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Summary

In this thesis we deal with processes with uncertainties, such as financial asset prices and
the global temperature. We model their evolutions by so-called stochastic processes. Many
of these stochastic processes are based on the Wiener process, whose increments are nor-
mally distributed. Other models may contain jump components, to model, for example,
economic disasters or degradation failures. An important class of models is the Lévy class,
where successive increments are independent and statistically identical over different time
intervals of the same length. This may give computational advantages.

A well-known application of stochastic processes is in financial mathematics, where
the goal is to price financial derivatives or to estimate risk measures. The underlying as-
set prices may be modeled by, e.g., geometric Brownian motions. More involved models,
like the Variance Gamma process, are defined by jumps. In other, for instance economic,
personal, or societal, contexts one may face options in the sense of real ‘choices’. For ex-
ample, should one build a new factory now or in the future? Or should one heighten a dike
today, and by how much, or in the future? These decisions are called real options and can
often be related to financial options. Similar methods can be used to value them.

The numerical problems we consider deal with conditional expectations. Often these
problems can be connected to a partial differential equation (PDE) by a Feynman-Kac the-
orem. Then we can apply PDE methods, such as finite difference schemes and finite volume
methods, to approximate the solutions. From the perspective of the probabilistic represen-
tation, the class of Monte Carlo methods can be beneficial for high-dimensional problems.
They are based on simulated paths of the stochastic process. Besides, the expected value
can often be represented by an integral, which offers opportunities to use numerical inte-
gration techniques, such as Newton-Cotes formulas.

We focus on a subclass of numerical integration methods, i.e., Fourier-based methods.
These ‘transform methods’ combine a transformation to the Fourier domain with numer-
ical integration. The probability density function of the random variables of interest is
usually unknown. Its Fourier transform, i.e., the characteristic function, is however often
known and can be used to approximate the corresponding density and distribution func-
tion. Our method of choice is the COS method, which is based on Fourier cosine series
expansions and the characteristic function. The matrix-vector product appearing may be
computed in an efficient way by using a Fast Fourier Transform (FFT) algorithm, especially
when dealing with Lévy processes. Besides, the use of the discrete Fourier cosine transform
helps us with the approximation of the Fourier coefficients.

After a general introduction of this thesis in Chapter 1, in Chapter 2 we explain the COS
formula to compute conditional expectations and provide an error analysis. Then the COS
method is applied to a specific class of problems: stochastic control problems, in which an
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2 SUMMARY

agent has the possibility to affect the trend or variation of a stochastic process in such a way
that his target function is maximized. For example, he can determine his consumption or
savings rate.

With the COS method we approximate functions by using Fourier cosine series. Similar
to Fourier series they may suffer from the Gibbs phenomenon: trying to recover a function
with a jump discontinuity results in undesired oscillations, even if the number of terms in
the series goes to infinity. Smooth density functions give rise to a fast exponentially converg-
ing error of the COS method, but a density function with a discontinuity in one of its deriva-
tives results in slower algebraic convergence. This is related to the Gibbs phenomenon. A
remedy to improve this is by using spectral filters, which smoothen the approximations, see
Chapter 3.

Vanilla call and put options are based on one underlying asset. On the other hand, rain-
bow options are written on multiple assets and the holder may possess a ‘basket’ of assets.
The payoff of, for example, a call-on-max option, depends on the maximum of several as-
sets. In this way, an option holder can manage his risks. Financial options on two assets
are discussed in Chapter 4. Also single-asset options under the Heston model, in which an
additional stochastic process for the volatility is used, are priced by the so-called 2D-COS
method, developed in this chapter.

Chapter 5 deals with a problem from the field of climate change economics. The future
global temperature is highly uncertain and there are different damage estimates. In our
model an agent can choose the consumption level of his wealth while he is subject to these
uncertain climate damages. There is a trade-off between consuming now and saving for
later. Economic equilibrium conditions result in a mathematical expression for the appro-
priate social discount rate. Here the future temperature process and the economic wealth
are the uncertain processes and we combine the methods from Chapter 2 and Chapter 4 to
solve the problem.

Forward stochastic processes are rather well-known. Their initial value is prescribed
and a prescription for the process forwards in time is given. During the last decades
the backward stochastic differential equations (BSDEs) have become popular. A BSDE is
stochastic differential equation for which a terminal condition, instead of an initial con-
dition, has been specified. Its solution consists of a pair of processes, where one of the
processes ‘steers’ the other towards the terminal condition. The value of a call option can
be modeled in this way as the holder of a replicating portfolio aims to end up with a cer-
tain payoff at the terminal time. Market imperfections can also be incorporated, such as
different lending and borrowing rates for money, the presence of transaction costs, or short
selling constraints. In Chapter 6 we extend the COS method to solve such problems and
name it the BCOS method.

A forward stochastic process can be approximated by different simulation schemes. The
stochastic Euler scheme is a generalization of the Euler scheme for ordinary differential
equations. Higher order Taylor schemes include more stochastic terms to obtain a better
convergence rate. In Chapter 7 we extend our pricing and valuation methodology by using
the characteristic function of these discrete schemes within the BCOS method framework.
With the second-order weak Taylor scheme and a θ-time discretization we obtain second
order convergence in the number of timesteps for several problems. The techniques in
Chapter 7 enable us to generalize the applicability of the BCOS method to forward SDEs for
which the ‘continuous’ characteristic function is not available.



Samenvatting

In dit proefschrift gebruiken we processen met onzekerheden, zoals financiële aandelen-
prijzen en de toekomstige temperatuurstijging. We modelleren deze bewegingen door mid-
del van zogeheten stochastische processen. Veel stochastische processen zijn gebaseerd
op het Wiener proces, waarbij de incrementen normaal verdeeld zijn. Andere modellen
kunnen sprongtermen bevatten, om bijvoorbeeld economische rampen of falen door de-
gradatie te modelleren. Een belangrijke groep is de Lévy-klasse, waar de incrementen over
verschillende tijdsintervallen, van dezelfde lengte, onafhankelijk en gelijk verdeeld zijn. Dit
kan rekenvoordelen opleveren.

Een bekende toepassing van stochastische processen is te vinden in de financiële wis-
kunde, waarbij het doel is om financiële derivaten of risico’s te waarderen. De onder-
liggende aandelenprijzen kunnen worden gemodelleerd met bijvoorbeeld geometrische
Brownse bewegingen. Complexere modellen, zoals het Variantie-Gamma proces, bestaan
uit sprongen. Ook in bijvoorbeeld economische, persoonlijke of maatschappelijke context
komen opties voor in de zin van echte ‘keuzes’. Zou men een nieuwe fabriek nu moeten
bouwen of in de toekomst? Zou men de dijken vandaag moeten ophogen, en met hoeveel,
of in de toekomst? Deze beslissingsproblemen worden reële opties genoemd en kunnen
vaak gerelateerd worden aan financiële opties. Vergelijkbare methoden kunnen worden ge-
bruikt om ze te waarderen.

Wij onderzoeken numerieke problemen met conditionele verwachtingswaarden. Vaak
kunnen deze problemen met een Feynman-Kac stelling gelinkt worden aan een partiële
differentiaalvergelijking (PDV). Daarop kunnen we dan PDV-methoden toepassen, zoals
eindige-differentieschema’s en eindige-volumemethoden, om oplossingen te benaderen.
Vanuit de probabilistische representatie bekeken kan de klasse van Monte Carlo methoden
gunstig zijn voor hoogdimensionale problemen. Hierbij worden paden van het stochas-
tisch proces gesimuleerd. Daarnaast kan de verwachtingswaarde vaak geformuleerd wor-
den als een integraal, wat mogelijkheden biedt voor numerieke integratietechnieken, zoals
de Newton-Cotes formules.

Wij richten ons op een subklasse van numerieke integratiemethoden, te weten Fourier-
gebaseerde methoden. Deze ‘transformatiemethoden’ combineren een transformatie naar
het Fourierdomein met numerieke integratie. De kansdichtheidsfunctie van de random
variabelen waar we in geïnteresseerd zijn is meestal onbekend. Echter de Fouriergetrans-
formeerde, dat is de karakteristieke functie, is vaak wel bekend en kan worden gebruikt
om de bijbehorende kansdichtheids- en verdelingsfunctie te benaderen. Wij werken met
de COS methode, die is gebaseerd op Fourier-cosinusreeks-expansies en de karakteristieke
functie. De bijbehorende matrix-vector-vermenigvuldigingen kunnen op efficiënte wijze
worden berekend door middel van een Fast Fourier Transform-algoritme (FFT), met name
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4 SAMENVATTING

bij Lévy processen. Verder gebruiken we discrete Fourier-cosinustransformaties voor het
schatten van de Fourier-coëfficiënten.

Na een algemene inleiding van dit proefschrift in Hoofdstuk 1 leggen we in Hoofdstuk
2 de COS formule uit om voorwaardelijke verwachtingswaarden te berekenen en geven we
een foutanalyse. Daarna wordt de COS methode toegepast op een specifieke categorie pro-
blemen: stochastische regeltechniekproblemen. Hierbij heeft een agent de mogelijkheid
om de trend of onzekerheid van een stochastisch proces te beïnvloeden, zodanig dat zijn
doelfunctie wordt gemaximaliseerd. Zo kan hij bijvoorbeeld zijn consumptie of spaarquote
bepalen.

Met de COS methode benaderen we functies door gebruik te maken van Fourier-
cosinusreeksen. Vergelijkbaar met Fourierreeksen lijden zij aan het Gibbs fenomeen: het
reconstrueren van een functie met een sprongdiscontinuïteit leidt tot ongewenste oscilla-
ties, zelfs als het aantal termen in de reeks naar oneindig gaat. Gladde kansdichtheids-
functies geven een snelle exponentieel convergerende fout van de COS methode, maar een
dichtheidsfunctie met een discontinuïteit in één van de afgeleiden resulteert in tragere al-
gebraïsche convergentie. Dit houdt verband met het Gibbs fenomeen. Een mogelijkheid
om dit te verbeteren is door gebruik te maken van spectrale filters, die de benaderingen
gladder maken, zie Hoofdstuk 3.

Vanilla call- en putopties zijn geschreven op één onderliggend aandeel. Daarentegen
zijn zogeheten regenboogopties geschreven op meerdere aandelen en de houder kan een
‘aandelenmandje’ bezitten. De uitbetaling van bijvoorbeeld een call-op-max-optie hangt
af van het maximum van meerdere aandelenprijzen. Op deze manier kan een optiehouder
zijn risico’s managen. Financiële opties op twee aandelen worden besproken in Hoofdstuk
4. Ook opties onder het één-aandeel-Heston model, waarin een extra stochastisch proces
voor de volatiliteit wordt gebruikt, kunnen worden geprijsd met de zogeheten 2D-COS me-
thode die ontwikkeld is in dit hoofdstuk.

Hoofdstuk 5 behandelt een probleem uit het onderzoeksgebied klimaateconomie. De
toekomstige wereldwijde temperatuur is erg onzeker en er zijn verschillende schadeschat-
tingen. In ons model kan een agent het consumptieniveau van zijn rijkdom kiezen, terwijl
hij onderworpen is aan de onzekere klimaatschade. Er is een trade-off tussen het consume-
ren nu en sparen voor later. Economische evenwichtsvoorwaarden resulteren in een wis-
kundige uitdrukking voor de bijbehorende sociale discontovoet. Het temperatuursproces
en de economische welvaart zijn hier de onzekere processen en we combineren de metho-
den uit Hoofdstuk 2 en Hoofdstuk 4 om het probleem op te lossen.

Voorwaartse stochastische processen zijn redelijk bekend. Hun startwaarde wordt voor-
geschreven en er is een beschrijving voor het proces voorwaarts in de tijd. De laatste decen-
nia zijn terugwaartse stochastische differentiaalvergelijkingen (BSDEs) populair geworden.
Een BSDE is een stochastische differentiaalvergelijking waarvoor een eindconditie, in plaats
van een startvoorwaarde, is opgegeven. De oplossing bestaat uit twee processen, waarbij
één van de processen de andere naar de eindtoestand ‘stuurt’. De waarde van een callop-
tie kan op deze manier worden gemodelleerd: de houder van een replicerende portefeuille
heeft als doel te eindigen met een bepaalde uitbetaling op de eindtijd. Ook marktimper-
fecties kunnen worden opgenomen, zoals verschillende tarieven voor het uitlenen en lenen
van geld, transactiekosten, of short selling beperkingen. In Hoofdstuk 6 breiden we de COS
methode uit voor het oplossen van dergelijke problemen en noemen het de BCOS methode.
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Een voorwaarts stochastisch proces kan worden benaderd door verschillende simulatie-
schema’s. Het stochastische Euler schema is een generalisatie van de Euler methode voor
gewone differentiaalvergelijkingen. Bij Taylorschema’s van hogere orde zijn meer stochas-
tische termen toegevoegd om een betere convergentie-orde te verkrijgen. In Hoofdstuk 7
breiden wij onze prijzings- en waarderingsmethode uit met behulp van de karakteristieke
functie van deze discrete schema’s. Met het tweede-orde zwakke Taylorschema en een θ-
tijd-discretisatie bereiken we de tweede orde convergentie in het aantal tijdstappen voor
verschillende problemen. De technieken in Hoofdstuk 7 stellen ons in staat om de toe-
pasbaarheid van de BCOS methode uit te breiden met voorwaartse SDV’en waarvoor de
‘continue’ karakteristieke functie is niet beschikbaar is.





CHAPTER 1

Introduction and Outline of this Thesis

The well-known Feynman-Kac theorem links the solution of partial differential equations
(PDEs) to stochastic processes. In this chapter we briefly discuss this theorem and some
extended versions. The conditional expectations in the probabilistic representations can
be approximated by numerical methods, such as Fourier techniques like the COS method.
Based on this introduction we lay out the remainder of this thesis.

Suppose we consider a one-dimensional linear parabolic PDE of the form

∂v
∂t (t , x)+µ(t , x)Dx v(t , x)+ 1

2σ
2(t , x)D2

x v(t , x)−ρv(t , x) = 0, ∀(t , x) ∈ [0,T )×R, (1.1a)

v(T, x) = g (x), ∀x ∈R. (1.1b)

Function v is called the value function and Dx and D2
x denote the first and second derivative

with respect to the x-variable, respectively. The functions µ : [0,T ]×R → R and σ : [0,T ]×
R→R satisfy Lipschitz conditions on (t , x). Further, T > 0 denotes the finite terminal time,
g is a terminal reward function, and ρ is a discount rate, which is common in economic and
financial problems.

The Feynman-Kac theorem for linear parabolic PDEs gives as the PDE solution [Pha09]

v(t , x) = E
[

e−ρ(T−t )g (XT )
]

, (1.2)

where Xs is governed by the forward stochastic differential equation (FSDE)

d Xs = µ(s, Xs )d s +σ(s, Xs )dωs , Xt = x. (1.3)

Here ω is a one-dimensional standard Brownian motion on the filtered probability space1

(Ω,F, (Fs )0≤s≤T ,P). Term µ is called the drift of the diffusion process and σ the volatility.
So, we can solve the linear PDE by considering a probabilistic formulation with an FSDE

and an expected value. The price of European-style financial options can be formulated in
this way, see Section 2.3.4. The most commonly known options are the call and put option,
where the holder has the right, but not the obligation, to buy (sell) an asset at a prescribed
date for a specified strike price [Hul09].

An extended PDE is the 1D Hamilton-Jacobi-Bellman (HJB) equation:

∂v
∂t (t , x)+ sup

α∈A
[µ(t , x,α)Dx v(t , x)+ 1

2σ
2(t , x,α)D2

x v(t , x)+ f (t , x,α)]−ρv(t , x) = 0. (1.4)

1In this thesis we will use the symbol F to denote Fourier cosine coefficients and F denotes a σ-algebra.

7
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This dynamic programming equation is associated to a stochastic control problem with
value function

v(t , x) = sup
α∈A

E

[∫T

t
e−ρ(s−t ) f (s, Xs ,αs )d s +e−ρ(T−t ) g (XT )

]

. (1.5)

where Xs follows the controlled FSDE

d Xs = µ(s, Xs ,αs )d s +σ(s, Xs ,αs )dωs , Xt = x. (1.6)

The control process (αs)0≤s≤T is valued in the set A ⊂ R. Now the drift and volatility terms
depend also on this control value. The relation between the HJB equation and the stochastic
control problem is an extension of the Feynman-Kac theorem. In Chapter 2, we focus on
this type of problems, in which we search for an optimal control lawα for specific problems.

The broad class of stochastic problems can be subdivided into several other types, such
as optimal stopping problems or impulse control problems [Pha09]. In the first type the
controller can influence his expected reward by choosing a time to undertake a particular
action. An example is an American-type option, where the holder can exercise his option at
any time before the terminal date. Another example is the Bermudan option, which can be
exercised at a prescribed set of early-exercise dates.

We apply a Fourier-based method to approximate the expectations appearing by using
Fourier cosine series expansions and the characteristic function of the underlying stochas-
tic process. The characteristic function ϕ(.) of a random variable X is defined as

ϕ(u) = E

[

eiuX
]

. (1.7)

The probability density function p(.) of a continuous random variable and the characteristic
function form a Fourier pair. The characteristic function is the Fourier transform of the
density and the density is the inverse Fourier transform of the characteristic function:

ϕ(u) =
∫

R
eiuy p(y)d y and p(y)= 1

2π

∫

R
e−iuyϕ(u)du. (1.8)

In Chapter 2 we explain the COS formula and provide an error analysis. Subsequently the
COS method is applied to stochastic control problems.

A special class of underlying stochastic process is formed by Lévy processes. A Lévy pro-
cess has stationary, independent increments and is right continuous with left limits. For
an extensive overview of Lévy processes we refer to [CT03]. This class contains the con-
stant coefficient jump-diffusion processes as well as Variance Gamma and CGMY processes.
The Lévy-Khintchine formula gives a representation for the corresponding characteristic
function. The specific properties of Lévy processes enable highly efficient computation of
matrix-vector products.

Smooth density functions give rise to fast converging errors of the COS method. Density
functions with a discontinuity in one of their derivatives result in slower algebraic conver-
gence. This is related to the Gibbs phenomenon and a remedy to improve this is by using
spectral filters, see Chapter 3. Also the distribution function of discrete random variables
can be recovered by a filtered COS formula.

Rainbow options are a class of financial options where the payoff depends on multi-
ple assets. The COS method for a two-dimensional asset price process is developed in
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Chapter 4. Besides, we extend the method to pricing Bermudan options under the Hes-
ton stochastic volatility model, where the variance process follows a mean-reverting square
root process.

In Chapter 5 we deal with a model from climate change economics. Here the future
temperature process and the economic wealth value are correlated stochastic processes.
We combine the COS method for stochastic control problems (Chapter 2) and the 2D-COS
method (Chapter 4) to solve this optimization problem.

Now suppose we consider a one-dimensional semilinear parabolic PDE of the form

∂v
∂t (t , x)+µ(t , x)Dx v(t , x)+ 1

2σ
2(t , x)D2

x v(t , x)+ f (t , x, v(t , x),σ(t , x)Dx v(t , x)) = 0,

(t , x) ∈ [0,T )×R, (1.9a)

v(T, x) = g (x), x ∈R, (1.9b)

where function f may depend on the value function v and its first derivative. This PDE also
has a probabilistic representation, by means of the following FSDE and backward stochastic
differential equation (BSDE)

d Xs =µ(s, Xs )d s +σ(s, Xs )dωs , Xt = x, (1.10a)

−dYs = f (s, Xs ,Ys , Zs)d s −Zs dωs , YT = g (XT ). (1.10b)

Contrary to an FSDE, a BSDE is a stochastic differential equation for which a terminal
condition, instead of an initial condition, has been specified and its solution consists of a
pair of processes, (Y , Z ). We refer to Chapter 6 and Chapter 7 for additional assumptions.
The generalized Feynman-Kac theorem for semilinear parabolic PDEs gives

Ys = v(s, Xs ), Zs =σ(s, Xs )Dx v(s, Xs ). (1.11)

So, solving the semilinear PDE and the corresponding decoupled FBSDE result in the
same solution. A PDE can then be solved by either applying numerical discretization tech-
niques or, for FBSDEs, probabilistic numerical methods, like Monte Carlo simulation tech-
niques. We extend the Fourier-based COS method to solve BSDE problems (Chapter 6). For
the numerical approximation of the FSDE in Chapter 7 we apply different Taylor schemes,
such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or apply exact simulation.
The computation of the conditional expectations appearing relies on the availability of the
characteristic function for these discrete schemes. In this way we generalize the applicabil-
ity of the BCOS method to FSDEs for which the ‘continuous’ characteristic function is not
available.

In Chapter 8 we summarize our main conclusions and give an outlook for future re-
search. Chapters 5, 6, and 7 end with specific appendices and general appendices are placed
in Section 9.





CHAPTER 2

On the Fourier Cosine Series Expansion Method for Stochastic

Control Problems

2.1. INTRODUCTION
Stochastic optimization can be defined as the optimization of a certain objective function,
where an underlying state process is subject to random perturbations. The class of opti-
mization problems can be subdivided into several different types, such as optimal stopping
problems or impulse control problems [Pha09]. In this chapter, we focus on stochastic con-
trol problems, in which the controller may influence the drift and diffusion terms of the
underlying stochastic process. One can derive a partial differential equation (PDE), to be
precise the Hamilton-Jacobi-Bellman equation, corresponding to the problem. However,
we will use a method based on the dynamic programming principle and solve the problem
backwards in time on a fixed time grid.

In financial mathematics, the price of an option can often be formulated as a stochastic
optimization problem. In the last decades, financial mathematics has contributed signifi-
cantly to the theory and the improvement of numerical methods to solve these problems.
The techniques employed are closely related to those in the field of real option problems
[DP94], encountered in economics, for example. These can also be represented by stochas-
tic optimization problems.

We will generalize the COS technique ([FO08] and [FO09]) to solving stochastic control
problems, in which the underlying Lévy process can be controlled. Our method relies on the
dynamic programming principle and the COS formula, which is based on Fourier cosine se-
ries expansions. A recursive algorithm is developed based on the recursive recovery of the
series coefficients. In the backward recursion stage of the algorithm we deal with special
matrix structures, namely Hankel and Toeplitz matrices. Matrix-vector products can then
be computed efficiently by applying a Fast Fourier Transform (FFT) algorithm, as the result-
ing matrices are then embedded in a circulant matrix form. Our work builds on both articles
[FO08] and [FO09], but it differs on certain points for the accurate treatment of stochastic
control problems.

In the resulting method, we need to determine the optimal control law for all possible
state values. For that purpose, the value function must be accurately represented in the
entire computational domain. It is known, however, that Fourier cosine expansions may

This chapter is based on the articles ‘On the Fourier cosine series expansion method for stochastic control prob-
lems’, published in Numerical Linear Algebra with Applications, Vol. 20(4), 598-625, 2013 [ROA13] and ‘The COS
method for pricing options under uncertain volatility’, published in Topics in Numerical Methods for Finance, Vol.
19, 95-113, 2012 [RO12a].
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be inaccurate near spatial boundaries, particularly outside the expansion interval. These
errors may propagate backwards in time. We give a detailed insight into the source of these
local errors and their evolution. Based on this, we propose an extrapolation technique near
the domain boundaries as an accurate solution technique in this context.

We test the method by solving two stochastic control problems of practical interest. The
first one is the valuation of financial options under uncertain volatility, which was solved
in [vdPO12, PFV03, ZW09] by partial differential equation methods for the corresponding
nonlinear PDE. The second problem we discuss is a consumption-portfolio problem from
economics. The model used is a simplified version of the well-known portfolio-selection
problem, which is originally formulated and studied by Merton [Mer69]. Here, an agent
allocates his wealth to investments in risky or risk-free assets, and to consumption. The
objective is to maximize the expected lifetime utility.

The outline of this chapter is as follows. We start in Section 2.2 with the concepts and
notation of stochastic control problems under multidimensional state processes. Then, in
Section 2.3, a method based on the dynamic programming principle and the COS formula
is derived for solving stochastic control problems with a one-dimensional underlying Lévy
process. Section 2.4 provides an extensive error analysis and a way to solve possible prop-
agating errors in the backward recursion. With this, the error converges exponentially in
the number of terms in the series expansions for smooth density functions. The two prac-
tical examples come up in Section 2.5. Finally, a conclusion for this chapter and our main
contributions are presented in Section 2.6.

2.2. STOCHASTIC CONTROL PROBLEMS
We consider the problem class of finite horizon stochastic control problems, where the ob-
jective function is optimized over a given finite domain. We start with the notation of con-
trol problems and some definitions, based on [Pha09]. The numerical method that we will
develop relies on the dynamic programming principle, which is explained in Section 2.2.2.

2.2.1. PROBLEM DESCRIPTION
Let (Ω,F,P) be a probability space, T > 0 a finite terminal time, F = (Fs)0≤s≤T a filtration
satisfying the usual conditions and ω a d-dimensional standard Brownian motion on the
filtered probability space (Ω,F,F,P). The controlled state process Xt is valued in Rn and
satisfies the stochastic differential equation

d Xs =µ(s, Xs ,αs )d s +σ(s, Xs ,αs )dωs , X0 given. (2.2.1)

The process here is a controlled diffusion process, which we will use in this section for ease
of notation and to stay in line with [Pha09]. Later on, we will work with the class of Lévy
processes.

The control process α = (αs)0≤s≤T is progressively measurable with respect to F and is
valued in the control set A, a subset of Rℓ. In the class of stochastic optimization problems
that we discuss here, the state process is influenced by the control process, α, whose value
is determined at any time t based on the available information.

The measurable functions µ : [0,T ]×Rn × A → Rn and σ : [0,T ]×Rn × A → Rn×d satisfy
uniform Lipschitz conditions on (t , x) in A. Let A denote the set of control processes α that
satisfy a square integrability condition. With this notation, an element α ∈ A is a process
over time, with values in set A. With the aforementioned conditions on µ and σ, for all
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α ∈A and for any starting condition (t , x) ∈ [0,T ]×Rn a unique strong solution to equation
(2.2.1) starting from x at s = t exists, which is denoted by {X

t ,x
s , t ≤ s ≤ T } [Pha09]. The

dependence of X t ,x
s on the control process α is omitted for notational convenience. We

assume that f : [0,T ]×Rn×A →R and g : Rn →R are two measurable functions that satisfy a

lower boundedness or a linear growth condition and E

[

∫T
t | f (s, X t ,x

s ,αs )|d s
]

<∞, ∀α ∈A .

The gain function on the finite horizon is defined as

J (t , x,α) := E

[∫T

t
e−ρ(s−t ) f (s, X t ,x

s ,αs )d s +e−ρ(T−t )g (X t ,x
T

)

]

, (2.2.2)

for all (t , x) ∈ [0,T ]×Rn and α ∈ A . The function f is a so-called running profit function,
g is a terminal reward function, and ρ is a discount rate. The objective of the finite hori-
zon problem is to maximize the gain function over all admissible controls in A . We also
introduce the so-called value function

v(t , x) := sup
α∈A

J (t , x,α). (2.2.3)

For an initial state (t , x) ∈ [0,T )×Rn , we say that α∗ ∈ A is an optimal control if v(t , x) =
J (t , x,α∗). A control process α is called a Markovian control if it has the formαs = a(s, X

t ,x
s )

for some measurable function a : [0,T ]×Rn → A [Pha09].
The notion of stochastic control problems can easily be extended with the concepts of

optimal stopping or impulse control [ØS07]. Then the controller does not (only) have the
disposal of a control process α to optimize his objective, but he can determine the terminal
time or can add extra impulses to the state process.

2.2.2. DYNAMIC PROGRAMMING PRINCIPLE
An important principle in the theory of stochastic control is Bellman’s optimality principle,
also called the dynamic programming principle [Pha09]. It means that if one has taken an
optimal control path until some arbitrary observation time θ, then, given this information,
it remains optimal to use it after that observation time. The dynamic programming princi-
ple is stated as follows:

Result 2.2.1. (Dynamic programming principle (DPP) (Finite horizon))[Pha09]

Let (t , x) ∈ [0,T ]×Rn . Then we have

v(t , x) = sup
α∈A

E

[∫θ

t
e−ρ(s−t ) f (s, X t ,x

s ,αs )d s +e−ρ(θ−t )v(θ, X t ,x
θ

)

]

, (2.2.4)

for any stopping time θ ∈ [t ,T ]. (θ is a stopping time if {θ < t } ∈ Ft , ∀t ∈ [0,T ], in other

words, it should be possible to decide whether or not {θ < t } has occurred on the basis of the

knowledge of Ft .)

By the dynamic programming principle, one can split the optimization problem into
two parts. An optimal control may be obtained by first searching for an optimal control
from a time θ given the state value X

t ,x
θ

, in other words, compute v(θ, X
t ,x
θ

). Then, the
expected value in equation (2.2.4) is maximized over all controls on [t ,θ]. We will use this
principle to set up a numerical approach for stochastic control problems in Section 2.3.

Remark 2.2.1. By the dynamic programming principle, one can derive the well-known

Hamilton-Jacobi-Bellman (HJB) equation corresponding to problem (2.2.3), see [Pha09]. This
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second-order nonlinear partial differential equation is the infinitesimal version of the dy-

namic programming principle and reads

∂v
∂t (t , x)+ sup

α∈A
[L αv(t , x)+ f (t , x,α)]−ρv(t , x) = 0, ∀(t , x) ∈ [0,T )×Rn , (2.2.5)

with differential operator of second order

L
αv(t , x) =µ(t , x,α) ·Dx v(t , x)+ 1

2 Tr[σσ′(t , x,α)D2
x v(t , x)], (2.2.6)

where σσ′(t , x,α) is an n ×n matrix with components (σσ′)i j =
∑d

k=1σikσ j k . L
α is called

the infinitesimal generator associated to the diffusion Xt with constant control α. The vec-

tor Dx denotes the gradient of a function and matrix D2
x consists of its second derivatives.

The terminal condition is v(T, x) = g (x), ∀x ∈ Rn , resulting from the definition of the value

function.

Stochastic control problems may be solved employing numerical PDE techniques to the

corresponding HJB equation. We refer to [FL07] and [PFV03] for numerical discretization

methods. Then, issues about convergence to the correct, viscosity solution arise. The viscosity

solution concept was introduced by P. L. Lions [Lio83]. We refer to [CIL92] for a general intro-

duction to viscosity solutions and some general uniqueness and existence results. As we will

use the dynamic programming approach, we will not go into details about this.

2.3. COS METHOD FOR STOCHASTIC CONTROL PROBLEMS
In this section, we set up a general method to solve stochastic control problems under a
one-dimensional Lévy process, Xt , for which the characteristic function is known. A Lévy
process has stationary, independent increments and is right continuous with left limits. For
an extensive overview of Lévy processes we refer to [CT03]. This class contains the constant
coefficient jump-diffusion processes. The method is based on the dynamic programming
principle and uses the so-called COS formula, which was developed in [FO08] for pricing
European options. It results in a recursive algorithm based on the Fast Fourier Transform
algorithm. We will explain the COS formula in Section 2.3.1. We start here with the discrete-
time framework of the solution method.

Initial time is denoted by t0 and T is the terminal time. We take a fixed equidistant grid
of control times t0 < t1 < . . . tm < . . . < tM = T , with ∆t := tm+1 − tm , and a bounded set of
possible control values A ⊂ Rℓ. As a discrete approximation, we assume that the control
processes are constant during the time intervals [tm , tm+1]. At each control time tm , with
m < M , one can choose a control value from the set A, which influences the stochastic
process during the time interval [tm , tm+1]. This value is denoted by αm , where the subscript
refers to the control time. The choice may depend on the current value of the state process.
With this notation, bold-faced α denotes a control process and α denotes a single control
value.

Remark 2.3.1. For diffusion processes, as in (2.2.1), the stochastic process evolves according

to the following dynamics:

d Xs =µ(s, Xs ,αm )d s +σ(s, Xs ,αm )dωs , for s ∈ [tm , tm+1]. (2.3.1)

In the examples in Section 2.5 we will use processes of this form, to be precise, geometric Brow-

nian motions. Their log-transformed dynamics belong to the class of Lévy processes, which

we consider from now on.



2.3. COS METHOD FOR STOCHASTIC CONTROL PROBLEMS

2

15

The value function of the discrete-time problem reads

v(t , x) = max
α∈Â

E

[∫T

t
e−ρ(s−t ) f (s, X t ,x

s ,αs )d s +e−ρ(T−t ) g (X t ,x
T

)

]

. (2.3.2)

Â ⊂A denotes the set of all possible control paths {αm }M−1
m=0 , whereαm is valued in the con-

trol set A. The terminal condition is v(T, y) = g (y). We deal with a discrete-time stochastic
control problem, with M control times. Convergence of the numerical solution to the solu-
tion of the original problem (2.2.3) is achieved by increasing the number of time steps (value
of M). General convergence results for discrete time problems to their continuous versions
can be found in [KD01, DW05, Han05].

The dynamic programming principle now gives:

v(tm−1, x) = max
αm−1∈A

Etm−1,x
[∫tm

tm−1

e−ρ(s−t ) f (s, Xs ,αm−1)d s +e−ρ∆t v(tm , Xtm )

]

= max
αm−1∈A

[∫tm

tm−1

e−ρ(s−t )Etm−1 ,x [ f (s, Xs ,αm−1)]d s +e−ρ∆tEtm−1 ,x [

v(tm , Xtm )
]

]

. (2.3.3)

For ease of notation, we use the form Et ,x [Xs ] instead of E[X
t ,x
s ]. The second equality in

(2.3.3) holds by Fubini’s theorem. We denote the first term in the maximization operator,
i.e., the time integral, by F (tm−1, x,αm−1) and call it the profit function. We presume that
this function is known analytically, or can be approximated using, for example,

F (tm−1, x,αm−1) ≈∆t f (tm−1, x,αm−1), (2.3.4)

or a trapezoidal rule for the time integral, combined with a COS formula or quadrature rule
to estimate the expectation. The expectation in the second term, which we call the contin-

uation value under control αm−1, is denoted by c(tm−1, x,αm−1). So, we use the notation

v(tm−1, x) = max
αm−1∈A

[F (tm−1, x,αm−1)+c(tm−1, x,αm−1)]. (2.3.5)

2.3.1. FOURIER COSINE EXPANSION FORMULA (COS FORMULA)
Next, we explain our method of choice to approximate the continuation value, in the back-
ward recursion,

c(tm−1, x,α) = e−ρ∆tE
[

v(tm , Xtm )|Xtm−1 = x
]

, with control value αm−1 =α. (2.3.6)

We assume a continuous transitional density, which is denoted by p(y |x,α). In other words,
∫

A p(y |x,α)d y = P(Xtm ∈ A|Xtm−1 = x, control value αm−1 = α), ∀ Borel subsets A ∈ R. We
omit the dependence on ∆t for notational convenience. We rewrite

c(tm−1, x,α) = e−ρ∆t

∫

R

v(tm , y)p(y |x,α)d y. (2.3.7)

The numerical method is based on series expansions of the value function at the next time
level and the density function, as we will show below. The resulting equation is called the
COS formula, due to the use of Fourier cosine series expansions. Fourier series expansions
and their convergence properties have been discussed in [Boy01]. In the derivation of the
COS formula, we distinguish three different approximation steps.
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Step 1: We assume that the integrand decays to zero as y → ±∞, which is usual in the
control problems we work on. Because of that, we can truncate the infinite integration
range of the expectation to some interval [a,b] ⊂R without losing significant accuracy. This
gives the approximation

c1(tm−1, x,α; [a,b]) = e−ρ∆t

∫b

a
v(tm , y)p(y |x,α)d y. (2.3.8)

The notation ci is used for the different approximations of c and keeps track of the nu-
merical errors that set in from each step, which are discussed in Section 2.4.1. For final
approximations we also use the ‘hat’-notation, like ĉ , v̂, etc.

Step 2: Next, we consider the Fourier cosine series expansions of the density function
and the value function on [a,b]:

p(y |x,α) =
∞
∑′

k=0
Pk (x,α)cos

(

kπ
y−a
b−a

)

, (2.3.9a)

and v(tm , y) =
∞
∑′

k=0
Vk (tm)cos

(

kπ
y−a
b−a

)

, (2.3.9b)

with series coefficients {Pk }∞
k=0 and {Vk }∞

k=0 given by

Pk (x,α) = 2
b−a

∫b

a
p(y |x,α)cos

(

kπ
y−a
b−a

)

d y (2.3.10a)

and Vk (tm) = 2
b−a

∫b

a
v(tm , y)cos

(

kπ
y−a
b−a

)

d y, (2.3.10b)

respectively.
∑′ in (2.3.9) indicates that the first term in the summation is weighted by one-

half. Replacing the density function by its Fourier cosine series, interchanging summation
and integration, using the definition of coefficients Vk , and truncating the series summa-
tion, we obtain the next approximation

c2(tm−1, x,α; [a,b], N ) = b−a
2 e−ρ∆t

N−1
∑′

k=0
Pk (x,α)Vk (tm ). (2.3.11)

Step 3: The coefficients Pk (x,α) can now be approximated as follows

Pk (x,α) ≈ 2
b−a

∫

R
p(y |x,α)cos

(

kπ
y−a
b−a

)

d y

= 2
b−a

ℜ
{

ϕ
(

kπ
b−a

∣

∣

∣x,α
)

e
−ikπ

a
b−a

}

:=Φk (x,α). (2.3.12)

ℜ {.} denotes taking the real part of the input argument. ϕ(.|x,α) is the conditional char-

acteristic function of Xtm , given Xtm−1 = x and αm−1 = α. The density function of a
stochastic process is usually not known, but often its characteristic function is known
(see [DPS00, FO08]). For Lévy processes the characteristic function can be represented by
the Lévy-Khintchine formula ([CT03]) and there holds

ϕ(u|x,α) =ϕ(u|0,α)eiux :=φlev y (u|α)eiux . (2.3.13)
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Inserting the above equations into (2.3.11) gives us the COS formula for approximation of
c(tm−1, x,α):

ĉ(tm−1, x,α; [a,b], N ) := c3(tm−1, x,α; [a,b], N )

= b−a
2 e−ρ∆t

N−1
∑′

k=0
Φk (x,α)Vk (tm)

= e−ρ∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

∣

∣

∣α
)

e
ikπ

x−a
b−a

}

Vk (tm ). (2.3.14)

Since the terms Vk (tm) are independent of x, we can calculate the continuation value for
many values of x simultaneously.

The value function is now approximated by

v̂(tm−1, x) := max
αm−1∈A

[F (tm−1, x,αm−1)+ ĉ(tm−1, x,αm−1)]. (2.3.15)

Remark 2.3.2. (Density function) Conditions for the existence of a continuous density are

given in [CT03]. We have the following normalizing property

∫b

a
pN (y |x,α)d y =

∫b

a
p(y |x,α)d y, (2.3.16)

where pN denotes the approximation of the density function by the Fourier cosine series

with N terms, equation (2.3.9a). The integral equals one for sufficiently wide interval

[a,b]. There holds lim∆t→0 p(y |x,α) = δ(x). The absolute value of pN (y |x,α) is bounded

by
∑′N−1

k=0 |Φk (x,α)| ≤ 2N
b−a

, but converges to the true value if N goes to infinity. So, if ∆t de-

creases, we need to increase N in order to achieve the same accuracy.

2.3.2. RECURSION FORMULA FOR COEFFICIENTS Vk (tm)
The algorithm for solving stochastic control problem (2.3.2) is based on the recursive recov-
ery of the coefficients Vk (tm), starting with the coefficients at the terminal time:

Vk (tM ) = 2
b−a

∫b

a
v(T, y)cos

(

kπ
y−a

b−a

)

d y, (2.3.17)

for which often an analytic solution is available. This is the case for, among others, ex-
ponential and polynomial terminal reward functions. If these coefficients are not known
analytically, they can be approximated by numerical integration rules or discrete Fourier
cosine transforms (see Appendix C). These coefficients are used for the approximation of
the continuation value at time tM−1.

Next we consider the coefficients that are used to approximate the continuation value
at time tm−1, i.e., Vk (tm), for m ≤ M − 1. The value function, equation (2.3.5), at time tm

appears in the terms Vk (tm) and we need to find an optimal control law for all state values
y ∈ [a,b]. We propose two techniques for this:

• Firstly, suppose that the set A of possible control values is finite, or an infinite set is
approximated by a finite one, A = {α1, . . . ,αq , . . . ,αQ }, where Q is a finite number and
αi ∈ Rℓ. Then it may be possible to determine subdomains D

q
m ⊂ [a,b], so that for

each y ∈D
q
m it is optimal to choose control αq

m at control time tm . The subscript of
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α
q
m indicates the time level and the superscript the control value. To be precise, we

find the value(s) x∗ for which an optimal policy changes to another one, i.e.,

F (tm , x∗,αp
m )+ ĉ(tm , x∗,αp

m ) = F (tm , x∗,αq
m )+ ĉ(tm , x∗,αq

m ). (2.3.18)

Newton’s method can be applied to accurately determine these values x∗ and specify
the subdomains Dq

m . This approach will be applied to the problem in Section 2.5.1.

• If this procedure cannot be applied, or in case the control set A is a continuous range,
then the interval [a,b] is divided into Q subintervals, which span the interval [a,b].
They are denoted by D

q
m , q = 1,2, . . . ,Q , where Q is a finite number. On each subin-

terval, D
q
m , we determine the optimal control, α

q
m , for the time interval [tm , tm+1].

One can use an optimization algorithm or, for a finite control set, compute the value
function for all possible control values on a grid to determine the maximum. We here
assume that the control value is constant over the spatial subinterval. With many
subintervals this approximation is sufficiently accurate. This piecewise constant con-
trol timestepping approach is also described in [Kry99, Kry00] and will be used in the
application in Section 2.5.2.

In both approaches, we split the integral for the definition of Vk into different parts:

Vk (tm )= 2
b−a

Q
∑

q=1

∫

D
q
m

F (tm , y,αq
m )cos

(

kπ
y−a
b−a

)

d y

+ 2
b−a

Q
∑

q=1

∫

D
q
m

c(tm , y,α
q
m )cos

(

kπ
y−a
b−a

)

d y

:=
Q
∑

q=1
Fk (tm ,D

q
m ,α

q
m )+

Q
∑

q=1
Ck (tm ,D

q
m ,α

q
m ), (m 6= M). (2.3.19)

Here assume that the terms Fk are known analytically, or can be approximated sufficiently
accurate. In practical applications these terms may be independent of time. The coeffi-
cients Ck at time tm can be approximated by using the coefficients Vk (tm+1) from the next
time level, as we will explain shortly. This results in a backward recursion of the coefficients
Vk (tm).

For approximation of the value function at time tM−2 we need the coefficients
Vk (tM−1). We will use the approximated values, ĉ(tM−1, y,α), to approximate the terms
Ck (tM−1, z1, z2,α). This approximation is then denoted by Ĉk (tM−1, z1, z2,α). On the inte-
grands of terms Ĉk we again apply the Fourier cosine series expansion by inserting equation
(2.3.14):

Ĉk (tM−1, z1, z2,α) := 2
b−a

∫z2

z1

ĉ(tM−1, y,α)cos
(

kπ
y−a
b−a

)

d y

= e−ρ∆tℜ
{

N−1
∑′

j=0
φlev y

(

jπ
b−a

∣

∣

∣α
)

V j (tM )Mk , j (z1, z2)

}

, (2.3.20)

where the elements of matrix M (z1, z2) are given by:

Mk , j (z1, z2) := 2
b−a

∫z2

z1

e
i jπ

y−a

b−a cos
(

kπ
y−a
b−a

)

d y. (2.3.21)
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The parameters of the matrices M are the boundary values of their respective integration
ranges. Finally, we end up with the vector form

V̂ (tM−1) =
Q
∑

q=1
F (tM−1,D

q

M−1,α
q

M−1)+
Q
∑

q=1
e−ρ∆tℜ

{

M (D
q

M−1)wq
}

, (2.3.22)

where w is a vector with entries

wq = {w
q

j
}N−1

j=0 , with w
q

j
=φlev y

(

jπ
b−a

∣

∣

∣α
q

M−1

)

V j (tM ), w
q
0 = 1

2φlev y (0|αq

M−1)V0(tM ).

(2.3.23)

For the other coefficients, Vk (tm), 1 ≤ m ≤ M − 2, the approximations ĉ(tm , y,α) and

V̂k (tm+1) will be used to approximate the terms Ck (tm , z1, z2,α). The same arguments give
the following numerical approximation of the Fourier cosine coefficients at time tm :

V̂ (tm) =
Q
∑

q=1
F (tm ,D

q
m ,α

q
m )+

Q
∑

q=1
e−ρ∆tℜ

{

M (D
q
m)ŵq

}

, (m = 1, . . . , M −2), (2.3.24)

where ŵ is a vector with entries

ŵq = {ŵ
q

j
}N−1

j=0 , with ŵ
q

j
=φlev y

(

jπ
b−a

∣

∣

∣α
q
m

)

V̂ j (tm+1), ŵ
q
0 = 1

2φlev y (0|αq
m )V̂0(tm+1).

(2.3.25)

An additional error is introduced because the coefficients are approximated using the
approximated elements V̂ j (tm+1). We will examine this evolving error in Sections 2.4.2 and
2.4.3 and propose a more accurate approximation for the Fourier coefficients Vk (tm) in Sec-
tion 2.4.2.

