Eulerian descriptions.
The nature of SPH method allows to incorporate different physical and chemical effects into the discretized
governing equations with relatively small code-development effort. In addition, geometrically complex and/or
dynamic boundaries, and interfaces can be handled without undue difficulty. The SPH numerical procedure
of calculating state variables (i.e., density, velocity, and gradient of deformation) are computed as a weighted
average of values in a local region.

The modelling of the dynamic irreversible behaviour of different materials is one of the most important
and challenging aspects in the analysis of engineering problems. These problems require the identification of
the stress-strain state of the solid body, which is bounded by the nature of the material (i.e. isotropic metals,
anisotropic aluminium alloys, composite materials and energetic materials to name but a few). Typical applica-
tions include the civil aerospace industry, military applications, the construction of nuclear and chemical sectors
and many other machinery production industries. In transient dynamic problems, it is essential to describe ma-
terial behaviour under dynamic loading, such as shock wave propagation and damping, in order to predict the
micro- and macro-damage initiation and propagation, as well as the origination of fracture surfaces (new bound-
ary surfaces) within a material. In order to be able to achieve this, it is important to use a material model that
can take into account fundamental mechanical characteristics that influence its response. A material model must
be able to model the following principal stages of material behaviour: elastic behaviour, elastoplastic behaviour
with hardening effects, strain rate dependency, damage nucleation and propagation, macro-fracture origina-
tion and thermal effects. This is further compounded by material models that show a degree of anisotropy
with respect to some of the aforementioned characteristics. This thesis is addressed to the construction of
a thermodynamically and mathematically consistent underlying theory of irreversible deformation, micro-and
macro-fracture of anisotropic solids and structures coupled with the meshless (e.g., SPH) numerical technique.
The objectives of this thesis are in line state of art and can be used as a foundation for further developments. A
comparison of the thesis results with existing experimental data shows good agreement, and suggests that the
constitutive equations perform satisfactorily.

The SPH method has been extensively used to model high and low Reynolds number flows, free surface
flows and collapse of dams, study pore-scale flow and dispersion, elasticity, and thermal problems. In different
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applications, it is required to have a stable and accurate discretization of the elliptic operator with homogeneous
and heterogeneous coefficients. In this thesis, the stability and approximation analysis of different SPH dis-
cretization schemes (traditional and new) of the diagonal elliptic operator for homogeneous and heterogeneous
media are presented. The new optimum (i.e., high order with monotonicity property) discretization scheme
for the internal particles is also proposed. The new scheme enhances the Laplace approximation (Brookshaw’s
scheme (1985) and Schwaiger’s scheme (2008) used in the SPH community for thermal, viscous, and pressure
projection problems with an isotropic elliptic operator. The sufficient monotonicity condition is also formulated
leading to the constraint on the kernel shape and particles distribution. The numerical results are illustrated by
numerical examples, where the comparison between different versions of the meshless discretization methods
are presented.

Accurate and efficient simulation of flow in highly heterogeneous oil reservoirs entails several challenges,
one of which is due to the large scale ratios between the domain size and the resolution of the heterogeneous
geological data. Traditionally, upscaling approaches have been used to obtain effective coarse-scale quantities
so that the number of degrees of freedom (DOF) is reduced enough such that the problem lies within the range
of state-of-the-art reservoir simulators capacity (typically in the order of 106 − 107 DOF). Similar to upscal-
ing methods, multiscale methods have been developed over the past decade in order to construct an accurate
coarse-scale system honoring the fine-scale heterogeneous data. Preconditioning can be used to damp slowly
varying error modes in the linear solver residuals, corresponding to extreme eigenvalues. Existing multiscale
solvers use a sequence of aggressive restriction, coarse-grid correction and prolongation operators to handle
low-frequency modes on the coarse grid. High-frequency errors are then resolved by employing a smoother on
fine grid. In reservoir simulations, the Jacobian system is usually solved by FGMRES method with two-level
Constrained Pressure Residual (CPR) preconditioner. In this thesis, a parallel fully implicit SPH based multi-
scale method for solving pressure system is presented. The prolongation and restriction operators in this method
are based on a SPH gradient approximation (instead of solving localized flow problems) commonly used in the
meshless community for thermal, viscous, and pressure projection problems. This method has been prototyped
in a commercially available simulator. This method does not require a coarse partition and can be applied to
general unstructured topology of the fine scale. The SPH based multiscale method provides a reasonably good
approximation to the pressure system and speeds up the convergence when used as a preconditioner for an iter-
ative fine-scale solver. In addition, it exhibits expected good scalability during parallel simulations. Numerical
results are presented and discussed.
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INTRODUCTION

IN many fields of science and engineering, such as fluid or structural mechanics, and nanotechnology, dy-
namical systems at different scale need to be simulated, optimized or controlled. They are often described
by discretizations of systems of nonlinear partial differential equations yielding high-dimensional discrete

phase spaces. For this reason, in recent decades, research has mainly focused on the development of sophis-
ticated analytical and numerical (linear and nonlinear) tools to help understand the overall multiscale system
behavior. Various models and numerical methods have been developed to simulate different physical processes
at different scales. The choice of these methods will depend largely on the problem, the available computational
resources and constitutive equations. A review of the most common of these formalisms used for modeling
shock waves propagation, fluid flow in porous media is provided in this dissertation. During this time meshless
methods have enjoyed significant interest in the research community and even appeared in some commercial
simulators. This dissertation is dedicated to the investigation of meshless numerical methods applied to multi-
physics and multiscale problems. In particular, the material behaviour (e.g., metal plate or bars) under transient
intensive dynamic loading and multi-phase fluid flow in porous media are solved. The solid mechanics prob-
lems require the identification of the stress-strain state of the solid body, which is bounded by the nature of the
material (i.e. isotropic metals). Typical applications include the civil aerospace industry, military applications,
the construction of nuclear and chemical sectors and many other machinery production industries. On the other
hand, the multi-phase fluid flow in porous media problems require the identification of pressure profiles, satu-
ration distributions. Typical applications include oil recovery modellings, underground water flow simulations,
radioactive waste migration modellings, blood flow simulations in the biological tissues.

The problems outlined above are described by the hyperbolic or almost hyperbolic (there is at least one
parabolic/elliptic equations) partial differential governing equations. These equations are subject to the presence
of either an initial or developed discontinuous fronts (e.g., elasto-plastic shock waves, fracture-waves, and
discontinuity in the saturation) as a part of the global solution. Any numerical methods (linear or nonlinear)
applicable to these problems should include specific procedures / formulations to treat the discontinuities.

In addition, the material behaviour under dynamic loading, such as shock wave propagation and damping, in
order to predict the micro- and macro-damage initiation and propagation, as well as the origination of fracture
surfaces (new boundary surfaces) within a material are required to have appropriate governing equations. In
order to be able to achieve this, it is important to use a material model that can take into account fundamental
mechanical characteristics that influence its response. A material model must be able to model the following
principal stages of material behaviour: elastic behaviour, elastoplastic behaviour with hardening effects, strain
rate dependency, damage nucleation and propagation, macro-fracture origination and thermal effects. This is
further compounded by material models that show a degree of anisotropy with respect to some of the aforemen-
tioned characteristics.

The scope of this research does not cover all important aspects of material behaviour and fluid modelling.
For example, the strain rate effects, the hardening effects, the relaxation aspects of a stress-strain state and many
others have not been fully considered for description of the solid mechanics problems. On the other hand, the
phase transition, miscibility and other processes were not taking into account during the fluid flow modelling in
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the porous media.
The principal focus of this research is the usage of the meshless multi-scale technology for solving linear

and non-linear discretized governing equations.

I. Background and Actuality of the thesis
The background and actuality of this thesis is to construct a thermodynamically and mathematically con-

sistent underlying theory and numerical implementation (explicit and implicit) including linear and nonlinear
solvers of solid and fluid mechanics problems.

Solid mechanics

Nowadays, there are a large variety of approaches for the description of failure processes when reviewing
the large amount of published literature, such as L.M. Kachanov (1958, 1969, 1974, 1986) [126], [127], [128],
[129], Yu.N. Rabotnov (1959, 1963) [225], [226] , A.A. Il’ushin (1967) [114], V.I. Astafjev, Yu.N. Radayev,
L.V. Stepanova (2001) [10], S. Murakami and Yu.N. Radayev (1994, 1996) [228], [227], G.P. Cherepanov
(1974) [62], J.L. Chaboche (1984, 1988) [50], [51], [52], D. Krajcinovic (1996) [148], J. Lemaitre (1996) [159],
J. Lemaitre and J.L. Chaboche (1990) [160], S. Murakami (1981, 1983, 1987, 1988) [219], [215], G. Maugin
(1992) [198], G.Z. Voyiadjis and P.I. Kattan (1992) [266].

The approach developed by L.M. Kachanov (1958) [126] and Yu.N. Rabotnov (1959) [225], is accepted as
a separate discipline of continuum mechanics and obtained the name "Damage Mechanics", or "Mechanics of
continual fracture" (see Kachanov (1974) [128], Chaboche (1984, 1988) [50], [51], [52], Krajcinovic (1996)
[148], Lemaitre (1996) [159], Lemaitre and Chaboche (1990) [160], Maugin (1992) [198]). Damage Mechanics
(DM) allows the construction of physically and mathematically consistent models of a damageable medium,
which describes the origination of the softening zones within a material, i.e. zones of micro- and macro-fracture.
In the mechanics of continual fracture, evolution equations for damage parameters (microfracture) have the
responsibility to describe the fracture process (origination of the new fracture surfaces), which are linked with
other governing equations. Softening, or generally speaking failure, is based on the representation of failure as
the loss of material ability to carry external loading due to damage concentration propagation (Astafjev et al.
(2001) [10], Maugin (1992) [198]). Failure is described as an individual process and is characterized by damage
parameters, which are linked to the other state variables (e.g., stress tensor, temperature), through the system of
governing equations and initial-boundary conditions of thermomechanics.

The reduction of the stresses with in material is controlled by the damage parameters only via reduction
of the stiffness matrix (elastic properties) with the growing of the damage parameters, which always remains
positive. The positive definitive property of the elastic properties provides a necessary correction condition of
the initial-boundary value problem according to Adamar’s and Drucker’s postulates. The decrease in material
ability to carry external loading can be caused by non-thermal external loading (e.g., chemical, radiation), as
well as thermal loading after the achievement of the realisation of the failure criterion. Further development of
the damage mechanics has been done along the lines of generalisation of the principal assumption of damage
mechanics onto a three dimensional anisotropic damage state by Kachanov (1986) [129], Lemaitre (1996) [159],
Murakami (1983, 1987) [215], [216], Radayev (1994, 1996) [228], [227], Lubarda and Krajcinovic (1993)
[179], Luccioni and Oller (2003) [180], Voyiadjis and Park (1997) [267], and Brunig (2003) [44], [45].

The criteria for macro-fracture can be formulated as the local limitation on the state parameters of the stress-
strain state in the elementary physical volume V (see, Kachanov (1974) [128]), as integral-energetics relations
for finite volumes (Cherepanov (1974) [62]), as criteria based on gradient of the stress-strain state parameters
(non-local theory) Kukudzhanov (1999) [152], Jirasek (1998) [117].

In the fracture mechanics of a continuum medium, the macrofracture occurs instantaneously after realisation
of the macrofracture criterion (without taking into account the damage nucleation and propagation of microfrac-
ture). In these models, the macrofracture is simulated by explicit extraction of the fracture surfaces as contact
surfaces. Fracture mechanics has found wide applicability in engineering applications, but at the same time,
current fracture mechanics cannot provide detailed physical description of the failure process. Therefore, this
simple description of fracture in the framework of fracture mechanics is not suitable for problems that involve
intensive dynamic loading.

A continual approach can be definitely considered as an extension of the fracture mechanics approach,
which attempts to construct a theoretical model of continuum mechanics that is suitable for the description of
failure, based upon a unified system of governing equations with damage parameters. This continual approach
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implicitly (i.e. on the macrolevel) describes the microdamage zones and microcracks initiation and developing,
which is very useful in numerical simulation. This fact has impact on simultaneous development of damage
mechanics and the numerical methods for damage mechanics (for example, Aravas and McMeeking (1985) [8],
[9], Gullerud (1999) [103], Bao et al. (2001) [19], Kim et al. (2003) [137], Kim and Gao (2005) [136], Kim et
al. (2004) [138], Brunig (2003) [44], Belytschko and Lin (1987) [26]).

As it was mentioned before, the reduction of stresses within a material due to its decreasing load carry-
ing capability of a material might occur due to nonthermal reasons at fixed deformation. This fact leads to
the conclusion that in the continual description, the deformation and failure process should be treated inde-
pendently (which does not exclude the fact of their influence on each other), and the failure process is nec-
essary to characterise by using the damage parameter. This important step has been done by the following
researchers: Kachanov (1958,1974) [128], [126]; Rabotnov (1959) [225]; Il’ushin (1967) [114]; Vakulenko
(1971) [259]; Kukudzhanov (1999) [152]; Kiselev and Lukyanov (2002) [140]; Lukyanov (2007) [183]. Dam-
age parameter can be described by a scalar or tensor (see, e.g. Kachanov [129], Lemaitre [159], Murakami
(1983, 1987) [215], [216], Radayev (1994) [228], Lubarda and Krajcinovic [179], Luccioni et al. (2003) [180],
Voyiadjis (1997) [267], Brunig [44], [45], Kukudzhanov [152], Kondaurov [145], [146], Kiselev and Lukyanov
(2002) [140], Lukyanov [182], Betten [31]), which satisfies kinematic relations. With an increasing damage
parameter, the resistance of the medium decreases, which is supported by experimental evidence of decreasing
sound speed propagation by small perturbations.

Softening, or failure of the material is accompanied by localisation phenomenon of the plastic strain, dam-
age, stress, temperature at the zones of weakest material resistance (Belytschko et al. [23]). In many cases of
numerical simulation of continual fracture, calculated fracture zones appear unphysically large and localisation
effects are expressed poorly. The analysis of such numerical models is difficult and sometimes even impossible.
The appearance of a large zone of damage propagation can be observed in experimental studies with viscous
materials, which have a relatively slow growth density of the microcracks (microdamage). Even greater, is the
slow accumulation of damage parameters that is observed during creep failure. Decreasing influence of regu-
lation terms during the simulation of strong localization of deformations leads in most cases, to the anomaly
dependence solution from the size and form of the mesh cells, and finally, leads to the loss in convergence of the
algorithm. Therefore, the construction of a constitutive relation (e.g., description of plasticity flow and shock
wave propagation) and the numerical algorithms for accurate realisation of the continual models, represents one
of the fundamental and important problems in predicting material behaviour. The construction of consistent
approaches for the description of material behaviour (e.g., softening effects, the thermodynamic equation of
state response, irreversible deformation) are not fully understood yet and therefore, it remains an active area of
research.

The physical and numerical difficulties are further compound by materials that exhibit slow and fast stages
during overall nonlinear material behaviour. Therefore, modelling requires significant efforts during numerical
simulation of experimental measurements, making parametric investigations difficult. Therefore, real history
matching of numerical simulation with experimental data should be performed quickly, especially for the real
time applications (e.g., optimization of the hydrocarbons production).

In this thesis, the material (metal plate and nano-structure) behaviour under extensive dynamic loading
(e.g., impact loading) is considered, whereby the material undergoes all the aforementioned stages of material
response. This still remains a difficult and actual task of modern science, so this thesis mainly focuses on the
modelling aspects of the problem.

Fluid Flow in Porous Media

In modern reservoir simulation the geology of the reservoir, which includes faults and non-orthogonal grids,
with a fully discontinuous permeability tensor in the discretization, and different physical and chemical effects
(e.g., in-situ combustion, geochemistry, molecular diffusion, solubility etc.) is a major challenge. This results
in a need to use more advanced and fast numerical techniques with a fully discontinuous permeability tensor in
the discretization.

Several discretization methods have already been developed and tested within the reservoir simulation com-
munity (e.g., MPFA) (Aavatsmark, 2002 [2]; Aavatsmark et al., 1996, 1998 [3], [4, 5]; Edwards and Rogers,
1998 [86]; Edwards 2002 [83,84]; Chen et al., 2007 [60]; Lee et al., 1998 [155]). It has been noticed that some
of the numerical methods for elliptic and parabolic equations may violate the maximum principle (i.e. lead to
spurious oscillations). Therefore, proposed methods must satisfy a discrete maximum principle to avoid any
spurious oscillations. The discrete maximum principle for MPFA methods was discussed, e.g., in Edwards and
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Rogers (1994, 1998) [85, 86], Mlacnik and Durlofsky (2006) [207], Lee et al. (2002) [156]. However, non-
physical oscillations can appear in some of the numerical methods when the anisotropy is particularly strong.
It has been found that the oscillations are closely related to the poor approximation of the pressure gradient in
the flux computation. In addition, the level of detail and range of property variability included in reservoir char-
acterization models leads to a large number of grid cells describing the petro-physical properties with spatial
information.

To account for the scale differences between geological model and flow simulation model, multiscale (e.g.,
multiscale finite-volume (MSFV) methodology) solution strategies was developed recently. The method bridges
the scale differences by utilizing different grid systems and different physical scales. The fluid flow modeling is
conducted in coarse scale level using basis functions with localization of domain and the transport phenomena
in fine scale level are reconstructed. The strong benefit of multiscale simulation is a solution of the fluid flow
PDEs in lower resolution scale or coarse scale model while it reconstructs the fine scale transport phenomena.
In other words, ultimately the fluid flow PDEs are solved directly using geological model without upscaling or
parameterization process. This removes the uncertainty of the upscaling process or parameterization process.

Note that, for example, the Multiscale Finite-Volume (MSFV) methodology (e.g., Hou and Wu, 1997 [110];
Jenny et al., 2003 [115], 2006 [116]; Tchelepi et al., 2005 [251]; Lee et al., 2008 [157]; Hajibeygi et al., 2008
[104]; Hajibeygi and Jenny, 2009 [107]; Lunati et al., 2011 [193]) was developed to offer a computationally
efficient alternative to the direct solution of large (fine-scale) problems. The method has been used to solve
physically complex flows. The common step between related multiscale methods (e.g., Hou and Wu, 1997
[110]; Chen and Hou, 2003 [61]; Aarnes et al., 2005 [1]; Hou and Wu, 1997 [110]; Jenny et al., 2003, 2006
[115], [116]; Tchelepi et al., 2005 [251]; Lee et al., 2008 [157]; Hajibeygi and Jenny, 2008 [106]; Hajibeygi et
al., 2008 [104]; Lunati et al., 2011 [193]) is to compute an approximate solution that models the system behavior
with reasonable accuracy at different scales. This is achieved by solving a set of localized fine-scale problems,
which are coupled by a global coarse-scale problem. Lunati et al. (2011) [193] constructed an iterative method
based on the MSFV operator to improve the quality of the localization assumption, which can be stabilized by
use of a Krylov-space accelerator.

Multiscale simulation involves numerical calculation of local boundary value problems. It is absolutely
essential to have an appropriate formulation for local boundary value problems which incorporate fine scale
physics. The construction of the basis functions and corrections functions for the sink/source terms are not fully
understood yet and therefore, it remains an active area of research.

Non-linear solver

The extreme-scale solvers (exascale computations) which are required for various problems in solid and
fluid mechanics, which must be compatible with extensive use of parallel nonlinear solver technology. There
are several solutions strategies for nonlinear implicit PDEs: e.g., Newton-based methods and Picard-type lin-
earization or splitting operator (equations or coordinate), Nonlinear GMRES (NGMRES) (Washio and Oost-
erlee, 2000 [274]; de Sterck, 2013 [76]), Quasi-Newton (Dennis and More, 1977 [78]), Nonlinear additive
Schwartz methods (NASM) (Cai et al. 2002 [46]), Nonlinear block-Jacobi methods, Nonlinear fieldsplit, Full
approximation scheme (FAS), Newton-Krylov method.

The solution strategies such as mixing Newton-Raphson and Krylov methods (Kelley, 1995 [135]), the
non-linear multigrid methods (Mavriplis, 2002 [200]; Brandt [39]) and Jacobian-Free Newton-Krylov methods
(JFNK) (Brown and Saad, 1990 [42]; Chan and Jackson [53]; Kelley, 1995 [135]; Knoll and Keyes 2004 [144];
Mavriplis,1998, 2002 [199, 200]) are commonly used in the scientific community for non-linear discretized
governing PDEs. In addition, these strategies are very suitable for preconditioning strategy leading to a highly
robust numerical tool. The JFNK methods are natural combinations of Newton-Raphson type methods for
solving nonlinear equations and Krylov subspace methods for solving the Newton correction equations. In
conventional JFNK methods (Brown and Saad, 1990 [42]; Chan and Jackson [53]; Kelley, 1995 [135]; Dembo
et al., 1982 [77]) the "inexact" nonlinear iterative method is on the outside loop, and a linear iterative method
on the inside loop. A main advantage of JFNK is related to the approximation of matrix-vector multiplica-
tion (given a subroutine that evaluates the discrete residual on the numerical mesh). Furthermore, inexpensive
linearized solvers can be applied as preconditioners. However, developing effective preconditioners require ad-
ditional attention. The common nonlinear multigrid method, e.g., FAS method (Brandt, 1977 [39], Wesseling,
1992 [275]), is the solution method based on linearized equations on coarse grid levels. The nonlinear multigrid
method performs solution on the full nonlinear problem on each coarsened grid level. The advantages of the non-
linear multigrid method include low storage requirement and optimal convergence on some problems. However,
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it has been acknowledged in the research community that conventional technologies (full Newton-Raphson lin-
earization and multigrid-preconditioned linear solvers) are not fully appropriate for exascale computations due
to high storage requirement and pure scalability for parallel computations. The disadvantages of these methods
are complexity of forming hierarchical meshes, the skills required to develop coarse mesh representations of a
nonlinear operators, and potentially a large number of complicated nonlinear function evaluations.

The nonlinear solver algorithm at the extreme scale will require additional development and analysis. Pre-
conditioned nonlinear methods and compositions of nonlinear methods may be appropriately modified to suit a
particular physical problem in conjunction with a particular computer architecture. In this thesis the particular
interest will be paid to the hybrid compositions of non-linear solvers that include fast multiscale nonlinear algo-
rithms, like multiscale FAS, and multi-scale precondtioned JFNK that are arithmetically intense and potentially
asynchronous.

Linear solver

In the framework of this thesis, the multiscale meshless computations involve the nonlinear simulation of a
inhomogeneous media (solids, nano-tubes or reservoirs), where the difference in media properties leads to large
differences in the entries of the resulting matrix (Jacobian) corresponding to the linear equations. It is important
to stress that the nonlinear iterative methods have grown out of advances in linear iterative methods, multigrid
methods, and preconditioned Krylov methods.

Modern iterative and direct solvers are capable of handling these large system of equations. Despite this and
the enhancement in increasing power of CPUs and the introduction of multiple computing cores on one CPU,
the demand for efficient, parallel computing algorithm is high. The common path for those developments is the
combination of well-established techniques (i.e., Krylov subspace methods, multigrid, multi-scale and direct
solution methods).

For relativity small and medium scale problems parallel direct solvers such as MUMPS, PARDISO, Su-
perLU or ILUPACK are choices in terms of cost and efficiency. For example, MUMPS a parallel (OpenMP)
direct solver is hard to beat in robustness for small (3D) problems; SuperLU and MUMPS are parallel (MPI and
OpenMP) direct solvers which are fast in the solution step and slow in set up; ILUPACK preconditioners are
good ILU based solvers compatible with OpenMP technology.

In real life applications, the numerical domains are large and as a consequence a large number of degrees
of freedom (i.e., unknowns) is required. The resulting matrix is usually sparse, but because of fill-in a direct
method requires significant amounts of memory and time. Therefore, iterative methods are the preferred solution
methods for solving the linear system of equations. Depending on the discretization method, the resulting
matrix could be symmetric or non symmetric and positive definite or indefinite. For a symmetric positive
definite matrix, the Conjugate Gradient method (CG) (Meijerink and Van der Vorst, 1977 [201]) is the solution
method of choice, whereas for indefinite symmetric matrices the MINRES can be used. For nonsymmetric
matrices, methods such as GMRES, Bi-CGSTAB (Van der Vorst, 1992 [79]), and TFQMR (Freund, 1993 [92])
can be used. However, the last two methods do not guarantee monotonically decreasing residuals. As a result,
we tend to use GMRES (and its variants) exclusively in this paper. A common feature for most of existing
iterative methods is the use of different projection method, arising from the Petrov-Galerkin conditions (Saad,
2003 [233]) where Krylov subspace is used. In our application, due to large contrasts in the permeability
field, a large difference of the extreme eigenvalues is observable (Vuik et al., 1999 [268]). This leads to slow
convergence of aforementioned iterative methods (van der Sluis and van der Vorst, 1986 [261]).

A preconditioned Krylov subspace method can significantly improve convergence and robustness. Deflation
based preconditioners were successfully applied within the field of computational biophysics (Barnard et al.,
1966), computational fluid dynamics (Nicolaides, 1987 [221]) and with excellent results on problems with
discontinuous jumps in coefficients (Frank and Vuik, 2001 [91]), (Tang et al., 2009 [246]), (Tang et al., 2010
[245]).

For the PDEs with coefficients considered in this thesis, there are several well established state-of-the-art
(black box solvers) available. Direct solvers (e.g., SuperLU), the FETI solver, and Algebraic Multigrid (AMG)
(Ruge and Stuben, 1987 [217]) are the most efficient solvers. Moreover, AMG is well known for its capability
of handling large contrasts in the matrix. In recent years, in many applications there has been a shift from
classical AMG to Smoothed Aggregation AMG (SA-AMG, Vanek, et al. 1996 [263]). SA-AMG has more
aggressive coarsening and is well suited in capturing the near-null space components of the solution on the
coarse grids. These components are related to the unfavorable eigenvalues of the matrix and hence responsible
for the slow convergence of the iterative method. In this work we will compare our results with SA-AMG, as
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it is the current-state-of-the-art preconditioner for the kind of problems considered in this research. The main
drawback of this method for real applications is a large CPU overhead associated with the SA-AMG setting up
step which has to be repeated in each iteration of the Newton process per each time step of the simulation time.

II. Objectives and Scope

The objectives of this thesis are to address the improvement of the shortages of existing approaches and mod-
els. This thesis contains the theoretical and numerical investigation of the fundamental principals of material
behaviour, such as elastoplastic behaviour, the nucleation, growth and coalescence of damage, macro-fracture
propagation, shock wave formation and propagation. The main objectives of this thesis can be summarised as
follows:

• Investigation of a damage model of an isotropic medium, that is capable of predicting brittle, ductile, and
shear bands fracture, influence of thermal effects;

• Description of shock wave propagation (the thermodynamic equation of state response (EOS) in a dam-
ageable media;

• To construct stable meshless discretization schemes both for solid and fluid flow in porous media prob-
lems;

• To develope new optimum (i.e., high order with monotonicity property) discretization scheme for the in-
ternal particles. The new scheme should enhance the Laplace approximation (Brookshaw’s and Schwaiger’s
schemes);

• Develop a meshless relaxed multiscale method for the solution of two-phase immiscible fluid flow mod-
elling in the porous media;

• Investigation of meshless deflation and multi-scale preconditioners applicable for sparse linear equations
with jump coefficients arising from dynamic fluid mechanics problems;

III. Organisation of the Thesis

This thesis covers different topics related to numerical analysis of solid and fluid mechanics (material be-
haviour under dynamic loading, immiscible and incompressible fluid flow in porous media) and therefore, the
structure of the thesis has been created in order to allow the reader without any difficulties to read each chapter
independently. Such approach, of course, leads to some repetition of principle results, but in spite of that, there
is confidence that the main results of the thesis will be understood. The remainder of the thesis is organized as
follows.

Chapter 1: Problem Formulation

In Chapter 1, a general formulation of boundary value problems including conservation laws of continuum
mechanics with different types of boundary conditions and a critical review of the currently available approaches
in damage/fracture mechanics and numerical methods are presented. In this regard, it should be noted that all
prior micro- or macro- level models are decoupled described; the thermodynamical consistent links recovery
of the composite micro fields is not considered. Consequently, most of the current models are constructed
based on a stress-strain relation and different types of damage evolution equations. The review focuses on the
implications of the damage mechanics concept to the description of material failure, the assumption of material
homogeneity and thermodynamically consistent links between state variables, and the requirements imposed on
the model construction. A general formulation of a thermodynamically consistent model is then constructed. In
particular, the mechanics and thermodynamic aspects in the model formulation are examined within the confines
of continuum mechanics.
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Chapter 2: Smoothed Particle Hydrodynamics (SPH)

A well-known Lagrangian particle method is called Smoothed Particle Hydrodynamics (SPH). It was orig-
inally developed for astrophysical problems and by now has been generalized to many other fluid and solid
mechanics problems. A main focus of this thesis is to address the application of meshless method to multi-
physics and multiscale problems. Since the particle positions are defined by the underlying physical problems,
the data is given on a scattered point cloud. In this thesis we consider various aspects of meshless methods.
Chapter 2 provides an overview of commonly used meshless methods to discretize governing equations. In
addition, the aspects such as the connection between the meshless dicretization and the graph of the system
matrices, the aspect of positive stencils, as well as higher order discretizations are discussed in the following
chapters.

Chapter 3: Shock Wave Propagation in Complex Media

In Chapter 3, a new mathematically and thermodynamically consistent description of the irreversible defor-
mation, micro- and macro-fracture of an anisotropic (including isotropic) medium is presented. The proposed
model contains two damage parameters, which describe the evolution of volumetric damage and shear damage
respectively and can be used to describe three main damage processes (brittle damage, ductile damage, and for-
mation of adiabatic shear bands). The in-depth failure mechanism analysis provide the necessary guidelines for
the formulation of a new constitutive equation that should be devoid of most of the inconsistencies inherent with
existing models. The new model should be capable of obtaining accurate descriptions of material behaviour at
different stages of material deformation (elastic, inelastic (e.g. plastic), damage initiation, and failure process).

Chapter 4: Meshless Multi-Point Flux Approximation

Reservoir simulations of complex reservoirs with anisotropic permeability, include faults and non-orthogonal
grids, and a fully discontinuous permeability tensor in the discretization are a major challenge. Several methods
have already been developed and implemented within industry standard reservoir simulators for non-orthogonal
grids (e.g., Multi-Point Flux Approximation (MPFA) "O" method). However, it has been noticed that some of
the numerical methods for elliptic equations may violate the maximum principle (i.e., lead to spurious oscilla-
tions), especially when the anisotropy is particularly strong. It has been found that the oscillations are closely
related to the poor approximation of the pressure gradient in the flux computation. Therefore, proposed methods
must correctly approximate the underlying operator, satisfy a discrete maximum principle and have a coercivity
property. Furthermore, the method must be robust and efficient. In this chapter some meshless discretizations
are discussed and proposed. Special attention is paid to the meshless multi-point flux approximation. The
method is based on a pressure gradient approximation commonly used in meshless method (or Smooth Particle
Hydrodynamic method - SPH method). Advancing computer capabilities (i.e., transmissibilities compute) are
linked with the reservoir simulation tools and discussed in the following chapters.

Chapter 5: Meshless Relaxed Multiscale Methods

In this chapter we discuss the performance and limitations of the meshless relaxed multiscale and deflated
meshless iterative (using Krylov accelerator) solvers applied to solid and fluid mechanics problems. We illus-
trate and explain these limitations by introduction of relatively small two-dimensional examples that involve the
simulation of immiscible and incompressible two phase flow in homogeneous and highly heterogeneous porous
media, resulting in small and large differences in the entries of the resulting matrix (Jacobian). We introduce the
meshless restriction and prolongation including meshless deflation strategy and describe how to construct the
meshless multiscale and deflation based preconditioner to improve the performance of the iterative (e.g., CG or
GMRES) solvers. We show experimentally the convergence rates for different resulting matrices (Jacobians).

Nowadays the Krylov subspace iterative methods are widely used in the computational domains. The AMG
and Incomplete LU factorization with various fill-in levels for convergence acceleration of these iterative meth-
ods are used in the reservoir simulation community. However, incomplete LU factorization and AMG has
some HPC disadvantages. In particular, the robust black-box AMG solvers (e.g., SAMG, SA AMG, AMLI) are
considered. We compare AMG methods with meshless multiscale preconditioned Krylov subspace solver. Fur-
thermore, the computational effort (complexity) for solving linear systems arising from the different meshless
discretization are considered.
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The main purpose of the research in this chapter is to reduce the number of communications and maintain
the good preconditioning quality applicable both for CPUs and GPUs.

Chapter 6: Future Work

We discuss some ideas for future research. A brief overview on how we might improve existing multiscale
meshless methods are described. We use the idea of the preconditioned non-linear meshless FAS method for
nonlinear governing equations applicable to a real-life reservoir simulation cases.
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CHAPTER1
PROBLEM FORMULATION AND SOLUTION METHODS

IN this chapter, initial and boundary conditions of dynamic problems of the continuum mechanics at different
scale are presented briefly. The conservation laws of continuum mechanics (e.g., solid and fluid mechanics)
are derived from the physical balance and conservation principals for a given control volume and are usually

written in integral form. In the part of the control volume where physical quantities are sufficiently smooth, those
conservation laws can be written in form of partial differential equations (PDEs). In the following sections, the
governing equation for solid mechanics, fluid mechanics, and interacting particles are briefly described.

§ 1.1 General Remarks

Let us consider a medium Ω in the space Rn, n = 2, 3 with the boundary Γ at some moment of time t. The
image of the body and boundary in the initial configuration can be denoted as Ω0, Γ0. The initial configuration
can also be called the reference configuration. The motion of the medium is described by the law

x = φ(X, t), φ ∈ C1(Rn), J = det
[
(∇X ⊗ x)

T
]
6= 0 ∀X, t (1.1)

where X are the Lagrangian coordinates associated with the coordinate system moving with the medium, x
are the Euler coordinates associated with the fixed in space and in time coordinate system, J is the Jacobian of
actual configuration at time t.

1.1.1 Euler and Lagrangian Coordinates
The displacement of the material points can be defined using both Euler and Lagrangian coordinates X and

x in the following form:

u(X, t) = x−X = φ(X, t)−X, u(x, t) = x−X = x− φ−1(x, t) (1.2)

The displacement field is commonly used in the formulation of governing equations of the solid mechanics (as
it will be shown in the upcoming sections). The kinematic relations are used to describe the relations between
material point coordinates (or displacement) and their velocities. The velocity field v can also be defined using
both coordinates X and x in the following form:

∂x

∂t
= v(X, t),

dx

dt
= v(x, t) (1.3)
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The velocity field is usually used to construct the governing equations of the fluid mechanics.

1.1.2 Conservation Laws
The conservation laws can be written using three approaches: (a) fully Euler method (Euler formalism and

Euler coordinates); (b) arbitrary Lagrangian-Euler method (Lagrangian formalism and Euler coordinates); (c)
fully Lagrangian method (Lagrangian formalism and Lagrangian coordinates). In this thesis, the primary focus
is devoted to (a) and (b). Below, the general form of the conservation laws is outlined as per work of [97]. Let
f(x, t) be a physical quantity on the domain Ω. Then for every control volume V we investigate the evolution
of the integral

I(t) =

∫

V

fdV, f =
δI(t)

δt
(1.4)

where control volume V can be fixed in space and time or can move with the medium, I is the extensive variable,
δ is the variational derivative.

There are two mechanism of changing a physical extensive quantity in time

∂I

∂t
= P [I] + F [I], P [I] =

∫

V

p[I]dV, F [I] = −
∫

∂V

j[I] · ndΣ (1.5)

where P [I] is the production of I , p[I] is the sink/source of I , F [I] is the flux of I through the boundary of
the control volume ∂V , j[I] is the density flux of I , n is the external normal to the boundary ∂V of the control
volume V . In case of a moving control volume V with the medium velocity field, the flux term naturally reduces
to zero. It is possible now to formulate fundamental axiom of classical mechanics:

Axiom 1.1. For all conservative physical quantities, the production term equals zero:

P [I] = 0 (1.6)

In continuum mechanics there are five fundamentals laws (axioms) written in integral form (1.5) and (1.6):
(1) conservation law of mass, (2) conservation law of linear momentum (or impulse), (3) conservation law of
angular momentum, (4) conservation of energy (first law of thermodynamics) and (5) second laws of thermo-
dynamics (entropy evolution law).

1.1.3 Conservative Physical Quantities
The mass, linear momentum, angular momentum, and total energy are conservative physical quantities in

classical mechanics. They have the following definitions.

Definition 1.2. The total mass of a volume V ∈ Ω at time t is given by,

mV (t) =

∫

V

ρ(x, t)dV (1.7)

where ρ(x, t) is the medium density at time t.

Definition 1.3. The total linear momentum (impulse) of a volume V ∈ Ω at time t is given by,

PV (t) =

∫

V

ρv(x, t)dV (1.8)

where v(x, t) is the medium velocity field at time t.

Definition 1.4. The total linear momentum (impulse) of a volume V ∈ Ω at time t is given by,

MV (t) =

∫

V

ρv(x, t)× xdV (1.9)

where v(x, t)× x is the specific angular momentum field at time t.
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Definition 1.5. The total energy of a volume V ∈ Ω at time t is given by,

EV (t) =

∫

V

ρ

(
e+

v2

2

)
dV (1.10)

where e is the specific internal energy at time t.

§ 1.2 Solid Mechanics Description

Let us consider a system Υ, which consists of N bodies in Rn, n = 2, 3 in the Cartesian coordinate system.
Each of the bodies has volume V 0

i , mass mi and initial velocity of the centre of mass U0
i . In this work, high

velocity impact problems are considered. From the mechanical point of view, impact is a process of elements
interaction of this system as a consequence of presence of different velocities of the centre mass of bodies. At
the same time, generally speaking at the macroscopic level, we can assume that any of the system bodies can be
described as a deformable or as a rigid body. The coordinate system can be chosen connected with one of the
bodies of system Υ, so that this body lies upon this coordinate system, and this body will be called target and all
others will be called flyers. Naturally, due to differences between relative flyers velocities, they can interact with
each other and, therefore, for each case the aforementioned terminology can be applied. Governing equations
(conservations laws) of the problem with the finite deformations will be presented in the Lagrangian formalism.
We assume that there are no mass forces, internal moments (monopolar medium), and mass heat sources.

1.2.1 Conservation Laws
The conservation law of mass in the Lagrangian coordinates describes the fact that mass of a control volume

stays the same from configuration to configuration, i.e., mV0
(t) = mV (t). Furthermore, the basic conservation

laws can be formulated as the following theorem.

Theorem 1.6. The conservation law of mass in Lagrangian coordinates is given by,

ρ · J = ρ0 · J0 (1.11)

where J0, J is the Jacobian of reference and actual configurations respectively.

Theorem 1.7. The conservation law of linear momentum in Lagrangian coordinates is given by,

ü =
1

ρ0
∇0 ·P (1.12)

where u is the displacement vector, ρ0 is the density in the reference configuration, P – Lagrangian stress tensor
(or I-st Piola-Kirchhoff stress tensor).

In this research, the irreversible deformation process of the medium is considered under impact loading. In
this case, the characteristic time of the process is about several µs. Therefore, the process can be considered as
adiabatic: ∇0q = 0, where q is the heat flux vector.

Theorem 1.8. The conservation law of linear momentum in Lagrangian coordinates is given by,

ė =
1

ρ0
Ḟ : P, (1.13)

where ρ0 is the density in the reference configuration, P is the Lagrangian stress tensor (or I-st Piola-Kirchhoff
stress tensor), F is the deformation gradient.

1.2.2 Mathematical Models of Failure. Damage Mechanics
For the description of the dynamic process of material fracture, the theory of continuum fracture (dam-

age mechanics), which was developed in the researches of L. M. Kachanov (1958) [126], Yu. N. Rabotnov
(1959) [225], is used in this thesis. During the past decades the constitutive modelling of damage materi-
als in finite deformation ranges has received considerable attention, as can be seen from a large number of
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bibliographies, reviews and discussions given, for example, by Kachanov (1958, 1969, 1974, 1986) [126],
[127], [128] [129], Rabotnov (1959, 1963) [225], [226], Il’ushin (1967) [114], Murakami and Radayev (1994,
1996) [228], [227], Chaboche (1984, 1988) [50], [51], [52], Krajcinovic (1996) [148], Lemaitre (1996) [159],
Lemaitre and Chaboche (1990) [160], Murakami (1983, 1987) [215], [216], Maugin (1992) [198], Voyiadjis
and Kattan (1992) [266], Brunig (2003) [44], Baste and Audoin (1991) [22], Bamman and Aifantis (1987) [18],
Betten (1983) [31], Chow and Wang (1987) [63], Tvergaard (1981, 1982, 1990) [254], [255], [256], Tvergaard
and Needleman (1984) [258], Tvergaard and Hutchinson (2002) [257].

The development of damage mechanics was originated in the papers of Kachanov (1958) [126] and Rabot-
nov (1963) [226], dealing with theory of creep within materials, where one scalar damage parameter ω and the
concept of effective stress σ̃/ = σ̃

1− ω were introduced and developed. This has been the starting point of con-
tinuous damage mechanics and was developed further for dissipation and low cycle fatigue in metals Lemaitre
(1996) [159], for coupling between damage and creep Leckie and Hayhurst (1977) [153], between damage
and cycle creep Hult (1974) [159], for high cycle fatigue Chaboche (1974) [158], for creep fatigue interaction
Lemaitre-Chaboche (1990) [160]. Later on, scalar valued damage variables have been proposed also by among
many other authors. Krajcinovic and Fonseka (1981) [150], [149] and Krajcinovic (1983) [147] employed an
axial vector representation that keeps to the concept of isotropic damage that its magnitude signifies the pro-
jected area density of planar microvoids onto a given cross-section defined by its normal which is defined as
an average of the direction normal to the microcracks distributed over a representative volume element. Hence,
vectors only seem to be adequate for a family of microcracks all with the same orientation.

To be able to take into account different damage mechanism, second order damage tensors have been pro-
posed by Il’ushin (1967) [114] and later by Kachanov (1986) [129], Murakami and Ohno (1981) [219], Betten
(1982, 1983) [30], [31], Krajcinovic (1983) [147], Chow and Wang (1987) [63], Murakami (1988) [218], Ju
(1990) [124], Lu and Chow (1990) [178], Baste and Audoin (1991) [22], Voyiadjis and Kattan (1992) [266],
Bruhns and Schiesse (1996) [43], and Steinmann and Carol (1998) [242], and fourth order rank damage tensors
were already introduced, for example, in the anisotropic creep damage modelling by Chaboche (1984) [50].
Furthermore, various order damage tensors and their relationship to some typical two- and three-dimensional
crack density distributions were analyzed by Lubarda and Krajcinovic (1993) [179].

In contrast to the concept of effective stress, there exists a wide range of damage theories proposed in lit-
erature, e.g. the strain equivalence used by Lemaitre (1996, 1990) [159], [158] and Ju (1989) [123], the strain
energy equivalence proposed by Voyiadjis and Kattan (1992) [266], Steinmann and Carol (1998) [242] or the
stress working equivalence introduced by Lu and Chow (1990) [178] to be able to couple damage and elasticity
in their constitutive relation. An overview and classification of available models considering a local approach
of fracture are given by Lemaitre (1996) [159]. Thermodynamics of irreversible processes provided the neces-
sary scientific basis to justify continuous damage mechanics as a theory Chaboche (1978), Lemaitre-Chaboche
(1978) (see, Lemaitre (1992) [158]), Murakami (1981) [219], Krajcinovic and Fonseka (1981) [149], [150],
Lemaitre (1985) [158]. Several continuum damage models in terms of the framework of continuum thermo-
dynamics have been proposed which are nowadays either phenomenological or micro-mechanically based, see
Brunig (2003) [44] an overview.

1.2.3 Damage Parameters. Effective Stresses
Application of the "Kachanov – Rabotnov model" to the mathematical modelling of processes of damage

accumulation can be simply demonstrated using one dimensional damage state of the uniaxial stretched spec-
imen (see, [10], [128], [129], [148], [159]). In accordance with the classical Kachanov – Rabotnov theory,
the current damage state of the stretched specimen can be described using a single scalar parameter (damage
parameter) ω, which represents a monotone increasing function (for some models, it will be shown later, this
condition is not satisfied) of time 0 ≤ ω ≤ 1, at the same time, it is assumed that ω = 0 – for initial undamaged
state and ω = 1 – for the final state of fracture (macrofracture). Usually, the damage parameter ω is interpreted
as a relative reduction of effective carried out loading cross section of a specimen due to damage initiation and
propagation (see, [10], [128], [129], [150], [159]):

1− ω =
S∗
S , (1.14)

where S is the original cross section, S∗ is the effective cross section. This leads to the introduction of the
effective stress concept mentioned above

σ∗ =
σ

1− ω , (1.15)
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Equation(1.15) describes the effect of stress increasing within damaged material, where 0 ≤ ω ≤ 1 (see, [128],
[129]). Hence, the mechanical state of the virtual undamaged specimen’s fully equivalent to the current state of
the damaged specimen, and change of geometry’s fully described by the damage parameters ω.

At the same time, there is another interpretation of the damage parameter suggested, for example, by Kiselev
(1998, 1992) [141], [139], Kiselev and Lukyanov (2002) [140], Lukyanov (2004) [182], Barder et al. (1972)
[20], Carroll and Holt (2003) [49], Cocks (1989) [68], Cortes (1992) [70], Curran et al. (1987) [73], where it is
assumed to consider the damage parameter as a characteristic of the volume fraction of the microvoids (pores
within material) ω, and the damage parameter represents monotone function of time 0 ≤ ω ≤ 1.

In this work, the damage model is considered where the damage parameter can increase and decrease,
therefore, the effect of microvoids collapse (or microvoids treatment) is taken into account. Similar to the
classical case it is assumed that ω = 0 – for the initial undamaged state and the damage parameter ω is always
less than 1. Besides, damage parameter ω, according to its physical definition can be expressed in the following
form:

ω =
V ∗

V
, (1.16)

where V – a physical elementary volume (here it is assumed that an elementary volume should be interrelated
in terms of conventional continuum mechanics approach), V ∗ – the volume of micropores in the physical ele-
mentary volume V . Three types of the damage process will be considered: (1) brittle, (2) ductile, (3) adiabatic
shear bands [139], [182]. Therefore, the following invariants of the damage tensor (first and second damage
parameters) are considered ωij : first invariant ω = ωkk/3 – volumetric damage and α =

√
ω′ijω

′
ij – intensivity

of the deviatoric part of the damage tensor, where ω′ij = ωij−(ωkk/3)δij . Besides, it is assumed that parameter
ω = ωkk/3 describes the accumulation micropore type of damage, which can collapse during the compression,
and α describes the shear damage (fracture).

Exact analytical description of the damaged state of the medium is a difficult and complex problem due to
the fact that during the solution of this problem, the following effects must be taking into account: microcrack
orientation, microcrack interaction, etc. At this moment, there are many damage models including damage
models for anisotropic materials, e.g. [10], [145], [216] [44], [45], [148], [159], [198], [179].

1.2.4 Description of Existing Damage Models
Fracture of many materials is a result of void nucleation, growth and coalescence. Due to sizable difference

between the characteristic length scales involved in the material failure process and the dimensions of the actual
structural component, it is impractical to model every void in detail in structure failure analysis, especially for
situations involving extensive crack propagation. For this reason, various forms of porous material models have
been developed to describe void growth and the associated macroscopic softening during the fracture process.

Many theoretical damage models, both empirical and micro-physical in nature, have been developed to
describe and predict fracture. These include the Cochran-Banner (CB) model [67], the void growth (VG)
model [120], the DFRACT model [73], the Johnson-Cook model [118], the Davison-Stevens model [75], the
Bai model [15]. Some models are stress-threshold dependent, while others are strain-threshold dependent.
These models usually compute the void volume in the region of fracture to quantify the damage level.

In conclusion, it is important to mention a straight-forward approach to simulate ductile failure processes
based on the explicit introduction of individual voids by Aravas and McMeeking (1985) [8], [9], Tvergaard and
Hutchinson (2002) [257], Kim et al. (2003) [137], and Gao et al. (2005) [95]. A distinct advantage of this
approach is the ability for exact implementation of void growth behavior.

1.3.1 Conservation Laws

In this section let V be a control volume in R3 (V ⊂ Ω ⊂ R3) and ∂V ⊂ R2 a hyper-surface representing
the boundary of V , and let the time t ∈ T ⊂ R+. The transition from the integral form to the differential form
can be performed using Reynolds Transport Theorem.

Theorem 1.9. (Reynolds Transport Theorem). Let f(x, t) be a smooth quantity (scalar or vector) on the domain
Ω. Then for every control volume V (t) ∈ Ω moving with the medium which have velocity field v, we have

d

dt

∫

V (t)

fdx =

∫

V (t)

(
∂f

∂t
+∇ (vf)

)
dx (1.17)
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Proof. This theorem can be derived using Leibniz integral rule applied to the integral with variable integra-
tion limits. The proof is given in [237].

The conservation law of mass is defined as per axiom (1.6) and (1.5) by

dmV (t)

dt
=

d

dt

∫

V (t)

ρd3x = 0 (1.18)

where ρ is the mass density. Applying the Reynolds transport Theorem 1.9 to f = ρ, the continuity equation in
integral form for Lagrangian formalism and Euler coordinates can be derived as:

d

dt

∫

V (t)

ρdx =

∫

V (t)

(
∂ρ

∂t
+∇ (vρ)

)
d3x (1.19)

On the other hand, due to the principle of conservation of mass, the mass in a control volume must be conserved,
thus the left-hand side is zero. Since equation (1.19) holds for any control volume, one obtains the continuity
equation in differential form:

∂ρ

∂t
+∇ (ρv) = 0 (1.20)

In the case of ALE, the material derivative or substantial derivative is defined as

Df

Dt
=
∂f

∂t
+ v(x, t)∇f (1.21)

Using definition (1.21) of the material derivative, the equation can be written as:

Dρ

Dt
+ ρ∇v = 0 (1.22)

The following corollary of the Reynolds Transport Theorem (1.9) can be formulated:

Corollary 1.10. Let f(x, t) be a smooth quantity (scalar or vector) on domain Ω, and let ρ be a mass density
satisfying the continuity equation. Then for every control volume V (t) we have

d

dt

∫

V (t)

ρfdx =

∫

V (t)

ρ
D

Dt
fdx (1.23)

Proof. Due to conservation law of mass (1.18) for any control volume (including elementary control vol-
ume), the following steps can be performed:

d

dt

∫

V (t)

ρfdx =
d

dt

∫

mV (t)

fdm =

∫

mV (t)

Df

Dt
dm =

∫

V (t)

ρ
Df

Dt
d3x (1.24)

where dm = ρd3x is the element of mV (t).
The conservation law of linear momentum can be written as

d

dt

∫

V (t)

ρud3x =
D

Dt

∫

V (t)

Du

Dt
=

∫

V (t)

ρbd3x+

∫

∂V (t)

σ · nd3x (1.25)

where b contains the body forces, σ = (σij) contains the surface forces, which act through the surface of the
control volume V (t), such as pressure and stress.

§ 1.3 Fluid Mechanics Description

Let us consider a domain Ω in Rn, n = 2, 3 with boundary Γ occupied with a fluid. The fluid velocity and
density fields are denoted by v(x, t) and ρ(x, t). An important step is to formulate the governing equations in
PDE form which is based on conservation laws which are described in the next section.
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1.3.2 Constitutive Relations
The stress tensor σij is typically decomposed into a pressure part and a viscous part. The important cases

result from the specific assumptions on the viscous stress tensor and velocity field. The following cases will be
considered in this work:

Ideal fluid flow

No viscous forces are acting between two layers of fluid. This leads to the following definition.

Definition 1.11. The constitutive relation of an ideal fluid is defined by

τij = 0 (1.26)

This definition leads to the Euler equations using the ALE framework

dρ

dt
+ ρ∇v = 0 (1.27)

ρ
dv

dt
= −∇p+ ρb (1.28)

The Euler equations are typically closed by an equation of state.

Navier-Stokes fluid flow

In this case, there are viscous forces acting between two layers of fluid. This leads to the following definition.

Definition 1.12. The constitutive relation of Navier-Stokes fluid is defined by

τij = λ (∇ · v) δij + 2µvij (1.29)

where λ > 0 and µ > 0 are viscous parameters, vij is the strain rate tensor.

This definition leads to the Navier-Stokes equations using ALE framework

ρ
dv

dt
= −∇p+ (λ+ µ)∇(∇ · v) + µ∆v + ρb (1.30)

The fluid flow is called to be incompressible if

∇ · v = 0 (1.31)

In the case of incompressible fluid flow, the governing equations (1.30) reduce to

ρ
dv

dt
= −∇p+ µ∆v + ρb (1.32)

The incompressibility condition has closed the system of equations (1.31) leading to the differential algebraic
equations:

ρ
dv

dt
= −∇p+ µ∆v + ρb,

∇ · v = 0

(1.33)

The pressure p is the Lagrangian multiplier to satisfy the incompressibility condition.

Darcy fluid flow

Definition 1.13. The constitutive relation of Darcy fluid flow is defined by

v = −K

µ
∇p (1.34)

where K is the permeability tensor, µ > 0 is the viscosity.
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§ 1.4 Boundary and Initial Conditions

The selection of appropriate boundary conditions is an important step to describe physical phenomena. In
this work, the high velocity impact of different bodies and at different scales (e.g., plate impact test, shock wave
propagation in nanotubes) and fluid flow in porous media are considered. Hence, the boundary conditions for
these problems are described below.

1.4.1 Solid Mechanics Boundary Conditions
A system Υ, which consists of N bodies in Rn, n = 2, 3 in a Cartesian coordinate system is considered.

Each of the bodies has volume V 0
γ , mass mγ and initial velocity of the centre of mass U0

γ and piecewise
boundary ∂V 0

γ = Γγ0, where measure mes(Γγ0) > 0. The boundary conditions are written in the following
form for t ≥ 0:

X ∈ Γunγ0 : u(X, t) · n0(X, t) = ūγn(X, t),

X ∈ Γtnγ0 = Γγ0\Γunγ0 : (P(X, t) · n0(X, t)) · n0(X, t) = P γn ,

X ∈ Γuτγ0 : u(X, t) · τ(X, t) = ūγτ (X, t),

X ∈ Γtτγ0 = Γγ0\Γuτγ0 : (P(X, t) · n0(X, t)) · τ(X, t) = P γτ ,

X ∈ ΓTγ0 : T (X, t) = T̄ (X, t),

X ∈ Γq
γ0 = Γγ0\ΓTγ0 : q(X, t) · n0(X, t) = q̄(X, t)

(1.35)

where ūγn(X, t) – normal displacement at Γunγ0 , ūγτ (X, t) – tangent displacement at Γuτγ0 , P γn – normal stress
at Γtnγ0, P γτ – tangent stress at Γtτγ0, T̄ (X, t) – given temperature at ΓTγ0, q̄(X, t) – given heat flux at Γq

γ0, and
n0(X, t) — external normal to the boundary of an initial configuration, τ(X, t) – tangent vector to the boundary
of an initial configurations. The domain boundary Γγ0 is divided into no overlapping classes:

Γ̄tnγ0

⋃
Γ̄unγ0 = Γγ0, Γtnγ0

⋂
Γunγ0 = ∅,

Γ̄tτγ0

⋃
Γ̄uτγ0 = Γγ0, Γtτγ0

⋂
Γuτγ0 = ∅

(1.36)

where γ = 1, ..., N – body index. Initial conditions at t = 0 have a form:

X ∈ Ωγ0 : x = X, v(X, t) = v0(X), ε̃e(x, t) = ε̃e0(X),

X ∈ Ωγ0 : ε̃p(x, t) = ε̃p0(X), T (X, t) = T0(X),

X ∈ Ωγ0 : φ(X, t) = φ0(X), ψ(X, t) = ψ0(X)

(1.37)

where v0(X) – initial velocity, ε̃e0(X) – initial elastic deformation, ε̃p0(X) – initial plastic deformation, T0(X)
– initial temperature, φ0(X) and ψ0(X) – initial values for the internal state variables describing continual
fracturing of the media.

1.4.2 Porous Media Fluid Mechanics Boundary Conditions

Let Ω be a bounded domain in Rn, n = 1, 2, 3 with a piecewise boundary ∂Ω = Γ̄D ∪ Γ̄N ,ΓD ∩ ΓN = ∅,
where measuremes(Γ̄D∪ Γ̄N ) > 0. The problem discussed in this work is related to fluid flow in porous media
leading to the following Dirichlet and Neumann boundary conditions respectively:

p (x) = p0 (x) for x ∈ ΓD (1.38)

and

n (x)
T K (x)

µ (x)
∇p (x) = q(x) for x ∈ ΓN (1.39)
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where p (x) is the pressure, K (x) is the piecewise constant permeability tensor, µ (x) is the fluid viscosity,
n (x) is the given outward unit normal on piecewise boundary ∂Ω = Γ̄D∪ Γ̄N , p0 (x) is the boundary pressure,
q (x) is the boundary flux, n = 1, 2, 3 is the spatial dimension.

§ 1.5 Numerical Methods

In many modern investigations, phenomenological models of, for example, continual fracture mechanics
or fluid mechanics are coupled with numerical algorithms and its realizations into one mechanism. Numerical
modelling of different physical processes can be realized by several numerical methods such as finite differ-
ence method (FDM), finite volume method (FVM), finite element method (FEM), and smoothed particle hy-
drodynamic method (SPH). In the current research, the smoothed particle hydrodynamic method (SPH) (see,
e.g., [12], [14], [230]), [27] will be used. Special attention will be paid to the modelling of the fracture process
which can be realized differently. In the current work, the macrofracture is modelled by the element erosion
algorithm, where the criterion of macrofracture is realized. In the following subsection a brief description of the
smoothed particle hydrodynamic method is presented.

1.5.1 Smoothed Particle Hydrodynamic Method
The objective of this section is to introduce basic steps governing the formalism of smoothed particle hy-

drodynamics SPH. The first basic idea behind the SPH method is that any physical variable field is smoothed
over spatial domain by using appropriate smoothing kernels. Let V be a spatial domain in Rn, n = 1, 2, 3
(V ⊂ Rn) and ∂V a hyper-surface (regular in all points) representing the boundary of S ⊂ R2, and let the time
t ∈ T ⊂ R+. The smoothed value of any conservative physical field ρ(x, t) · ϕ(x, t) according to the SPH
methodology can be written as:

〈ρ · ϕ(x, t)〉 =

∫

T

∫

V

Γ(t− t′, τ)W (x− x′(t′), h) · ρ(x′, t′) · ϕ(x′, t′)d3x′dt′, (1.40)

where ρ(x, t) represents the density, ϕ(x, t) describes a physical quantity, x and x′ are the position vectors in
Rn, T > 0 is spatial time domain, (t, t′) ∈ [0, T ] × [0, T ], where [0, T ] denotes time interval. Function W
represents an appropriate positive radial kernel with a single maximum and compact support Dh

W ≡ supp(W ).
The parameter h is a geometrical parameter that characterises Dh

W ≡ supp(W ).
The smoothing kernel should satisfied the following properties:

1. Normalisation condition: ∫

V

W (x− x′, h)d3x′ = 1 (1.41)

2. Dirac limit condition:

ψ(x, t) = lim
h→0

∫

V

ψ(x′, t)W (x− x′, h)d3x′ =

=

∫

V

ψ(x′, t)δ(x− x′)d3x′, for ∀ψ(x′, t) ∈ L2,
(1.42)

where δ(x− x′) is Dirac delta functional.
Function Γ(t) represents a temporal kernel having the same properties as W and introduces the smoothing

with respect to time. In this work, a spatial discretisation is considered, therefore, Γ(t − t′, τ) ≡ δ(t − t′) is
assumed. Thus, relation (1.40) transforms to a spatial convolution:

〈ρ · ϕ(x, t)〉 =

∫

V

W (x− x′(t), h) · ρ(x′, t) · ϕ(x′, t)d3x′ (1.43)

The second important step in SPH formulation is that a continuum Ω is introduced as a set of N discrete
interacting particles with masses m1,m2, . . . ,mi, . . .mN . Let’s introduce notations for the value of any non-
conservative field of particle i located at discrete position (xi, t) ∈ V × [0, T ] as ϕi(t) = ϕi(xi, t). Hence, for
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any point ((x, t) ∈ V × [0, T ]) the continuous form of the smoothed value is estimated by summation over all
particles i ∈M .

〈ρ · ϕ(x, t)〉 =
∑

i∈M
mi · ϕi ·W (x− xi, h), (1.44)

where
mi = ρ(xi, t) · d3xi(t), ∀t ∈ [0, T ] (1.45)

The particle massmi is defined by the introduction of the control volume (or Lumped volume) for each particle.

1.5.2 Numerical Time Integration
The governing equations after applying spatial SPH discretization can be written as

dU

dt
= L (U) (1.46)

where U is the state vectors containing all primary physical quantities, L is the spatial SPH discretization.
Equation (1.46) can be solved by the Runge-Kutta method of arbitrary order of accuracy (in the case of temporal
explicit SPH discretization), which can be obtained by the formulae

U (0) = U (n),

U (i) = U (i−1) +
1

2
dt · L

(
U (i−1)

)
, i = 1, ...,m− 1

U (m) =
m−2∑

k=0

αm,kU
(k) + αm,m−1

(
U (m−1) 1

2
dt · L

(
U (i−1)

))
,

U (n+1) = U (m),

(1.47)

At the start of a time step tn the following physical quantities U (n) are known. In most of the SPH simulations
for fluid and solid mechanics problems m = 1 (i.e., central difference method in time [27]). However, higher
order time integration scheme can be used by setting m = 4 and taking αm,k as α4,0 = 0, α4,1 = 2

3 , α4,2 = 0,

α4,3 = 1
3 .

§ 1.6 Conclusion

In this chapter, a general formulation of boundary value problems including conservation laws of continuum
mechanics with different types of boundary conditions have been discussed. In addition, a critical review of the
currently available approaches in damage mechanics have also been presented, including numerical methods.
It was observed that all prior micro- or macro- level models are decoupled from the rest of physical processes.
Consequently, most of the current models are constructed based on a stress-strain relation and different types
of damage evolution equations. The review focuses on the implications of the damage mechanics concept to
the description of material failure, the assumption of material homogeneity and thermodynamically consistent
links between state variables, and the requirements imposed on the model construction. A general formulation
of thermodynamically consistent models is then constructed. In particular, the mechanics and thermodynamic
aspects in the model formulation are examined within the confines of continuum mechanics.
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CHAPTER2
SPH FORMULATION

A brief overview of particle method (SPH-method) concept, which is fundamental for all meshless method
is given in this chapter. A more detailed overview of different meshless methods can be found in mono-
graphs: Li and Liu (2003) [164], Liu and Liu (2004) [173]. A comprehensive overview on meshless

methods can be found in the papers of Belytschko et al. (1996) [25]. In the monograph on meshless methods by
Liu (2002) [169], there is a large portion devoted to the history, theory, and applications of the existing meshless
methods.

Various authors use different ways of constructing the same discritized governing equations applying SPH
method. In this chapter, we will show only one way of constructing an approximation for our governing partial
differential equations (PDEs) mainly related to solid and fluid dynamics. The SPH discretization for the fluid
flow in porous media will be addressed in the following chapters.

§ 2.1 Introduction

A strong interest has been shown in the last 30 years in the development of next generation numerical
methods (e.g., meshless methods), which should, as expected, improve mesh dependent numerical methods
(e.g., FEM, FDM, and FVM) for a large variety of applications. Smoothed particle hydrodynamics (SPH)
as well as other meshless methods are developed a few decades ago to model inviscid fluid / gas dynamics
in astrophysical problems (Lucy, 1977 [181]; Gingold and Monaghan, 1977 [96]); Monaghan, 1982 [208];
Monaghan, 1992 [209]) and later were adopted for solving continuum mechanics problems and fluid mechanics
problems. The main idea of the meshless method consists of providing a stable and accurate solution of either
integral or partial differential equations for any types of boundary conditions and particle distributions without
using any type of mesh which provides connectivity between nodes or particles.

2.1.1 SPH Method
The numerical technique known as SPH is a meshless method of Lagrangian nature for solving the govern-

ing equations of continuum media (e.g., fluid, gas and solids) dynamics in which the particles correspond to a
small representative volume of fluid / solid. Hence, SPH is an interpolation-based numerical technique that can
be used to solve systems of partial differential equations (PDEs). The Lagrangian particle nature of SPH allows
physical and chemical effects to be incorporated into the modeling of flow / solid mechanics processes with
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relatively little code-development effort. In addition, geometrically complex and / or dynamic boundaries and
interfaces can be handled without undue difficulty. The term "smoothed" refers to the procedure for calculating
state variables, such as density, velocity, and gradient of deformation, in which the function value at a point
is determined as a weighted average of values in a local region. As a result, for example, the distribution of
particles for conventional Lagrangian description is sparse in regions where density is low and dense in regions
where density is high. Note that for fluids / gases or solids with non-trivial boundaries there is the incomplete-
ness of the kernel support combined with the lack of consistency of the kernel interpolation in conventional
meshless methods which results in fuzzy boundaries. In some cases this is presented as an automatic incorpora-
tion of the correct temperature and density boundary condition (Lucy, 1977 [181]). The completeness of mesh
free particle methods was discussed by Belytschko et al. (1998) [24]. However, care must be taken to ensure
that variables which values do not approach zero at boundaries are accurately represented.

Development of meshless methods is connected to the solution of the problems where traditional methods
like FEM or FDM, or FVM are not applicable without loosing of accuracy or complicated numerical com-
putations. For example, it is difficult to solve problems with moving boundaries, free surfaces and interfaces,
deformable boundaries using FDM or FVM, problems with large deformations using FEM, problems with com-
plex geometries using both FEM and FDM or FVM, problems with mesh adaptivity and multi-scale resolution
using both FEM and FDM.

Since its introduction, SPH has been successfully used to model a wide range of fluid flow processes and the
behavior of solids subjected to large deformations. For example, the SPH method has been applied to simulate
high energy explosions (Liu et al., 2003 [175]) and impact (Lukyanov, 2007 [183]; Lukyanov and Pen’kov,
2007 [188]), most notably free surface flows and collapse of dams (Monaghan, 1994 [210]), elastoplasticity
(Johnson et. al., 1996 [119]; Chen et al., 1999, 2001 [56], [59]; Lukyanov and Penjkov, 2007 [188]), to
model low Reynolds number flows (Morris et al., 1997 [213] and dispersion (Zhu et al., 1999 [283]); Zhu and
Fox, 2001 [282]), and for thermal problems (Chen et al., 1999 [56]); Chaniotis et al., 2002 [54]; Schwaiger,
2008 [236]).

2.1.2 Various Forms of the Meshless Method

The SPH-method and its different variations are the basic type of a particle method. Liszka and Orkisz
(1980) [167] proposed a generalization of the finite difference method, which can be used with arbitrary ir-
regular meshes. Nayroles et al. (1992) [220] used a minimum least squares method to approximate integral
equations in the Galerkin method and formulated so called diffuse element method (DEM). Based on the dif-
fuse element method, Belytschko et al. (1994) [28] significantly improved the element free Galerkin method
(EFG). Currently, the EFG method is the most popular meshless method, and it is applied to different problems
of solid body mechanics (see, for example, Krysl and Belytschko, 1996 [151]). Atluri and Zhu (1998) [14]
developed a meshless localized Petrov-Galerkin method, which requires only a local surrounding of the cells
for integration purposes. The meshless localized Petrov-Galerkin method does not require a global surrounding
of the cells for integration, and this has been used to analysis constructions made of beams and shells (Atluri
et al., 1999 [11]; Gu and Liu, 2001 [99], [162]), and for other mechanical problems. Detailed description of
the meshless localized Petrov-Galerkin method can be found in the work of Atluri and Shen (2005) [13]. Liu
et al. (1995, 1998, 2003) [177], Liu and Jun (1998) [176], Liu and Liu (2003) [174] considered the stability
and reproducing conditions of SPH method and proposed reproducing Kernel particle method, which improves
the accuracy of the approximation SPH-method, especially, near the boundary. Liu and his co-authors in a
number of articles developed a method of point interpolation and some other variations, see Gu and Liu, (2001,
2002) [99], [101], [100], [102]; Liu and Gu (2001, 2003) [170], [171], [172]; Liu and Liu (2003) [174]. Other
meshless methods include HP-cloud (Duarte and Oden, 1996 [82]), free meshless method (Yagawa and Yamada,
1996, 1996 [278]), [279], and the points assemble method (Liu,1999 [168]).

Three types of meshless methods can be clearly distinguished: (1) meshlees methods based on the strong
form of PDEs; (2) meshless methods based on a weak form of PDEs; (3) particle methods. Methods based
on the strong form such as collocation method have advantages in numerical implementation, efficiency and
truly meshless nature (i.e., they do not require integration over some domain). However, they are often unstable
and less accurate, particularly when they are used on irregularly distributed points within the problem domain
described by the partial differential equations with the Neumann boundary conditions (Neumann problem), for
problem of solid mechanics with boundary conditions expressed in stresses. On the other hand, methods using
weak formulations such as Galerkin free element methods and others have advantages in stability and accuracy.
The Neumann boundary conditions can be naturally (exactly) satisfied due to usage of the weak form which
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includes smooth (integral) operators. However, methods of weak form do not have a truly meshless nature
since the local or global mesh is required for the integration of the weak form. According to the work of
Liu (2002) [169], approximation functions used in meshless methods can be classified into three main classes:
methods of integral representation, sequential method representations, and differential representations. For
the final cases (particle methods), these methods have a probabilistic nature. The main representative of the
probabilistic meshless methods is a molecular dynamic method based on the Monte-Carlo method (Metropolis
and Ulam, 1949 [202]).

2.1.3 Advantages of Meshless Methods
The main advantages of meshless methods over conventional methods are the following:

1. The numerical domain in meshless methods are discretized using particles without predefined particle
connectivity,

2. The discretization of the complex geometry is cheap,

3. Particles property update is simpler to perform over the time,

4. For hyperbolic partial differential equations, it is simpler to update properties for the entire physical
system via tracking each particle. Hence, it is simpler to identify free surfaces, moving interface-surfaces,
and deformation of boundaries. The time history of the field variable at various points within materials
can be easier extrapolated.

In this work, we use meshless methods which are a representation of smoothed particle methods (SPH-methods)
using an integral representation for the approximation function field. The SPH method has common ground
with the methods based on the weak form of PDEs. The main difference is that the operator of the weak
form (integral operator) is used at the stage of function approximations in SPH method but not at the point of
construction the final discretized governing equations as it is performed in the conventional methods based on
a weak form. Using the integral function representation allows to move differential operator from the unknown
function to the tested (weighted) function. This algorithm is similar to the construction of the generalized
derivative (see, Vladimirov, 1979 [265]). This can be used to reduce requirements of the order of regularity of
the approximation function. Therefore, the stability of SPH methods has been shown for the case of irregular
particle distributions, and large deformations. The accuracy of the SPH method depends significantly on the
selection of the interpolation functions. This will be discussed in more detail in the sections below.

§ 2.2 Concept of SPH Method

Figure 2.1: Interactions of Kernels in SPH method.

In the meshless method there is no need to use topological connectivity between particles. It is only
required to have an initial particles distribution over the numerical domain. The initial particles distribution can
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be done using different methods of grid generation within the numerical domain. There are a few algorithms of
domain triangulation in 2D or 3D spaces. One approach consists of putting particles into barycentric or geomet-
rical centres of the initially constructed grid. It is preferable to use Delaunay triangulation (tetrahedrization in
3D) or using quadrilateral meshes (hexahedron meshes in 3D) if possible. It is always possible to automatically
generate the triangulation of domains with complex geometries. A good particle representation of the numerical
domain would be placing the particles in the centres or vertices of the underlying grid.

2.2.1 Basic Relations
The basic relations of a particle method is based on the definition of the δ functional (generalized δ function),

which has the following definition (see, Vladimirov, 1979 [265]):

F (r) = 〈F (r′), δ(r − r′)〉, δ : V ∗ → R (2.1)

where V ∗ is a space of (vector or scalar) functionsF (r) (e.g., F (r) ∈ V ∗ = C (Ω)). Using a weak convergence
definition, the δ functional can be approximated using a class of Kernel functions {W (r−r′, h), h→ 0}, which
satisfies ∫

Ω

W (r − r′, h)dnr′ = 1, ∀r ∈ Ω ⊂ Rn, h ∈ R1. (2.2)

The limit in a weak sense from the function {W (r−r′, h)} when h→ 0, equals to the value of delta functional
for point r, i.e.

lim
h→0

∫

Ω

F (r′)W (r − r′, h)dnr′ = 〈F (r′), δ(r − r′)〉 = F (r), (2.3)

F (r) = lim
h→0

∫

Ω

F (r′)W (r − r′, h)dnr′ (2.4)

Additionally, it can be required the Kernels to be radially symmetric and compactly supported (suppW ):

Ωr,h = suppW = {r|W (r − r′, h) = w(‖ r − r′ ‖, h) 6= 0, w(s, h) = 0 ∀s > h} (2.5)

where h = f · hp is the radius of Ωr,h = suppW , and hp is the inter-particle distance. Function W (r − r′, h)
is called the interpolation Kernel and it can be of different shapes always satisfying properties (2.2) and (2.3),
which form the definition of the Kernel function. Under a certain selection of parameter h, which is called a
Kernel radius, relation (2.4) can be rewritten in the form

F (r) =

∫

Ωr,h

F (r′)W (r − r′, h)dnr′ +O(h2), (2.6)

where the integral or smoothed approximation Fh(r) of the original function F (r) can be selected as:

Fh(r) =

∫

Ωr,h

F (r′)W (r − r′, h)dnr′. (2.7)

Relation (2.7) is the fundamental aspect of the particle method concept (SPH-method). The final step in the
particle method is to approximate integral relation (2.7) using Monte-Carlo expressions or any cubature rules
(Fulk and Quinn, 1996 [94]; Chen et al., 1999 [56], [57]; Belytschko et al., 1998 [24]; Liu and Liu, 2003 [174])
and it is known as the particle approximation step:

〈F (r)〉 =
∑

J∈S
F (rJ) ·W (r − rJ , h) · VJ , (2.8)

where VJ is the volume of an interpolation particle J . The subscript J in the above equations, including all
capital Latin indices throughout this thesis, correspond to particle numbers while Greek indices correspond to
spatial coordinates. In addition, the summation by the repeating Greek indices is assumed throughout this thesis.
In relation (2.8), it is also possible to define a testing function as a multiplication of the particle volume with the
weighted function:

ΦJ(r) = W (r − rJ , h)VJ , (2.9)

25



Chapter 2. SPH FORMULATION

A variable quantity F (r) is defined in the particle of the medium J ∈ S with radius vector rJ and it is
approximated by relation (2.10) based on relation (2.9)

Fh(r) =
∑

J∈S
F (rJ) · ΦJ(r). (2.10)

Using aforementioned relations, it is possible to define an expression for the approximation of the gradient of the
variable quantity (function). It is important to assume that a Kernel of approximation satisfies all the necessary
properties for existing different mathematical operations (i.e., differentiation and integration) of the required
number of times. Let us also assume that

W (r − rJ , h)|r∈∂suppWJ
= 0 (2.11)

for all particles J ∈ S which is not valid in general for boundary particles (in this case, the expression presented
below have a more complex form), but it is fundamental for the concept of a particle approximation.

2.2.2 Lagrangian SPH Method
In the previous sections, the basic concepts of the SPH method have been described which can be applied

both for the Eulerian and Lagrangian descriptions outlined in Chapter 1. In this section, some approximations
will be described specific for the Lagrangian description, mainly used in solid mechanics. Note that in solid
mechanics problems the interpolation particles move with the body, deform and, hence, change the volume and
conserve mass. Therefore, let ρ be a density distribution function and dµρ = ρdnr. Hence, equation (2.6) can
be written by changing the integration variables as

F (r) =

∫

Ωr,h

F (r′)
ρ(r′)

W (r − r′, h)dµρ(r
′) +O(h2) (2.12)

Introducing a set of Lagrangian particles PN = {PN1 , . . . , PNN }N∈N and associated radius vector
(
rN1 , . . . , r

N
N

)

and masses
(
mN

1 ,m
N
2 , . . . ,m

N
N

)
such that measure µPN (r) =

N∑

k=1

mN
k δ (r − rk) weakly converges to the

measure µρ (where µρ =
∫
Ω

ρdnr) for any test functions φ ∈ C (Ω):

〈φ(r), δ(r)〉 = lim
N→∞

〈φ(r), µPN 〉. (2.13)

As a result, equation (2.12) can be written as

〈F (r)〉 =
∑

J∈S
F (rJ) ·W (r − rJ , h) · mJ

ρJ
, (2.14)

which is also consistent with equation (2.8) by noting that VJ =
mJ

ρJ
is the volume of particle J , mJ is the

mass of particle J , ρJ is the density of particle J , and S is the particle set located in suppW .

2.2.3 Spatial Derivative Approximation Using SPH Method
Using relations (2.7), (2.11) and integration by parts, it is possible to obtain the following approximation of

the gradient of the variable quantity (function):

∇Fh(r) = −
∑

J∈S
F (rJ) · ∇W (r − rJ , h) · mJ

ρJ
,

∇⊗∇Fh(r) =
∑

J∈S
F (rJ) · ∇ ⊗∇W (r − rJ , h) · mJ

ρJ

(2.15)

where the symbol ∇ denotes partial differentiation with respect to spatial coordinates and ∇ ⊗ ∇ denotes the
second partial differentiation with respect to spatial coordinates.
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In practice, more accurate approximations are used based on the following approach:

∇F (r) =
1

ρ
[∇(ρF )− F∇ρ] , (2.16)

which leads to the expression for the gradient in the form:

∇Fh(r) = − 1

ρ(r)

∑

J∈S
mJ (F (rJ)− F (r)) · ∇W (r − rJ , h). (2.17)

To calculate the second derivatives of F (r), several methods were proposed (Chen et al., 1999 [58], [57]; Bonet
and Kulasegaram, 2000 [32]; Colin et al., 2006 [69]). One of them is to assume that

∇⊗∇Fh(r) =
1

ρ(r)

∑

J∈S
mJ (F (rJ)− F (r)) · ∇ ⊗∇W (r − rJ , h). (2.18)

However, second-order derivatives can often be avoided entirely if the PDE is written in weak form. It is
important to note that approximations using second-order derivatives of the kernel (see, relation (2.18)) are
often noisy and sensitive to the particles distribution, particularly for spline kernels of lower order.

It follows from (2.17) that the expression for the gradient has a clear form and is less sensitive to the particles
distribution. In the same way to (2.15), the divergence of the velocity can be written as

∇vh(r) = −
∑

J∈S
v(rJ) · ∇W (r − rJ , h) · mJ

ρJ
, (2.19)

or more accurate as:

∇vh(r) = − 1

ρ(r)

∑

J∈S
mJ (v(rJ)− v(r)) · ∇W (r − rJ , h). (2.20)

Let us introduce the following commonly used notations:

Wab = W (ra − rb, h), va − vb = vab, (2.21)

and to assume that ∇aWab corresponds to the gradient from Wab with respect to the variable ra ( ra – radius
vector of particle a). Hence, the relation (2.20), taking into account aforementioned notations (2.21), takes the
following form:

∇vhI =
1

ρI
·
∑

J∈S
mJ · vIJ · ∇JWIJ(h). (2.22)

The assumption that the boundary term from the integration by parts is zero in equations (2.17), (2.18) is
valid only in regions where the kernel has full support or the function itself is zero. For particles near free
surfaces or boundary, the neglect of these terms leads to significant errors for boundary value problems. Several
techniques have been developed to address these errors through various correction methods, e.g., by calculating
the boundary integrals (Campbell, 1989 [47]; Liu and Liu, 2003 [174]), by applying normalized corrected
meshless methods in the derivative approximations (Belytschko et al., 1998 [24]; Liu and Liu, 2003 [174];
Lukyanov, 2007 [183]; Lukyanov and Penjkov, 2007 [188]).

§ 2.3 Corrected SPH Method

Some approaches for improving approximation of the conventional SPH method have been proposed in the
literature (Bonet and Kulasegaram, 2000 [32]; Bonet and Lok, 1999 [33]; Belytschko et al. 1998 [24], Liu and
Liu, 2003 [174]).