2.3.3. ALGORITHM

The matrix-vector products M w in the terms Ĉ can be computed by a Fourier-based algo-
rithm, as stated in the next result:

Result 2.3.1. (Efficient computation of Ĉ (tm , z1, z2,α))

The matrix-vector product M (z1, z2)w can be computed in O(N log2 N ) operations, with the

help of the Fast Fourier Transform (FFT) algorithm.

The key insight of this efficient computation is the equality

Mk , j (z1, z2) =− i
π

(

M
c
k , j (z1, z2)+M

s
k , j (z1, z2)

)

, (2.3.26)

where matrix M
c is a Hankel matrix and M

s a Toeplitz matrix (M c
i , j

=M
c
i−1, j+1 and M

s
i , j

=
M

s
i+1, j+1). The matrices M

c
k , j

and M
s
k , j

can be found in Appendix B. The special matrix

structure enables us to use the FFT algorithm for the matrix-vector products. If a process
does not possess the property in equation (2.3.13), the FFT algorithm cannot be employed
in a straightforward way (see [ZO13a]).

We can recover the terms V̂k (tm) recursively, starting with Vk (tM ). The algorithm to solve
the discrete-time stochastic control problem (2.3.2) backwards in time then reads:
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Algorithm 1. (COS method for stochastic control problems)

Initialization: Calculate coefficients Vk (tM ) for k = 0,1, . . . , N −1.

Main loop to recover V̂ (tm):

For m = M −1 to 1:

• Determine the subdomains D
q
m for which the optimal control value is

α
q
m , or determine the optimal control values α

q
m for given subdomains

D
q
m .

• Compute V̂ (tm), equation (2.3.22) or (2.3.24), with the help of the FFT

algorithm.

Final step: Compute v̂(t0, x0) by inserting V̂k (t1) into equation (2.3.14).

The computational complexity of the algorithm is O
(

MQN log2 N
)

, as we need to com-
pute M time steps, and Q subintervals. The computation time also depends on the effi-
ciency of the optimization method to find the optimal control α

q
m .

Remark 2.3.3. We elaborate on the differences between using the COS method for pricing

Bermudan and barrier options and for solving stochastic control problems. In Algorithm

1, we search for an optimal control law for all state values y in the computational domain

[a,b]. For this, the numerical continuation values need to be accurate over the entire interval.

Errors may arise, however, in the vicinity of the boundaries and propagate backwards in time,

as we will show in Sections 2.4.1 and 2.5.2. In Section 2.4.2, a remedy for this problem will be

proposed. When pricing barrier and Bermudan call options, as in [FO09], one only searches

for the early-exercise points, where the continuation value equals the payoff. For this task,

interval [a,b] can be chosen large so that the early-exercise points are not close to the interval

boundaries and the boundary errors do not affect the resulting price.

Another difference in applying the COS method to stochastic control problems is the de-

pendency of the characteristic function on the control values. As this function is evaluated

often during the optimization procedure, it may be time-consuming.

2.3.4. INTERMEZZO: EUROPEAN OPTIONS

In this section we discuss an important application from financial mathematics, the pricing
of a European option. In this financial setting, the asset price at time t is denoted by St . The
risk-neutral option pricing formula ([Shr08]) for a European option with payoff function
g (.) reads

v(t0, x) = e−r∆tEt0,x [v(T, XT )]= e−r∆t

∫

R

g (y)p(y |x)d y, (2.3.27)

where Xt is the state process, which can be any monotone function of the underlying asset
price St . We take the log-asset price process Xt = logSt here. r is the risk-neutral interest
rate and ∆t := T −t0. The problem considered is a simplified, reduced version 1 of stochastic
control problem (2.2.3). p(y |x) is the conditional probability density of XT , given Xt0 = x. In
other words, the option price is equal to the expected value of its discounted future payoff,
under a certain probability measure.

1Note that there is no control process α and no running profit function.
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Explicit expressions for probability density functions p(y |x) encountered in finance are
often not known, or involve some mathematical special functions, which make them im-
practical to calculate. Instead the characteristic function ϕ(u|x) corresponding to p(y |x) is
often known [DPS00] and for Lévy processes we can use the equality

ϕ(u|x) =ϕ(u|0)eiux :=φlev y (u)eiux . (2.3.28)

At first [Hes93] found a closed-form solution for European options with stochastic
volatility by means of the Fourier transform. In [CM99], the Fourier transform of the
damped payoff function, together with a Fast Fourier Transform (FFT), was used to evaluate
European options under a broad class of models. Fourier methods for Bermudan options
were then developed in, among others, [O’S05, LFBO08]. For recent developments in pric-
ing exotic options, like Asian and multi-asset options, we refer to [FMM11, Sur09, ZO13b,
RO12b].

In this thesis we consider a specific Fourier technique, the COS method. Fourier cosine
series expansion of the payoff function gives the approximation:

gN (y) =
N−1
∑′

k=0
Vk (tM )cos

(

kπ
y−a
b−a

)

, (2.3.29)

in which

Vk (tM ) = 2
b−a

∫b

a
g (y)cos

(

kπ
y−a
b−a

)

d y. (2.3.30)

An analytic solution for the coefficients at the terminal time is available for the options we
discuss in this chapter. The COS formula yields

v̂(t0, x) := e−r∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a

}

Vk (tM ). (2.3.31)

The authors of [FO08] provide the following rule-of-thumb for the computational do-
main for European options

[a,b]=
[

κ1 −L

√

κ2 +
p
κ4, κ1 +L

√

κ2 +
p
κ4

]

, L ∈ [8,10], (2.3.32)

where κ1,κ2, . . . are the cumulants of the underlying stochastic process. For the cumulants
of the log-jump-diffusion and Variance Gamma process, we refer to [FO08].

If N , the number of terms in the cosine expansion, is chosen sufficiently large, then a
larger computational domain should not affect the option price. For numerical experiments
on European options we refer to Sections 2.4.1.1 and 3.4.2.2.

2.4. ERROR ANALYSIS AND EXTRAPOLATION TECHNIQUE
In this section, we analyze the error of the COS method for stochastic control problems and
base our analysis on [FO08], [FO09], and [Rui10]. Errors are introduced by the COS formula
and by evolution through time via the coefficients V̂k (tm ) and a possibly incorrect control
process α. We start with the local error of the COS formula where backward recursion of
the approximated coefficients V̂k (tm) and control are not taken into account, in Section
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2.4.1. In the financial context, this corresponds to a European option with an uncontrolled
asset price process. The local error may be significant in the vicinity of the boundaries.
We give an example in which the COS formula is inaccurate in the vicinity of a domain
boundary (Section 2.4.1.1). This may give difficulties during the recursive recovery of the
Fourier cosine coefficients Vk (tm). In Section 2.4.2, we propose an improved approximation
for Vk (tm), which is in that case more accurate than V̂k (tm ) from equation (2.3.24). Finally,
the propagating error in the backward recursion is studied and bounded (Section 2.4.3).

2.4.1. LOCAL ERROR COS FORMULA
We define the local error of the COS formula for the continuation value by

ǫCOS(tm−1, x,α; [a,b], N ) := c(tm−1, x,α)− ĉ (tm−1, x,α; [a,b], N ). (2.4.1)

The above notation includes the parameters used for the approximations, namely [a,b] and
N . The error

max
αm−1∈A

|ǫCOS (tm−1, x,αm−1; [a,b], N )| (2.4.2)

bounds the absolute error of the approximated value function v̂(tm−1, x), assuming that the
correct optimal control law has been chosen and that the function F (tm−1, x,α) is known
analytically, or can be approximated sufficiently accurate.

We first assume that the terms Vk (tm) are exact. Errors are introduced in three steps.
An upper bound for the error of the European option pricing COS formula with respect to
the truncation range and the convergence rate, in dependence of N , has been derived in
[FO08]. We discuss the errors one after the other.

Step 1: The integration range truncation error:

ǫ1(tm−1, x,α; [a,b]) := c(tm−1, x,α)−c1(tm−1, x,α; [a,b])

= e−ρ∆t

∫

R\[a,b]
v(tm , y)p(y |x,α)d y. (2.4.3)

If v(tm , y)p(y |x,α) is sufficiently small outside the interval [a,b], then the error ǫ1 can be
ignored.

Step 2: The series truncation error on [a,b]:

ǫ2(tm−1, x,α; [a,b], N ) := c1(tm−1, x,α; [a,b])−c2(tm−1, x,α; [a,b], N )

= b−a
2 e−ρ∆t

∞
∑

k=N

Pk (x,α)Vk (tm)

= e−ρ∆t

∫b

a
v(tm , y)

[

p(y |x,α)−pN (y |x,α)
]

d y. (2.4.4)

The functions vN (tm , y) and pN (y |x,α) denote the Fourier cosine series expansions of the
value function and the density function, using N terms in the series summations.

The convergence rate of Fourier cosine series depends on the properties of the approx-
imated functions in the expansion interval. Information about different convergence types
can be found in [Boy01]. Based on that theory, we find that the series truncation error con-
verges exponentially for density functions in the class C∞([a,b]). A density function with
discontinuity in one of its derivatives results in an algebraic convergence.
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Step 3: The error related to approximating Pk (x,α) by Φk (x,α) (see equation (2.3.12)):

ǫ3(tm−1, x,α; [a,b], N ) := c2(tm−1, x,α; [a,b], N )−c3(tm−1, x,α; [a,b], N )

= b−a
2 e−ρ∆t

N−1
∑′

k=0
(Pk (x,α)−Φk (x,α))Vk (tm)

=−e−ρ∆t
∫

R\[a,b]

[

N−1
∑′

k=0
Vk (tm)cos

(

kπ
y−a
b−a

)

]

p(y |x,α)d y

=−e−ρ∆t

∫

R\[a,b]
vN (tm , y)p(y |x,α)d y. (2.4.5)

Remark 2.4.1. Note that the Fourier cosine series expansions used in Section 2.3.1 are defined

for y ∈ [a,b], whereas here the function vN (tm , y) is evaluated on R\[a,b]. Here we denote

by function vN (tm , y), for y ∈ R\[a,b], the infinitely periodic, even extension of the Fourier

cosine series expansion outside the expansion interval. This value will usually be different

from v(tm , y), even if N tends to infinity.

The integration range truncation error, ǫ1, enters by truncation of the infinite domain
to the finite domain [a,b]. Conversely, error ǫ3 is due to replacing the finite domain by an
infinite domain in equation (2.3.12). The third error ‘compensates’, completely or partly, for
the first error. Addition of both errors gives

ǫ1(tm−1, x,α; [a,b])+ǫ3(tm−1, x,α; [a,b], N ) =

e−ρ∆t

∫

R\[a,b]

[

v(tm , y)− vN (tm , y)
]

p(y |x,α)d y. (2.4.6)

So, error ǫ1+ǫ3 results from using e−ρ∆t vN (tm , y) instead of the true discounted value func-
tion e−ρ∆t v(tm , y). We can write

ĉ(tm−1, x,α; [a,b], N ) =

e−ρ∆t

∫b

a
v(tm , y)pN (y |x,α)d y +e−ρ∆t

∫

R\[a,b]
vN (tm , y)p(y |x,α)d y. (2.4.7)

We can write the local error of the COS formula as

ǫCOS (tm−1, x,α; [a,b], N ) =
ǫ1(tm−1, x,α; [a,b])+ǫ2(tm−1, x,α; [a,b], N )+ǫ3(tm−1, x,α; [a,b], N ). (2.4.8)

If, for given x, the integration interval [a,b] is chosen sufficiently wide, then the series trun-
cation error ǫ2 dominates the overall local error. This implies that for smooth density func-
tions the local error converges exponentially to zero, otherwise it converges algebraically.

For a given interval [a,b], the local error may however be large if x is in the vicinity of
the domain boundaries, resulting from error ǫ1 + ǫ3. We will show this by an example in
the next section. A local error may propagate via the backward recursion for a stochastic
control problem.

2.4.1.1. ERROR IN THE VICINITY OF THE BOUNDARIES

Here, an example of a large error close to the spatial boundaries is presented, when we use
the COS formula to price a European call option (see Section 2.3.4). We model the asset
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price by a geometric Brownian motion,

dSs = r Ss d s + σ̄Ssdωs , S0 given. (2.4.9)

The payoff of a call option at terminal time, T , with log-asset price y = log(ST ), is given
by the function

g (y)= (e y −K )+, (2.4.10)

where (z)+ := max(z,0) and K denotes the strike price. The Fourier cosine coefficients of
the payoff function are given by

Vk (tM ) = 2
b−a

∫b

a
g (y)cos

(

kπ
y−a
b−a

)

d y

= 2
b−a

(

χk (logK ,b, a,b)−Kψk (logK ,b, a,b)
)

, (a ≤ log K ≤ b). (2.4.11)

The analytic solution of the functions χk and ψk can be found in Appendix A. The COS
formula yields

v̂(t0, x; [a,b], N ) = e−r∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a

}

Vk (tM ) (2.4.12)

= e−r∆t

∫

[a,b]
g (y)p(y |x)d y +e−r∆t

∫

R\[a,b]
gN (y)p(y |x)d y −ǫ2(t0, x; [a,b], N ).

We take N sufficiently large, so that error ǫ2 can be neglected. The equation above shows
that a significant error is introduced if gN (y)p(y |x) is not close to g (y)p(y |x) outside the
expansion interval [a,b], which is the case in the example to follow.

For the call option under geometric Brownian motion an analytic solution is available,
i.e., the Black-Scholes price [BS73], so that the numerical option value can be compared
with the exact solution. The following parameters are used for the tests in this section:

K = 100, S0 = 100(x0 ≈ 4.6), r = 0.1, T = 0.1, σ̄= 0.25, L = 10, N = 210. (2.4.13)

Log-asset price, x, is varied and the results are shown in Figure 2.4.1. In the left-side plot,
function g (y) and the series expansion gN (y) and its infinitely periodic, even extension out-
side [a,b], which is symmetric in a and b, are presented. The COS formula ‘sees’ the latter
function, see equation (2.4.12). Function gN (y) resembles the true payoff function well at
the left-hand side of a, as the function is constant there. Hence, no error is introduced in
the vicinity of that boundary. However, at the right-side of b a difference between the two
functions is observed, which gives a significant error ǫ1 + ǫ3 in the computational domain
at that boundary. This is shown in the right-side plot, where the exact Black-Scholes price
and the COS approximation are presented.

The numerical option value for initial log-asset price, x0, is highly accurate, with an error
less than 10−14. However, inaccuracies at some place in the domain [a,b] may seriously
affect the backward recursion of the Fourier coefficients, Vk (tm), when a stochastic control
problem is solved recursively.

2.4.2. IMPROVEMENT BY EXTRAPOLATION
The coefficients Vk (tm ) are recovered recursively, backwards in time. In that case, the lo-
cal error, ǫCOS , described in the previous section, may propagate through time. Here, we
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Figure 2.4.1: Example of an error, ǫ1 +ǫ3, close to one of the boundaries.

propose a technique to deal with this issue. In Section 2.4.3, we prove that the error of
the approximated Fourier coefficients converges exponentially in N , for probability density
functions in the class C∞([a,b]).

Recall that the approximated Fourier cosine coefficients at time tm−1 are given by

V̂k (tm−1) = 2
b−a

∫b

a

[

max
αm−1∈A

[F (tm−1, x,αm−1)+ ĉ(tm−1, x,αm−1)]

]

cos
(

kπ x−a
b−a

)

d x. (2.4.14)

From this definition it follows that inaccurate numerical continuation values at time tm−1

may affect the choice of the optimal control value and the coefficients, which in turn affect
the continuation value at time tm−2, and so on.

The idea to deal with the propagating error is to determine the area in which inaccurate
approximate values from the COS method occur. In this area, we employ an extrapolation

technique to compute a value with improved accuracy, using accurate numerical continua-
tion values from the neighboring region.

In practical applications, it may be possible to estimate the area in which ĉ(tm−1, x,α)
is inaccurate, assuming that coefficients Vk (tm) are exact. The density function, together
with the value function, give the desired information. For instance, suppose we can cal-
culate a value xL , so that the continuation value is well approximated for x ∈ [xL ,b] and is
inaccurate for x ∈ [a, xL ] 2. The continuation function c(tm−1, x,α), on [a, xL ], can then be
approximated by an extrapolation technique. For this, we employ a second-order Taylor
expansion in xL :

ĉex (tm−1, x,α) := ĉ(tm−1, xL ,α)+ ĉx (tm−1, xL ,α)(x−xL )+ 1
2 ĉxx (tm−1, xL ,α)(x−xL)2. (2.4.15)

The derivatives can easily be computed in this setting, as:

ĉx (tm−1, xL ,α) = e−ρ∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

∣

∣

∣α
)

e
ikπ

xL−a
b−a ikπ

b−a

}

Vk (tm ), (2.4.16a)

ĉxx (tm−1, xL ,α) = e−ρ∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

∣

∣

∣α
)

e
ikπ

xL−a
b−a

(

ikπ
b−a

)2
}

Vk (tm ). (2.4.16b)

2The methodology above can also be applied if the approximated continuation value is inaccurate in a certain area
[xR ,b].
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We denote the extrapolated continuation value by

c̃(tm−1, x,α) :=
{

ĉex (tm−1, x,α), for x ∈ [a, xL],

ĉ(tm−1, x,α), for x ∈ [xL ,b].
(2.4.17)

The local error of the COS formula with extrapolation technique is denoted by

ǫ̃COS(tm−1, x,α; [a,b], N ) := c(tm−1, x,α)− c̃ (tm−1, x,α; [a,b], N ), (2.4.18)

and we have:
ǫ̃COS (tm−1, x,α; [a,b], N ) =O((x − xL )3), for x ∈ [a, xL ]. (2.4.19)

We use continuation value c̃ to determine the optimal control law and to approximate
the terms Ck by

C̃k (tm−1, z1, z2,α) := 2
b−a

∫z2

z1

c̃(tm−1, y,α)cos
(

kπ
y−a
b−a

)

d y. (2.4.20)

The corresponding Fourier coefficients are denoted by Ṽk (tm−1). Suppose the interval
[z1, z2] ⊂ [a,b] can be divided into [z1, xL] and [xL , z2]. Then the Fourier cosine coefficients
read

C̃k (tm−1, z1, z2,α) = 2
b−a

∫xL

z1

ĉex (tm−1, xL ,α)cos
(

kπ
y−a
b−a

)

d y

+e−ρ∆tℜ
{

N−1
∑′

j=0
φlev y

(

jπ
b−a

∣

∣

∣α
)

V j (tm )Mk , j (xL , z2)

}

, (2.4.21)

where the analytic solution to the first part can be found with the help of functions ψk , ξk ,
and ξ2

k
(see Appendix A). The extrapolation technique can be improved by using a higher-

order Taylor expansion. In that case, a similar approach can be applied, as the derivatives
of approximated continuation values can be computed easily.

Remark 2.4.2. If we know that the continuation value should be of exponential form, which

is sometimes the case for the type of problems we are interested in, it may be more accurate to

use an exponential extrapolation. We will use this form in an example in Section 2.5.2.

2.4.3. ERROR PROPAGATION IN THE BACKWARD RECURSION
In this section, we study the error of the Fourier cosine coefficients in the backward recur-
sion. We start with the algorithm without the extrapolation technique and define

εk (tm , z1, z2,α) :=Ck (tm , z1, z2,α)− Ĉk (tm , z1, z2,α). (2.4.22)

The terms Fk are assumed to be exact, or are approximated sufficiently accurate, so that
the error in the Fourier coefficients is given by

εk (tm) := Vk (tm)− V̂k (tm) =
Q
∑

q=1
εk (tm ,D

q
m ,α

q
m ). (2.4.23)

We assume that an accurate, true control law 3 is found, which is denoted by α∗
m . Here

the dependency on the state value is omitted. The error may be larger in case of incorrect
control values.
3which is an optimistic assumption if the continuation value is inaccurate.
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At time lattice M −1 we have:

εk (tM−1, z1, z2,α) = 2
b−a

∫z2

z1

(c(tM−1, y,α)− ĉ(tM−1, y,α))cos
(

kπ
y−a
b−a

)

d y

= 2
b−a

∫z2

z1

ǫCOS (tM−1, y,α)cos
(

kπ
y−a
b−a

)

d y. (2.4.24)

Here we omit the dependency of the error on the interval [a,b] and N . Coefficients Vk (tM )
are assumed to be known analytically, so that the only error introduced by the COS formula
is the local error, ǫCOS . This error may be significant close to the domain boundaries a and
b. We end up with

εk (tM−1) = 2
b−a

∫b

a
ǫCOS(tM−1, y,α∗

M−1)cos
(

kπ
y−a
b−a

)

d y. (2.4.25)

Note that the terms εk (tM−1) are the Fourier cosine coefficients of the local error at time
tM−1 on the expansion interval [a,b].

For the approximation of c(tM−2, x,α) the COS formula with coefficients V̂k (tM−1) is
used. The approximated value is here denoted by c(tM−2, x,α). The use of the approxi-
mations V̂k (tM−1) in equation (2.3.24) gives rise to an additional error in Ck (tM−2, z1, z2,α):

εk (tM−2, z1, z2,α) = 2
b−a

∫z2

z1

(c(tM−2, y,α)−c(tM−2, y,α))cos
(

kπ
y−a
b−a

)

d y, (2.4.26)

with c obtained by inserting V̂k (tM−1) into the COS formula:

c(tM−2, y,α) = e−ρ∆t
N−1
∑′

j=0
ℜ

{

φlev y

(

jπ
b−a

∣

∣

∣α
)

e
i jπ

y−a
b−a

}

V̂ j (tM−1)

= e−ρ∆t
N−1
∑′

j=0
ℜ

{

φlev y

(

jπ
b−a

∣

∣

∣α
)

e
i jπ

y−a
b−a

}

(V j (tM−1)−ε j (tM−1))

= ĉ(tM−2, y,α)−e−ρ∆t
N−1
∑′

j=0
ℜ

{

φlev y

(

jπ
b−a

∣

∣

∣α
)

e
i jπ

y−a
b−a

}

ε j (tM−1). (2.4.27)

The error in the coefficients Ck can now be separated into two parts:

εk (tM−2, z1, z2,α) = 2
b−a

∫z2

z1

(c(tM−2, y,α)− ĉ(tM−2, y,α)

+ ĉ(tM−2, y,α)−c(tM−2, y,α))cos
(

kπ
y−a
b−a

)

d y

= 2
b−a

∫z2

z1

(ǫCOS(tM−2, y,α)+ǫ(tM−2, y,α))cos
(

kπ
y−a
b−a

)

d y, (2.4.28)

where

ǫ(tM−2, y,α) = e−ρ∆t
N−1
∑′

j=0
ℜ

{

φlev y

(

jπ
b−a

∣

∣

∣α
)

e
i jπ

y−a
b−a

}

ε j (tM−1). (2.4.29)

ǫ resembles the COS formula (2.3.14), now with Fourier coefficients ε j (tM−1). For suffi-
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ciently large values of N we find

ǫ(tM−2, y,α) = e−ρ∆t

∫

[a,b]
ǫCOS(tM−1, z,α∗

M−1)p(z|y,α)d z

+e−ρ∆t

∫

R\[a,b]
ǫ̂COS(tM−1, z,α∗

M−1)p(z|y,α)d z

≈ e−ρ∆tEtM−2 ,y [ǫCOS (tM−1, XtM−1 ,α∗
M−1)], (2.4.30)

where ǫ̂COS is the Fourier cosine expansion of the local error with N terms. So,

c(tM−2, y,α)−c(tm−1, y,α) ≈ ǫCOS (tM−2, y,α)

+e−ρ∆t
E

tM−2 ,y [ǫCOS (tM−1, XtM−1 ,α∗
M−1)]. (2.4.31)

The recursive algorithm gives

εk (tm) ≈ 2
b−a

∫b

a
(ǫCOS(tm , y,α∗

m )

+e−ρ∆t
E

tm ,y [ǫCOS(tm+1, Xtm+1 ,α∗
m+1)])cos

(

kπ
y−a
b−a

)

d y. (2.4.32)

The first part of the error is due to the use of the COS formula at time tm . The possible
propagation of errors from time level tm+1 causes the second part to appear. The value
of the expectation depends on the drift and diffusion of the stochastic process4. A clari-
fying example is provided in Section 2.5.2.1. It is not possible to bound the error εk (tm)
by increasing the number of terms in the Fourier series expansions, N , as the error ǫ1 + ǫ3

remains. The propagation of the error may give rise to incorrect results of the algorithm.
Next we discuss the error convergence if we employ the extrapolation methodology

from Section 2.4.2. The error in the terms Ck is redefined by

εk (tm , z1, z2,α) :=Ck (tm , z1, z2,α)− C̃k (tm , z1, z2,α) (2.4.33)

and

εk (tm) := Vk (tm)− Ṽk (tm) =
Q
∑

q=1
εk (tm ,D

q
m ,α

q
m ). (2.4.34)

The error of the approximated Fourier coefficients now converges exponentially in N

under certain conditions:

Result 2.4.1. With a sufficiently accurate extrapolation technique, with [a,b] ⊂ R chosen

sufficiently wide and a probability density function p in C∞([a,b]), error εk (tm ) converges

exponentially in N for 1≤ m ≤ M −1.

The proof of this result is similar to that for pricing Bermudan options, which can be
found in [FO09]. The difference is that we explained how errors in the vicinity of the bound-
aries may propagate. Note that error ǫ1+ǫ3 has now been reduced by using an extrapolation
technique. It can also be proved that if the local error converges algebraically, then so does
ε(tm).

4A large error ǫCOS at the left-hand side of the computational domain may ‘disappear’ by a large positive drift. It
may travel through the domain for other drift terms.
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2.5. NUMERICAL EXPERIMENTS
In this section, we apply Algorithm 1 to two different stochastic control problems. In the
first example in Section 2.5.1, we calculate the price of financial options under uncertain
volatility.

The second example, Section 2.5.2, deals with an optimal consumption-portfolio prob-
lem, with which we can demonstrate the impact of an error near the spatial boundaries, and
its propagation. The continuous-time variant of this stochastic control problem admits an
analytic solution. This problem is thus instructive as we can show the propagation of a local
error and the improvement by extrapolation of the continuation value.

2.5.1. FINANCIAL OPTIONS UNDER UNCERTAIN VOLATILITY
The model we use for pricing financial options under uncertain volatility is based on the
problem described in [PFV03, ZW09]. The setting of this problem is the financial option
market. The risk-neutral dynamics of the asset price is assumed to evolve according to ei-
ther a geometric Brownian motion (GBM),

dSs = r Ss d s +αs Ss dωs , S0 given. (2.5.1)

or Merton’s jump-diffusion process,

dSs = (r −λκ)Ss d s +αs Ssdωs + (e J −1)Ss d qs , S0 given. (2.5.2)

Hereκ := E[e J −1], r is the risk-neutral interest rate, and qs is an Fs-adapted Poisson process
with intensity rate λ. The jumps J are normally distributed with mean µJ and standard
deviation σJ . α = (αs )0≤s≤T represents an uncertain volatility process, which is valued in
the bounded set A = [α−,α+].

We consider the worst-case scenario for an investor with a long position in a European-
style option. Then, the option value at time t reads:

v(t ,S) = inf
α∈A

J (t ,S,α) = inf
α∈A

E
t ,S [e−r (T−t ) g (ST )], (2.5.3)

where g (.) is a prescribed payoff function. The pricing problem is now formulated as a
stochastic control problem. Note that there is no running profit function included in this
problem formulation, but only a terminal reward function. Contrary to the problem in
equation (2.2.3), the infimum over gain functions J (.) is taken. However, similar theory and
solution algorithms can be developed for minimization problems.

Remark 2.5.1. The corresponding Hamilton-Jacobi-Bellman (HJB) equations read

∂v
∂t

(t ,S)+ min
α∈[α+,α−]

[

r S ∂v
∂S

(t ,S)+ 1
2α

2S2 ∂2v
∂S2 (t ,S)

]

− r v(t ,S)= 0, ∀(t ,S)∈ [0,T )×R+

(2.5.4)

under GBM, and

∂v
∂t

(t ,S)+ min
α∈[α+,α−]

[

(r −λκ)S ∂v
∂S

(t ,S)+ 1
2α

2S2 ∂2v
∂S2 (t ,S)+λE[v(t ,e J S)− v(t ,S)]

]

−r v(t ,S) = 0, ∀(t ,S) ∈ [0,T )×R+, (2.5.5)
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under the jump-diffusion process. This yields

if ∂2v
∂S2 ≤ 0 ⇒ take α=α+,

if ∂2v
∂S2 > 0 ⇒ take α=α−,

(2.5.6)

This allows us to restrict the set of possible control values to A = {α−,α+}. We see that the

control value, that is the volatility, is a function of the Greek Γ= ∂2v/∂S2. The same partial

differential equation as (2.5.4) is derived for a transaction costs model in [Lel85].

The valuation of financial options under uncertain volatility was solved in [vdPO12] and
[PFV03] by fully implicit discretization methods for the corresponding nonlinear partial dif-
ferential equation. In [PFV03], an implicit discretization method for the governing PDE to
solve a similar problem has been applied. Numerical experiments were performed using
the butterfly spread and digital options. It was demonstrated that a non-monotone scheme
may lead to incorrect, non-viscosity solutions. The authors in [ZW09] combined an expo-
nentially fitted finite volume method for the space direction and an implicit scheme in time
for the PDE. The method was tested by using butterfly spread, double barrier call, and dig-
ital call options. The option prices in these papers will serve as references to which we will
compare our results.

As before, we consider an equidistant time grid, t0, t1, . . . , tM = T , with ∆t := tm − tm−1.
In the numerical approximation a constant volatility αm ∈ {α−,α+} = A is applied within the
time intervals [tm , tm+1]. The choice depends on the current asset price.

We switch to log-asset price processes, Xs := logSs , that belong to the class of Lévy pro-
cesses. For GBM we then deal with the Brownian motion

d Xs = (r − 1
2α

2
m)d s +αm dωs , for s ∈ [tm , tm+1], (2.5.7)

whereas the log-jump-diffusion process reads

d Xs = (r −λκ− 1
2α

2
m )d s +αm dωs + Jd qs , for s ∈ [tm , tm+1]. (2.5.8)

The value function of the discrete-time problem reads

v(t , x) = min
α∈Â

Et ,x [

e−r (T−t ) g (e XT )
]

. (2.5.9)

Â ⊂ A denotes the set of all possible control paths {αm }M−1
m=0 , where αm is valued in the

control set A. The dynamic programming principle gives:

v(tm−1, x) = min
αm−1∈A

e−r∆tE[v(tm , Xtm )|Xtm−1 = x,αm−1]

= min
[

c(tm−1, x,α−), c(tm−1, x,α+)
]

, (2.5.10)

for which we use the COS formula (2.3.14). For Brownian motion, equation (2.5.7), the char-
acteristic function reads

φlev y (u|α) = exp(i u(r − 1
2α

2)∆t − 1
2 u2α2

∆t) (2.5.11)

and for the log-jump-diffusion process, equation (2.5.8), we have

φlev y (u|α) = exp(i u(r −λκ− 1
2α

2)∆t − 1
2 u2α2

∆t)eλ∆t (exp(iµJ u− 1
2 u2σ2

J )−1). (2.5.12)
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Algorithm 1 is used to solve the pricing problem. The coefficients at the terminal time
are known analytically for the financial options we use. For the other time levels the Fourier
coefficients are approximated by

V̂k (tm) = 2
b−a

∫b

a
min

[

ĉ(tm , y,α−), ĉ(tm , y,α+)
]

cos
(

kπ
y−a
b−a

)

d y. (2.5.13)

We can divide the integration interval [a,b] into subdomains D−
m and D+

m , for which the
optimal control values at control time tm are α−

m and α+
m , respectively. For this we use New-

ton’s method to determine the value(s) x∗ for which the optimal policy changes to another
one, i.e.,

ĉ(tm , x∗,α−) = ĉ(tm , x∗,α+). (2.5.14)

We test the COS method by pricing butterfly, digital, and bull split-strike combo options
under uncertain volatility. In the numerical experiments we use T = 0.25, S0 = 100, and for
the jumps

λ= 0.1, µJ =−0.90, and σJ = 0.45. (2.5.15)

These parameters are approximately the same as those reported in [AA00] using European
call options on the S&P 500 stock index in April of 1999 (see [dFV05, KFV09]). For the control
values we use here α− = 0.15, α+ = 0.25.

The numerical method converges in M , the number of time steps, to the solution of
the original problem (2.5.3). We will use a 4-point Richardson-extrapolation scheme on the
option values with small M to obtain more accurate values. This method is used in [FO09]
to approximate American option values with the help of a few Bermudan option prices. Let
v̂(t0, x0; M) denote the option value with M time steps. We calculate the extrapolated value,
v̂R (t0, x0; M), by

v̂R (t0, x0; M) := 1
21 [64v̂ (t0, x0;8M)−56v̂ (t0, x0;4M)+14v̂ (t0, x0;2M)− v̂ (t0, x0; M)] .

(2.5.16)

Note that this is another extrapolation method than described in Section 2.4.2.
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Figure 2.5.1: Payoff functions butterfly, digital call, and bull option.

2.5.1.1. BUTTERFLY OPTION

The payoff function of a butterfly option at terminal time T is given by:

g (S)= (S −K1)+−2
(

S − K1+K2
2

)+
+ (S −K2)+, (2.5.17)
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for certain strike prices K1 and K2, see Figure 2.5.1. We switch to the log-asset price domain
and the coefficients at the terminal time are known analytically

Vk (tM ) = 2
b−a

∫b

a
g (e y )cos

(

kπ
y−a
b−a

)

d y

= 2
b−a

[

χk (logK1,b, a,b)−2χk

(

log K1+K2
2 ,b, a,b

)

+χk (logK2,b, a,b)

−K1ψk (logK1,b, a,b)+ (K1 +K2)ψk

(

log K1+K2
2 ,b, a,b

)

+K2ψk (logK2,b, a,b)
]

, (a ≤ logK1, log K2 ≤ b), (2.5.18)

see Appendix A for the analytic solution to the functions χk and ψk .
In the numerical experiment we use the following additional model parameters:

r = 0.1, K1 = 90, and K2 = 110. (2.5.19)

For the integration interval under GBM we take [a,b] = [log 70, log 130], similar as in
[vdPO12]. For the problem with jump-diffusion we need a larger computation domain and
[a,b]= [log10, log 200] suffices.

It is worth mentioning that we do not need to use the coefficients Ṽk , with extrapolated
continuation values c̃, from Section 2.4.2. The reason for this is that the value function
converges to zero if the log-asset price goes to plus or minus infinity. So, for sufficiently
large intervals [a,b], the value function on time lattice tm+1 is zero outside the expansion
interval. Then, by assuming that N is chosen sufficiently large, the function vN (tm+1, x) is
also accurate just outside [a,b] and the local error of the COS formula at time tm is small for
all y ∈ [a,b]. Because of this, extrapolation for the continuation value is not necessary.

Table 2.5.1: Results butterfly option under uncertain volatility.

(a) GBM.

M v̂(t0,x0)

60 2.3178
120 2.3078
240 2.3027
480 2.3002
960 2.2990

v̂R (t0 ,x0;120) 2.2977

(b) CPU time (s).

M N

400 600 800 1000 1200

60 0.29 0.35 0.43 0.51 0.58
120 0.50 0.61 0.74 0.86 1.05
240 0.97 1.18 1.38 1.63 1.84
480 1.92 2.33 2.73 3.19 3.58
960 3.85 4.67 5.39 6.29 7.13

(c) Jump-diffusion.

M v̂(t0 ,x0)

60 2.2859
120 2.2760
240 2.2710
480 2.2685
960 2.2672

v̂R (t0,x0;120) 2.2660
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Geometric Brownian Motion In Tables 2.5.1a and 2.5.1b, results for different values of M

and N are shown. The option values have converged in N up to nine decimal places, for
N ≥ 400. Increasing the number of control times, M , gives convergence to the true option
value. The results are highly satisfactory and match the prices in [PFV03, vdPO12, ZW09].
The computation time is linear in M and O(N log2 N ) in the number of terms in the Fourier
cosine series expansions.

Jump-Diffusion Process Table 2.5.1c presents the results for the option pricing problem
where the underlying asset price is a jump-diffusion. The only difference compared to the
GBM is the usage of another characteristic function and a different computational domain
size. Again the COS method performs highly satisfactorily. This demonstrates the applica-
bility of the COS method for the broad class of Lévy processes.

2.5.1.2. DIGITAL OPTION

The payoff of a digital call option is given by

g (S)=
{

1, for S > K ,
0, for S < K ,

(2.5.20)

for certain strike price K . We switch to the log-asset price domain and the terminal coeffi-
cients for the digital call option are given by

Vk (tM ) = 2
b−a

ψk (logK ,b, a,b), (a ≤ logK ≤ b). (2.5.21)

For the functions χk and ψk we refer to Appendix A. For the tests, we take K = 100 and
r = 0.05. Figure 2.5.1 shows the corresponding payoff function. We take N sufficiently large,
so that convergence of the series approximation is reached.

Geometric Brownian Motion We use the same spatial domain as in [ZW09], namely
[a,b] = [log 50, log 160], and compare our results. Because we are dealing with constant
option values at both boundaries, interval [a,b] can be chosen sufficiently large and ex-
trapolation of the continuation value is not required for accuracy.

The results are presented in Table 2.5.2 and they are very similar to the prices in [ZW09,
PFV03]. Also the extrapolated values v̂R (t0, x0; M), by means of a 4-point Richardson-
extrapolation scheme, are accurate. The option value, the Delta (∂v/∂S) and Gamma
(∂2v/∂S2) of the option value, and the control domains are shown in Figure 2.5.2.

Table 2.5.2: Digital call under uncertain volatility, GBM.

M 100 200 400 800 1600

v̂(t0,x0) 0.452690 0.449547 0.447311 0.445723 0.444597
v̂R (t0 ,x0;M) 0.443707 0.443169

Jump-Diffusion Process We end this section with a digital option pricing problem where
the underlying asset prices is a jump-diffusion. Table 2.5.3 presents the results for a digital
call option. Again the COS method performs highly satisfactorily.
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Figure 2.5.2: Digital call under uncertain volatility (GBM, M = 1600).

Table 2.5.3: Digital call under uncertain volatility, jump-diffusion.

M 100 200 400 800 1600

v̂(t0 ,x0) 0.4523049 0.4492045 0.4469982 0.4454318 0.4443220
v̂R (t0,x0;M) 0.4434415 0.4429120

2.5.1.3. BULL OPTION

The bull split-strike combo (bull) option is a combination of a short position in a put option
with strike K1 and a long position in a call with strike K2, where K1 < K2. The payoff function
(see Figure 2.5.1) is given by

g (S)=







S −K1, for S ≤ K1,
0, for K1 ≤ S ≤ K2,
S −K2, for K2 ≤ S.

(2.5.22)

Again we switch to the log-asset price domain. The terminal coefficients for the bull split-
strike combo option are given by

Vk (tM ) = 2
b−a

[

χk (logK2,b, a,b)−ψk (logK2,b, a,b)

−ψk (logK1,b, a,b)+χk (logK1,b, a,b)
]

, (a ≤ logK1, logK2 ≤ b). (2.5.23)

For the tests, we take K1 = 90, K2 = 110, and r = 0.05. The periodic, even extension of the
payoff function outside the interval [a,b] (equation (2.4.12)) may cause problems at both
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ends of the computational domain. Because of that, we now use extrapolation by a second-
order Taylor expansion (see Section 2.4.2) to determine accurate values of the continuation
values close to both boundaries a and b. The function p(y |x,α) represents a normal density
function with distribution

N
(

x + (r − 1
2α

2)∆t ,α2
∆t

)

. (2.5.24)

We can presume that the continuation value is well approximated on [xL , xR ], with

xL := a − (r − 1
2 (α+)2)∆t +5α+p

∆t , (2.5.25a)

xR := b − (r − 1
2 (α+)2)∆t −5α+p

∆t . (2.5.25b)

We take a computation domain [a,b] = [log 50, log 160]. Table 2.5.4 presents the option
values. Figure 2.5.3 shows the option value calculated without and with extrapolation tech-
nique for the continuation values. The true value is calculated by using a larger computa-
tional domain, so that errors in the vicinity of the boundaries do not affect the option values
in the domain S0 ∈ [50,160].
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Figure 2.5.3: Bull option under uncertain volatility (GBM).

Table 2.5.4: Bull option under uncertain volatility, with extrapolation, GBM.

M 100 200 400 800 1600

v̂(t0,x0) 0.2342475 0.2313446 0.2298836 0.2291501 0.2287825
v̂R (t0 ,x0;M) 0.2284146 0.2284142

Remark 2.5.2. (Incorrect control) In Result 2.4.1, we deduced an exponentially converging

error in N , assuming that the correct control law was found. In practice, we may however

find incorrect control values for small values of N and the convergence result therefore holds

for sufficiently large value N . In the previous experiments we took N sufficiently large, so that

the COS formula for the continuation values was sufficiently accurate. If we would choose N

too small, the COS formula may give incorrect control values. This is demonstrated in Figure

2.5.4, where the left-hand side picture shows the continuation values for both control choices

with N = 25, which is apparently too small. The right-hand side picture shows the difference

between the two functions for N = 25 and a sufficiently large value N = 29. This function is

used to determine the optimal volatility. It is clear that we find incorrect control values for
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small values of N and the convergence result in Result 2.4.1 only holds for sufficiently large

N .
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Figure 2.5.4: Left: continuation values with small N = 25, right: difference between two continuation values for
small N = 25 and high N = 29 (bull option).

Remark 2.5.3. (Convergence in M) We approximate the continuous-time stochastic control

problem (2.5.3) by its discrete-time variant (2.5.9), with a piecewise constant control policy

over time. Convergence to the continuous solution is obtained by increasing the number of

time steps, M, and, if desired, by a Richardson extrapolation method in M. The option values

converge monotonically in M. The digital call prices converge with order 1/2 in M, see Tables

2.5.2 and 2.5.3, whereas the butterfly and bull option converges with order 1 (Tables 2.5.1 and

2.5.4). Most probably the properties of the payoff function give rise to different convergence

rates. However, more research is needed to understand this behavior.

Remark 2.5.4. (PDE methods) The COS method converges exponentially in N to the solution

of the discrete-time control problem (2.5.9). On the other hand, the PDE methods in [PFV03,

vdPO12, ZW09] solve the continuous-time problem and employ space and time grids, with

step sizes ∆S and ∆t , respectively. The fully implicit discretization schemes in [PFV03, ZW09]

converge unconditionally to the viscosity solution of the corresponding PDE, as ∆S, ∆t → 0.

2.5.2. OPTIMAL CONSUMPTION PATH

The second example we discuss is a simplified version5 of Merton’s optimal consumption-
portfolio problem [Mer69]. Here, an agent consumes a proportion of his wealth and invests
the remaining part in assets, with rate of return, µ̄, and fixed volatility, σ̄. The dynamics of
the invested capital are given by

dKs = µ̄Ksd s + σ̄Ks dωs . (2.5.26)

Let αsWs denote the amount of wealth consumed at time s, with αs the control process
and wealth Ws . Taking into account equation (2.5.26) and consumption gives

dWs = Ws

Ks
dKs −αsWs d s

= (µ̄−αs )Ws d s + σ̄Ws dωs . (2.5.27)

5This example is also a simplified version of the two-dimensional climate-economics model in Chapter 5.
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The agent chooses his consumption to maximize his expected discounted utility of con-
sumption over a finite time horizon with terminal time T . The optimal consumption prob-
lem can be represented by the stochastic control problem:

v(t ,W ) = max
α∈A

Et ,W
[∫T

t
e−ρ(s−t )U(αsWs )d s +e−ρ(T−t )U(WT )

]

, (2.5.28)

where W is the current wealth level, and ρ ≥ 0 is the utility discount rate [Coc05].
The utility function, U(.), measures the utility gain of consumption αsWs . We presume

a constant relative risk aversion (CRRA) utility function

U(C ) =C 1−η/(1−η), η≥ 0, η 6= 1. (2.5.29)

The exact solution to this continuous-time control problem can be found by the corre-
sponding HJB equation and the verification theorem ([Mer90, Pha09]):

v(t ,W ) = b(t )
1−ηW 1−η, with b(t)=

(

1+(ν−1)exp(ν(t−T ))
ν

)η
, (2.5.30)

where ν= (ρ− (1−η)µ̄+ 1
2 (1−η)ησ̄2)/η. The optimal consumption law is then given by

α
∗(t)= b(t)−1/η. (2.5.31)

Note that this optimal control process is independent of current wealth level, W . For the
tests in this section we choose the following set of parameters:

T = 100, ρ = 0.03, η= 4, W0 = 100, µ̄= 0.04, σ̄= 0.1. (2.5.32)

Figure 2.5.5 shows the optimal control law. At the terminal time, T , the remaining wealth
is assumed to be completely consumed. Based on economic arguments the control process
α

∗(t) goes to one if the time approaches the terminal time. At earlier time levels the control
process has reached a steady state.
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Figure 2.5.5: Optimal control law α
∗(t ).