2.3.1 Corrected SPH Method
Let us consider a vector or scalar function F (r′). In addition, it is assumed that function is at least, twice

differentiable in the vicinity of the point r (i.e., F (r′) = C2(Ωr,h). The Taylor series expansion for the function
around the point r has the form

F (r′) = F (r) + (r′ − r)∇F +
1

2
(r′ − r)∇⊗∇F (r) (r′ − r) +O

(
‖r′ − r‖3

)
(2.23)
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Multiplying both sides of the equation (2.23) by the approximation Kernel functionW (r−r′, h) and integrating
over entire definition domain Ωr,h lead to the meshless approximation of the function F (r):

F (r)

∫

Ωr,h

W (r − r′, h)dnr′ =

=

∫

Ωr,h

F (r′)W (r − r′, h)dnr′ −
∫

Ωr,h

(r′ − r)∇FW (r − r′, h)dnr′−

−
∫

Ωr,h

1

2
(r′ − r)

2∇⊗∇F (r)W (r − r′, h)dnr′ +O
(
‖r′ − r‖3

)
(2.24)

and
〈F (r)〉 =

1

VW

∫

Ωr,h

F (r′)W (r − r′, h)dnr′, (2.25)

where VW =

∫

Ωr,h

W (r − r′, h)dnr′ is the kernel volume.

The meshless approximation of ∇F (r) can be derived by multiplying equation (2.23) with W (r − r′, h)
and integrating over the entire domain Ωr,h:

∇F (r)

∫

Ωr,h

(r′ − r)∇W (r − r′, h)dnr′ =

=

∫

Ωr,h

[F (r′)− F (r)]∇W (r − r′, h)dnr′−

−
∫

Ωr,h

1

2
(r′ − r)

2∇⊗∇F (r)∇W (r − r′, h)dnr′ +O
(
‖r′ − r‖2

)
(2.26)

and
〈∇F (r)〉 =

∫

Ωr,h

[F (r′)− F (r)]∇∗W (r − r′, h)dnr′, (2.27)

∇∗W (r − r = C · ∇W (r − r′, h) (2.28)

where C =

[
∫

Ωr,h

(r′ − r)∇W (r − r′, h)dnr′
]−1

. Expression (2.27) allows to achieve the zero and first order

consistency (exact approximation for the constant and linear functions).

2.3.2 Normalized-Corrected SPH Method
A central point of the SPH formalism is the concept of the interpolating function (or kernel) and its deriva-

tives through which the continuum properties of the medium are recovered from a discrete sample of N points
(2.14) with prescribed mass mI or volume VI (for conventional Lagrangian methods) or volume VI (for fully
Eulerian methods), with finite characteristic width h̃I around the particle I . The effective characteristic width
h̃I will be defined in the upcoming section using real smoothing particle length hI . However, it is important to
note that, in the case of the homogeneous particle distribution, it is common to use hI = f · hp, where hp is the
inter-particles distance. Hence, it is important that hI and hp are not mixed up during the analysis. In genetral
(e.g., for heterogenious particle), hI = f · h0

I , where h0
I is the intial smoothing length. In the Lagrangian

formulation, these points move according to the specified governing laws, whereas these points are fixed in
space for the Eulerian formulation. A good interpolating kernel must satisfy a few basic requirements: it must
weakly tend to the delta function in the continuum limit and has to be a continuous function with piece-wise
first derivatives at least.

Although, the kernel is normalized in continuous sense, it is important to note that W
(
rJ − rI , h̃IJ

)
does

not satisfy th normalization condition in the discrete space
∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ 6= 1
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due to particles distribution and incomplete kernel support near the boundary and, hence, the discretized-
normalized kernel function can be considered:

W
(
rJ − rI , h̃IJ

)
=

W
(
rJ − rI , h̃IJ

)

∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ

=
W
(
rJ − rI , h̃IJ

)

ν (rI)
(2.29)

where ν (rI) is the specific volume of particle rI (i.e., it is approximately the inverse of the particle volume)
which has a larger value in a dense particle region than in a dilute particle region. In regions of high particle
density, the denominator in (2.29) is high, resulting in lower values of the kernel W

(
rJ − rI , h̃IJ

)
. Thus the

denominator normalizes the kernel function to ensure that the kernelW
(
rJ − rI , h̃IJ

)
forms a local partition-

ing of unity ∑

rJ∈ΩrI ,h̃I

W
(
rJ − rI , h̃IJ

)
VrJ = 1 (2.30)

regardless of the particle distribution within the ΩrI ,hI
= supp W (r − rI , hI). The discretized-normalized

kernel function W (r − rI , h) will also be used in the discretization schemes below. At this point, all possible
options of computing ∇W (rJ − rI , h̃IJ) are listed:

Definition 2.1.

∇W (rJ − rI , h̃IJ) = ∇rIW (rJ − rI , h̃IJ) = −∇rJW (rJ − rI , h̃IJ), (2.31)

Definition 2.2.
∇W (rJ − rI , h̃IJ) = ∇rIW (rJ − rI , h̃IJ) =

=

[
∇rIW (rJ − rI , h̃IJ)

ν(rI)
− W (rJ − rI , h̃IJ)∇rIν(rI)

ν2(rI)

]
,

∇rIν(rI) =
∑

rK ∈ ΩrI ,h̃I

∇rIW (rK − rI , h̃IJ)VrK ,

(2.32)

where ν(rI) is the specific volume of the particle located at the point rI .

Additionally, two options can be written as

Definition 2.3.

∇W (rJ − rI , h̃IJ) = ∇̃rIW (rJ − rI , h̃IJ) = −∇rJW (rJ − rI , h̃IJ)

ν(rI)
, (2.33)

where ν(rI) is assumed to be a constant during the differentiation with respect to rJ .

The alternative case is when

ν(rI , rJ) =
∑

rJ ∈ ΩrI ,h̃I

W (rJ − rI , h̃IJ)VrJ ,

leading to the following relations

Definition 2.4.

∇W (rJ − rI , h̃IJ) = ∇rIW (rJ − rI , h̃IJ) = −∇rJW (rJ − rI , h̃IJ)

= −
[
∇rJW (rJ − rI , h̃IJ)

ν(rI , rJ)
− W (rJ − rI , h̃IJ)∇rJν(rI , rJ)

ν2(rI , rJ)

]
,

∇rJν(rI , rJ) = ∇rJW (rJ − rI , h̃IJ)VrJ

. (2.34)
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Where ∇W (rJ − rI , h̃IJ) and ∇rI in all defintions above represent the nabla operator with respect to rI .
Assuming this for the rest of the thesis, the rI index is omitted throughout this paper starting from here. Similar
to the MLS method [40], equations (2.32) and (2.34) are two different forms of "full derivatives". At the same
time, equations (2.31) and (2.33) are two different forms of "diffuse derivatives". From these options, it follows
that "full derivatives" are connected with the differentiation of a discrete function and "diffuse derivatives" are
connected with the differentiation of an exact function. Both types of derivatives have some advantages and
disadvantages and the choice depends on the application. The impact of different options on numerical results
will be shown below. Finally, it is important to note the following relation for the kernel gradients (2.31), (2.33),
and (2.34):

∇αW
(
rJ − rI , h̃IJ

)
= − 1

h̃IJ
G(zJ , rI)

[rαJ − rαI ]

‖rJ − rI‖
, (2.35)

where function G(zJ , rI) has a different shape depending on the definitions (2.31), (2.33) and (2.34). The
SPH method shows good approximation properties in regions where the kernel has full support. For particles
near free surfaces or boundaries, the SPH method shows a poor approximation. Several techniques have been
developed to address these errors through various correction methods, e.g., by applying normalized corrected
meshless methods in the derivative approximations (Belytschko et al., 1998 [24]; Liu and Liu, 2003 [174];
Lukyanov, 2007 [183]; Lukyanov and Penjkov, 2007 [188]), which requires normalized corrected definitions of
the kernel gradient as follows:

∇∗αW = Cαβ∇βW, (2.36)

Cαβ =


 ∑

rJ∈ΩrI ,h̃I

VrJ [rαJ − rαI ]∇βW (rJ − rI)



−1

, (2.37)

∑

ΩrI ,h

VrJ [rγJ − rγI ]∇∗αW (rJ − rI , h) = δγα, ∀γ, α; (2.38)

where summation by repeating indexes is assumed throughout this paper, ∇∗αW is the normalized corrected
gradient of kernel, and Cαβ is the correction tensor (Randles and Libersky, 1996 [231]). It was shown that the
value of the minimum eigenvalue λC (rI) of the matrix C−1 based on discretized-normalized kernel function
depends on the particle distribution within the domain ΩrI ,h̃I

= suppW
(
r− rI , h̃I

)
. When going away from

the ΩrI ,h̃I
domain this eigenvalue tends theoretically to zero, while inside this domain the eigenvalue tends

theoretically to one. This important information allows determining regions of the continuum media where
free-surfaces are located (Marrone et al., 2010 [196]).

2.3.3 SPH symmetrization of smoothing length
The true particle smoothing length hI may vary both in space and time in general. Therefore, in general case,

each particle has its own smoothing length hI . Considering the case where hI 6= hJ for two different interacting
particles I and J and the kernel support based on h̃I and located in I which covers the particle J but the kernel
support located in J does not cover the particle I . In this case, the particle I acting on particle J (produces,
e.g., a flux or a force) without particle J acting on the particle I , which leads to a violation of fundamental laws
(e.g., mass conservation or Newton’s third law) for a closed system of particles. This problem has been resolved
by introducing the symmetrization of the smoothing length. In this study, the following symmetrization option
is used:

h̃IJ =
hI + hJ

2
. (2.39)

In addition, it is clear that h̃I has to be defined as

h̃I = sup
J:rj∈ΩrI ,h̃I

h̃IJ . (2.40)

This completes the description of basic properties of SPH method allowing to construct all necessary building
elements of SPH discretization such as list of neighbors, kernel values, and kernel gradients. The following
sections describe the traditional and newly proposed discretization schemes for different governing equations.

In this thesis, the discretizations of the Laplace operator are based on the gradient of the kernel. However,
several methods of Laplace discretizations were proposed (Chen et al., 1999 [56], [57]; Bonet and Kulasegaram,
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2000 [32]; Colin et al., 2006 [69]) using second derivatives of the variable u. However, second-order derivatives
can often be avoided entirely if the PDE is written in weak form. It is important to note that approximations
using second-order derivatives of the kernel are often noisy and sensitive to the particles distribution, particularly
for spline kernels of lower orders.

§ 2.4 SPH Approximation of Conservation Laws

In this subsection, the SPH approximation of the basic conservation laws in both Euler and Lagrangian
coordinates is considered. There are many ways to construct these approximations in different forms; therefore
the selection procedure of the approximation is discussed here.

2.4.1 Conservation Law of Mass
Let us consider firstly the fundamental law of physics – conservation law of mass. In the Euler coordinates,

the continuity equation (conservation law of mass) has the following form:

dρ

dt
+ ρ∇v = 0, (2.41)

using relation (2.20), it is straightforward to obtain the expression for the approximation of the derivative from
the density with respect to time:

〈ρ̇I〉 = −ρI
∑

J∈S

mJ

ρJ
(vI − vJ) · ∇W IJ . (2.42)

In the case of Lagrangian coordinates, the conservation law of mass has the following simpler form and can be
expressed as

ρ · J = ρ0 · J0, (2.43)

which, at the same time, can be written in the following form:

ρ · detF = ρ0 · detF0, (2.44)

where the F is the gradient of deformation (in the initial configuration it is assumed F0 = I, I – unity tensor).
Hence, for the approximation of the conservation law of mass, it is enough to have an approximation of gradient
of deformation:

〈F 〉 =
∑

J∈S

mJ

ρJ
· (uI − uJ)⊗∇W IJ + I. (2.45)

Therefore, based on relations (2.44) and (2.45) the density of the medium can be calculated at any moment
of time.

2.4.2 Conservation Law of Linear Momentum
The particle motion "a" is described by the following kinematic relations:

dra
dt

= va, (2.46)

and the conservation law of impulse (taking into account the conservation law of mass) in a full Lagrangian
description has the following form:

v̇ =
1

ρ0
∇0 ·P + b, b = 0 (2.47)

Using relations (2.20), the divergence of the stress tensor (the nominal stress tensor or the transpose of the first
Piola-Kirchoff stress) is written in the form:

(∇0 ·P)I ∼= −
1

ρI

∑

J∈S
mJ (PJ −PI) · ∇W IJ . (2.48)
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From expression (2.48), it follows that the force between particles is zero; for the stability point of view this
expression has advantages while the impulse and energy are not exactly conserved. If one uses the relation

∇0 ·P
ρ0

= ∇0

(
P

ρ0

)
+

(
P

ρ2
0

)
∇0ρ0, (2.49)

then taking into account relation (2.19) and (2.49) for the velocity approximation, following expression can be
obtained: (

dv

dt

)

I

= −
∑

J∈S
mJ

(
PI

(ρ2
0)I

+
PJ

(ρ2
0)J

)
· ∇IW IJ , (2.50)

and, in this case, the impulse and angular momentum are conserved in accordance with Newton’s third law.

2.4.3 Conservation Law of Energy
The energy evolution equation (or conservation law of energy taking into account the conservation of kinetic

energy) in the full Lagrangian form has the following form:

ė =
1

ρ0
Ḟ : P. (2.51)

Using (2.45), the following approximate relation can be derived

〈ėI〉 =

(∑

J∈S
mJ (vI − vJ)⊗∇W IJ

)
:

PI
(ρ2

0)I
. (2.52)

It is easy to verify that using relations (2.49) and (2.52) the conservation law of total energy is fulfilled:

d(Ek + e)

dt
=
dEk
dt

+
de

dt
= 0, (2.53)

where
dEk
dt

= −1

2

∑

I∈Ω

∑

J∈Ω

mImJ (vI − vJ)

(
PI

(ρ2
0)I

+
PJ

(ρ2
0)J

)
∇IW IJ , (2.54)

therefore, full energy is conserved.

§ 2.5 SPH Additional Components

The main aim of this subsection is to consider fundamental properties and form of Kernel functions of the
approximation of governing equations. An explicit form of the most popular (used) Kernel functions will be
discussed.

2.5.1 SPH Kernel
Theoretically, the Kernel function must satisfy only the relations (2.2) and (2.3). Let us consider a Kernel of

the form:
W (r, h) =

1

hD
f
( r
h

)
, (2.55)

where D – dimension of the considered numerical problem and r = ‖r − r0‖. There are many factors influ-
encing the selection of the Kernel function for the approximation of governing equations. The most important
factors are the order of the resulting approximation, the number of neighboring domains, symmetry of Kernel,
and stability properties. Initially, the Gaussian Kernel was used for the approximation of governing equations.
However, this function is not finite (it does not have compact support), and, therefore, in the SPH discretization
with the Gaussian Kernel each particle will influence any other particle in the numerical domain (it follows
from the discretized set of governing equations). From a more practical point of view it is also advisable to
deal with symmetric finite range kernels, the latter to avoid N2 calculations. Cubic and quintic splines are the
commonly used kernels in SPH formulations Li and Liu (2002), (2003) [163, 174]. The cubic spline is firstly
used in the work by Monaghan and Lattanzio (1985) [211]. However, the work of Morris (1996) [212], it was
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Figure 2.2: SPH cubic spline.

shown that dispersion relation for linear waves in the structure of SPH method has some undesirable properties
affecting the stability of the method. These problems can have negligible impact onto a solution depending on
the application of the approximation Kernel function. The cubic spline is used:

W (z, h̃) =
Ξ

h̃D





1− 3

2
z2 +

3

4
z3, 0 ≤ z ≤ 1

1

4
(2− z)3, 1 ≤ z ≤ 2

0, z > 2

(2.56)

where z = ‖rJ − rI‖2 /h̃ is the dimensionless variable, h̃ = h̃IJ is the effective smoothing length between
particles I and J , and Ξ is the normalization factor equal to 3/2, 10/(7π), and 1/π in 1D, 2D and 3D, respec-
tively. The different choices of computing the effective smoothing length between particles used in this paper
will be discussed in the upcoming subsection. The quintic spline kernel is given by:

W (z, h̃) =
Ξ

h̃D





(3− z)5 − 6 (2− z)5
+ 15 (1− z)5

, if 0 ≤ z < 1

(3− z)5 − 6 (2− z)5
, if 1 ≤ z < 2

(3− z)5
, if 2 ≤ z < 3

0, if z ≥ 3

(2.57)

Ξ where the normalization factor equal to 1/120, 7/478π, and 1/120π in 1D, 2D and 3D, respectively. The
different choices of computing the effective smoothing length between particles used in this paper will be
discussed in the upcoming subsection. There are other kernels (Liu and Liu, 2003 [174]; Li and Liu, 2002 [163])
which have superior stability properties compared to the cubic and quintic splines, at no extra computational
expense. However, it is not clear, if these kernels represent a significant improvement over the cubic or quintic
splines for the applications discussed in this paper.

2.5.2 Artificial Viscosity
In many numerical methods with finite approximation, the artificial viscosity is used (or low order diffusion,

or Riemann’s method) for describing shock wave propagation. In the case of a particle method it is enough to
use artificial viscosity. The most popular form of an artificial viscosity is based on the viscous stresses (tensor
Navier-Stokes viscosity):

(ΠI)kl = −qIIkl + (Π′I)kl , (2.58)
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where

qI =

{
αqhIρIc

v
I |∇vI |+ βqh

2
IρI |∇vI |2, ∇vI < 0,

0, ∇vI ≥ 0,
(2.59)

(Π′I)kl = 2 · αΠ′ · csI · ρI · hI ·
(
ε̇kl −

1

3
ε̇rrδkl

)

I

, (2.60)

where ρI – density in the particle I , cvI – speed of sound in the particle I (volumetric speed of sound cI =√
KI

ρI
), csI – speed of shear perturbations, and hI – radius of approximation Kernel function. The parameters

of the artificial viscosity αq , βq , αΠ′ are defined from numerical experiments and usually take a value around
unity.

By introducing an artificial viscosity, it is required to make a correction of our equation of motion and energy
respectively. For this reason, the stress tensor correction is used:

˜̂σI = σ̃I + (ΠI)kl . (2.61)

Introducing artificial viscosityin this way one does not violet the first and second law of thermodynamics.

2.5.3 Smoothing and time selection strategies
The smoothing length can be selected as a constant for all particles which significantly simplifies the search-

ing algorithms for the neighboring particles. However, this approach is not suitable for large deformation and
ALE discretization approach (the support domain could be significantly deformed and some of particles could
be outside of the original undeformed support). This problem for ALE discretization approach is solved using a
smoothing length adaptivity approach where the smoothing length is changing with time. One possible approach
is based on the constant number of particles in the Kernel support. However, practically, the half smoothing
length equals to the maximum distance between host and neighboring particles.

In case of using an artificial viscosity, the stability condition is defined as (Monaghan, 1992 [209])

δta = min


 h√
|Fa|

,
h

ca + 0.6(αqca + βq max
b
µab)


 (2.62)

where Fi is the magnitude of force per unit of mass (acceleration), µab =
hvabrab

‖rab‖2 + 0.01h2
, ca is the speed of

sound in particle a, αq and βq are defined in 2.60.
Hence, the time step is selected as

τ = min
a
δta (2.63)

§ 2.6 Conclusion

In this chapter, the history of the method development is presented where the key results during this develop-
ment are highlighted. In addition, different ways of developing of SPH methods are given. A special attention
is paid to the strategy of deriving an SPH discretization scheme. All main SPH relations are presented. The
justification of the accuracy and correctness is outlined.
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CHAPTER3
SHOCK WAVE PROPAGATION IN COMPLEX MEDIA

Investigation of anisotropic materials behaviour (such as aluminium alloys, composite materials) has found
significant interest in the research community due to the widespread application of anisotropic materials in
aerospace and civil engineering problems. For example, aluminium alloys are one of the main materials in

the construction of modern aircraft and rockets. The strain rate dependent mechanical behavior of anisotropic
material (e.g. aluminium alloys) in air and space vehicles is important for applications involving impact. These
applications cover a wide range of situations such as crashworthiness and protective armours in air and space
vehicles and other applications. 1

§ 3.1 Thermomechanical Model of Deformation and Continuum Fracture

Let us consider a thermoelastoplastic continuum medium with a possible initial distribution of microvoids
(microfractures). The damage model of solids body is constructed based on fundamental principles of thermo-
dynamics (Lukyanov, 2004 [182]) and is, therefore, thermodynamically consistent, see Kiselev and Lukyanov
(2002) [140]. All processes (irreversible deformation, thermal effect, microfracture) are coupled. The following
set of state variables will be considered (Kiselev, 1998 [139]; Kiselev and Lukyanov, 2002 [140]; Lukyanov,
2004 [182]): σij , εeij and εpij , ωij is the stress tensor, elastic and inelastic (plastic) parts of strain tensor and the
damage tensor, respectively; at the same time, the decomposition of the strain rate tensor into an elastic rate and
a plastic rate parts is assumed: ε̇ij = ε̇eij + ε̇pij .

1This chapter is based on the following publications:

1. Lukyanov, A. A., Shock Wave Structure in Anisotropic Carbon Fiber Composites, Mechanics of Solids, 48(6), 2013, PP. 706-715.

2. Lukyanov, A. A., Modeling the Effect of Orientation on the Shock Response of a Damageable Composite Material, J. Applied
Physics, 112, 2012, 084908.

3. Lukyanov, A. A., Segletes, S. B., Frontiers in the Constitutive Modeling of Anisotropic Shock Waves, Applied Mechanics Re-
views, 64(4), 2012, 040802. Lukyanov, A. A., Chugunov, N., Sadovskii, V. M. and Sadovskaya, O. V., Modelling of Irreversible
Deformation near the Tip of a Crack in a Porous Domain Containing Oil and Gas, ECMOR XIV - 14th European Conference on
the Mathematics of Oil Recovery. 2014. 10.3997/2214-4609.20141808.
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The first law of thermodynamics can be written in the following form (change of internal energy)

ė =
1

ρ
σij ε̇ij −

1

ρ
divq. (3.1)

Where the dot above the symbol represents the material derivative with respect to time. The second law of
thermodynamics can be written in the form of the Clasious-Duhem inequality:

Ṡ ≥ −1

ρ
div
( q
T

)
. (3.2)

Here e and S is the internal energy and entropy respectively; T is the absolute temperature; q is the heat flux
vector; ρ is the density.

Using the Legendre transformation for the physical quantities e and S, the expression for the specific free
energy can be written as follows, F = e − TS. Combing inequality (3.2), together with (3.1) can now be
rewritten as

1

ρ
σij ε̇ij −

1

ρ

q · gradT
T

− Ṫ S − Ḟ ≥ 0. (3.3)

Taking into account that the free energy is a function of the following set of state variables: εeij , ε
p
ij , ωij , T , i.e.

F = F (εeij , ε
p
ij , ωij , T ), inequality (3.3) yields the following condition, which is valid for all processes taking

place within the continuum:
(

1

ρ
σij −

∂F

∂εeij

)
ε̇eij −

(
∂F

∂T
+ S

)
Ṫ +

1

ρ
σij ε̇

p
ij−

− ∂F

∂εpij
ε̇pij −

∂F

∂ωij
ω̇ij −

1

ρ

q · gradT
T

≥ 0. (3.4)

Using inequality (3.4), the following qualities are required to guarantee positive definite form in (3.4) for all
physical processes:

σij = ρ
∂F

∂εeij
, S = −∂F

∂T
. (3.5)

Furthermore, (3.5) and (3.4) yield an expression for the total dissipation function to be obtained

d = dM + dF + dT ≥ 0, (3.6)

where d = ργ is the dissipation; (γ = T Ṡi is the entropy production) and the following notations and relations
are assumed:

dM =

(
σij − ρ

∂F

∂εpij

)
ε̇pij , dF = −ρ ∂F

∂ωij
ω̇ij , dT = −q · gradT

T
. (3.7)

Here dM is the mechanical dissipation; dF is the dissipation of continuum fracture; dT is the thermal dissipation;

τij =

(
σij − ρ

∂F

∂εpij

)
is the effective stress tensor. It can be seen from (3.7) that the free energy F depends

upon the plastic deformations, which in turn means that the dissipation process is defined by the effective stress
τij (Kiselev, 1998 [139]) and not the real Cauchy stress σij . The introduction of plastic deformation εpij into F
is the free energy, allows to take into account deformative anisotropy of the material during plastic deformation
(Kiselev, 1998 [139]).

In addition, expression (3.1) can be expressed in the following form by using F = e− TS

Ḟ + ṠT + SṪ =
1

ρ
σij ε̇

e
ij +

1

ρ
σij ε̇

p
ij −

1

ρ
divq.

Using (3.5), the final expression for entropy production can now be obtained

T Ṡ =
1

ρ
τij ε̇

p
ij −

∂F

∂ωij
ω̇ij −

1

ρ
divq. (3.8)

In conclusion, the entropy in the heat conduction equation can be characterised by a set of independent state
variables: εeij , ε

p
ij , ωij , T .
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3.1.1 Basic Assumptions
The following set of assumptions can be applied in order to simplify the formulation of a final set of

constitutive equations. Let us assume:
1. Rate of elastic deformations are small: ε̇eij ε̇

e
ij � 1;

2. Dissipation function (3.6), is a sum of the three positive terms defined in (3.7):

dM ≥ 0, dF ≥ 0, dT ≥ 0. (3.9)

Note, that in a case of classical Fourier laws, q = −κ grad T , where the thermal dissipation is always taken to
be positive using:

dT =
κ̃(gradT )2

T
≥ 0,

where κ̃ ≥ 0 is the conductivity tensor. The hypothesis dM ≥ 0 is the well-known Planck inequality. This
assumption (3.9) will be used in order to choose the kinematic relations for the internal state variables εpij , ωij .

3. The free energy, F , includes several parts, namely:

F = F1(εeij , ωij , T ) + F2(εpij , ωij , T ) + F0(T ) (3.10)

F̂ (εeij , ε
p
ij , ωij , T ) = F1(εeij , ωij , T ) + F2(εpij , ωij , T ) (3.11)

The first relation of (3.5), together with (3.10) supports the assumption that the accumulation of plastic defor-
mation does not change the elastic properties of the materials. Let us assume also that

−ρ ∂F
∂εpij

= Γεpij ,

Γ ≥ 0 is the parameter for material strain anisotropy. In this research, the parameter for material strain
anisotropy is equal zero, so Γ = 0 is assumed.

5. For the Free energy, the following relation is assumed (Duhamel-Neumann’s law – the generalized
Hooke’s law of the thermo-elasticity)

∂F

∂T
= −ᾱvijCijklεekl, ᾱvij =

αvij
ρ
, (3.12)

where αvij is the tensor of volume expansion coefficients.
6. For dissipation of continuum fracture dM , the Onsager theory is applied which can be written for isotropic

media as:

− ρ ∂F
∂ωij

= Λijklω̇kl, (3.13)

where Λijkl ≥ 0 is the Onsager’s tensor. Relations (3.13) state that the linear link between the thermodynamic
forces and thermodynamic flows are in accordance with Onsager’s theory (Sedov, 1972 [237]; Glansdorff and
Prigogine, 1971 [98]).

The specific heat capacity at constant volume (it approaches the classical Dulong and Petit constant after
Debye’s temperature (Poirier, 2002 [224])) is defined as

cv = −T ∂2F0

∂T 2

∣∣∣∣
v

, S0 = −∂F0

∂T
, (3.14)

where S0 is the reference entropy. It follows that

S0 = cv ln

(
T

T0

)
, S = S0 −

∂F̂

∂T
. (3.15)

Using Duhamel-Neumann’s law (3.12) and differentiating relation (3.15) with respect to time leads to the fol-
lowing form:

Ṡ(ε̃, T ) = Ṡ0(T ) + [ᾱvijCijklεekl]• = cv
Ṫ

T
+ [ᾱvijCijklεekl]•. (3.16)
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Using relation (3.16) and the Onsager’s theory (3.13), equation (3.8) can be rewritten in the form:

ρ
(
cvṪ + T · [ᾱvijCijklεekl]•

)
= τij ε̇

p
ij + ω̇ijΛijklω̇kl −∇ · q. (3.17)

where [·]• represents the material time derivative.
In summary, it has been possible to derive an equation describing the change of temperature, by taken into

account all dissipative processes and finite deformation which can occur within a material (plastic deformation,
damage evolution, mechanical dissipation). In order to complete our description, the system if constitutive
equations are now required.

3.1.2 System of Constitutive Equations
Thermodynamically consistent modeling approach should allow for the damage formation and accumula-

tion of different shapes (described by the damage tensor ωij) in regions of pronounced tension, their disap-
pearance under compression as well as the heating effects and the accumulation of damage in the domains of
intensive tension. The deformation, damage development and heating processes are mutually dependent.

The damage parameters in this work are two invariants of the damage tensor ωij : the first invariant ω =

αijωij/3 is the volumetric damage (concentration of microvoids) and α =
√
ω′ijω

′
ij is the intensivity of de-

viatoric part of the damage tensor, where ω′ij = ωij − (ωkk/3)αij is the shear damage. A general form of
the constitutive equations proposed for the investigation of damage processes in anisotropic media with the as-
sociated and generalised incompressible plasticity flow model can be written as (the contraction by repeating
indices is assumed throughout this model):

σ′ij = −p′∗αij + S̃′ij , p′∗ = p′eos +
βijS̃

′
ij

βklαkl
, S̃′ij = σij − αij ·

σklαkl

‖α‖2
, (3.18)

Cαijklėkl =
(
S̃′ij
)∇

+ λCαijkl
∂Π(S̃′ij , p

′
∗)

∂S̃kl
+ CαijklΛωω̇

∂ψ

∂S̃kl
, (3.19)

F̂(S̃′kl, p
∗) = 0, S̃′ij =

S̃ij
(1− ω)(1− α)

, p′∗ =
p∗

(1− ω)(1− α)
, (3.20)

Cαijkl =

(
Cijkl −

αijαpqCpqkl
‖α‖2

)
, p′eos =

peos
(1− ω)(1− α)

, (3.21)

ṗ′eos = KC(ρ, T )

(
ε̇kk − αvijαij Ṫ + Λω̃

∂χ

∂p∗
˙̃ω

)
, (3.22)

ρcvṪ + ρT [ᾱvijCijklεekl]• = τij ε̇
p
ij + Λωω̇

2 + Λαα̇
2 − ∂qi

∂xi
, (3.23)

where p∗αij is the generalized spherical part of the stress tensor (Lukyanov, 2008 [184]; Lukyanov and Segletes,
2012 [189], Lukyanov, 2012 [187]), peos is the thermodynamic (equation of state) response pressure, S̃ij is the
generalized deviatoric stress tensor (αijS̃ij = 0), αij and βij are the first and second generalizations of the
Kronecker delta, Cijkl is the elastic stiffness matrix of the undamaged material, Cαijkl is the generalized shear
elastic stiffness matrix of the undamaged material, KC is the first generalized bulk modulus, ‖α‖ =

√
αijαij

is the Frobenius norm, Π(S̃′ij , p
′
∗) is the plastic potential for associated anisotropic generalized incompressible

plasticity, λ is the Lagrangian plasticity multiplier, F̂ is the yield function, Λω and Λα are the Onsager’s pa-

rameters, ekl is the deviatoric part of the strain tensor, qi = −κij
∂T

∂xj
is the heat flux vector, κij is the heat

conductivity tensor. The dot above symbols indicate the total (substantial) derivative with respect to time. The
procedure of construction for the tensor functions αkl and βkl have been defined in (Lukyanov, 2008 [184];
Lukyanov and Segletes, 2012 [189]; Lukyanov, 2012 [187]):

α11 =

(
3∑

k=1

Ck1

)
· 3K̄C , α22 =

(
3∑

k=1

Ck2

)
· 3K̄C ,

α33 =

(
3∑

k=1

Ck3

)
· 3K̄C , αijαij = 3,

(3.24)
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KC =
1

3
√

3

√√√√
(

3∑

k=1

Ck1

)2

+

(
3∑

k=1

Ck2

)2

+

(
3∑

k=1

Ck3

)2

,

KC =
1

9K̄C
,

(3.25)

where Cij is the elastic stiffness matrix Cαijkl (written in Voigt notation). The elements of the tensor βkl are

β11 =

(
3∑

k=1

Jk1

)
· 3KS , β22 =

(
3∑

k=1

Jk2

)
· 3KS ,

β33 =

(
3∑

k=1

Jk3

)
· 3KS , βijβij = 3,

(3.26)

1

KS
=
√

3

√√√√
(

3∑

k=1

Jk1

)2

+

(
3∑

k=1

Jk2

)2

+

(
3∑

k=1

Jk3

)2

, (3.27)

where Jij are elements of the compliance matrix
(
Cαijkl

)−1

(written in Voigt notation). In the limit of isotropy,
the proposed generalisation returns to the traditional classical case where tensors αij and βij equal δij .

Problems of impact loading are characterised by shock formation and propagation within the material.
Therefore, for these types of problems it is necessary to consider integral conservation laws at the front of
shock wave propagation. According to the classical theory of continuum mechanics, the satisfaction of conser-
vation laws for the physical variables with discontinuous leads to the Rankine - Hugoniot condition (or equation
of state). Introduction of an equation of state into the system of constitutive equations allows the compression
shock wave distribution to be correctly defined.

The Mie-Grüneisen equation of state with cubic shock velocity as a function of particle velocity can be used
which defines pressure as

pEOS =





ρ0c
2µ

[
1 +

(
1− Γ

2

)
µ− Γ

2
µ2

]

[
1− (S1 − 1)µ− S2

µ2

µ+ 1
− S3

µ3

(µ+ 1)
2

]2 + (1 + µ) · Γ · E, µ > 0;

ρ0c
2µ+ (1 + µ) · Γ · E, µ < 0;

, (3.28)

KC(ρ, T ) = ρ

(
∂pEOS

∂ρ

)
, Γ =

γ0 + aµ

1 + µ
, ρ

∂E

∂ρ
=
peos
ρ0

, (3.29)

where µ =
ρ

ρ0
− 1, ρ is the current density, ρ0 is the initial density, E is the internal energy per initial density

(
E =

e

ρ0

)
, S1, S2, S3 is the intercept of the U -up curve. Parameters c, S1, S2, S3, γ0, a represent material

properties which define its EOS. Parameters have been defined to cover a large number of isotropic materials
(Steinberg, 1991 [241]).

In a case of isotropic media, a system of constitutive equations for the damageable thermo-visco-elasto-
plastic medium 3.18-3.20 reduces to the following form:

σ′ij = −p′EOSδij + S′ij , (3.30)

(
S′ij
)∇

+ λ̃S′ij = 2µ

(
eeij − Λα

∂ψ

∂σij
α̇

)
, ėij = ėpij + ėeij − Λα

∂ψ

∂σij
α̇, (3.31)

ėpij = ε̇pij = 2λ̃ · S′ij , S′ij =
Sij

(1− ω)(1− α)
, S′ijS

′
ij ≤

2

3
Y 2

0 , (3.32)

where µ is the shear modulus, symbol∇ is the Jaummann derivative with respect to time for the tensor compo-
nent:

(Sij)
∇

= Ṡij − SikWjk − SjkWik. (3.33)
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where Wij is the skew symmetric part of the velocity gradient.
It should be noted that a part of the classical model of an elastoplastic medium, the expression for the total

deviatoric part of the strain tensor consists of three parts. An additional term, conditioned by the developing
shear damage, is incorporated to take into account the growth of the damage. The decomposition of the strain
tensor into three similar parts can be found also in papers (Bamman, 1989 [16]; Bamman et al. [17]; Kiselev
and Lukyanov, 2002 [140]; Lukyanov, 2004 [182]).

In order to describe the evolution of volumetric damage (spherical type of damage), the following expression
can be used:

ω̇ = ϕ(ω, σ) = B

(
σ

1− ω − σ
∗
)β

H

(
σ

1− ω − σ
∗
)

+ (3.34)

+ω
σ − σ+

4η
H(σ − σ+) + ω

σ − σ−
4η

H(σ− − σ),

σ+ = −2

3
Y lnω, σ− =

2

3
Y lnω,

which consists of three terms, the first one describes the initiation of the spherical damage (Kiselev and Lukyanov,
2002 [140]). The next two terms describe expansion and collapse of micropores and are obtained from the solu-
tion of the dynamic behaviour of a single spherical pore (see previous section). In order to obtain the description
of shear damage, the phenomenological model is used, which is based upon the assumption that shear damage
is initiated when the effective plastic strain (intensivity of plastic deformation) achieves a critical value:

α̇ = C · ε̇pu ·H (εpu − εpu∗) ,

η = η0(1− ω)(1− α), Y = Y0(1− ω)(1− α),

ρcvṪ + αvKε̇
eT = Sij ε̇

p
ij + Λωω̇

2 + Λαα̇
2 − divq,

q = −κgradT, εpu =
√
εpijε

p
ij , Su =

√
SijSij .

Here σij , εeij , ε
p
ij represent the components of stress tensor, elastic and inelastic strain (viscoplastic deformation)

respectively. (εij = εeij + εpij ; ε
p
kk = 0); T is the absolute temperature; q is the heat flux; ρ is the density, εpu is

the intensivity of plastic deformation; B, C, Λω , Λα, σ∗, εpu∗ is the material parameters; η0, Y0 is the dynamic
viscosity, yield limit for undamaged (virgin) materials; cv is the heat capacity at constant stress; αv is the
volume expansion coefficient; κ is the conductivity coefficient; H(x) is the Heaviside function; the dot above
the symbol means material derivative with respect to time.

The main aspects of a phenomenological strength model can be characterized by a yield criterion repre-
senting a surface that separates the elastic and plastic regions of the stress space, a flow potential gradient that
represents the direction of plastic strain rate, a strain hardening rule and that plastic flow is incompressible.
Following work by Lukyanov (2008) [184], the mathematically consistent yield function of a fully anisotropic
material based on generalized decomposition of the stress tensor is developed:

F̂
(
S̃ij

)
= Ψ

(
S̃ij

)
(1 + χp∗) 6 Y (ε̄p) ,

p∗ =
1

‖α‖2
σijαij ,

(3.35)

where Ψ
(
S̃ij

)
is described by generalized Hill’s yield functions:

Ψ2
(
S̃ij

)
= F

(
α3S̃2 − α2S̃3

)2

+G
(
α1S̃3 − α3S̃1

)2

+

+H
(
α22S̃11 − α11S̃22

)2

+ 2NS̃2
12 + 2LS̃2

23 + 2MS̃2
13

, (3.36)

where S̃ij is the generalized deviatoric stress tensor (S̃i = S̃ii, i = 1, 2, 3); αij is the generalized Kronecker’s
symbol (Lukyanov, 2008 [184]) (αi = αii, i = 1, 2, 3). The material constants χ, F , G, H , N , L, M are
specified in terms of selected initial yield stresses in uniaxial tension, compression, and equibiaxial tension. It is
important to note that plasticity model (3.36) is naturally independent from the generalized hydrostatic pressure
and therefore, the following equality can be written:

Ψ
(
S̃ij

)
≡ Ψ (σij) , σij = p∗αij + S̃ij , p

∗ 6= 0, (3.37)
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where σij is the stress tensor. In this paper, a uniaxial strain state (one-dimensional reduced mathematical
formulation in strain space) and the adiabatic approximation assumptions are considered for modelling shock
waves propagation in anisotropic solids. Therefore, material parameters and their numerical values for AA7010-
T6 are taken as presented in Table 3.1. Parameters c ∈ [cII , cI ], S1, S2, S3, γ0, a represent material properties

Table 3.1: Material properties for AA7010-T6 used in analysis.

Parameter Description AA7010-T6

F Anisotropy coefficient 0.6898
G Anisotropy coefficient 0.2873
H Anisotropy coefficient 0.6824
Y [MPa] Yield stress 500.0
χ
[
MPa−1

]
Pressure dependency factor 0.0

α11 Tensor αij (11 direction) 0.9976
α22 Tensor αij (22 direction) 1.0029
α33 Tensor αij (33 direction) 0.9994

which define its EOS (3.28). A description of their numerical values for AA7010-T6 is shown in Table 3.2.

Table 3.2: EOS data for AA7010-T6 used in analysis.

Parameter Description AA7010-T6

c [m/s] Velocity curve intercept 5154
S1 First slope coefficient 1.4
S2 Second slope coefficient 0.0
S3 Third slope coefficient 0.0
γ0 Grüneisen gamma 2.0
a First-order volume correction 0.48
ρ0

[
kg/m3

]
Initial density 2810

KC [GPa] Generalized bulk modulus 74.65

3.1.3 Criterion of Macrofracture
It has been shown that the development of intensive plastic flow and the accumulation of microvoids within a

material, represents the pre-damage stage of the material. The criterion based on specific internal part of entropy
(3.38) was chosen to describe the initiation of new free surfaces (macrofracture of the material). For the case
of an impact test with spallation, where there are regions of high tensile stresses (Kiselev, 1998 [139]; Kiselev
and Lukyanov, 2002 [140]), the main contribution to dissipation (3.38) will come from the terms dM and dF .
When criterion (3.38) is realized in some point of the material, a crack will occur, or in mathematical language,
a new free surface occurs which will propagate within the material. The problem of numerical simulation of
crack propagation is a self-independent problem and requires additional investigations.

The development of intensive plastic flow and the accumulation of microdamage is the pre-damage stage of
a macrofracture (fracture of material). The criterion used to mark the beginning of a macrofracture (new free
surface origination) is based upon an entropy criterion expressed in terms of the dissipative processes within the
material (Kiselev and Yumashev, 1992 [141]; Kiselev, 1998 [139]; Kiselev and Lukyanov, 2002 [140]):

D =

t∗∫

0

1

ρ
(dM + dF + dT ) dt = D∗, (3.38)

where t∗ is the time of macrofracture process, D∗ is the material parameter (internal part of total specific
entropy).
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§ 3.2 Numerical Integration of Anisotropic Plasticity Model

The newly developed plasticity model takes into account isotropic material as a special case (associated
anisotropic plasticity model reduces to the classical associated von Misses plasticity model, i.e. yield function
(3.36) equals to von Misses yield function, therefore, associated plastic flow takes a place). Therefore, the new
numerical technique being developed must take into account the numerical aspect of the isotropic plasticity as
a special case.

3.2.1 Numerical Aspects of Isotropic Case
Firstly, the isotropic case is considered as a special case of anisotropy. This well-studied case is used in the

verification process of the anisotropic material model. In the limit of isotropy (i.e., mechanical properties are
independent from the material orientation), generalised deviatoric stress coincides with the classical deviatoric
stress tensor and satisfies to:

S∇ij =
(
S∗ij
)∇ − 4 · µ · λ̇ · Sij = 2 · µ · ėij − 4 · µ · λ̇ · Sij , (3.39)

where S∗ij is a trial deviatoric stress tensor, Sij is a true deviatoric stress tensor, µ is a shear modulus, eij is a
deviatoric strain tensor. Finite difference scheme of the first order approximation can be written in the form:

Sn+1
ij − Ŝnij

∆t
=

(
S∗ij
)n+1 − Ŝnij

∆t
− 4 · µn+1 · λ̇n+1 · Sn+1

ij , (3.40)

where Ŝnij = Snij +
(
SnikW

n
jk + SnjkW

n
ik

)
·∆t. Therefore, (3.40) leads to the relation

Sn+1
ij =

(
S∗ij
)n+1 − 4 · µn+1 · λ̇n+1 · Sn+1

ij ·∆t, (3.41)

which can be rewritten as

Sn+1
ij =

(
S∗ij
)n+1

1 + 4 · µn+1 · λ̇n+1 ·∆t
(3.42)

In the case of isotropic material, the anisotropic yield function (3.36) reduces to the von Misses yield function.
Thus, substituting (3.42) into von Misses yield function, the parameter λ̇n+1 (or dλ̇n+1) can be rewritten as

λ̇n+1 =
1

4 · µn+1 ·∆t ·




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


 ·H




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


 , (3.43)

dλn+1 =
1

4 · µn+1
·




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


 ·H




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


 , (3.44)

where S∗ij is the trial value of the deviatoric stress tensor at n + 1 moment of time, µn+1 is the shear modulus

at n+ 1 moment of time, kn+1 =

√
2

3
Y n+1 is the effective yield stress, H(•) is the Heaviside function.

The true deviatoric stress tensor at the von Misses yield surface can be derived by using (3.44):

Sn+1
ij =

kn+1
(
S∗ij
)n+1

√(
S∗ij
)n+1 (

S∗ij
)n+1

. (3.45)

It is very important to investigate the finite difference scheme of second order. In this case (3.39) can be written
in the following form:

Sn+1
ij − Ŝnij

∆t
=
(
µn+1 + µn

)
· ėn+ 1

2
ij − 4 · 1

2
·
(
µn+1 + µn

)
· 1

2

(
λ̇n+1 · Sn+1

ij + λ̇n · Snij
)

(3.46)

where Ŝnij = Snij +
(
SnikW

n
jk + SnjkW

n
ik

)
·∆t. Finally, (3.46) can be rewritten

(
S∗ij
)n+1

= Ŝnij + µn+ 1
2 · ėn+ 1

2
ij ·∆t− 4 · µn+ 1

2 · ∆t

2
λ̇n · Snij . (3.47)

42



Furthermore, substituting (3.47) into von Misses yield function, the parameter λ̇n+1 (or dλ̇n+1) and true devia-
toric stress tensor at the yield surface can be rewritten as

λ̇n+1 =
1

4 · µn+ 1
2 · ∆t

2

·




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


H




√(
S∗ij
)n+1 (

S∗ij
)n+1

kn+1
− 1


 , (3.48)

Sn+1
ij =

kn+1
(
S∗ij
)n+1

√(
S∗ij
)n+1 (

S∗ij
)n+1

. (3.49)

In conclusion, the equations (3.48) and (3.49) provides the numerical integration with prediction-correction
type of scheme-algorithm for isotropic elasto-plastic constitutive equations. The equation (3.49) will be used
in the next section for the verification and validation of the numerical algorithm for anisotropic incompressible
plasticity model.

3.2.2 Numerical Algorithm for Anisotropic Incompressible Plastic Model

The differential equation for the generalised deviatoric stress tensor in a case of full decomposition of the
stress tensor can be written as follows:

(
S̃ij

)∇
= Cijkl (ėkl − ε̇pkl)−

αij · [αpq · Cpqkl (ėkl − ε̇pkl)]
‖α‖ , (3.50)

or (
S̃ij

)∇
= Cijklėkl −

αij · αpq · Cpqklėkl
‖α‖ −

[
Cijklε̇pkl −

αijαpq · Cpqklε̇pkl
‖α‖

]
, (3.51)

Based on (3.51), the trial deviatoric part of stress tensor is calculated as follows:

(
S̃∗ij
)

= ˆ̃Snij +

(
Cijklėkl −

αij · αpq · Cpqklėkl
‖α‖

)
·∆t, (3.52)

where ˆ̃Snij = S̃nij +
(
S̃nikW

n
jk + S̃njkW

n
ik

)
·∆t, and S̃nij is the generalised deviatoric stress tensor.

The plasticity flow is described by
ε̇pkl = 2 · λ̇ · Vklpq · S̃pq, (3.53)

where Vklpq is the plastic flow matrix. In matrix notation, (3.52) will be rewritten as

{
S̃n+1

}
=
{
S̃∗
}
− 2 · dλn+1 ·

[
Cn+1 · Vn+1 − {α} · {α}

T

‖α‖ · Cn+1 · Vn+1

]{
S̃n+1

}
(3.54)

or
{
S̃n+1

}
=
{
S̃∗
}
− 2 · dλn+1 ·

[
E− {α} · {α}

T

‖α‖

]
·Cn+1 ·An+1 ·

{
S̃n+1

}
, (3.55)

where {α}T = {α11, α22, α33, 0, 0, 0}, and E(6×6) is the unit matrix. Therefore, (3.55) represents the numerical
approximation of the true generalised deviatoric part of stress tensor with first order of approximation. From
(3.55), the correction matrix Eα due to generalized decomposition of the stress tensor can be introduced and
has the expression:

Eα =

[
E− {α} · {α}

T

‖α‖

]
(3.56)

and as a result (3.55) takes the final form
{
S̃n+1

}
=
{
S̃∗
}
− 2 · dλn+1 ·Eα ·Cn+1 ·Vn+1 ·

{
S̃n+1

}
. (3.57)
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Using expression (3.57) and yield function (3.36) F̂ = f
(
S̃ij

)
− k2 = 0 (in the case of an isotropic material

k2 =
2

3
Y 2) the following equation to respect dλ (at n+ 1 moment of time) can be obtained

∆k2 = 4 · dλ2 ·
{
S̃n+1

}T
V ·C ·Eα ·U ·Eα ·C ·V

{
S̃n+1

}

−4 · dλ ·
{
S̃n+1

}T
V ·C ·Eα ·U

{
S̃∗
} , (3.58)

where ∆k2 = (k∗)2 −
(
kn+1

)2
. Besides, the following notation in this thesis will be assumed:

b1 =
{
S̃n+1

}T
V ·C ·Eα ·U

{
S̃∗
}
, (3.59)

b2 =
{
S̃n+1

}T
V ·C ·Eα ·U ·Eα ·C ·V

{
S̃n+1

}
, (3.60)

where b1 > 0, b2 > 0 are positive coefficients due to the fact that matrixes U, V, C, E, and Eα are positive
definitive. According to the notation presented in (3.59), (3.60), the equation for parameter dλ can be written in
the form:

0 = ∆k2 − 4 · b1 · dλ+ 4 · b2 · dλ2. (3.61)

In the case when anisotropic materials undergoes plastic deformation, parameters ∆k2 > 0, b1 > 0, b2 > 0,
4 · b21 − 4 · b2 ·∆k2 > 0, therefore, (3.61) has two positive roots which are defined as follows:

dλ1 =
2 · b1 +

√
4 · b21 − 4 · b2 ·∆k2

4 · b2
, dλ2 =

2 · b1 −
√

4 · b21 − 4 · b2 ·∆k2

4 · b2
, (3.62)

where dλ1 > 1, dλ2 < 1 and, thus, based on the fundamental property of the compression transformation
(function), it follows that in the case of choosing dλ2, the convergence of the numerical algorithm exists but in
the case of choosing dλ1, the convergence does not exist.

3.2.3 Associated Incompressible Anisotropic Plasticity
In case of associated plasticity flow, the yield surface coincides with plastic potential, i.e. U = V. Note

again that general non-associated thermodynamically and mathematically consistent incompressible anisotropic
plasticity model presented in this thesis reduces to the associated plasticity model in the limit of isotropy. The
final set of equations for anisotropic associated plasticity model takes the form:

{
S̃n+1

}
=
{
S̃∗
}
− 2 · dλn+1 ·Eα ·Cn+1 ·Un+1 ·

{
S̃n+1

}
, (3.63)

where dλ (at n+ 1 moment of time) satisfies relations2

0 = ∆k2 − 4 · ba1 · dλ+ 4 · ba2 · dλ2. (3.64)

Where
∆k2 = (k∗)2 −

(
kn+1

)2
,

ba1 =
{
S̃n+1

}T
U ·C ·Eα ·U

{
S̃∗
}
, (3.65)

ba2 =
{
S̃n+1

}T
U ·C ·Eα ·U ·Eα ·C ·U

{
S̃n+1

}
. (3.66)

Therefore, (3.64) has two positive roots which are defined as follows:

dλa1 =
2 · ba1 +

√
4 · (ba1)2 − 4 · ba2 ·∆k2

4 · ba2
, dλ2 =

2 · ba1 −
√

4 · (ba1)2 − 4 · ba2 ·∆k2

4 · ba2
, (3.67)

where dλa1 > 1 — no convergence , dλa2 < 1 — convergence.

2The index "a" corresponds to the associated flow plasticity.
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3.3.4 Final Procedure of Numerical Integration of Incompressible Anisotropic Plasticity

In this section, the final relations are presented, which describe the numerical integration algorithm for the
anisotropic incompressible plasticity model presented in the previous section. The presented algorithm is based
on classical prediction-correction type of scheme. First step is based on the trial value of generalised deviatoric
stress, which is calculated based on generalised Hook’s law. Based on the trial value of the generalised devia-
toric stress tensor, the plasticity status can be checked. In case when plasticity criterion is realised the correction
step is performed. Mathematically, the aforementioned steps can be written as follows

Prediction (Elastic Behaviour):
1.

a)
(
S̃∗ij
)

= ˆ̃Snij +

(
Cijklėkl −

αij · αpq · Cpqklėkl
‖α‖

)
·∆t,

Ŝnij = Snij +
(
SnikW

n
jk + SnjkW

n
ik

)
·∆t,

b) ∆k2 = (k∗)2 −
(
kn+1

)2
.

Correction if ∆k2 > 0 (Elastoplastic behaviour):
2.

dλi = 1.0,

dλi+1 = 0.0,

ε = required accuracy,

do while abs (dλi+1 − dλi) > ε

dλi = dλi+1,

{
S̃n+1

}
i+1

= (E− 2 · dλi ·C ·U)
−1 ·

{
S̃∗
}

= B (dλi) ·
{
S̃∗
}
,

B (dλi) = (E− 2 · dλi ·C ·U)
−1
,

b1 =
{
S̃n+1

}T
V ·C ·Eα ·U

{
S̃∗
}
,

b2 =
{
S̃n+1

}T
i+1

V ·C ·A ·C ·V
{
S̃n+1

}
i+1

,

dλi+1 =
2 · b1 −

√
4 · b21 − 4 · b2 ·∆k2

4 · b2
,

end do

where E is the unit matrix (6× 6), C is the stiffness matrix, U is the matrix of yield surface, V is the plastic
flow.

3.2.5 Verification of Numerical Implementation

The process of verification is required to provide confidence in numerical modelling. Note that in the limit
of isotropy, the aforementioned models reduce to the conventional constitutive equations suitable for isotropic
materials. Therefore, in order to be confident that the implementation of the constitutive equation into the
meshless code has been done correctly, a special case of anisotropy (i.e. isotropy of the materials) is considered.

Analysis of an isotropic case shows that parameter dλ can be calculated analytically by using (3.44). For
the isotropic model the following set of parameters presented in Tables 3.3, 3.4, 3.5 have been used to validate
the procedure of numerical integration of anisotropic associated plastic flow.

The isotropy of materials applies restriction to the elastic moduli of materials and identifies the relation

45



Chapter 3. SHOCK WAVE PROPAGATION IN COMPLEX MEDIA

Table 3.3: Reference material properties I.

Parameter Description value
E Young’s modulus ("a" direction) 28.0 GPa
ν Poisson’s ratio 0.4
µ Shear modulus 10 GPa

Table 3.4: Reference material properties II.

Parameter Description value
E Young’s modulus ("a" direction) 48.0 GPa
ν Poisson’s ratio 0.2
µ Shear modulus 20 GPa

between them µ =
E

2 · (1 + ν)
. Let us recall dλ expression for isotropic materials

dλ =
1

4 · µ ·
(

k∗

kn+1
− 1

)
, k∗ =

√(
S̃∗ij

)n+1 (
S̃∗ij

)n+1

. (3.68)

Using (3.68) and different trial values of the yield limit k∗, the dλAnalytical, dλNumerical, and number of
iterations of the numerical algorithm had been calculated and presented in Table 3.6.

§ 3.3 Plate Impact Tests

In the previous sections, the thermoviscoplastic model with two damage parameters are defined to explain
damage initiation and propagation and origination of new free surfaces (Kiselev, 1998 [139]; Lukyanov, 2004
[182]). This model depends upon several nonstandard parameters, which are related to damage initialization
and propagation and to the criterion of macrofracture of the material. These parameters have to be identified for
different types of materials.

3.3.1 Definition of Material Properties
The plane shock-wave technique provides a powerful tool for experimental studying material properties

at different strain rates (Steinberg, 1991 [241]; Meyers, 1994 [203]; Bourne and Gray, 2003 [36]; Millett et
al., 2002 [206]. The characteristics as spall pressure, shock velocity, particle velocity, Hugoniot elastic limit,
thickness of the spall section, time to spall, and free surface velocity of the spall section can be measured
and used for the characterization of material dynamic response (Bourne and Gray, 2003 [36]; Millett et al.,
2002 [206], Stoffel, 2005 [243], Meziere et al., 2006 [204]).

In order to identify the non-standard materials parameters, the method based on the comparison of numerical
simulation with the plate impact test with spallation (Kiselev, 1998 [139]; Kiselev and Lukyanov, 2002 [140])
is used. It should be noted that experiments with spallation are nowadays the most informative approach to

Table 3.5: Reference material properties III.

Parameter Description value
E Young’s modulus ("a" direction) 55.0 GPa
ν Poisson’s ratio 0.1
µ Shear modulus 25 GPa
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Table 3.6: Verification of Numerical implementation.

Parameter Description Material I. Material II. Material III.
k∗ Trial value of yield limit 351.738 MPa 567.798 MPa 605.907 MPa
k Real value of yield limit 350.0 MPa 350.0 MPa 350.0 MPa

dλAnalytical Analytical Calculation 1.2414 · 10−2 77.7849 · 10−2 73.1163 · 10−2

dλNumerical Numerical Calculation 1.2414 · 10−2 77.7849 · 10−2 73.1163 · 10−2

Iterations Numeber of Iterations 5 27 30

characterise the dynamical behaviour of materials and to construct a set of constitutive equations (Kanel et al.,
1987 [133]). The model with two damage parameters for isotropic media (Kiselev, 1998 [139]; Kiselev and
Lukyanov, 2002 [140]) contains seven unknown variables: B, C, Λω , Λα, σ∗, εpu∗, D∗.

3.3.2 Description of the Experiment
The flyer plates were launched using a 75 mm bore, 1 m long and 50 mm bore, and 1 m long single stage gas

gun the Royal Military College of Science (Bourne and Stevens, 2001 [37]). The shock propagation in the target
is monitored using manganin stress gauges, placed between target plate and PMMA (poly methylmethacrylate)
plate within the target assembly. The target assembly is shown in Figure 3.1. The results from the stress gauges

Figure 3.1: Schematic diagram of the experimental target assembly.

were converted to in material (Target) values σM , using the shock impedances of the targetAT and PMMAAP ,
via the well-known relation

σM =
AT +AP

2AP
σP , (3.69)

where σP is the stress gauges values. The 2.5mm thick flyer plates of 6082-T6 (dural) were impacted onto the
targets (test material AA 7010-T6) over the velocity range 234 to 895, inducing stresses in the range 2.7 to 7.2
GPa. The aluminium alloy 6082-T6 was chosen as the flyer due to the close similarity in density and wave
speeds, so that the impact experiments were near symmetrical (Lukyanov, 2008 [184]). The elastic material
properties of 7010-T6 can be found in Lukyanov, 2008 [184]). Material properties of plates 6082-T6 and
PMMA can be found in Steinberg (1991) [241].

3.3.3 Verification of the model
The process of verification is intended to provide, and quantify, confidence in numerical modelling and the

results from the corresponding simulations. Note that in the limit of isotropy, the aforementioned models re-
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duce to the conventional constitutive equations suitable for the shock wave propagation in isotropic materials
described by Steinberg (1991) [241] and Meyers (1994) [203]. Therefore, in order to be confident that the im-
plementation of the constitutive equation into the SPH code has been done correctly, a special case of anisotropy
(i.e. isotropy of the materials) is considered. Plate impact tests of isotropic aluminum are considered; the data
for the aluminum was taken from the report (Steinberg, 1991 [241]). The material properties (density ρ0, shear
modulus µ0, yield strength Y0, isotropic hardening parameter Ep) of the flyer (aluminum – Al 2024-T4) and
the target (copper – Cu OFHC 1

2 Hard) are presented in Table 3.7. The target parameters have been used in the

Table 3.7: Material Plasticity Properties.

Plate ρ0, kg/m3 µ0, GPa Y0, MPa Ep, MPa

Flyer Al 2024-T4 2785 28.6 260 700
Flyer Al 6082-T6 2700 26.8 250 130
Target Cu OFHC 1

2 Hard 8930 47.7 120 0.0
PMMA 1180 2.68 200 300

proposed anisotropic elasto-plasticity model (without kinematic or isotropic hardening), in order to represent
an isotropic material, which is a special case of anisotropy. Parameters for the Mie-Gr’́uneisen equation of state
(3.28) in isotropic case for the flyer Al 2024-T4 and for the target Cu OFHC 1

2 Hard are presented in Table 3.8.
The back plate PMMA has been modelled as an isotropic material with the properties presented in Table 3.7 and
3.8. Accuracy of the SPH scheme used to approximate the governing equation were evaluated by comparing

Table 3.8: Material EOS Properties.

Plate c, m/s S1 S2 S3 γ0 a

Flyer Al 2024-T4 5328 1.338 0 0 2.0 0.48
Flyer Al 6082-T6 5240 1.4 0 0 1.97 0.48
Target Cu OFHC 1

2 Hard 3940 1.489 0 0 2.02 0.47
PMMA 2600 1.52 0 0 1.0 0.0

the reference simulation results of uniaxial plate impact. A numerical simulation was performed using meshless
discretization equations described in the previous section. Below, the comparison of SPH and FEM simulation
results for different impact velocities using isotropic constitutive equations is presented.

In figures 3.2 and 3.3, the comparison between LS-DYNA results and the SPH results is presented for
the impact velocity 450 m/s and 100 m/s respectively. It shows the time history of back surface velocity
of the target plate (Cu OFHC 1

2 Hard). It is clear from these figures that simulation results diverge at low
impact velocities (over-smothing effect). This effect is strain rate dependent since at higher impact velocities
the divergence between simulations results less compare to low impact velocities.

The above simulations were run again starting with a random distribution of internal particles (the boundary
particles were fixed) to understand its effect of the order of accuracy. The random distribution of particles was
generated by perturbing the regularly distributed particles using a uniform random variable varying between
+10% and −10% of the smoothing length. The perturbation of the particles did not change the order of accu-
racy significantly. All the above results were obtained using the cubic spline kernel (2.56) in the simulations.
Replacing the cubic spline kernel with the quintic spline kernel (2.57) did not result in any significant change in
the simulation results.

3.3.4 Shock wave propagation in aluminum alloy

Plate impact experiments on aluminum alloy 7010-T6 have been performed to determine the effect of ori-
entation of the loading axis to the longitudinal and transverse directions for the shock induced mechanical
properties (Lukyanov, 2008 [184]). In this experiment, the flyer plate of 6082-T6 was impacted onto the tar-
get plate of 7010-T6 over the velocity range 450 m/s to 895 m/s. Material parameters and parameters for the
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Figure 3.2: Comparison between SPH and FEM of simulation results of uniaxial plate impact test using
450 m/s.

Mie-Gr’́uneisen equation of state (3.28) of the flyer Al 6082-T6 are presented in Table 3.7 and 3.8 (Steinberg,
1991 [241]).

Based upon the characteristics of the thin plate impact test, the numerical domains (target and flyer plates)
can be modelled as rectangular bars (flyer plate - 0.02cm× 0.02cm× 0.2cm, target plate - 0.02cm× 0.02cm×
1.0cm) (see fig. 3.4). Symmetry conditions were applied on all sides to ensure one-dimensional waves will
travel along the length of the bar which is a basic requirement of a plate impact test. Free surface boundary
conditions were applied to the back and front surfaces of the bar (see fig. 3.4). The flyer-plate was modelled
using 1250 particles (5 particles through thickness and 5 in height) and the target-plate was modelled using 6250
particles (5 particles through thickness and 5 in height). With this resolution, all the characteristic features of
the stress pulse can be resolved, for the smallest computational cost, as further increases in resolution brings no
advantage in accuracy. Figures 3.5 and 3.6 show the comparison between experimental data and the numerical
simulation resulting from the new anisotropic equation of state and non-associated anisotropic plasticity model
for the longitudinal and transverse cases.

The experimental values, 0.39 GPa and 0.33 GPa for elastic response from the longitudinal and short trans-
verse directions, respectively figures 3.5 and 3.6, are in good correlation with the modelled values of the HEL
longitudinal - 0.395 GPa and short transverse - 0.333 GPa. The errors with respect to the experimental val-
ues are 1.4 % and 0.9 %, respectively to the longitudinal and short transverse directions. Further comparison
shows that the stress pulse width (approximately, 0.81 µs ) and release trace are in good agreement with the
experiment as well (see fig. 3.5 and 3.6). Besides, another important characteristic, the arrival time to the HEL
and the plastic wave velocity are in good correlation with experimental data. The main conclusion obtained
from these results is that the non-associated anisotropic plasticity model, as it stands, is suitable for simulating
elastoplastic shock wave propagation in anisotropic solids. Different HELs are obtained when the material is
impacted in different directions; their excellent agreement with the experiment demonstrates adequateness of
the proposed anisotropic plasticity model. However, further work is required both in the experimental and con-
stitutive modelling areas to find a better description of anisotropic material behavior and, particularly, Hugoniot
stress level.
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Figure 3.3: Comparison between SPH and FEM of simulation results of uniaxial plate impact test using
100 m/s.

Figure 3.4: Geometry of uniaxial plate impact test in the SPH method

§ 3.4 Modeling of thermo-elastic-plastic damageable medium

On the topic of dynamic loading of materials, there are many publications related to the planar plate im-
pact test with spallation (Mayers, 1994 [203]), which allows the determination of dynamic materials properties,
including damage (Kiselev and Lukyanov, 2002 [140]). Shock wave experiments have certain potential advan-
tages associated with the level of strain rate which can be induced. It has frequently provided the motivation
for the construction of material constitutive relations and has been the principal means for determining material
parameters for some of these relations (Steinberg, 1991 [241]; Meyers, 1994 [203]), therefore, the numerical
simulation of the planar plate impact test is considered. The planar plate impact test is considered where the
diameters of the flyer and the target are much greater than their thicknesses and the characteristic time of the
process is the time of several runs of elastic waves across the thickness of the target plate. Based on these
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Figure 3.5: Back-surface gauge stress traces from plate-impact experiments versus numerical simulation of
stress (PMMA) waves for plate impact test (impact velocity 450 m/s and 895 m/s) - aluminum alloy AA7010-
T6 (Longitudinal Direction).
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Figure 3.6: Back-surface gauge stress traces from plate-impact experiments versus numerical simulation of
stress (PMMA) waves for plate impact test (impact velocity 450 m/s and 895 m/s) - aluminum alloy AA7010-
T6 (Transverse Direction).
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properties, the plate impact problem may be solved using a uniaxial strain state (one-dimensional mathematical
formulation in strain space) and the adiabatic approximation (divq = 0).

3.4.1 Uniaxial Plate Impact Test with Spall
The flyer and target were assigned aluminium and titanium properties respectively. Figures 3.7 – 3.11 depict

the distribution of damage parameter, total internal dissipation and temperature at different moments in time
using the SPH method for the impact velocity V0 = 660 m/s. Material parameters B, C, Λω , Λα, σ∗, εpu∗, D∗

Figure 3.7: Distribution of total dissipation at t = 2.472 µs during SPH simulations. The maxima of the
dissipation are located at the positions of the impact and spallation.

were chosen from the condition of the best comparison between numerical simulation and experimental data
(Kanel et al., 1987 [133]): For titanium: ρ = 4530 kg/m3,K0 = 123.4 GPa, µ0 = 43.4 GPa, Λα = 750 (Pa·s),
η00 = 75 (Pa · s), B = 507 · 10−5 (Pa · s)−1, C = 0.8, Λω = 49.31 (Pa · s), εpu∗ = 0.35, σ∗ = 4.0 GPa,
D∗ = 75 kJ/kg, cσ = 520.7 J/(kg ·K), αv = 2.52 · 10−5K−1, κT = 20 W/(m ·K).

Figures 3.10, 3.11 show the damage evolution due to presented in this thesis thermoviscoelastoplastic model
with internal state variable (damage parameters) subject to the criterion of fracture based on critical value of
specific internal entropy. The solution corresponds to the existing observations (Meyers, 1994 [203]). The
temperature distribution presented in Fig. 3.9 shows that it has maxima at the point of impact and at the cross
section of the spall origination (see also, the dissipation distribution 3.7, 3.8). Hence, based on uniaxial plate
impact test, it is shown that model allows to adequately describe the basic special features of fracture process
and the criterion of fracture can be used to describe the spall problems. Using the uniaxial planar plates impact
test and numerical forward model, it is possible to identify the nonstandard parameters of the model.

3.4.2 2D Plate Impact Simulation
Interaction between target and flyer with finite dimensions is a difficult problem for numerical simulation,

as, it is necessary to take into account the development of large deformation in both bodies (target and flyer),
and their associated failure processes. This makes the correlation to experiments difficult. Significant attention
had been applied to investigate and numerical simulate one dimension spall problem (see, for example, Kanel
et al.(1987) [133]; Kanel, 1998 [130]; Kanel et al. (1995) [131]; Kanel et al., (1996) [132], [134]; Kiselev and
Lukyanov (2002) [140]; Meyers (1994) [203]; Steinberg (1991) [241]; Gray et al. (2000, 2002) [112], [113];
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Figure 3.8: Distribution of total dissipation at t = 3.24 µs during SPH simulations. The target plate is sepa-
rated into two parts demonstrating the effect of the macro-fracture criterion based on the specific internal
entropy.

Figure 3.9: Distribution of temperature at t = 2.472 µs during SPH simulations
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Figure 3.10: Distribution of damage at t = 2.472 µs during SPH simulations

Figure 3.11: Distribution of damage at t = 3.24 µs during SPH simulations
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Millett and Bourne (2001) [205]). The plane shock-wave technique provides a powerful tool for studying ma-
terial properties at different strain rates. Such characteristics as spall pressure, shock velocity, particle velocity,
Hugoniot elastic limit (HEL), thickness of the spall, time to spall, and free-surface velocity of the spall can be
measured and used for the characterization of material dynamic response.

3.4.3 Irreversible Deformation Process During Impact Loading
For understanding of the fracture process under impact loading, the deformation process is investigated in

detail. Significant investigation had been done on the uniaxial strain state, which started from the work of Taylor.
Problems of plate impact loading are very important in understanding the mechanism of fracture origination and
propagation, and also, this problem can be considered as benchmark in validating a proposed damage model. As
mentioned early, the uniaxial plate impact test raised the importance of material characterisation (specification
of mechanical and chemical properties of the material) Kanel et al. (1987) [133], Kiselev and Lukyanov (2002)
[140], Meyers (1994) [203], Steinberg (1991) [241]. The deformation processes within the target and flyer
during low velocity impact (when no fracture occurs) are considered. The wave distribution during low velocity
impact is used to understand the possible regions of macrocrack formation and propagation. Taking in account

Figure 3.12: Geometry of normal impact

the finite thickness and radius of the plates was characterised by the existence of free boundary surfaces. As a
result of that, the wave distribution picture is changed drastically. Existence of the free boundary surfaces leads
to wave reflection and formation of the compressive release wave. This fact significantly complicates the wave
distribution picture within interacting bodies and leads to non-uniaxial strain state, which in turn will affect the
initial shape of the interacting bodies. Let us consider a problem of the interaction of two copper plates with the
following mechanical properties: density ρ = 8900 kg/m3, Young modulus E = 110 GPa, and Poisson’s ratio
ν = 0.3, yield limit Y0 = 120 MPa.

Let us consider a normal impact of flyer–plate onto target–plate. Flyer–plate (radius 1.0 cm, thickness 0.4
cm) is propelled by the product of an explosion onto a copper target–plate (radius 1.5 cm, thickness 1 cm).
Figure 3.12 shows the position of the plates at the beginning of impact loading, where the velocity of the flyer
was V0 = 100 m/s. From the contact surface, the compressive wave propagates inside the flyer and target
plates. From the free surface after reflection of the initial compressive wave, the release wave forms. Since
the flyer and target are made from the same material then the mass velocity after the compressive wave front is
equal to half of the initial flyer velocity. After arrival of the compressive wave at the back surface of the target
plate, formation of the release wave fan occurs, where in the uniaxial strain state, full breaking of the material
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Figure 3.13: Distribution of the effective plastic strain at t = 64.015 µs

occurs. Since the amount of deformation reduces due to the release loading, as a result of breaking the target
material and radial target material flow, it follows that in this region there is no full breaking of the flyer–plate
and, therefore, the motion of the flyer plate continues even after arriving release waves from the back surface of
the target plate. After the compressive wave reaches the back surface of the target plate, the compressive wave
transforms into a release wave fan, where material accelerates to the initial impact velocity. However, there
exist a region of uniaxial strain state, which has smaller dimensions when compared with the thin plate impact
problem, due to the presence of a free surface and the existence of release waves. Arrival of the release wave
from the flyer side and interaction of these waves in the target plate leads to the formation of tensile stresses,
which accelerates the material near the contact surface, resulting in the formation of a gap between flyer and
target in the central part of the contact surface (see 3.13 – 3.14). Since the central part of the flyer-plate has
been brought to rest, the outer fringe region continues to move, causing the flyer to adopt the following shape
presented in figure 3.14. Figures 3.13 – 3.14 show the position of the plates at different moments in time,
together with the distribution of effective plastic strain. In order to understand the initiation and propagation
of microfracture, an investigation into the distribution of hydrostatic pressure allows the zone of initiation and
propagation of the damage to be defined.

3.4.4 Failure of the Target and Flyer Plates
Let us consider the problem of an elastoplastic damageable material behaviour (target plate) under im-

pact loading of an elastoplastic flyer plate, where flyer–plate (density - ρ = 4530 kg/m3 (titanium), radius –
1.0 cm, thickness – 0.2 cm) has normal impact velocity 700 m/s into the direction of target plate (density -
ρ = 4530 kg/m3 (titanium), radios - 3.0 cm, thickness - 1.0 cm). The relative positions of target and flyer are
shown at the moment of impact on figure 3.12.

Problem formulation: at any moment in time t > 0, in the region of the location of target and flyer plates,
requires to find the following unknown functions x, u, ρ, σij , which are described by damageable thermoelas-
toviscoplastic constitutive equations, criterion of macrofracture (3.38) and initial data

ρ(x, 0) = ρ(x), u(x, 0), σij = 0 (3.70)

At the boundary of the target plate, the following conditions are realised:
• At the free surface boundary conditions are:

σn = 0, στ = 0, (3.71)
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Figure 3.14: Distribution of the hydrostatic pressure at t = 17.026 µs

• At the contact surface of target and flyer, the slip conditions without friction, which allows the possibility of
separation are realised. Thus, we have the following algorithm:
for compressive stresses:

u(x, t) = u(t) x ∈ ∂Ω, στ = 0, σn < 0. (3.72)

If at some point along the boundary, the stresses become positive (region of tension), then for these points,
boundary conditions take the form (3.71).

Figures 3.15 - 3.16 show distribution of the different solution variables inside the plates at time t =
17.008 µs, and zones of future and current macrofracture. Figures 3.15 and 3.16 show the distribution of
the shear and volumetric damage parameters. Figures 3.17 and 3.18 show distribution of mechanical and total
dissipations. Figure 3.19 shows distribution of temperature. Numerical results of fracture initiation and prop-
agation within the target plate under impact loading of damageable elastoplastic plate are also presented and
discussed. It has been shown that fracture occurs at the zone of interaction of three release-compressive waves.

§ 3.5 Conclusion

This chapter presents thermoviscoelastoplastic model for isotropic and anisotropic materials with internal
state variable (damage parameters) subject to the criterion of fracture based on critical value of specific internal
entropy. Furthermore, the generalized decomposition has allowed the formulation and investigation of a gen-
eralized incompressibility constraint, αijε

p
ij = 0, on the plastic potential, where εpij is the plastic strain rate,

and is the generalized Kronecker delta symbol (Lukyanov, 2012 [187]). Using the generalized deviatoric stress
tensor and generalized incompressibility constraint, αijε

p
ij = 0, the plastic potential was proposed.

The numerical aspects of newly developed mathematically and thermodynamically consistent incompress-
ible anisotropic plasticity model has been discussed in this chapter. The development of an iterative numerical
algorithm for solving the anisotropic incompressible plasticity model is based on the generalisation of the avail-
able iterative numerical algorithm for isotropic materials. The algorithm reduces to the classical numerical
algorithm in the limit of isotropy. In this chapter, the comparison of numerical iterative process of one step in
time of newly developed numerical algorithm in the case of an isotropic material with analytical expression for
returning scale factor for isotropic algorithm is performed.

Numerical simulations based on the proposed non-associated anisotropic plasticity model were performed,
in order to describe the behavior of the aluminum alloy AA7010-T6 under shock loading conditions. A compar-
ison of the experimental HELs with numerical simulation shows excellent agreement (maximum error is 1.4%).
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Figure 3.15: Distribution of shear damage parameter at t = 17.008 µs

Figure 3.16: Distribution of volumetric damage parameter at t = 17.008 µs

58



Figure 3.17: Distribution of mechanical dissipation at t = 17.008 µs

Figure 3.18: Distribution of total dissipation at t = 17.008 µs
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Figure 3.19: Distribution of temperature at t = 17.008 µs

Furthermore, the good agreement of the general pulse shape and Hugoniot stress level suggests that the non-
associated anisotropic plasticity model is performing satisfactorily. However, further numerical simulations of
the proposed constitutive equations, taking into account more precise anisotropic SDE, are required (Stoughton
and Yoon, 2004 [244]).
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CHAPTER4
MESHLESS MULTI-POINT FLUX APPROXIMATION

SMOOTHED particle hydrodynamics (SPH) has been extensively used to model high and low Reynolds num-
ber flows, free surface flows and collapse of dams, study pore-scale flow and dispersion, elasticity, and
thermal problems. In different applications, it is required to have a stable and accurate discretization of

the elliptic operator with homogeneous and heterogeneous coefficients. In this paper, the stability and approx-
imation analysis of different SPH discretization schemes (traditional and new) of the diagonal elliptic operator
for homogeneous and heterogeneous media are presented. The optimum and new discretization scheme is also
proposed. The new scheme enhances the Laplace approximation (Brookshaw’s scheme [41] and Schwaiger’s
scheme [236]) used in the SPH community for thermal, viscous, and pressure projection problems with an
isotropic elliptic operator. The sufficient monotonicity condition is also formulated leading to the constraint on
the kernel shape and particles distribution. The numerical results are illustrated by numerical examples, where
the comparison between different versions of the meshless discretization methods are presented 1

§ 4.1 Introduction

In different applications including, but not limited to, fluid flow related problems, it is required to have the
stable and accurate discretization of the following operator (diagonal elliptic operator), which is the research

1This chapter is based on the following publications:

1. Lukyanov, A. A., Vuik, C., Meshless Multi-Point Flux Approximation, In M. Griebel and M. A. Schweitzer, editors, Meshfree
Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering. Springer,
2016.

2. Lukyanov, A. A., Meshless Upscaling Method and Its application to a Fluid flow in Porous Media, ECMOR XIII, Biarritz, France.
2012;

3. Lukyanov, A. A., Meshless Multi-Point Flux Approximations, AIP Conf. Proc. 1479, 2012. PP. 1607-1610;

4. Lukyanov, A. A., Meshless Multi-Point Flux Approximation of Fluid Flow in Porous Media, SPE 141617-PP, SPE Reservoir
Simulation Symposium, Woodlands, USA, 2011;

5. Lukyanov, A. A., Meshless Upscaling Method and Its application to a Fluid flow in Porous Media, ECMOR XII. Oxford. UK.
2010;
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subject of this paper:

L (u) = −∇ (M (r)∇u (r))− g (r) , ∀r ∈ Ω ⊂ Rn,

M (r) ∈ {diag[m(r)] : m(r) ∈ Rn+, m (r) ∈ L2 (Ω)}, diag : Rn → Rn×n,
(4.1)

where u (r) is the unknown scalar or vector variable field, Mαβ (r) is the diagonal matrix of the mobility field,
e.g., one example includes Mαβ (r) = m (r) δαβ , α, β = 1, . . . , n;, where m (r) is the mobility scalar field,
δαβ is the Kronecker symbol, n = 1, 2, 3 is the spatial dimension. The sink/source term g (r) is assumed to be
zero in this chapter. Consider the operator in the expression (4.1) with piecewise continuous coefficients M (r)
in Ω. It has been noticed that some of the numerical methods for elliptic equations may violate the maximum
principle (i.e. lead to spurious oscillations). Therefore, proposed methods must satisfy a discrete maximum
principle to avoid any spurious oscillations. This is also applicable to meshless discretizations. Usually, the
oscillations are closely related to the poor approximation of the variable gradient ∇u in the flux computation.
In this paper, different numerical discretizations of the elliptic isotropic operator are analyzed. The objective of
this paper is to develop numerical scheme satisfying the two-point flux approximation nature in the form

L (u) ≈
∑

J

VrJ Ψ ([u (rJ)− u (rI)] , rJ − rI)− g (rI) , (4.2)

where J is the neighboring particle of the particle I , VrJ is the J - particle volume, Ψ is the special kernel. This
structure (4.2) allows to have a better analysis of the stability and monotonicity. Furthermore, this will allow
to apply upwinding strategy during the solution of nonlinear PDEs. The optimum discretization scheme of the
shape (4.2) is proposed in this paper. This scheme is based both on the Laplace approximation (Brookshaw’s
scheme [41]) and on a gradient approximation commonly used in the SPH community for thermal, viscous, and
pressure projection problems. The proposed discretization scheme is combined with mixed corrections, which
ensure linear completeness. The mixed correction utilizes Shepard Functions in combination with a correction
to derivative approximations. In corrected meshless methods, the domain boundaries and field variables at the
boundaries are approximated with the improved accuracy comparing to the conventional SPH method. The
resulting new scheme improves the particle deficiency (kernel support incompleteness) problem.