For the numerical approach we employ an equidistant grid of control times, t0, t1, . . . ,
tM = T , with ∆t := tm − tm−1. At each control time, tm , one can choose a constant fraction
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of wealth, αm ∈ A = [0,1], which is consumed during the time interval [tm , tm+1]6. We switch
to the log-wealth process, Xs = logWs , so

d Xs = (µ̄−αm − 1
2 σ̄

2)d s + σ̄dωs , for s ∈ [tm , tm+1]. (2.5.33)

We rewrite the value function of the discrete-time problem as

v(t , x) = max
α∈Â

E
t ,x

[∫T

t
e−ρ(s−t )

U(αs e Xs )d s +e−ρ(T−t )
U(e XT )

]

, (2.5.34)

where x is the current log-wealth level. Â ⊂ A denotes the set of all possible control paths
{αm}M−1

m=0 , where αm is valued in the control set A. The dynamic programming principle
gives us

v(tm−1, x) = max
αm−1∈A

Etm−1,x
[∫tm

tm−1

e−ρ(s−t )U(αm−1e Xs )d s +e−ρ∆t v(tm , Xtm )

]

:= max
αm−1∈A

[F (x,αm−1)+c(tm−1, x,αm−1)]. (2.5.35)

For the time-independent profit function we find

F (x,α) = α1−η

(1−η)ξ(α) (e∆tξ(α) −1)e(1−η)x ,

with ξ(α) =−ρ+ (1−η)(µ̄−α− 1
2 σ̄

2)+ 1
2 (1−η)2σ̄2. (2.5.36)

Applying the COS formula yields

ĉ(tm−1, x,α) = e−ρ∆t
N−1
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

∣

∣

∣α
)

e
ikπ

x−a
b−a

}

Vk (tm), (2.5.37)

where the characteristic function is given by

φlev y (u|α) = exp
(

i u(µ̄−α− 1
2 σ̄

2)∆t − 1
2 σ̄

2u2
∆t

)

. (2.5.38)

We use Algorithm 1 to solve the discrete-time stochastic control problem (2.5.34). The
coefficients at time tM read

Vk (tM )= 2
b−a

∫b

a

e(1−η)y

1−η cos
(

kπ
y−a
b−a

)

d y

= 2
b−a

1
(1−η)2 χk (a(1−η),b(1−η), a(1−η),b(1−η)), (2.5.39)

with the analytic function χk in Appendix A.
We divide the interval [a,b] into Q = 200 equally-sized subintervals D

q
m and determine

the optimal control value for the midpoint of each subinterval by using an optimization
algorithm of MATLAB, which is based on golden section search and parabolic interpolation.
We assume that this value is an accurate approximation for the entire subinterval.

6For this problem, the true optimal control values are in the set A = [0,1]. A wider control set only makes the
difficulties that we describe here even more severe.
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The terms Fk are time-independent and known analytically:

Fk(z1, z2,α) = 2
b−a

∫z2

z1

F (y,α)cos
(

kπ
y−a
b−a

)

d y

= α1−η

(1−η)2ξ(α)
(e∆tξ(α) −1) 2

b−a χk (z1(1−η), z2(1−η), a(1−η),b(1−η)). (2.5.40)

The coefficients Ĉk are recovered by the coefficients V̂k from the next time level and the FFT
algorithm, as explained in Section 2.3.2.

We first show in Section 2.5.2.1 how the local error of the COS formula propagates back-
wards in time. Then the extrapolation methodology from Section 2.4.2 is applied to improve
the solution (in Section 2.5.2.2). The following parameters are used for the tests in the next
subsections:

[a,b] = [−2, 8], N = 210, M = 100. (2.5.41)

2.5.2.1. EXAMPLE OF A PROPAGATING ERROR

Here, we show how local errors propagate when we do not apply extrapolation for the con-
tinuation values. Parameter N is chosen sufficiently large, so that error ǫ2 can be neglected.
From the error analysis in Section 2.4.1 it follows that

ĉ(tM−1, x,α; [a,b], N ) = e−ρ∆t

∫

[a,b]
v(tM , y)p(y |x,α)d y +e−ρ∆t

∫

R\[a,b]
vN (tM , y)p(y |x,α)d y.

(2.5.42)

Function v(tM , y) resembles vN (tM , y) on [a,b] for sufficiently large values of N . However,
the approximated continuation value is inaccurate when error ǫ1 +ǫ3 in (2.4.6) is large. The
inaccuracy of ĉ(tM−1, x,α) may give rise to a propagating error. First of all, it may result in
an incorrect control value from the maximization operator in (2.3.15). Secondly, an inaccu-
rate value function and coefficients V̂k (tM−1) give rise to inaccurate numerical continuation
values at time tM−2. This is demonstrated by four plots in Figure 2.5.6.

The upper-left plot presents the terminal reward function, the Fourier cosine expansion,
and its extension outside the expansion interval, which is symmetric in a =−2 and different
from the correct terminal reward function at the left-hand side of a. In the lower-left plot the
continuation value is shown for two control values, α = 0.7 and α = 1.0. The exact optimal
control value for the discrete-time stochastic control problem at time tM−1 is αM−1 ≈ 0.7. It
is independent of the current log-wealth level. From Figure 2.5.6 it is clear that significant
errors occur in the vicinity of the left-side domain boundary, as the control value α = 1.0
appears to be optimal here.

The addition of the profit function gives us the graphs in the upper-right plot. As the
value function at time tM−1 is defined by the maximization operator over all αM−1 ∈ A, in-
accurate control values will be determined, at least for x <−1. Because of this, the approx-
imated value function will be too high. The lower-left plot shows the continuation values
at time tM−2 for two different control values. The local error at time level M −1 has propa-
gated and, in addition, errors from the COS formula occur in the vicinity of the boundary.
The correct optimal control value equals αM−2 ≈ 0.4 and, again, incorrect control values
will be determined by the maximization operator, if extrapolation is not used here.

The solution for all time steps gives rise to the optimal control values in Figure 2.5.7a.
The correct control law should be independent of x, which is clearly not the case.
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Figure 2.5.6: The propagation of local errors ([a,b] = [−2, 8]).

(a) Incorrect values, due to local errors and their
propagation.

(b) Correct values, with extrapolation method.

Figure 2.5.7: Optimal control laws.

2.5.2.2. IMPROVEMENT BY EXTRAPOLATION

We use the extrapolation technique from Section 2.4.2 to deal with the propagating error.
The function p(y |x,α) represents a normal density function of a random variable with dis-
tribution

N
(

x + (µ̄−α− 1
2 σ̄

2)∆t ,σ̄2
∆t

)

. (2.5.43)

We can presume that the continuation value is well approximated on [xL ,b], with

xL := a − (µ̄−α− 1
2 σ̄

2)∆t +5σ̄
p
∆t . (2.5.44)
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The terminal reward function, the density, and profit functions are all of exponential form.
Therefore, we approximate c(tm−1, x,α) on [a, xL ] by employing an exponential extrapola-

tion technique 7, as follows:

ĉex (tm−1, x,α) := ĉ(tm−1, xL ,α)exp
(

P (y − xL)
)

, for x ∈ [a, xL ], (2.5.45)

with
P := ĉx (tm−1 ,xL ,α)

ĉ(tm−1 ,xL ,α) . (2.5.46)

As proposed in Section 2.4.2, we will use the improved continuation value, c̃(tm−1, x,α),
to find the optimal control values and to approximate the coefficients Ck (tm−1, z1, z2,α).
Suppose the interval [z1, z2]⊂ [a,b] can be divided into [z1, xL] and [xL , z2]. Then the corre-
sponding Fourier cosine coefficients read

C̃k (tm−1, z1, z2,α) = 2
b−a

∫xL

z1

ĉex (tm−1, xL ,α)cos
(

kπ
y−a
b−a

)

d y

+e−ρ∆tℜ
{

N−1
∑′

j=0
φlev y

(

jπ
b−a

∣

∣

∣α
)

V j (tm)Mk , j (xL , z2)

}

, (2.5.47)

where

2
b−a

∫xL

z1

ĉex (tm−1, xL ,α)cos
(

kπ
y−a
b−a

)

d y = 2
b−a

ĉ(tm−1, xL ,α) e−P xL

P
χk (P z1,P xL ,Pa,Pb).

(2.5.48)
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Figure 2.5.8: Extrapolation of the continuation value (⋆= xL).

Figure 2.5.8 shows the values xL and the improved continuation values for α = 0.7 and
α = 1.0. The values are accurate, even in the vicinity of boundary a = −2, and the correct
optimal control values will be determined, see Figure 2.5.7b for the complete result.

The exact solution to the continuous-time stochastic control problem is v(t0, x0) =
−0.8419. For the discrete-time variant we find v̂(t0, x0) = −0.8430. Table 2.5.5 shows the
value function for different numbers of control times, M . They converge to the true value.
We can conclude that the procedure with exponential extrapolation works highly satisfac-
torily.

7Note that polynomial extrapolation will also work well here.
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Table 2.5.5: Results optimal consumption-portfolio problem (N = 210).

M 10 25 50 100 150 200 v̂R (t0 ,x0;25)

v̂(t0 ,x0) -0.8843 -0.8548 -0.8459 -0.8430 -0.8424 -0.8422 -0.8420

Remark 2.5.5. The dynamics of the invested capital, equation (2.5.26), can easily be extended

to a jump-diffusion process. Then no analytic solution to the stochastic control problem

is available, but we can apply the COS method, as the characteristic function of a jump-

diffusion process is known analytically, with the extrapolation technique.

2.6. CONCLUSION
In this chapter, we presented a general approach for solving stochastic control problems
under a one-dimensional Lévy process. The method relies on the dynamic programming
principle and the COS formula, which is based on Fourier cosine series expansions. A recur-
sive algorithm has been defined, based on the recursive recovery of the series coefficients.
With the use of a Fast Fourier Transform algorithm we reach a computational complexity of
order O(N log2 N ) per time step, where N denotes the number of terms in the series expan-
sions.

We provided an extensive error analysis, with which we acquired knowledge about the
origin and evolution of errors. We demonstrated how errors of the COS formula in the vicin-
ity of domain boundaries may arise, and how they may propagate backwards in time. This
understanding enabled us to improve the method by introducing an extrapolation method
for the area in which the COS formula may give inaccurate continuation values. Extrap-
olation by Taylor expansion or by exponential extrapolation can easily be applied as the
derivatives of approximated continuation values can be computed easily based on the COS
formula. An exponentially converging error, in N , is found for a sufficiently accurate ex-
trapolation method, [a,b] ⊂ R sufficiently wide and a probability density function in the
class C∞([a,b]). A density function with discontinuity in one of its derivatives results in an
algebraic convergence.

In [FO09], the COS method has been employed for pricing Bermudan and barrier op-
tions. A difference in using the COS method for stochastic control problems is the depen-
dence of the characteristic function of the stochastic process on the control value, which
may be time-consuming. Besides, we need to determine the optimal control law from a fi-
nite or continuous control set, for the entire spatial domain. Therefore, the approximated
value function needs to be accurate over the complete spatial domain, which is not always
the case when using the COS formula. These difficulties have been solved by the extrapola-
tion technique.

We tested our numerical method by two examples, financial options under uncertain
volatility, based on the models from [PFV03, ZW09], and an optimal consumption-portfolio
problem. The COS method for stochastic control problems performed highly satisfactory.

Many other problems from finance and the real options context can be represented as
a stochastic control problem. This makes our methodology applicable to various practical
problems.



CHAPTER 3

On the Application of Spectral Filters in a Fourier Option Pricing

Technique

3.1. INTRODUCTION
Fourier techniques have now become well-established in computational finance for effi-
ciently pricing certain financial instruments. For instance European options, certain op-
tions with early-exercise features, and also exotic options, like Asian, multi-asset, or barrier
options, have been priced by Fourier techniques. The Fourier techniques belong to the
class of numerical integration option pricing methods. They are referred to as ‘transform
methods’, because a transformation to the Fourier domain is combined with numerical in-
tegration [CM99, LK07, DI06, BL11]. Transform methods can readily be used for asset price
models for which the characteristic function (i.e., the Fourier transform of the probabil-
ity density function) is available. A specific Fourier pricing technique, which we consider
here, is the COS method. This pricing method is based on Fourier cosine series expansions.
The issues and remedies we address here will, however, be of relevance for other transform
methods as well.

As long as the governing probability density function is sufficiently smooth, an expo-
nential error convergence in the number of cosine terms is achieved by the COS method.
For certain choices of the asset dynamics, however, the governing probability density func-
tion is not smooth everywhere. Smoothness issues are encountered, for example, when we
model the asset price by the Variance Gamma process [MCC98]. This results in only al-
gebraic convergence for the option price. For hedging purposes agents are also interested
in the option’s Greeks, which measure risk sensitivities of the option price. Their approx-
imations may even suffer more from non-smoothness conditions and for these cases it is
desirable to find a faster converging method for the Greeks. In the field of risk management
we deal with discrete random variables representing individual obligors that may have a de-
fault problem. Portfolio loss modeling with small-sized portfolios typically produces step-
wise cumulative distribution functions and inaccuracies around the discontinuities may
occur.

In general, when Fourier techniques are employed to specific cases with non-smooth
functions, the Gibbs phenomenon may become apparent. This seriously impacts the effi-
ciency and accuracy of the financial valuation. The Gibbs phenomenon reflects the diffi-

This chapter is based on the article ‘On the application of spectral filters in a Fourier option pricing technique’, to
appear in Journal of Computational Finance, 2015 [RVO15]. In this chapter, we truncate the Fourier and Fourier
cosine series from −N and 0, respectively, to N , in order to stay inline with the literature about spectral filters. This
is in contrast with the rest of this thesis, where we sum from 0 to N −1 in the truncated Fourier cosine series.
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culty of approximating a discontinuous function by a finite Fourier series. Although the
limit of the partial sums represents the original function exactly, in the finite case there is
always an overshoot at a jump discontinuity. The width of this overshoot decreases with the
number of Fourier terms, but the height of the maximum does not. The Gibbs phenomenon
is also related to the principle that the decay of the Fourier coefficients is governed by the
smoothness of the function concerned. Functions with a discontinuity in one of the deriva-
tives will have algebraically decaying Fourier coefficients, that result in a slowly converg-
ing Fourier series. The local effect of the Gibbs phenomenon gives rise to oscillations near
the jumps. However, there also is a global effect: although the error decays away from the
jumps, the decay rate is only first order. Thus, the existence of one or more discontinuities
drastically reduces the convergence rate over the whole domain, and spectral accuracy is
lost [Tad07, GS97].

The research field dealing with Gibbs oscillations is wide and well-established. An ex-
cellent overview into the various improvement techniques is given by Tadmor [Tad07]. We
will focus on the use of spectral filters to deal with the Gibbs phenomenon appearing for
non-smooth densities and discrete distribution functions. This is one of the very basic tech-
niques in this field, but we will see that it fits very well to the applications at hand.

Several other techniques have been proposed in the literature to reduce or remove the
Gibbs phenomenon. The optimal filter order for a function with discontinuities is an in-
creasing function of the distance to the nearest discontinuity. The idea of adaptive filtering
is then to vary the filter order so that it is close to this optimal value. Tadmor and Tanner
[Tad07, Tan06, TT05] describe adaptive filters recovering root-exponential accuracy. This
type of filtering is related to superconvergent extraction techniques in finite element meth-
ods [vSRV11]. It is however not trivial to efficiently employ an adaptive filter in the context
of Fourier option pricing, so we stay with non-adaptive filters here. Mollifiers are a time
domain equivalent to filters, in the sense that multiplication by a function in Fourier space
corresponds to a convolution in physical space (which is the basis for mollifiers). Imple-
mentation of mollifiers in a Fourier option pricing technique would require reconstruction
to the time-domain, which is computationally relatively expensive. The same is true for
methods like Gegenbauer polynomial reconstruction, see [Tad07, GS97], Digital Total Varia-
tion (DTV) filtering [COS01, Sar06] and for the hybrid methods [Gel00], where a polynomial
reconstruction is used only where needed and filtering is used elsewhere.

We start in Section 3.2 with Fourier series and Fourier cosine series and explain how
we can employ the characteristic function of a random variable to approximate the cor-
responding density or distribution function. Also the COS method for pricing European
options is briefly described. In Section 3.3 the convergence of the series and improvements
by spectral filters are discussed. Extensive numerical experiments are performed in Section
3.4. Finally, Section 3.5 concludes.

3.2. FOURIER AND FOURIER COSINE SERIES EXPANSIONS

The Fourier series of an integrable function f (y) supported on a finite interval [a,b] is de-
fined as ([SS03])

f (y)=
∞
∑

k=−∞
F

F
k exp

(

i kπ
2y

b−a

)

, (3.2.1)
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with Fourier coefficients given by

F
F
k = 1

b−a

∫b

a
f (y)exp

(

−i kπ
2y

b−a

)

d y. (3.2.2)

The COS method for pricing European options is based on the Fourier cosine series ex-
pansion, which is defined by

f (y) =
∞
∑′

k=0
Fk cos

(

kπ
y−a
b−a

)

, (3.2.3)

with Fourier cosine coefficients given by

Fk = 2
b−a

∫b

a
f (y)cos

(

kπ
y−a
b−a

)

d y. (3.2.4)

The prime ′ in the summation indicates division of the first term by two. These cosine series
can be seen as a classical Fourier series of a function f ext (y) = f (|y − a|), on an extended
interval [2a −b,b], which is mirrored around the midpoint a to make it an even function.

3.2.1. RECOVERY DENSITY AND DISTRIBUTION FUNCTION
In financial option pricing we deal with stochastic asset prices. The corresponding prob-
ability density function is usually unknown. The characteristic function is however often
known [DPS00] and can be used to approximate the density and distribution function. In
Section 3.4.3 we discuss a model for discrete portfolio losses. For example, the loss may
be either zero or one. An approximation of the distribution function of a discrete random
variable, also by using the characteristic function, is derived here as well.

Continuous Random Variable Suppose we have a continuous random variable X , with
cumulative distribution function F (.), probability density function p(.), and characteristic
function ϕ(.). As presented in the previous chapter, the Fourier cosine series expansion of
the density function reads

p(y)=
∞
∑′

k=0
Pk cos

(

kπ
y−a
b−a

)

, (3.2.5)

with Fourier cosine coefficients

Pk = 2
b−a

∫b

a
p(y)cos

(

kπ
y−a
b−a

)

d y = 2
b−a

ℜ
{∫b

a
p(y)exp

(

i kπ
y−a
b−a

)

d y

}

, (3.2.6)

where ℜ{.} denotes taking the real part. If the density function p(y) decays rapidly to zero
for y →±∞, the integration range in the following equation can be truncated without loss
of any significant accuracy:

ϕ(u) =
∫

R
eiuy p(y)d y ≈

∫b

a
eiuy p(y)d y := ϕ̂(u), (3.2.7)

and therefore the characteristic function can be used to efficiently calculate the Fourier co-
efficients. Combining (3.2.6) and (3.2.7) gives us:

Pk = 2
b−a

ℜ
{

ϕ̂
(

kπ
b−a

)

e
ikπ

−a
b−a

}

≈ 2
b−a

ℜ
{

ϕ
(

kπ
b−a

)

e
ikπ

−a
b−a

}

:=Φk . (3.2.8)
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After truncation of the series summation we end up with the approximation

p̂(y) :=
N
∑′

k=0
Φk cos

(

kπ
y−a

b−a

)

. (3.2.9)

The distribution function can now be approximated as follows,

F (y)=P(X ≤ y) ≈
∫y

a
p̂(t)d t =

N
∑′

k=0
Φk

∫y

a
cos

(

kπ t−a
b−a

)

d t

= 1
2

2
b−a (y −a)+

N
∑

k=1

2
kπℜ

{

ϕ
(

kπ
b−a

)

e
ikπ

−a
b−a

}

sin
(

kπ
y−a
b−a

)

. (3.2.10)

If the interval [a,b] is chosen sufficiently wide, then the series truncation error dominates
the error of the approximations (3.2.9) and (3.2.10). We refer to Section 3.3.5 for details
about the series truncation error in the COS formula.

Discrete Random Variable If X is a discrete random variable, then a density function does
not exist and we use the following Lévy inversion formula connecting the distribution func-
tion, F (.), and characteristic function, ϕ(.). For y −h, y +h ∈C (F ), with C (F ) the continuity
set of F , there holds ([Gut05])

F (y+h)−F (y−h)
2h

= lim
T→∞

1
2h

1
2π

∫T

−T
ϕ(u) e−i u(y−h)−e−i u(y+h)

iu
du

= lim
T→∞

1
2π

∫T

−T
ϕ(u)e−iuy sin uh

uh
du. (3.2.11)

Suppose F is concentrated on the interval [a,∞) and F (a)= 0. Then, we get (h ≥ 0)

F (a +h) = lim
T→∞

1
π

∫T

−T
ϕ(u)e−iua sinuh

u
du

= lim
T→∞

2
π

∫T

0
ℜ

{

ϕ(u)e−iua
}

sinuh
u

du. (3.2.12)

Numerical integration with step size ∆u results in the approximation (y ≥ a, y ∈C (F ))

F (y)= lim
T→∞

2
π

∫T

0
ℜ

{

ϕ(u)e−iua
}

sin u(y−a)
u

du

≈ 1
2

2∆u
π (y −a)+

N
∑

k=1

2
kπℜ

{

ϕ (k∆u) e−ik∆ua
}

sin
(

k∆u(y −a)
)

. (3.2.13)

For ∆u = π
b−a this, in fact, corresponds to the formula for the distribution function of a

continuous random variable (equation (3.2.10)).

3.2.2. COS METHOD FOR EUROPEAN OPTIONS AND GREEKS
The asset price is modeled by a stochastic process and is denoted by St . The risk-neutral
valuation formula for a European option with payoff function g (.) reads

v(t0, x) = e−r∆tEQ[g (XT )|Xt0 = x] = e−r∆t

∫

R
g (y)p(y |x)d y. (3.2.14)
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Here Xt is the state process, which can be any monotone function of the underlying asset
price St . In this chapter it is taken to be the scaled log-asset price, Xt := log(St /K ), where
K is the option’s strike price. EQ denotes the expectation under risk-neutral measure Q; ∆t

is the difference between the time of maturity T and the initial time t0 = 0; p(y |x) is the
conditional probability density of XT , given Xt0 = x, and r is the risk-free interest rate. In
other words, the option price is equal to the expected value of its discounted future payoff,
under a certain probability measure.

In this chapter we consider a specific Fourier technique, the COS method, to approx-
imate the expected value of an arbitrary function of random variables. The method has
been developed in the first place for pricing financial options, see Section 2.3.4. The Fourier
cosine coefficients Pk (x) of the density function are approximated by, similar as equation
(3.2.8),

Pk (x) = 2
b−a

∫b

a
p(y |x)cos

(

kπ
y−a
b−a

)

d y

≈ 2
b−a

ℜ
{

ϕ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

−a
b−a

}

:=Φk (x). (3.2.15)

The Fourier cosine series coefficients of the payoff function are denoted by

Gk = 2
b−a

∫b

a
g (y)cos

(

kπ
y−a
b−a

)

d y. (3.2.16)

Recall the COS pricing formula (equation (2.3.31)):

v̂(t0, x) := b−a
2 e−r∆t

N
∑′

k=0
Φk (x)Gk

= e−r∆t
N
∑′

k=0
ℜ

{

ϕ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

−a
b−a

}

Gk

= e−r∆t
N
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a

}

Gk . (3.2.17)

The last equality holds for processes with independent, stationary increments, such as Lévy
processes, which include the log-versions of geometric Brownian motion, Variance Gamma,
and CGMY models. In that case, the characteristic function can be written as a product of
eiux and a part independent of x, that is, ϕ(u|x) = eiuxφlev y (u).

The integration range [a,b] must be chosen carefully to avoid significant errors. An in-
terval which is too small will result in integration range truncation errors and a too wide in-
terval may give rise to cancelation errors. For now we mention the results given by [FO08],
in which a rule of thumb for choosing the integration range is given:

[a,b] :=
[

κ1 −L

√

κ2 +
p
κ4, κ1 +L

√

κ2 +
p
κ4

]

, L = 10. (3.2.18)

κ1,κ2, . . . are the cumulants of the underlying stochastic process Xt (see, for example, [FO08,
Table 11]).
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3.2.2.1. THE OPTION’S GREEKS

The Greeks indicate the sensitivities of the option price with respect to a change in its under-
lying or model parameters, such as the asset price or the volatility. They are used to hedge
the risks in a portfolio. The most well-known Greek parameter is the option’s Delta, ∆, i.e.,
the first derivative of the option price with respect to underlying asset price St . Gamma,
Γ, is the second derivative of the option price with respect to the asset price. By the COS
pricing formula (3.2.17) we naturally find the following approximations (x = log(S/K )),

∆= ∂v(t0 ,x)
∂S

≈ ∂v̂(t0 ,x)
∂x

1
S
= e−r∆t

N
∑′

k=0

ℜ
{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a ikπ

b−a

}

Gk
1
S

, (3.2.19a)

Γ= ∂2v(t0 ,x)
∂S2 ≈

(

∂2 v̂ (t0,x)
∂x2 − ∂v̂ (t0 ,x)

∂x

)

1
S2

= e−r∆t
N
∑′

k=0
ℜ

{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a

[

(

ikπ
b−a

)2
− ikπ

b−a

]}

Gk
1

S2 . (3.2.19b)

3.3. CONVERGENCE AND IMPROVEMENTS BY SPECTRAL FILTERS
In this section, we use, without loss of generality, the interval [a,b] = [0,2π] and we consider
the classical Fourier series. As the Fourier cosine series of a function is equivalent to the
symmetrically extended version on an extended domain, the theory here also applies to
Fourier cosine series.

3.3.1. CONVERGENCE OF FOURIER SERIES
The partial sum of the Fourier series of a function f (y) on [0,2π] is given by

fN (y) :=
∑

|k |≤N

F
F
k eik y . (3.3.1)

To make statements about the convergence rate we look at pointwise convergence. If f is a
continuous periodic function on [0,2π], so f (0) = f (2π), and the Fourier series of f is abso-
lutely convergent,

∑∞
k=−∞ |F F

k
| <∞, then the Fourier series converges uniformly to f . For a

non-continuous function there is no uniform convergence and its Fourier series converges
to the average of the left- and right-hand limits at a jump discontinuity. In the case that dis-
continuities of any order are present, the Fourier series expansion only exhibits algebraic
convergence. For jump discontinuities, we even encounter 0th order convergence, which
leads to the Gibbs-overshoot.

The speed at which the Fourier coefficients decay depends on the smoothness of the
function, as is stated in the following theorem:

Theorem 3.3.1. (Integration-by-parts coefficient bound)[Boy01]

If

f (0) = f (2π), f (1)(0) = f (1)(2π), . . . , f (n−2)(0) = f (n−2)(2π) (3.3.2)

and f (n)(y) is integrable, then

F
F
k ∼O

(

|k|−n
)

as |k| →∞. (3.3.3)

Here f (n) denotes the nth derivative of f (y). The integrability of f (n) requires that f (y),

f (1)(y),. . ., f (n−2)(y) should be continuous.
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The absolute error of truncation of the expansion after N terms is denoted by

ETr (N ) := | f (y)− fN (y)| ≤
∞
∑

k=N+1
|F F

k +F
F
−k |. (3.3.4)

In general the convergence rate of a Fourier series depends on the smoothness of the func-
tion on the expansion interval. We refer to [Boy01] for the definitions of algebraically and
exponentially converging terms. The following proposition allows us to bound the series
truncation error of geometrically and algebraically converging series.

Proposition 3.3.1. (Last coefficient error estimate)[Boy01]

The truncation error is of the same order of magnitude as the last coefficient retained in the

truncation for a series with (at least) geometric convergence.

If the series has algebraic convergence index n > 1, i.e., if ak ∼O(1/kn ) for large k, then

ETr (N )∼O(|N aN |). (3.3.5)

In the numerical experiments in Section 3.4.1 we will observe that the Fourier coeffi-
cients of an (n−2)-times continuously differentiable function, f ∈C n−2, will converge with
an algebraic index of convergence n, see Theorem 3.3.1. According to the proposition above
we would expect truncation error ETr (N ) to decrease with order O

(

N 1−n
)

. However, we find
a faster convergence, of order n. This may be due to the alternating behavior of the series.

3.3.2. SPECTRAL FILTER
In this section we explain the notion of spectral filters, by which we aim to mitigate oscil-
lations related to the Gibbs phenomenon and achieve faster convergence for problems in
financial mathematics. Filtering is carried out in Fourier space and the idea is to premulti-
ply the expansion coefficients by a decreasing function in such a way that these decay faster.
A properly chosen filter will improve the convergence rate away from discontinuities. The
following definition is from [Van91, GS97]:

Definition 3.3.1. (Fourier space filter of order p) A real and C∞([0,1]) even function ŝ(η) is

called a filter of order p, if

1. ŝ(0) = 1 and ŝ(ℓ)(0) = 0, 1 ≤ ℓ≤ p −1,

2. ŝ(η) = 0 for |η| ≥ 1,

3. ŝ(η) ∈C p−1, η ∈ (−∞,∞).

Conditions 2 and 3 imply ŝ(ℓ)(1) = 0, 0 ≤ ℓ≤ p −1.

The filtered partial sum of a Fourier series is simply defined by

f ŝ
N (y) =

∑

|k |≤N

ŝ(k/N )F F
k eik y . (3.3.6)

We can rewrite this as a convolution in physical space:

f ŝ
N (y)= 1

2π

∫2π

0
s(y − t) f (t)d t , with s(x) =

∑

|k |≤∞
ŝ(k/N )eikx , x ∈ [0,2π]. (3.3.7)
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Note that ŝ(k/N ) = 0 for |k| > N . A filter is a continuous function which only modifies high
frequency modes, not the low modes. Filtering may remove the Gibbs phenomenon away
from a discontinuity, the error depends on the distance to the discontinuity, as we will con-
firm in Section 3.3.3. Since the approximation will be smoothened, recovery in the vicinity
of a ‘jump’ will not always improve for low values of N . Filtering does not affect the total
mass of the resulting approximation (which should be one for a probability density), since
the first coefficient is never altered. To be precise,

∫2π

0
f ŝ

N (y)d y =
∑

|k |≤N

ŝ(k/N )F F
k

∫2π

0
eik y d y = ŝ(0/N )F F

0 2π=
∫2π

0
f (y)d y. (3.3.8)

3.3.2.1. EXAMPLES OF SPECTRAL FILTERS

The following filters are well-known from the literature [Van91, HGG07, GS97]:

• Fejér filter ([Fej00]): ŝ(η) = 1−|η|, with order p = 1.

• Lanczos filter ([Lan56]): ŝ(η) = sin(πη)/(πη), with order p = 1.

• Raised cosine filter: ŝ(η) = 1
2 (1+cos(πη)), with order p = 2.

Also general pth order spectral filters exist:

• Exponential filter ([GS97]): ŝ(η) = exp(−αηp ), where p must be even and α=− logǫm ,
with ǫm the machine epsilon.

• Vandeven filter ([Van91, Pey02]):

ŝ(η) = 1− (2p−1)!
((p−1)!)2

∫|η|

0
t p−1(1− t)p−1 d t . (3.3.9)

• Erfc-Log filter ([Boy96]): Boyd showed that the Vandeven filter can be approximated
quite accurately by an analytic function which satisfies all conditions, i.e., by the Erfc-
Log filter:

ŝ(η) = 1
2 erfc

(

2
p

p(|η|− 1
2 )

√

− log(1−4(|η|−1/2)2)
4(|η|−1/2)2

)

, (3.3.10)

where erfc(·) is the complimentary Gauss error function.

3.3.3. CONVERGENCE AND ERROR ANALYSIS
A higher-order filter modifies the original function in smooth regions away from a disconti-
nuity and high-order accuracy is desirable away from a discontinuity. Low-order filtering is
however desirable close to a discontinuity, because higher p values then give rise to a highly
oscillatory filtered function f ŝ

N
. The following theorem gives a bound on the error. It can be

extended in a straightforward way to a function with more points of discontinuity ξm .

Theorem 3.3.2. [GS97, HGG07] Let f (y) be a piecewise C p ([0,2π]) function with one point

of discontinuity ξ. Let ŝ(k/N ) be a filter of order p. Let now y be a point in [0,2π] and denote

by d(y) := mink=−1,0,1 |y −ξ+2kπ|. Then (if y 6= ξ),

| f ŝ
N (y)− f (y)| =

∣

∣

∣

∣

∣

1
2π

p−1
∑

ℓ=0
sℓ+1(d(y))

(

f (ℓ)(ξ+)− f (ℓ)(ξ−)
)

+ 1
2π

∫2π

0
sp (y − t) f (p)(t)d t

∣

∣

∣

∣

∣

≤ cN 1−p d(y)1−p
K ( f )+cN

1
2−p || f (p)||L2 , (3.3.11)
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where

K ( f ) =
p−1
∑

ℓ=0
d(y)ℓ

(

f (ℓ)(ξ+)− f (ℓ)(ξ−)
)

∫∞

−∞
|G(p−ℓ)

ℓ
(η)|dη, (3.3.12a)

Gℓ(η) = ŝ(η)−1
ηℓ

, (3.3.12b)

c is a constant independent of f and N , and

s0(x) = s(x), s′ℓ = sℓ−1, ℓ≥ 1,
∫2π

0
sℓ(t)d t = 0, ℓ≥ 1. (3.3.13)

The error bound decreases with d(y), i.e., with the distance to the discontinuity. The
filter order determines the rate at which the error remaining after filtering decays. If we
have f ∉ C p−1, i.e., if f (y) has a jump discontinuity at one or more points of order smaller
than, or equal to, p −1, the following estimate holds: | f ŝ

N
(y)− f (y)| ∼O

(

N 1−p
)

. If f ∈C p−1,
i.e., if f (y) is smooth in the sense of possessing at least p −1 continuous derivatives, then:

| f ŝ
N

(y)− f (y)| ∼O

(

N
1
2−p

)

. 1

In the numerical experiments in Section 3.4.1 we will observe a somewhat faster con-

vergence than prescribed by Theorem 3.3.2. This can be explained by the following obser-
vations. For the first part in equation (3.3.11) the authors in [Van91] prove by induction
that

sℓ(x) ∼O
(

N 1−p
)

, x ∈ (0,2π), 0 ≤ ℓ≤ p. (3.3.14)

Table 3.3.1 shows the order of convergence for s0 and s1 that we observed by numerical
experiments. We tested six different filters: The Fejér filter, the Lanczos filter, the raised
cosine filter, the exponential filter, the Vandeven filter, and the Erfc-Log filter, as described
in Section 3.3.2. Besides we used different filter orders. Here “exp” denotes exponential
convergence. The algebraic index of convergence given by equation (3.3.14) is thus not
strict and can be higher than order p.

Table 3.3.1: Algebraic index of convergence (x ∈ (0,2π)).

Filter s0(x) s1(x)

Fejér 1 1
Lanczos 1 2
Raised cosine 2 3

Exponential (p = 2,4,6) exp exp
Vandeven (p = 1,3,5) p p

Vandeven (p = 2,4) p p +1
Erfc-Log (p = 1,2,3,4,5) p p

1The Euler-accelerated partial sum ([Boy11]) gives a geometric error, i.e., of order O (exp(−µ(y)N )). However, we
are not able to obtain results for N > 1024 as the computation of the filter is then limited by our double precision
computations. Besides, the computational costs of this filter are about 100 times as high as the exponential filter,
for our numerical examples.
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For the second part in equation (3.3.11) the authors in [Van91, GS97] use the inequalities

∣

∣

∣

∣

1
2π

∫2π

0
sℓ(y − t) f (ℓ)(t)d t

∣

∣

∣

∣

≤ 1
2π

√

∫2π

0
s2
ℓ

(y − t)d t

√

∫2π

0
( f (ℓ)(t))2 d t (3.3.15)

and find the upper bound
∣

∣

∣

∣

1
2π

∫2π

0
sℓ(y − t) f (ℓ)(t)d t

∣

∣

∣

∣

≤∼O

(

N
1
2−ℓ

)

. (3.3.16)

However, for the filters in Table 3.3.1 we observe by our numerical computations that
∣

∣

∣

∣

1
2π

∫2π

0
sℓ(y − t) f (ℓ)(t)d t

∣

∣

∣

∣

≤∼O

(

N
max(−p,

1
2 −ℓ)

)

, 1 ≤ ℓ≤ 10. (3.3.17)

3.3.4. FILTERING AND THE COS METHOD
One of the reasons why the COS method is highly efficient is because pricing formula
(3.2.17) works directly with the coefficients, without a-priori recovery of the functions
p(y |x) or g (y). Spectral filters work strictly in the Fourier domain and therefore they can
be used directly in the COS pricing formula. Once a suitable filter and order have been cho-
sen one can multiply the Fourier cosine coefficients by a factor ŝ(k/N ) and work with the
COS method as before. This gives us the filter-COS pricing formula, simply as follows

v̂ f i l ter (t0, x) := e−r∆t
N
∑′

k=0
ŝ
(

k
N

)

ℜ
{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a

}

Gk , (3.3.18)

where ŝ can be any non-adaptive filter. It does not add significant computational costs.
Unfortunately, the same does not hold for the adaptive filters [TT05, Boy11, Tan06], because
if we vary coefficients depending on position we cannot use the substitution of equation
(3.2.16) which leads to the COS method anymore.

3.3.5. ERROR ANALYSIS COS METHOD AND FILTER-COS METHOD
Without Filtering The error of the COS formula without filtering terms is composed of
three parts: The integration range truncation error, the series truncation error, and the er-
ror related to approximating Pk by Φk . Both a density function and payoff function with a
discontinuity in one of their derivatives, results in an algebraic convergence. If the compu-
tational domain [a,b] is chosen sufficiently wide, then the so-called series truncation error

ECOS
Tr

(t0, x; N ), i.e.,

ECOS
Tr (t0, x; N ) := e−r∆t b−a

2

∞
∑

k=N+1
Φk (x)Gk

= e−r∆t
∫b

a
g (y)

[

p(y |x)−pN (y |x)
]

d y, (3.3.19)

dominates the total error. Here pN (y |x) denotes the truncated Fourier cosine series of the
density on [a,b]. The series truncation error depends on the smoothness of underlying
probability density function p(y |x) and payoff function g (y). With equation (3.3.19) it fol-
lows that if either Φk or Gk decreases exponentially, then the error has exponential conver-
gence in N . If however both decay algebraically, then we end up with algebraic convergence.
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If Φk(x) and Gk have algebraic index of decay nϕ(x) and ng , respectively, then Proposition
3.3.1 gives ECOS

Tr
(t0, x; N ) ∼ O

(

N−nϕ(x)−ng +1
)

. In the numerical examples we will observe

convergence rates ECOS
Tr

(t0, x; N ) ∼O
(

N−nϕ(x)−ng
)

, which is probably due to the alternating
behavior of the series.

Payoff functions, like puts and calls, are in general non-smooth, which is the reason for
slowly decreasing Fourier coefficients. Asset prices modeled by geometric Brownian mo-
tion, jump-diffusion, or the Heston model lead to exponential decay of the coefficients Φk ,
resulting in an exponentially converging COS formula. However, the density functions of
the Variance Gamma and CGMY models may be non-smooth. Together with a non-smooth
payoff function this will result in rather slow algebraic error convergence in N . Applying an
appropriate spectral filter will improve the convergence rate.

With Filtering Applying spectral filter ŝ in the COS formula leads to the following relation,

E
f i l ter−COS

Tr
(t0, x; N ) := e−r∆t b−a

2

N
∑′

k=0
(1− ŝ (k/N ))Φk (x)Gk +e−r∆t b−a

2

∞
∑

k=N+1
Φk (x)Gk

= e−r∆t

∫b

a
g (y)

[

p(y |x)−p ŝ
N (y |x)

]

d y. (3.3.20)

The absolute value can be bounded by

|E f i l ter−COS

Tr
(t0, x; N )| ≤ e−r∆t

∫b

a
|g (y)||p(y |x)−p ŝ

N (y |x)|d y =O

(

N−n ŝ
p (x)

)

. (3.3.21)

n ŝ
p (x) denotes the algebraic index of convergence of the error p(y |x)− p ŝ

N
(y |x) of the fil-

tered partial sum, which is discussed in Section 3.3.3 (Theorem 3.3.2). The absolute error
depends on the distance to the discontinuity of the density function and may be larger for
strike prices K close to the discontinuity. Only at the discontinuity the error will not im-
prove, but we integrate over the whole interval [a,b]. We observe higher absolute errors
in the option value for strikes near the discontinuity of the density function, but appropri-
ate filters will improve the convergence rate. The filter-COS formula is beneficial especially
when the number of terms N increases.

Option’s Greeks Computing the option’s Greeks was briefly described in Section 3.2.2.1.
The error of the COS formula for the option’s Delta, without filtering, is given by

ECOS−∆
Tr (t0, x; N ) := e−r∆t b−a

2

∞
∑

k=N+1

∂Φk (x)
∂x

Gk
1
S

, (3.3.22a)

∂Φk (x)
∂x

= 2
b−a

ℜ
{

φlev y

(

kπ
b−a

)

e
ikπ

x−a
b−a ikπ

b−a

}

. (3.3.22b)

As the coefficients for the Greeks are multiplied by factors ikπ
b−a , the algebraic index of

convergence is reduced by one. So, finding a faster converging method becomes even
more beneficial for the option’s Greeks. With a filter-COS formula for the option’s Greeks
we achieve the same convergence rates as for the option prices.
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3.4. NUMERICAL EXPERIMENTS
In this section we discuss several numerical experiments supporting the insights from ear-
lier sections. MATLAB 7.11.0 R2010b is used for the computations, with double precision.
We start in Section 3.4.1 with three basic test functions f (y), representing the option pay-
off or probability density features. Subsequently, in Section 3.4.2.1 the density recovery of
the Variance Gamma process is studied. Convergence of option prices, computed by the
filter-COS method, is discussed in Section 3.4.2.2 for European-style options and in Section
3.4.2.3 for Bermudan-style options. An example from portfolio loss modeling, resulting in a
staircase distribution function, is presented in Section 3.4.3.

3.4.1. CONVERGENCE TEST FUNCTIONS
We perform tests with three different functions f (y) and different filters. The test functions
are shown in Figure 3.4.1, with [a,b] = [0,2π]. Function A represents a block function with
two jump discontinuities, function B is smooth, and function C has a discontinuity in the
first derivative.
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Figure 3.4.1: Three test functions f (y).

The left-side plot in Figure 3.4.2 shows function A (green) and its Fourier series approx-
imation without (red) and with (blue) exponential filter of order p = 4 (N = 32). The middle
plot gives the corresponding error. At the jump discontinuities the limit converges to the
average of the values of the function at either side of the jump. In the right-side plot we
display the convergence of the error at the point y = π, for increasing values of N (log-log
plot). The local effect of the Gibbs phenomenon gives rise to oscillations near the jumps
and the partial sum does not converge at the jump, thereby resulting in a lack of uniform
convergence. However, there also is a global effect: although the error decays away from the
jumps, the algebraic pointwise convergence is only first order, O(1/N ). The filter improves
the error significantly, especially away from the jump discontinuities. The error at point
y =π decreases exponentially in N due to the usage of the filter.

To recover the functions, we test the performance of six filters, i.e., the Fejér filter, the
Lanczos filter, the raised cosine filter, the exponential filter, the Vandeven filter, and the
Erfc-Log filter (see Section 3.3.2). We also employ different filter orders. Table 3.4.1 presents
the algebraic index of convergence observed for the three test functions. Here “exp” denotes
exponential convergence. With two numbers, e.g., “2, 4”, convergence is order O(N−2) on
[0,π] and O(N−4) on [π,2π]. A star (*) in the table indicates that the order of convergence
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N

f ŝ
N

f ŝ
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Figure 3.4.2: Recovery f (y) (function A) without and with filter (exponential, order p = 4) (N = 32).

was not clearly measurable in our numerical experiments.

Table 3.4.1: Algebraic index of convergence test functions.

Filter Function A Function B Function C

No filter 1 exp 1

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 3 2 2, 3

Exponential (p = 2) exp 2 2, exp
Exponential (p = 4) exp 4 4, exp
Exponential (p = 6) exp 6 *, exp
Vandeven (p = 1,3,5) p p p

Vandeven (p = 2,4) p +1 p p, p +1
Erfc-Log (p = 1,2,3,4,5) p p p

Based on the error analysis of Theorem 3.3.2 and our observations in Section 3.3.3 we
can explain the numbers in Table 3.4.1 as follows:

For function A we have

| f ŝ
N (y)− f (y)| =

∑

m

1
2π s1(dm(y))

(

f (ξ+m)− f (ξ−m)
)

+ 1
2π

∫2π

0
s1(y − t) f (1)(t)d t

=
∑

m

1
2π s1(dm(y))

(

f (ξ+m)− f (ξ−m)
)

. (3.4.1)

The observed decay rates of s1 are given in Table 3.3.1 and they correspond to the results in
the second column in Table 3.4.1.

Function B is approximately smooth, so that

| f ŝ
N (y)− f (y)| = 1

2π

∫2π

0
sq (y − t) f (q)(t)d t , ∀q ≥ 1. (3.4.2)

Following the arguments in Section 3.3.3 we expect

1
2π

∫2π

0
sq (y − t) f (q)(t)d t ∼O

(

N
max(−p, 1

2 −q)
)

. (3.4.3)

This gives us the convergence order O(N−p ), as observed.
The error of function C corresponds to the error of function B for y ∈ [0,π]. And the error

corresponds to the error of function A for y ∈ [π,2π].
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3.4.2. THE VARIANCE GAMMA PROCESS
In this section, we discuss various applications of the COS method in the context of the
Variance Gamma (VG) process [MCC98, Sch03]. We start with the accurate and efficient
recovery of the VG density. Then European and Bermudan option prices are analyzed.

3.4.2.1. VARIANCE GAMMA DENSITY RECOVERY

In the case of modeling asset prices by a fat-tailed density function, the exponential Vari-
ance Gamma jump process can be applied. The Variance Gamma process is obtained by
evaluating a Brownian motion with drift ϑ and volatility σ at a random time given by a
gamma process γt with mean rate one and variance rate ν, [MCC98, Sch03]:

LV G
t =ϑγt +σωγt . (3.4.4)

The risk-neutral asset price is then defined as St = St0 e(r+w )∆t eLV G
t , w = 1

ν log(1−ϑν− 1
2σ

2ν)
[FO09]. The VG process is of bounded variation, has independent, stationary increments,
and is defined by an infinite arrival of jumps. The VG density can be characterized by a
fat tail: it is suitable to model phenomena where small and relatively large asset values are
more probable than would be the case for the lognormal distribution. The characteristic
function, ϕ(u|x) = E[eiuXT |Xt0 = x] = eiux+iu(r+w )∆t φV G (u), is given by [Sch03, MCC98],
with

φV G (u) =
(

1− i uϑν+ 1
2σ

2νu2)−∆t/ν ∼O
(

u−2∆t/ν) . (3.4.5)

In [MCC98], the following expression for the VG density function was derived:

pV G (y) =
∫∞

0

1

σ
p

2πz
exp

(

−
(y −ϑz)2

2σ2z

)

z
∆t
ν −1 exp(− z

ν )

ν
∆t
ν Γ(∆t

ν )
d z, (3.4.6)

with Γ the Gamma function. It is computationally rather expensive to evaluate (3.4.6) at
each point in the domain of interest. The smoothness of the density function depends on
its parameters, to be more precise, with higher values of ∆t/ν a larger number of derivatives
exists.
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Figure 3.4.3: VG density and error for T = 0.1 (N = 128).

The parameters used for our tests here are the same as in [FO08], i.e.,:

K = 90,S0 = 100,r = 0.1,σ= 0.12,ϑ =−0.14,ν= 0.2. (3.4.7)
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Figure 3.4.3 shows the VG density for terminal time T = 0.1 (green). For small values of T

the peak in the density gets really sharp and is difficult to approximate it accurately by a
Fourier cosine series. For increasing ν-values the peak sharpens, while increasing σ-values
result in a smaller peak and wider tails, without altering the smoothness properties of the
function around the peak significantly.

Figure 3.4.3 also shows the approximations by Fourier cosine series, i.e., equation
(3.2.9), with and without exponential filter (order p = 6). The characteristic function ex-
hibits an algebraic decay with order 2∆t/ν, giving rise to an algebraic decay of the Fourier
coefficients and therefore slow convergence of the COS method, especially for the densi-
ties with small time interval ∆t . Filtering works well away from the peak in the VG density,
but right at the peak the approximation becomes somewhat worse. Note that for larger T -
values, like for T = 1, the function is sufficiently smooth and addition of the filter does not
improve its already accurate approximation.

We evaluate the performance of the filters to recover the VG density. The six different
filters are used and we experiment with different filter orders. We find that lower order
filters smoothen the sharp peak too much. Table 3.4.2 shows the measured algebraic index
of convergence for the density recovery. We observe a significant improvement for T = 0.025
and T = 0.1, whereas for T = 1 the ‘no filter case’ is superior.

Table 3.4.2: Algebraic index of convergence VG density recovery with three values of T (The star (*) indicates that
the order of convergence was not clearly measurable in our numerical experiments).

Filter T = 0.025 T = 0.1 T = 1

No filter 0.25 1 10

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 2 2 2

Exponential (p = 2,4) p p p

Exponential (p = 6) * 6 6
Vandeven (p = 1,2,3,4,5) p p p

Erfc-Log (p = 1,2,3,4,5) p p p

3.4.2.2. EUROPEAN OPTIONS AND GREEKS UNDER VARIANCE GAMMA

We investigate here the convergence of the COS and the filter-COS method for pricing Eu-
ropean-style options. The payoff function of a put reads g (S) = max(K −S,0). For a digital
(or binary) call option the payoff is either one or zero, with payoff function g (S) = 1S≥K .
Reference values for the experiments are obtained by selecting an accurate filter and a very
large number of terms in the series expansions, see Table 3.4.3.

The convergence of the COS method without filtering is of order 2∆t/ν+2 for put op-
tions and 2∆t/ν+ 1 for digital options. The algebraic index of convergence for the Greek
Delta ∆ (equation (3.2.19a)), without filtering, is one order lower and for Gamma Γ (equa-
tion (3.2.19b)) it is two orders lower, see Table 3.4.4. The absolute value of the series terms
gives us O

(

1/k2∆t/ν+1−2
)

convergence for the Gamma Γ of a digital option. So, the algebraic
index of convergence is even nonpositive for expiration times T = 0.1 and T = 0.025 and the
series does not converge (“Div”), because of the Cauchy convergence criterion. The intu-
ition behind this is that for very short expiration times, the Γ converges to the Dirac delta
function.
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Table 3.4.5 shows the observed order of convergence of the European option with dif-
ferent spectral filters. Similar convergence results are obtained for the Greeks ∆ and Γ. We
tend to prefer the exponential filter to the Vandeven and Erfc-Log filters. Its implementation
is easiest and fastest, although the other filters are not significantly more time-consuming.
Furthermore, we observe an exponential convergence for step functions with the exponen-
tial filter (see Figure 3.4.2 and Table 3.4.1), which is advantageous for recovery of a distribu-
tion function for discrete random variables. Therefore, we focus on the exponential filter in
the remainder of this chapter.

For asset price processes with independent, stationary increments, like the VG model,
we can employ the filter-COS method to compute option values for multiple strike prices si-
multaneously. For example, for K ∈ [80,120] we obtain the same convergence results. How-
ever, we observe higher absolute errors in the option values for strike prices near the peak
value in the VG density function. This can be explained by the smoothing of the peak by a
filter.

Figure 3.4.4 displays the error of the COS formula for the option value and the Greeks for
expiration time T = 0.1 in a log-log plot. Exponential filters with different orders are used.
Note that for some cases the so-called roundoff-plateau, with minimal attainable accuracy
due to machine precision, is reached. The use of filters improves the error and convergence
order significantly, especially regarding the option’s Gamma Γ.

Table 3.4.3: Reference values European options.

T = 0.025 T = 0.1 T = 1

Put Digital Put Digital Put Digital

Option value v(t0 ,x) 0.02435 89.1883 0.09819 86.9759 0.53472 74.7855
Delta ∆ -0.50629 12.8417 -1.82737 40.6550 -5.50365 63.1902
Gamma Γ 11.5565 -313.402 36.5895 -843.107 56.8712 -581.247

Table 3.4.4: Algebraic index of convergence for European options (no filter).

T = 0.025 T = 0.1 T = 1

Put Digital Put Digital Put Digital

Option value v(t0 ,x) 2.25 1.25 3 2 12 11
Delta ∆ 1.25 0.25 2 1 11 10
Gamma Γ 0.25 Div 1 Div 10 9

Table 3.4.5: Algebraic index of convergence for European options observed by filter-COS (T = 0.025, T = 0.1, and
T = 1).

Filter Put Digital

Fejér 1 1
Lanczos 2 2
Raised cosine 2 2

Exponential (p = 2,4,6) p p

Vandeven (p = 1,2,3,4,5) p p

Erfc-Log (p = 1,2,3,4,5) p p
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Figure 3.4.4: Error convergence for European options; put (top) and digital call (bottom) plus the Greeks, with
exponential filters (T = 0.1).

3.4.2.3. BERMUDAN OPTION PRICE UNDER VG
A Bermudan-style option can be exercised at a set of M early-exercise dates prior to the ex-
piration time T , t0 < t1 < . . . tm < . . . < tM = T , with timestep ∆t := tm+1 − tm . The authors
in [FO09] describe a recursive algorithm, based on the COS method, for pricing Bermudan
options backwards in time via Bellman’s principle of optimality. This algorithm is similar to
the method described in Chapter 2. We also employ the COS method for Bermudan options
here, but replace the coefficients Φk by the filtered version, i.e., by ŝ(k/N )Φk , similar as in
equation (3.3.18).

In Table 3.4.6 and in Figure 3.4.5 the results for the exponential filter with T = 1 and
different numbers of early-exercise dates are presented. The COS method with filtering
becomes more and more beneficial when more early-exercise dates are used, for example
M = 20. Then the algebraic convergence rates are, however, not clearly measurable. A larger
number of exercise dates implies a smaller timestep ∆t between the exercise dates, which
decreases the convergence rate of the COS formula without filtering.

3.4.3. PORTFOLIO LOSS DISTRIBUTION
In this section we present a final example, which has a financial background in risk man-
agement. The distribution function of interest will be a staircase function, which is difficult
to approximate by Fourier series. The filtering technique will however improve the results
significantly.

For a bank it is important to manage the risk originating from its business activities.
The credit risk underlying a credit portfolio is one of the largest risk portions of a bank. For
quantifying losses in credit portfolios one often looks at the Value at Risk (VaR). The VaR of
a portfolio at confidence level α is given by the smallest value x, for which the probability
that loss L exceeds x is at most (1−α):

VaRα = inf{x ∈R : P(L > x) ≤ (1−α)} = inf {x ∈R : FL(x) ≥α} , (3.4.8)
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Table 3.4.6: Algebraic index of convergence for Bermudan put options (T = 1) (The star (*) indicates that the order
of convergence was not clearly measurable in our numerical experiments).

Filter T = 1

M = 2 M = 4 M = 8

No filter 7 4.5 3.25

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 2 2 2

Exponential (p = 2,4) p p p

Exponential (p = 6) 6 6 *
Vandeven (p = 1,2,3,4,5) p p p

Erfc-Log (p = 1,2,3,4,5) p p p
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(a) M = 2, v(t0 ,x) = 0.64386.
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(b) M = 4, v(t0 ,x) = 0.71161.
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(c) M = 8, v(t0 ,x) = 0.75220.

Figure 3.4.5: Error convergence for Bermudan options with an increasing number of early-exercise dates, filter-
COS technique with exponential filters (T = 1).

where FL is the cumulative loss distribution function.
The Vasicek model [Vas02] is often used to find an approximation to the loss distribution

and to compute the VaR. Under this model losses occur when an obligor defaults in a fixed
time horizon. Suppose there are m = 1, . . . , M issuers and Xm represents the individual asset
return of issuer m. In accordance with the Vasicek model we then use

Xm =p
ρm Y +

√

1−ρm Zm, m = 1, . . . , M , (3.4.9)

where Y is a common economic factor, Zm is the idiosyncratic factor for issuer m, and
ρm is the correlation between Y and Zm . All random variables are assumed to follow a
standard normal distribution and Y and Zm are independent. If the asset return falls below
a default threshold cm , there is a loss λm . We define the default probability of issuer m by
pm := P(Xm < cm ). The individual credit loss is defined by Lm = λm 1Xm<cm and the total
portfolio loss reads L =

∑M
m=1 Lm . If there is only one issuer then the total loss is given by the

discrete random variable λ11X1<c1 .
The COS method can be used to approximate the cumulative distribution function of

the loss by means of its characteristic function, see equation (3.2.13), and thus to calcu-
late the VaR. The probability distribution is based on a discrete set of events, resulting in a
stepwise distribution function, which causes the COS method to suffer from the Gibbs phe-
nomenon: with a loss distribution which is discontinuous, significant errors appear around
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the points of discontinuity [Fan12].
Following [MOG11] we take M = 20 issuers, with default probability pm of 1%, asset

correlation ρm of 50%, and exposure λm = 1. For the COS method we take N = 210, [a,b] =
[

0,
∑M

m=1λm

]

. The characteristic function of L can be written as

ϕL(u) = E[eiuL ] = E

[

E

[

eiu
∑M

m=1 λm 1Xm<cm

∣

∣

∣Y
]]

. (3.4.10)

An analytic expression is available for the inner conditional expectation. In [Fan12] an inte-
gration rule to approximate the outer expectation is employed, whereas in [GRM06] Monte
Carlo simulations on Y was used. We test both approaches, with a grid, y = [−5 : 0.1 : 5],
for the numerical integration (denoted by COS+NI) and by 5000 simulated values for Y in
the Monte Carlo experiment (denoted by COS+MC). With these choices, the computation
of the characteristic function, which is the most time-consuming part, is approximately 50
times more expensive for COS+MC.
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Figure 3.4.6: Recovery of portfolio loss distribution function using COS method and filtered version (exponential
filter, order p = 6).

The loss distribution of this example portfolio is plotted in Figure 3.4.6. An accurate
estimation of 1 − FL(L) results in an accurate Value at Risk. The green line is the result
of a full Monte Carlo simulation, with 100,000,000 replications for each Xm , and serves
as our reference solution here. The red-dotted and magenta-dotted lines are the COS
method approximations with numerical integration and Monte Carlo simulation for Y , re-
spectively. The blue and cyan lines are the filtered-COS results, using an exponential filter
with p = 6. The COS method without filtering shows a highly oscillatory behavior and does
not give accurate results in the tail, where 1−FL (L) is very small. The COS method with
filter and with numerical integration, gives however highly accurate results that correspond
very well to the full Monte Carlo simulation. The difference gets smaller when the num-
ber of Monte Carlo simulations is increased. The results with the filter and Monte Carlo
simulations for Y , COS+MC, are sensitive to outliers of draws for Y and these results are
not very satisfactory. We would also like to mention that approximations based on Haar
wavelets [OGO13, MOG11] give accurate portfolio loss VaR estimates as well.

Remark 3.4.1. The model and computational technique can be extended to higher-dimen-

sional systematic risk factors Y = [Y1, . . . ,Yd ]. In that case, the computation of the outer ex-

pectation in equation (3.4.10) can be performed by adaptive integration, as in [Hua09].
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3.5. CONCLUSIONS
The COS method is an option pricing method based on Fourier cosine expansions which
performs very well in general. When the underlying density function is smooth, we achieve
an exponential convergence in the number of cosine coefficients. When the underlying
density is not smooth, however, the method may suffer from the Gibbs phenomenon and
the convergence is only of algebraic order. A filtering technique to improve the convergence
rate for these cases has been discussed in this chapter. In practical cases where the COS
method degrades due to discontinuities in functions, the convergence with a filter improves
significantly in terms of the number of required Fourier coefficients as well as in CPU time.

Non-adaptive spectral filtering takes place in the Fourier domain and combines there-
fore very well with the COS option pricing formula, without adding significant computa-
tional costs. The Fourier coefficients are premultiplied by a decreasing function ŝ(k/N ) so
that they decay faster and so that the convergence rate away from a discontinuity is im-
proved. The technique can be used for one-dimensional problems, but also in higher di-
mensions.

In the numerical examples we tested six different filters, i.e., the Fejér filter, the Lanczos
filter, the raised cosine filter, the exponential filter, the Vandeven filter, and the Erfc-Log
filter. Especially the exponential filter gave highly accurate results for stepwise functions.

The plain COS method for option pricing under the Variance Gamma asset price pro-
cess results in algebraic convergence. Our filter-COS formula improves the algebraic in-
dex of convergence, in particular for short time horizons. Moreover, for the computation
of the option’s Greeks, that suffer from an even lower convergence rate without filtering,
spectral filters are highly beneficial. As another example in finance, we discussed portfolio
loss modeling. Discrete random variables then give rise to stepwise cumulative distribu-
tion functions. We derived a COS formula to recover the distribution, which, of course, also
suffered from the Gibbs phenomenon and the resulting oscillations. The approximation
drastically improves by applying spectral filters.

Improved convergence comes without additional computational costs in these appli-
cations and the fact that the filtering is easy to implement, even in multiple dimensions,
makes the filter-COS method a natural solution for some of the problems described.



CHAPTER 4

Two-Dimensional Fourier Cosine Series Expansion Method for

Pricing Financial Options

4.1. INTRODUCTION
In financial markets traders deal in assets and options, like the well-known call and put
options. Besides these, many ‘exotic’ options have been defined that have more complex
contract details and are not traded at regulated exchanges.

One class of exotic option contracts is called the class of multicolor rainbow options,
whose payoff may depend on multiple assets, like on the average or the maximum of asset
prices. The value of the option depends on the contract details and on the underlying asset
prices.

Computational finance deals with numerical and computational questions regarding
efficient option pricing and calibration. Usually, an asset price model is calibrated to liq-
uidly available plain vanilla options (calls and puts) from a regulated exchange. For the val-
uation of the exotic options other computational methods are typically used. Option pricing
techniques can be divided into the categories of Monte Carlo simulation, partial differen-
tial equation (PDE) methods, and Fourier-based methods. Often Monte Carlo methods are
used to price high-dimensional option contracts. The method presented here can be seen
as an alternative (deterministic) pricing technique, which can deal with multi-asset option
problems of medium-sized dimensionality, meaning resolving two-dimensional (2D) to ap-
proximately five-dimensional (5D) integrals. The method we propose for pricing higher-
dimensional options is based on the Fourier transform of the transitional density function
and is especially suitable for asset price models in the class of Lévy processes.

The previous strain of literature on the COS method was based on the one-dimen-
sional (1D) characteristic function of a single stochastic process. In this chapter, we extend
the Fourier method to higher dimensions and price in particular two-color rainbow op-

tions, which are contracts written on two underlying assets. Well-known examples include
the valuation of basket and call-on-maximum options. Methods for both European- and
Bermudan-style rainbow options are developed here. The resulting algorithm can be ap-
plied to models such as correlated geometric Brownian motions or multidimensional pro-
cesses with jumps. The method is highly efficient for asset prices in the class of Lévy pro-
cesses. In the literature, mainly Monte Carlo-based methods are being used to solve higher-
dimensional pricing problems, see [AB04, BS07, Boy88, BEG89]. Leentvaar and Ooster-
lee worked on a parallel Fourier-based method [LO08a] and parallel sparse grid methods

This chapter is based on the article ‘Two-dimensional Fourier cosine series expansion method for pricing financial
options’, published in SIAM Journal on Scientific Computing, Vol. 34(5), B642-B671, 2012 [RO12b].
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[LO08b] for pricing multi-asset options. The authors in [CF08] demonstrate an implicit
PDE discretization method for rainbow options under jump-diffusion processes. We will
compare our results to reference values in the literature mentioned above.

The methodology presented here can also be applied to pricing options with one un-
derlying asset, for which the dynamics are governed by two or more correlated stochastic
processes. For example, the popular Heston model describes an asset price process with a
stochastic volatility [Hes93]. The instantaneous variance process follows a mean-reverting
square root (CIR) process. This model is able to capture smile and skew patterns in the
implied volatility surface. Besides, the closed-form univariate characteristic function of
the log-asset price process makes it easy to implement the Heston model in Fourier-based
methods, see [AMST07, LK10] for European calls. For the valuation of Bermudan and dis-
crete barrier options, the authors of [FO11] combined the COS formula for the log-asset
dimension and a quadrature rule in the log-variance dimension. Since the bivariate char-
acteristic function of the log-asset price and variance is available, we can also apply the 2D-
COS formula to this problem. We investigate the 2D-COS method particularly for Bermudan
put options under the Heston dynamics.

The outline of this chapter is as follows. We start with the presentation of the 2D-COS
formula for pricing European rainbow options (Section 4.2) and the 2D-COS method for
solving Bermudan pricing problems (Section 4.3). Section 4.4 discusses option pricing un-
der the Heston model, which is an affine diffusion process, but not in the Lévy class. The
error analysis in Section 4.5 indicates an exponentially converging error for smooth den-
sity functions. A non-smooth density function results in algebraic convergence. Then, in
Sections 4.6 and 4.7, numerical tests are performed. The 2D-COS method can easily be ex-
tended to higher dimensions and we give some insights into the possibilities and difficulties
in Section 4.8. Section 4.9 concludes this chapter’s findings.

4.2. EUROPEAN RAINBOW OPTIONS
In this section, we explain the 2D-COS formula for approximating discounted expected pay-
offs. The method is based on the Fourier cosine series of the payoff function and the density.
The density function of a stochastic process is usually not known, but often its character-
istic function is known (see [DPS00, FO08]). This enables us to approximate the Fourier
coefficients efficiently.

Let (Ω,F,P) be a probability space, T > 0 be a finite terminal time, and F= (Fs)0≤s≤T be
a filtration satisfying the usual conditions. The process Xt = (X 1

t , X 2
t ) denotes a 2D stochas-

tic process on the filtered probability space (Ω,F,F,P), representing the log-asset prices. We
assume that the bivariate characteristic function of the stochastic process is known, which
is the case, for example, for affine jump-diffusions [DPS00]. The value of a European rain-
bow option, with payoff function g (.), is given by the risk-neutral option valuation formula
([Shr08])

v(t0,x) = e−r∆tEt0,x [

g (XT )
]

= e−r∆t

Ï

R2
g (y)p(y|x)dy. (4.2.1)

Here, x = (x1, x2) is the current state, p(y1, y2|x1, x2) is the conditional density function, r is
the risk-free rate, and time to expiration is denoted by ∆t := T − t0. In the derivation of the
COS formula, we distinguish three different approximation steps. The errors introduced in
each step are discussed in Section 4.5.1.

Step 1: We assume that the integrand is integrable, which is common for the problems
we deal with. Because of that, we can, for given x, truncate the infinite integration ranges
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to some domain [a1, b1]× [a2, b2] ⊂ R2 without losing significant accuracy. This gives the
multidimensional Fourier cosine expansion formulation

v1(t0,x) = e−r∆t

∫b2

a2

∫b1

a1

g (y)p(y|x)d y1d y2

= e−r∆t

∫b2

a2

∫b1

a1

g (y)
∞
∑′

k1=0

∞
∑′

k2=0
Pk1,k2 (x)cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.2.2)

The notation vi is used for the different approximations of v and keeps track of the numeri-
cal errors that set in from each step. For final approximations we also use the ‘hat’-notation,
like v̂ , ĉ, etc. In the second line in (4.2.2), the conditional density is replaced by its Fourier
cosine expansion in y on [a1, b1]× [a2, b2], with series coefficients {Pk1,k2 (x)}∞

k1=0 defined
by

Pk1 ,k2 (x) := 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

p(y|x)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.2.3)

∑′ in (4.2.2) means that the first term of the summation has half weight. We interchange
summation and integration and define

Vk1,k2 (T ) := 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

g (y)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2, (4.2.4)

which are the Fourier cosine series coefficients of v(T,y)= g (y) on [a1, b1]× [a2, b2].
Step 2: Truncation of the series summations gives

v2(t0,x) = b1−a1
2

b2−a2
2 e−r∆t

N1−1
∑′

k1=0

N2−1
∑′

k2=0
Pk1,k2 (x)Vk1,k2 (T ). (4.2.5)

Step 3: Next, the coefficients Pk1,k2 (x) are approximated by

Φk1,k2 (x) := 2
b1−a1

2
b2−a2

Ï

R2
p(y|x)cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.2.6)

The 2D-COS formula is based on the following goniometric relation ([Keh]):

2cos(α)cos(β) = cos(α+β)+cos(α−β). (4.2.7)

With this we obtain
2Φk1,k2 (x) =Φ

+
k1,k2

(x)+Φ
−
k1,k2

(x), (4.2.8)

where

Φ
±
k1,k2

(x) := 2
b1−a1

2
b2−a2

Ï

R2
p(y|x)cos

(

k1π
y1−a1
b1−a1

±k2π
y2−a2
b2−a2

)

d y1d y2. (4.2.9)

Now, the coefficients Φ±
k1,k2

(x) can be calculated by

Φ
±
k1,k2

(x)= 2
b1−a1

2
b2−a2

ℜ
{

Ï

R2
p(y|x)exp

(

i k1π
y1

b1−a1
± i k2π

y2
b2−a2

)

dy

·exp
(

−i k1π
a1

b1−a1
∓ i k2π

a2
b2−a2

)}

= 2
b1−a1

2
b2−a2

ℜ
{

ϕ
(

k1π
b1−a1

,± k2π
b2−a2

∣

∣

∣x
)

exp
(

−i k1π
a1

b1−a1
∓ i k2π

a2
b2−a2

)}

= 2
b1−a1

2
b2−a2

ℜ
{

φlev y

(

k1π
b1−a1

,± k2π
b2−a2

)

exp
(

i k1π
x1−a1
b1−a1

± i k2π
x2−a2
b2−a2

)}

. (4.2.10)
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ℜ {.} again denotes taking the real part of the input argument. ϕ(., .|x) is the bivariate condi-

tional characteristic function of XT , given Xt0 = x, ([Soo73])

ϕ(u|x) = E

[

eiu·XT

∣

∣

∣Ft0

]

=
Ï

R2
eiu·y p(y|x)dy. (4.2.11)

Examples of these characteristic functions can be found in Section 4.6. The last equality in
(4.2.10) holds particularly for Lévy processes, for which φlev y (u1,u2) := ϕ(u1,u2|0,0). In-
serting (4.2.10) into (4.2.5) gives us the 2D-COS formula for approximation of v(t0,x):

v̂(t0,x) := b1−a1
2

b2−a2
2 e−r∆t

N1−1
∑′

k1=0

N2−1
∑′

k2=0

1
2

[

Φ
+
k1,k2

(x)+Φ
−
k1,k2

(x)
]

Vk1,k2 (T )

= e−r∆t
N1−1
∑′

k1=0

N2−1
∑′

k2=0

1
2

[

ℜ
{

φlev y

(

k1π
b1−a1

,+ k2π
b2−a2

)

exp
(

i k1π
x1−a1
b1−a1

+ i k2π
x2−a2
b2−a2

)}

+ℜ
{

φlev y

(

k1π
b1−a1

,− k2π
b2−a2

)

exp
(

i k1π
x1−a1
b1−a1

− i k2π
x2−a2
b2−a2

)}

]

Vk1,k2 (T ). (4.2.12)

With the multidimensional-COS formula, calculation of the option’s Greeks is straightfor-
ward, as explained for the 1D case in Section 3.2.2.1.

Remark 4.2.1. If the characteristic function is not available directly or not known analyt-

ically, it may be approximated. Local volatility models, for example, typically do not yield

analytic functions ϕ, but recent research in [PPR11] proposes a second-order approximation

formula, so that an approximate characteristic function may be derived.

Another numerical approach approximates the stochastic process by, for example the

well-known Euler scheme. Other stochastic Taylor schemes, such as the Milstein and Order

2.0 weak Taylor schemes, are discussed in [KP92] and Chapter 7. In Chapter 7 we explicitly

derive the characteristic function for these discrete forms of a stochastic differential equation.

4.3. BERMUDAN RAINBOW OPTIONS
We generalize the multidimensional-COS method to pricing Bermudan rainbow options
with a 2D underlying log-asset price process, Xt = (X 1

t , X 2
t ), that is in the class of Lévy

processes. A Bermudan option can be exercised at a fixed set of M early-exercise times
t0 < t1 < . . . tm < . . . < tM = T , with ∆t := tm+1 − tm . The payoff function is denoted by g (.).
The problem is solved backwards in time, with















v(tM ,x) = g (x),
c(tm−1,x) = e−r∆tE

[

v(tm ,Xtm )|Xtm−1 = x
]

,
v(tm−1,x) = max[g (x), c(tm−1,x)], 2 ≤ m ≤ M ,

v(t0,x0) = c(t0,x0).

(4.3.1)

Function c(tm−1,x) is called the continuation value and is approximated by the 2D-COS
formula

ĉ(tm−1,x) := b1−a1
2

b2−a2
2 e−r∆t

N1−1
∑′

k1=0

N2−1
∑′

k2=0

1
2

[

Φ
+
k1,k2

(x)+Φ
−
k1,k2

(x)
]

Vk1,k2 (tm ). (4.3.2)
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The Fourier coefficients of the value function in (4.3.2) are given by

Vk1,k2 (tm) := 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

v(tm ,y)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.3.3)

The option function is now approximated by v̂(tm−1,x) := max[g (x), ĉ(tm−1,x)].

4.3.1. RECURSION FORMULA FOR COEFFICIENTS Vk1,k2 (tm)
In this section, a recursive algorithm for recovering the coefficients Vk1,k2 (tm), backwards in
time, is derived.

In the coefficients Vk1,k2 (tM ), the terminal condition v(tM ,y) = g (y) appears. Some pay-
off functions provide analytic solutions to these coefficients in (4.3.3), otherwise they can
be approximated, as explained in Section 4.3.2.1.
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Figure 4.3.1: Rectangular regions Cq (green) and Gp (blue) and accurate boundary (dashed line).

For the coefficients that are used to approximate the continuation values at times t0, . . . ,
tM−2, the value function, v(tm ,y) = max

[

g (y), c(tm ,y)
]

, appears in the terms Vk1,k2 (tm) and
we need to find an optimal policy for all state values y ∈ [a1, b1]× [a2, b2]. We divide the
domain [a1, b1]× [a2, b2] into rectangular subdomains Cq and Gp , so that approximately
for all states y ∈ Cq it is optimal to continue and for all y ∈ Gp it is optimal to exercise the
option. The concept is demonstrated in Figure 4.3.1 for a call-on-maximum option. The
blue rectangles represent the early-exercise regions Gp , the green ones are the continuation
regions Cq , and the dashed line shows an accurate boundary. We can split the integral in
the definition of Vk1,k2 into different parts:

Vk1,k2 (tm ) = 2
b1−a1

2
b2−a2

∑

p

Ï

Gp
g (y)cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

dy

+ 2
b1−a1

2
b2−a2

∑

q

Ï

Cq
c(tm ,y)cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

dy

:=
∑

p

Gk1,k2 (Gp )+
∑

q

Ck1,k2 (tm ,Cq ) (m 6= 0, M). (4.3.4)
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We approximate the terms Ck1,k2 (tM−1, [zq , zq+1]×[wq , wq+1]) in (4.3.4), where the vari-
ables zq , zq+1, wq , and wq+1 denote the corner points of the rectangular continuation re-
gion Cq . For the integrand of the terms Ck1,k2 we again apply the 2D Fourier cosine expan-
sion by inserting the COS formula for c(tM−1,y), i.e., equation (4.3.2). The approximation
reads as

Ĉk1,k2 (tM−1, [zq , zq+1]× [wq , wq+1])

:= 2
b1−a1

2
b2−a2

∫wq+1

wq

∫zq+1

zq

ĉ(tM−1,y)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2

=
∫wq+1

wq

∫zq+1

zq

N1−1
∑′

j1=0

N2−1
∑′

j2=0
e−r∆t 1

2

[

Φ
+
j1, j2

(y)+Φ
−
j1, j2

(y)
]

V j1, j2 (tM )

·cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2

=ℜ
{N1−1

∑′

j1=0

N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,+ j2π
b2−a2

)

V j1, j2 (tM )

·M+
k1, j1

(zq , zq+1, a1,b1)M+
k2, j2

(wq , wq+1, a2,b2)

}

+ℜ
{N1−1

∑′

j1=0

N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,− j2π
b2−a2

)

V j1, j2 (tM )

·M+
k1, j1

(zq , zq+1, a1,b1)M−
k2, j2

(wq , wq+1, a2,b2)

}

, (4.3.5)

where the elements of square-matrices M
+ and M

− are given by

M
+
k ,l (z1, z2, a,b) := 2

b−a

∫z2

z1

e
i lπ

y−a
b−a cos

(

kπ
y−a
b−a

)

d y, (4.3.6a)

M
−
k ,l (z1, z2, a,b) := 2

b−a

∫z2

z1

e
−i lπ

y−a
b−a cos

(

kπ
y−a
b−a

)

d y. (4.3.6b)

We thus find

Ĉk1,k2 (tM−1, [zq , zq+1]× [wq , wq+1])

=ℜ
{

N1−1
∑′

j1=0
M

+
k1, j1

(zq , zq+1, a1,b1)K j1 ,k2 (tM , wq , wq+1)

}

, (4.3.7)

where

K j1,k2 (tM , wq , wq+1) :=
N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,+ j2π
b2−a2

)

V j1, j2 (tM )M+
k2, j2

(wq , wq+1, a2,b2)

+
N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,− j2π
b2−a2

)

V j1, j2 (tM )M−
k2, j2

(wq , wq+1, a2,b2).

(4.3.8)

The elements of (N1 × N2)-matrix K are calculated in a rowwise fashion. The row-vector
K j1 ,. = {K j1 ,k2 }N2−1

k2=0 can be written as two matrix-vector multiplications:

K j1 ,.(tM , wq , wq+1)=M
+(wq , wq+1, a2,b2)wq+

j1,. +M
−(wq , wq+1, a2,b2)wq−

j1,., (4.3.9)
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where

wq±
j1,. := {w

q±
j1, j2

}N2−1
j2=0 , with w

q±
j1, j2

:= 1
2 e−r∆tφlev y

(

j1π
b1−a1

,± j2π
b2−a2

)

V j1, j2 (tM ). (4.3.10)

Then, the matrix Ĉk1,k2 is computed in a columnwise fashion. The column-vector

Ĉ.,k2 = {Ĉk1,k2 }N1−1
k1=0 is calculated by one matrix-vector product,

Ĉ.,k2 (tM−1, [zq , zq+1]× [wq , wq+1]) =ℜ
{

M
+(zq , zq+1, a1,b1)K.,k2 (tM , wq , wq+1)

}

, (4.3.11)

with column-vector K.,k2 = {K j1 ,k2 }N1−1
j1=0 .

The coefficients Gk1,k2 ([zp , zp+1]× [wp , wp+1]) are defined by

Gk1,k2 ([zp , zp+1]× [wp , wp+1])

= 2
b1−a1

2
b2−a2

∫wp+1

wp

∫zp+1

zp

g (y)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.3.12)

These terms may admit an analytic solution, however, in some practical applications an an-
alytic solution is not present. Methods to approximate these terms are proposed in Section
4.3.2.2.

We end up with the approximated coefficients

V̂k1,k2 (tM−1) :=
∑

p

Gk1,k2 (Gp )+
∑

q

Ĉk1,k2 (tM−1,Cq ). (4.3.13)

For the other coefficients Vk1,k2 (tm), the approximations ĉ(tm ,y) and V̂ j1 , j2 (tm+1) will be
used to approximate the terms Ck1,k2 (tm , [zq , zq+1]× [wq , wq+1]), and the elements of the
corresponding matrix K̂ are

K̂ j1,k2 (tm+1, wq , wq+1) =
N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,+ j2π
b2−a2

)

V̂ j1, j2 (tm+1)M+
k2, j2

(wq , wq+1, a2,b2)

+
N2−1
∑′

j2=0

1
2 e−r∆tφlev y

(

j1π
b1−a1

,− j2π
b2−a2

)

V̂ j1, j2 (tm+1)M−
k2, j2

(wq , wq+1, a2,b2).

(4.3.14)

Fast Fourier Transform The matrix-vector products M
+w and M

−w in the computation
of matrices K , K̂ , and Ĉ can be computed efficiently by a Fourier-based algorithm, as
stated in Theorem 1 (Appendix B). The computation time achieved is O(N log2 N ), with N

the length of the vector.

Algorithm We can recover the terms V̂k1,k2 (tm) recursively, starting with Vk1,k2 (tM ). The
algorithm for solving the pricing problem backwards in time reads as follows.
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Algorithm 2. (2D-COS method for pricing Bermudan rainbow options)

Initialization: Calculate coefficients Vk1,k2 (tM ).

Main loop to recover V̂ (tm):

For m = M −1 to 1:

• Determine the optimal continuation regions Cq and early-exercise re-

gions Gp , as in Figure 4.3.1.

• Compute V̂ (tm) from (4.3.4) with the help of the FFT algorithm.

Final step: Compute v̂(t0,x0) by inserting V̂k1,k2 (t1) into equation (4.3.2).

Computational Complexity The initialization is of order O(N1N2). In the main loop
there are M − 1 iterations in which the following computations are performed. The con-
struction of one matrix K or K̂ costs O(2N1N2 log2 N2) operations. Computation of
Ĉk1,k2 (tm , [zq , zq+1] × [wq , wq+1]) takes O

(

N2N1 log2 N1
)

operations. Gk1,k2 ([zp , zp+1] ×
[wp , wp+1]) is of order O(N1N2). The computation time is linear in the number of con-
tinuation and early-exercise regions. The final step takes O(N1N2) operations.

4.3.2. APPROXIMATION METHODS FOR THE COEFFICIENTS V (T ) AND G (Gp )
In this section, we propose methods for approximating the terminal coefficients
Vk1,k2,...,kn

(T ) and the terms Gk1 ,k2,...,kn
(Gp ) that are specific for the multidimensional-COS

method.

In the 1D pricing problem, the terminal coefficients Vk1 (T ) admit analytic solutions for
several options, like put- and call-based options, digital options, and power options. Be-
sides, in the 1D-COS method for pricing Bermudan options, the terms Gk1 (Gp ) are also usu-
ally known analytically.

In two dimensions, the payoff functions of, for instance, a geometric basket or a call-
on-maximum option provide analytic solutions to the 2D coefficients Vk1,k2 (T ), but this is
generally an exception. If no exact representation is available, then they can be approxi-
mated by using discrete Fourier cosine transforms (DCTs) or the Clenshaw-Curtis quadrature

rule. The usage of DCTs is explained in Section 4.3.2.1. Also, analytic forms for the terms
Gk1,k2,...,kn

(Gp ) are in general not available in the multidimensional version. An approxima-
tion method, based on the Fourier cosine expansion of the payoff function, is discussed in
Section 4.3.2.2.

4.3.2.1. DISCRETE FOURIER COSINE TRANSFORMS

In this section, we explain this idea of using DCTs to approximate the terminal coefficients
Vk1,k2 (T ). For this, we take Q ≥ max[N1, N2] grid-points for each spatial dimension and de-
fine

y
ni

i
:= ai +

(

ni + 1
2

) bi−ai

Q
and ∆yi := bi−ai

Q
, i = 1,2. (4.3.15)
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The midpoint-rule integration gives us

Vk1,k2 (T ) ≈
Q−1
∑

n1=0

Q−1
∑

n2=0

2
b1−a1

2
b2−a2

g (y
n1
1 , y

n2
2 )cos

(

k1π
y

n1
1 −a1

b1−a1

)

cos

(

k2π
y

n2
2 −a2

b2−a2

)

∆y1∆y2

=
Q−1
∑

n1=0

Q−1
∑

n2=0
g (y

n1
1 , y

n2
2 )cos

(

k1π
2n1+1

2Q

)

cos
(

k2π
2n2+1

2Q

)

2
Q

2
Q . (4.3.16)

The above 2D DCT (Type II) can be calculated efficiently by, for example, the function dct2

of MATLAB. The approximated coefficients are denoted by V
DC T

k1,k2
(T ), with the correspond-

ing computed European option value v̂DC T (t0,x). Now, an extra error is introduced:

ǫDC T (t0,x) := v̂(t0,x)− v̂DC T (t0,x)

= b1−a1
2

b2−a2
2 e−r∆t

N1−1
∑′

k1=0

N2−1
∑′

k2=0
Φk1,k2 (x)[Vk1,k2 (T )−V

DC T
k1,k2

(T )]. (4.3.17)

This error ǫDC T converges algebraically in Q , with order two. We will confirm this by an
example in Section 4.6.1.1. The DCT method can be extended to higher dimensions for the
approximation of coefficients Vk1,k2,...,kn

(T ).

Remark 4.3.1. The above approximation, (4.3.16), is based on the midpoint-rule integration.

Higher-order methods or adaptive quadrature rules may improve the efficiency.

4.3.2.2. APPROXIMATION METHODS FOR G (Gp )
The terms Gk1,k2 are defined by

Gk1,k2 ([zp , zp+1]× [wp , wp+1])

= 2
b1−a1

2
b2−a2

∫wp+1

wp

∫zp+1

zp

g (y)cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2. (4.3.18)

These terms may admit an analytic solution, however, in many practical applications the
calculation of coefficients Gk1,k2 (Gp ) is time-consuming, or an analytic solution is not
present. Then, we can use discrete Fourier transforms to approximate them, similarly as
in Section 4.3.2.1. However, this may be time-consuming too, especially with a large num-
ber of timesteps. Another way is the usage of the Fourier cosine expansion of the payoff
function. First, we explain this idea in one dimension.

The COS method for 1D Bermudan options was developed in [FO09]. We use 1D method
parameters a1, b1, and N1. For a put option it follows that

Vk1 (tm) =Gk1 (G)+Ck1 (tm ,C). (4.3.19)

The coefficients Ck1 are approximated by

Ĉk1(tm , z1, z2) =ℜ
{

N1−1
∑′

j1=0
e−r∆tφlev y

(

j1π
b1−a1

)

V j1 (tm+1)M+
k1, j1

(z1, z2, a1,b1)

}

. (4.3.20)

In [FO09], the coefficients Gk1 (z1, z2) are assumed to be known analytically, and

V̂k1 (tm) :=Gk1 (G)+ Ĉk1 (tm ,C). (4.3.21)
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However, the coefficients Gk1 can also be approximated by a Fourier series expansion of the
payoff function, i.e.,

g (x1) ≈ gN (x1) =
N1−1
∑′

k1=0
cos

(

k1π
x1−a1
b1−a1

)

Vk1 (T ) =
N1−1
∑′

k1=0
ℜ

{

exp
(

i k1π
x1−a1
b1−a1

)}

Vk1 (T ), (4.3.22)

with {Vk1 (T )}∞
k1=0 the terminal coefficients and with v(T, y1) = g (y1). Inserting function gN

into the terms Gk1 gives

Ĝk1 (z1, z2) := 2
b1−a1

∫z2

z1

gN (y1)cos
(

k1π
y1−a1
b1−a1

)

d y1

=ℜ
{

N1−1
∑′

j1=0
V j1 (T )M+

k1, j1
(z1, z2, a1,b1)

}

. (4.3.23)

The computation of Ĉ and Ĝ can now be done simultaneously as

V̂k1 (tm) := Ĝk1 (G)+ Ĉk1 (tm ,C)

= Vk1 (T )− Ĝk1 (C)+ Ĉk1 (tm ,C) (4.3.24)

= Vk1 (T )+ℜ
{

N1−1
∑′

j1=0

[

−V j1 (T )+e−r∆tφlev y

(

j1π
b1−a1

)

V j1 (tm+1)
]

M
+
k1, j1

(C, a1,b1)

}

.

The error of this new approach converges algebraically as the Fourier series of the payoff
function. The new approach is a little bit faster than (4.3.21) (with analytic Gk1 (G)), however,
a higher value of N1 is needed to reach the same accuracy, see Figure 4.3.2 and Table 4.3.1.
However, in multiple dimensions this approach may be beneficial and time-efficient.
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Figure 4.3.2: Comparison between method (4.3.21)
and (4.3.24).

Table 4.3.1: Error, reference price is
10.479520123.

method [FO09], new method,
N1 (4.3.21) (4.3.24)

32 -4.893e-3 -6.22e-2
64 -1.393e-6 1.14e-2

128 -2.023e-10 1.22e-3
256 -2.023e-10 -4.43e-5
512 -2.024e-10 2.52e-6

1024 -2.024e-10 -1.18e-7

Now we return to equation (4.3.18) and explain the approximation method for two di-
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mensions. The Fourier cosine expansion of the payoff function can be written as

gN (y) :=
N1−1
∑′

k1=0

N2−1
∑′

k2=0
cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

Vk1,k2 (T )

=
N1−1
∑′

k1=0

N2−1
∑′

k2=0

1
2

[

ℜ
{

exp
(

i k1π
y1−a1
b1−a1

+ i k2π
y2−a2
b2−a2

)}

+ℜ
{

exp
(

i k1π
y1−a1
b1−a1

− i k2π
y2−a2
b2−a2

)}]

Vk1,k2 (T ). (4.3.25)

With this, the coefficients Gk1,k2 can by approximated by Ĝk1,k2 , similarly as in (4.3.5):

Ĝk1,k2 ([zp , zp+1]× [wp , wp+1]) (4.3.26)

=ℜ
{

N1−1
∑′

j1=0

N2−1
∑′

j2=0

1
2 V j1, j2 (T )M+

k1, j1
(zp , zp+1, a1,b1)M+

k2, j2
(wp , wp+1, a2,b2)

}

+ℜ
{

N1−1
∑′

j1=0

N2−1
∑′

j2=0

1
2 V j1, j2 (T )M+

k1, j1
(zp , zp+1, a1,b1)M−

k2, j2
(wp , wp+1, a2,b2)

}

.

We will use these approximations in Sections 4.6.2.1 and 4.6.2.2. This approximation
method can be extended to higher dimensions; if the multidimensional coefficients
Gk1,k2,...,kn

(Gp ) are not known analytically, then we can use the terminal coefficients
Vk1,k2,...,kn

(T ) to approximate them.

4.4. BERMUDAN OPTIONS UNDER THE HESTON MODEL
In this section, we explain the 2D-COS method for a Bermudan pricing problem, in which
the asset price follows the Heston dynamics. This 2D stochastic process is one of the impor-
tant processes in financial option pricing. In [FO11], Bermudan options under the Heston
stochastic volatility model are priced using the COS formula for the log-asset dimension,
combined with a quadrature rule in the log-variance dimension. For this, the closed-form
density function of the transformed log-variance process is used. In our approach we em-
ploy the bivariate characteristic function of the log-asset price and the variance, which is
also available in closed-form, and the 2D-COS formula can be applied. However, the 2D
stochastic process is not in the class of Lévy processes and efficient matrix-vector multi-
plication using the FFT algorithm (Appendix B) within the COS method will therefore be
applicable in only one dimension, similarly as in [ZGO12].