The reservoir simulation of the complex reservoirs with anisotropic permeability, which includes faults and
non-orthogonal grids, with a fully discontinuous permeability tensor in the discretization is a major challenge.
Several methods have already been developed and implemented within industry standard reservoir simulators
for non-orthogonal grids. The multi point flux approximation, MPFA, is a discretization method developed
by the oil industry to be the next generation method in reservoir simulation and it can be applied to different
types of mesh, for example using quadrilateral meshes as in Aavatsmark et al. (1998) [6], [4], [5], Aavatsmark
(2002) [2], Edwards and Rogers (1998) [86], Klausen and Russell (2004) [142] or unstructured grids as in
Edwards (2002) [84], [83] to approximate the following operator:

Lp = −∇ (M (p)∇p (r)) , ∀r ∈ Ω ⊂ Rn, (4.3)

where p (r) is the pressure, M (p) = (mαβ) is the mobility tensor, g (r) is the known sink/source term, n =
1, 2, 3 is the spatial dimension. Consider operator in equation (4.3) with piecewise constant mobility M (p) in
Ω.

4.1.1 Multi point flux approximation
Several MPFA methods have already been developed and implemented within an industry standard reservoir

simulator for non-orthogonal grids. The methods are known as the O-method, U-method and the L-method for
quadrilateral meshes in two and three dimensions (see, Edwards and Rogers, 1998 [86]; Aavatsmark, 2002 [2];
Chen et al., 2007 [60]; Lee et al., 1998, 2002 [155], [156]; Oian, 2006 [222]). The MPFA methods are not
restricted to quadrilateral meshes and have been investigated in Aavatsmark et al. (1996) [3], Aavatsmark et
al. (1998) [4], [5], Edwards (2002) [84], [83]. It has been noticed that some of the numerical methods for
elliptic equations may violate the maximum principle (i.e. lead to spurious oscillations). Therefore, proposed
methods must satisfy a discrete maximum principle to avoid any spurious oscillations. The discrete maximum
principle for MPFA methods was discussed, e.g., in Edwards and Rogers (1998) [86], Mlacnik and Durlofsky
(2006) [207], Lee et al. (2002) [156]. However, non-physical oscillations can appear in the developed multi-
point flux approximations when the anisotropy is particularly strong. It has been found that the oscillations

62



are closely related to the poor approximation of the pressure gradient in the flux computation. Therefore,
proposed methods must correctly approximate underlying operators, satisfy a discrete maximum principle and
have coercivity properties. Furthermore, the method must be robust and efficient.

4.1.2 Two-point flux approximation

The well-known two-point flux approximation (TPFA) is a mesh dependent numerical scheme used in solv-
ing elliptic equation (4.1): L (u) = 0 with the diagonal matrix of coefficients M. The net flow rate from a cell
I into neighboring cells in this scheme is obtained by summing fluxes over the neighboring cells J :

q =
∑

J

T̃JI [u (rJ)− u (rI)] , T̃JI ≥ 0, (4.4)

where T̃JI is the transmissibility between cells J and I , q is the total flux through the boundary of the control
volume located at the point rI . The transmissibility T̃JI defined at an interior face f between cells J and I is
calculated as

T̃JI =
1[

‖rf,J‖2
SfMrf,J

+
‖rf,I‖2
SfMrf,I

] , (4.5)

where rf,J and rf,I are the vectors from centers of cells J and I to the face f respectively, Sf is the area
vector of the face f . In the case of M-orthogonal mesh, when MSf and [rJ − rI ] are collinear, the expression
(4.4) reduces to the form of the central finite difference scheme and approximates the flux with O

(
h2
)

order of
accuracy for any mobility tensor field M. The expression (4.5) ensures that the flux into the adjoining region
is continuous (Clearly and Monoghan, 1999 [66]). The TPFA scheme (4.4) is the unconditionally monotone
scheme.

4.1.3 Mimetic approximation
Consider the elliptic equation for pressure,

v + K∇p = 0, (4.6)
∇ · v = q, (4.7)

where K is the permeability tensor, p is the fluid pressure and v ∈ Rn is the fluid velocity. To discretize (4.6)
using a local-flux mimetic method, the mass matrix B is introduced. If B is exact for linear pressures, one can
expect to get a consistent discretisation of (4.6). Thus, for any linear pressure p = po + a · x, the following
relation can be written

Na = −NR−1{∆p}, (4.8)

where N is the d× n matrix of face normals and R is the corresponding matrix of vectors from the cell center
to the face centers (e.g., from C4 to i4) (see interaction region border, gradient pressure approximation contour
and location of cell centers (cell pressure) on Fig.4.1), {∆p} is the corresponding pressure difference between
cell center pressure (e.g., pressure at the point C4) and face centers pressure (e.g., pressure at the point i4). The
local expression for the face flux are computed by splitting each k-orthogonal face into k sub-faces, each with
one corner belonging to the face. Let us denote Ni and Ri as normal and distance for each sub-face of face i,
respectively. It is required that B is the block-diagonal matrix with one block for each corner in the cell. For a
regular grid, each such corner will be the intersection of d sub-faces and, hence, will be unique. Note that this
matrix is not symmetric and does not form an inner-product but does form a bilinear form on sub-face-fluxes.

To derive a cell-centered scheme from the definition of B, the conventional mimetic mixed hybrid formula-
tion is used [166] 


B C D

CT 0 0

DT 0 0






vH

−p
π


 =



0

q

0,


 (4.9)

where the vectors vH , p, and π collect the degrees-of-freedom associated with fluxes across the cell interfaces,
face pressures, and cell pressures, respectively. The C is block-diagonal with blocks e = (1, 1, . . . , 1), that
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Figure 4.1: Two dimensional O-method

adds up sub-faces, and D maps from cell-wise ordering to global ordering of sub-faces. A number of methods
for solving such systems have been proposed in the literature, but these are generally not as efficient as solving
a symmetric, positive-definite system. Hence, a so-called Schur-complement method (the Schur complement
for the face pressure) can be used to reduce the mixed hybrid system to a positive-definite system [165]:

(
DTB−1D− FTV−1F

)
π = FTV−1q, (4.10)

where F = CTB−1D and V = CTB−1C. Given the face pressure, the cell pressures and fluxes can be
reconstructed by back-substitution, i.e., by solving

Vp = q + Fπ, BvH = Cπ −Dπ. (4.11)

The mimetic method has a so-called property of explicit flux representation, which allows to express the inter-
cell fluxes as a linear combination of neighboring values for the pressure. This property is particularly useful in
fully implicit discretizations of time-dependent problems

The choice of the discretization scheme (e.g., either a mimetic method or a multi-point flux scheme) puts
certain limitations on its use. In the case of MPFA, the schemes are quite computationally demanding to assem-
ble, store and handle, while in the mimetic case, the inclusion of gravity and forcing boundary condition, wells
is not yet adequately solved problem.

§ 4.2 Fluid Flow Modelling Using SPH

Let Ω be a bounded domain in Rn (a compact) with a piecewise boundary ∂Ω = Γ̄D ∪ Γ̄N , Γ̄D ∩ Γ̄N = ∅,
where measure µ (ΓD) 6= 0, ΓD is the part of the boundary corresponding to the Dirichlet boundary condition,
ΓN is the part of the boundary corresponding to the Neumann boundary condition. In the following sections
this question will be analyzed in details for some modified schemes by stating that the solution of the equation
for M (r) = m (r) · I, m (r) ≥ 0, ∀r ∈ Ω ⊂ Rn, where I is the unit tensor:

L (u (rI)) = −∇ (M (r)∇u (r)) = −m (rI)u,αα (rI)−m,α (rI)u,α (rI) = g (r) , (4.12)

From (4.12), it follows that second order derivatives need to be approximated.
To calculate the second derivatives of F , several methods were proposed (Chen et al. (1999, 2000) [57],

[56], [55]; Bonet and Kulasegaram (2000) [32]; Colin et al. (2006) [69]) in SPH community. However, second-
order derivatives can often be avoided entirely if the PDE is written in weak form. It is important to note that
approximations using second-order derivatives of the kernel are often noisy and sensitive to particle distribution,
particularly for spline kernels of lower order. This section presents the meshless multi-point flux approximation
(MMPFA) of second order elliptic operators containing scalar inhomogenious coefficient. The method is based
on a pressure gradient approximation commonly used in meshless methods (or Smoothed Particle Hydrodynam-
ics method - SPH method). The standard SPH spatial discretization of the Laplace operator (4.1) arises from
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the following relations with g (r) = 0, ∀r ∈ Ω̃rI ,h̃I
and W ∈ C0

(
ΩrI ,h̃I

)
:

L (u (rI)) = lim
h̃I→0

∫

ΩrI ,h̃I

L (u (r))W
(
r − rI , h̃I

)
dVr ≈

≈



∫

ΩrI ,h̃I

M (r)∇u (r) · ∇W
(
r − rI , h̃I

)
dVr


 ,

(4.13)

whereW
(
r − rI , h̃I

)
is the kernel that weakly approximates the Dirac delta function δ (r − rI) but with finite

characteristic width h̃I around the particle I . The proposed discretization schemes should be compatible with
a discontinuous m (r) (or piecewise function) coefficient of the operator (4.1) since this coefficient cannot be
differentiable in the classical sense.

Without loss of generality, the discretization schemes below are build for −〈L (u (rI))〉. Hence, there
are two sources of the discretization error: (a) the error associated with the weak approximation of the Dirac
delta function δ (r − rI), which is related to the smoothing particle length h̃I and (b) the error associated
with Monte-Carlo expressions or any cubature rules, which is reated to the number of particles and particles
distribution within the control volume ΩrI ,h̃I

.

4.2.1 Brookshaw (1985) scheme
Brookshaw (1985) [41] proposed an approximation of the Laplacian for an inhomogeneous scalar field

m (r) that only includes first order derivatives:

〈∇ (m (rI)∇u (rI))〉 =

∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI)∇W

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
,

(4.14)

where VrJ is the volume of a particle J , ‖•‖ is the Euclidean norm throughout this paper, F (r) is the unknown
scalar or vector field (e.g., pressure p) ∀r ∈ Ω ⊂ Rn, mI = m (rI), rI ∈ Ω ⊂ Rn and mJ = m (rJ),
rJ ∈ Ω ⊂ Rn are the field coefficients, W (rJ − rI , h) is the Kernel. This scheme can be derived by applying
the particle approximation step to the right-hand side of (4.13) with the following assumptions

∇u (rJ) ≈ [u (rJ)− u (rI)]
(rJ − rI)
‖rJ − rI‖2

. (4.15)

Some special words need to be said about the mobility approximation, which comes in the form

2m (rJ) ≈ mJ +mI . (4.16)

The factor 2 is introduced to compensate the factor of 1/2 in the second leading term of the Taylor expansion of
the relation (4.15). Furthermore, the relation (4.16) allows to capture a heterogeneous mobility field distribution.

Theorem 4.1. The discretization scheme (4.14) at a given point rI ∈ Ω ⊂ Rn sufficiently far away from the

boundary ∂Ω (i.e., where the kernel W has a full support) has an error bounded by C
(
h̃I,m

)
·
(
hωI,p

h̃I,m

)
,

0 ≤ ω < 2, lim
h̃I,m→0

C
(
h̃I,m

)

h̃I,m
= 0, hI,p = sup

J:rJ∈Ω
‖rJ − rI‖, h̃I,m = inf

J:rj∈ΩrI ,h̃I

h̃IJ for any scalar mobility

field m (r) ∈ C1 (Ω) , m (r) ≥ 0.

Proof. Using Taylor series expansions about a point rI , the following relations can be written:

u (rJ) = u (rI) + u,α (rI) [rαJ − rαI ] +
1

2
u,αγ (rI) [rαJ − rαI ] [rγJ − rγI ] +O

(
‖rJ − rI‖3

)
, (4.17)
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m (rJ) = m (rI) +m,α (rI) [rαJ − rαI ] +O
(
‖rJ − rI‖2

)
. (4.18)

Substituting relations (4.17)-(4.18) into the scheme (4.14), it leads to the following relations:

∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI) · ∇W

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
=

= 2m (rI)u,α (rI)
∑

ΩrI ,h̃I

VrJ∇αW
(
rJ − rI , h̃IJ

)
+

+m (rI)u,αγ (rI)
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
+

+m,α (rI)u,γ (rI)
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
+ E ,

(4.19)

where the leading term is bounded as follows
∥∥∥∥∥∥
2m (rI)u,α (rI)

∑

ΩrI ,h̃I

VrJ∇αW
(
rJ − rI , h̃IJ

)
∥∥∥∥∥∥
6 2 · C

(
h̃I,m

)
·m (rI)

(
1

h̃I,m

)
(4.20)

where C
(
h̃I,m

)
=

(
∑

ΩrI ,h

VrJ |G(zJ , rI)|
)

and lim
h̃I,m→0

C
(
h̃I,m

)

h̃I,m
= 0. The leading term of the error func-

tion E is defined by the following expression

E =
1

6
m (rI)u,αωγ (rI)

∑

ΩrI ,h

VrJ [rαJ − rαI ] [rωJ − rωI ]∇γW
(
rJ − rI , h̃IJ

)
+

+
1

2
u,αγ (rI)m,ω (rI)

∑

ΩrI ,h

VrJ [rαJ − rαI ] [rωJ − rωI ]∇γW
(
rJ − rI , h̃IJ

) (4.21)

and error bound can be found by applying several times triangle inequality

‖E‖ 6 C
(
h̃I,m

)
·
(

1

6
m (rI) ‖u,αωγ (rI)‖+

1

2
‖u,αγ (rI)‖ ‖m,ω (rI)‖

)(
h2
I,p

h̃I,m

)
, (4.22)

While obtaining (4.19), the following relation has been used

[rαJ − rαI ]
(rγJ − rγI )∇γW

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
= ∇αW

(
rJ − rI , h̃IJ

)
, ∀α. (4.23)

As noted in [236], since matrix H = (u,αγ (rI)) is coupled with the tensor

Γαγ =


∑

ΩrI ,h

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)



via inner product, it is difficult to separate them. However, using the identity [H : Γ] = tr[HΓT ], along with the
fact that both H and Γ are symmetric, one can write the relation as in [236]

u,ωγ = (u,αβΓαβ)
Γ−1
ωγ

n
+ Γ−1

ωαWαγ . (4.24)

The Wαβ is a tensor with zero trace:

Wαβ = (u,αωΓωβ)− δαβ (u,ωγΓωγ) /n. (4.25)
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Hence, the maximum accuracy is achieved when

(a)
∑

ΩrI ,h̃I

VrJ∇αW
(
rJ − rI , h̃IJ

)
= 0, ∀α;

(b)
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇γW
(
rJ − rI , h̃IJ

)
= Γαβ = δαγ , ∀α, γ;

(4.26)

which is difficult to fulfill simultaneously for different kernel gradients. Therefore, the overall error is bounded

by C
(
h̃I,m

)
·
(
hωI,p

h̃I,m

)
, 0 ≤ ω < 2 for any scalar mobility field m (r) ∈ C1 (Ω) , m (r) ≥ 0 covering the

worse and best cases.

In the chapter 2, several options of computing kernel gradients ∇W (rJ − rI , h̃IJ) (i.e., ∇αW , ∇αW ,
∇αW , and ∇̃αW ) are proposed (2.31), (2.32), (2.33), and (2.34), respectively. Different kernel gradients have
different accuracy with respect to the condition (4.23) and (4.26)(a)-(b). For example, the kernel gradient (2.32)
satisfies for any particles distribution condition (4.26)(a) but not the condition (4.23) and (4.26)(b). Kernel
gradients (2.31), (2.33), and (2.34) do satisfy (4.23) for any particles distribution but not the conditions (4.26)(a)-
(b). At the same time, all corrected options∇∗W (rJ − rI , h̃IJ) (i.e.,∇∗γW ,∇∗αW ,∇∗αW , and ∇̃∗αW ) satisfy
the condition (4.26)(b) for any particles distribution but not the conditions (4.23) and (4.26)(a). One may decide
to use∇∗W (rJ − rI , h̃IJ) in the discretization scheme (4.14) which leads to the error with the leading term

2m (rI)u,α (rI)
∑

rJ∈ΩrI ,h̃I

VrJ [rJ − rI ]
(rJ − rI) · ∇∗W (rJ − rI , h̃IJ)

‖rJ − rI‖2
. (4.27)

This leads to the incorporation of the correction factor into Brookshaw’s approximation. A different correction
factor has been introduced and investigated in [236]. Alternatively, as was discussed in [236], the correction
multiplier can be introduced in (4.14) defined as [Cαα] /n leading to:

〈∇ (m (rI)∇u (rI))〉∗ =
Cαα

n
· 〈∇ (m (rI)∇u (rI))〉. (4.28)

Figure 4.2 shows Laplacian values for the function ∇2(x2 + y2) using original Brookshaw’s approximation
(4.14) with (a) conventional kernel∇γW , (b) corrected kernel∇∗γW and corrected Brookshaw’s approximation
(4.28) with the conventional kernel ∇γW . In addition, Figure 4.2 shows that the discretization scheme (4.14)
with the ∇∗W (rJ − rI , h̃IJ) kernel gradient is less accurate near the boundary due to the magnitude of the
(4.27) which is related to the associated leading term of the error.

The scheme (4.14) is widely (almost unconditionally) used in the SPH modeling community. For example,
it was used for a thermal conduction [41, 66, 125], for modeling a viscous diffusion [213], for a vortex spin-
down [72] and Rayleigh-Taylor instability, for simulating Newtonian and non-Newtonian flows with a free
surface [154] for the comparison of weakly compressible and truly incompressible algorithms, for macroscopic
and mesoscopic flows [111], for a simulation of a solid-fluid mixture flow [280]. Recently, it has been used to
model electrokinetic flows [223].

There are different numerical SPH schemes used in numerical simulations. High order accuracy approx-
imations can also be derived by using the SPH discretization on the higher order Taylor series expansion
[90, 94, 174, 236]. However, it is usually required that the discrete numerical schemes can reproduce linear
fields [33, 183, 188, 231] or polynomials up to a given order [176].

4.2.2 Schwaiger (2008) scheme

The correction terms to the Brookshaw formulation which improve the accuracy of the Laplacian operator
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Figure 4.2: Values for∇2(x2 +y2) along y = 0 using Brookshaw’s approximation with (a) conventional kernel
∇γW , (b) corrected kernel ∇∗γW and with the correction multiplier [Cαα] /n. The numerical domain is a
unit square in R2 with the center at ai = 0, ∀i and side length L = 1. The cubic spline (2.56) was used
with h̃ = f · hp, hp = 0.1, f = 1.0.

near boundaries were proposed by Schwaiger in [236]:
n

Γ−1
kk

〈∇ (m (rI)∇u (rI))〉 =




∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (mJ +mI)∇W

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2



−

−{[〈∇α (m (rI)u (rI))〉 − u (rI) 〈∇αm (rI)〉+m (rI) 〈∇αu (rI)〉]Nα} ,

(4.29)

Nα (rI) =


 ∑

ΩrI ,h̃I

VrJ∇αW
(
rI − rJ , h̃IJ

)

 , (4.30)

〈∇αu (rI)〉 =
∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]∇∗αW
(
rI − rJ , h̃IJ

)
, (4.31)

where n = 1, 2, 3 is the spatial dimension and the tensor Γαβ is defined by

Γαβ (rI) =
∑

ΩrI ,h̃I

VrJ

(rγJ − rγI )∇γW
(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
(rαJ − rαI )

(
rβJ − rβI

)
. (4.32)

The gradient 〈∇αu (rI)〉 is the corrected gradient which can reproduce linear fields [33, 231]. For multi-
dimensional problems, the correction tensor Γαβ (rI) is a matrix. If the particle rI has entire stencil support

(i.e., the domain support for all kernels W
(
rJ − rI , h̃IJ

)
is entire and symmetric) then Γαβ (rI) ≈ δαβ .

Lemma 4.2. The following identities are valid for∇γW
(
rJ − rI , h̃IJ

)
described by (2.31), (2.33) and (2.34):

[rαJ − rαI ]
(rγJ − rγI )∇γW

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
=

= − 1

h̃IJ
G(zJ , rI)

[rαJ − rαI ]

‖rJ − rI‖
= ∇αW

(
rJ − rI , h̃IJ

)
,

(4.33)
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where zJ = ‖rJ − rI‖ /h̃IJ , ∀rJ , rI ∈ Ω ⊂ Rn.

Proof. These identities can be established by applying chain rule differentiation.

Proposition 4.3. The correction tensors Γ (described by (4.32)) and C−1 (where C is defined by (2.37)) are
the symmetrical and indentical tensors for∇γW described by (2.31), (2.33) and (2.34).

Proof. The following relation can be established (using Lemma 4.2):

Γαβ (rI) =
∑

ΩrI ,h̃I

VrJ

(rγJ − rγI )∇γW
(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
(rαJ − rαI )

(
rβJ − rβI

)
=

= −
∑

ΩrI ,h̃I

VrJ
G(zJ , rI)

h̃IJ

(rαJ − rαI )
(
rβJ − rβI

)

‖rJ − rI‖
= −

∑

ΩrI ,h̃I

VrJ
G(zJ , rI)

h̃IJ

(
rβJ − rβI

)
(rαJ − rαI )

‖rJ − rI‖

= Γβα (rI) =
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]∇βW
(
rJ − rI , h̃IJ

)
, Γ (rI) = C−1 (rI) .

(4.34)

It follows that the scheme (4.29)-(4.31) requires to use the trace of Γ−1
αβ (rI) or Cαβ (rI). The trace of

Γαβ (rI) provides to us the sum of all eigenvalues. It does not give us any range for the eigenvalues which is
necessary to estimates Cαα (rI). Even if we have a positive trace we can still theoretically have several small
and large eigenvalues with an opposite sign. Before we get to the analysis of the eigenvalues, it is convenient to
introduce a condition for matrices known as strictly diagonally dominant (SDD).

Definition 4.4. A square matrix A = (aij)1≤i≤n,1≤j≤n ∈ Rn×n is called strictly diagonally non-dominant
matrix if |aii| >

∑
j 6=i
|aij | ∀i.

Hence, the following Lemma can be formulated.

Lemma 4.5. The diagonal elements of the matrix Γij (rI) are positive and the tracer of the Γij (rI) is bounded,

i.e. Γii (rI) > 0 ∀β for all kernel ∇γW
(
rJ − rI , h̃IJ

)
defined by (2.31), (2.33) and (2.34) with G(zJ , rI) 6

0 ∀zJ and Γββ (rI) 6
∑

ΩrI ,h̃I

VrJ |G(zJ , rI)|. Furthermore, if matrix Γij (rI) is strictly diagonally dominant

matrix then all eigenvalues λ (Γij (rI)) > 0.

Proof. It follows from the fact that:

Γii (rI) = −
∑

ΩrI ,h̃I

VrJ

(
riJ − riI

)2

h̃IJ ‖rJ − rI‖
G(zJ , rI) > 0, G(zJ , rI) 6 0 ∀zJ ; (4.35)

Γββ (rI) = −
∑

ΩrI ,h̃I

VrJ ‖rJ − rI‖
1

h̃IJ
G(zJ , rI) > 0,

‖rJ − rI‖
h̃IJ

6 1, G(zJ , rI) 6 0 ∀zJ ; (4.36)

where the summation by repeating indices is only assumed throughout this paper. In order to figure out what
range the eigenvalues of the strictly diagonally dominant matrix Γαβ (rI) (i.e., -

∑
j 6=i
|Γij (rI) | + Γii (rI) > 0,

Γii (rI) > 0) would be in, we use Gershgorin’s theorem:

0 < −
∑

j 6=i
|Γij |+ Γii (rI) ≤ λ ≤

∑

j 6=i
|Γij |+ Γii (rI) , i ∈ {1, . . . , n} (4.37)
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Remark 4.6. Since strictly diagonally dominant matrices are always nonsingular, the correction matrix Cαβ (rI)

can be defined and Cαα (rI) =

n∑

α=1

1

λα (Γij (rI))
> 0.

In addition, it is important to note that

Γαβ =
∑

ΩrI ,h̃I

VrJ (rγJ − rγI ) · ∇∗γW
(
rJ − rI , h̃IJ

)
= δαβ (4.38)

in the case of using only the corrected gradient ∇∗γW and, hence,
Γ−1
kk

n
= 1. However, ∇∗γW does not satisfy

relation (4.33). For multi-dimensional problems, the correction tensor Γαβ (rI) is a matrix. If the particle rI
has entire stencil support (i.e., the domain support for all kernels W

(
rJ − rI , h̃IJ

)
is entire and symmetric)

then Γαβ (rI) ≈ δαβ . Unfortunately, Γαβ (rI) deviates from δαβ for the provided algorithm and, hence, it is
important to minimize this deviation from δαβ in the new methods.

To calculate coefficients in the scheme (4.29)–(4.32) is a trivial task. However, in general, it should be
performed at each Newton-Raphson iteration in the non-linear case (i.e., m = m (u (rI))). It also requires
additional efforts to compute the correction matrices Cαβ and Γαβ (inversion of n × n matrices per each
particle, where n = 1, 2, 3 is the spatial dimension) and storage cost of∇αW (rJ − rI , h),∇∗αW (rJ − rI , h),
and corresponding Γ−1

αα per each particle.

Theorem 4.7. The discretization scheme (4.29)–(4.32) at a given point rI ∈ Ω ⊂ Rn sufficiently far away from

the boundary ∂Ω (i.e., where the kernel W has a full support) has an error bounded by C
(
h̃I,m

)
·
(
hωI,p

h̃I,m

)
,

1 ≤ ω < 2, lim
h̃I,m→0

C
(
h̃I,m

)

h̃I,m
= 0, hI,p = sup

J:rJ∈Ω
‖rJ − rI‖, h̃I,m = inf

J:rj∈ΩrI ,h̃I

h̃IJ for any scalar mobility

field m (r) ∈ C1 (Ω) , m (r) ≥ 0.

Proof. Using Lemmas 4.2 and 4.3, additional terms proposed by Schwaiger [236] reduce to

[〈∇αm (rI)u (rI)〉 − u (rI) 〈∇αm (rI)〉+m (rI) 〈∇αu (rI)〉]Nα =

= 2m (rI)uα (rI) ·Nα+

m,β (rI)u,ω (rI)


 ∑

ΩrI ,h̃I

VrJ [rωJ − rωI ]
[
rβJ − rβI

]
∇∗αW

(
rJ − rI , h̃IJ

)

 ·Nα+

m (rI)u,βω (rI)


 ∑

ΩrI ,h̃I

VrJ [rωJ − rωI ]
[
rβJ − rβI

]
∇∗αW

(
rJ − rI , h̃IJ

)

 ·Nα + Ẽ

(4.39)

in the vicinity of the point rI with the error Ẽ . The expression (4.39) has the leading term outlined in (4.19).
Subtraction of these terms from (4.19) leads to

〈∇ (m (rI)∇u (rI))〉 = m (rI)u,αγ (rI) Γ∗αγ +m,α (rI)u,γ (rI) Γ∗αγ + Ẽ + E , (4.40)

where

Γ∗αβ = Γαβ −


 ∑

ΩrI ,h̃I

VrJ [rωJ − rωI ]
[
rβJ − rβI

]
∇∗αW

(
rJ − rI , h̃IJ

)

 ·Nα (4.41)

and performing the normalization lead to the announced in the theorem result.

It follows that the usage of Γ∗αβ instead of Γαβ in (4.29) will improve the accuracy of the scheme (4.29)–
(4.32). Furthermore, if one uses∇W (rJ−rI , h̃IJ) = ∇∗W (rJ−rI , h̃IJ) in the first term of the discretization
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scheme (4.29) then the definition for Nα has to be modified in accordance of (4.27) to maintain the higher order
discretization accuracy, for example, as:

Ñα =
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]
(rJ − rI)∇W

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
, ∀α (4.42)

which reduces to the conventional Nα in the case of∇W (rJ − rI , h̃IJ) 6= ∇∗W (rJ − rI , h̃IJ) due to (4.33).
Figure 4.3 shows the Laplacian for the function ∇2(x2 + y2) using Schwaiger’s approximation (4.29)–(4.32)
with (a) conventional kernel∇γW and (b) corrected kernel∇∗γW .

Figure 4.3: Values for∇2(x2 +y2) along y = 0 using Schwaiger’s approximation with (a) conventional kernel
∇γW and (b) corrected kernel ∇∗γW . The numerical domain is a unit square in in R2 with the center at
ai = 0, ∀i. The cubic spline (2.56) was used with h̃ = f · hp, hp = 0.1, f = 1.0.

4.2.3 Meshless Transmissibilities

It is clear that the expression (4.29) cannot be written in the form (4.4) due to terms 〈∇α (m (rI)u (rI))〉Nα

and u (rI) 〈∇αm (rI)〉Nα. Hence, it is only possible in this case to introduce a definition of a partial meshless
transmissibility between particles rJ and rI as follows:

TP (rJ , rI) = TPJI =
Γ−1
ββ

n
× VrJ





(rJ − rI) · (mJ +mI) · ∇W
(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
−mI∇W

(
rJ − rI , h̃IJ

)
Nα



 .

(4.43)

It is important to note that transmissibilities TPJI and T̃PJI have different physical units. Furthermore, it raises
the question wherever the scheme (4.29)–(4.32) is monotone.

Hence, there is an additional term that has not been taken into account in (4.29)–(4.32). The following
section describes an alternative numerical scheme for the heterogeneous Laplace operator. Some initial attemps
were also made in [191].
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4.2.4 New scheme
The correction terms to the Brookshaw [41] and Schwaiger [236] formulations which improve the accuracy

of the Laplacian operator near boundaries can be done as follows:

n

Γ̄−1
ββ

〈∇ (M (rI)∇u (rI))〉 =




∑

ΩrI ,h̃I

VrJ [u (rJ)− u (rI)]
(rJ − rI) · (MJ + MI) · ∇W

(
rJ − rI , h̃IJ

)

‖rJ − rI‖2



−

−



Ñ ·


 ∑

ΩrI ,h̃I

VrJ · (MJ + MI) · [u (rJ)− u (rI)]∇∗W
(
rJ − rI , h̃IJ

)




 ,

(4.44)

where n = 1, 2, 3 is the spatial dimension. The tensor Γ̄αβ can be defined by the relation (4.32). However,
the higher accuracy can be achieved by taking into account higher order corrections in Γαβ (rI) as per relation
(4.41). Hence, the following definition can be used

Γ̄αβ (rI) , Ñ =





Γ∗αβ (rI) , Ñ 6= 0, if Γ∗αβ (rI) 6= 0,

Γαβ (rI) , Ñ = 0, if Γ∗αβ (rI) = 0

(4.45)

where
Γ∗αβ (rI) =

∑

ΩrI ,h̃I

VrJ

[
rβJ − rβI

]
∇αW

(
rJ − rI , h̃IJ

)
−

−Ñγ
∑

ΩrI ,h̃I

VrJ [rαJ − rαI ]
[
rβJ − rβI

]
∇∗γW

(
rJ − rI , h̃IJ

) (4.46)

and

Γ∗ii (rI) = −
∑

ΩrI ,h̃I

VrJ

(
riJ − riI

)2

h̃IJ ‖rJ − rI‖
G(zJ , rI)

[
1− Ñγ (rI)Cγω (rI) (rωJ − rωI )

]
, (4.47)

Γ∗ββ (rI) = −
∑

ΩrI ,h̃I

VrJ ‖rJ − rI‖
1

h̃IJ
G(zJ , rI)

[
1− Ñγ (rI)Cγω (rI) (rωJ − rωI )

]
. (4.48)

Following (4.44), we only need to compute the trace of the matrix Γ̄−1
αβ (rI). Furthermore, it is clear that one

can apply results of the Lemma 4.5 to Γ∗ββ (rI) with following function

G∗(zJ , rI) = G(zJ , rI)
[
1− Ñγ (rI)Cγω (rI) (rωJ − rωI )

]
if G∗(zJ , rI) ≤ 0, (4.49)

where

Ñ (rI)C (rI) (rJ − rI) = Ñ (rI)


 ∑

ΩrI ,h̃I

VrJ [rJ − rI ]∇W



−1

(rJ − rI) . (4.50)

The function G∗(zJ , rI) is negative if
[
1− Ñγ (rI)Cγω (rI) (rωJ − rωI )

]
> 0 ∀rJ , rI . (4.51)

The reason for having the correction factor in the form (4.45)–(4.46) is that Γ∗αβ (rI) = 0 in some cases, where
particles have the incomplete kernel support (e.g., at the corners and boundaries of the numerical domain).
For multi-dimensional problems, the correction tensor Γ̄αβ (rI) is also a matrix. If the particle rI has entire

stencil support (i.e., the domain support for all kernels W
(
rJ − rI , h̃IJ

)
is completed and symmetric) then

Γ̄αβ (rI) ≈ δαβ . The proposed correction matrix deviates less from the unit matrix compare to (4.32).
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Theorem 4.8. The discretization scheme (4.44)–(4.46) at a given point rI ∈ Ω ⊂ Rn sufficiently far away from

the boundary ∂Ω (i.e., where the kernel W has a full support) has an error bounded by C
(
h̃I,m

)
·
(
hωI,p

h̃I,m

)
,

1 ≤ ω < 2, lim
h̃I,m→0

C
(
h̃I,m

)

h̃I,m
= 0, hI,p = sup

J:rJ∈Ω
‖rJ − rI‖, h̃I,m = inf

J:rj∈ΩrI ,h̃I

h̃IJ for any scalar mobility

field m (r) ∈ C1 (Ω) , m (r) ≥ 0.

Proof. Using Lemmas 4.2 and 4.3, additional term proposed by new scheme (4.44) subject to the diagonal
mobility tensor Mαβ (r) = m (r) δαβ reduces to



Ñ ·


 ∑

ΩrI ,h̃I

VrJ · (mJ +mI) · [u (rJ)− u (rI)]∇∗W
(
rJ − rI , h̃IJ

)




 =

= 2m (rI)uα (rI) · Ñα+

m,β (rI)u,ω (rI)


 ∑

ΩrI ,h̃I

VrJ [rωJ − rωI ]
[
rβJ − rβI

]
∇∗αW

(
rJ − rI , h̃IJ

)

 · Ñα+

m (rI)u,βω (rI)


 ∑

ΩrI ,h̃I

VrJ [rωJ − rωI ]
[
rβJ − rβI

]
∇∗αW

(
rJ − rI , h̃IJ

)

 · Ñα + Ê

(4.52)

in the vicinity of the point rI with the error Ê which has the leading term outlined in (4.19). Subtraction of this
terms from (4.19) and performing the normalization lead to the annunced in the theorem result.

The scheme has the two-point flux approximation nature and can be written in the form of (4.2), which can
be proved using the arguments above. The scheme (4.44)–(4.46) is in line with an alternative formulation for
continuum mechanics called the peridynamic model [240], which was proposed several years ago.

All presented schemes in this paper do not require exact expressions for the gradient (i.e., spatial derivatives)
of the mobility field ∇γm (r) to keep a higher order of accuracy for any mobility field. Hence, this scheme
can be used with the discontinuous (or piecewise continuous) mobility field m (r) ∈ L2 (Ω). It is important
to note that Brookshaw [41] and Schwaiger [236] schemes can also be written for the diagonal mobility matrix
Mαβ (r) by substituting Mαβ into (4.14) and (4.29) instead of m (r) and performing summation by repeating
indices.

§ 4.3 Meshless Multi-Point Flux Approximation (MMPFA)

In this section, the meshless multi-point flux approximation to the operator L (4.3) is considered. The
mobility M (r) is a symmetric tensor which is uniformly positive definite in Ω ⊂ Rn. In addition, it is an
important feature of reservoir simulation that M (r) is allowed to be a discontinuous (or piece-wise function),
and meshless multi-point approximation must be adapted to this case since the mobility field M (r) cannot be
differentiable in the classical sense.

The control volumes in the meshless multi-point flux approximation method (see, Lukyanov, 2010 [185])
are the patches which are interior to the support of the Kernels W̄ (r − rI , h), Ωr,h = suppW̄ (r − rI , h)
(Fig.2.1), h is the diameter, r = (rα) ∈ Rn, rI = (rαI ) ∈ Rn are points in Euclidean space (see, Figure 2.2).
Hence, it follows that there is an infinite cover of our domain Ω:

Ω =
⋃

r∈Ω

Ωr,h (4.53)

According to the Heine-Borel theorem, there is a finite subcover, that is

Ω = span{ΩrI ,h/I = 1, . . . , N}; (4.54)

where N is the number of particles in the numerical discretization. The mass is conserved on each control
volume, i.e. we can integrate the equation (1) on control volumes ΩrI ,h to obtain the final set of discretized
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equations. Therefore, let L2 (Ω) denote the square Lebesgue-integrable function on the domain Ω ⊂ Rn with
inner product (·, ·)Ω and norm ‖·‖ = (·, ·)1/2

Ω . Also, let

H
(
∇h; r ∈ Ω

)
= {u ∈ L2 (Ω) : ∇hu (r) ∈ L2 (Ω)} (4.55)

denote the Sobolev space of first order generalized differentiable functions in L2 (Ω) with norm

‖u (r)‖∇h,Ω =
(
‖u (r)‖2Ω +

∥∥∇hu (r)
∥∥2

Ω
,
)

(4.56)

where∇h is the generalized Nabla operator which has the following definition:

(a) ∇hu (r) =

∫

Ωr,h

[u (r′)− u (r)]∇r′W ∗(r − r′, h)dnr′ ∀F (r) , r ∈ Ω, (4.57)

(b)∇u (r) =def lim
h→0
∇hu (r) ∀u (r) , r ∈ Ω, (4.58)

where ∇r′W ∗(r − r′, h) is the corrected gradient of the Kernel (2.27), (2.28). It is important to note that the
correct sign of the gradient (4.58) is hidden in ∇r′W ∗(r − r′, h). In this paper, the Darcy velocity 4.59 is
assumed to satisfy v (r) ∈ H

(
∇h; r ∈ Ω

)
:

v (r) = −M (r)∇u (r) , (4.59)

where v is the Darcy velocity.

4.3.1 Scheme I and II for Anisotropic Media

Although expression (4.28) was derived for an inhomogeneous scalar field m (r), an attempt can be made
to generalize this scheme for fully anisotropic heterogeneous media with the tensor characteristic M (r) =
{mαγ (r)} by assuming (Scheme I), for example,

〈∇ (M (rI)∇u (rI))〉 = n · [Cαα]
−1×

=
∑

ΩrI ,h

VrJ [u (rJ)− u (rI)]
(rαJ − rαI ) ·

(
m·γα· (rJ) +m·γα· (rI)

)
∇γW (rJ − rI , h)

‖rJ − rI‖2
.