Let process Xt = (X 1
t , X 2

t ) = (Xt ,νt ) represent the Heston model. Xt represents the log-
asset price process and νt is the variance process (ν0 ≥ 0), with dynamics

d Xt = (r − 1
2νt )d t +ρ

p
νt dω1

t +
√

1−ρ2pνt dω2
t , (4.4.1)

dνt = ̹(ν̄−νt )d t +η
p
νt dω1

t . (4.4.2)

Here, r represents the risk free rate, ̹ > 0 the mean reversion rate, ν̄ > 0 the long run
variance, η > 0 the volatility of variance (vol-of-vol), and ρ the correlation coefficient.
ωt = (ω1

t ,ω2
t ) is a 2D Wiener process on the filtered probability space (Ω,F,F,P). The vari-

ance process remains strictly positive if the Feller condition, 2̹ν̄≥ η2, is satisfied, otherwise
the boundary at zero is attainable and strongly reflecting [JKWW11].
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The process Xt is affine and the bivariate characteristic function is of the form

φ(u,Xt , t ,T ) = E[eiu1 XT +iu2νT |Xt ,νt ]

= exp
(

B1(T − t ,u)Xt +B2(T − t ,u)νt + A(T − t ,u)
)

. (4.4.3)

We define

β := ̹− iρηu1, (4.4.4a)

D :=
√

β2 +η2u1(i +u1), (4.4.4b)

G := (β−D − i u2η
2)/(β+D − i u2η

2). (4.4.4c)

The functions A, B1, and B2 are solutions to a system of ordinary differential equations
(ODEs) of Riccati type ([DPS00]):

∂B1(t ,u)
∂t

= 0, (4.4.5a)
∂B2(t ,u)

∂t
= 1

2η
2B2

2 (t ,u)−βB2(t ,u)− 1
2 u1(i +u1), (4.4.5b)

∂A(t ,u)
∂t

= i u1r +̹ν̄B2(t ,u), (4.4.5c)

with initial conditions B1(0,u) = i u1, B2(0,u) = i u2, A(0,u) = 0. Solving the ODEs gives
([Kah08])

B1(t ,u) = i u1, (4.4.6a)

B2(t ,u) = 1
η2

β−D−(β+D)Ge−Dt

1−Ge−Dt , (4.4.6b)

A(t ,u) = i u1r t + ̹ν̄
η2

[

(β−D)t −2log
(

Ge−Dt −1
G−1

)]

. (4.4.6c)

Remark 4.4.1. The characteristic function involves a multivalued complex logarithm in

A(t ,u). Most software packages restrict the logarithm to its principal branch. Then, the char-

acteristic function can become discontinuous in u, which results in incorrect option prices.

The same problem arises in the 2D characteristic function:

φ1D (u1,Xt , t ,T ) = E

[

eiu1 XT

∣

∣

∣Xt ,νt

]

. (4.4.7)

Solutions to the problem of choosing the correct branch here are discussed extensively in

[LK06, LK10, AMST07, KJ05]. In [LK10], the function A(t ,u1) (u2 = 0) appears in the expres-

sion for the 1D characteristic function. They prove that the argument of the logarithm never

crosses the negative real axis, so that the principle branch is the correct one. We have not

been able to complete the proof that justifies the use of the principle branch for A(t ,u) in two

dimensions. However, experiments showed that the logarithm’s argument does not cross the

real negative real axis for the parameter values in Section 4.7.

The variance process can be expressed as a time-changed squared Bessel process with
dimension δB := 4̹ν̄

η2 , which has an absolutely continuous distribution if δB > 0 (i.e., a den-

sity exists) and a probability mass at the origin if δB = 0 [JYC09, Duf05]. The assumptions
on the parameters yield δB > 0, which justifies the use of the analytic density function in
equation (4.2.1) and approximated coefficients Φk1,k2 (equation (4.2.10)), with characteris-
tic function given by equation (4.2.11).
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We apply the 2D-COS method to price Bermudan options under the Heston dynamics.
We again take fixed time steps ∆t := tm+1 − tm and define

ϕ(u1,u2|x,ν) :=φ(u,x, tm , tm+1) := eiu1 x eB2(∆t ,u)νφA(u), (4.4.8)

where φA(u) := e A(∆t ,u).

The approximation of the coefficients Ck1,k2 now reads as

Ĉk1,k2 (tM−1, [zq , zq+1]× [wq , wq+1])

=ℜ
{N1−1

∑′

j1=0

N2−1
∑′

j2=0

1
2 e−r∆tφA

(

j1π
b1−a1

,+ j2π
b2−a2

)

V j1, j2 (tM )

·M+
k1, j1

(zq , zq+1, a1,b1)H +
k2, j2

(

wq , wq+1, a2,b2, j1π
b1−a1

)

}

+ℜ
{N1−1

∑′

j1=0

N2−1
∑′

j2=0

1
2 e−r∆tφA

(

j1π
b1−a1

,− j2π
b2−a2

)

V j1, j2 (tM )

·M+
k1, j1

(zq , zq+1, a1,b1)H −
k2, j2

(

wq , wq+1, a2,b2, j1π
b1−a1

)

}

:=ℜ
{

N1−1
∑′

j1=0
M

+
k1, j1

(zq , zq+1, a1,b1)K Heston
j1,k2

(tM , wq , wq+1)

}

, (4.4.9)

where the elements of matrices H
± are given by

H
±
k2, j2

(

wq , wq+1, a2,b2, j1π
b1−a1

)

:= 2
b2−a2

∫wq+1

wq

e
y2B2

(

∆t ,
j1π

b1−a1
,±

j2π
b2−a2

)

e
±i j2π

−a2
b2−a2 cos

(

k2π
y2−a2
b2−a2

)

d y2. (4.4.10)

As before, the elements of (N1×N2)-matrix K
Heston are calculated in a rowwise fashion

and the row-vector K
Heston

j1 ,. = {K Heston
j1 ,k2

}N2−1
k2=0 can be written as two matrix-vector multipli-

cations,

K
Heston

j1 ,. (tM , wq , wq+1) =H
+

(

wq , wq+1, a2,b2, j1π
b1−a1

)

wq+
j1,.

+H
−

(

wq , wq+1, a2,b2, j1π
b1−a1

)

w
q−
j1 ,., (4.4.11)

where

w
q±
j1,. := {w

q±
j1, j2

}N2−1
j2=0 , with w

q±
j1, j2

:= 1
2 e−r∆tφA

(

j1π
b1−a1

,± j2π
b2−a2

)

V j1, j2 (tM ). (4.4.12)

The above equations are similar to equations (4.3.5) and (4.3.8) for pricing rainbow options.
However, the matrices H

± cannot be decomposed into a Hankel and Toeplitz matrix any-
more and the computation of K

Heston
j1,. is therefore of order O(N 2

2 ). For the numerical tests

in Section 4.7 we will take a fixed grid {wq }. Then, the matrices H
± need to be computed

only once and this computation is part of the algorithm’s initialization.
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4.5. ERROR CONVERGENCE AND COMPUTATIONAL DOMAIN

The method parameters of the 2D-COS method are the integration ranges, [a1, b1] and
[a2, b2], and the number of Fourier cosine terms, N1 and N2. Convergence in the num-
ber of cosine terms is discussed in the error analysis in Section 4.5.1. Section 4.5.2 gives
some suggestions for the choice of the computational domain.

4.5.1. ERROR ANALYSIS

The error analysis is similar to the analyses in Sections 2.4.1 and 2.4.3. We start with the
local error of the COS formula. Then, a result for the propagating error is presented.

The local error of the COS formula is defined by

ǫ(tm−1,x) := c(tm−1,x)− ĉ(tm−1,x). (4.5.1)

Let us assume that the terms Vk1,k2 (tm) are known analytically. Then, errors are introduced
in three steps (see Section 4.2): the truncation of the integration range, the substitution of
the density by its cosine series expansion on the truncated range, and the substitution of
the series coefficients by the characteristic function approximation. The key to bounding
the error lies in the decay rate of the Fourier cosine series coefficients. We discuss the three
errors one after the other.

Step 1: The integration range truncation error:

ǫ1(tm−1,x) := c(tm−1,x)−c1(tm−1,x) = e−r∆t

Ï

R2\[a1,b1]×[a2,b2]
v(tm ,y)p(y|x)dy. (4.5.2)

Step 2: The series truncation error:

ǫ2(tm−1,x) := c1(tm−1,x)−c2(tm−1,x)

= b1−a1
2

b2−a2
2 e−r∆t

∞
∑

k1,k2
k1≥N1 or k2≥N2

Pk1 ,k2 (x)Vk1,k2 (tm)

= e−r∆t

∫b2

a2

∫b1

a1

v(tm ,y)
[

p(y|x)−pN (y|x)
]

dy. (4.5.3)

The functions vN (tm ,y) and pN (y|x) denote the Fourier cosine series expansions of the
value function and the density function, using N1 and N2 terms in the series summations.

The convergence rate of Fourier cosine series depends on the properties of the approxi-
mated functions in the expansion interval. The coefficients Pk1 ,k2 usually decay faster than
Vk1,k2 . With [Boy01], we find that the error converges exponentially in N1 and N2 for density
functions in the class C∞([a1, b1]× [a2, b2]). A density function with discontinuity in one of
its derivatives results in an algebraic convergence of the Fourier cosine series expansion.
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Step 3: The error related to approximating Pk1 ,k2 (x) by Φk1,k2 (x) (see equation (4.2.6)):

ǫ3(tm−1,x) := c2(tm−1,x)− ĉ(tm−1,x)

= b1−a1
2

b2−a2
2 e−r∆t

N1−1
∑′

k1=0

N2−1
∑′

k2=0
(Pk1,k2 (x)−Φk1,k2 (x))Vk1,k2 (tm)

=−e−r∆t

Ï

R2\[a1,b1]×[a2,b2]

[N1−1
∑′

k1=0

N2−1
∑′

k2=0
cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

Vk1,k2 (tm)

]

p(y|x)dy

=−e−r∆t

Ï

R2\[a1,b1]×[a2,b2]
vN (tm ,y)p(y|x)dy. (4.5.4)

Addition of the three errors gives

ǫ(tm−1,x) = e−r∆t

Ï

R2\[a1,b1]×[a2,b2]

[

v(tm ,y)− vN (tm ,y)
]

p(y|x)dy

+e−r∆t

Ï

[a1,b1]×[a2 ,b2]
v(tm ,y)

[

p(y|x)−pN (y|x)
]

dy. (4.5.5)

Result 4.5.1. Let us assume that the terms Vk1,k2 (tm) are exact. If the integration domain

[a1, b1]×[a2, b2] is chosen sufficiently wide, then the series truncation error ǫ2 dominates the

overall local error. Then, for smooth density functions the error ǫ converges exponentially in

N1 and N2, otherwise it converges algebraically. The extra error ǫDC T , introduced by approx-

imation of the terms Vk1,k2 (T ) with DCTs, has been discussed in Section 4.3.2.1.

We now discuss the error in the terms Vk1,k2 (tm) and define

εk1,k2 (tm ,Cq ) :=Ck1,k2 (tm ,Cq )− Ĉk1,k2 (tm ,Cq ). (4.5.6)

The terms Gk1,k2 (Gp ) are assumed to be exact, so that the error in the Fourier coefficients is
given by

εk1 ,k2 (tm) := Vk1,k2 (tm )− V̂k1,k2 (tm) =
∑

q
εk1,k2 (tm ,Cq ). (4.5.7)

Result 4.5.2. With [a1, b1]× [a2, b2] ⊂ R2 chosen sufficiently wide and a probability density

function p in C∞([a1, b1]× [a2, b2]), error εk1,k2 (tm ) converges exponentially in N1 and N2

for 1≤ m ≤ M −1. If the local error converges algebraically, then so does error εk1,k2 (tm).

The proof of this result is similar to that for pricing Bermudan options with one under-
lying asset, which can be found in [FO09]. The convergence is algebraic for non-smooth
density functions or if we approximate Gk1,k2 (Gp ) by an algebraically converging method,
see Section 4.3.2.2.

4.5.2. COMPUTATIONAL DOMAIN
The performance of the (2D-)COS method is sensitive to the choice of the computational
domain [a1, b1]×[a2, b2]. If the domain size is set too small, then the resulting option values
may be too low. However, the larger the domain, the more terms in the series expansions
that are required to reach a certain accuracy.

For the tests on rainbow options, we will take a1 = a2 = a and b1 = b2 = b, where

a := min
i

[

κi
1 −L

√

κi
2 +

√

κi
4

]

, b := max
i

[

κi
1 +L

√

κi
2 +

√

κi
4

]

, L = 10. (4.5.8)
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κi
j

denotes the j th cumulant of the stochastic variable X i
T

. For the cumulants κ1, κ2, and κ4

of the Brownian motion and the log-jump-diffusion process we refer the reader to [FO08].
The choice of equal domain sizes for both dimensions facilitates the calculation of the co-
efficients Vk1,k2 (T ).

For the Heston dynamics, we base the interval [a1, b1] on the cumulants κ1 and κ2 of
XT :

[a1, b1] :=
[

κ1 −L
p
κ2, κ1 +L

p
κ2

]

, L = 8. (4.5.9)

The second cumulant can be approximated by κ2 ≈ ν̄(1+η)T . For a2 ≥ 0 and b2, however,
we take a tolerance level TOL = 10−4 and determine the integration range so that

FνT |ν0 (a2|ν0) = TOL = 1−FνT |ν0 (b2|ν0), (4.5.10)

where FνT |ν0 represents the cumulative distribution function of the variance at the terminal
time. This is a general strategy in the case of non-smooth densities.

If N1 and N2 are chosen sufficiently large, then a larger size of the computational domain
should not affect the option price.

4.6. NUMERICAL EXPERIMENTS RAINBOW OPTIONS
In this section we perform several numerical experiments to test the 2D-COS method for
pricing European and Bermudan rainbow options. We will validate the algorithm and show
its efficiency. The following options are studied: geometric basket, arithmetic basket, put-
on-minimum, and call-on-maximum options. The asset price paths are modeled by either
correlated geometric Brownian motions (GBMs) or by Merton’s jump-diffusion processes
(but in principle we can use other Lévy processes). MATLAB 7.11.0 is used for the computa-
tions, with an Intel(R) Quad-Core 2.83 GHz and 8 GB RAM. For the tests in this section, we
take an equal number of terms in both series expansions, that is, N2 = N1.

Geometric Brownian Motion Under GBM the risk-neutral asset prices evolve according
to the following dynamics:

dSi
t = (r −δi )Si

t d t +Si
t σ̄i dω̃i

t , i = 1,2, (4.6.1)

where ω̃t = (ω̃1
t ,ω̃2

t ) is a 2D correlated Wiener process with correlation dω̃i
t dω̃

j
t = ρi j d t ,

r the risk-free rate, δi the dividend rate, and σ̄i the volatility of asset i . We switch to the
log-processes X i

t := logSi
t :

d X i
t = (r −δi − 1

2 σ̄
2
i )d t + σ̄i dω̃i

t . (4.6.2)

The log-asset prices at time tm , given the values at time tm−1, are bivariate normally dis-
tributed,

Xtm ∼N (Xtm−1 +µ∆t ,Σ), (4.6.3)

with µi = r −δi − 1
2 σ̄

2
i

and covariance matrix Σi j = σ̄i σ̄ jρi j ∆t . The characteristic function

reads as ϕ(u|x)= eix′uφlev y (u), with

φlev y (u) = exp(iµ′
∆tu− 1

2 u′
Σu). (4.6.4)
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Jump-Diffusion Process Under jump-diffusion the asset prices follow

dSi
t = (r −λκi )Si

t d t +Si
t σ̄i dω̃i

t + (e Ji −1)Si
t d qt , i = 1,2, (4.6.5)

with κi := E[e Ji − 1], qt a Poisson process with intensity rate λ, and J = (J1, J2) bivariate

normally distributed jumps, with mean µ
J =

[

µJ
1 µJ

2

]′
and covariance matrix Σ

J
i j
=σJ

i
σJ

j
ρ J

i j
.

The log-processes X i
t := logSi

t read as

d X i
t = (r −λκi − 1

2 σ̄
2
i )d t + σ̄i dω̃i

t + Ji d qt . (4.6.6)

The characteristic function reads as ϕ(u|x) = eix′uφlev y (u), with

φlev y (u)= exp
(

iµ′
∆tu− 1

2 u′
Σu

)

exp
(

λ∆t(exp(iµJ ′u− 1
2 u′

Σ
J u)−1)

)

, (4.6.7)

where µi = r −λκi − 1
2 σ̄

2
i

and Σi j = σ̄i σ̄ jρi j ∆t .

The bivariate density functions of the correlated Brownian motion and jump-diffusion
process are both in C∞, which will result in exponentially converging errors in N1 and N2.
Density recovery using Fourier cosine expansions and the characteristic function gives

p̂(y|x) :=
N1−1
∑′

k1=0

N2−1
∑′

k2=0
Φk1,k2 (x)cos

(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

. (4.6.8)

The approximated density function of a log-jump-diffusion process is presented in Figure
4.6.1.

Figure 4.6.1: Density recovery jump-diffusion process p̂(XT |x0) (Parameter set II).

Parameter Sets The following five parameters sets are used for the rainbow options (t0 =
0).
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Set I: S0 =
[

90 110
]′

, r = 0.04, δi = 0, σ̄=
[

0.2 0.3
]′

, ρ =
[

1 0.25
0.25 1

]

, T = 1, K = 100.

Set II: S0 =
[

90 110
]′

, r = 0.05, σ̄=
[

0.12 0.15
]′

, ρ =
[

1 0.30
0.30 1

]

, λ= 0.60,

µ
J =

[

−0.10 0.10
]′

, σJ =
[

0.17 0.13
]′

, ρ J =
[

1 −0.20
−0.20 1

]

, T = 1, K = 100.

Set III: S0 =
[

40 40
]′

, r = 0.048790, δi = 0, σ̄=
[

0.2 0.3
]′

, ρ =
[

1 0.5
0.5 1

]

, T = 7/12, K = 40.

Set IV: S0 =
[

100 100 100
]′

, r = 0.04, δi = 0, σ̄=
[

0.3 0.35 0.4
]′

,

ρ =





1 0.5 0.5
0.5 1 0.5
0.5 0.5 1



 , T = 1, K = 100.

Set V: r = 0.05, δi = 0.1, σ̄=
[

0.2 0.2
]′

, ρ =
[

1 0
0 1

]

, T = 3, K = 100.

4.6.1. EUROPEAN RAINBOW OPTIONS
We start in Sections 4.6.1.1 and 4.6.1.2 by pricing two types of basket options with two un-
derlying asset prices, namely,

• geometric basket call options, with payoff g (x)=
(p

ex1
p

ex2 −K
)+

,

• arithmetic basket call options, with payoff g (x)=
( 1

2 ex1 + 1
2 ex2 −K

)+
.

Then, Section 4.6.1.3 discusses call-on-maximum and put-on-minimum options.

4.6.1.1. GEOMETRIC BASKET CALL OPTION

The price of a geometric basket call option under GBM equals the price of a Black-

Scholes call option with initial option price Ŝ0 =
√

S1
0

√

S2
0, dividend rate δ̂, and volatility

σ̂ ([LO08a]), where

σ̂=
√

( 1
2 )2 ∑

i , j σ̄i σ̄ jρi j and δ̂= 1
2

∑

i (δi + 1
2 σ̄

2
i

)− 1
2 σ̂

2. (4.6.9)

So, we can compare our results with the analytic option values. The Fourier cosine coeffi-
cients of the payoff function are given by

Vk1,k2 (T ) = 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

(
p

e y1
p

e y2 −K )+ cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2.

(4.6.10)

An analytic solution is available and can be found using, for instance, Maple 14. We use
parameter set I. Besides, we test the method for a deep out-of-the-money option with strike
price K = 200. The option values are v(t0,x0) = 8.8808 (K = 100) and v(t0,x0) = 2.8×10−3

(K = 200). The results in Table 4.6.1 and Figure 4.6.2 are highly satisfactory and show ex-
ponential convergence. Convergence is reached in milliseconds. For both strike prices, the
Fourier coefficients Vk1,k2 are of the same order of magnitude. The last coefficients retained
in the series expansion truncation determine the order of magnitude of the truncation er-
ror. Because of that, the error results are similar, however, the relative error is larger for the
out-of-the-money option.
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Table 4.6.1: Results geometric basket call (GBM).

N1(= N2)

10 20 40 80

Error (K = 100) -7.60e-1 -4.07e-2 -1.42e-5 2.34e-13
Error (K = 200) -7.23e-1 -4.06e-2 -1.42e-5 3.08e-13
CPU time (ms) 1.65 1.99 3.15 7.46
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Figure 4.6.2: Error geometric basket call (K = 100) (GBM).

In Section 4.6.1.2, we will price arithmetic basket options, for which the terminal coeffi-
cients Vk1,k2 (T ) need to be approximated by means of 2D discrete Fourier cosine transforms,
as explained in Section 4.3.2.1. Since there is an analytic solution available for the geometric

basket options, we can analyze the error of the discretization approach for this option. For
each spatial dimension we now take Q ≥ N1 grid-points. So we replace the payoff coeffi-
cients by a discrete approximation.

First, we analyze the approximate coefficients V
DC T

k1,k2
(T ) for the geometric basket option

and calculate the maximum absolute error. This error converges quadratically in Q , see
Figure 4.6.3. Second, we calculate the errors of the COS formula, see Section 4.5.1. The
computational domain is chosen sufficiently large, so that we can neglect errors ǫ1 and ǫ3,
in (4.5.2) and (4.5.4), respectively. Results are shown in Table 4.6.2 and Figure 4.6.4. The
left-side plot shows the series truncation error ǫ2, which indeed converges exponentially in
N1. The midplot confirms the algebraically converging error ǫDC T , and the right-side plot
shows the total error ǫ. If N1 is chosen sufficiently large, then the error of using discrete
Fourier transforms dominates the total error. The computation time of the coefficients is
of order O(Q2 log2 Q) and is the most time-consuming part. The CPU time is, however, still
less than one second.

4.6.1.2. ARITHMETIC BASKET CALL OPTION

For arithmetic basket options under geometric Brownian motion, there is no analytic so-
lution to the option price. Instead, we use the reference option value v(t0,x0) ≈ 10.173230,
obtained by using Q = 5000, N1 = N2 = 100 (Set I). This value is validated by a plain Monte
Carlo simulation with 106 runs, which results in v(t0,x0) ≈ 10.1714 with standard deviation
0.017.
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Figure 4.6.3: Maximum absolute error V
DCT

k1 ,k2
(T ) (k1 ,k2 = 1,. . . ,80).

Table 4.6.2: Results geometric basket call, with payoff coefficients approximated by DCTs.

(a) Absolute error

Q N1(= N2)

10 20 40 80

250 1.09e+1 7.61e-1 4.18e-2 1.14e-3
500 7.59e-1 4.02e-2 3.91e-4 4.05e-4

1000 7.60e-1 4.06e-2 4.96e-5 6.38e-5
2000 7.60e-1 4.07e-2 1.36e-5 5.75e-7

(b) CPU time (s)

Q N1(= N2)

10 20 40 80

250 0.007 0.007 0.008 0.014
500 0.04 0.04 0.04 0.06

1000 0.17 0.17 0.17 0.20
2000 0.71 0.71 0.73 0.75

Figure 4.6.4: Error geometric basket call (K = 100), with payoff coefficients approximated by DCTs.

The Fourier cosine coefficients of the payoff function are given by

Vk1,k2 (T ) = 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

( 1
2 e y1 + 1

2 e y2 −K )+cos
(

k1π
y1−a1
b1−a1

)

cos
(

k2π
y2−a2
b2−a2

)

d y1d y2.

(4.6.11)

No analytic representation is available and we approximate the coefficients by using dis-
crete Fourier cosine transforms. The results in Table 4.6.3 are satisfactory and the error
converges exponentially in N1. The CPU times are the same as in Table 4.6.2 and conver-
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gence is achieved within two seconds.

Table 4.6.3: Absolute error arithmetic basket call (GBM).

Q N1(= N2)

10 20 40 80

250 2.97e0 1.85e-1 2.65e-3 2.70e-3
500 2.98e0 1.91e-1 1.97e-5 2.97e-5

1000 2.98e0 1.91e-1 4.82e-5 1.29e-6
2000 2.98e0 1.91e-1 5.08e-5 1.28e-6

4.6.1.3. CALL-ON-MAX AND PUT-ON-MIN OPTIONS

In this section, we discuss the following two-color rainbow options:

• call-on-maximum option, with payoff g (x)= (max(ex1 ,ex2 )−K )+ ,

• put-on-minimum option, with payoff g (x)= (K −min(ex1 ,ex2 ))+ .

The Fourier coefficients of the payoff functions can be calculated analytically. For the Euro-
pean call-on-max and put-on-min options under GBM we use parameters set III ([Boy88])
and compare the results with the analytic solutions from [Stu82]. Figure 4.6.5 shows the
results and again confirms exponential convergence.
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Figure 4.6.5: Error put-on-min and call-on-max option (GBM).

Next we consider a put-on-minimum option under a jump-diffusion process. Under
jump-diffusion asset price processes, there is no analytic solution to the option values avail-
able. We use the model parameters from set II and set N1 = N2 = 125, for which machine
precision is reached. The results in Table 4.6.4 are achieved in a few milliseconds and cor-
respond well to the reference prices in [CF08].

4.6.2. BERMUDAN RAINBOW OPTIONS
For pricing Bermudan options we need to determine rectangular continuation and early-
exercise regions. For this, we divide the domain of the second dimension, [a2, b2], into J

subintervals:

[a2, b2]= [w0, w1]∪ [w1, w2] . . . [wq , wq+1] . . . [w J−1, w J ]. (4.6.12)
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Table 4.6.4: Put-on-min option values v̂ (t0,x0) (jump-diffusion).

S2
0 S1

0

90 100 110

90 15.6916 13.4073 12.1305
100 12.1918 9.1360 7.5175
110 10.3853 6.7274 4.8337

At the center of each subinterval, we determine the value(s) y∗ for which the optimal exer-
cise policy changes to the optimal continuation, i.e.,

g (y∗, 1
2 (wq +wq+1)) = c(tm , y∗, 1

2 (wq +wq+1)). (4.6.13)

For, for instance, a basket put option, we can then define an early-exercise region Gq =
[a1, y∗]× [wq , wq+1] and a continuation region Cq = [y∗, b1]× [wq , wq+1]. Therefore, the
computational domain is divided into J early-exercise and continuation regions. In the case
of a call-on-max option there is a multiply connected exercise region, see Figure 4.3.1, and
for each subinterval [wq , wq+1] we have one or two early-exercise regions Gq . As long as
we select a technique by which we can distinguish multiple continuation and early-exercise
regions from each other, this does not affect the complexity of the method.

Remark 4.6.1. We elaborate on the error in the determination of the early-exercise regions

and the convergence in parameter J . We assume that N1 and N2 are chosen sufficiently large,

so that the approximated option values are sufficiently accurate. Besides, we presume that

a root-finding method is available which is able to accurately determine the value(s) y∗, see

(4.6.13). For example, the Newton method with an accurate initial guess suffices. In this set-

ting, the early-exercise regions converge, quadratically in J , to the true regions by means of

the rectangle-rule-based method. However, if we would choose N1, N2 too small, the COS for-

mula might give inaccurate, oscillatory options values, resulting in inaccurate early-exercise

regions and the convergence result holding only for sufficiently large N1, N2.

For equidistant intervals [wq , wq+1] we take wq = a2 + (b2 − a2)q/J , which gives the
exercise regions Gq shown in Figure 4.6.6a. A nonequidistant grid, as in Figure 4.6.6b, is
based on the quantile function (the inverse distribution function) of asset price X 2

T . We use
w0 = a2, w J = b2, and wq = F−1

X 2
T

(q/J ). The large rectangle at the bottom of the domain is

not an accurate representation of the true region. However, it is located near the boundary
of the computational domain, outside the domain of interest, and therefore does not affect
the option values in the middle of the domain. The usage of nonequidistant grids typically
leads to more efficient pricing.

Remark 4.6.2. If the quantile function is not known analytically, then we can approximate

the random variable by a normally distributed variable with the same mean (first cumulant)

and variance (second cumulant), for which the quantile function is known. We will use this

approach for the jump-diffusion process in Section 4.6.2.3.

4.6.2.1. GEOMETRIC BASKET PUT OPTION

We start by pricing Bermudan-style geometric basket put options under geometric Brown-
ian motion. For the tests we use parameter Set I and take M = 10 early-exercise dates. The
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Figure 4.6.6: Rectangular early-exercise regions Gq (arithmetic basket put).

reference solution to the put option, v(t0,x) = 6.95904, equals a Bermudan put option in one
dimension ([BS07]) and is computed with the 1D-COS method. The terms Gk1,k2 (Gp ) admit
an analytic solution. The results are presented in Table 4.6.5. Convergence is exponential in
N1 and algebraical in J , with order two, see Section 4.5.1. The use of nonequidistant grids
improves the convergence significantly. The computation time is linear in J and the results
for, for example, N1 = 80 and J = 160 are obtained in about 30 seconds.

Table 4.6.5: Absolute error Bermudan geometric basket put.

(a) Equidistant grid.

J N1(= N2)

40 80 160

20 6.65e-2 7.77e-2 7.79e-2
40 1.22e-2 1.56e-2 1.56e-2
80 1.69e-4 3.54e-3 3.51e-3

160 2.51e-3 8.86e-4 8.56e-4
320 3.15e-3 2.42e-4 2.13e-4

(b) Nonequidistant grid.

J N1(= N2)

40 80 160

20 7.07e-4 2.23e-3 2.20e-3
40 2.63e-3 5.13e-4 4.83e-4
80 2.97e-3 1.46e-4 1.16e-4

160 3.17e-3 5.85e-5 2.88e-5
320 3.18e-3 3.70e-5 7.17e-6

In Section 4.6.2.2, we will price Bermudan arithmetic basket options, for which the coef-
ficients Vk1,k2 (T ) are approximated by means of 2D discrete Fourier cosine transforms and
the terms Gk1,k2 are approximated by Ĝk1,k2 , as explained in Section 4.3.2.2 (with equation
(4.3.25)). We examine here the error of this approach by using the Bermudan geometric

basket, for which an accurate reference price is available. We take Q = 2000. Table 4.6.6
shows satisfactorily results. The results are similar to those of Table 4.6.5, with analytic
terms Gk1,k2 . However, for higher values of N1 the usage of analytic terms is more accu-
rate.

4.6.2.2. ARITHMETIC BASKET PUT OPTION

For the arithmetic basket option, we take the same model parameters (Set I) as in the pre-
vious section, with M = 10 early-exercise dates. We approximate the Fourier coefficients at
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Table 4.6.6: Absolute error Bermudan geometric basket put, with Ĝk1 ,k2 (Q = 2000).

(a) Equidistant grid.

J N1(= N2)

40 80 160

20 7.05e-02 7.78e-02 7.79e-02
40 1.70e-02 1.58e-02 1.56e-02
80 5.56e-03 3.69e-03 3.54e-03

160 2.96e-03 1.09e-03 9.13e-04
320 2.33e-03 4.66e-04 2.86e-04

(b) Nonequidistant grid.

J N1(= N2)

40 80 160

20 4.55e-03 2.45e-03 2.25e-03
40 2.69e-03 7.39e-04 5.54e-04
80 2.37e-03 3.74e-04 1.92e-04

160 2.23e-03 2.87e-04 1.06e-04
320 2.21e-03 2.66e-04 8.52e-05

the terminal time by using the discrete Fourier cosine transform and the coefficients Gk1,k2

are approximated by Ĝk1,k2 . The results in Table 4.6.7 show converging option values.

Table 4.6.7: Bermudan arithmetic basket put option values v̂(t0,x0), with Ĝk1,k2
(Q = 2000).

Nonequidistant grid

J N1(= N2)

40 80 160

20 6.6086 6.6067 6.6077
40 6.6102 6.6091 6.6102
80 6.6106 6.6096 6.6108

160 6.6109 6.6097 6.6109
320 6.6108 6.6097 6.6109

4.6.2.3. CALL-ON-MAX AND PUT-ON-MIN OPTIONS

Here, we consider Bermudan call-on-maximum and put-on-minimum options. They are
discussed in, among others, [AB04, CF08, JO12, HG08]. The authors in [BD97] prove prop-
erties of the continuation and early-exercise regions for the American-style option. For
the 2D-COS method we apply a nonequidistant grid and use Remark 4.6.2 for the jump-
diffusion process.

The convergence results for a call-on-max option under GBM, Set V with M = 9, are
presented in Table 4.6.8a. In Table 4.6.8b, option prices for different initial asset values are
shown. They correspond to the values in the third and fourth columns, which are obtained
in [AB04].

At last, we price put-on-minimum options under a jump-diffusion process (parameters
set II). The results in Table 4.6.9a show converging values. This verifies the applicability of
the 2D-COS method to the broad class of Lévy processes. With increasing the number of
early-exercise dates, M , the option prices converge to the American prices in [CF08] (Table
4.6.9b).

Remark 4.6.3. Other rainbow options that can by priced easily and efficiently with the 2D-

COS formula are, among others, double binary (digital) cash-or-nothing options, spread op-

tions, two-asset correlation options, and exchange options.
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Table 4.6.8: Bermudan call-on-max option values v̂(t0 ,x) (GBM).

(a) Convergence in N1 and J

(S2
0 = S1

0 = 100).

J N1(= N2)

40 80 160

40 14.2946 13.8919 13.8921
80 14.3032 13.8993 13.8994

160 14.3025 13.9011 13.9013
320 14.3029 13.9015 13.9017
640 14.3037 13.9016 13.9018

(b) Option prices for different initial values
(S2

0 = S1
0) (N1 = 160, J = 320).

S1
0 2D-COS 95% CI [AB04] Binomial [AB04]

90 8.0727 [8.053, 8.082] 8.075
100 13.9017 [13.892, 13.934] 13.902
110 21.3437 [21.316, 21.359] 21.345

Table 4.6.9: Bermudan put-on-min option values v̂(t0,x) (jump-diffusion).

(a) Convergence in N1 and J (M = 9).

J N1(= N2)

40 80 160

40 9.5495 9.5570 9.5586
80 9.5597 9.5580 9.5597

160 9.5606 9.5582 9.5599
320 9.5621 9.5584 9.5600
640 9.5632 9.5584 9.5600

(b) Convergence in M

(J = 320, N1 = 160).

M v̂ (t0,x)

2 9.3577
4 9.4863
8 9.5526

16 9.5862
32 9.6033

4.7. NUMERICAL EXPERIMENTS UNDER THE HESTON MODEL

In this section, we test the performance of the 2D-COS method for pricing Bermudan put
options under the Heston dynamics. We use three different parameter sets:

Set A: ρ = 0.1, ν0 = 0.0625, ν̄= 0.16, S0 = 10, K = 10, r = 0.1, η= 0.9, ̹= 5, T = 0.25.

Set B: ρ =−0.64, ν0 = 0.0348, ν̄= 0.0348, S0 = 100, K = 100, r = 0.04, η= 0.9, ̹= 1.15, T = 0.25.

Set C: ρ =−0.9, ν0 = 0.04, ν̄= 0.04, S0 = 100, K = 100, r = 0.04, η= 0.5, ̹= 0.5, T = 1.

Having the Feller condition satisfied is equivalent to having 2̹ν̄/η2 −1 := qF ≥ 0. For Set A
we have qF = 0.98 and the variance process remains strictly positive. For sets B and C we
have qF =−0.47 and qF =−0.84, respectively, and the Feller condition is not satisfied.

Figure 4.7.1 shows the approximated bivariate density function p̂(XT ,νT |x0,ν0), as ob-
tained by density recovery, equation (4.6.8), for set A.

We find that

|Φ±
k1,k2

(x)| ≤ 2
b1−a1

2
b2−a2

∣

∣

∣ϕ
(

k1π
b1−a1

,± k2π
b2−a2

∣

∣

∣x
)∣

∣

∣∼O

(

k
−(qF +1)
2

)

, (4.7.1)

based on the univariate characteristic function of the variance process. The coefficients
Φk1,k2 decrease exponentially in k1 and algebraically in k2 with order qF +1. For set C this
yields convergence order 0.16, which will result in very slow convergence of the 2D-COS
method in this case.
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Figure 4.7.1: Bivariate density function (Set A).

4.7.1. EUROPEAN OPTIONS WITH BERMUDAN FRAMEWORK
To test the algorithm for pricing under the Heston stochastic volatility model, we calculate
European option prices with the Bermudan framework, with M = 12 time steps. At every
time step tm we take only a continuation region, C1 = [a1, b1]× [a2, b2], which then corre-
sponds to a European option and no early-exercise opportunities.

Reference prices are obtained by the 1D-COS method for European options. The error
results are shown in Table 4.7.1. The error converges exponentially in N1 and algebraically
in N2, as expected. Sets A and B give very accurate prices. However, the convergence for Set
C is relatively slow and the obtained values are not highly accurate. The reason for this is
the peaked density function, with coefficients Φk1,k2 only slowly decreasing in k2.

Table 4.7.1: Error European put option prices.

(a) Set A, v(t0 ,x) = 0.5015 (qF = 0.98).

N1 N2

50 100 200

50 -1.01e-4 -1.03e-5 1.02e-6
100 -1.07e-4 -1.63e-5 -4.90e-6
200 -1.07e-4 -1.62e-5 -4.86e-6

(b) Set B, v(t0 ,x) = 3.1325 (qF =−0.47).

N1 N2

50 100 200

50 3.83e-4 2.05e-4 8.94e-5
100 3.75e-4 1.95e-4 7.90e-5
200 3.75e-4 1.95e-4 7.90e-5

(c) Set C, v(t0 ,x) = 6.2711 (qF =−0.84).

N1 N2

250 500 1000

50 7.8787e-02 4.3008e-02 2.6131e-02
100 6.8267e-02 3.1137e-02 1.3630e-02
200 6.7979e-02 3.0760e-02 1.3220e-02

4.7.2. BERMUDAN PUT OPTIONS UNDER HESTON DYNAMICS
In this section, we consider Bermudan put options with M = 10 early-exercise dates. For the
first test, we select J = 27 continuation and early-exercise regions. The results in Table 4.7.2
show convergence in N1 and N2 and the prices for sets A and B match the results in [FO11]
very well. Convergence for set C, with qF = −0.84, is somewhat slow because of the slowly
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decreasing Fourier coefficients in this case. The quadrature-COS method ([FO11]) gives the
reference value 5.3982.

In a second test we vary the number of continuation and exercise regions. The conver-
gence is quadratic in J , see Table 4.7.3.

The computation times are significantly longer than for the Bermudan rainbow options
under Lévy processes in Section 4.6.2 because efficient matrix-vector multiplication with
the FFT algorithm is applicable in only one direction, see Section 4.4. However, accuracy
of four digits can still be obtained within seconds for set A and set B. PDE methods (e.g.,
[HitH13]) may be better for set C.

Table 4.7.2: Results Bermudan put option (J = 27).

(a) Option values, Set A (qF = 0.98).

N1 N2

40 60 80 100

40 0.517765 0.517869 0.517894 0.517903
60 0.517176 0.517285 0.517311 0.517320
80 0.517021 0.517130 0.517156 0.517165

100 0.517008 0.517116 0.517143 0.517152

(b) Option values, Set B (qF =−0.47).

N1 N2

40 60 80 100

40 3.20083 3.20077 3.20071 3.20066
60 3.19909 3.19903 3.19897 3.19893
80 3.19912 3.19907 3.19901 3.19897

100 3.19910 3.19905 3.19899 3.19894

(c) Option values, Set C (qF =−0.84).

N1 N2

40 60 80 100

40 5.70464 5.57416 5.50068 5.45386
60 5.77720 5.67101 5.61174 5.57399
80 5.75689 5.64811 5.58898 5.55195

100 5.75808 5.64673 5.58552 5.54697

(d) CPU time (s).

N1 N2

40 60 80 100

40 6.7 10.5 14.8 22.8
60 8.8 14.0 20.2 31.2
80 11.2 17.9 25.8 42.9

100 13.5 21.4 31.2 51.2

Table 4.7.3: Bermudan put option values v̂ (t0,x), convergence in J (N1 = 100, N2 = 100).

log2 J

3 4 5 6 7

Set A 0.515991 0.516784 0.517060 0.517133 0.517152
Set B 3.186917 3.196282 3.198380 3.198837 3.198944
Set C 5.42431 5.51038 5.53874 5.54523 5.54697
CPU time (s) 3.4 6.3 12.4 25.1 51.2
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4.8. HIGHER-DIMENSIONAL COS METHOD
The 2D-COS formula can be generalized to higher dimensions easily. In this section we
elaborate on the possibilities and difficulties of the higher-dimensional COS method. In
Section 4.8.1, we demonstrate an example with three underlying assets.

Suppose we have an n-dimensional asset price process, with N1 = N2 = . . . = Nn = N

terms in the series summations. Then, with the methodology that is described in Section
4.3, the computational complexity of pricing a Bermudan option is O(2n N n log2 N ). It is
clear that we cannot choose n too large, as then the curse of dimensionality sets in. Besides,
the data storage grows exponentially in n. For example, in seven dimensions, with N = 100,
the storage of the Fourier coefficients V (tm) requires 8 ·105 GB of memory. Dimensions n ∈
{2, . . . ,5} should, however, still be fine. For higher dimensions, efficient aggregation of states
or sparse grid methods are needed. However, most existing methods for a dimensionality
of ten and higher are based on Monte Carlo methods.

For pricing Bermudan options we need to determine n-dimensional continuation and
early-exercise hypercubes. In three-dimensional (3D) space, we get rectangular cuboids.
For four or higher dimensions it gets harder to visualize the regions. Special algorithms to
determine the regions efficiently, or even adaptively, may be helpful.

The terminal coefficients Vk1,k2,...,kn
(T ) can be approximated by using discrete Fourier

cosine transforms, see Section 4.3.2.2. Computation or approximation of the multidimen-
sional coefficients Gk1,k2,...,kn

(Gp ) can be time-consuming or no analytic expression may be
available, but we can use the terminal coefficients to approximate them. This approach was
explained in Section 4.3.2.2.

4.8.1. 3D-COS FORMULA
The three-dimensional version of the COS formula reads

v̂(t0,x) :=
3

∏

i=1

bi−ai
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Vk1,k2,k3 (T ). (4.8.1)
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, (4.8.2)

where the last equality holds for Lévy processes, with φlev y (u1,u2 ,u3) :=ϕ(u1,u2,u3|0,0,0).
We test the 3D-COS formula by pricing European basket call options, with parameter set

IV. The results in [LO08b] are used as reference prices. For the coefficients Vk1,k2,k3 (T ) we use
discrete Fourier cosine transformations to approximate them. The results are presented in
Table 4.8.1. They show that the multidimensional-COS formula is very accurate. The CPU
time for N1 = 40 and Q = 200 is less than two seconds.
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Table 4.8.1: Absolute error geometric basket call, v(t0 ,x0) = 11.9791, and arithmetic basket call, v(t0 ,x0) = 13.2449
(N1 = N2 = N3).

Geometric basket Arithmetic basket
Q N1 N1

10 20 40 80 10 20 40 80

50 1.78 3.12e-2 4.03e-3 n/a 2.11e+1 4.59e-1 6.94e-3 n/a
100 1.79 4.53e-2 7.92e-3 7.91e-3 2.14e+1 4.80e-1 9.82e-5 7.82e-5
200 1.81 3.68e-2 9.88e-4 9.89e-4 2.15e+1 4.86e-1 <5.0e-5 2.13e-5
400 1.81 3.77e-2 2.46e-4 2.47e-4 2.15e+1 4.87e-1 <5.0e-5 <5.0e-5

4.9. CONCLUSION
In this chapter we presented the generalization of the COS method to higher dimensions.
The recursive algorithm can be applied to, for example, pricing rainbow options, but also to
pricing single-asset options under the Heston stochastic volatility model.

The 2D-COS method for valuation of Bermudan options is based on the dynamic pro-
gramming principle and 2D Fourier cosine series expansions. For smooth density func-
tions, the resulting method converges exponentially in N1 and N2, the number of terms in
the series summations. Otherwise we achieve algebraic convergence, as in the 1D case. For
multidimensional stochastic processes in the class of Lévy processes, we can apply efficient
matrix-vector multiplication using the FFT algorithm. The Heston model is not in the Lévy
class and the FFT algorithm will be applicable in only one dimension.

We performed extensive numerical experiments with European and Bermudan options.
The algorithm for pricing two-color rainbow options can be used for various payoffs and
performs highly satisfactorily. The asset prices in the tests are modeled by geometric Brow-
nian motions or correlated jump-diffusions, but the method can be applied to a broad class
of multidimensional asset price processes for which the characteristic function is available.

The density function of the Heston dynamics may be non-smooth, especially near zero
variance if the Feller condition is not satisfied, and peaked densities give rise to slow al-
gebraic convergence. However, for a wide range of parameter values, the 2D-COS method
achieves accurate Bermudan put prices.





CHAPTER 5

The Social Discount Rate under a Stochastic A2 Scenario

5.1. INTRODUCTION CLIMATE CHANGE ECONOMICS
Over the past 600,000 years, until the pre-industrial revolution, the level of atmospheric
CO2 has varied from 180 to 300 parts per million (ppm) [Wei09, S+07]. Nowadays, the level
is at 390 ppm and is steeply increasing [NOA]. A widespread believe is that the chang-
ing climate is related to the increasing CO2 level. According to the Intergovernmental
Panel on Climate Change (IPCC) [S+07], global mean surface temperatures have risen by
0.74 ◦C±0.18 ◦C when estimated by a linear trend over the last 100 years (1906-2005). More-
over, the rate of warming over the last 50 years has almost doubled that over the last 100
years (0.13 ◦C±0.03 ◦C versus 0.07 ◦C±0.02 ◦C per decade). It is considered very unlikely
that climate changes of at least the seven centuries prior to 1950 were due to variability
generated within the climate system alone.