(4.60)

Analogously, the following modification to Schwaiger (2008) [236] expression (4.29)–(4.32) is proposed (Scheme
II) for anisotropic permeability case (similar to isotropic case) which reduces to the scheme (4.29)–(4.32) in the
limit of spherical tensor mαβ = mδαβ :

n

Γ−1
kk

〈∇α
(
mαβ (rI)∇βu (rI)

)
〉 =




∑

Ωr,h

VrJ [u (rJ)− u (rI)]
(rαJ − rαI ) ·

[
m·βα·

]
IJ
· ∇βW (rJ − rI , h)

‖r′ − r‖2



−

−
{[
〈∇α

(
mαβ (rI)u (rI)

)
〉 − u (rI) 〈∇αmαβ (rI)〉+

+ mαβ (rI) 〈∇αu (rI)〉
]
Nβ

}
,

(4.61)

where
[
m·βα·

]
IJ

=
(
m·βα· (rJ) +m·βα· (rI)

)
,Nα is defined by (4.30).
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4.3.2 Scheme III for Anisotropic Media

Alternative to the Scheme I and II, it is possible to formulate the scheme in the form:

n

Γ−1
kk

〈∇α
(
mαβ (rI)∇βu (rI)

)
〉 =




∑

ΩrI ,h

VrJ [u (rJ)− u (rI)]
(rαJ − rαI ) ·

[
m·βα·

]
IJ
· ∇βW (rJ − rI , h)

‖r′ − r‖2



−

−






∑

ΩrI ,h

VrJ ·mωγ
IJ · [u (rJ)− u (rI)]∇∗γW (rJ − rI , h)


Nω



 ,

(4.62)

which reduces to the scheme (4.44) in the limit of spherical tensor mαβ = mδαβ . This scheme has a more
desirable structure since it can be written in the form of (4.4). Hence, it is more suitable for monotonicity
analysis. A full meshless transmissibility between particle rJ and rI in this case can be defined as:

TM (rJ , rI) = TMJI =

Γ−1
kk

n




∑

ΩrI ,h

VrJ

(rαJ − rαI ) ·
[
m·βα·

]
IJ
· ∇βW (rJ − rI , h)

‖r′ − r‖2



−

−Γ−1
kk

n






∑

ΩrI ,h

VrJ · [m·γω·]IJ · ∇∗γW (rJ − rI , h)


Nω



 .

(4.63)

It is desirable to have positive meshless transmissibility TM (rJ , rI) ≥ 0 in (4.63). This is directly related to
the monotonicity property. Note that in the limit of homogeneous isotropic media (e.g., M (r) = m (r) · I),
the aforementioned schemes I and II reduce to the discretization of the generalized Laplace equation with at
least O (hω) , 1 ≤ ω < 2. The analysis above has been performed for differentiable scalar mobility field
M (r) ∈ C1 (Ω). It has been noted that an important feature of reservoir simulation that M (r) is allowed to be
a discontinuous (or piece-wise function). Hence, the discretization schemes should take this effect into account.

The accuracy of the above Schemes (4.60), (4.61) will be investigated for two separate cases: (a) for diagonal
homogeneous anisotropic mobility tensor field mωγ ∈ L2 (Ω) ≥ 0, mωγ = 0, ω 6= γ and (b) fully homoge-
neous anisotropic mobility tensor field mωγ ∈ L2 (Ω) ≥ 0. Both cases are considered everywhere within the
numerical domain Ω. Note that there is no difference between following tesnsors m·γω·, mω·

·γ , mωγ and mωγ in
Cartesian coordinate system.

4.3.3 Discontinuous Mobility Case

Using the same idea behind the expression (4.5) and heterogeneous discontinues mobility field m (r), it can
be shown that the effect of requiring the flux into the adjoining region to be continuous leads to the equivalent
to the (4.5) expression in terms of effective mobility between particle rI and rJ (Clearly and Monoghan,
1999 [66]):

m̃ =

(
m (rJ) ·m (rI)

m (rJ) +m (rI)

)
. (4.64)

If we examine the discretization Scheme II then it can be seen that the effective mobility (m (rJ) +m (rI)) has
been applied which does not guarantee the continuity of flux between the particles with discontinuous mobilities.
Taking this into account and applying (4.64), the final discretization scheme for discontinuous scalar mobility
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field can be written as
n

Γ−1
kk

〈∇α (m (rI)∇αu (rI))〉 =




∑

ΩrI ,h

VrJ · m̃ · [u (rJ)− u (rI)]
(rαJ − rαI ) · ∇αW (rJ − rI , h)

‖r′ − r‖2



−

−






∑

ΩrI ,h

VrJ · m̃ · [u (rJ)− u (rI)]∇∗αW (rJ − rI , h)


Nα



 .

(4.65)

This numerical scheme is the additional alternative for heterogeneous discontinuous isotropic scalar mobility
field which is used for numerical tests throughout this thesis. It ensures that flux is automatically continuous be-
tween particles with the reasonable accuracy. Multiple PVT regions with substantially different fluid properties
and specific mobilities can then be simulated.

The analytical analysis of the schemes I, II for a fully anisotropic mobility tensor field is complicated.
However, the numerical analysis reveals that these schemes do not produce a reasonable approximation for a
linear pressure field for anisotropic mobility tensor field. The following section describes a scheme applicable
the fully anisotropic mobility tensor field.

4.3.4 Scheme III
Generally speaking, any second order tensor can be decomposed into the spherical part and the deviatorical

part. In the case of continuum mechanics, the decomposition of the second order tensor (e.g., stress tensor or
the strain tensor) into their volumetric and deviatoric components has certain physical justification. This step
is done in order to distinguish between volumetric and shear responses. However, any mobility field M (r) for
fluid flow in porous media is better to split as (based on the numerical experiments):

M (r) = Md (r) + Mo (r) , (4.66)

where Md (r) is the diagonal part of the mobility tensor, Mo (r) is the off-diagonal part of the mobility tensor.
In addition, the Darcy velocity (4.59) can be written as

v (r) = vd (r) + vo (r) ,

vd (r) = −Md (r)∇u (r) ,

vo (r) = −Mo (r)∇u (r) ,

(4.67)

where vd (r) is the diagonal velocity, vo (r) is the off-diagonal velocity. The problem discussed in this thesis is
the elliptic equation (4.3):

∇v (r) = ∇vd (r) +∇vo (r) = g (r) , ∀r ∈ Ω ⊂ Rn. (4.68)

However, the discretization scheme can be constructed in two steps. The first step is to discretize diagonal term
∇vd (r) following either (4.61) or (4.65), e.g., the scheme (4.65) is used below:

−〈∇vd (r)〉 =

Γ−1
kk

n




∑

ΩrI ,h

VrJ · M̃d · [u (rJ)− u (rI)]
(rαJ − rαI ) · ∇αW (rJ − rI , h)

‖r′ − r‖2



−

−Γ−1
kk

n






∑

ΩrI ,h

VrJ · M̃d · [u (rJ)− u (rI)]∇∗αW (rJ − rI , h)


Nα



 ,

(4.69)

where M̃d is defined as

(a) M̃d =
[
(Md (rJ))

−1
+ (Md (rI))

−1
]−1

or (b) M̃d = Md (rJ) + Md (rI) . (4.70)
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The second step is to discretize off-diagonal term∇vo (r) as follows:

〈∇γvγo (r)〉 =
∑

ΩrI ,h

VrJ [〈vγo (rJ)〉 − 〈vγo (rI)〉]∇∗γW (rJ − rI , h) , (4.71)

〈vγd (rI)〉 = −Mγα
d 〈∇αu (rI)〉,

〈∇αu (rI)〉 =
∑

ΩrI ,h

VrJ [u (rJ)− u (rI)]∇∗αW (rJ − rI , h) .
(4.72)

It is important to make here a few remarks.

Remark 4.9. The aforementioned schemes I, II can be written in the form:

〈∇α
(
mαβ (rI)∇βu (rI)

)
〉 =

∑

S

T̄MSIpS ,
∑

S

T̄MSI = 0. (4.73)

In the case of approximation conventional Laplacian∇2p (i.e., m (rI) ≡ 1 ), it can be derived ∀rI and general
particles distribution:

(a)
∑

S

T̄MSI = 0,

(b)
∑

S

T̄MSI [rS − rI ] = 0,

(c)
∑

S

T̄MSI [rS − rI ] · [rS − rI ]T 6= I.

(4.74)

The condition (4.74)(c) does hold in some cases far away from the boundary, e.g., for homogeneous particles
distribution. This follows from the fact that Taylor expansion of pressure around the point rI can be written

u (rJ) = u (rI) +∇u (rI) · [rS − rI ] +

+
1

2
[rS − rI ]T · ∇ ⊗∇u (rI) · [rS − rI ] +O

(
h3
) (4.75)

The constraints (4.74) lead to significant differences between multi-point flux approximation schemes and mesh-
free finite difference approximation schemes (see, Seibold, 2006 [238]). It is important to recall here that
meshfree finite difference approximation schemes, which satisfy the constraints (a)-(c), are based on the fol-
lowing steps: (1) to define the neighbors list for each point (it is important to choose more neighbors than
constraints); (2) to select unique stencil which can be satisfied addition requirements (e.g., monotonicity Sei-
bold (2006) [238])

Remark 4.10. The scheme (4.71) and (4.72) can be applied directly to the Darcy’s velocity (4.59) with the full
mobility tensor. Furthermore, the following theorem is valid for the full mobility tensor:

Theorem 4.11. The discretization scheme (4.71), (4.72) is at least of O (hω), 0 ≤ ω < 2 order of accuracy
for any differentiable heterogeneous full mobility tensor field everywhere within the numerical domain Ω and
sufficiently far away from the boundary.

The proof of Theorem 4.11 can be seen from the construction. However, the scheme (4.71), (4.72) is not un-
conditionally monotone but as was shown by Seibold (2006) [238] in case of meshfree finite difference methods,
it is possible to have positive stencils, i.e. all neighbor entries are of the same sign.

Remark 4.12. The presented schemes in the thesis do not require exact expressions for special gradient of the
mobility field ∇γMαβ (r) = Mαβ

··,γ (r) to keep first order consistent scheme for any mobility field M (r) ∈
L2 (Ω). Hence, an important feature of reservoir simulation that mobility field M (r) is to be a discontinuous
(or piece-wise function) is allowed in this scheme.

Remark 4.13. Applying aforementioned meshless discretization schemes to the elliptic problem (4.3) results in
formulating a general non-linear system which can be solved by iterative Newton-Raphson method leading in
the sequence of linear systems with matrix A (aij)1≤i≤n,1≤j≤n ∈ Rn×n

Af = b, (4.76)
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where the vector f of unknows contains approximations to the function F (r). It is assume that (4.3) admits a
unique solution with discontinuity permeability tensor. The I − th row of the matrix A consists of the stencil
corresponding to the point rI . Let the unknowns be labeled by an index set N same as particles labels. We
consider square matrices A ∈ Rn×n .

Definition 4.14. A matrix A is called essentially irreducible if every point is connected to a Dirichlet boundary
point.

The matrix A resulting from the meshless discretization is an essentially irreduciable which is guaranteed
by the Heine-Borel theorem.

Remark 4.15. Meshless multi-point flux approximation matrices are in general non-symmetric. Consider two
points rI and rJ with the corresponding smoothing lengths hI and hJ . Since each stencil entry depends on
the smoothing length, the point rJ influences the matrix entry aij if ‖rJ − rI‖ ≤ f · hI whereas rI does not
influence the matrix entry aij if ‖rJ − rI‖ > f · hI , where f is the scaling factor defined by the shape of the
Kernel function.

This ends the derivation of a first-order meshless multi-point flux approximation method that can be used to
solve different boundary value problems.

§ 4.4 Approximation, Stability, Monotonicity and Convergence

The approximation, stability and monotonicity are important properties of numerical schemes which provide
and quantify the confidence in the numerical modeling and results from corresponding simulations. Therefore,
in order to be confident that the proposed numerical schemes provide the adequate accuracy of the elliptic
operator (4.1), several numerical analyses to identify the order of approximation, stability and monotonicity
have been performed.

The proof of the convergence of linear meshless multi-point flux approximation schemes applied to a linear
elliptic boundary value problem can be found in the following references (see, Bouchon (2007) [34], Bouchon
and Peichl (2007) [35], Matsunaga and Yamamoto (2000) [197], Thomée (2001) [252]: if it is shown that the
truncation error ε tends to 0 as the maximum smoothing length max

I∈N
hI goes to 0, and then the linear system

Aδf = ε coupling the local variable error δf with ε proves the convergence of the schemes, given that the
matrix A ∈ Rn×n of the discretized meshless operator is monotone. Note that a weaker condition (i.e., the
norm of the inverse matrix is bounded by the constant independent of the mesh size) can be assumed to garantee
the convergence.

4.4.1 Approximation

It is important to recall that all numerical schemes are characterized by two length scales: h̃ = f · hp is the
radius of Ωr,h̃ = suppW , and hp is the inter-particle distance. Hence, while investigating the approximation
of the meshless discretization scheme, it is important to distinguish two cases: (a) the neighborhood number
of particles is fixed f = const with varying the inter-particle distance, (b) the inter-particle distance is fixed
hp = const with varying the neighborhood number of particles. The first case will be analyzed by looking at
the error defined by

‖E‖L2

Ω =


 1∑

J

VrJ

∑

J

VrJ (L [u (rJ)]− 〈L〉 [u (rJ)])
2




1/2

, (4.77)

where L [·] is the analytical Laplacian at the particle rJ and 〈L〉 [·] is the approximation of the Laplacian at
the particle rJ , ‖E‖L2

Ω is the averaged error over the entire domain. In the following paragraph, the numerical
analysis is performed for various functions, particle distributions, and media properties.

Let us consider a rectangular in Rn, n = 1, 2, 3:

Ω =
{
r = {xi} ∈ Rn | 0 < |xi − ai| < li, li ∈ R+, ∀i = 1, . . . , n

}
(4.78)

as the numerical domain. Here, ai are the center coordinates of the rectangular and li are the side lengths.
Figures 4.4 show the unform and random particle distribution 2D. The approximation analysis was also run with
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Uniform particles distribution Random particle distribution

Figure 4.4: Particles distribution in 2D for the numerical approximation analysis.

a random distribution of particles to understand its effect on the order of approximation. The random distribution
of particles was generated by generated N random 2D dimensional points xi, yi, where (i = 1, ..., n; j =
1, ..., n) points in a box of size li with ai center, so that each point has at least one neighbour. All the above
results were obtained using the cubic spline kernel in the simulations.

Following the work [236], the ability of the discretization to reproduce the Laplacian was tested for several
functions in Rn, n = 1, 2, 3:

(a) us (x) =

n∑

i=1

xsi , (b) usm (x) =

n∏

i=1

xmi
i , |m| = s (4.79)

where m = (m1, . . . ,mn) , ∀i : mi ≥ 0 is the n-dimensional multi-index with the property |m| =
n∑
i=1

mi.

The reason for selecting these testing polynomials is as follows. Since the functional space Lp (Ω) is separable,
the above polynomials form the everywhere dense subset of the Lp (Ω). Hence, any function u ∈ Lp can be
approximated in Lp using linear combination of the above polynomials leading to the following relations:

u(r) ≈
∞∑

k=1

∑

|m|≤k
am

(
n∏

i=1

xmi
i

)
,M (r) ≈

∞∑

k=1

∑

|m|≤k
bm

(
n∏

i=1

xmi
i

)
. (4.80)

The approximation error produced by the discretization schemes and considered in this paper for the polyno-
mials us (x) and usm (x) gives the information about the error growth for the arbitrary function u(r). In each
test, the homogenous and heterogeneous particle distribution varying the smoothing length h̃ and inter-particle
distance hp are used to study the approximation properties of the proposed discretization scheme.

4.4.2 Isotropic Homogeneous Media

Note that in the limit of the homogeneous isotropic media (i.e., Mαβ (r) = m (r) δαβ , m (r) = 1) and
without the source term, the aforementioned operator L (u) in (4.1) reduces to the conventional Laplacian
operator (i.e., L (u) ≡ ∇2u). The domain for the patch test is a unit square similar to [236] for n = 2:

Ω =

{
r = {xi} ∈ Rn | |xi − 2.5| 6 1

2
∀i
}

with N = 21 particles in each direction characterized by two length spacings: h̃ = f · hp, hp = 0.05, f = 1.2.
In all of the following tests, the results are displayed along the cross-section y = 2.5 in Rn, n = 2

(similar to [236] for n = 2). In each test, the following discretizations are compared: corrected Brookshaw’s
scheme (CB-SPH) (4.28), Schwaiger’s scheme (S-SPH) (4.29)–(4.32), and new proposed scheme (M-SPH)
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(4.44)–(4.46). Note that the Schwaiger’s scheme was tested against several schemes published in [56], [54]
and show better accuracy; hence, schemes in [56], [54] are not considered in this paper. The comparison of
different schemes starts with test functions of the form us (x) described by (4.79)(a) in Rn, n = 2. Plots of the
Laplacian approximations and the relative errors defined by (4.77) for the case m = 3 are shown in Figure 4.5.

Figure 4.5: Cross-section of the test patch at y = 2.5. Three SPH approximations of ∇2
(
x3 + y3

)
with

different kernel gradients are shown. Corrected Brookshaw’s scheme (CB-SPH) is given by (4.28) with the
correction multiplier, while Schwaiger’s scheme (S-SPH) is given by (4.29)–(4.32). New approximation (M-
SPH) considered here is the SPH form (4.44)–(4.46). In this case, the Schwaiger’s scheme and new scheme
have comparable accuracy at the boundaries and are accurate in the interior to the machine precision. Four
different options of computing the kernel gradient (i.e., ∇γW , ∇αW , and corrected kernel gradients (i.e.,
∇∗αW ,∇∗αW ,∇∗αW , and ∇̃∗αW ) are shown.

The new scheme (M-SPH) has the greatest accuracy at the boundary and is accurate to machine precision
ε in the interior. The same behavior is observed in 3D where the M-SPH scheme with the ∇αW is the most
accurate scheme. Furthermore, the new scheme should be tested for the functions requiring cross-derivatives
as was reported in [236]. To examine the effect of the cross-derivative terms, the same suite of tests was run
with the function usm (x) described by (4.79)(b) in Rn, n = 2, 3. Relative errors for (xy)m on a same array as
in Figure 4.5 along y = 2.5 were computed and again the proposed scheme (4.44)–(4.46) was uniformly more
accurate for the various experiments. The behavior of each discretization is similar to that shown in Figure 4.5.
The proposed new scheme (M-SPH) performed nearly as well as the Schwaiger’s scheme at the boundary. The
CB-SPH and S-SPH forms also perform with greater accuracy than all other forms in the interior except in the
case with the highest exponent.

An additional concern is that although it deviates from the exact solution near boundaries, it acquires no
off-diagonal terms due to the alignment of the array of particles and the boundaries with the coordinate axes. To
test the accuracy of the new approximations when there are off-diagonal terms, an array with particles rotated
45o was used with the test function (xy)m (similar to [236]). The new proposed scheme formulation performs
consistently well for lower exponents.

Following the work by [236], the numerical tests for inhomogeneous Dirichlet, Neumann and mixed bound-
ary conditions are considered for homogeneous and heterogeneous media with the characteristics M (r). To
illustrate the performance of the proposed scheme, a modelling of a single phase steady-state fluid flow in fully
anisotropic porous media with different type of boundary conditions is also presented in this section. The square
2D and 3D domains (4.78) are considered. The relative error used to quantify the accuracy of the proposed
schemes during numerical simulation in this section is given by:

‖ER‖L2

Ω =


 1∑

Ω

VrJ

∑

Ω

VrK

(
u (rK)− 〈u (rK)〉

u (rK)

)2



1/2

(4.81)

where u (r) is the analytical or reference solution field and 〈u (rK)〉 is the approximated solution field. Several
numerical results using considered in this paper schemes for uniform and pseudo random particle distributions
are shown in the following sections that confirm the theoretical results from the previous sections.
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4.4.3 Inhomogeneous Boundary Condition
Firstly, the homogeneous properties of the porous media M (r) = I are assumed for simplicity of the

derivation. The analytical solution of (4.1) subject to the assumption that g (r) ≡ 0 for r ∈ Ω ⊂ R2 and
constant boundary conditions is the following:

u (x, y) =
∑

n=odd

[
4ψ1

nπ sinh
(
nπH
L

)
]

sin
(nπ
L
x
)

sinh
(nπ
L

(H − y)
)

+

+
∑

n=odd

[
4ψ2

nπ sinh
(
nπL
H

)
]

sin
(nπ
H
y
)

sinh
(nπ
H
x
)

+

+
∑

n=odd

[
4ψ3

nπ sinh
(
nπL
H

)
]

sin
(nπ
H
y
)

sinh
(nπ
H
x
)

+

+
∑

n=odd

[
4ψ4

nπ sinh
(
nπL
H

)
]

sin
(nπ
H
y
)

sinh
(nπ
H

(L− x)
)
,

(4.82)

where ψ1 is the boundary at y = 0, ψ2 at x = L, ψ3 at y = H , and ψ4 at x = 0.
Tables 4.1, 4.2 shows the convergence rate of different schemes for uniform particle distribution. The

solutions with MPFA and Mimetic schemes were obtained using MATLAB Reservoir Simulation Toolbox
(MRST) [165]. It is clear from the convergence results that schemes (4.29)–(4.32) and (4.44)–(4.46) are iden-
tical and they overperform the scheme (4.28). The convergence rate as was predicted theoretically is at least
O (hω) , 1 ≤ ω ≤ 2. Tables 4.3, 4.4 shows the convergence rate for different schemes and pseudo random dis-

Table 4.1: The error of convergence for different schemes (uniform particle distribution) and f = 0.5005.

DoF MPFA Mimetic Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 1.318 · 10−1 1.240 · 10−1 1.314 · 100 6.608 · 10−2 6.608 · 10−2

100 3.296 · 10−2 3.078 · 10−2 3.925 · 10−1 1.865 · 10−2 1.865 · 10−2

400 8.233 · 10−3 7.685 · 10−3 1.105 · 10−1 4.714 · 10−3 4.714 · 10−3

1600 2.058 · 10−3 1.920 · 10−3 3.025 · 10−2 1.179 · 10−3 1.179 · 10−3

6400 5.318 · 10−4 4.968 · 10−4 8.152 · 10−3 3.213 · 10−4 3.213 · 10−4

25600 3.007 · 10−4 2.955 · 10−4 2.193 · 10−3 2.807 · 10−4 2.807 · 10−4

Table 4.2: The error of convergence for different schemes (uniformed particle distribution) and f = 1.001.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 2.312 · 10−1 1.091 · 10−1 1.091 · 10−1

100 1.120 · 10−1 2.698 · 10−2 2.698 · 10−2

400 3.998 · 10−2 6.737 · 10−3 6.737 · 10−3

1600 1.262 · 10−2 1.684 · 10−3 1.684 · 10−3

6400 3.737 · 10−3 4.418 · 10−4 4.418 · 10−4

25600 1.097 · 10−3 2.919 · 10−4 2.919 · 10−4

tribution. The reason for starting from f = 0.5005 is that we want to force the same number of non-zero entries
in the matrix as for MPFA or Memetic methods. This procedure may lead to a badly conditioned matrix since
∇W (rJ − rI , h)� 1. This distribution of particles was generated by perturbing the regularly distributed par-
ticles using a uniform random variable varying between +10% and −10% of the maximum smoothing length
hmax = 1.001. Since random realizations are used to compute errors, the statistical data about 30 realizations
are used to compute mean values and standard deviations. This data is presented in Tables 4.3, 4.4. The positive
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trends of the scheme remain the same as for the case of uniform particle distributions. The scheme (4.28) has
higher error compare to schemes (4.29)–(4.32) and (4.44)–(4.46). However, the dispersion of the approximation
error is higher in the scheme (4.44)–(4.46). Figure 4.6 shows the numerical solution of the boundary value

Table 4.3: The error of convergence for different schemes (random particle distribution) and f = 0.6006.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 1.102 · 10+0 ± 1.966 · 10−2 1.940 · 10−1 ± 3.954 · 10−2 3.707 · 10−1 ± 1.319 · 10−1

100 3.361 · 10−1 ± 4.923 · 10−3 5.511 · 10−2 ± 1.205 · 10−2 9.074 · 10−2 ± 2.668 · 10−2

400 9.576 · 10−2 ± 8.705 · 10−4 1.376 · 10−2 ± 2.440 · 10−3 2.299 · 10−2 ± 6.972 · 10−3

1600 2.640 · 10−2 ± 2.551 · 10−4 4.157 · 10−3 ± 7.485 · 10−4 5.912 · 10−3 ± 1.289 · 10−3

6400 7.185 · 10−3 ± 5.982 · 10−5 1.044 · 10−3 ± 1.465 · 10−4 1.406 · 10−3 ± 3.090 · 10−4

25600 1.944 · 10−3 ± 1.451 · 10−5 3.858 · 10−4 ± 5.887 · 10−5 4.960 · 10−4 ± 8.425 · 10−5

Table 4.4: The error of convergence for different schemes (random particle distribution) and f = 1.2012.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 3.578 · 10−1 ± 2.879 · 10−2 2.162 · 10−1 ± 2.800 · 10−2 1.842 · 10−1 ± 8.871 · 10−3

100 1.261 · 10−1 ± 4.859 · 10−3 5.696 · 10−2 ± 5.518 · 10−3 4.596 · 10−2 ± 1.999 · 10−3

400 4.224 · 10−2 ± 1.092 · 10−3 1.493 · 10−2 ± 1.546 · 10−3 1.157 · 10−2 ± 5.691 · 10−4

1600 1.299 · 10−2 ± 2.031 · 10−4 3.934 · 10−3 ± 3.969 · 10−4 2.889 · 10−3 ± 1.451 · 10−4

6400 3.862 · 10−3 ± 3.452 · 10−5 1.037 · 10−3 ± 8.443 · 10−5 7.507 · 10−4 ± 4.060 · 10−5

25600 1.133 · 10−3 ± 2.125 · 10−5 4.087 · 10−4 ± 5.405 · 10−5 3.475 · 10−4 ± 3.814 · 10−5

problem obtained using different discretization methods. The solution was obtained using 40 particles/cells in
each direction.

Figure 4.6: Comparison of solutions of the Dirichlet problem for the Laplace equation. The method used are
MPFA-O, Mimetic, TPFA, and Meshless methods (New Method: (4.44)–(4.46)).
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4.4.4 Inhomogeneous Mixed Boundary Condition Test

The general steady-state solution for a Dirichlet condition along the base of the plate and Neumann condi-
tions elsewhere is given in [236] by

u (x, y) = ψ1 + ψ3y +

∞∑

n=1

2ψ2 cosh (λnx) + 2ψ4 cosh (λn (L− x))

Hλ2
n sinh (λnL)

sinh (λny) , (4.83)

where ψ1 is the boundary value of u at y = 0, ψ2 is the flux at x = L, ψ3 is the flux at y = H , and ψ4 is the flux

at x = 0, and λn =
(2n− 1)π

2H
. The following parameters (dimensionless) were chosen:ψ1 = 150, ψ3 = 150,

ψ4 = 200, ψ2 = 90. Again, for uniform and regular particles distribution, MPFA method reduces to the TPFA.
Similar to the previous section, the regular and pseudo random particle distribution are considered to access the
convergence properties of the proposed schemes.

Remark 4.16. Let ΓN = ∅ and ΓD = ∅, g (r) ≥ 0, r ∈ Ω, gN (r) ≥ 0, r ∈ ΓN , gD (r) ≥ 0, r ∈ ΓD and
the solution of

L (u) = 0, or ∇ (M (r)∇u (r)) = g (r) , ∀r ∈ Ω ⊂ Rn, (4.84)

exists then it can be discretized in all internal particles by the following schemes Brookshaw (4.28), Schwaiger
(4.29)–(4.32), and New Scheme (4.44)–(4.46) and compounded with the following condition for all r ∈ ΓN :

〈vαnα〉 = nαM
αβ (r)

∑

Ωr,h̃

VrJ [u (rJ)− u (rI)]∇∗βW (rJ − rI , h) (4.85)

where nα are the component of the external normal to the boundary r ∈ ΓN .

The following smoothing multiplication factors f = 0.5005, f = 1.001, and f = 2.002 are considered.
Tables 4.5, 4.6 show the convergence rate for different schemes using the uniform and pseudo random particle
distribution. The convergence rate as was predicted theoretically is at least O (hω) , 1 ≤ ω < 2. Interestingly,
the scheme (4.28) shows a very bad convergence rate for f = 0.5005. This explains by the fact that we have
one particle from each side in the kernel support almost next to the boundary of the kernel support leading to
∇W (rJ − rI , h) � 1 and, hence, to a badly conditioned matrix. This does not observed for other schemes
due to the normalization coefficient. As a result, the scheme (4.28) should be used with more than one particle
in the compact support in each direction leading to a larger bandwidth in the matrix.

Table 4.5: The error of convergence for different schemes (uniform particle distribution) and f = 0.5005.

DoF MPFA Mimetic Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 1.489 · 10−1 2.651 · 10−2 1.489 · 106 8.244 · 10−1 8.244 · 10−1

100 2.015 · 10−2 4.424 · 10−3 9.471 · 105 2.178 · 10−1 2.178 · 10−1

400 2.727 · 10−3 6.889 · 10−4 5.378 · 105 5.550 · 10−2 5.550 · 10−2

1600 3.666 · 10−4 1.024 · 10−4 2.859 · 105 1.398 · 10−2 1.398 · 10−2

6400 4.951 · 10−5 1.522 · 10−5 1.473 · 105 3.504 · 10−3 3.504 · 10−3

25600 7.309 · 10−6 2.920 · 10−6 7.474 · 104 8.770 · 10−4 8.770 · 10−4

Tables 4.7, 4.8 show the convergence rate for different schemes with pseudo random particle distribution.
The pseudo random distribution of particles was again generated by perturbing the regularly distributed parti-
cles using the uniform random variable varying between +10% and −10% of the maximum smoothing length
hmax = 1.001. Similar to the above case, the statistical data about 30 realizations are used to compute mean
values and standard deviations. These data are presented in Tables 4.7, 4.8. The general trends of the scheme
prosperities remain the same as for uniform particle distributions. The scheme (4.28) has higher error compared
to schemes (4.29)–(4.32) and (4.44)–(4.46). However, the dispersion of the approximation error is higher in the
scheme (4.44)–(4.46). Results of the numerical solution are compared with the series solution in Figure 11.
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Table 4.6: The error of convergence for different schemes (uniform particle distribution) and f = 1.001.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 1.163 · 100 1.078 · 10−1 1.078 · 10−1

100 1.208 · 100 1.488 · 10−2 1.488 · 10−2

400 8.291 · 10−1 2.244 · 10−3 2.244 · 10−3

1600 4.831 · 10−1 4.215 · 10−4 4.215 · 10−4

6400 2.606 · 10−1 9.858 · 10−5 9.858 · 10−5

25600 1.353 · 10−1 2.502 · 10−5 2.502 · 10−5

Table 4.7: The error of convergence for different schemes (random particle distribution) and f = 0.6006.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 5.608 · 101 ± 1.019 · 100 8.815 · 10−1 ± 4.248 · 10−1 1.242 · 100 ± 5.058 · 10−1

100 3.769 · 101 ± 5.708 · 10−1 3.454 · 10−1 ± 1.977 · 10−1 4.361 · 10−1 ± 2.425 · 10−1

400 2.154 · 101 ± 1.757 · 10−1 8.454 · 10−2 ± 5.111 · 10−2 1.525 · 10−1 ± 1.195 · 10−1

1600 1.159 · 101 ± 7.457 · 10−2 2.245 · 10−2 ± 1.055 · 10−2 4.563 · 10−2 ± 2.328 · 10−2

6400 6.027 · 100 ± 2.312 · 10−2 1.104 · 10−2 ± 7.523 · 10−3 1.848 · 10−2 ± 9.276 · 10−3

25600 3.054 · 100 ± 1.174 · 10−2 4.123 · 10−3 ± 2.059 · 10−3 5.879 · 10−3 ± 4.253 · 10−3

Table 4.8: The error of convergence for different schemes (random particle distribution) and f = 1.2012.

DoF Brookshaw (4.28) Schwaiger (4.29)–(4.32) New Scheme (4.44)–(4.46)

25 5.177 · 10−1 ± 7.312 · 10−2 3.143 · 10−1 ± 7.543 · 10−2 4.302 · 10−1 ± 1.461 · 10−1

100 5.160 · 10−1 ± 4.035 · 10−2 5.959 · 10−2 ± 4.713 · 10−3 1.106 · 10−1 ± 1.739 · 10−2

400 4.349 · 10−1 ± 1.715 · 10−2 1.515 · 10−2 ± 1.973 · 10−3 3.015 · 10−2 ± 1.045 · 10−2

1600 2.745 · 10−1 ± 9.059 · 10−3 3.926 · 10−3 ± 6.865 · 10−4 1.133 · 10−2 ± 5.486 · 10−3

6400 1.508 · 10−1 ± 2.822 · 10−3 1.595 · 10−3 ± 8.144 · 10−4 3.187 · 10−3 ± 1.438 · 10−3

25600 7.958 · 10−2 ± 1.146 · 10−3 5.354 · 10−4 ± 2.036 · 10−4 9.201 · 10−4 ± 5.201 · 10−4

Figure 4.7: Comparison of solutions of the inhomogeneous mixed boundary problems for the Laplace equa-
tions. The method used are MPFA-O, Mimetic, TPFA, and Meshless methods (New Method: (4.44)–(4.46)).
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4.6.3 Fully Anisotropic Medium
The new method (4.66) – (4.75) has been tested on a sequence of uniform and random particle distribu-

tions for homogeneous and heterogeneous anisotropic media in 2D and 3D. Physically, it is assumed that the
permeability M (r) is a symmetric, uniformly positive definite tensor in Ω ⊂ Rn, n = 2, 3. In all cases, the
boundary conditions of Dirichlet type and mixed conditions as defined in the previous section are considered.
The numerical results are presented for the following case

M (r) =




2 50 20

50 200 10

20 10 300


 , r ∈ Ω ⊂ R3, (4.86)

Figure 4.8 shows the comparison of solutions of the mixed boundary value problem for the Laplace equation
in 3D using MPFA-O, Mimetic, TPFA, and Meshless methods (New Method: (4.69)–(4.72)) and permeability
tensor (4.86) Case (b). The computed errors were ‖ER‖L2

Ω = 0.000 · 100 (MPFA), ‖ER‖L2

Ω = 6.478 · 10−5

(Mimetic), ‖ER‖L2

Ω = 8.458·10−13 (TPFA), ‖ER‖L2

Ω = 5.945·10−4 (Meshless Method). The proposed method
(4.69)–(4.72) shows similar qualitive behaviour as MPFA and Mimetic but not as TPFA; however, the proposed
method has a higher error compared to Mimetic. The TPFA method does not show the correct behavior and,
hence, this method produces inccorrect pressure distribution. In a case of heterogenious media, the following

Figure 4.8: Comparison of solutions of the Dirichlet problem for the Laplace equation and permeability tensor
(4.86) Case (c). The method used are MPFA-O, Mimetic, TPFA, and Meshless methods (New Method:
(4.69)–(4.72)). Errors ‖ER‖L2

Ω = 0.000 · 100 (MPFA), ‖ER‖L2

Ω = 6.478 · 10−5 (Mimetic), ‖ER‖L2

Ω =

8.458 · 10−13 (TPFA), ‖ER‖L2

Ω = 5.945 · 10−4 (Meshless Method)

tensors are considered:

M (r) =




10 + (x+ 2)2 + y2 2 + 2 sin(xy) 1 + cos(xz)

2 + 2 sin(xy) 2 1 + sin(yz)

1 + cos(xz) 1 + sin(yz) 20 + (z + 2)2 + y2


 , r ∈ Ω ⊂ R3, (4.87)

The provided expressions ensure that the permeability M (r) is a symmetric, uniformly positive definite tensors
in Ω ⊂ Rn, n = 2, 3. Again, the boundary conditions of Dirichlet and mixed types (as defined as in the previous
section) are considered again. Figure 4.9 shows the comparison of solutions of the mixed boundary value
problem for the Laplace equation in 3D using MPFA-O, Mimetic, TPFA, and Meshless methods (New Method:
(4.69) – (4.72)) and heterogenious permeability tensor (4.87). The computed errors were ‖ER‖L2

Ω = 0.000 ·100

(MPFA), ‖ER‖L2

Ω = 4.060 · 10−4 (Mimetic), ‖ER‖L2

Ω = 4.948 · 10−3 (TPFA), ‖ER‖L2

Ω = 1.958 · 10−2
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(Meshless Method). The proposed method (4.69)–(4.72) shows similar qualitive behaviour as MPFA, TPFA
and Mimetic; furthermore, the proposed method has almost identical error compared to TPFA.

Figure 4.9: Comparison of solutions of the Dirichlet problem for the Laplace equations and permeability tensor
(4.87). The method used are MPFA-O, Mimetic, TPFA, and Meshless methods (New Method: (4.69)–(4.72)).
Errors ‖ER‖L2

Ω = 0.000 ·100 (MPFA), ‖ER‖L2

Ω = 4.060 ·10−4 (Mimetic), ‖ER‖L2

Ω = 4.948 ·10−3 (TPFA),
‖ER‖L2

Ω = 1.958 · 10−2 (Meshless Method)

4.4.1 Monotonicity
In real life applications, the numerical domains are large and, therefore, many degree of freedom (i.e.,

unknowns) is required. The resulting matrix is usually sparse, but because of fill-in a direct method requires
significant amount of memory and time in general case. Hence, iterative solvers are used to overcome these
issues. The iterative solvers converge only if the matrix satisfies certain properties related to the property of the
diagonal dominance. However, these properties are only sufficient conditions for the method to converge.

The proof of the convergence of linear meshless schemes applied to a linear elliptic boundary value problem
can be done in the following steps (see, Bouchon (2007) [34], Bouchon and Peichl (2007) [35], Matsunaga
and Yamamoto (2000) [197], Thomée (2001) [252]: if it is shown that the truncation error ε tends to 0 as the
maximum smoothing length max

I∈N
hI goes to 0, then the linear system Aδu = ε that couples the variable error

δu with ε proves the convergence of the schemes, given that the matrix of the discretized meshless operator is
monotone.

Definition 4.17. A square matrix A = (aij)1≤i≤n,1≤j≤n ∈ Rn×n is called monotone if it is inverse positive
A−1 ≥ 0. Inverse positive refers to the component wise.

The monotone matrix has always attracted researches in many fields (e.g., Bramble and Hubbard (1964) [38],
Fujimoto and Ranade (2004) [93], Bouchon and Peichl (2007) [35], LeVeque and Li (1994) [161], Wiegmann
and Bube (2000) [276]). Generally speaking, meshless multi-point flux approximation matrices are not M-
matrices. However, the scheme converges to the solution of the continuous problem (1) and the entries of
the matrix aij seem to be insignificantly deviated from the M-matrix structure. In this thesis, the perturbation
approach will be employed to characterize the monotone matrices (Alfa et al. (2002) [7], Elsner (1997) [88],
Bouchon (2007) [34], Haynes et al. (2007) [108], Xue and Jiang (1995) [277]). Usually A ∈ Rn×n is shown
to be monotone by showing that it is an M-matrix (Bouchon, 2007 [34]). There are over 50 various equivalent
definitions of M-matrix (Bermann and Plemmons, 1979 [29]).

Definition 4.18. A square matrix A = (aij)1≤i≤n,1≤j≤n ∈ Rn×n is called M-matrix if aij ≤ 0 ∀i 6= j,
aii > 0 ∀i and A is strictly diagonally dominant matrix
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TheM-matrix is monotone since its inverse is positive, i.e. A−1 ≥ 0. Furthermore, the monotone schemes
do satisfy a discrete maximum principle producing solutions without spurious oscillations.

It is clear that the new scheme (4.44)–(4.46) can be written in the form (4.4), where meshless transmissibility

between particles rJ and rI can be defined as T (rJ , rI) =
Γ̄−1
ββ

n
(mI +mJ) T̄IJ with:

T̄IJ = VrJ





(rJ − rI) · ∇W
(
rJ − rI , h̃IJ

)

‖rJ − rI‖2
−∇∗αW

(
rJ − rI , h̃IJ

)
Ñα



 , (4.88)

where Ñα (rI) is defined by (4.30). Applying the relation (2.35) valid for kernel gradients (2.31), (2.33), (2.34)
and the definition of the corrected kernel gradient (2.36), (2.37) leading to

T̄IJ =
VrJ

h̃IJ ‖rJ − rI‖
G(zJ , rI)

[
1− Ñα (rI)Cαβ (rI)

(
rβJ − rβI

)]
. (4.89)

The sign of the transmissibility coefficient is described by the the following Lemma.