Emission of greenhouse gases (GHGs) increases the radiative forcing in the atmosphere.
Besides, there are so-called feedback factors which amplify, or diminish, the effect of forc-
ing and temperature increase. Examples are ice-albedo feedback, water vapor feedback,
and cloud feedback. The system of climate feedbacks is explained in [RB07, Roe09]. A con-
ventional measure of the climate system’s response to forcing is the climate sensitivity. The
climate sensitivity ∆T2x is defined as the equilibrium change in global and annual surface
air temperature due to an increase in downward radiative flux that would result from sus-
tained doubling of atmospheric CO2 over its pre-industrial value. A doubling of carbon
dioxide produces a radiative forcing of about 3.7 watts per square meter. The IPCC (2007)
estimates a ‘likely’ range of ∆T2x lying between 2 and 4.5 ◦C and ‘very unlikely’ to be less
than 1.5 ◦C [S+07, RB13].

In the SRES report [NAD+00], the IPCC discusses several emission scenarios where they
distinguish between GHGs emission, land-use, population, socioeconomic development,
and technological change. They provide projections of future temperature rises. The differ-
ent scenarios give a broad range of possible outcomes. For example, the A1FI scenario has
a best estimate temperature rise of 4.0 ◦C (at 2090-2099 relative to 1980-1999) with a likely
range of 2.4 to 6.4 ◦C, whereas the B1 scenario gives a range of only 1.1 to 2.9 ◦C.

Above figures demonstrate the uncertainty about future climate. The changing climate
and temperature increase affect the production of food, the occurrence of flooding and
other natural disasters, as well as the economic progress. Climate change economics inves-
tigates the impact of climate change on the world economy. Two leading research articles in
this field are written by Stern [Ste07] and Nordhaus [Nor08]. One of the main conclusions of

This chapter is based on the article ‘The social discount rate under a stochastic A2 scenario’, 2014 [ARO14].

93



5

94 5. THE SOCIAL DISCOUNT RATE UNDER A STOCHASTIC A2 SCENARIO

Stern is that “climate change is a serious global threat, and it demands an urgent global re-
sponse”. On the other hand, Nordhaus claims that despite the threats climate change poses
to the global economy, it would be more equitable and efficient to invest in reproducible
capital and human capital now so as to build up the productive base of economies and to
put into effect controls on carbon in an increasing, but gradual manner, starting several
decades from now. Dasgupta [Das08] illustrates the impact of the choice of different prefer-
ence parameters (time discount factor, risk aversion,...) and explains how this leads to the
two opposite conclusions of Stern and Nordhaus. For the parameter choice of Nordhaus he
finds a high discount rate 4.3%, while Sterns parameter values give 1.4%.

Discount rates are used in cost benefit analysis (CBA) to convert future costs and bene-
fits to present values. Suppose a project has high initial costs and benefits in the far future.
Then a lower discount rate assigns a higher value to the future benefits and increases the
profitability of the project. It is common practice to use a lower discount rate for invest-
ments with high uncertain risks. In this chapter we investigate the impact of climate change
and its inherent uncertainty on discount rates.

The research in this chapter is a result of collaboration with CPB Netherlands Bureau for
Economic Policy Analysis. The numerical methods from the previous chapters are applied
to a specific model, but the focus here is on the modeling and economic implications. Be-
cause of that, the contents, terminology, and notation differ from the rest of this thesis. For
example, T denotes temperature instead of the terminal time (t∗ here) to stay in line with
notation in literature about climate change economics.

5.2. INTRODUCTION SOCIAL DISCOUNT RATE AND A2 SCE-
NARIO

Recent work shows that the social discount rate may escape the logic of exponential dis-
counting, when shocks on capital productivity are permanent instead of transitory. Here,
the social discount rate is defined as the certainty-equivalent rate of return on a take-it-or-
leave-it marginal investment at time 0 with a certain payoff at time t . For example, using
a simple Ramsey optimal growth model with an immediate and once-and-forever shock to
capital productivity, Weitzman [Wei10] finds that the social discount rate for three centuries
hence equals 0.6% even though the expected rate of return in his model equals 6% per year.
Intuitively, permanent shocks imply that the riskiness of consumption is exponentially in-
creasing over time, giving even moderately risk-averse consumers a strong incentive to in-
crease their savings. Although the message from Weitzman’s paper is crystal clear - in cost-
benefit analysis, the far-distant future should be discounted far less heavily than is done by
standard exponential discounting at a constant rate - any practical implementation within
climate-change CBA’s hinges crucially on the availability of social discount rates that incor-
porate actual climate risks.

To that end, this chapter employs the stochastic A2 scenario of Roe [RB13] to study the
impact of climate risk on the social discount rate between 2010 and 2300. This stochas-
tic A2 scenario emulates the climate forcing of the IPCC A2 scenario in the 21st century,
after which a decline in forcing is assumed at a rate which approximately stabilizes tem-
perature for the median trajectory. It not only recognizes that the thermal inertia of the
ocean will prevent too abrupt warming of the earth’s climate, but also that the earth’s cli-
mate sensitivity and its response time are positively related: whereas it will take 50 years
to reach two-thirds of the equilibrium impact when climate sensitivity equals 1.5 ◦C, it will
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take 5000 years when climate sensitivity equals 15 ◦C. Taken together, these considerations
imply that the transient response of the earth’s climate system to increases in greenhouse
gases is limited [RB13]. Nonetheless, it is conceivable, although unlikely, that we might see
double-digit increases in temperature three centuries hence. For example, the 2-sigma tem-
perature range for the stochastic A2 scenario employed in this chapter equals [3.2,6.2] ◦C in
2100, but [3.3,10.8] ◦C in 2300.

To access the impact of the ‘gradual’ dynamics of the earth’s temperature on the social
discount rate, we employ a stochastic version of a Ramsey optimal growth model, which was
originally developed by Cox, Ingersoll, and Ross [CIR85a]. Our research thus fits into a small
number of papers that have used this CIR-model as a motivation to establish a schedule of
declining discount rates by using historical data [NP03, GKPP07, MMP13]. In contrast, our
model is forward looking and not only incorporates the above-mentioned climate-change-
related stylized facts, but also uses the idea of rare macro-economic disasters [Rie88, Bar09]
to adequately capture key features of financial markets data. Thus, in a world unaffected
by climate change, the expected rate of return on capital and the social discount rate are
constant over time and equal to 6% and 1% respectively, implying an equity premium of
5%.

Our main results are fourfold. First, climate-change related risks will not have a size-
able effect on the social discount rate in this century. Intuitively, the earth’s inertia prevents
‘catastrophic’ states of nature to be reached with sufficient probability before 2100. Second,
the social discount rate may see a rapid decline after the turn of this century, where the ex-
tent of the decline primarily depends on the size of the damage in ‘catastrophic’ states of
nature. For example, under the reactive specification of the damage function proposed by
Weitzman [Wei12], the social discount rate reaches subzero levels as of 2180, after which it
declines to -2.0% in 2300. The decrease of the social discount rate is more moderate under
the more conventional quadratic specification of the damage function used by Nordhaus
[Nor08], reaching 0.7% in 2200 and 0.6% in 2300. All in all, our simulations reveal that rela-
tively moderate deviations from the quadratic damage function are sufficient for a subzero
social discount rate by 2300. Third, the addition of interaction between economic and cli-
mate risks significantly lowers our estimate of the social discount rate by about 0.9% by
2300. Fourth, the social discount rate under the stochastic scenario deviates significantly
from its deterministic counterpart, signifying that the proper treatment of far-distant un-
certainty is critically important. To illustrate, by 2300 the social discount rate under the
stochastic scenario is 0.1 percentage point (13%) lower for the quadratic damage function,
but more than 2.3 percentage points (767%) lower for the reactive damage function.

Surprisingly, our results show that Weitzman’s stylized example with an immediate and
once-and-forever shock to capital productivity is actually at the upper end of our estimates
of the social discount rate. Under the stochastic A2 scenario, any deviation from the fre-
quently used quadratic damage function will result in lower, and in many cases negative,
estimates of the social discount rate by 2300. Notice that negative real discount rates are
relatively common and may occur over extended periods of time [RS11, MMP13]. For ex-
ample, in times of a crisis, investors may have such a desire to avoid risk that they are willing
to accept a negative yield on riskless investments.1 Our results do not necessitate unrealisti-
cally low assumptions on either the pure rate of time preference or the coefficient of relative
risk aversion, as, in our base case, these have values of 0.015 and 4, respectively. Instead, it

1In the aftermath of the financial crisis of 2007, both 2-year German government bonds and 1-month US Treasury
bills have been sold at a negative real rates [U.S14].
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is the combination of the reactive damage function and the risk of high temperatures under
the A2 scenario that is crucial for obtaining negative social discount rates three centuries
hence.

Interestingly, a substantial part of the difference between our results and Weitzman’s
stylized example can be attributed to the fact that the expected rate of return on the take-
it-or-leave-it investment with a certain payoff at time-t contains a term premium. This
term premium measures an investments’ potential to hedge against shifts in temperature
and can be traced back to the desire of non-log-utility consumers to hedge against changes
in temperature (cf. Cox, Ingersoll, and Ross [CIR81]). As a result, the discount rate to be
used at each instant for this take-it-or-leave-it-investment will in general not be equal to
the prevailing risk-free rate. In our results, this desire to hedge results in a decrease of the
social discount rate (SDR) of 0.04 percentage points for the quadratic and 0.9 percentage
points for the reactive damage function.

To date, there is, to the best of our knowledge, no study tying the stochastic develop-
ment of temperatures under a realistic emissions scenario, such as the IPCC A2 scenario, to
the level of the social discount rate. Using the parable of a once-and-forever shock to capital
productivity, Weitzman [Wei10] obtains an analytical solution for the social discount rate in
the context of a simple Ramsey optimal growth model. In a standard Lucas tree economy,
Gollier [Gol14] shows that efficient discount rates are decreasing with maturity, i.e., contain
a term premium, when growth rates are serially correlated, but he does not explicitly model
temperature. Nordhaus [Nor08] and Stern [Ste07] use assumptions on the pure rate of time
preference and the coefficient of relative risk aversion (which they refer to as the elasticity
of marginal utility) to obtain a social discount rate, but they do not establish a formal link
between uncertainty and the social discount rate. In a study on the optimal level of en-
vironmental investment within a setting of economic and environmental disasters, Barro
[Bar13] stresses the importance of gauging (fat-tailed) uncertainty based on empirical evi-
dence. Using a database of 185 economic rare disasters for 40 countries over periods going
back as far as 1870, he is able to explain the observed equity premium on financial markets
without invoking unrealistically low assumptions on either the pure rate of time preference
and the coefficient of relative risk aversion. He extends the model to include environmen-
tal rare disasters, but the present-day probability of an environmental disaster under the
baseline calibration does not concord with the fact that the thermal inertia of the ocean
will prevent too abrupt warming of the earth’s climate. Cai [CJL13] extend the DICE model
of Nordhaus [Nor08] to a stochastic setting, but they do not include fat-tailed uncertainty
based on empirical evidence on rare macro-economic disasters.

The outline of this chapter is as follows. In Section 5.3, we present our model of choice
and derive the corresponding social discount rate. Section 5.4 presents and discusses the
calibration of the model’s economic and physical parameters. The results are presented in
Section 5.5. Section 5.6 discusses some policy implications and concludes.

5.3. THE OPTIMAL PORTFOLIO MODEL AND THE SOCIAL DIS-
COUNT RATE

In this section, we explain our stochastic general equilibrium model, which is based on the
general equilibrium model of asset pricing by [CIR85a]. Consider an economy in which a
single production sector produces the consumption good Ct . The time-t value of an initial
investment in this production sector is denoted by Kt . Under continuous reinvestment of
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the output, this value evolves according to the following stochastic differential equation

dKt = (α(Tt )−κλ)Kt d t +Kt G(t)dωt +Ktκd qt , (5.3.1a)

G(t)dωt =
[

G1(t) G2(t)
]

[

dω1
t

dω2
t

]

. (5.3.1b)

Here, ωt denotes a two-dimensional Wiener process. The increments dωi
t are indepen-

dent normally distributed with mean zero and standard deviation
p

d t . This Wiener process
evolves continuously over time: whereas random process ω1

t represents ‘normal’ economic
fluctuations, random process ω2

t represents fluctuations in the earth’s climate. G(t) denotes
the return volatility, which may be time-dependent. We extend the model of [CIR85a] with
jumps, as in Ahn [AT88]. Let qt be a Poisson process with intensity rate λ, while κ< 0 is its
fixed jump size. This Poisson process is discontinuous and reflects that from time to time
macroeconomic disasters, such as wars, depressions and revolutions, may hit the economy
(cf. Barro [Bar09]). In our model, these investments have stochastic constant returns to
scale with expected value α(Tt ). Note that we explicitly allow the expected rate of return α

to depend on the temperature Tt , which follows the following stochastic differential equa-
tion

dTt =µ(t ,Tt )d t +σ2(t ,Tt )dω2
t , Tt0 = T0. (5.3.2)

Here, µ is the drift of temperature and σ2 is the temperature volatility. Note that unex-
pected changes in the economy do not affect temperature as we set σ1 = 0. Thus, equa-
tions (5.3.1) to (5.3.2) describe an economy that is confronted with exogenous temperature
risk: unexpected changes in temperature and unexpected changes in the rate of return on
capital are correlated with covariance Cov(dKt ,dTt )/d t = Kt G(t)σ′(t ,Tt ), with σ= [0, σ2].

The consumer allocates a share a of his wealth Wt to the physical production opportu-
nity (with expected return α(T )) and the remaining part 1−a to the riskless opportunity for
borrowing and lending (with a risk-free return2 r ). Thus, aWt denotes the amount of time-t

wealth invested in the physical production sector. In addition, he chooses his consump-
tion flow Ct as to maximize the expected discounted utility over the interval [t , t∗], where
t∗ denotes the terminal time. We use the univariate CRRA utility function

U(C ) =C 1−η/(1−η), η> 0, η 6= 1, (5.3.3)

where η is the constant coefficient of relative risk aversion. The value function is

v(t ,W,T ) = max
{a,C }

Et ,W ,T
[∫t∗

t
e−δ(τ−t )U(Cτ)dτ+e−δ(t∗−t )U(Wt∗ )

]

, (5.3.4)

with δ, the pure rate of time preference, capturing the consumer’s impatience. The wealth
dynamics evolve according to

dWt = aWt
dKt

Kt
+ (1−a)r Wt d t −Ct d t

=
(

a(α(Tt )−κλ− r )+ r −pt

)

Wt d t +aWt G(t)dωt +aWtκd qt , (5.3.5)

2In general, the risk-free rate will depend on temperature Tt , wealth Wt and time t .
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where p := C/W denotes the proportion of wealth consumed. The corresponding Hamil-
ton-Jacobi-Bellman equation reads [CIR85a, AT88]

0 = max
C≥0,a>0

[

U(C )+ vW (a(α−κλ− r )W + r W −C )+ 1
2 vW W a2W 2GG ′

+ vT µ+ 1
2 vT T σσ

′+ vW T aW Gσ′+ vt −δv + (v(t ,W +aκW,T )− v)λ
]

:= max
C≥0,a>0

ψ(C , a|t ,W,T ), ∀(t ,W,T ) ∈ [0, t∗)×R+×R, (5.3.6)

with boundary conditions v(t ,0,T ) = 0 and v(t∗,W,T ) =U(W ). The subscripts of the value
function denote partial derivatives. The optimal values of the control variables are denoted
by C∗ and a∗. An economic equilibrium is defined as a set of stochastic processes (r, a∗,C∗)
satisfying the first order conditions ψC = 0 and ψa = 0, and the market clearing condition
a = 1. We get

0 =UC − vW , (5.3.7a)

0 = vW (α−κλ− r )W + vW W aW 2GG ′+ vW T W Gσ′+ vW (t ,W +aκW,T )Wκλ. (5.3.7b)

The first order condition for consumption gives C∗(t ,W,T ) = v
−1/η
W

(t ,W,T ). With sepa-
ration of variables, it follows from Cox, Ingersoll, and Ross [CIR85b] that the value function
takes the form

v(t ,W,T ) = f (t ,T )U(W ) (5.3.8)

and

−
W vW W

vW
= η, −

vW T

vW
=−

fT

f
= η

C∗
T

C∗ . (5.3.9)

This implies that the optimal consumption policy C∗ (t ,W,T )/W = f (t ,T )−1/η = p∗(t ,T )
does not depend on the wealth level. The choice of the utility function implies that the equi-
librium risk-free rate r (t ,T ) (hereafter simply denoted by the risk-free rate) is independent
of the wealth level too. It can be derived as in Cox, Ingersoll, and Ross [CIR85a] and Ahn
[AT88], and equals

r (t ,T ) =α−ηGG ′−η
C∗

T
C∗ Gσ′+ [(1+κ)−η−1]κλ, (5.3.10)

where C∗
T represents the derivative of optimal consumption with respect to temperature.

Inspection of equation (5.3.10) reveals that the risk free rate is equal to the expected rate of

return α minus the risk premium on aggregate wealth ηGG ′ +η
C∗

T

C∗ Gσ′− [(1+κ)−η −1]κλ.
The risk premium on aggregate wealth can be associated with the presence of ‘normal’ eco-

nomic fluctuations ηGG ′, temperature risk η
C∗

T

C∗ Gσ′, and the presence of macroeconomic
disasters −[(1+κ)−η−1]κλ. When wealth and temperature are uncorrelated, that is Gσ′ = 0,
the second term in the risk premium will cancel out. The risk premium associated with
macroeconomic disasters is proportional to the disaster probability λ, but depends nonlin-
early on the disaster size κ and the coefficient of relative risk aversion η.

The Social Discount Rate The prime interest of this chapter lies with the social discount
rate, which is defined as the certainty-equivalent rate of return on a take-it-or-leave-it in-
vestment at time t0 with a certain payoff at time t (cf. Weitzman [Wei10]). Notice that this
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social discount rate is not equal to the risk-free rate r (t ,Tt ) in equation (5.3.10), which is the
instantaneous rate of return on an riskless investment in the interval (t , t +d t). Instead, the
social discount rate R(t) is given by

R(t) =− 1
t−t0

log(Φ(t)). (5.3.11)

Here, the time-t expected discount factor Φ(t) denotes the current (time t0) price of a
pure discount bond promising to pay one euro at time t . According to Cox, Ingersoll, and
Ross [CIR85a, Lemma 3], the value of this bond is given by

Φ(t)= E

[

exp

(

−
∫t

t0

β(τ,Tτ)dτ

)]

, (5.3.12)

where the expectation is taken over the actual temperature process (5.3.2) and β(τ,Tτ) de-
notes the expected rate of return on our pure discount bond. Equation (5.3.12) states that
the present value of this bond equals the expected discounted value of the promised pay-
ment of one euro at time t , where the relevant discount rate is given by its rate of return
β(τ,Tτ). Unfortunately, it does not provide a constructive way of finding Φ(t), since the
randomly varying rate of return β(τ,Tτ) is in general not known in advance (cf. Cox, Inger-
soll, and Ross [CIR85a]). In particular, notice that the rate of return β(τ,Tτ) will in general
not be equal to the risk-free rate r (τ,Tτ), since the rate of return on long-term pure discount
bonds will in general contain a term premium. This term premium can either be positive
of negative and measures the extra compensation for the bond’s potential to hedge against
shifts in the expected rate of returnα(Tt ) resulting from shifts in temperature Tt (cf. Cox, In-
gersoll, and Ross [CIR81]). Only in the special case where we have equality of local expected
rates of return on all bonds, we have β(τ,Tτ) = r (τ,Tτ).3 In fact, equation (5.3.12) provides
a generalization of the social discount concept employed by Weitzman [Wei98]. To see this,
consider his case where the risk-free rate r j (τ) is drawn from a known distribution at time
t0 = 0 for τ ≥ t0 and all uncertainty is resolved immediately after the draw. From (5.3.12),

we have that Φ(t) = E[e−
∫t

t0
r j (τ)dτ], which is equal to Weitzman’s formula (5) on page 203 in

[Wei98].
Fortunately, Lemma 4 of Cox, Ingersoll, and Ross [CIR85a] does provide us with a practi-

cal way of determining the price of a pure discount bond promising to pay one euro at time
t . It reads

Φ(t)= Ê

[

exp

(

−
∫t

t0

r (τ,Tτ)dτ

)]

, (5.3.13)

where Ê denotes the expectation with respect to risk-adjusted temperature process

dTt = [µ(t ,Tt )−φT ]d t +σ2(t ,Tt )dω2
t , Tt0 = T0, (5.3.14)

and where φT = ηGσ′ +ηC∗
T

/C∗σσ′ is the temperature risk premium.4 Intuitively, equa-
tion (5.3.13) states that the price of a pure discount bond promising to pay one euro at time

3In the asset pricing literature, this condition is known as the Local Expectations Hypothesis, see Cox, Ingersoll,
and Ross [CIR81]. They show that a primary requirement for the Local Expectations Hypothesis to hold is that
utility is logarithmic, i.e., U(C ) = log(C ). In that case, the value function is separable in wealth and temperature,
i.e., vW T = 0 (see Cox, Ingersoll, and Ross [CIR85b]), and consumers have no desire to hedge against changes in
temperature.

4From Cox, Ingersoll, and Ross [CIR85a, equation (20)], we have φT =− vW W
vW

W Gσ′− vW T
vW

σσ′. Using (5.3.9), gives

φT = ηGσ′ +ηC∗
T

/C∗σσ′.
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t is equal to its expected discounted value, where the discount rate is equal to the risk-
free rate and the expectation is taken with respect to the risk-adjusted temperature process
in (5.3.14). The risk adjustment is done by subtracting the temperature risk premium φT

from the drift of the actual temperature process (5.3.2). Since the expressions in (5.3.12)
and (5.3.13) measure the same value, the special case of φT = 0 implies that the expected
rate of return on our pure discount bond must be equal to the risk-free rate in that case, i.e.,
we have β(τ,Tτ) = r (τ,Tτ). This confirms our claim that equation (5.3.12) provides indeed
a generalization of the social discount rate concept of Weitzman [Wei98].

5.4. CALIBRATION OF THE MODEL
The basic idea underlying the calibration of our model is that it should be able to explain a
number of important stylized facts regarding asset returns or, equivalently, discount rates.
More specifically, we require that - given reasonable values for the pure rate of time prefer-
ence and the coefficient of relative risk aversion - the model is able to get into the right ball-
park regarding the historically observed values for both the risk-free rate and the expected
rate of return on assets. In other words, we impose the not unreasonable assumption that
at the initial time t0 = 2010, climate change has not yet affected the rate of return on assets.
Thus, the expected rate of return α(T0) is set equal to 6% per year. This is somewhat below
the expected rate of return in Barro [Bar06, Bar09], but concords with the value chosen by
Weitzman [Wei10]. In addition, the risk-free rate r (t0,T0) is set equal to 1% per year. The
risk premium is then equal to 5% per year.

Table 5.4.1: Parameters in the baseline calibration.

Parameter Value

η : coefficient of relative risk aversion 4
G : return volatility vector [0.02, 0]
σ : temperature volatility vector [0,σ2]
λ : macroeconomic disaster probability 0.017
κ : effective macroeconomic disaster size -0.406
α(T0) : expected rate of return absent climate change 0.06
δ : pure rate of time preference 0.015
δK : rate of depreciation 0.05

Next, we calibrate the parameters in equation (5.3.10) for the case of Gσ′ = 0. As noticed
by Barro [Bar06], the usual view in the finance literature is that η is in the range of some-
thing like 2 to 5. Weitzman [Wei10] uses a value of 3, while Nordhaus [Nor08] uses a value
of 2. However, Barro [Bar09] finds that values lower than 3 do not accord with observed
equity premia and risk-free rates. In our baseline calibration, we use η equal to 4. This and
subsequent calibration parameters are collected in Table 5.4.1. We take the return volatility
vector G equal to [0.02, 0]. The value of G1 accords with Barro [Bar06, Bar09], but notice
that its value is quantitatively unimportant in the calibrations, as ηG1G1 = 0.16%.5 This
is the famous risk-premium puzzle. However, the disaster probability λ and the contrac-
tion proportion κ are nontrivial in the calibrations: −[(1+κ)−η−1]κλ equals 4.85%, when
λ = 0.017 per year and κ =−0.406. Here, λ = 0.017 corresponds to the observed frequency
at which macroeconomic disasters, such as wars, depressions, and financial crises, have

5We have not been able to find any empirical information on the value of G2. Hence, we set this parameter to zero
in the baseline calibration.
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occurred during the last century [Bar09]. Instead of using Barro’s (2009) empirical distribu-
tion of κ with impacts ranging from 15% to 64% and a mean of 29%, we use the effective
average value of a contraction, which is equal to 40.6%. As noted by Barro [Bar09], this ef-
fective average value generates about the same equity premium and welfare effects as the
empirical observed frequency distribution. Figure 5.4.1 displays the iso-risk-free-rate lines
for r (t0,T0) and shows which choices of κ and η keep the level of the risk-free rate constant
(given the calibrated values of the other parameters G1 = 0.02,α = 0.06 and λ = 0.017). In
the figure, our baseline calibration is indicated by a star. In the sensitivity analysis, we will
vary κ and η such that the risk-free rate r (t0,T0) remains unchanged. Finally, we set the
pure rate of time preference equal to 0.015, but notice that, in the baseline calibration, its
choice is immaterial for the level of the risk-free rate, because Gσ′ = 0.6
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Figure 5.4.1: Risk-free rate r (t0 ,T0) as function of κ and η.

To visualize the role of the return volatility G1, the disaster probability λ and the con-
traction proportion κ in the level of the risk premium, Figure 5.4.2 displays twenty-five ran-
domly drawn wealth paths for the period 2010 to 2200 satisfying equation (5.3.5) and the
parameter values of Table 5.4.1.7 The figure clearly displays the contrast between the al-
most negligible influence of the return volatility G1, which is associated with the ‘wiggling’
behavior of the wealth paths, and the huge impact of contractions, which is associated with
the large discontinuous jumps in wealth.

Next, we specify the dependence of the expected rate of return α(T ) on temperature T .
Tol [Tol09] provides a comprehensive list of the welfare effects of climate change. None of
the thirteen studies in his review has looked at the welfare effects of temperature increases
beyond 3 ◦C. Moreover, these studies show that considerable uncertainty exists regarding
the welfare impact of climate change, even for ‘moderate’ temperature increases. For ex-
ample, the estimates for a 2.5 ◦C warming range from -1.9 percent to +0.9 percent of GDP.
The absence of more-than-three-degrees studies implies that any estimate of the welfare
impacts of climate change beyond 3 ◦C is, by necessity, based on extrapolation. And al-
though we may be fairly confident about a damage extrapolation for a warming of 4 ◦C, that

6Notice that this is an artifact of our specific modeling assumptions: with constant stochastic returns to scale
and power utility, changes in the pure rate of time preference have no effect on the expected rate of return, the
risk-free rate, and the equity premium (cf. Barro [Bar09]).

7Notice that in these simulations (only), we assumed that climate change has no effect on the rate of return α(T ),
i.e., ∀T : α(T ) =α(T0). Consequently, optimal consumption is a fixed percentage of wealth.
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Figure 5.4.2: Simulated wealth paths.

confidence will be greatly reduced for damage extrapolations to 10 ◦C or even 15 ◦C. Essen-
tially, we have no objective way to determine the magnitude of high-temperature damages
[Wei12]. Therefore, in this study, we use a ‘range’ of damage functions, encompassing both
the low- and high-end of the available appraisals. Specifically, the damage function em-
ployed by Nordhaus [Nor08] serves as our low-end damage function, whereas the damage
function employed by Weitzman [Wei12] serves as our high-end damage function, i.e.,

Ω
N (T ) =1/

(

1+ (T /20.46)2)

, (5.4.1a)

Ω
W (T ) =1/

(

1+ (T /20.46)2 + (T /6.081)6.754)

. (5.4.1b)

Above, ΩN (T ) and Ω
W (T ) denote the ‘Nordhaus’- and ‘Weitzman’-damage function re-

spectively. Notice that these damage functions are not readily comparable, as Nordhaus
defines his damage function Ω

N (T ) over gross output, whereas Weitzman defines his dam-
age function Ω

W (T ) over net output. For practical reasons that will become clear below,
we choose to retain these differences. Hence, the expected rates of return for our low- and
high-end cases are given by

αN (T ) =−δK + (α(T0)+δK )ΩN (T ), (5.4.2a)

αW (T ) =α(T0)ΩW (T ), (5.4.2b)

where δK denotes the rate of depreciation in the economy and is taken to be equal to 5%.
Figure 5.4.3 displays the range of our assumptions on the expected rate of return. Observe
that the expected rates of return αN and αW are almost indistinguishable for temperature
increase less than 3 ◦C, but differ markedly for larger increases in temperature. For example,
an increase of 6 ◦C results in an expected rate of return of 5.1% (Nordhaus) and 3.0% (Weitz-
man), whereas an increase of 10 ◦C results in an expected rate of return of 3.9% (Nordhaus)
and 0.2% (Weitzman). Finally, notice that these differences would have been much larger,
had we chosen to define the Weitzman damage function Ω

W (T ) over gross, instead of net,
output.

We calibrate our temperature process on the A2 scenario of [RB13], who employ a simple
climate model to describe the interactions between the atmosphere, the surface and deep
ocean layer, thereby capturing three material characteristics of global warming. First, the
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Figure 5.4.3: The low- and high-end expected rates of return αi (T ).

thermal inertia represented by the deep ocean slows down the response of surface tempera-
tures on global warming. Second, climate sensitivity is assumed to be normally distributed,
which results in a skewed density for the temperature response. Third, the response time,
i.e., the time needed to reach the equilibrium temperature given a certain level of forcing,
is positively related to climate sensitivity: whereas it will take approximately one hundred
years to achieve equilibrium, when climate sensitivity is low, it will take thousands of years
to achieve equilibrium when climate sensitivity is high. Figure 5.4.4 presents the simula-
tion results of [RB13]. In their scenario, the climate forcing is chosen to emulate the IPCC
A2 scenario [NAD+00], where after a decline in forcing is assumed at a rate that approxi-
mately stabilizes the temperature for the median trajectory. In Figure 5.4.4, the shadings
represent the 1-, 2-, and 3-sigma ranges for climate sensitivity.

Figure 5.4.4: Quantile functions of Roe [RB13], their Fig. 4b.

We take initial time t0 = 2010 and terminal time t∗ = 2300 and calibrate functions µ(t ,T )
and σ2(t ,T ) in equation (5.3.2) such that the quantiles of our simulations resemble the re-
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sults of [RB13].8 Figure 5.4.5a shows a number of simulated temperature paths together
with our simulated ranges for climate sensitivity, which resemble the results of [RB13] rather
well. The shape of the temperature distribution at particular times is shown in Figure 5.4.5b,
which clearly illustrates the time evolution of uncertainty under the stochastic A2 scenario:
even though temperature increases of more than 6 ◦C are very unlikely to occur before 2100,
such increases are much more likely to occur after 2100.
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(a) Temperature paths Tt and sigma ranges.
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Figure 5.4.5: Calibrated temperature process.

5.5. RESULTS
Using the parameters in the baseline calibration displayed in Table 5.4.1, we determine the
social discount rate for both our low-end and high-end damage functions.9 For sake of ref-
erence, the dashed blue lines in Figure 5.5.1 show the development of the social discount
rate at the median value of temperature, i.e., the temperature on the (deterministic) A2 path
of the IPCC, under both the low-end (left figure) and high-end damage function (right fig-
ure). These figures reveal immediately that the social discount rate on the deterministic
A2 path does not differ markedly between these damage functions. Intuitively, this follows
from the observation that on the IPCC A2 path the temperature increase is limited to 5 ◦C.
At these temperature increases, the low- and high-end damage functions are still rather
similar (see Figure 5.4.3). Finally, notice that the social discount rate on the IPCC A2 path
decreases only mildly from 1% in 2010 (our starting year) to respectively 0.7% (‘low-end’
damage function) and 0.3% (‘high-end’ damage function) in 2300.

Next, the red lines in Figure 5.5.1 show the development of the social discount rate
under our stochastic A2 scenario for both the low-end and high-end damage function. A
number of striking results appear from this figure. First of all, comparison of Figures 5.5.1a
and 5.5.1b shows that in both cases the social discount rate is almost stable over the course

8Details on the calibration procedure are provided in Appendix 5.A.
9Our procedure to obtain the social discount rate is as follows. First, we solve the optimal consumption problem of

equation (5.3.4) by using the 2D-COS method, see Appendix 5.B. Substitution of the optimal consumption policy
in equation (5.3.10) gives the risk-free rate r (t ,T ). Finally, we approximate the expected value in equation (5.3.13)
by means of a Monte Carlo simulation of the temperature and corresponding risk-free rate paths.
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of this century. The intuition is that the earth’s inertia prevents strong increases in tempera-
ture - and thereby high damages - before the end of this century. From this, however, it does
not follow that climate change damages are immaterial for the social discount rate. To the
contrary, Figure 5.5.1a shows that under the low-end damage function, the social discount
rate slowly declines from 0.9% in 2100 to 0.6% in 2300, which is just under the SDR on the
(deterministic) IPCC A2 path of 0.7%. However, under the high-end damage function the
decline is much more pronounced: the social discount rate declines from 0.9% in 2100 to
-2.0%(!) in 2300 (see Figure 5.5.1b). Thus, under our stochastic A2 scenario and the high-
end damage function, the net present value of 1 euro in 2300 would be equal to 350 euros
today. Comparison of the social discount rates in Figures 5.5.1a and 5.5.1b reveals that this
‘discounting reversal’ must be attributed to the choice for the high-end damage function,
as the social discount rate is still positive under the low-end damage function. Notice, how-
ever, that even under the low-end damage function, the logic of exponential discounting
is strongly diminished: 1 euro in 2300 would be equal to 0.18 euro today, instead of 0.13
(using the social discount rate that corresponds to the median value of temperature as the
relevant discount rate) or zero (using the expected rate of return of 6% as the relevant dis-
count rate).10
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(a) low-end case, αN
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(b) high-end case, αW .

Figure 5.5.1: The social discount rate R(t ) in the baseline calibration.

To further apprehend our results, Figure 5.5.2a presents 25 randomly drawn temper-
ature paths from equation (5.3.2). On these paths, the global mean temperature in 2300
varies between 3 and 8.5 ◦C. The corresponding risk-free rates are shown in Figures 5.5.2b
and 5.5.2c for our low-end and high-end damage function, respectively. From these figures,
it is immediately apparent that the negative values of the risk-free rate on high-temperature
paths are driving our results. As in Weitzman [Wei10], low-probability states of the world
play an important role in long-term discounting, if they are associated with a sufficiently
high and persistent impact. Under our stochastic A2 scenario, the persistency of the im-
pacts follows from the inertia of the climate system and the shape of the damage function:
when today’s temperature and damages are high, it is very likely that tomorrow’s temper-
ature and damages will be high as well. Surprisingly, our estimates of the social discount
rate turn out to be much lower than in Weitzman’s stylized example, even though in our

10All these present value calculations follow by taking the relevant discount rate R(2300), and calculating
e−290R(2300). We have e−290×−0.02 = 350, e−290×0.006 = 0.18, e−290×0.007 = 0.13, and e−290×0.06 ≈ 0.
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case - and in contrast to the immediate and once-and-forever shock considered by Weitz-
man [Wei10] - high-impact states of the world do not occur before the end of this century.
Intuitively, this can be explained by the observation that under our stochastic A2 scenario
low-probability, high impact states of the world are actually much more likely than in Weitz-
man’s stylized example. For example, the probability that the expected rate of return is no
larger than 1%, equals 0.49% in the case considered by Weitzman [Wei10],11 but nearly 10%
under the stochastic A2 scenario and the high-end damage function.
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Figure 5.5.2: Simulated temperature paths (left) and the corresponding risk-free rates (middle and right).

To access the sensitivity of our results with respect to the damage function, Figure 5.5.3
shows the social discount rate for the intermediate expected rate of return αI = 0.5(αN +
αW ). This figure reveals that - even for this intermediate case - the social discount rate
becomes negative just after 2250. This can be explained by the fact that the probability that
the expected rate of return is no larger than 1% is still 1.9% under the stochastic A2 scenario
and the intermediate case, which remains much higher than Weitzman’s 0.49%. Hence, the
prime factor driving our results is not the damage function per se (although damage must
surely be sizeable), but the relatively large probabilities of extreme climate change under
the stochastic A2 scenario.

Table 5.5.1: The decrease in the SDR resulting from the term premium in the pure discount bond.

Damage function 2010 2050 2100 2150 2200 2250 2300

Low-end 0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0
Intermediate 0.0 0.0 0.0 -0.0 -0.1 -0.2 -0.4
High-end 0.0 0.0 -0.0 -0.3 -0.9 -1.0 -0.9

Table 5.5.1 shows that the term premium in the pure discount bond underlying the SDR
explains a substantial part of the SDR’s decreasing term structure, at least for the interme-
diate and the high-end damage functions.12 Whereas, even in 2300, the contribution of the
term premium to the SDR is almost negligible for the low-end damage function, it is sizeable
for both the intermediate and high-end damage functions. For example, in 2300, the impact
of the term premium in the pure discount bond on the SDR is 0.9 percentage points for the
high-end and 0.4 percentage points for the intermediate damage function. Thus the term
premium accounts for almost 29% of the total decrease in the SDR for the high-end and

11See his Table 2 on page 9.
12In the Table, a ‘-0.0’ denotes a negative number which is rounded of to one decimal.
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25% for the intermediate damage function.13 Intuitively, the term premium will only effect
the SDR when temperature has a sizeable impact on aggregate risk, since, under those cir-
cumstances, a bond’s potential to hedge against shifts in temperature has value. Obviously,
this is the case under both the intermediate and the high-end damage function, but not so
under the low-end damage function. This can also be confirmed directly from Figure 5.5.1a,
where the narrow margin between the SDR on the deterministic and stochastic paths is a
clear signal that aggregate risk is only changing slowly in that case.
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Figure 5.5.3: The social discount rate R(t ) under the intermediate case, αI .

Under our baseline assumption that unexpected changes in temperature are uncorre-
lated with unexpected changes in wealth, changes in the coefficient of relative risk aversion
η do not affect the social discount rate. To see why, use Gσ′ = 0 and rewrite (5.3.10) as

r (t ,T )= r (t0,T0)+α(T )−α(T0), (5.5.1)

which states that the risk-free rate at time t equals the risk-free rate at time t0, r (t0,T0),
plus the expected change in the rate of return on assets between t0 and t , α(T ) −α(T0).
Subsequently, substitution of (5.5.1) into (5.3.13) and (5.3.11) gives

R(t) = r (t0,T0)−α(T0)− 1
t−t0

log Ê

[

exp

(∫t

t0

−α(Tτ)dτ

)]

, (5.5.2)

from which it immediately follows that the social discount rate R(t) is indeed independent
of the level of risk aversion η. Equation (5.5.2) states that the time-t social discount rate
equals the time-zero risk-free rate r (t0,T0) minus the time-0 expected rate of return on
assets α(T0) plus the time-t certainty-equivalent rate of return on assets. Intuitively, the
surprising result that the social discount rate is independent from the coefficient of rela-
tive risk aversion can be understood by realizing first of all that the risk-free rate at t0 is
not affected by changes in the coefficient of relative risk aversion η: the requirement that
r (t0,T0) = 0.01 implies that we are moving along the iso-risk-free-rate line indicated by a
star in Figure 5.4.1. Hence, any change in the coefficient of relative risk aversion must be
fully offset by an appropriate change in the disaster size κ, leaving the risk-free rate at t0

unchanged.14 In addition, changes in risk aversion do not affect the expected rate of return
on assets α(T ). Hence, the social discount rate is unaffected by changes in risk aversion,

13As measured from the no-climate-change value of the SDR of 1.0%.
14Notice that the derivative of r (t ,T ) with respect to η equals −GG ′ − log(1+κ)κλ(1+κ)−η . Hence, in general,

higher risk aversion will lower the risk-free rate.
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whenever unexpected changes in temperature are uncorrelated with unexpected changes
in wealth.

Inspection of equation (5.5.2) shows that high values of the expected rate of return will
discount themselves out of existence, which implies that the certainty-equivalent rate of
return on assets tends to the lowest possible value when t goes to infinity (cf. Weitzman
[Wei98]). In terms of our stochastic A2 scenario, this means that the expected rates of re-
turn belonging to low temperature paths become less important over time, whereas the
expected rates of return belonging to high temperature paths become more important over
time. Eventually, the expected rates of return on the highest temperature path will come to
dominate the social discount rate R(t).

Finally, we explore the sensitivity of our results with respect to G2(t), which captures the
impact of unexpected changes in temperature on the rate of return on assets. Given the lack
of empirical evidence on this parameter, we let G2(t) decline linearly from zero in 2010 to
-0.025 in 2050, after which its value remains constant. This choice implies that, as of 2050,
an unexpected increase of temperature by 0.5 ◦C decreases the rate of return by 12.5%. So,
in case the expected rate of return would have been 0.06, an unexpected temperature in-
crease of 0.5 ◦C would have resulted in a 0.06× 0.125 = 0.0075 percentage point decrease
of the rate of return on assets. Figure 5.5.4 shows that - under the high-end damage func-
tion and compared to our baseline calibration - such a return volatility decreases the social
discount rate in 2300 from -2.0% to -2.9%.15 Moreover, the impact of the return volatility
G2(t) on the social discount rate is increasing over time until 2200, after which it roughly
stabilizes. Since the return volatility itself is constant from 2050 onwards, this implies that
the additional uncertainty associated with this return volatility matters more when wealth
is low (and climate damages are high). Given that the risk-free rate r (t ,T ) now depends on
the level of risk aversion η, as can be seen from equation (5.3.10), it is to be expected that
the social discount rate will depend on the level of risk aversion as well. Indeed, Figure 5.5.5
confirms that higher risk aversion is associated with a (somewhat) lower social discount
rate.16
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Figure 5.5.4: The social discount rate R(t ) under the high-end damage function for the case of time-dependent
(red continuous line) and non-time-dependent (dashed green line) return volatility G2(t ).

15Under the low-end damage function, the correlation between unexpected changes in temperature and unex-
pected changes in wealth has a negligible impact on the social discount rate. Results are available from the
authors upon request.

16In order to preserve the notion that the model should be in accordance with historically observed levels of the
risk-free rate, we simultaneously vary the level of risk aversion η and the effective disaster sizeκ, keeping the risk-
free rate at time t0 at 1%, i.e., we are moving along the iso-risk-free-rate line indicated by a star in Figure 5.4.1.
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Figure 5.5.5: The social discount rate R(t ) under the high-end damage function and time-dependent return volatil-
ity G2(t ) for the case of low risk aversionη= 3.5;κ−0.44 (continuous red line) and high risk aversionη= 4.5;κ−0.38
(dashed green line).

5.6. DISCUSSION AND CONCLUSION
This chapter has shown that the far-distant future may be crucially important for long-term
discounting. Even though the inertia of the earth’s climate prevents a too rapid increase of
surface temperature, our results suggest that a small, but non-negligible probability of an
extreme temperature response in the far-distant future may drive the social discount rate
to subzero levels. As a result, the present value of one euro three centuries hence may be
everywhere between 0.18 and 350 euros.17 Notwithstanding the extremely wide margin in
this present value, what stands out is that it is much, much larger than the present value un-
der standard exponential discounting at a constant rate. For example, taking the discount
rate three centuries hence based on our low-end (Nordhaus) damage function results in a
present value that is almost ten times larger than the present value that is obtained by using
the much-criticized, and supposedly too low, discount rate of 1.4% of the Stern Review.18

Importantly, our results suggest that the key issue determining the level of the social
discount rate is not how large damages are or might be (although they surely must be sub-
stantial to invoke a sizeable response in the social discount rate), but how large the prob-
ability of extreme climate change is. Under our stochastic A2 scenario, this probability
is sufficiently large to make the logic of exponential discounting in the far distant future
(almost) completely irrelevant. Importantly, our limited state of knowledge regarding the
high-temperature damages does not interfere with this conclusion, as the logic of exponen-
tial discounting is severely diminished under both the quadratic and reactive specification
of the damage function. The shape of the damage function is, however, critically impor-
tant for the occurrence of negative discount rates. Whereas the social discount rate will
be strictly positive under our low-end, quadratic damage function, it may reach subzero
levels under more extreme specifications of the damage function, such as the reactive dam-
age function proposed by Weitzman [Wei12]. In that respect, it must be noticed that in the
‘short’ run, i.e., this century, the impact of the damage function on the social discount rate
seems to be severely constrained by the inertia of the earth’s climate system. In particular,
our results suggest that the probability of a high-enough temperature response under our

17From R(2300) = 0.006 and −0.02, we have e−290×0.006 = 0.18 and e−290×−0.02 = 350, respectively.
18e−290×0.0061 = 0.17 is about ten times larger than e−290×0.014 = 0.017.
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stochastic A2 scenario is insufficient to drive this century’s social discount rate away from
its conventional, no climate change, level.