Lemma 4.19. If matrix Γ̄ij (rI) is strictly diagonally dominant matrix then the coefficients T (rJ , rI) are
positive in the following cases ∀rI :
(a) Case Γ∗αβ (rI) 6= 0: if we have the following relation ∀rJ , rK ∈ ΩrI ,h̃I

sgn
[
1− Ñ (rI)C (rI) (rJ − rI)

]
= sgn

[
1− Ñ (rI)C (rI) (rK − rI)

]
, (4.90)

where sgn is the sign function.
(b) Case Γ∗αβ (rI) = 0: if we have the following relation ∀rJ ∈ ΩrI ,h̃I

[
1− Ñ (rI)C (rI) (rJ − rI)

]
> 0. (4.91)

Proof. Taking into account (4.47), (4.48), (4.49) and Lemma 4.5, we need to ensure that Γ̄−1
ββ/n and T̄IJ are of

the same sign. This can be achived by the conditions of the Lemma 4.19.

It is clear that the sufficient conditions (4.90) and (4.91) are fulfilled for the homogeneous and symmetrical
particles distribution due to Ñ (rI) = 0. In general, one can note that

Ñ (rI)C (rI) = ‖ξI‖ ‖∆rJI‖ · cos(ξI ,∆rJI), (4.92)

where ξβI is the vector Ñα (rI)C (rI)αβ , ∆rJI is the vector (rJ − rI), cos(ξI ,∆rJI) is the cos of angle
between ξβI and ∆rJI . The maximum of absolute values in (4.92) is achieved when vectors ξβI and ∆rJI are
collinear. Figure 4.10 shows the mean value distribution of ‖ξI‖ and its dispersion as a function of neighboring
particles in a unit circle. The smoothing length for all particles h̃I = 1 ∀I and f = 0.5005 are assumed.
The 50 random configurations of the neighboring particles distribution are considered starting from 4 to 500
neighboring particles in 2D. It is clear from the Fig. 4.10 that sufficient conditions (4.90) and (4.91) are ful-
filled in statistical sense for heterogeneous particles distribution for large number of neighboring particles. A
consequence of the Lemma 4.19 is the statement of the next Theorem.

Theorem 4.20. The proposed discretization scheme (4.44)–(4.46) subject to the conditions of the Lemma 4.19
is monotone for the medium with the scalar heterogeneous −m (r) coefficients.

The Lemma 4.19 provides a sufficient (not necessary) conditions for the monotonicity of the proposed new
discretization scheme (4.44)–(4.46).

4.4.2 von Neumann stability analysis
For linear PDEs, there is the Lax-equivalence theorem which connects the consistency and stability with the

convergence. The idea of the von Neumann stability analysis is to study the growth of waves λeik·r (similar
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Figure 4.10: (a) The mean value distribution of ‖ξI‖ for 50 random configurations; (b) The dispersion σ (‖ξI‖)
of the ‖ξI‖ distribution for 50 random configurations;

to Fourier methods). After applying one of the discretization methods above to the Laplace operator (4.1), the
following relation can be written:

{u}n+1 − {u}n
τ

− Lh̃ [{u}n] = {b} , (4.93)

where τ is the iteration parameter (e.g., time step), n is the iteration index (e.g., time index), {u}n = (un1 , . . . ,u
n
N )

is a vector of all N particle values uni , i = 1, . . . , N , {b} = (b1, . . . , bN ) is the right-hand side vector. The
expression (4.93) may represent, for example, discretization of the parabolic PDE or an iterative solver of the
linear system of equations arising from discretization of elliptic boundary value problem. Substituting into the
left-hand side of the relation (4.93) the following form of perturbation

unj = λneikj ·rj = λn ·
n∏

l=1

eiklj ·xl
j (4.94)

leads to the expression for the von Neumann growth factor subject to (4.93) and linear Laplace operator:

λj (τ) = 1 + τ · e−ikj ·rj · Lh̃
[{
eik·r}] , r ∈ Rn, n = 1, 2, 3; (4.95)

where
{
eik·r} =

(
eik1·r1 , . . . , eikN ·rN

)
and λj (τ) is the von Neumann growth factor. For the discretization

to be stable, it is required that |λj (τ)| ≤ 1, ∀j. The von Neumann growth factor is shown for three main
discretization schemes: Corrected Brookshaw’s scheme (CB-SPH) (4.28), Schwaiger’s scheme (S-SPH) (4.29)–
(4.32) and new approximation (M-SPH) (4.44)–(4.46) for uniform and pseudo random particle distribution with
τ = 0.25 and Mαβ (r) = δαβ (see, Figures 4.11). In case of uniform particle distribution, the von Neumann
growth factor clusters around the real axis for all schemes and satisfies the requirement |λj (τ)| ≤ 1, ∀j. In
case of pseudo random particle distribution, the von Neumann growth factor has both real and imaginary parts
forming complex shape but satisfying the requirement |λj (τ)| ≤ 1, ∀j almost everywhere (i.e., it could be
some problems at the boundary particles).

§ 4.5 SPE10

In addition, we investigate the accuracy of the numerical schemes using a well-known SPE10 benchmark [64]
with the Laplace equation:

L (u) = −∇ (M (r)∇u (r)) = 0, ∀r ∈ Ω ⊂ Rn,

Mαβ (r) = Kαβ (r) , Kαβ (r) = 0 ∀α 6= β; α, β = 1, . . . , n;
(4.96)

where u (r) is the unknown pressure field, Kαβ (r) is the diagonal permeability field. The original model
contains 85 layers, where layers from 1 to 35 have smooth permeability with lognormal distribution and layers
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Figure 4.11: von Neumann growth factor for different discretization schemes. Corrected Brookshaw’s scheme
(CB-SPH) is given by (4.28) with the correction multiplier, while Schwaiger’s scheme (S-SPH) is given
by (4.29)–(4.32). New approximation (M-SPH) considered here are the SPH form (4.44) – (4.46). Four
different options of computing kernel gradients (i.e., ∇γW , ∇αW , and corrected kernel gradients (i.e.,
∇∗γW ,∇∗αW , ∇∗αW , and ∇̃∗αW ) are shown.

36 to 85 have channelized formations that are considered to be significantly more challenging for numerical
simulations. The subset of this model is defined by the global Cartesian indices I , J , K. The 85 layer was
used as a permeability field for 2D simulation with Cartesian indices I = 1 : 60 and J = 1 : 60. In 3D, the
subsection Cartesian indices I = 1 : 60, J = 1 : 60, and K = 1 : 60. The permeability fields K11 for both
cases are shown in Figure 4.12.

The boundary conditions correspond to the unit pressure drop over the entire domain in J-direction (i.e.,
ymin = 0 and ymax = 1). The numerical results using new scheme for the SPE10 cases are presented in
Figure 4.13. The relative error distribution is also shown for 2D and 3D cases, where the error is computed
using (4.81) and numerical solution based on TPFA. Figures 4.14 and 4.15 compare the convergence rates of
the various discretizations subject to different preconditioners. Furthermore, if we notice the convergence
comparison for this test in Figures 4.14 and 4.15, the proposed new method offers similar convergence as
compared to the Schwaiger’s scheme (4.29)–(4.32)). The reason for such convergence is the similarity between
condition numbers of the linear system of equations resulting from these methods.

Another interesting observation in this numerical test is the small values of the relative error between the
TPFA solution and proposed new method for both 2D and 3D cases. This observation exhibits the efficiency of
the proposed meshless discretization scheme, which explains the higher accuracy of linear reproduction.

§ 4.7 Conclusion

In this chapter, the new stable SPH discretization of the elliptic operator for heterogeneous media is pro-
posed. The scheme has the two-point flux approximation nature and can be written in the form of (4.2). Using
this structure, it was possible to make some theoretical monotonicity analysis, which is difficult to perform for
other schemes (e.g., Schwaiger’s method). The paper also discusses the monotonicity and convergence prop-
erties of the new proposed scheme. The sufficient monotonicity condition is also formulated leading to the
constraint on the kernel shape and particles distribution (see, Lemma 4.19 and Theorem 4.20). Furthermore, it
follows from the Taylor’s series analysis that proposed scheme is the optimum one in this class (4.2) for a di-
agonal matrix of the operator coefficients. In addition, the proposed scheme allows to apply upwinding strategy
during the solution of nonlinear PDEs.

The new scheme is based on a gradient approximation commonly used in thermal, viscous, and pressure
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Case (a) Case (b)

Figure 4.12: The lognormal permeability field in the SPE10 benchmark test. Case (a) 60× 60cells of 85 layer.
Case (b) subsection of the SPE10 model defined by 60× 60× 60 cells.

Numerical Solution (2D Case) Numerical Solution (3D Case)

Figure 4.13: Numerical solution obtained with the new scheme for the SPE10 cases. The relative error dis-
tribution is also shown for 2D and 3D cases, where error is computed using (4.81) and numerical solution
based on TPFA. The maximum relative errors in 2D and 3D are 0.07% and and 0.4%, respectively

Figure 4.14: Comparison of the convergence rate of the GMRES iterative method with and without precondi-
tioner for different numerical discretization methods (TPFA, New Scheme (4.44)–(4.46), Schwaiger (4.29)–
(4.32)). The linear system of equations is built using 2D case.
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Figure 4.15: Comparison of the convergence rate of the GMRES iterative method with and without precondi-
tioner for different numerical discretization methods (TPFA, New Scheme (4.44)–(4.46), Schwaiger (4.29)–
(4.32)). The linear system of equations is built using 3D case.

projection problems and can be extended to include higher-order terms in the appropriate Taylor series. The pro-
posed new scheme is combined with mixed corrections which ensure linear completeness. The mixed correction
utilizes Shepard Functions in combination with a correction to derivative approximations. Incompleteness of
the kernel support combined with the lack of consistency of the kernel interpolation in conventional meshless
method results in fuzzy boundaries. In the presented meshless method, the domain boundary conditions and
internal field variables are approximated with the default accuracy of the method. The resulting new scheme
offers a higher order of accuracy, but also minimize the impact of the particle deficiency (kernel support in-
completeness) problem. Furthermore, different kernel gradients and their impact on the property of the scheme
and accuracy are discussed. The model was tested by solving an inhomogeneous Dirichlet and mixed boundary
value problems for the Laplacian equation with good accuracy confirming our theoretical results. The accuracy
of Schwaiger’s scheme and new scheme is the same for homogeneous particle distribution and different for the
distorted particles. The stability analysis shows that von Neumann growth factor has both real and imaginary
parts forming complex shape for general particle distribution but satisfying the stability requirement almost
everywhere.

As was previously mentioned in the introduction, several methods have been proposed to address the diffi-
culties involved in calculating second-order derivatives with SPH. In contrast to the present formulation, many
of these methods achieve a high accuracy through fully calculating the Hessian or requiring that the discrete
equations exactly reproduce quadratic functions. The primary attraction of the present method is that it provides
a weak formulation for Darcy’s law which can be of use in further development of meshless methods. The
SPH model was previously used to model three-dimensional miscible flow and transport in porous media with
complex geometry, and we are planning to use this model in future work for large (field) scale simulation of
transport in porous media with general permeability distributions.
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CHAPTER5
MESHLESS RELAXED MULTISCALE METHODS

PRECONDITIONING can be used to damp slowly varying error modes in the linear solver residuals, corre-
sponding to extreme eigenvalues. Existing multiscale solvers use a sequence of aggressive restriction,
coarse-grid correction and prolongation operators to handle low-frequency modes on the coarse grid.

High-frequency errors are then resolved by employing a smoother on fine grid. In reservoir simulations, the
Jacobian system is usually solved by FGMRES method with two-level Constrained Pressure Residual (CPR)
preconditioner. In this chapter, a parallel fully implicit smoothed particle hydrodynamics (SPH) based multi-
scale method for solving pressure system is presented. The prolongation and restriction operators in this method
are based on a SPH gradient approximation (instead of solving localized flow problems) commonly used in the
meshless community for thermal, viscous, and pressure projection problems. This method has been prototyped
in a commercially available simulator. This method does not require a coarse partition and can be applied to
general unstructured topology of the fine scale. The SPH based multiscale method provides a reasonably good
approximation to the pressure system and speeds up the convergence when used as a preconditioner for an iter-
ative fine-scale solver. In addition, it exhibits expected good scalability during parallel simulations. Numerical
results are presented and discussed. 1

§ 5.1 Introduction

Academia and the corporate sectors are moving towards exascale simulations with highly complex properties
of the underlying numerical domain (e.g., geology, fracture network, micro-inclusions), where it is required to

1This chapter is based on the following publications:

1. Cusini, M., Lukyanov, A. A., Natvig, J. and Hajibeygi, H., Constrained Pressure Residual Multiscale (CPR-MS) Method, Journal
Computational Physics, Volume 299, Issue C, 2015, PP. 472-486.

2. van der Linden, J., Jonsthovel, T. B., Lukyanov, A. A., and Vuik, C., The Parallel Subdomain-Levelset Deflation Method in
Reservoir Simulation, Journal Computational Physics, Volume 304, Issue C, 2016, PP. 340-358.

3. Lukyanov, A. A., van der Linden, J., Jonsthovel, T. B. and Vuik, C., Meshless Subdomain Deflation Vectors in the Preconditioned
Krylov Subspace Iterative Solvers, ECMOR XIV - 14th European Conference on the Mathematics of Oil Recovery, 10.3997/2214-
4609.20141773.

4. Lukyanov, A. A., Vuik, C., Parallel Fully Implicit Smoothed Particle Hydrodynamics Based Multiscale Method, ECMOR XV -
15th European Conference on the Mathematics of Oil Recovery.
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compute an accurate solution with the reasonable time. Hence, current computational problems deal with the
high resolutions simulations, which contain billions of degrees of freedom (i.e., unknowns). Existing modern
computational resources stimulate the development of novel solver techniques tailored to these problems. At
the same time, specialized parallel and multicore architectures have driven the implementation of these new
methods with unprecedented performance expectations.

5.1.1 Commercial reservoir simulators

Commercial reservoir simulators usually uses the Newton-Raphson method to solve the non-linear govern-
ing equations for a given timestep. The corresponding Jacobian matrix and linear system are solved by the
Flexible Generalized Minimum Residual Method (FGMRES) (see, Saad and Schultz, 1986 [234]) precondi-
tioned by the Constrained Pressure Residual (CPR) preconditioner (see, e.g., Wallis (1983,1985) [271], [272],
Cao et al. (2005) [48]). CPR decouples the linear system into two sets of equations, exploiting the specific
properties of the pressure equation and transport equations. The former is solved with an Algebraic Multigrid
(AMG) preconditioner (see, Ruge (1987) [232]), while the fully coupled system is solved using an ILU(k) type
preconditioner.

A global linearization process results in sparse large linear systems of equations in the following form:

Ax = b or

[
App Aps

Asp Ass

][
xp

xs

]
=

[
bp

bs

]
(5.1)

where App represents the pressure block coefficients, Ass represents the non-pressure block coefficients, Aps

and Asp represent the respective coupling coefficients, xp is associated with the pressure (primary) variables,
xs is associated with the other (secondary) variables. By solving the parabolic part of the system (or elliptic for
incompressible flow) as a separate inner stage of the CPR method, this results in an improved overall conver-
gence rate for the fully coupled linear system. This requires to form an approximation of the pressure equations.
The pressure equation is constructed by an IMPES-like reduction of the equation (5.1) where both sides of (5.1)
are multiplied by a matrix of the form:

M1 =

[
I −Q
0 I

]
(5.2)

where

Q = ApsA
−1
ss ≈ colsum(Aps) · colsum(Ass)

−1 (5.3)

The pressure system can be extracted as follows

A∗pp∆xp ≈ b∗p, A∗pp = CTM1AC, CT =
[
I 0

]
(5.4)

The robustness of CPR method depends on the quality of the pressure matrix A∗pp = CTM1AC. Several
methods can be used that produce A∗pp: (a) Quasi-IMPES (b) True-IMPES. Equation (5.4) is the pressure
equation. It forms an approximation of the parabolic (or elliptic for incompressible flow) part of the discrete
operator and is considered separately from the remaining hyperbolic part. The entire process for a given time
step is schematically illustrated by the pseudocode 1 and it was shown to be extremely robust in terms of
algorithmic efficiency (see, Cao et al., 2005 [48]).

However, there are still challenges to overcome in implementing a near-ideal scalable AMG solver (i.e.,
compute of

(
A∗pp

)−1
). Also, the second stage of CPR preconditioning often includes some variant of an in-

complete LU factorization (i.e., compute of the matrix M2 in the pseudocode 1), which again is non-trivial to
parallelize. As a result, the linear solver is still far from near-ideal scalability. To overcome this problem, the
deflation AMG solvers for highly ill-conditioned reservoir simulation problems were considered (see, Klie et
al., 2007 [143]). However, the manual construction of the deflation vectors is time consuming and will most
likely lead to sub-optimal results.
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Algorithm 1 Right-Preconditioned two stage CPR-GMRES

1: Setup x0 (e.g., x0 = 0)
2: Compute r0 = (b−Ax0), β = ‖r0‖2, and v1 = r0/β.
3: Compute A∗pp = CTM1AC

4: for j = 1, 2, . . . ,m do
5: wj = A

[
M−1

2

(
I−AC

(
A∗pp

)−1
CTM1

)
+ C

(
A∗pp

)−1
CTM1

]
vj

6: for i = 1, . . . , j do
7: hi,j = (wj , vi)
8: wj = wj − hijvi
9: end for

10: hj+1,j = ‖wj‖2
11: if hj+1,j = 0 or converged then
12: set m = j and go to 16
13: end if
14: vj+1 = wj/hj+1,j

15: end for

16: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
17: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 + M−1

2 Vmum.
18: if converged then return else set x0 = xm and go to 2

5.1.2 Existing Solution Strategies

To improve the AMG robustness, Klie et al. (2007) [143] tried to consider deflation AMG solvers for highly
ill-conditioned reservoir simulation problems. However, the manual construction of the deflation vectors is a
time consuming process and will most likely lead to sub-optimal results (see, van der Linden et al., 2015 [260]).
However, the deflation strategy (which has a lower algebraic complexity and is inexpensive to set up) may
lead to a robust alternative of AMG in general. Furthermore, the deflation strategy also (strongly) scalable
which can be combined with the robust preconditioners. Deflation was first proposed for symmetric systems
and the CG method by Nicolaides (1987) [221] and Dostal (1988) [81]. Both construct a deflation subspace
consisting of deflation vectors to deflate problematic eigenvalues from the linear system. A plethora of widely
used deflation algorithms have been developed since, differing primarily in the application of the deflation
operator (e.g. as a preconditioner or projection preconditioner) and the method to construct the deflation vectors
(see, Frank and Vuik, 2001 [91]; Vuik et al., 2002 [270]; Tang and Vuik, 2007 [249], [250], [247]; Jonsthovel
et al. (2009,2011) [122], [121]; van der Linden, 2015 [260]).

Also, as alternative to AMG solver for the pressure system, two-level multiscale solvers (MS) have received
considerable attention in the literature over the past decades (see, e.g., Hou and Wu, 1997 [110]; Jenny et al.,
2003 [115]; Lunati and Jenny, 2006 [192]; Hajibeygi et al., 2008 [105]; Efendiev and Hou, 2009 [87]; Lunati
et al., 2011 [193]; Zhou and Tchelepi, 2012 [281]; Cortinovis and Jenny, 2014 [71]; Wang et al., 2014 [273];
Cusini et al., 2015 [74]; Moyner and Lie, 2016 [214]).

Existing multiscale solvers use a sequence of aggressive restriction, coarse-grid correction and prolonga-
tion operators to handle low-frequency modes on the coarse grid. High-frequency errors are then resolved by
employing a smoother on the fine grid, which could be expensive if large number of smoothing iterations is re-
quired in the Newton-Raphson step. This is usually the case when multiscale solvers are used as a linear solver
with a very small tolerance. However, both AMG and MS methods are used incompletely, i.e. 1 V cycle of
AMG and one step of MS. In all cases, the goal is to construct a relatively good approximate pressure solution
before computing remaining variables and applying a second stage preconditioner.

The multiscale solvers seem to be naturally scalable and can be used as a preconditioner. However, usage of
the smoothers on the fine grid and solution of the coarse system form a bottleneck in constructing embarrassingly
parallel algorithm. Hence, to reduce the impact of the smoothers on the fine grid, the quality of the pressure
solution after one step of MS should be of acceptable accuracy. Furthermore, the combination of a multiscale
solver and the deflation method can also be constructed to improve the quality of the pressure solution.
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5.1.3 Multiscale, Multilevel, Multigrid and Deflation Methods
There are a number of common and fundamental features in currently used state-of-the-art methods. Given

the fine-scale system of the governing equations, (two-level and multi-level) multiscale, multilevel, (algebraic
and geometric) multigrid and deflation solvers construct a coarse-scale system by applying (one or several
depending on the number of coarsing levels) restriction R and prolongation P operators, solve the solution at
coarse level, and then prolong (interpolate) it back to the original fine-scale system by using (one or several
depending on the number of coarsing levels) prolongation operators P. This can be applied a pre-defined
number of times as

Ak+1 = RkAkPk (5.5)

where k is the level of the appropriate step of multiscale, multilevel, multigrid, and deflation methods, Ak+1

is the matrix on the next level (for the pressure system), Rk, Pk are the restriction and prolongation operators
at the level k. Hence, the level k has a different meaning depending on the selected method. For example, for
deflation method this corresponds to a different deflated eigenspace. Typical V-cycle scheme of five levels for
(multilevel-) multiscale, multigrid, and multilevel deflated method is shown in Figure 5.1.

Level 0 (finest)

Level 1

Level 2

Level 3

Level 4 (coarsest)

smoothing

restriction

prolongation

Figure 5.1: Typical V-cycle scheme of five levels for (multilevel-) multiscale, multigrid, and multilevel deflated
method.

Naturally, some generalization (multilevel-) multiscale, multigrid, and multilevel deflated method can be
constructed using a W -cycle. It is obvious how this works in case of (multilevel-) multiscale and multigrid
methods. The non-trivial multilevel deflated method can be constructed as follows. Let Ak ∈ Rn×n be the
non-symmetric linear system matrix at the level k. Then we define the matrix at the next level (coarse matrix).
Similar to the (multilevel-) multiscale, multigrid methods, the matrix Ak+1 ∈ Rd×d is defined using either
Galerkin (note that non-Galerkin projection can also be applied, see Falgout and Schroeder (2014) [89]) as

Ak+1 = RkAkPk, (5.6)

and the deflation matrices at the level k (i.e., Dk
1 and Dk

2) are defined as

Dk
1 = I−AkPk

(
Ak+1

)−1
Rk,

Dk
2 = I−Pk

(
Ak+1

)−1
RkAk.

(5.7)

where A1 = A is the original fine scale matrix. The
(
Ak+1

)−1
is constructed to avoid a direct inversion of

the matrix and expensive matrix-matrix product in the expression
(
Ak+1

)−1
Rk. This is achieved by doing an

user defined number pre- and a post-smoothing (e.g., Gauss-Seidel (GS) or ILU(0)) steps similar to Multigrid
Solver (see, Lukyanov et al., 2014 [190]). Finally, the solution to the original linear system can be found using
the relation:

x =
k∑

i=1

Pi
(
Ai+1

)−1
(Ri)

T
b+

k∏

i=1

Di
2x̂ (5.8)

where x̂ is a solution of the ’deflated system’:

k∏

i=1

Di
1Ax̂ =

k∏

i=1

Di
1b (5.9)
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The prolongation Pi and restriction Ri operators in deflation method are defined using the deflation matrix, Zi

(by no limiting example) as follows
Pi = Zi, Ri =

(
Zi
)T

(5.10)

where Zi is the the deflation matrix between levels i and i + 1. Let us recall that the prolongation operator
P in multiscale methods such as the multiscale finite element (MSFE) and multiscale finite volume (MSFV)
are constructed based on local solutions (basis functions) of the fine-scale problem with different boundary
conditions. The local support for the basis functions are obtained by first imposing a coarse grid (Ω̆k) on the
given fine-grid cells. The coarse grid operator is then constructed using Galerkin condition (5.5). The restriction
operator, i.e., mapping fine scale to coarse scale, can be obtained by using either a finite element (MSFE) or
finite volume (MSFV) methods as per terminology of the reservoir simulation community. The former employs
a transpose of the prolongation operator, i.e.,

RFE = PT, (5.11)

There is a clear similarity in constructing a coarse system between multiscale (MSFE, MSFV) and deflation
method. The high-frequency errors at the fine scale in multiscale (MSFE, MSFV) are then resolved by employ-
ing a smoother on the fine grid. The equivalent step in a deflation method is the solution of the ’deflated system’
defined by the equation (5.9). It is clear that the direct solution step of the ’deflated system’ can be substituted by
performing smoothing iterations using either the original matrix A or deflated matrix

(∏k
i=1 D

k
1A
)

. Hence,
the primary difference between (two-level or multi-level) multiscale and (two-level or multi-level) deflation
method is the selection of the restriction and prolongation operators. Multiscale methods have been developed
to describe local heterogeneities within the sub-domains in the coarse system by using purely locally-supported
basis functions. The deflation methods use a different strategy in constructing the restriction and prolongation
operators based on the detailed analysis of the underlying spectrum of the preconditioned matrix.

In recent years, the multiscale restriction smoothed basis (MsRSB) method was introduced (see, Moyner
and Lie, 2016 [214]) to overcome the geological complexities and the use of complex grid geometries required
to compute the underlying basis functions. Below, it will be shown that the basis functions employed by MsRSB
method have been extensively used in the deflation methods for various applications, see Tang and Vuik (2007)
[247], [249], [250], Frank and Vuik (2001) [91], Vuik et al. [270], van der Linden et al. (2015) [260].

§ 5.2 Multiscale Restriction vs. Deflation

Preconditioning can be used to damp slowly varying error modes in the linear solver residuals, often corre-
sponding to extreme eigenvalues. Existing multiscale solvers use a sequence of aggressive restriction, coarse-
grid correction and prolongation operators to handle low-frequency modes on the coarse grid. High-frequency
errors are then resolved by employing a smoother on fine grid. Below, the deflation theory is briefly described,
which will be used to contract various preconditioners.

5.2.1 Deflation Theory
It has been noticed in different applications by Barnard et al. (1967) [21], Rahola and Tissari (2002) [229],

Dolean et al. (2014) [80], Tang and Vuik (2007) [247], Vuik et al. (1999, 2001) [268], [269] that a de-
flation method greatly facilitates the iterative solution of the problem and overcome the divergence issues.
The deflation methods for symmetric positive definite problems is comprehensively described in Tang and
Vuik(2007) [247], [250]. In this paper, the basic properties of the deflation method for the non-symmetric
and non-singular case are presented. For more details, the following papers by Frank and Vuik (2001) [91],
Vuik et al. (2002) [270] can be used. Let us assume that the information about slow modes affecting conver-
gence behavior is available for a system (5.4). For incompressible fluid flow in homogenous porous media or
for homogeneous electromagnetic problems with Neumann boundary conditions, these slow model corresponds
to constant vectors of the null space of the corresponding operator (e.g., Laplace operator). In this case, we can
deflate this singularity (assuming that the sum of the solution vector is zero) by modifying the coefficient matrix
as follows (Barnard et al., 1967 [21]):

A + βeeT (5.12)

where e = 1
√
N(1, 1, ..., 1)

T is the normalized vector of the null space. The deflation in this case has the effect
that the zero eigenvalue is shifted to the value β and the rest of eigenvalues remain unchanged. In the rest of the
thesis, we consider only non-singular matrix.
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Let A ∈ Rn×n be the non-singular and non-symmetric linear system matrix, and assume that the deflation
matrix (deflation space) Z ∈ Rn×d with d deflation vectors is given (we assume that Z has a rank d).

Following work of Dolean et al. (2014) [80], we can consider minimization problem for a general non-
singular matrix A:

min
γ

(
y + Zγ −A−1b

)T
(A[y + Zγ]− b) , (5.13)

where y is the approximate solution. This problem corresponds to finding the best correction Zγ in the vector
space spanned by the columns of Z matrix to a given approximate solution. The solution to this problem is
defined as

γ =
[
ZTAZ

]−1
ZT (b−Ay)− ZTA

(
A−1b− y

)
. (5.14)

Hence, the corrected solution x̃ = y + Zγ is

x̃ =
(
I − ZE−1ZTA

)
y + ZZTAT(y − x) + ZE−1ZTb (5.15)

where x is the true solution and we define the matrix E ∈ Rd×d as

E = ZTAZ, (5.16)

In a limiting case when x̃ = y = x, we arrive to the following identity

x =
(
I − ZE−1ZTA

)
x+ ZE−1ZTb = (I−P1)x+ P1x (5.17)

where we introduce a first deflation matrix P1 as follows

P1 = I− ZE−1ZTA. (5.18)

Here we used the fact that (I − P1)x = ZE−1ZTAx = ZE−1ZTb, which eliminates dependency on x. It is
important to note that deflation method requires inversion of the matrix E. This should be relatively cheap other
wise this method will be very slow. This condition can be achieved if (1) we have a case d � n or (2) we can
pre-compute the factorization of the matrix E which can be used in multiple solutions with different right hand
sides. We will comeback to this condition during the numerical modeling. Considering another limiting case
when Ax̃ = b we can obtain using (5.15) the following condition

P2b = P2Ay + AZZTAT(y − x) (5.19)

where we introduce a second deflation matrix P2 as follows

P2 = I−AZE−1ZT, (5.20)

Furthermore, it can be easily shown that if y is a solution of the ’deflated system’ as

P2Ay = P1b (5.21)

then y = x assuming that the matrix AZZTAT is non-singular. It is clear that ’deflated system’ is singular since
Z is in the null space of P2A. It is not a problem since projection is applied to both sides of the nonsingular
system. This problem has been discussed in details in (Frank and Vuik, 2001 [91]; Vuik et al., 2002 [270]).
Furthermore, we can always apply the method described in (5.12) to the ’deflated system’ bringing this to a
nonsingular matrix

P2A + βZZ̃T or P2A + βZZT (5.22)

where β is the shifting parameter and Z̃T =
(
ZTZ

)−1
ZT, Z̃TZ = I. Although, these corrections do no give

significant impact on Krylov subspace iterative solvers. In conclusion, the solution to the original linear system
can be approximated using the relation once the ’deflated system’ system (5.21) is accurately solved as follows:

x̃ = ZE−1ZTb+ P2y (5.23)

This idea has been exploited in several papers. We have not yet defined the deflation subspace. Some attempts
to construct a deflation subspace a priori that effectively represents the slowest modes have been made in the
past (Mansfield, 1990 [194]; Mansfield, 1991 [195]; Nicolaides, 1987 [221]; Tang and Vuik, 2007 [247]; Frank
and Vuik, 2001 [91]; Vuik, 2002 [270]).
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Figure 5.2: Subdomain (a), levelset (b) and subdomain-levelset deflation (c).

5.2.2 Multiscale Restriction Smoothed Basis and Deflation Vectors
In both methods (i.e., MsRSB and Deflation), the discretized computational domain Ω is first decomposed

into d non-overlapping subdomains Ω̄j with j ∈ {1, . . . , d}. The deflation vector Z̄j forms j-th column of the
deflation operator Z or initial basis functions P0

j of MsRSB method, corresponding to Ω̄j and it is defined as
(see, Frank and Vuik, 2001 [91]; Tang, 2008 [248]; vanderLinden, 2015 [260]; Moyner and Lie, 2016 [214];
Shah et al., 2016 [239])

(
P0
j

)
i

=
(
Z̄j
)
i

=

{
1, xi ∈ Ω̄j

0, xi ∈ Ω \ Ω̄j ,
(5.24)

where xj is a fine-scale grid cell center. Based on the above definition, Z̄j and P0
j are piecewise-constant

vectors or functions (equal to a constant value of one inside the corresponding coarse domain Ω̄j), disjoint and
orthogonal. For this choice of the deflation subspace, the deflation projectors P1 and P2 essentially agglomerate
each subdomain in a single cell. Hence, the subdomain deflation and MsRSB are closely related to domain-
decomposition methods and multigrid (see, Frank and Vuik, 2001 [91]). For problems in the bubbly flow, the
span of the deflation vectors (5.24) approximates the span of the eigenvectors corresponding to the smallest
eigenvalues (Tang and Vuik, 2007 [250]). In our case, as studied by Vuik et al. (2002) [270], the subdomains
can be defined using the underlying heterogeneity, e.g., a low-permeable region can be separated from the high-
permeable regions and form d decompositions. As it was noted in Vermolen et al. (2004) [264], it is better
to use no overlap subdomains. This fact leads to the weighted overlap method, which mimics average and no
overlap in the case of no contrasts and large contrasts, respectively. It is shown that the overlap is crucial in
approximating the eigenvectors corresponding to the extreme eigenvalues.

In highly heterogeneous computational domain with large jumps in the permeability field, the subdomain-
levelset deflation can be used (see, Tang and Vuik, 2007 [250]). In this case where subdomain deflation does
not take jumps into account, the subdomain-levelset deflation identifies different regions in the domain with
similar properties. A simple example is given in Figure 5.2. The fine grid is 12× 14 with the coarse grid 2× 2
are shown in Figure 5.2. In each case, the values shown on the fine cells correspond to the values in the first
deflation vector. In the middle and right figure, the border between the yellow circles (high permeability) and
white circles (low permeability) exemplifies a sharp contrast in the matrix coefficient. The figures show the
following:

• In the left figure, subdomain deflation is used. The red solid line divides the domain into the four subdo-
mains Ω̄1, Ω̄2, Ω̄3 and Ω̄4. Each subdomain corresponds to a unique deflation vector.

• In the middle figure, levelset deflation is used. This time, the red solid line coincides with the contrast in
the matrix coefficient. As a result, we get the two domains Ω̄1 and Ω̄2.
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• In the right figure, subdomain-levelset deflation is used. The subdomain division is determined using
certain criteria, which in this example leads to the division red solid line between Ω̄1 and Ω̄2. Within each
subdomain, levelset deflation uses the jump between the high permeability and low permeability cells to
obtain the subdomains Ω̄1, Ω̄2, Ω̄3 and Ω̄4.

In this thesis, the subdomain-levelset deflation concept is used. We highlight the fact that the algorithm is
particularly suitable for a parallel implementation. We can apply the levelset deflation method to each subdo-
main (coarse cells), and append the deflation vectors with zeros for all cells outside the neighboring subdomains.
Furthermore, it is important to note that deflation vectors can be constructed based on the jump in the PVT data
(e.g., bubbly flow considered in Tang and Vuik (2007) [250]). For example, during the polymer flooding the
aqueous viscosity changes drastically in the presence of polymer. Hence, the deflation vectors can be con-
structed based on the location of the polymer with in the reservoir.

Although we have identify a full analogy between deflated vectors Z and initial basis functions P0
j of

MsRSB method, the final restriction-smoothed basis functions are computed by employing a modified form of
the damped-Jacobi smoothing approach:

δPηk = −ωD−1APηk (5.25)

where A is the fine-scale matrix, D = diag(A) is the diagonal part of the matrix A. The final update for
prolongation operator is defined as

Pη+1
k = Pηk + δP̂ηk (5.26)

where δP̂ηk is the restricted iterative increments (see, Moyner and Lie (2016) [214], Shah et al. [239]). To ensure
that basis functions have local support, the increments δPηk is restricted to have nonzero values only inside Ω̄k
leading to the definition of the δP̂k. Finally, the the basis functions (5.25)-(5.26) of the MsRSB method can be
written in the abstract form as:

Pk = M
1
2

MsRBSP0
k (5.27)

where M
1
2

MsRBS is the predefined smoothing matrix of MsRBS method defined by (5.25)-(5.26) and restriction
expression (see, Moyner and Lie (2016) [214], Shah et al. [239]).

Remarks

• The proposed method is similar to smoothed aggregation-based multigrid methods (see, Vanek (1992)
[262]; Vanek et al. (1996) [263])

• A deflation technique applied to a preconditioned system with preconditioner M−1 at different level k

D̃k
1 = I− ÃkP̃k

(
Ãk+1

)−1

R̃k, D̃k
2 = I− P̃k

(
Ãk+1

)−1

R̃kÃk,

Ãi+1 = R̃iÃiP̃i, P̃i = Z̃i, R̃i =
(
Z̃i
)T
, Z = M−

1
2 Z̃

(5.28)

is equivalent to preconditioning of a deflated system

k∏

i=1

Di
1M
−1Ax̂ =

k∏

i=1

Di
1M
−1b,

x =
∑k
i=1 P

i
(
Âi+1

)−1

(Ri)
T

(M−1b) +
∏k
i=1 D

i
2x̂

(5.29)

Here Âi+1 =
i∏

l=1

Rl(M−1A)Pl, ˆ̃x is a solution of the preconditioned ’deflated system’. The matrix Z̃ is

interpreted as a preconditioned deflation-subspace matrix (see, [248] who formulated this for a two-level
deflation method applied to symmetric positive definite matrix):

Z̃ = M
1
2Z (5.30)
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where M is the specified preconditioner. Comparison of the equation (5.30) with the equation (5.27)
and taking into account that P0

j = Z̄j leads to the fact that two-level (preconditioned with the matrix

M
1
2

MsRBS) deflation projection with the post smoothing used in MsRBS should give identical results with
MsRBS. Commonly, the deflation matrix (matrix of basis functions) Z is applied to preconditioned matrix
M−1A and, hence, the smoothing (5.30) is not applied since it is equivalent to have twice preconditioning
of the matrix A.

• Localization can be constructed using any partition of unity (PU) functions {ϕi} with Ωi = supp(ϕi) at
any level k as follows

p =

N∑

i=1

ϕipi =

N∑

i=1

(
ϕip

i
smooth + ϕip

i
jump + ϕip

i
singular

)
(5.31)

where pismooth is the smooth part of the solution, pisingular is the part of the solution with singularity, pijump is
the part of the solution with the jumps, and functions ϕi play the role of “glue”.

5.2.3 Meshless Deflation Vectors
The meshless deflation vectors (basis functions) utilize some advantages of the existing multiscale schemes

and meshless methods. In light of this, the meshless deflation vectors (basis functions) are constructed using
two sets of computational points (see, Lukyanov et al. (2014) [190]):

1. Fine points set SF (e.g., cell centers of underlying mesh) consisting of NF patches, i.e. Ω = span{
Ω̄rI ,h̄/I = 1, ..., NF

}
, which are interior to the support of the kernel W̄

(
r − rI , h̄

)
, i.e. Ωr,h =

supp W̄ (r − ξ, h̄), NF is the number of points, hF is the fine scale diameter (or smoothing length);

2. Coarse points set SC (e.g., user defined points) consisting ofNC patches, i.e. Ω = span
{

Ω̃rJ ,h/J = 1, ..., NC

}
,

which are interior to the support of the W̄ (rI − r, h) kernel, i.e. Ωr,h = supp W̄ (r − ξ, h), NC < NF
is the number of points, hC is the coarse scale diameter (or smoothing length);

In both cases (fine and coarse), the same cubic spline for kernel function W̄ was used (see, Lukyanov et al.
(2014) [190]). Following the conventional multiscale approach, the approximation of the fine scale pressure
distribution pF using coarse set values pC is constructed as

pF (r) ≈
NC∑

J=1

VξJ · W̄ (r − ξJ , hC) · pC (ξJ) (5.32)

or

pF (rI) ≈ rI ·
(
NC∑

J=1

VξJ · W̄ (rI − ξJ , hC)C1 (ξJ)

)
+

+

NC∑

J=1

[
VξJ · W̄ (rI − ξJ , hC) ·C2 (ξJ)

]
(5.33)

where

C1 (ξJ) =

[
NC∑

K=1

VξK [pC (ξK)− pC (ξJ)]∇∗W̄ (ξJ − ξK , hC)

]

C2 (ξJ) = [pC (ξJ)− ξJ ·C1 (ξJ)]

(5.34)

The scheme (5.33) provides a first-order consistent prolongation from a coarse set of particles into a fine set of
particles, i.e. it provides an exact solution for a linear pressure distribution at both scales. In case where coarse
level points do not form a subset of fine level points, the aggressive restriction is also applied following relations
(zero and first-order consistent operators) such as:

pC (X) ≈
NF∑

J=1

VξJ · W̄ (X − ξJ , hF ) · pF (ξJ) (5.35)
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or

pC(rI) ≈ rI ·
(
NF∑

J=1

VξJ · W̄ (XI − ξJ , hF )G1(ξJ)

)
+

+

NF∑

J=1

[
VξJ · W̄ (rI − ξJ , hF ) · (pF (ξJ)− ξJ ·G2(ξJ))

]
(5.36)

where

G1(ξJ) =

[
NF∑

K=1

[pF (ξK)− pF (ξJ)]∇∗W̄ (ξJ − ξK , hF )

]

G2(ξJ) = [pF (ξJ)− ξJ ·G1(ξJ)]

(5.37)

It is important to note that relations (5.32), (5.33), (5.35), (5.36) can be written using matrix notation:

uF = W̄P · uC , W̄P : SC → SF uC = W̄R · uF , W̄R : SF → SC

˜̄W
R

= B−1
W W̄R, BW = W̄RW̄P , ˜̄W

R

W̄P = I, ˜̄W
R

: SF → SC

˜̄W
P

= W̄PB−1
W , BW = W̄RW̄P , W̄R ˜̄W

P

= I, ˜̄W
P

: SC → SF

(5.38)

where W̄P and ˜̄W
P

are the prolongation operators, W̄R and ˜̄W
R

are the restriction operators. In general, it
is clear that W̄R 6=

(
W̄P

)T
. As a result, the following options are available to construct deflation vectors for

restriction and prolongation operators:

(I) P = W̄P , R =
(
W̄P

)T
, (II) P = ˜̄W

P

, R =

(
˜̄W

P
)T

(III) P = W̄P , R = W̄R, (IV ) P = W̄P , R = ˜̄W
R

, (V ) P = ˜̄W
P

, R = W̄R

(V I) P =
(
W̄R

)T
, R = W̄R, (V II) P =

(
˜̄W

R
)T

, R = ˜̄W
R

The option (I) is used in this thesis. The prolongation and restriction operators in this method are based on
an SPH gradient approximation (instead of solving localized flow problems) commonly used in the meshless
community for thermal, viscous, and pressure projection problems. Furthermore, the smoothing length hC can
be selected to maintain only the host particle in the compact support resulting in the basis functions defined by
the equation (5.24). Hence, the meshless basis functions provide a more flexible framework for constructing
deflation vectors (or basis functions).

Finally, the deflation vector Zj , column j-th of Z, corresponding to Ω̄j is defined as

(Zj)i =

{
Dij , Xi ∈ Ω̄j , ξJ ∈ Ω̄j

0, xi ∈ Ω \ Ω̄j ,
(5.39)

where Xi is a fine-scale grid cell and ξJ is the coarse point. As a result, the following options are available to
construct deflation vectors in each subdomains Ω̄j with j ∈ {1, . . . , p}:

(I) Dij = WP
ij , i = 1, ..., NF ; j = 1, ..., NC ;

(II) Dij = WR
ji, i = 1, ..., NF ; j = 1, ..., NC ;

(III) Dij = ˜̄W
R

ji, i = 1, ..., NF ; j = 1, ..., NC ;

(IV ) ACSj = θjSj ; Zj = WPSj , AC = ˜̄W
R

AWP ;

(V )

(
˜̄W

R

AT

)
(Azj − γjzj) = 0; zj = WP sj ;

(V I) Combination of (II) + (III) : Z = {Zj , zj |j = 1, . . . , NC};

(5.40)

where θj is the Ritz values, γj is the Harmonic Ritz values. Note that proposed method does not require
reconstructing of any kind basis functions as in the case of conventional multi-scale methodology. During the
construction of deflation vectors we need to keep only linear independent vectors (i.e., Z must have a full rank
d).
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5.2.4 Meshless Deflation Method

The Meshless Deflation Method (MDM) can be used (instead or complementary to AMG) to solve the
pressure equation (5.4). The deflation space can be constructed using methods (I)-(VI) described in (5.40).
Since it is numerically inefficient to construct both WR

j and WP
j , we will construct the restriction operator as

W̄R
j =

(
WP

j

)T
. Hence, it makes sense to consider only (I), (IV), (V) described in (5.40). The method (II)

is equivalent to method (I) under the assumption W̄R
j =

(
WP

j

)T
and method (VI) provides usually a set of

dependent vectors which is required additional effort to construct independent subset. Method (III) is different

from the methods (I) and (II) by the factor
(
BjW

)−1

and we did not observed any significant difference in
performance between (III) and (I). For the rest of the analysis, we will consider only option (I) denote this by
MsMBM. In addition, we could use (a) subdomain, (b) levelset, (c) subdomain-levelset and (d) global deflation
methods. In this thesis, we will focus on subdomain and global deflation methods. Hence, we will use index
"s" and "g" to denote these methods, e.g., sMsMBM and gMsMBM. It is important to note that these methods
can be extended to solve the full system (5.1). Hence, a fully implicit formulation is used and resulting matrix
solved with a 2-stage CPR preconditioner, where the MsMBM method is used for solving the CPR pressure
system (5.4). The pseudocode for deflation method is given in Algorithm 2. The computations in line 1 involve

Algorithm 2 Right-Preconditioned Meshless Deflation GMRES Based Method

1: Setup meshless deflation vectors Z
2: Setup Ap = A∗ppM

−1
3 , E = ZTApZ, and x∗ = ZE−1ZTb.

3: Setup P1 = I− ZE−1ZTAp and P2 = I−ApZE
−1ZT.

4: Compute r0 = P2(b−Ax0), β = ‖r0‖2, and v1 = r0/β.

5: for j = 1, 2, . . . ,m do
6: wj = P2A

∗
ppM

−1
3 vj

7: for i = 1, . . . , j do
8: hi,j = (wj , vi)
9: wj = wj − hijvi

10: end for
11: hj+1,j = ‖wj‖2
12: if hj+1,j = 0 or converged then
13: set m = j and go to 17
14: end if
15: vj+1 = wj/hj+1,j

16: end for

17: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
18: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 + M−1

3 Vmum.
19: if converged then xm = P1xm + x∗ and return else set x0 = xm and go to 4

construction of meshless deflation vectors and setting up the deflation operators, and can be executed at the
beginning of the linear solver since Z is available a priori.

The algorithm clearly illustrates the action of P1 and P2. The search space is narrowed to the deflated
subspace by solving the deflated system (5.21), and the standard right preconditioned GMRES algorithm 2 is
used. In the case of omitting the GMRES algorithm, the aforementioned algorithm reduces to the two-level
meshless multiscale method [186]. To return to the original space, xm is multiplied with P1, and the result
is added to x∗. The preconditioner M3 is constructed to avoid direct inversion of the matrix and expensive
matrix-matrix product in the expression Ap = A∗ppM

−1
3 . This is achieved by doing a user defined number pre-

and a post-smoothing (e.g., Gauss-Seidel (GS) or ILU(0)) steps similar to Multigrid Solver. The coarse pressure
system Ev = w can be solved with different strategies depending on the size of the coarse pressure matrix. The
size of the coarse pressure matrix is defined by the size of the model and the choice of the coarsening factors.
If the size of the coarse system is small a direct solver can be used. The iterative methods are used for the large
coarse system.
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5.2.5 SPE10 simulation

In this section, we show the performance of the meshless deflation strategy using global domain based
meshless deflations vectors applied to the large scale simulation. For this reason we consider a well-known
SPE-10 benchmark [65]. The fine grid is 180 × 220 × 85 for a total of 3366000 cells with O(106) degrees of
freedom

Figure 5.3: X-direction permeability distribution in logarithmic scale and Darcy units for SPE10 case.

The complexity of modeling large models lies both in constructing E−1 and solving of the deflated system
P1Ax̂ = P1b. Note that even when the deflation subspace dimension is relatively low, i.e. d� n, solving the
deflated system may still be difficult for challenging cases. On the other hand, increasing the deflation space
dimension shifts the complexity to the construction of E−1. However, it is possible to follow up the multiscale
solution strategy in this case by ignoring the solution of the deflated system. This is the case where combing
significantly weaker preconditioner such as Jacobi with the deflation method leads to a very poor performance.
Hence, in this case, we combined deflation method with the AMG-preconditioned deflated system.

Although, this model has a clearly layered structure (see, figure 5.3) with two layers, the proposed physics-
based deflation vectors for the SPE10 are equally distributed within the numerical domain using subdomain
method (see, Figure 5.2(a)). The total number of deflation vectors considered in this study is (1) d = 8, (2)
d = 27 and (3) d = 64. The pressure system is solved approximately (as is common in practice) in any
two-stage preconditioning methods. In this case, the pressure is also solved approximately.

Table 5.1 summarizes the results for gMsMBM(3,8), gMsMBM(3,27), gMsMBM(3,64) and CPR-AMG
with an AMG preconditioner. As before, we use the termination criterion of either a tolerance of 10−2 or the
maximum number of pressure solution iterations which is set to 3. Results and performance were compared
with the current version of a modern reservoir simulator [235] which uses CPR preconditioning with TRUE-
IMPES decoupling, 1 V-cycle of AMG for solving the CPR pressure system and ILU(0) as a second-stage fully
implicit (FIM) preconditioner [235]. This reference solution strategy is referred to as CPR-AMG. The coarse
grids in AMG solver are constructed by the parallel maximally independent set (PMIS) coarsening scheme with
the Gauss-Seidel smoothing process. The coarse level is solved by FGMRES preconditioned by ILU(0) and
maximum number of levels is limited to 50 by default settings. The results for this case were obtained in serial
runs using a desktop PC with 80GB RAM with Intel Xeon E5-2697 v2 2.70GHz CPU. Note that physics-based
deflation is highly parallelizable, which is the topic of ongoing research.
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gMsMBM(3,8) gMsMBM(3,27) gMsMBM(3,64) CPR-AMG

Preconditioner AMG AMG AMG AMG
Non-linears 1, 160 1, 159 1, 161 1, 159
Fails 0 0 0 0
Outer linears 12, 986 13, 026 13, 029 13, 194
Inner linears 38, 582 38, 775 38, 774 39, 248
No. time steps 286 286 286 286
CPU time 65, 784.7 66, 035.3 66, 239.4 56, 916.1

Table 5.1: Comparison of gMsMBM(3,8) (with AMG preconditioner), gMsMBM(3,27) (with AMG precondi-
tioner), gMsMBM(3,64) (with AMG preconditioner) and CPR-AMG for the SPE10 case.

Each method uses approximately three inner linear iterations in all pressure solves. The size of the residual
at the end of each pressure solve, however, will be smaller for gMsMBM with AMG. This results in a reduction
of the inner linear iterations for all deflated methods. Note that the number of non-linear iterations in this case
were the same.

In this case, both the time needed for the setup of AMG and the use of deflation offsets the iteration gain,
resulting in higher CPU times. We expect the combination of multiscale solver and deflation method is expected
to get a better solution strategy. Further analysis of optimal deflation vectors is required for this case and it is
a subject of future research. In addition, it is important to note that the difference between the inner linear
iterations for gMsMBM(3,27) and gMsMBM(3,64) is negligible leading to the conclusion that the dimension
of the deflated space based on subdomain method must be relatively small for this case. This example also
illustrates the potential of physics-based deflation vectors. The gMsMBM achieves in this case a relatively good
iteration reduction in the pressure solve. The following section describes multiscale meshless based method and
its coupling with the deflation strategy.

§ 5.3 Adaptive Deflated Meshless Multiscale Solver (ADMMS)

The conventional two-grid algorithm for linear problems consists of smoothing on the fine grid, approxima-
tion of the required correction on the coarse grid (restriction step), prolongation of the coarse grid correction to
the fine grid, and again smoothing on the fine grid (Wesseling, (1992) [275]). The Adaptive Deflated Meshless
Multiscale Solvers (ADMMS) can be used to construct a coarse pressure system in three different ways: (1)
fully deflated method coupling with the meshless multicale, (2) decoupled deflated method coupling with mul-
tiscale and (3) mixed deflated method coupling with multiscale method. The next subsections describe these
methods in details.

5.3.1 Fully ADMMS (F-ADMMS)
Fully ADMMS method uses prolongation P and restriction R operators described above applied to the

deflated system (5.9) as follows

P1RAfPp̂c = P1Rb
f , p̂c =

(
P1RAfP

)−1
P1Rb

f . (5.41)

The coarse system is solved to obtain p̂c and the final solution can be reconstructed as follows

pf ≈ p′ = PRZD−1ZTRTRbf + PP2p̂
c =

=
[
PR

(
ZD−1ZT

)
RTR + PP2

(
P1RAfP

)−1
P1R

]

︸ ︷︷ ︸
M−1

F−ADMMS

bf ,

D = ZTRT(RAfP)RZ.

(5.42)

It is important to recall Additive Schwarz Method with deflation correction discussed in [80]. The operator
in this method can be written as

M−1
ASM = ZD−1ZT +

∑
RT
i (RiART

i )−1Ri (5.43)
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where Ri is the restriction operator to the overlapping domain. The structure of the operators M−1
ASM and

M−1
F−ADMMS are different due to the presence of deflation projector operators P1 and P2.

5.3.2 Decoupled ADMMS (D-ADMMS)

In light of the structure of the operators M−1
ASM , it is possible to use the decoupled ADMMS method (D-

ADMMS) constructed as follows

pf ≈ p′ =
[
PR

(
ZD−1ZT

)
RTR + P

(
RAfP

)−1
R
]

︸ ︷︷ ︸
M−1

D−ADMMS

bf , D = ZTRT(RAfP)RZ. (5.44)

This is the most trivial way of coupling deflation method with the multiscale solver.

5.3.3 Mixed ADMMS (M-ADMMS)
Mixed ADMMS employes an enriched set of basis functions to map between fine and coarse scales. This ex-

tended set involves the conventional multiscale local basis functions and globally constructed deflation vectors.
Hence, the global prolongation operator P is constructed such that it consists of original prolongation operator
and deflation operator

P̂ = [P;Z]. (5.45)

Furthermore, there is only one option in the case for the restriction operator R defined as

R = P̂T = ([P;Z])
T
. (5.46)

The multiscale procedure in this can be written as

pf ≈ P̂(P̂TAf P̂)−1P̂T︸ ︷︷ ︸
M−1

M−ADMS

bf . (5.47)

The mixed adaptive deflated multiscale operator M−1
M−ADMMS is clearly different from the operators

M−1
ASM , M−1

D−ADMMS and M−1
F−ADMMS . There are two types of coarse system in the proposed methods: (a)

the deflated coarse system with the matrix D and (b) the multiscale coarse system with the matrix Āc = RĀP,
where Ā is the fine scale matrix. All presented above methods strongly depend on the underlying construction
of the deflation vectors. The different ways of constructing deflation vectors are describe in the next section.

In real applications, the deflation vectors are constructed approximately. Hence any numbers of pre- and
post-smoothing ω iterations can be performed to eliminate any undesirable frequencies (e.g., Gauss-Seidel (GS)
or ILU(0)) steps similar to Multigrid Solvers as wfi+1 = S−1

(
Af , vf , wfi , w

f
0 , ω

)
:

wfi+1 = wfi + S−1 ·
(
vf −Afwfi

)
, i = 1, ..., ω; (5.48)

where vf is the given vector, wfω+1 is the output vector, wf0 is the initial guess, S is the smoothing operator.
Furthermore, it is naturally to use M−1

M−ADMMS and M−1
F−ADMMS as a preconditioner with some iterative

accelerator (e.g., Krylov’s type accelerator).

5.3.4 Multiscale Meshless Based Method
The linear system of equations (primary focus is the pressure equations) with the matrix AF and right hand

side bF can be difficult to solve, if its condition number k = ‖AF ‖
∥∥A−1

F

∥∥ is large. This motivates the concept
of preconditioning. Let V be an approximation of A−1, which is easy to construct and to solve for a given
input. Hence, we can write a simple Richardson iteration scheme with the predefined number of application of
the multilevel multiscale meshless based preconditioner:

[pF ]
m+1

= [pF ]
m

+ V · (bF −AF [pF ]
m

) (5.49)
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where m is the iteration index, [pF ]
m is the pressure vector at the iteration m, V is the left multiscale meshless

based preconditioner defined as an operational object. A meshless multiscale preconditioner V is constructed
as follows for a given input vF and output zF using a two-level case by no limiting example:

[zF ] = P (AC)
−1

R [vF ] , AC = RAFP (5.50)

[wF ] = [zF ] + S−1
γ · ([vF ]−AF [zF ]) (5.51)

where S−1
γ is the smoothing operator (e.g., Gauss-Seidel (GS) or ILU(k) or BILU(k) smoothing method or

Krylov-space accelerator) applied γ times. The multiscale meshless based method involves setting up the re-
striction and prolongation operators, which can be constructed at the beginning of the simulations.

§ 5.4 Numerical Experiments

In this section, the performance of deflated and decoupled ADMMS solver techniques described above is
discussed. Several test cases such as "Islands" model problem and Fractured reservoir, SPE10 layer and some
real industrial test cases are considered. It is clear from the construction of the above methods that they have a
low algebraic complexity compared to fully ADMMS and mixed ADMMS. This was a primary reason to keep
our focus on deflated and decoupled ADMMS solvers.

5.4.1 "Islands" model problem
The Cartesian grid 100 × 100 with the physical size of 10 × 10 meters squared and 64 high-permeability

islands distirbuted symmetrically with respect to the centre of the domain (see Fig. 5.4) is considered during
the numerical analysis:

Figure 5.4: Numerical domain: 2D example with 64 high heterogeneities islands.

The incompressible single phase fluid model with viscosity 1 cP and density 1014 kg/m3 is used to test the
solver performance. The flux and pressure boundary conditions are used where a Neumann condition with total
inflow of 5000 m3/day on the left side and a Dirichlet condition with fixed pressure of 50 bar on the right side
are applied. The fluid flow is driven by the fluid source at the south-west corner and a fluid sink at the north-east
corner of the model. The source terms have a rate such that a unit time corresponds to the injection of one pore
volume of fluids. For the numerical analysis we use the matrix obtained from the last time step which is of the
10000× 10000 matrix size with 49600 non-zero entries.

Deflation. For method validation the following deflation matrices are used:

1. Z1 - physics-based deflation: contains 64 vectors of the size 10000, where each vector represents only
one high-permeability island, specifically 1 in the corresponding island coordinates and 0 otherwise;

2. Zmms - meshless multiscale basis functions: contains meshless multiscale basis functions as columns;

3. Zdb - domain-based: similar to the physics-based deflation approach, but here we put 1 into all cells,
which belong to the certain subdomain, and 0 into all other cells;
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4. Zmix - mixed deflation: consists of vectors obtained from different approaches (e.g. physics-based defla-
tion and meshless multiscale basis functions);

5. Zt - theoretical: consists of determined beforehand number of the exact eigenvectors corresponding to
the smallest magnitude eigenvalues.

The classical GMRES method (without deflation and meshless multiscale additions) requires 500 iterations to
solve the pressure equation subject to the tolerance 10−7. The numerical simulations with ADMMS methods
outperform GMRES as expected. The numerical results are presented for the right-preconditioned setup, where
the preconditioners were decoupled, fully and mixed modifications respectively. It is important to note in all
tables below that the numbers in brackets indicate numbers of vectors in the corresponding matrix. For our
reference, we computed the number of iterations for the solution of the pressure system using deflation matrix
Zt based on the extreme eigenvalues. This is the most efficient way to deflate extreme eigenvalues which is
the primary source of the slow convergence rate (see table 5.2). For the fast solution of the linear system, it

Table 5.2: Numerical results: linear solver iterations using Zt.

Deflation Matrix No. Iterations

Zt(16) 181
Zt(32) 142
Zt(64) 57
Zt(65) 51

is important to be able to determine the best option for the deflation matrix, which can be easily and cheaply
constructed. In light of this, the domain decomposition based on 3 METIS-based variants of grid partitioning
(i.e., 16, 32 and 64 subdomains) are employed to construct the approximation of deflation vectors:

Figure 5.4: Application of the METIS-based grid partitioning: partitioning into 64 subdomains.

For these cases the required number of iterations for GMRES, right-preconditioned only by deflation con-
sisting of multiscale basis functions or domain-based vectors, are presented in the table 5.3:

Deflation No. Subdomains
Matrix 16 32 64
Z1 358 279 103

Zmms 238 193 37
Zdb 285 256 59

Zmix[Z1 Zmms] 45 31 19
Zmix[Z1 Zdb] 49 38 29

Table 5.3: Linear solver iterations using Z1, Zmms, Zdb, Zmix[Z1 Zmms] and Zmix[Z1 Zdb].
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Note that in the corresponding deflation matrices the number of columns coincide with the chosen number
of subdomains, while the mixed version contains vectors from both components. As we can see from the tables
above, the best option for the deflation would be usage of mixed deflation. To investigate the performance of
the meshless multiscale idea, the domain was split into the computational domain and the meshless multiscale
preconditioner (MsMBM) were applied as a preconditioner operator to the GMRES method, which gives us,

No. Subdomains No. Iterations
16 89
32 77
48 71
64 19

Table 5.4: Linear solver iterations using meshless multiscale operators.

The decoupled ADMMS method is constructed by combining deflation and multiscale operators into single
preconditioner (5.44) giving the following numerical results:

Number of Deflation Matrix
Subdomains Z1 Zmms Zdb Zmix[Z1 Zmms] Zmix[Z1 Zdb]

16 37 88 134 34 36
32 28 69 315 23 28
64 14 14 40 11 12

Table 5.5: Linear solver iterations of the decoupled ADMMS preconditioner.

5.4.2 Fractured reservoir
In this paragraph, a 2D example of the fractured reservoir is considered, where fractures play a key role in

defining the fluid flow paths due to its high permeability. More specifically, 30 fractures are randomly generated
and distributed over the 100 × 100 domain with a homogeneous permeability which is 106 times greater than
reservoir permeability (Fig. 5.5).

Figure 5.5: Numerical Domain: fractured reservoir.

The physical fluid properties (i.e., density and viscosity) and boundary conditions are the same as described
in the previous paragraph for the "Islands" model problem. After TPFA-type discretization, a 10277 × 10277
matrix were derived where the last 277 rows and columns correspond to fractures properties.
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Deflation. For the deflation-based preconditioner we utilize these matrices:

1. Z1 - physics-based deflation: contains 30 vectors of the size 10277, where every vector corresponds to
only one fracture, especially 1 in cells crossed by this fracture and 0 otherwise;

2. Zmms - meshless multiscale basis functions: contains meshless multiscale basis functions as columns;

3. Zdb−g - grid-based: here we put 1 into all cells, which belong to the certain subdomain, and 0 into all
other cells;

4. Zdb−f - fracture-based: similar to the grid-based deflation approach, but here we put 1 into all cells,
which belong to the certain set of fractures pieces after grid partitioning, and 0 into all other cells;

5. Zdb - domain-based: contains vectors from both Zdb−g and Zdb−g;

6. Zmix - mixed deflation: consists of vectors obtained from different approaches (e.g. physics-based defla-
tion and multiscale basis functions);

7. Zt - theoretical: consists of determined beforehand number of the exact eigenvectors corresponding to
the smallest magnitude eigenvalues.

In the figure below there is a couple of possible ways to partition the grid:

Figure 5.6: Numerical domian with grid- and fracture-based partitioning: 57 fracture and 100 grid
subdomains.

The standard GMRES method requires 100 iterations to solve the pressure equation with desired tolerance
10−9. Below, the performance of the deflation-, meshless multiscale-based and ADMMS preconditioners are
presented. To obtain the reference behaviour, the theoretical type of deflation preconditioner is applied, i.e.
using Zt(30), which leads to the converge with 48 iterations. Tables 5.6 and 5.7 show the required number of
the iterations for different deflation matrices:

Deflation Grid and Fractures Partitioning
Matrix 30 f 25 g 30 f 16 g 21 f 16 g 57 f 100 g 16 f 100 g
Zmms 40 47 45 29 31
Zdb−f 84 84 85 85 85
Zdb−g 94 96 96 78 78
Zdb 59 62 63 43 48

Table 5.6: Linear solver iterations using multiscale (grid- and fractures-based) deflation. Multiscale-based
deflation (f and g stand for the amount of fractures and grid subdomains respectively).
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Deflation Grid and Fractures Partitioning
Matrix 21 f 25 g 16 f 100 g 16 f 16 g 57 f 25 g 12 f 16 g

Zmix[Z1 Zmms] 39 28 44 38 43
Zmix[Z1 Zdb−g] 60 51 64 60 64
Zmix[Z2 Zmms] 45 32 50 43 50
Zmix[Z2 Zdb−g] 60 51 64 60 64

Table 5.7: Linear solver iterations using mixed deflation matrix.

The performance of stand alone meshless multiscale-based preconditioner (MsMBM) is described in the
Table 5.8:

Fractures and Grid partitioning No. Iterations
16 f 25 g 61
21 f 16 g 60

16 f 100 g 48
12 f 16 g 36
9 f 16 g 33
9 f 25 g 25

9 f 100 g 20

Table 5.8: Linear solver iterations using meshless multiscale-based preconditioner.

It follows from the table 5.8 that the meshless multiscale-based preconditioner has its own considerable
effect on the convergence rate. The results of applying decoupled ADMMS preconditioner (both deflation and
multiscale components) are presented in Table 5.9:

Fractures and Grid Deflation Matrix
partitioning Z1 Zmms Zt(30) Zmix[Z1 Zmms] Zmix[Z1 Zdb−g]

9 f 16 g 35 25 19 31 35
9 f 25 g 29 27 18 25 27

9 f 100 g 26 14 18 14 23

Table 5.9: Linear solver iterations of the ADMMS preconditioner with the GMRES solver.

In conclusion, the meshess deflation vectors can significantly improve the convergence and robustness of a
numerical simulator of both deflation and ADMMS methods. The overall speed in serial mode can vary between
10%-20%. Furthermore, these vectors are constructed at the beginning of simulation leading to the overall
reduction in the preconditioner setup. The proposed methods are also suitable for the parallel implementation.

5.4.3 Real Reservoir Simulation Test Cases
In this section, the performance results of the fully implicit smoothed particle hydrodynamics (meshless)

based multiscale method (MsMBM) are presented. The method has been prototyped in a commercial reservoir
simulator and the method was compared against the two stage CPR-AMG-ILU(0) solver, which is the default
solution strategy in majority of commercial simulators.

The test cases are classified by the number of grid cells, fluid models and time discretization. The following
characteristics were compared between the default and proposed solutions.

• Time steps: the total number of time steps required to complete the simulation.

• Non-linear iterations: the number of non-linear iterations in the simulation.

• Linear iterations: the number of iterations used to solve the linear systems generated by the non-linear
solver.

• Linear solver time: the amount of time needed to solve the linear systems.
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• CPU time: the overall computational time required to complete the simulation.

Table 5.10 describes all the running five test cases ranging from relatively small (not too small) models to
relatively large (not too large) real life test cases. The black oil, iso-thermal and thermal compositional models

Active cells Dimensions Fluid model Implicitness
Number of

Number of active
phases components

389557 154× 90× 34
Compositional AIM IMPES 3 13Isothermal

348807 238× 192× 114 Black Oil Isothermal Fully Implicit 3 3

348812 238× 192× 114
Compositional AIM IMPES 3 8Isothermal

1722781 18× 1126× 85
Compositional Thermal Fully Implicit 3 3with steam permitted

164945 not a ‘box’ Compositional Thermal Fully Implicit 3 3with steam permitted

Table 5.10: Basic properties of the simulated test cases.

with varying degree of heterogeneity in the reservoir grid properties are considered in this thesis to test the
performance of the Multiscale Meshless Based Method (MsMBM). The names of the test cases correspond
to the total number of cells in the models. Table 5.10 contains several examples where the number of active
cells is lower than the number of cells suggested by the dimensions. In those cases, the domain includes
a number of inactive cells. The settings for the simulation test cases are (a) Pre-smoothing - GS; (b) Post-
smoothing; (c) MsMBM-GMRES(k), where k = 3 and parameter k represents the number of the top level
GMRES accelerations with MsMBM preconditioner; (d) Coarse Solver - AMG. The following tables and figures
shows the performance results for all experimental tests including reference performance results (CPR-AMG-
ILU(0)).

In general, Multiscale Meshless Based Method (MsMBM) does not change the number of time steps and
non-linear iterations compared to the CPR-AMG-ILU(0) solution strategy in the considered simulations. This
is due to second stage preconditioner ILU(0), which eliminates all the differences in the pressure solver, where
AMG and MsMBM are applied. However, in all cases there is a significant effect on the number of linear
iterations. This is a very common observations for multiscale solutions strategies (see, Lukyanov, 2014 [190];
Cusini, 2015 [74]) which leads to a larger number of linear iterations in general. This is, of course, a subject
to a number of smoothing iterations on the fine scale. This indicates that the convergence rate of the multiscale
method is worse than default AMG as other components of the linear solver have not changed. However,
the increase in linear iterations is acceptable given the fact that the MsMBM has a more favorable CPUs in
mapping information from fine to coarse level and solving this at the coarse level. The localized construction of
the multiscale basis functions has strong affect on parallel scalability of multiscale method in general. Below,
the CPUs time of different cases are presented.

Figure 5.7 shows the total time (CPUs) of the linear solver stage for different cases in serial runs. The
MsMBM algorithm improves the results of the default method CPR-AMG-ILU(0) method in terms of total sim-
ulation time. The total simulation time is significantly reduced in all cases. Comparing the performance results
of different simulations, it is clear that moderate number of cheap smoothing iterations reduces considerably the
number of linear iterations and it allows a substantial speedup. If the correct settings are chosen CPR-MsMBM-
ILU(0) results to be more than 20 % faster than CPR-AMG-ILU(0) in serial runs. The simulation tests clearly
shows that MsMBM leads to a substantial speedup around 20% in general for serial runs. If the correct settings
are chosen then the multiscale meshless based method preconditioner in the Krylov subspace iterative solvers
results in a speedup relative to the reference settings (i.e., CPR-AMG-ILU(0)).

The size and complexity of modern reservoir simulation problems require vast computational resources and
parallel computation. Hence, the state-of-the-art solvers, for example, the AMG preconditioner is used for
parallel computing of large problems. Figure 5.8 shows preliminary results of the parallel scalability of the
proposed multiscale method versus the default solver (i.e., CPR-AMG-ILU(0))

It is clear that further analysis of the method and its scalability is required to obtain the full picture about
capabilities of the proposed method.
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Figure 5.7: Total time of the linear solver stage for CPR-AMG-ILU(0) and MsMBM solution strategies.
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Figure 5.8: Scalability of the total time of the simulation runs for CPR-AMG-ILU(0) and MsMBM solution
strategies in the case 389557.

§ 5.5 Conclusions

A preconditioned Krylov subspace method such as the preconditioned FGMRES method can significantly
improve the convergence and robustness of a numerical simulator. This chapter considers the preconditioned
GMRES method with multilevel multiscale meshless based method for solving such pressure system. The solu-
tion technique proposed in this thesis uses a meshless approximation method to construct a priori the deflation
space (or basis functions space). The analysis of the common fundamental features of different multiscale
strategies are presented.

In this chapter, a parallel fully implicit smoothed particle hydrodynamics (SPH) based multiscale method for
solving pressure system is presented. The prolongation and restriction operators in this method are based on a
SPH gradient approximation (instead of solving localized flow problems) commonly used in the meshless com-
munity for thermal, viscous, and pressure projection problems. This method can reduce to the recently proposed
MsRSB. In general, it gives more flexibility in constructing various restriction and prolongation operators.

112



This method has been prototyped in a commercially available simulator. This method does not require
a coarse partition and, hence, can be applied to general unstructured topology of the fine scale. The SPH
(or meshless) based multiscale method provides a reasonably good approximation to the pressure system and
speeds up the convergence when used as a preconditioner for an iterative fine-scale solver. In addition, it
exhibits expected good scalability during parallel simulations. Presented numerical results support theoretical
and practical expectations from this method. Additional analysis of this method is required to identify the
optimal parameters of this method.
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FUTURE RESEARCH WORK

§ 6.4 The Meshless Full Approximation Scheme

In contrast to the global linearization methods, the meshless FAS algorithm similar to the conventional FAS
algorithm deals directly with the nonlinear system. The meshless FAS algorithm exploits a multi-level meshless
method, error smoothing and coarse level correction, are also applicable to nonlinear problems similar to the
conventional FAS method [253].

6.4.1 The basics of meshless multilevel methods

Multi-level meshless methods are defect/correction methods, based on calculating a correction term from
a computed residual. This process is repeated iteratively until the solution is satisfactory up to specified tol-
erance similar to conventional multigrid methods. Geometric multigrid methods operate with multiple grid
representations of the same numerical domain whereas multi-level meshless methods operate with multiple sets
of computational points. The concept is to define the problem on the finest set of points, and then interpo-
late (restrict) all the necessary information on to a coarser set of points similar to the conventional multigrid
methods. This procedure is recursively repeated until the coarsest set of points is reached and upon which a
residual equation is solved and a correction term obtained. The correction term is then recursively interpolated
(prolongated) back to the finest set of points, where the approximation to the solution is corrected. An error
smoothing operator (method) is applied after each restriction and prolongation operation, in order to remove
the high frequency contributions to the error. Common smoothers used in multgrid methods are Jacobi-type or
Gauss-Seidel-type iterations. More details on multigrid techniques can be found in [253]. Some attempts of
using meshless multi-grid technique have already been made (Cummins and Rudman, 1999 [72]).

A two-level meshless method employs two sets of computational points. This has been discussed in details
while constructing deflation vectors in Chapter 5. The traditional two-level algorithm for linear problems con-
sists of smoothing on the fine grid, approximation of the required correction on the coarse grid (restriction step),
prolongation of the coarse grid correction to the fine grid, and again smoothing on the fine grid. For smoothing
iterations, it was applied conventional iterative methods (e.g., Gauss-Seidel, Krylov-space accelerator).

6.4.2 Nonlinear Multi-Level Meshless Method: FAS

Using MMPFA method (e.g., Brookshaw (4.28) or Schwaiger (4.29)–(4.32), or New Scheme (4.44)–(4.46))
and corresponding fine set of points SF
= {XI ∈ Rn/I = 1, ..., NF }, i.e. ΩF = span

{
Ω̄XI ,h̄/I = 1, ..., NF

}
, the nonlinear discrete boundary value

problem (4.96) can be written as:
NF (uF ) = fF (5.52)

where NF (uF ) is a nonlinear fine level operator which depends on uF . Here parentheses are used to indicate
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nonlinearity. The error is defined as eF = uF − vF and the residual for the approximated vF is defined as

NF (uF )−NF (vF ) = rF (5.53)

As described in [109], the meshless FAS method computes a coarse level correction term based on the residual
equation, which using the error relation uF = vF + eF can be rewritten as

NF (vF + eF )−NF (vF ) = rF (5.54)

Consider this equation (5.54) on the coarsest points level with smoothing length hC , hF being the smoothing
length of the finer points level up, it can be written as

NC (vC + eC)−NC (vC) = rC (5.55)

The coarse grid residual rC is the restriction of the fine grid residual,

rC = WR
C,F rF = WR

C,F (fF −NF (vF )) (5.56)

where WR
C,F is the restriction operator. Similarly, the coarse level approximation vC is the restriction of the

fine level approximation vF . This is in contrast to linear multigrid where it is only necessary to restrict the
residual. Using these definitions equation (5.55) is written as

NC

(
WR

C,FvF + eC
)

= NC

(
WR

C,FvF
)

+ WR
C,F (fF −NF (vF ))

uC = WR
C,FvF + eC

fC = NC

(
WR

C,FvF
)

+ WR
C,F (fF −NF (vF ))

(5.57)

Since the right-hand side of (5.57) consists of known terms, the solution uH to this equation can be determined.
Based on this solution, the coarse grid correction term is computed as eH = uH −WR

C,Fvh. This correction
term is prolongated one grid level up, where it is used to correct the solution to the residual equation at that grid
level, and the process is repeated until the finest grid is reached. In the end an approximation to the nonlinear
problem at the fine grid is found. Note that the linear solver is only applied at the coarsest grid and hence the
Jacobian matrix is only assembled for this grid level. This implies a large memory reduction compared to the
conventional techniques.

6.4.3 Nonlinear Meshless Coarse Level Method: FAS

One of the ways to solve non-linear governing equations is based on the Full Approximation Scheme, see
Algorithm 3.
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Future research work

Algorithm 3 Multi-Level FAS-Newton-Raphson.

1: l = 0;
2: vlf = wnf ;

3: while
∥∥∥rf

(
vlf
)∥∥∥ ≥ εr do

4: for each level k towards coarse level do
5: if level is not coarse then
6: Restrict approximation and its residuals: rlk = R · rf

(
vlk−1

)
, vlk = R · vlk−1;

7: Smooth: vlk = vlk − D−1
k (vlk)rlk;

8: else
9: Solve: Jc(vlc)δvlc = −rlc;

10: end if
11: end for
12: Update coarse level solution: vl+1

c = vlc + δvlc;
13: Update coarse level residual: rl+1

c = rc
(
vl+1
c

)
;

14: for each level towards fine level do
15: Perform prolongation: vl+1

k−1 = P · vl+1
k , rl+1

k−1 = P · rl+1
k ;

16: Smooth: vl+1
k−1 = vl+1

k−1 − D−1
k−1(vl+1

k−1)rl+1
k−1;

17: end for
18: Smooth fine scale solution: vl+1

f = vl+1
f − D−1

f (vl+1
f )rl+1

f

(
vl+1
f

)
;

19: l = l + 1;
20: end while
21: wn+1 = vl.

where R is the restriction operator, P is the prolongation operator, vlf is the fine scale solution at l-iteration,

vlc is the coarse scale solution at l-iteration, rf
(

vlf
)

is the fine scale non-linear residuals, Dk(vlk) is the diagonal

elements of the Jacobian at level k evaluated at the point vlk. A parallel implementation of the meshless FAS
method on a distributed system is the additional subject of the future work.
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Notation

δij delta symbol Kronecker (or unit tensor);
αij , βij first and second generalised delta symbol Kronecker;
Rn n-dimension Riemmann space;
X, x Lagrangian coordinates, Euler coordinates;
J0, J Jacobian of reference and actual configuration respectively;
u displacement vector;
v, up velocity vector, particle velocity;
Us shock wave velocity;
ρ0, ρ initial and current density respectively;
P Lagrange stress tensor (or I-st Piola-Kirchhoff stress tensor);
σ̃, σij Cauchy stress tensor;
F deformation gradient;
e internal energy;
q heat flux;
∇0,∇ operator nabla of reference and actual configuration respectively;
Ã, A any second order tensor;
Ã · B̃ = AijBjk single contraction by repeating indexes;
Ã : B̃ = AijBij double contraction by repeating indexes;
Ai1i1i3...in = Ai1i2i3...inδi1i2 contraction by repeating index;
tr(Ã), tr(A) = Akk trace of any second order tensor Ã;
ωij damage tensor;
ω = tr(ω̃)/3 first damage parameter;
A′ij = Aij − (Akk/3)δij deviatoric part of any second order tensor A;

|Ã| = |A| =
√
A′ijA

′
ij intensivity of any second order tensor;
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Notation

α =
√
ω′ijω

′
ij second damage parameter;

σ̃/ effective stress tensor;
V physical elementary volume;
V ∗ volume of micropores in the physical elementary volume V ;
σ = σkk/3 first invariant of the stress tensor (mean stress);
p = −σkk/3 classical hydrostatic pressure;
T temperature;
Wij elastic spin tensor;
ε̃e elastic strain tensor;
ε̃p plastic strain tensor;
F , Ψ free energy;
S total entropy;
Si internal part of total entropy;
Se external part of total entropy;
D dissipation function;
H(•) Heaviside function;
Λω , Λα, Λij Onsager’s parameters;
〈•〉 Smoothed particle hydrodynamics approximation;

()• =
d

dt
material derivative with respect to time;

()∇ Jaummann derivative with respect to time for the tensor components;
a · b scalar product of vectors a and b;
div a = ∇ · a divergence of the vector a;
grad f = ∇f gradient of function f ;
⊗ tensor product;
a⊗ b = ai · bj tensor product of of vectors a and b;
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