Thus, our results seem to imply that, by and large, exponential discounting will still pro-
duce consistent valuations in this century. This surprising result is, however, counterbal-
anced by the observation that the SDR in the next century will be hugely affected by climate
change unless we are more or less certain that damages from climate change will be rel-
atively low. In many instances, it might even become negative. If it does, the social cost
of carbon will explode to infinity, thus providing a clear signal that society should reduce
emissions whatever the cost. Of course, the price signal of a discount rate on the IPCC A2
path is valid only for marginal mitigation projects, i.e., for investment projects that do not
affect aggregate welfare, aggregate emissions and global temperature. When considering
non-marginal investment projects, the probability of extreme climate change will decline,
and it is likely that the SDR will increase from the levels reported in this chapter. As a result,
the social cost of carbon will decline, thereby reducing the value of the marginal mitigation
project on the new emissions path. The extent to which our results carry over to more mod-
erate emission scenarios, such as the IPCC B2 scenario, is therefore crucial for cost-benefit
analysis of climate change and remains a interesting topic for further research.

Appendix

5.A. CONSTRUCTION TEMPERATURE PROCESS
In this section we explain our procedure to calibrate the temperature dynamics,

dTt =µ(t ,Tt )d t +σ2(t ,Tt )dω2
t . (5.A.1)

We consider a time horizon [t0, t∗] = [2010, 2300] years and set Tt0 = 0.7 ◦C. For the con-
struction of functions µ(t ,T ) and σ2(t ,T ) we use so-called ‘reference paths’. The reference
paths are represented by the black lines in Figure 5.A.1. The slopes of the reference paths
are known and for each year and temperature the value of function µ(t ,T ) is interpolated
using the three reference paths and their slopes.

During the first years, the volatility σ2(t0,T ) equals 0.03. For temperature values close
to the lowest reference path, volatility will stay close to this value. For temperatures along
the mid reference path, volatility will increase moderately and linearly in time, up to
σ2(2100,T ) = 0.045 after 90 years and will stay constant thereafter. Along the highest ref-
erence path, volatility will increase linearly in time up to the high value σ2(2100,T ) = 0.2.
After 90 years the volatility is assumed to decreases to the value σ2(t∗,T ) = 0.08 at the ter-
minal time t∗.

The lowest and mid reference paths tend to an equilibrium temperature, while equi-
librium is not reached yet on the highest reference path. Again interpolation with three
reference paths is used to find the value σ2(t ,T ). With this, we capture the feature of high
uncertainty on high temperature paths [Roe09].
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Figure 5.A.1: The three reference paths (black lines) used for construction of the temperature model together with
twenty five simulated temperature paths.

5.B. NUMERICAL METHOD
Our numerical method to solve the optimal portfolio problem is based on the dynamic pro-
gramming principle and Fourier cosine series expansions, called the COS method. In this
section we give some details of this method.

The value function is given by

v(t ,W,T ) = max
{C≥0}

E
t ,W ,T

[∫t∗

t
e−δ(τ−t )

U(Cτ)dτ+e−δ(t∗−t )
U(Wt∗ )

]

. (5.B.1)

W and T represent the current wealth and temperature level, respectively, and the wealth
dynamics evolve according to

dWt =
(

α(Tt )−κλ−pt

)

Wt d t +Wt Gdωt +Wtκd qt . (5.B.2)

We switch to the log-domain, Xt := logWt , with

d Xt =
(

α(Tt )−κλ−pt − 1
2 GG ′

)

d t +Gdωt + log(1+κ)d qt . (5.B.3)

The corresponding value function is

υ(t , x,T ) := max
{p≥0}

E
t ,x,T

[∫t∗

t
e−δ(τ−t )

U(e Xτpτ)dτ+e−δ(t∗−t )
U(e X t∗ )

]

. (5.B.4)

x and T represent the current log-wealth and temperature level, respectively. We take an
equidistant grid of control times t0 < t1 < . . . tm < . . . < tM = t∗, with timestep ∆t := tm+1 −
tm and approximate processes by their discrete variants. The log-wealth and temperature
processes are discretized by an Euler scheme (see, for example, [PBL10, KKK10]).

We approximate the value function by (see [KD01])

υ(tm , x,T ) = max
{pi }

Etm ,x,T

[

M−1
∑

i=m

e−δ(ti−tm )U(e X ti pi )∆t +e−δ(tM−tm )U(e X tM )

]

. (5.B.5)
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The discrete-time value function converges in M to the continuous-time variant. The dy-
namic programming principle gives us

υ(tm , x,T ) = max
pm

E
tm ,x,T

[

U(ex pm)∆t +e−δ∆tυ(tm+1, Xtm+1 ,Ttm+1 )
]

:= max
pm

[

U(ex pm)∆t +c(tm , x,T, pm )
]

. (5.B.6)

The second part is called the continuation value. The continuation value can be approx-
imated by using the 2D-COS formula (Chapter 4) and the problem is solved backwards in
time (Bellman’s principle of optimality), as explained in Chapter 2. We use utility function
U(C ) =C 1−η/(1−η), so p∗ = p∗(t ,T ) (see Section 5.3). The method parameters are

[a1,b1], [a2,b2] computational domain log-wealth (1th dimension)

and temperature (2nd dimension), respectively,

N1, N2 number of Fourier cosine coefficients in 1th and 2nd dimension, resp.,

J1, J2 number of control regions in 1th and 2nd dimension, respectively.

The continuation value is approximated by a two-dimensional COS formula

ĉ(tm , x,T, pm ) = e−δ∆t
N1−1
∑′

k1=0

N2−1
∑′

k2=0

1
2

[

ℜ
{

ϕ
(

k1π
b1−a1

,+ k2π
b2−a2

∣

∣

∣x,T, pm

)

e
ik1π

−a1
b1−a1 e

ik2π
−a2

b2−a2

}

+ℜ
{

ϕ
(

k1π
b1−a1

,− k2π
b2−a2

∣

∣

∣x,T, pm

)

e
ik1π

−a1
b1−a1 e

−ik2π
−a2

b2−a2

}]

Vk1,k2 (tm+1).

(5.B.7)

ϕ(., .|x,T, pm ) is the bivariate conditional characteristic function of (Xtm+1 ,Ttm+1 ), given
(Xtm ,Ttm ) = (x,T ) and value pm . The Fourier cosine coefficients of the value function are
given by

Vk1,k2 (tm ) := 2
b1−a1

2
b2−a2

∫b2

a2

∫b1

a1

υ(tm , y,ς)cos
(

k1π
y−a1

b1−a1

)

cos
(

k2π
ς−a2

b2−a2

)

d ydς. (5.B.8)

We divide the domain [a1,b1] × [a2,b2] into rectangular subdomains Dq1 ,q2 =
[zq1 , zq1+1] × [wq2 , wq2+1]. For each subdomain we determine the optimal control value
pq1,q2 , then

Vk1,k2 (tm) = 2
b1−a1

2
b2−a2

∑

q1 ,q2

Ï

Dq1,q2
U(e y pq1 ,q2 )∆t cos

(

k1π
y−a1

b1−a1

)

cos
(

k2π
ς−a2

b2−a2

)

d ydς

+ 2
b1−a1

2
b2−a2

∑

q1 ,q2

Ï

Dq1,q2
c(tm , y,ς, pq1 ,q2 )cos

(

k1π
y−a1

b1−a1

)

cos
(

k2π
ς−a2

b2−a2

)

d ydς

:=
∑

q1 ,q2

Uk1,k2 (Dq1 ,q2 , pq1 ,q2 )∆t +
∑

q1 ,q2

Ck1,k2 (tm ,Dq1 ,q2 , pq1 ,q2 ). (5.B.9)

The terms Uk1,k2 are time-independent and known analytically. The term Ck1,k2 are ap-
proximated by using an FFT algorithm. With this we can recover the coefficients Vk1,k2 (tm)
backwards in time and solve the optimal portfolio problem (see Algorithm 1). All param-
eters are chosen such that the numerical approximations give rise to converged solutions,
values and functions of interest.



CHAPTER 6

A Fourier Cosine Method for an Efficient Computation of

Solutions to BSDEs

6.1. INTRODUCTION
Whereas the theory and applications of classical forward stochastic differential equations
(FSDEs), with a prescribed initial value, is traditional and became widely known, we are
concerned with backward stochastic differential equations (BSDEs) in this chapter. A BSDE
is a stochastic differential equation for which a terminal condition, instead of an initial con-
dition, has been specified and its solution consists of a pair of processes. The linear type of
equation was introduced by Bismut in [Bis73], where linear BSDEs were used in stochastic
optimal control problems as adjoint equations in the stochastic version of the Pontryagin’s
maximum principle. The general notion of BSDE has been introduced by Pardoux and Peng
[PP90]. They proved existence and uniqueness of solutions of BSDEs under some Lipschitz
conditions on the driver function. Many researchers have attempted to relax these restric-
tions. For example, the authors in [LSM97] show existence of a minimal solution under
more general assumption for the driver function, which is assumed to be continuous with
linear growth in some of its arguments. Kobylanski [Kob00] provided uniqueness and ex-
istence results for a driver with quadratic growth in one of its arguments in a Brownian
filtration. These results are generalized to an infinite activity jump setting in [LS14]. For a
general introduction to BSDEs we refer to [Pha09, EKPQ97].

In recent years, BSDEs have received more attention in mathematical finance and eco-
nomics. For example, the Black-Scholes formula for pricing options can be represented by
a system of decoupled forward-backward SDEs. Market imperfections can also be incorpo-
rated, such as different lending and borrowing rates for money, the presence of transaction
costs, or short sales constraints. These imperfections give rise to more involved nonlinear
BSDEs. If the asset price follows a jump diffusion process then the option cannot perfectly
be replicated by assets and cash, i.e., the market is not complete. One can set up a mini-
mum variance hedge to value the option. Another way to value and hedge options in this
setting is by utility indifference pricing, where a certain utility value is assigned to the possi-
ble profits and losses of the hedging portfolio. The pricing problem can be solved by means
of a BSDE with jumps.

As explained in Chapter 1, the well-known Feynman-Kac theorem gives a probabilis-
tic representation for the solution of a linear parabolic partial differential equation (PDE)
by means of the corresponding FSDE and a conditional expectation. The solution of a

This chapter is based on the article ‘A Fourier cosine method for an efficient computation of solutions to BSDEs’,
to appear in SIAM Journal on Scientific Computing, 2015 [RO15].
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BSDE provides a probabilistic representation for semilinear parabolic PDEs, see for example
[PP92], which is a generalization of the Feynman-Kac theorem. Also the converse relation
holds. This connection enables us to solve a semilinear PDE by probabilistic numerical
methods, like Monte Carlo simulation techniques.

Probabilistic numerical methods to solve BSDEs may, for example, rely on time dis-
cretization of the stochastic process and approximations for the appearing conditional ex-
pectations. Least-squares Monte Carlo regression to approximate the conditional expec-
tations is used in, for example, [LGW06, GLW05, BS12]. A rich literature exists on other
methods, for example based on chaos decomposition formulas [BL13]. In this chapter we
employ a general θ-method for the time-integration ([Ise09]) and propose a new method to
approximate the solution backwards in time. This approach is based on the COS method.
The method is based on Fourier cosine series expansions and relies on the characteristic
function of the transitional density, which enables us to approximate the conditional expec-
tations is a very efficient way. We call the method the BCOS method, short for BSDE-COS
method.

We start in Section 6.2 with notation, definitions, and a further introduction to BSDEs,
where also the link with semilinear partial differential equations is stated. A general time
discretization of the BSDE results in expressions with conditional expectations (Section 6.3).
These conditional expectations are computed by the BCOS method (Section 6.4) and the
problem is then solved backwards in time. We perform extensive numerical experiments in
Section 6.5. Then, in Section 6.6, utility indifference pricing and the related maximization
problems are discussed. We derive a numerical scheme for the resulting BSDE with jumps
in Section 6.6.3. Results in Section 6.7 show the utility indifference ask and bid prices.

6.2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
We start with some notation and definitions, for which we follow the survey paper
[EKPQ97]. Let ω = (ωt )0≤t≤T be a standard one-dimensional Brownian motion on a fil-
tered probability space (Ω,F,F,P), with F= (Ft )0≤t≤T the natural filtration of the Brownian
motion ω, and T a fixed finite time horizon. We denote by H2

T (R) the set of predictable pro-

cesses η : Ω× [0,T ] →R such that E
[

∫T
0 |ηt |2d t

]

<∞ and by L2
T (R) the set of FT -measurable

random variables X : Ω→R that are square integrable. We consider the BSDE

−dYt = f (t ,Yt , Zt )d t −Zt dωt , YT = ξ, (6.2.1)

where function f : Ω× [0,T ] ×R×R → R is P ⊗B ⊗B-measurable. P is the set of Ft -
progressively measurable scalar processes on Ω× [0,T ]. f (.) is the generator or driver of
the process and the terminal condition ξ : Ω → R is an FT -measurable random variable.
For simplicity we use one-dimensional processes, but the BSDE theory can be extended to
higher dimensions, with d-dimensional processes ωt and Yt and an n ×d-dimensional Zt

process, as described in [EKPQ97].
A solution to BSDE (6.2.1) is given by a pair of processes (Y , Z ), with Y a continuous

real-valued adapted process and Z a real-valued predictable process satisfying
∫T

0 |Zt |2d t <
∞,P a.s., satisfying

Yt = ξ+
∫T

t
f (s,Ys , Zs )d s −

∫T

t
Zsdωs , 0 ≤ t ≤ T. (6.2.2)

Unlike an FSDE, the solution of a BSDE is thus a pair of adapted processes (Y , Z ). Note that



6.2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

6

115

BSDEs cannot be considered as time-reversed FSDEs, because at time t the pair (Yt , Zt ) is
Ft -measurable and the process does not yet ‘know’ the terminal condition.

Function f and terminal condition ξ are called standard parameters for the BSDE, if
ξ ∈ L2

T (R), f (.,0,0) ∈H2
T (R), and f is uniformly Lipschitz in y and z, with Lipschitz constant

L f . A result from [EKPQ97, Pha09, PP90] is that, given a pair of standard parameters ( f ,ξ),
there exists a unique solution (Y , Z )∈H2

T (R)×H2
T (R) to BSDE (6.2.1).

Markovian Case for the BSDE A linear parabolic PDE has a probabilistic representation
by means of the Feynman-Kac theorem. Here, we consider a semilinear parabolic PDE of
the form

∂v
∂t

(t , x)+L v(t , x)+ f (t , x, v(t , x),σ(t , x)Dx v(t , x)) = 0, (t , x) ∈ [0,T )×R (6.2.3a)

v(T, x) = g (x), x ∈R, (6.2.3b)

with the differential operator of second order

L v(t , x) =µ(t , x)Dx v(t , x)+ 1
2σ

2(t , x)D2
x v(t , x). (6.2.4)

Dx and D2
x denote the first and second derivative of a function with respect to the x-

variable, respectively.
This PDE also has a probabilistic representation, by means of the following FSDE,

Xt = x, d Xs =µ(s, Xs )d s +σ(s, Xs )dωs , t ≤ s ≤ T. (6.2.5)

and BSDE
−dYs = f (s, X t ,x

s ,Ys , Zs )d s −Zs dωs , YT = g (X t ,x
T

), (6.2.6)

whose terminal condition is determined by the terminal value of FSDE (6.2.5). X
t ,x
s denotes

the solution to (6.2.5) starting from x at time t , and (Y t ,x
s , Z t ,x

s ) is the corresponding solution
to the BSDE.

The coefficients σ : [0,T ] ×R → R and µ : [0,T ] ×R → R in (6.2.5) are assumed to be
Lipschitz in x and satisfy a linear growth condition in x. Functions f : [0,T ]×R×R×R→
R and g : R → R are assumed to be uniformly continuous with respect to x. Moreover, f

satisfies a Lipschitz condition in (y, z) and there exists a constant C such that | f (t , x, y, z)|+
|g (x)| ≤C (1+|x|p +|y |+ |z|), p ≥ 1/2.

The conditions on f and ξ guarantee the existence of a unique solution (Y , Z ) to the
BSDE (6.2.6). Together with the Markov property of the process X , we notice that there exists
a deterministic function v(t , x) such that the solution Y of the BSDE is Y

t ,x
s = v(s, X

t ,x
s ),

t ≤ s ≤ T . The solution of the BSDE is said to be Markovian as it can be written as a function
of time and the state process X t ,x

s . The following results hold

Result 6.2.1. ([PP92, Pha09]) Let v ∈C 1,2 be a classical solution to (6.2.3) and suppose there

exists a constant C ≥ 0 such that, for all (t , x), |v(t , x)|+ |σ(t , x)Dx v(t , x)| ≤ C (1+|x|). Then

the pair (Y , Z ), defined by

Y t ,x
s = v(s, X t ,x

s ), Z t ,x
s =σ(s, X t ,x

s )Dx v(s, X t ,x
s ), t ≤ s ≤ T, (6.2.7)

is the solution to BSDE (6.2.6) (a so-called verification result).

The converse result states: Suppose (Y , Z ) is the solution to the BSDE, then the function

defined by v(t , x) = Y t ,x
t is a viscosity solution to the PDE.
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The verification result follows from application of Itô’s lemma to v(t , Xt ) ([Pha09]):

d v(t , Xt ) = (vt (t , Xt )+L v(t , Xt ))d t +σ(t , Xt )Dx v(t , Xt )dωt

=− f (t , Xt , v(t , Xt ),σ(t , Xt )Dx v(t , Xt ))d t +σ(t , Xt )Dx v(t , Xt )dωt . (6.2.8)

So, solving the semilinear PDE or the corresponding BSDE results in the same solu-
tion. A PDE can be solved by applying numerical discretization techniques and for BS-
DEs probabilistic numerical methods are available. For example, Picard methods for Y ,
see [BD07, GL10], give rise to a sequence of ‘easy’ linear BSDEs. Another class of methods
focuses on dynamic programming equations, see [BT04, Zha04, GT13, CM12]. Our proba-
bilistic solution method to the BSDE is in this class and consists of two steps: First of all, the
FSDE is simulated by a discretization scheme and the general θ-time discretization of the
BSDE then results in expressions with conditional expectations (see Section 6.3). Secondly,
the conditional expectations are computed by the BCOS method (see Section 6.4) and the
problem is solved backwards in time.

6.3. DISCRETIZATION OF THE BSDE
We wish to discretize the forward stochastic process,

X0 = x0 given, Xt = X0 +
∫t

0
µ(s, Xs )d s +

∫t

0
σ(s, Xs )dωs , (6.3.1)

and the backward process

Yt = ξ+
∫T

t
f (s,Λs)d s −

∫T

t
Zsdωs , ξ= g (XT ), (6.3.2)

with Λs := (Xs ,Ys , Zs ). For this, we define a partition ∆ : 0 = t0 < t1 < t2 < . . . < tm < . . . <
tM = T , with fixed time steps ∆t := tm+1 − tm . For notational convenience we write Xm =
Xtm , Ym = Ytm , Zm = Ztm and define ∆ωm+1 := ωtm+1 −ωtm . With ωt a Wiener process, the
increments ∆ωm+1 ∼ N (0,∆t) are normally distributed. The classical Euler discretization
X ∆ of the FSDE reads, in this case,

X ∆

0 = x0, X ∆

m+1 = X ∆

m +µ(tm , X ∆

m )∆t +σ(tm , X ∆

m )∆ωm+1, m = 0, . . . , M −1. (6.3.3)

For the BSDE, we then start with

Ym = Ym+1 +
∫tm+1

tm

f (s,Λs )d s −
∫tm+1

tm

Zsdωs . (6.3.4)

By a basic Euler discretization, backwards in time, we would require the unknown value
Ym+1 to approximate Ym . This scheme does hence not suffice, as it would not take into
account the adaptability constraints on Y and Z . To obtain a computationally viable back-
ward induction scheme we should take conditional expectations, which will result in a simi-
lar approximation scheme to the BSDE as used in [ZWP09]. For theFtm -measurable random
variables Ym and Zm it holds that Em[Ym ] = Ym and Em [Zm] = Zm, where Em[.] represents
the conditional expectation E[.|Ftm ]. Taking conditional expectations at both sides of equa-
tion (6.3.4) then results in

Ym = Em[Ym+1]+
∫tm+1

tm

Em[ f (s,Λs)]d s

≈ Em[Ym+1]+∆tθ1 f (tm ,Λm)+∆t(1−θ1)Em[ f (tm+1,Λm+1)], θ1 ∈ [0,1]. (6.3.5)
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The integrand in the above equation (6.3.5) is a deterministic continuous function of time
s, so that we can use the well-known θ-time discretization method to approximate the in-
tegral [Ise09]. Multiplying both sides of equation (6.3.4) by ∆ωm+1, taking the conditional
expectation, and applying the θ-method also gives us

0= Em [Ym+1∆ωm+1]+
∫tm+1

tm

Em[ f (s,Λs)(ωs −ωtm )]d s −
∫tm+1

tm

Em [Zs]d s

≈ Em [Ym+1∆ωm+1]+∆t(1−θ2)Em[ f (tm+1,Λm+1)∆ωm+1]

−∆tθ2 Zm −∆t(1−θ2)Em[Zm+1], θ2 ∈ [0,1]. (6.3.6)

Note that for equations (6.3.5) and (6.3.6) we use two different time discretization pa-
rameters θ1 and θ2, respectively. The above equations lead to a discrete-time approxima-
tion (Y ∆, Z∆) for (Y , Z ):

Y ∆

M = g (X ∆

M ), Z∆

M =σ(tM , X ∆

M )Dx g (X ∆

M ), (6.3.7a)

for m = M −1, . . . ,0 :

Z∆

m =−θ−1
2 (1−θ2)Em[Z∆

m+1]+ 1
∆t

θ−1
2 Em [Y ∆

m+1∆ωm+1]

+θ−1
2 (1−θ2)Em[ f (tm+1,Λ∆

m+1)∆ωm+1], (6.3.7b)

Y ∆

m = Em[Y ∆

m+1]+∆tθ1 f (tm ,Λ∆

m)+∆t(1−θ1)Em[ f (tm+1,Λ∆

m+1)]. (6.3.7c)

The use of θ1 = 0 gives us an explicit scheme for Y ∆
m , whereas θ1 ∈ (0,1] results in an im-

plicit scheme. To solve for Z∆
m , we should have obviously θ2 6= 0 in equation (6.3.7b), which

gives an explicit scheme for Z∆
m . For the terminal value Z∆

M we use the relation from Re-
sult 6.2.1. At the points where g is not continuously differentiable, we consider a one-sided
derivative1.

The terminal condition is a deterministic function of X ∆

M and X ∆ is a Markov process.
Then it is easily seen, using an induction argument, that there are deterministic functions
y∆

m(x) and z∆
m(x), so that

Y ∆

m = y∆

m(X ∆

m ), Z∆

m = z∆

m(X ∆

m). (6.3.8)

So, the random variables Y ∆
m and Z∆

m are functions of X ∆
m and the conditional expectations

can be replaced by Ex
m[.] ≡ E[.|X ∆

m = x]. Note that functions y∆
m and z∆

m depend on the dis-
cretization partition ∆.

Equations (6.3.7) provide us with a scheme to solve the BSDE backwards in time, starting
at terminal time T . One could use least squares Monte Carlo methods, like the Longstaff-
Schwartz method or stochastic grid method [JO12], to approximate the conditional expec-
tations, see for example [LGW06, GLW05, BS12]. The authors of [BT04] apply a Malliavin-
based algorithm to solve them, whereas [MPSMT02] employs a binomial tree method. In
the next section, we introduce a Fourier method to solve the BSDE.

6.4. BCOS METHOD
In this section we explain our method of choice to compute the conditional expectations in
(6.3.7) and solve the problem recursively, backwards in time. Our method is an extension

1It is also possible to take θ1 = θ2 = 1 in the first iteration with time step (∆t )2, which gives the same convergence
results.
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of the COS method. The COS method for computing Bermudan options also consists of a
backwards-in-time scheme to find the conditional expectations of the continuation value,
see [FO09]. The method for solving BSDEs with a COS method is named the BCOS method

here. First, in Section 6.4.1 we derive the COS formulas and define the Fourier cosine coeffi-
cients. Then, Sections 6.4.2 and 6.4.3 are devoted to the approximation of functions z∆

m and
y∆

m . Section 6.4.4 discusses the recursive recovery of the Fourier coefficients and Section
6.4.5 the error components.

6.4.1. COS FORMULAS AND FOURIER COSINE COEFFICIENTS

Suppose we wish to approximate the expectation

Ex
m[v(tm+1, X ∆

m+1)]=
∫

R
v(tm+1,ζ)p(ζ|x)dζ, (6.4.1)

where v represents a general functional and p(ζ|x) =P(X ∆

m+1 = ζ|X ∆
m = x) denotes the con-

tinuous transitional density function. The COS formula (see Section 2.3.1) gives the approx-
imation

Ex
m[v(tm+1, X ∆

m+1)] ≈
N−1
∑′

k=0
Vk (tm+1)ℜ

{

φ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

= b−a
2

N−1
∑′

k=0
Vk (tm+1)Φk(x). (6.4.2)

Here the Fourier cosine series coefficients of function v(tm+1,ζ) are given by

Vk (tm+1) := 2
b−a

∫b

a
v(tm+1,ζ)cos

(

kπ
ζ−a
b−a

)

dζ. (6.4.3)

The Fourier cosine coefficients of the transitional density function p(ζ|x) are approxi-
mated as follows

Pk (x) ≈ 2
b−a

∫

R
p(ζ|x)cos

(

kπ
ζ−a
b−a

)

dζ= 2
b−a ℜ

{

ϕ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

−a
b−a

}

= 2
b−a ℜ

{

φ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

:=Φk (x). (6.4.4)

ℜ{.} again denotes taking the real part of the input argument and ϕ(.|x) is the conditional
characteristic function of X ∆

m+1, given X ∆
m = x. The characteristic function encountered here

is written as

ϕ(u|x) =ϕ(u|0)eiux =φ(u|x)eiux ,

with φ(u|x) := exp
(

i uµ(tm , x)∆t − 1
2 u2σ2(tm , x)∆t

)

. (6.4.5)

For solving the BSDE we need to deal with expectations of the form
Ex

m[v(tm+1, X ∆

m+1)∆ωm+1]. With the help of the equality (6.A.3) in Appendix 6.A.I, they
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can be computed by

Ex
m[v(tm+1, X ∆

m+1)∆ωm+1]≈
N−1
∑′

k=0
Vk (tm+1)Ex

m

[

cos

(

kπ
X ∆

m+1−a

b−a

)

∆ωm+1

]

=σ(tm , x)∆t
N−1
∑′

k=0

Vk (tm+1)Ex
m

[

−kπ
b−a

sin

(

kπ
X ∆

m+1−a

b−a

)]

≈σ(tm , x)∆t
N−1
∑′

k=0
Vk (tm+1)ℜ

{

i kπ
b−a φ

(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

:=σ(tm , x)∆t b−a
2

N−1
∑′

k=0
Vk (tm+1)Φ′

k(x). (6.4.6)

Now we return to the BSDE problem (6.3.7), where we defined the deterministic func-
tions y∆

m (X ∆
m) = Y ∆

m and z∆
m(X ∆

m ) = Z∆
m. Let Y

∆

k
(tm+1) be the Fourier cosine coefficients of

y∆

m+1(x) in (6.3.7c), i.e.,

Y
∆

k (tm+1) = 2
b−a

∫b

a
y∆

m+1(x)cos
(

kπ x−a
b−a

)

d x, (6.4.7)

Z
∆

k
(tm+1) the Fourier cosine coefficients of function z∆

m+1(x) in (6.3.7b), i.e.,

Z
∆

k (tm+1) = 2
b−a

∫b

a
z∆

m+1(x)cos
(

kπ x−a
b−a

)

d x, (6.4.8)

and F
∆

k
(tm+1) the Fourier cosine coefficients of driver f (tm+1, x, y∆

m+1(x), z∆

m+1(x)), i.e.,

F
∆

k (tm+1) = 2
b−a

∫b

a
f (tm+1, x, y∆

m+1(x), z∆

m+1(x))cos
(

kπ x−a
b−a

)

d x. (6.4.9)

In Sections 6.4.2 and 6.4.3, we will assume that the above coefficients are given. In Sec-
tion 6.4.4 the algorithm to recover these coefficients recursively, backwards in time, will be
discussed.

6.4.2. COS APPROXIMATION OF FUNCTION z∆

m(x)
For the computation of z∆

m (x) in (6.3.7b), we need to compute three expectations, Ex
m [Z∆

m+1],
Ex

m[Y ∆

m+1∆ωm+1], and Ex
m[ f (tm+1,Λ∆

m+1)∆ωm+1]. With the help of COS formulas we can
derive the following approximations for these expectations:

Ex
m [Z∆

m+1] ≈
N−1
∑′

k=0
Z

∆

k (tm+1)ℜ
{

φ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

, (6.4.10a)

E
x
m [Y ∆

m+1∆ωm+1]≈
N−1
∑′

k=0
Y

∆

k (tm+1)σ(tm , x)∆tℜ
{

ikπ
b−a φ

(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

, (6.4.10b)

Ex
m [ f (tm+1,Λ∆

m+1)∆ωm+1]≈
N−1
∑′

k=0
F

∆

k (tm+1)σ(tm , x)∆tℜ
{

ikπ
b−a

φ
(

kπ
b−a

∣

∣

∣x
)

e
ikπ

x−a
b−a

}

. (6.4.10c)
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We then find as COS approximation

z∆

m(x) ≈− 1−θ2
θ2

b−a
2

N−1
∑′

k=0
Z

∆

k (tm+1)Φk (x)

+ b−a
2

N−1
∑′

k=0

(

1
∆tθ2

Y
∆

k (tm+1)+ 1−θ2
θ2

F
∆

k (tm+1)
)

σ(tm , x)∆tΦ′
k (x), (6.4.11)

with Φk and Φ
′
k

as defined in (6.4.4) and (6.4.6), respectively.

6.4.3. COS APPROXIMATION OF FUNCTION y∆
m(x)

For the computation of function y∆
m (x) in equation (6.3.7c) there are two explicit parts,

Ex
m[Y ∆

m+1] and Ex
m [ f (tm+1,Λ∆

m+1)], that are approximated by the following COS formulas

Ex
m[Y ∆

m+1] ≈
N−1
∑′

k=0
Y

∆

k (tm+1)ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a

}

, (6.4.12a)

Ex
m[ f (tm+1,Λ∆

m+1)]≈
N−1
∑′

k=0
F

∆

k (tm+1)ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a

}

. (6.4.12b)

Besides, when θ1 > 0, we also have an implicit part, for which we define

h∆

m (x) := E
x
m[Y ∆

m+1]+∆t(1−θ1)Ex
m[ f (tm+1,Λ∆

m+1)]

≈ b−a
2

N−1
∑′

k=0
Y

∆

k (tm+1)Φk (x)+∆t(1−θ1) b−a
2

N−1
∑′

k=0
F

∆

k (tm+1)Φk (x), (6.4.13)

with Φk from (6.4.4). Now we can write

y∆

m (x) =∆tθ1 f (tm , x, y∆

m (x), z∆

m(x))+h∆

m (x). (6.4.14)

In order to determine function y∆
m (x) in equation (6.4.14), we will perform P Picard itera-

tions (see also [GLW05]), starting with an initial guess, y
∆,0
m (x) := Ex

m[Y ∆

m+1] (see equation
(6.4.12a)). The convergence properties of the Picard iterations to the ‘true’ values y∆

m(x) are
discussed in Section 6.4.5.

6.4.4. RECOVERY OF COEFFICIENTS AND ALGORITHM

The computation of functions z∆
m(x) and y∆

m (x) at time-point tm requires the Fourier cosine
coefficients Z

∆

k
(tm+1), Y

∆

k
(tm+1), and F

∆

k
(tm+1) at time-point tm+1. For the next time step

in the BCOS method we wish to compute functions z∆

m−1(x) and y∆

m−1(x) at time-point tm−1 ,
for which we need the Fourier cosine coefficients of time-point tm . The coefficients can be
computed recursively backwards in time, as we explain in this section.

We assume a constant drift µ and volatility σ here, and

X ∆

m+1 = X ∆

m +µ∆t +σ∆ωm+1. (6.4.15)

Now, function φ(u) does not depend on x. In Remark 6.4.1 we will comment on the use of
more general functions µ(t , x) and σ(t , x).
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Firstly, the computation of the coefficients Z
∆

k
(tm) can be divided into three parts, sim-

ilar as equation (6.4.10). We then use the following approximations

2
b−a

∫b

a
Ex

m[Z∆

m+1]cos
(

kπ x−a
b−a

)

d x ≈ℜ
{

N−1
∑′

j=0
Z

∆

j (tm+1)φ
(

jπ
b−a

)

Mk , j

}

, (6.4.16a)

2
b−a

∫b

a
Ex

m[Y ∆

m+1∆ωm+1]cos
(

kπ x−a
b−a

)

d x

≈ℜ
{

N−1
∑′

j=0

i jπ
b−a

σ∆tY ∆

j (tm+1)φ
(

jπ
b−a

)

Mk , j

}

, (6.4.16b)

2
b−a

∫b

a
Ex

m[ f (tm+1,Λ∆

m+1)∆ωm+1]cos
(

kπ x−a
b−a

)

d x

≈ℜ
{

N−1
∑′

j=0

i jπ
b−a

σ∆tF∆

j (tm+1)φ
(

jπ
b−a

)

Mk , j

}

, (6.4.16c)

with matrix elements

Mk , j := 2
b−a

∫b

a
e

i jπ
x−a
b−a cos

(

kπ x−a
b−a

)

d x. (6.4.17)

These approximations can be found by inserting COS formulas (6.4.10). Note that the ap-
proximation signs “≈” are due to the errors of the COS formulas, i.e., truncation of the in-
tegration range to a finite interval [a,b], truncation of the infinite sums to a finite number
of terms N , and the substitution of the series coefficients by the characteristic function ap-
proximation. The coefficients Z

∆

k
(tm ) are then computed as follows

Z
∆

k (tm) ≈ℜ
{N−1

∑′

j=0

[

− 1−θ2
θ2

Z
∆

j (tm+1)

+ i jπ
b−a σ∆t

(

1
∆tθ2

Y
∆

j (tm+1)+ 1−θ2
θ2

F
∆

j (tm+1)
)

]

φ
(

jπ
b−a

)

Mk , j

}

. (6.4.18)

Secondly, the coefficients H
∆

k
(tm ) of function h∆

m (x) in (6.4.13) are computed by

H
∆

k (tm) = 2
b−a

∫b

a
h∆

m (x)cos
(

kπ x−a
b−a

)

d x

≈ℜ
{

N−1
∑′

j=0

[

Y
∆

j (tm+1)+∆t(1−θ1)F∆

j (tm+1)
]

φ
(

jπ
b−a

)

Mk , j

}

. (6.4.19)

The Fourier cosine coefficients Z
∆

k
(tm ) in (6.4.18) and H

∆

k
(tm) in (6.4.19), for k =

0,1, . . . , N − 1, can thus be computed by one matrix-vector multiplication. These matrix-
vector multiplications M w can be done efficiently with the use of an FFT algorithm, see
Appendix B. With this the computational complexity is reduced from order O(N 2) to
O(N log N ), with N the number of terms in the summations.

At last, the coefficients F
∆,P−1
k

(tm) of function f (tm , x, y∆,P−1
m (x), z∆

m (x)) are given by

F
∆,P−1
k

(tm) := 2
b−a

∫b

a
f (tm , x, y∆,P−1

m (x), z∆

m(x))cos
(

kπ x−a
b−a

)

d x. (6.4.20)
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They are approximated by a discrete Fourier cosine transform (DCT). For this we need
to compute the integrand f (tm , x, y

∆,P−1
m (x), z∆

m (x)) on an equidistant x-grid with N grid
points, as explained in Appendix C. With a converging Picard method, we have F

∆

k
(tm) ≈

F
∆,P−1
k

(tm) for sufficiently many iterations P . Then,

Y
∆

k (tm) ≈∆tθ1F
∆,P−1
k

(tm )+H
∆

k (tm). (6.4.21)

With the aforementioned formulas we approximate the Fourier cosine coefficients
Z

∆

k
(tm ), Y

∆

k
(tm), and F

∆

k
(tm) by using the coefficients of time-point tm+1. Starting with

the coefficients at the terminal time we can solve them recursively, backwards in time. The
evolution of the extra error introduced by approximation of the coefficients has been dis-
cussed in detail in Section 2.4.3. The final approximations of the functions y∆

m(x) and z∆
m(x)

by the BCOS method are denoted by ŷ∆
m(x) and ẑ∆

m(x), respectively. The overall algorithm
to solve the BSDE (6.3.7) backwards in time can be summarized as:

Algorithm 3. (BCOS method)

Initialization: Compute, or approximate, the terminal coefficients Y
∆

k
(tM ),

Z
∆

k
(tM ), and F

∆

k
(tM ).

Main loop to recover Z
∆

k
(tm), F

∆

k
(tm), and Y

∆

k
(tm):

For m = M −1 to 1:

• Compute the functions ẑ∆
m(x), f (tm , x, ŷ∆

m (x), ẑ∆
m (x)), and ŷ∆

m(x).

• Determine the corresponding Fourier cosine coefficients Z
∆

k
(tm),

F
∆

k
(tm), and Y

∆

k
(tm), as described in Sections 6.4.2, 6.4.3, and 6.4.4.

Final step: Compute ẑ∆

0 (x0) and ŷ∆

0 (x0).

Remark 6.4.1. For general drift µ(t , x) and volatility σ(t , x) in (6.4.15) we need to compute

the following integrals to recover the Fourier cosine coefficients

2
b−a

∫b

a
φ

(

jπ
b−a

∣

∣

∣x
)

e
i jπ

x−a
b−a cos

(

kπ x−a
b−a

)

d x, (6.4.22)

which is not equal to φ
(

jπ
b−a

)

Mk , j (as in equations (6.4.16)). As the integration kernel is

smooth, we can approximate the integrals efficiently by, for example, a Clenshaw-Curtis

quadrature rule [Gen72]. Another way is to approximate the coefficients Z
∆

k
(tm) by using

a DCT too.

The Euler discretization for general drift and volatility terms exhibits only first order weak

convergence, which may hamper the convergence of the discretized BSDE. The usage of the

simplified second order weak Taylor scheme may improve the convergence rate and for some

processes one can use an exact simulation scheme2.

6.4.5. ERRORS AND COMPUTATIONAL COMPLEXITY
In the BCOS method when solving BSDEs several approximation errors are encountered. In
the first place there are discretization errors, due to the discrete-time approximation of the

2This is discussed in Chapter 7.
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stochastic processes. Moreover, errors are introduced by the COS formulas and the Picard
method. These error components and the computational complexity are discussed in this
section.

Discretization Error of the BSDE We perform an error analysis3 for the scheme with θ1 =
θ2 = 1

2 and assume constant µ and σ (see equation (6.4.15)), so that X ∆
m = Xm . We define the

local θ-discretization errors in equations (6.3.5) and (6.3.6) by

R
y
m (x) :=

∫tm+1

tm

Ex
m[ f (s,Λs )]d s − 1

2∆t f (tm ,Λm)− 1
2∆tEx

m [ f (tm+1,Λm+1)], (6.4.23a)

Rz
m (x) :=

∫tm+1

tm

Ex
m[ f (s,Λs )(ωs −ωtm )]d s − 1

2∆tEx
m [ f (tm+1,Λm+1)∆ωm+1]

−
∫tm+1

tm

Ex
m[Zs]d s + 1

2∆t Zm + 1
2∆tEx

m [Zm+1]. (6.4.23b)

The orders of these errors depend on the smoothness of the integrands with respect to
time s. If functions f and g are sufficiently smooth and bounded, with bounded deriva-
tives, then the absolute values of the terms R

y
m (x), Rz

m (x), 1
∆t E

x
m[R

y
m+1(Xm+1)∆ωm+1] and

( 1
∆t Rz

m (x)−Ex
m[Rz

m+1(Xm+1)]) can be bounded by C (∆t)3, with C a constant only depending
on T , functions g and f , and µ, σ (similar as in Section 7.4.3).

The global errors due to the θ-time discretization in (6.3.7c) and (6.3.7b) are denoted by

ǫ
y
m(Xm ) := ym (Xm)− y∆

m (Xm), ǫz
m(Xm ) := zm(Xm )− z∆

m(Xm),

ǫ
f
m(Xm ) := f (tm ,Λm)− f (tm ,Λ∆

m). (6.4.24)

We omit the dependency of the local and global errors on the state of the FSDE for nota-
tional convenience. For the y-component we have (m ≤ M −1)

ǫ
y
m = Ex

m[ǫy
m+1]+ 1

2∆tǫ
f
m + 1

2∆tEx
m [ǫ f

m+1]+R
y
m . (6.4.25)

With the Lipschitz assumption on driver function f , this error can be bounded, for 1
2∆tL f <

1, by

|ǫy
m | ≤

1+ 1
2∆tL f

1− 1
2∆tL f

Ex
m[|ǫy

m+1|]+
1
2∆tL f

1− 1
2∆tL f

|ǫz
m |+

1
2∆tL f

1− 1
2∆tL f

Ex
m [|ǫz

m+1|]

+ 1

1− 1
2∆tL f

C (∆t)3. (6.4.26)

For the z-component we have

ǫz
m = 2

∆t E
x
m[ǫ

y
m+1∆ωm+1]+E

x
m[ǫ

f
m+1∆ωm+1]−E

x
m [ǫz

m+1]+ 2
∆t Rz

m . (6.4.27)

Substituting the similar equations for ǫy
m+1 and ǫz

m+1 as in (6.4.25) and (6.4.27) gives (m ≤
M −2)

ǫz
m = 2

∆t
Ex

m[ǫy
m+2∆ωm+1]+Ex

m [ǫ f
m+1∆ωm+1]+Ex

m [ǫ f
m+2∆ωm+1]

+Ex
m [ǫ f

m+1∆ωm+1]− 2
∆t

Ex
m [ǫy

m+2∆ωm+2]−Ex
m [ǫ f

m+2∆ωm+2]+Ex
m [ǫz

m+2]

+ 2
∆t

Ex
m[R y

m+1∆ωm+1]− 2
∆t

Ex
m[Rz

m+1]+ 2
∆t

Rz
m . (6.4.28)

3The error analyses for other processes and other discretization schemes for the FSDE, such as the Milstein
scheme, are discussed in Chapter 7.
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Error ǫy
m+2 is a function of Xm+2. The equalities (6.A.4) and (6.A.5) in Appendix 6.A.I then

give us

Ex
m[ǫy

m+2∆ωm+1]= Ex
m [ym+2(Xm+2)∆ωm+1 − y∆

m+2(Xm+2)∆ωm+1]

=σ∆tEx
m [Dx ym+2(Xm+2)−Dx y∆

m+2(Xm+2)]

= Ex
m [ym+2(Xm+2)∆ωm+2 − y∆

m+2(Xm+2)∆ωm+2]

= E
x
m [ǫ

y
m+2∆ωm+2]. (6.4.29)

We can also write error ǫ
f
m+2 as a function of Xm+2, as

ǫ
f
m+2 = f (tm+2,Λm+2)− f (tm+2,Λ∆

m+2)

= f (tm+2, Xm+2, ym+2(Xm+2), zm+2(Xm+2))

− f (tm+2, Xm+2, y∆

m+2(Xm+2), z∆

m+2(Xm+2)). (6.4.30)

The equalities in Appendix 6.A.I result in

Ex
m[ǫ f

m+2∆ωm+1]=σ∆tEx
m

[

d
d x

f (tm+2,Λm+2)− d
d x

f (tm+2,Λ∆

m+2)
]

= E
x
m[ǫ

f
m+2∆ωm+2]. (6.4.31)

Here d
d x f denotes the total derivative of driver f to state x, where y and z also depend on

x. With the two equalities (6.4.29) and (6.4.31) we find

ǫz
m = 2Ex

m [ǫ
f
m+1∆ωm+1]+E

x
m[ǫz

m+2]+ 2
∆t E

x
m[R

y
m+1∆ωm+1]+ 2

∆t

(

Rz
m −E

x
m [Rz

m+1]
)

. (6.4.32)

We can bound the absolute value of the first term by

|2Ex
m [ǫ f

m+1∆ωm+1]| ≤ 2Ex
m [|ǫ f

m+1||∆ωm+1|] ≤ 2sup |ǫ f
m+1|

p
∆t

≤ 2L f (sup |ǫy
m+1|+ sup |ǫz

m+1|)
p
∆t

:= 2L f (|ǫy
m+1|∞+|ǫz

m+1|∞)
p
∆t , (6.4.33)

where the suprema are taken under the condition Xm = x.
We can now bound the absolute error by

|ǫz
m | ≤ 2L f

p
∆t(|ǫy

m+1|∞+|ǫz
m+1|∞)+E

x
m [|ǫz

m+2|]+2C (∆t)3. (6.4.34)

Next we sum up the errors. For 1
2∆tL f < 1

2 , ∆t ≤ 1 there exists constants C1 and C2,
depending on L f , with (m ≤ M −3)

Ex
m[|em |] := Ex

m[|ǫy
m |∞+

p
∆t |ǫz

m+1|∞+
p
∆t |ǫz

m |∞]

≤ AEx
m[|ǫy

m+2|∞+
p
∆t |ǫz

m+2|∞+
p
∆t |ǫz

m+3|∞]+B = AEx
m[|em+2|]+B,

with A = 1
1−L f ∆t

(1+C1∆t), (6.4.35)

B = 1
1−L f ∆t C2(∆t)3.
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Theorem 6.4.1. Given

Ex
M−1[|ǫz

M |]∼O
(

(∆t)3) , Ex
M−1[|ǫy

M
|] ∼O

(

(∆t)3) , (6.4.36)

then

Ex
0

[

|ǫy
m |+

p
∆t |ǫz

m |
]

≤Q(∆t)2, 1≤ m ≤ M , (6.4.37)

with Q a constant only depending on T , functions g and f , and µ, σ.

Proof. With equations (6.4.25), (6.4.27), (6.4.34) it is straightforward to show that

Ex
M−1[|eM−1|]∼O

(

(∆t)2) and Ex
M−2[|eM−2|] ∼O

(

(∆t)2) . (6.4.38)

By induction we find

Ex
m [|em |] ≤ A

1
2 (M−m)

Ex
m[|eM−1|+ |eM−2|]+ A

1
2 (M−m)−1

A−1 B, for m ≤ M −3. (6.4.39)

It follows that (1≤ k ≤ M , ∆t M = T )

Ak −1 ≤ Ak ≤
(

1+C1∆t
1−L f ∆t

)k
=

(

1+ (C1+L f )∆t

1−L f ∆t

)k

≤ exp
(

(C1+L f )∆tk

1−L f ∆t

)

≤ exp
(

(C1+L f )T

1−∆tL f

)

(6.4.40)

is bounded and

B
A−1 ≤ C2

C1+L f
(∆t)2. (6.4.41)

The authors in [ZLJ13] obtain second order convergence in both Y and Z terms for the
case that the FSDE equals the Wiener process. Convergence of (Y ∆, Z∆) to (Y , Z ) is dis-
cussed in [BT04, Zha04, LGW06, GLW05, BE08] for the special case θ1 = θ2 = 1. Under cer-
tain conditions on functions f and g , error convergence of order O

(

(∆t)1/2
)

in the L2-sense
was found. The authors in [BDM01] prove convergence of a discrete scheme with a scaled
random walk using a Donsker-type theorem. For the error analysis of other schemes and
Lp -errors we refer to [WLZ09, LZ10].

Error in COS Formulas In Section 6.3 we encountered deterministic functions y∆
m and

z∆
m , such that

y∆

m (X ∆

m) = Y ∆

m , z∆

m(X ∆

m) = Z∆

m . (6.4.42)

These functions are approximated by COS formulas and the corresponding Fourier coeffi-
cients are recovered backwards in time, resulting in the approximations

ŷ∆

m (X ∆

m) and ẑ∆

m (X ∆

m). (6.4.43)

The errors of these numerical approximations are denoted by

ǫ
y

COS
(tm , X ∆

m ) := y∆

m(X ∆

m )− ŷ∆

m(X ∆

m ), (6.4.44a)

ǫz
COS (tm , X ∆

m ) := z∆

m (X ∆

m)− ẑ∆

m(X ∆

m ). (6.4.44b)
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Fourier series expansions and their convergence properties have been discussed
in [Boy01]. Errors of the COS method are introduced in three steps (see Section 2.3.1): the
truncation of the integration range, the substitution of the density by its cosine series ex-
pansion on the truncated range, and the substitution of the series coefficients by the char-
acteristic function approximation. A detailed error analysis was given in [FO08, FO09] and
Section 2.4.1. For a sufficiently wide computational domain [a,b] the integration range
truncation error in our domain of interest can be neglected, because the truncated mass of
the density function is negligible. The local error converges exponentially in the number
of terms in the series expansions for smooth density functions and a sufficiently wide inte-
gration interval. The transitional density that is related to the Euler scheme is smooth and
results in exponential convergence in N . A density function with a discontinuity in one of
its derivatives gives rise to an algebraic convergence in N . We refer to Chapter 3 for more
information on the convergence of discontinuous functions. Algorithm 3 explains how to
recover the coefficients Z

∆

k
(tm ), Y

∆

k
(tm), and F

∆

k
(tm) backwards in time. This introduces

an additional error, similar as in Section 2.4.3. The use of discrete Fourier cosine transforms
(DCTs) to approximate the Fourier cosine coefficients gives an error with algebraic index of
convergence two in N , as we demonstrate by an example in Section 6.5.3.

Convergence of Picard Iterations With P Picard iterations we find the fixed-point y of the
equation

y =∆tθ1 f (tm , x, y, z∆

m (x))+h∆

m (x). (6.4.45)

The driver function f is assumed to be Lipschitz in y and z, with Lipschitz constant L f .
For ∆t small enough, i.e., L f ∆tθ1 < 1, a unique fixed-point exists, and the Picard iterations
converge towards that point for any initial guess. The fixed-point technique converges to
the true solution at the geometric rate ∆tθ1L f , which depends on the Lipschitz constant of
the driver function.

Remark 6.4.2. Problems with a penalization term, see for example [BK08], may result in

driver functions with a large Lipschitz constant, which gives slower convergence in the num-

ber of Picard iterations. The number of timesteps should be chosen sufficiently large, such

that convergence of the iterations is guaranteed.

Total Error The absolute value of the total errors can be bounded by

|εy
m (Xm , X ∆

m )| := |ym(Xm )− ŷ∆

m(X ∆

m )| ≤ |ym (Xm )− y∆

m(X ∆

m )|+ |ǫy

COS
(tm , X ∆

m )|, (6.4.46a)

|εz
m (Xm , X ∆

m )| := |zm(Xm )− ẑ∆

m(X ∆

m)| ≤ |zm(Xm )− z∆

m(X ∆

m)|+ |ǫz
COS (tm , X ∆

m )|. (6.4.46b)

For the numerical experiments in Section 6.5 we take N sufficiently high. Then we can
neglect the errors ǫCOS and are able to investigate the error of the discretization scheme.

Computational Complexity The computation time of the BCOS method is linear in the
number of timesteps M . For each discrete time-point tm we perform the following opera-
tions:

• Computation of ẑ∆
m(x) and ĥ∆

m (x) on an x-grid, in O(N 2) operations.
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• Initialization Picard method: Computation of ŷ∆,0
m (x) on an x-grid, in O(N 2) opera-

tions.

• Computation of ŷ
∆,P
m (x) on an x-grid by P Picard iterations, in O(P N ) operations.

• Computation of Z
∆

k
(tm) and H

∆

k
(tm) by the FFT algorithm, in O(N log N ) operations.

• Computation of F
∆

k
(tm) ≈ F

∆,P−1
k

(tm) by DCT (see Appendix C), in O(N log N ) oper-
ations.

• Computation of Y
∆

k
(tm) ≈Y

∆,P
k

(tm ), in O(N ) operations.

For the approximation of the coefficients F
∆,P−1
k

(tm ) in (6.4.20) by a DCT we first need to

compute ẑ∆
m(x), ĥ∆

m (x), and ŷ∆,0
m (x) on an x-grid with N equidistant points, which is of order

O(N 2). This is the most time-consuming part of the algorithm. However, these functions
can be computed in parallel. In total, the complexity of the BCOS method, Algorithm 3, is
O

(

M
(

N 2 +P N +N log N +N log N +N
))

.

6.5. NUMERICAL EXPERIMENTS
In this section we discuss three numerical experiments. MATLAB 7.11.0 is used for the com-
putations, with an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and 7.7 GB RAM. To test the
general θ-method we distinguish between four discretization schemes:

Scheme A: θ1 = 0, θ2 = 1, Scheme C: θ1 = 1, θ2 = 1,
Scheme B: θ1 = 0.5, θ2 = 1, Scheme D: θ1 = 0.5, θ2 = 0.5.

For all four schemes, z∆
m(x) can be solved explicitly and y∆

m (x) is solved explicitly for scheme
A and implicitly with P = 5 Picard iterations for the other schemes.

As before, we prescribe a computational domain [a,b] by

[a,b]=
[

κ1 −L
p
κ2, κ1 +L

p
κ2

]

, (6.5.1)

with cumulants κ1 = x0 +µT and κ2 =σ2T , and L = 10. Furthermore, we set the number of
terms in the Fourier cosine series expansions equal to N = 29. For these values the BCOS
method has converged in N to machine precision.

6.5.1. EXAMPLE 1
The first example is taken from [ZLZ12]. The underlying process is the Wiener process, i.e.,
Xt =ωt . The BSDE reads

dYt =− f (t , Xt ,Yt , Zt )d t +Zt dωt , (6.5.2a)

f (t , Xt ,Yt , Zt ) = Yt Zt −Zt +2.5Yt − sin(t +Xt )cos(t +Xt )−2sin(t +Xt ), (6.5.2b)

YT = g (XT ) = sin(XT +T ). (6.5.2c)

The exact solution is given by

(Yt , Zt ) = (sin(Xt + t), cos(Xt + t)). (6.5.3)

We take terminal time T = 1, which gives (Y0, Z0) = (0, 1). Note that driver f (.) depends also
on time t and state Xt . For the results of the BCOS method, we refer to Figure 6.5.1. We
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Figure 6.5.1: Results example 1 (N = 29), left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

observe that the approximated value ŷ∆

0 (x0) converges with O(∆t) for the schemes A, B, and
C and O((∆t)2) for scheme D. The approximated value ẑ∆

0 (x0) converges with O((∆t)2) for
scheme D and with O(∆t) for the other three schemes, which is in accordance with the error
analysis in Section 6.4.5.

Table 6.5.1 shows CPU times, for scheme D, for different values of M and N . Each test
required less than one second. Computation of the functions ẑ∆

m(x), ĥ∆
m (x), and ŷ∆,0

m (x) on
an x-grid and the DCTs are the most time-consuming part of the algorithm. The computa-
tion time is linear in the number of timesteps M and of approximately order O(N log N ) in
the number of terms in the Fourier cosine series expansions.

Table 6.5.1: CPU time (s).

M 4 8 16 32 64 128 256 512

N = 29 0.0301 0.0304 0.0412 0.0639 0.1071 0.1966 0.3736 0.7292

N 26 27 28 29

M = 256 0.0940 0.1109 0.1552 0.3736

6.5.2. EXAMPLE 2: BLACK-SCHOLES CALL OPTION

In this example we compute the price v(t ,St ) of a call option by a BSDE where the underly-
ing asset follows a geometric Brownian motion,

dSt = µ̄St d t + σ̄St dωt . (6.5.4)

The exact solution is given by the Black-Scholes price, which is known analytically [BS73].
For the derivation of the Black-Scholes PDE we set up a self-financing portfolio Yt with at

assets and bonds with risk-free return rate r . Markets are assumed to be complete in this
model, there are no trading restrictions, and the option can be exactly replicated by the
hedging portfolio, that is, YT = max(ST −K ,0). Then, the option value at initial time should
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be equal to the initial value of the portfolio. The portfolio evolves according to the SDE

dYt = r (Yt −at St )d t +at dSt =
(

r Yt +
µ̄−r
σ̄ σ̄at St

)

d t + σ̄at St dωt . (6.5.5)

If we set Zt = σ̄at St , then (Y , Z ) solves the BSDE,

dYt =− f (t ,St ,Yt , Zt )d t +Zt dωt , (6.5.6a)

f (t ,St ,Yt , Zt ) =−r Yt −
µ̄−r

σ̄ Zt , (6.5.6b)

YT = max(ST −K ,0). (6.5.6c)

Yt corresponds to the value of the portfolio and Zt is related to the hedging strategy. In
this case, the driver function f (.) is Lipschitz continuous and linear with respect to y and
z. The option value is given by v(t ,St ) = Yt and σ̄St vS (t ,St ) = Zt . For the tests, we use the
following parameter values

S0 = 100, K = 100, r = 0.1, µ̄= 0.2, σ̄= 0.25, T = 0.1, (6.5.7)

with the exact solutions Y0 = v(t0,S0) = 3.65997 and Z0 = σ̄S0vS (t0,S0) = 14.14823. For the
numerical approximation, we switch to the log-asset domain Xt = logSt , with

d Xt = (µ̄− 1
2 σ̄

2)d t + σ̄dωt . (6.5.8)

Results of the BCOS method for all four schemes are presented in Figure 6.5.2. The approxi-
mated values ŷ∆

0 (x0) and ẑ∆

0 (x0) both converge with O(∆t) for schemes A, B, and C and with
O((∆t)2) for scheme D, as expected.
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Figure 6.5.2: Results example 2 (N = 29), left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

We would like to emphasize that solving the BSDE is done under the historical, real-
world P-measure. However, the exact Black-Scholes solution does not depend on µ̄. In
Figure 6.5.3 we see results for different values of drift µ̄. The convergence rates in M are the
same, but a higher value of µ̄ gives a larger error for the same number of timesteps M . This

is due to the Lipschitz constant L f = max( µ̄−r
σ̄ ,r ), which is increasing in µ̄.

6.5.3. EXAMPLE 3: BID-ASK SPREAD FOR INTEREST RATES
For the pricing problem in the previous section, the driver f (.) was linear and the initial
option value Y0 reduced to the expectation of the discounted option payoff under the risk-
neutral measure, i.e., the Black-Scholes price. We now consider a model introduced by
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Figure 6.5.3: Results example 2 for different values of µ̄ (Scheme C).

Bergman [Ber95] with different interest rates for lending and borrowing a bond. This market
imperfection results in a driver function which is nonlinear.

Suppose that an agent can invest in bonds at risk-free rate r and borrow money at rate
R > r . The amount invested at time t is equal to max(Yt −at St ,0) and the amount borrowed
is min(Yt −at St ,0). Then, the replication portfolio follows the following dynamics

dYt = r max(Yt −at St ,0)d t +R min(Yt −at St ,0)d t +at dSt

=
(

r Yt + µ̄−r
σ̄ σ̄at St + (R − r )min(Yt −at St ,0)

)

d t + σ̄at St dωt . (6.5.9)

Again, with Zt = σ̄at St , we obtain the BSDE

dYt =− f r,R (t ,St ,Yt , Zt )d t +Zt dωt , (6.5.10a)

f r,R (t ,St ,Yt , Zt ) :=−r Yt − µ̄−r
σ̄ Zt − (R − r )min(Yt −Zt /σ̄,0), (6.5.10b)

YT = g (ST ). (6.5.10c)

The driver is now a nonlinear Lipschitz function and the dependence on the different re-
turn rates is emphasized by the superscripts. The Lipschitz constant of the driver function
is given by L f = max((µ̄− r )/σ̄, (R − r )/σ̄,r,R − r ). The corresponding semilinear PDE for
v(t ,St ) = Yt reads

∂v
∂t

(t ,S)+L v(t ,S)+ f r,R (t ,S, v(t ,S),σ̄SDS v(t ,S))= 0, (t ,S)∈ [0,T )×R+, (6.5.11a)

v(T,S) = g (S), S ∈R+. (6.5.11b)

This semilinear PDE is solved in [FL07] by using a PDE discretization method. According to
[Gob10] the following lower bound is valid

Y
r,R

t ≥ max(Y
r,r

t ,Y
R ,R

t ), ∀t ∈ [0,T ], (6.5.12)

where Y
r1 ,r2

t denotes the solution with driver f r1 ,r2 . In other words, the option price with
different interest rates is larger than the price with fixed interest rates. For a call option it
follows that Y

r,R
t = Y

R ,R
t , in other words, the exact solution is given by the Black-Scholes

call price with interest rate R and the BSDE becomes linear, as in Section 6.5.2. The authors
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in [BS12] examine a combination of a long call with strike K1 = 95 and two short calls with
strike K2 = 105, with payoff function

g (S)= (S −K1)+−2(S −K2)+, (6.5.13)

and parameter values

S0 = 100, r = 0.01, µ̄= 0.05, σ̄= 0.2, T = 0.25. (6.5.14)

An analytic solution is not available then. We perform tests for borrow rates R = 0.06 and
R = 3.01 with corresponding Lipschitz constants L f = 0.25 and L f = 15, respectively. The
authors in [BS12] agree that an interest rate of 301% is not relevant for financial applications,
but they propose it in order to test their algorithm under an extreme situation, as we will do.

For R = 0.06, the reference value obtained in [BS12] is Y
r,R

0 = 2.96. Error results of the

BCOS method are shown in Figure 6.5.4. For this we used reference values Y
r,R

0 = 2.9584544

and Z
r,R
0 = 0.55319, obtained with a large number of timesteps M . The approximated value

ŷ∆

0 (x0) converges with O(∆t) for schemes A, B, and C and approximately with O((∆t)3/2) for
scheme D. The approximated value ẑ∆

0 (x0) converges with O(∆t) for schemes B and C and
with a higher convergence rate for schemes A and D.

For R = 3.01, the authors of [BS12] find Y r,R
0 = 6.4. For large M the BCOS method gives

the reference values Y r,R
0 = 6.3748 and Z r,R

0 =−4.690. The results of our numerical approxi-
mations are shown in Figure 6.5.5. Convergence to accurate values is slower and the errors
are larger compared to R = 0.06, because the driver function has a larger Lipschitz constant.
The convergence rates are not clearly readable, however for large M the orders seem to cor-
respond to the case with R = 0.06. Scheme D, with θ1 = θ2 = 0.5, gives the best error results.
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Figure 6.5.4: Results example 3, R = 0.06 (N = 29), left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

At last we test the convergence of the BCOS method in N , the number of Fourier cosine
terms. Figure 6.5.6 presents the errors for different values of N , with R = 3.01 and M =
100 timesteps, where we computed our reference values by taking a large value of N . The
convergence in N , the number of Fourier coefficients, is of second order, due to the use of
discrete Fourier cosine transforms (see Appendix C).



6

132 6. COS METHOD FOR AN EFFICIENT COMPUTATION OF BSDES

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 

 

Scheme A
Scheme B
Scheme C
Scheme D

MM

er
ro

r
Y

0

er
ro

r
Z

0

Figure 6.5.5: Results example 3, R = 3.01 (N = 29), left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).
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Figure 6.5.6: Convergence in N , (R = 3.01 and M = 100), left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

6.6. EXPONENTIAL UTILITY MAXIMIZATION AND UTILITY IN-
DIFFERENCE PRICE

In a financial market with jumps or with constrained hedging strategies it is usually not pos-
sible to perform a perfect hedge which attains exactly the option payoff as the final value,
there is a so-called replication error. If markets are not complete there are different ways to
value options ([EKPQ97]), for example by

• Super-strategies are strategies with a positive replication error. The super-replicating
option price is the minimal initial investment to find a strategy that always dominates
the payoff of the option [EKQ95].

• Risk-minimizing strategies, where the problem is to find a strategy with minimal vari-
ance for the replication error [KFV09]. They were first introduced by Föllmer and
Sondermann in [FS86].

• Utility indifference pricing, where the utility of the replication error is maximized.
The corresponding price makes an agent indifferent in terms of expected utility be-
tween selling the option or not selling it. Utility indifference pricing was introduced
by Hodges and Neuberger in [HN89].

We focus on utility indifference pricing, which basically consists of solving two utility
maximization problems, one with and one without an option liability. In the next section



6.6. EXPONENTIAL UTILITY MAXIMIZATION AND INDIFFERENCE PRICE

6

133

we consider a general utility maximization problem. We employ the model of Morlais in
[Mor10], making use of an exponential utility function and jumps in the asset price. The
problem can be defined by a BSDE including jumps. We refer to [REK00, Sek06, HIM05,
MS05, Pha09] for the setting where asset prices follow only a diffusion process. This model
is generalized by jumps in [Bec06, Mor10].

6.6.1. EXPONENTIAL UTILITY MAXIMIZATION UNDER JUMP-DIFFUSION

WITH OPTION PAYOFF
Following the notation in [Mor10], the probability space (Ω,F,P) is now equipped with two
independent stochastic processes: the standard Brownian motion ω and a real-valued Pois-
son point process defined on Ω×[0,T ]×E , with E :=R/{0}. We denote by N (d J ,d t) the asso-
ciated Poisson random measure whose compensator is assumed to be of the form ν(d J )d t ,
where ν(d J ) stands for the Lévy measure, which is positive and satisfies

ν({0}) = 0 and
∫

E
(1∧|J |)2ν(d J ) <∞. (6.6.1)

N (B, t), B ⊂R, is the number of jumps with size in set B which occur before or at time t and
ν(B) counts the expected number of jumps in a unit time interval. F is the completed fil-
tration generated by both processes ω and N . The so-called compensated Poisson random
measure, Ñ , is given by

Ñ (d J ,d t) = N (d J ,d t)−ν(d J )d t . (6.6.2)

The asset price is supposed to follow the following jump-diffusion process,

dSt /St− = b(t)d t +σ(t)dωt +
∫

E
β(t , J )Ñ(d J ,d t), (6.6.3)

St− represents the value of the asset just before a possible jump occurs. The jumps may
model the occurrence of, for example, market crashes or default losses. An agent sells a
bounded FT -measurable option payoff ξ = g (ST ) at time t = 0. He is endowed with some
initial capital w and then invests αt , t ∈ [0,T ] of his portfolio Wt in assets. The remaining
part is invested in a risk-free opportunity with zero rate of return, i.e., r = 0. The dynamics
of this self-financing portfolio read

dWt =αt
dSt

St−
=αt b(t)d t +αtσ(t)dωt +αt

∫

E
β(t , J )Ñ(d J ,d t), W0 = w. (6.6.4)

At terminal time T there is an uncertain claim ξ and the agent is able to reduce the risk by his
trading strategy. The attitude of the agent towards possible profits and losses is measured
by an exponential utility,

U(x) =−exp(−ηx), η> 0. (6.6.5)

The utility function is monotonically increasing and concave; η is the coefficient of absolute
risk aversion and represents the degree of risk aversion. A higher value of η corresponds
to a higher level of risk aversion. A negative amount of final wealth has a higher weight
than a positive amount, in other words, more weight is given to unfavorable losses. η =
0 corresponds to risk neutrality and η = ∞ to absolute risk aversion. The agent wants to
maximize his expected utility at time T and his objective function now reads

V (w) = max
α∈A

E [U(WT −ξ)] = max
α∈A

E

[

U

(

w +
∫T

0
αt

dSt

St−
−ξ

)]

, (6.6.6)
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where we maximize over the investment opportunities α in the constraint set A with ad-
missible strategies. Possible trading strategies may be restricted, for example an agent may
be forced not to hold a negative amount of assets. For the tests in Section 6.7 we will take
A = [α−, α+].

The objective function can also be characterized by a backward stochastic differential
equation with jumps (BSDEJ), as follows

V (w) =U(w −Y0) =−e−ηw eηY0 , (6.6.7)

where (Y , Z ,U ) is the solution to a BSDEJ, given by ([Mor10])

dYt =− f (t , Zt ,Ut )d t +Zt dωt +
∫

E
Ut (J )Ñ (d J ,d t), YT = ξ, (6.6.8a)

f (t , z,u) =−z b(t )
σ(t ) −

1
2η

∣

∣

∣

b(t )
σ(t )

∣

∣

∣

2

+min
α∈A

[

η
2

(

ασ(t)−
(

z + 1
η

b(t )
σ(t )

))2
+|u(.)−αβ(t , .)|η

]

, (6.6.8b)

|u(.)|η =
∫

E

exp(ηu(J))−ηu(J)−1
η ν(d J ), (6.6.8c)

The solution of the above BSDEJ consists of a triplet of processes (Y , Z ,U ) in S
∞(R) ×

L2(ω)×L2(Ñ ) 4. Existence and uniqueness results for this BSDEJ are provided in [Mor10].
For more information about existence and uniqueness for BSDEJs, we refer to [TL94, BBP97,
Roy06]. Furthermore, there exists an optimal predictable strategy α

∗ ∈ A that attains the
minimum in (6.6.8b) for (t , z,u) = (t , Zt ,Ut ).

6.6.2. UTILITY INDIFFERENCE PRICE
Now we start with the utility indifference price, where the idea is the following. The seller of
an option receives the option premium and hedges the option with an optimal strategy that
maximizes the utility of the portfolio value at the terminal time minus the payoff. We also
determine the expected utility without the option trade. The utility indifference price of the
option is defined as the additional initial wealth with which the seller can achieve the same
utility as without the option.

Let u0(w) denote the utility maximization value without the option payoff

u0(w) = max
α∈A

E [U(WT )] , (6.6.9)

and uξ(w) denotes the utility maximization value in presence of the option,

uξ(w) = max
α∈A

E [U(WT −ξ)] . (6.6.10)

The seller’s indifference price (ask price) v a satisfies

u0(w) = uξ(w + v a). (6.6.11)

4Following [Mor10], S ∞(R) is the set of all adapted processes Y with càdlàg paths such that supΩ(supt∈[0,T ] |Yt |) <
∞. L2(ω) is the set of all predictable processes Z such that E[

∫T
0 |Zs |2d s] <∞ L2(Ñ ) is the set of all P ⊗B(E)-

measurable processes U such that E[
∫T

0
∫

E |Us (J )|2ν(d J )d s] <∞. P stands for the σ-field of all predictable sets
of [0,T ]×Ω and B(E) the Borel field of E .
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In other words, it is the price at which a seller is indifferent, in the sense that the expected
utility under optimal trading remains the same, between selling the option for price v a and
not selling any option. We need to solve for v a and with the theory in Section 6.6.1 we find

U(w −Y 0
0 ) =U(w + v a −Y

ξ
0 ) =⇒ v a = Y

ξ
0 −Y 0

0 , (6.6.12)

where Y 0
t and Y

ξ
t follow BSDEJ (6.6.8) with terminal conditions YT = 0 and YT = ξ, respec-

tively. With this we can value an option under jump-diffusion and when the trading strate-
gies are constraint, for example A = [α−,α+], with the help of BSDEJs.

The buyer’s indifference price (bid price) vb is defined in a similar way and satisfies

u0(w) = u−ξ(w − vb). (6.6.13)

Again with the BSDE approach we find

U(w −Y 0
0 ) =U(w − vb −Y

−ξ
0 ) =⇒ vb = Y 0

0 −Y
−ξ

0 . (6.6.14)

Below is a list of properties of utility indifference prices (see, for example, [HH09,
REK00]). We here denote by v(η,ξ) the option price with coefficient of absolute risk aversion
η and option ξ.

• Prices vb and v a are independent of initial wealth w .

• Bid and ask prices are related via vb(η,ξ) =−v a(η,−ξ).

• The ask price is larger than the bid price: v a ≥ vb .

• If the market is complete, i.e., there are no jumps and A = R, then the option is per-
fectly replicable. The driver function reduces to f (t , z,u) =−z b

σ − 1
2η |

b
σ |

2 and the util-

ity indifference prices reduce to the Black-Scholes prices.

6.6.3. DISCRETIZATION AND BCOS METHOD FOR BSDEJS
In this section, we explain the BCOS method to solve BSDEJ (6.6.8). We suppose that the
asset price follows the following FSDE:

dSt /St− = bd t +σdωt +
∫

E
β(J )Ñ(d J ,d t), with β(J )= e J −1. (6.6.15)

Moreover, E is assumed to be a finite set, E = { j1, j2, . . . jn j
}, with Lévy measure ν({ jℓ}) =

λpℓ, where λ = ν(R) is the intensity rate. In other words, pℓ is the probability of jump size
jℓ and ν(d J ) =λ

∑n j

ℓ=1 pℓδ jℓ(d J ). So,

∫

E
β(J )Ñ(d J ,d t) =

n j
∑

ℓ=1
β( jℓ)Ñ({ jℓ},d t). (6.6.16)

We define µ := b −
∫

E β(J )ν(d J ) and switch to the log-asset domain Xt = logSt , i.e.,

d Xt =
(

µ− 1
2σ

2 +
∫

E
Jν(d J )

)

d t +σdωt +
∫

E
J Ñ (d J ,d t). (6.6.17)

The Euler discretization of the FSDE (6.6.17) reads

X ∆

m+1 = X ∆

m +
(

µ− 1
2σ

2 +
∫

E
Jν(d J )

)

∆t +σ∆ωm+1 +
∫

E
J Ñ(d J ,∆t), (6.6.18)
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where we defined Ñ (d J ,∆t) := Ñ (d J , (tm , tm+1]) = Ñ (d J , tm+1)− Ñ (d J , tm ). The character-
istic function of X ∆

m+1, given X ∆
m = x, reads

ϕ(u|x) =ϕ(u|0)eiux =φ(u)eiux , with (6.6.19)

φ(u) := exp
(

i u(µ− 1
2σ

2)∆t − 1
2 u2σ2

∆t
)

eλ∆t (ϕJ (u)−1), ϕJ (u) =
n j
∑

ℓ=1
pℓeiu jℓ .

For the discretization of the BSDEJ, we start from

Ym = Ym+1 +
∫tm+1

tm

f (s, Zs ,Us)d s −
∫tm+1

tm

Zsdωs −
∫tm+1

tm

∫

E
Us(J )Ñ(d J ,d s). (6.6.20)

Both processes ω and Ñ are independent. Taking conditional expectations of both sides of
(6.6.20) and applying the θ-method results, similar as equation (6.3.5), in

Ym ≈ Em[Ym+1]+∆tθ1 f (tm , Zm ,Um)+∆t(1−θ1)Em[ f (tm+1, Zm+1,Um+1)],

θ1 ∈ [0,1]. (6.6.21)

Multiplying both sides of equation (6.6.20) by ∆ωm+1 and taking conditional expectations
gives us, similar as equation (6.3.6),

0 ≈ Em[Ym+1∆ωm+1]+∆t(1−θ2)Em[ f (tm+1, Zm+1,Um+1)∆ωm+1]

−∆tθ2 Zm −∆t(1−θ2)Em[Zm+1], θ2 ∈ [0,1]. (6.6.22)

Multiplying both sides of equation (6.6.20) by Ñ ({ jℓ},∆t) and taking conditional expecta-
tions gives

0= Em [Ym+1Ñ({ jℓ},∆t)]+
∫tm+1

tm

Em

[

f (s, Zs ,Us)Ñ({ jℓ}, s − tm )
]

d s

−
∫tm+1

tm

pℓλEm

[

Us( jℓ)
]

d s, (6.6.23)

where we used the Itô isometry for

Em

[∫tm+1

tm

∫

E
Us(J )Ñ (d J ,d s)Ñ ({ jℓ},∆t)

]

(6.6.24)

= Em

[∫tm+1

tm

∫

E
Us(J )Ñ(d J ,d s)

∫tm+1

tm

∫

E
δ jℓ (J )Ñ(d J ,d s)

]

= Em

[∫tm+1

tm

pℓλUs( jℓ)d s

]

.

By the θ-discretization we get

0≈ Em[Ym+1Ñ({ jℓ},∆t)]+∆t(1−θ3)Em[ f (tm+1, Zm+1,Um+1)Ñ({ jℓ},∆t)]

−pℓλ∆tθ3Um( jℓ)−pℓλ∆t(1−θ3)Em[Um+1( jℓ)], θ3 ∈ [0,1], for ℓ= 1, . . . ,n j . (6.6.25)
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The above equations lead to a time discretization (Y ∆, Z∆,U∆) for (Y , Z ,U ), as follows

Y ∆

M = g (X ∆

M ), (6.6.26a)

for m = M −1, . . . ,0 :

Z∆

m =−θ−1
2 (1−θ2)Em[Z∆

m+1]+ 1
∆t

θ−1
2 Em[Y ∆

m+1∆ωm+1]

+θ−1
2 (1−θ2)Em[ f (tm+1, Z∆

m+1,U∆

m+1)∆ωm+1], (6.6.26b)

U∆

m( jℓ) =−θ−1
3 (1−θ3)Em[U∆

m+1( jℓ)]+ 1
pℓλ∆t

θ−1
3 Em[Y ∆

m+1Ñ ({ jℓ},∆t)]

+ 1
pℓλ

θ−1
3 (1−θ3)Em[ f (tm+1, Z∆

m+1,U∆

m+1)Ñ({ jℓ},∆t)], ℓ= 1, . . . ,n j (6.6.26c)

Y ∆

m = Em[Y ∆

m+1]+∆tθ1 f (tm , Z∆

m ,U∆

m)+∆t(1−θ1)Em[ f (tm+1, Z∆

m+1,U∆

m+1)]. (6.6.26d)

As the terminal condition is a deterministic function of X ∆

M and because X ∆ is a Markov
process, it is easily seen that there are deterministic functions y∆

m(x), z∆
m(x), and u∆

m (x, jℓ)
so that

Y ∆

m = y∆

m (X ∆

m), Z∆

m = z∆

m(X ∆

m ), U∆

m( jℓ) = u∆

m (X ∆

m , jℓ), ℓ= 1, . . . ,n j . (6.6.27)

So, the random variables Y ∆
m , Z∆

m , and U∆
m( jℓ) are functions of X ∆

m , for each m = 0, . . . , M .
The functions y∆

m(x), z∆
m(x), and u∆

m (x, jℓ) are obtained in a backward manner. Similar as
in Section 6.4, the Fourier cosine coefficients of the functions z∆

m(x), f (tm , z∆
m (x),u∆

m (x, .)),

and y∆
m(x) are denoted by Z

∆

k
(tm), F

∆

k
(tm), and Y

∆

k
(tm), respectively. Let U

∆,ℓ
k

(tm) be the

Fourier cosine coefficients of u∆
m (x, jℓ), i.e.,

U
∆,ℓ
k

(tm) = 2
b−a

∫b

a
u∆

m (x, jℓ)cos
(

kπ x−a
b−a

)

d x, ℓ= 1, . . . ,n j . (6.6.28)

We obtain the following COS formulas to approximate the conditional expectations in
equation (6.6.26c), see Appendix 6.A.II for details,

Ex
m[U∆

m+1( jℓ)]≈
N−1
∑′

k=0
U

∆,ℓ
k

(tm+1)ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a

}

, (6.6.29a)

E
x
m

[

Y ∆

m+1Ñ ({ jℓ},∆t)
]

≈
N−1
∑′

k=0
Y

∆

k (tm+1)ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a pℓλ∆t

[

exp
(

i
kπ jℓ
b−a

)

−1
]}

, (6.6.29b)

Ex
m

[

f (tm+1, Z∆

m+1,U∆

m+1)Ñ({ jℓ},∆t)
]

≈
N−1
∑′

k=0
F

∆

k (tm+1)ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a pℓλ∆t

[

exp
(

i
kπ jℓ
b−a

)

−1
]}

. (6.6.29c)

Furthermore we use the COS formulas (6.4.10) and (6.4.12) from Sections 6.4.2 and 6.4.3,



6

138 6. COS METHOD FOR AN EFFICIENT COMPUTATION OF BSDES

obtained with the equality in Appendix 6.A.I, to find

z∆

m(x) ≈− 1−θ2
θ2

b−a
2

N−1
∑′

k=0
Z

∆

k (tm+1)Φk (x)+ 1
∆tθ2

b−a
2

N−1
∑′

k=0
Y

∆

k (tm+1)σ∆tΦ′
k (x)

+ 1−θ2
θ2

b−a
2

N−1
∑′

k=0

F
∆

k (tm+1)σ∆tΦ′
k (x), (6.6.30a)

u∆

m (x, jℓ) ≈− 1−θ3
θ3

b−a
2

N−1
∑′

k=0
U

∆,ℓ
k

(tm+1)Φk (x) (6.6.30b)

+
N−1
∑′

k=0

(

1
∆tθ3

Y
∆

k (tm+1)+ 1−θ3
θ3

F
∆

k (tm+1)
)

ℜ
{

φ
(

kπ
b−a

)

e
ikπ

x−a
b−a ∆t

[

exp
(

i
kπ jℓ
b−a

)

−1
]}

,

y∆

m(x) ≈ b−a
2

N−1
∑′

k=0

(

Y
∆

k (tm+1)+∆t(1−θ1)F∆

k (tm+1)
)

Φk (x)

+∆tθ1 f (tm , z∆

m (x),u∆

m (x, .)). (6.6.30c)

The coefficients Z
∆

k
(tm), F

∆

k
(tm), and Y

∆

k
(tm) are recovered in a similar way as explained

in Section 6.4.4. The computation of the Fourier cosine coefficients U
∆,ℓ
k

(tm) of function

u∆
m (x, jℓ) can be decomposed into three parts. In summary, this results in

U
∆,ℓ
k

(tm ) ≈ℜ
{N−1

∑′

j=0

[

− 1−θ3
θ3

U
∆,ℓ
j

(tm+1)+ 1
∆tθ3

∆t
[

exp
(

i
kπ jℓ
b−a

)

−1
]

Y
∆

j (tm+1)

+ 1−θ3
θ3

∆t
[

exp
(

i
kπ jℓ
b−a

)

−1
]

F
∆

j (tm+1)

]

φ
(

jπ
b−a

)

Mk , j

}

. (6.6.31)

With the above equations we can recover the Fourier cosine coefficients recursively and
solve the BSDEJ backwards in time.

6.6.4. REFERENCE VALUES
We first explain briefly how we can use the COS method, in a completely different way,
to obtain reference values for the numerical tests in Section 6.7. The utility maximization
problem,

V (w) = max
α∈A

E
[

U(WT − g (ST ))
]

, (6.6.32)

is a two-dimensional stochastic control problem with the following underlying processes

dSt /St− = bd t +σdωt +
∫

E
β(J )Ñ(d J ,d t), (6.6.33a)

dWt =αt bd t +αtσdωt +αt

∫

E
β(J )Ñ (d J ,d t). (6.6.33b)

We can solve this problem by a combination of the 1D-COS method for stochastic control
problems (Chapter 2) and the 2D-COS method (Chapter 4). The 2D-COS method was devel-
oped for pricing rainbow options, for which the payoff depends on two or more asset price
processes, and can also be applied to stochastic control problems.
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If it is not possible to invest in assets and to hedge the risky option, i.e., αt = 0, ∀t ∈
[0,T ], then the portfolio value Wt = w is constant and the problem reduces to

V (w) = E
[

U(w − g (ST ))
]

=−e−ηwE
[

eηg (ST )] . (6.6.34)

We can approximate this one-dimensional expectation by using the one-dimensional COS
formula.

6.7. NUMERICAL EXPERIMENTS BSDEJ
In this section we use the BCOS method to value a put option under jump-diffusion asset
prices by using utility indifference pricing, as explained in Section 6.6.2. For the numerical
tests, we use the following parameter values

S0 = 1, K = 1, b = 0.1779, σ= 0.2, T = 0.1. (6.7.1)

The jumps occurring are assumed to be bivariate distributed with possible jump sizes j1

and j2, with

j1 =−0.1338, j2 =−0.9838, p1 = p2 = 0.5, λ= 0.0228, (6.7.2)

so that the expected value is −0.5588 and the standard deviation is 0.4250. These values
correspond to the real-world P-measure for the jump-diffusion asset price in [KFV09].

We choose the computational domain

[a,b]=
[

κ1 −L

√

κ2 +
p
κ4, κ1 +L

√

κ2 +
p
κ4

]

, L = 12. (6.7.3)

The cumulants κ1, κ2, and κ4 of the Brownian motion and the Merton jump-diffusion pro-
cess are, for example, given in [FO08]. Again we set the number of terms in the Fourier
cosine series expansions equal to N = 29.

We distinguish between three θ-discretization schemes:

Scheme E: θ1 = 1, θ2 = 1, θ3 = 1,
Scheme F: θ1 = 0.5, θ2 = 1, θ3 = 1,
Scheme G: θ1 = 0.5, θ2 = 0.5, θ3 = 0.5.

For solving equations (6.6.26) in the first time iteration, m = M −1, we set θ1 = θ2 = θ3 = 1,
because the driver function f (.) depends on the unprescribed values z∆

M (x) and u∆

M (x, .).

No Hedge We start with the setting where it is not possible to invest in assets and to hedge
the risky option, i.e., αt = 0, ∀t ∈ [0,T ]. In Figure 6.7.1 results of the BCOS method are

shown. The left-side plot shows the initial values of the BSDEs, Y
ξ

0 , Y
−ξ

0 , and Y 0
0 , for different

values of η, and the right-side plot gives the bid and ask prices. The dots are the values
obtained by the BCOS method, while the black circles give the reference value obtained by
the COS method as described in Section 6.6.4. The approximated values correspond to the
reference values.

Restricted Hedging Strategy For the second test we assume that the set of admissible
strategies is given by A = [−15, 15]. In other words, a maximum of 15 Euro is used to buy
or sell assets. We use the Newton’s method to find the optimal strategy in equation (6.6.8b).
Figure 6.7.2 presents the results of the BCOS method.
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Figure 6.7.1: Results Y0 and utility indifference prices (Scheme G, N = 29, M = 64, ∆t = 0.1/64) (Reference values
(black circles) are obtained by the (2D-)COS method).
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Figure 6.7.2: Results Y0 and utility indifference prices (Scheme G, N = 29, M = 64, ∆t = 0.1/64) (Reference values
(black circles) are obtained by the 2D-COS method).

Convergence in M For the last test we investigate the convergence of the error in the num-
ber of timesteps M for η = 1 and with terminal conditions ξ and −ξ. Reference values are
obtained by choosing a large number of timesteps M . The results are shown in Figure 6.7.3.
The approximated value ŷ∆

0 (x0) converges with O(∆t) for schemes E and F and with O ((∆t)2 )
for scheme G, as expected. The values ẑ∆

0 (x0), û∆

0 (x0, j1), and û∆

0 (x0, j2) converge with O(∆t)
for all three schemes. Again the scheme with θi = 1/2, i = 1,2,3 gives the best convergence
rate. The CPU times for different values of N and M are shown in Table 6.7.1.

Table 6.7.1: CPU time (s).

M 4 8 16 32 64 128 256 512

N = 29 0.0694 0.1086 0.1908 0.3358 0.6428 1.2555 2.4931 4.9387

N 26 27 28 29

M = 256 0.7897 1.0745 1.5204 2.4931
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6.8. CONCLUSIONS AND OUTLOOK

In this chapter we proposed a probabilistic numerical method for solving backward
stochastic differential equations (BSDEs). The first step consists of discretizing the BSDE
by taking conditional expectations and applying a general θ-discretization for the time-in-
tegrals. Then, the BCOS method solves the problem backwards in time by approximating
the conditional expectations with the help of COS formulas. The Fourier cosine coefficients
are recovered recursively in an efficient way by using discrete Fourier cosine transforms and
an FFT algorithm.

Numerical tests demonstrate the applicability of the BCOS method for BSDEs in eco-
nomic and financial problems. In the tests we observed different convergence results for Z0

and Y0. The convergence of the error in the number of timesteps depends on the smooth-
ness and Lipschitz constant of the driver function and the terminal condition. In general,
we achieve the highest convergence rate for the θ-scheme with θ1 = θ2 = 1/2.

Utility indifference pricing is used to value options in an incomplete market under a
jump-diffusion asset price process, possibly with a restricted hedging portfolio. The bid
and ask prices are represented by BSDEs with jumps. We extended our BCOS method to
solving these BSDEJs under jump-diffusion with a finite number of jump sizes. Numerical
experiments show highly satisfactorily and efficient pricing results. The θ-scheme with θ1 =
θ2 = θ3 = 1/2 gives the fastest convergence.

The COS method is applicable for all Lévy processes and is especially efficient for the
affine class. BSDEs driven by Lévy processes are discussed in [NS01] and they are a chal-
lenging extension for the BCOS method. Another interesting extension are second order
BSDEs [FTW11].
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Appendix

6.A. COS FORMULAS
In this section we explain how to approximate several conditional expectations under the
discrete process

X ∆

m+1 = X ∆

m +µ(tm , x)∆t +σ(tm , x)∆ωm+1 +
∫

E
J N (d J ,∆t), (6.A.1)

with characteristic function

ϕ(u|x) =ϕ(u|0)eiux =φ(u|x)eiux , with

φ(u|x) := exp
(

i uµ(tm , x)∆t − 1
2 u2σ2(tm , x)∆t

)

eλ∆t (ϕJ (u)−1), (6.A.2)

where ϕJ (u) =
∑n j

ℓ=1 pℓeiu jℓ denotes the characteristic function of jump size J .

6.A.I. COMPUTATION OF EXPECTATION Ex
m [·∆ωm+1]

Integration by parts gives us, for sufficiently smooth v ,

Ex
m

[

v(tm+1, X ∆

m+1)∆ωm+1
]

= Ex
m

[

v

(

tm+1, x +µ(tm , x)∆t +σ(tm , x)∆ωm+1 +
∫

E
J N (d J ,∆t)

)

∆ωm+1

]

= E
x
m





1p
2π

p
∆t

∫

R
v

(

tm+1, x +µ(tm , x)∆t +σ(tm , x)ζ+
∫

E
J N (d J ,∆t)

)

ζe
− 1

2

(

ζp
∆t

)2

dζ





= E
x
m





σ(tm ,x)∆tp
2π

p
∆t

∫

R
Dx v(tm+1, x +µ(tm , x)∆t +σ(tm , x)ζ+

∫

E
J N (d J ,∆t))e

− 1
2

(

ζp
∆t

)2

dζ





=σ(tm , x)∆tEx
m

[

Dx v(tm+1, X ∆

m+1)
]

. (6.A.3)

For the error analysis in Section 6.4.5 we assume constant µ and σ terms, then iterated
conditioning gives

Ex
m

[

v(tm+2, X ∆

m+2)∆ωm+2
]

=σ∆tEx
m

[

Dx v(tm+2, X ∆

m+2)
]

(6.A.4)

and

Ex
m

[

v(tm+2, X ∆

m+2)∆ωm+1
]

= Ex
m

[

v

(

tm+2, x +µ2∆t +σ∆ωm+1 +σ∆ωm+2 +
∫

E
J N (d J ,2∆t)

)

∆ωm+1

]

=σ∆tEx
m

[

Dx v(tm+2, X ∆

m+2)
]

. (6.A.5)

The derivation for diffusion processes can be found by omitting the jump part in the
derivation.
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6.A.II. COMPUTATION OF EXPECTATION Ex
m

[

· Ñ ({ jℓ},∆t )
]

Equation (6.6.29b), and similarly equation (6.6.29c), require the computation of

Ex
m

[

v(tm+1, X ∆

m+1)Ñ({ jℓ},∆t)
]

= Ex
m

[

v(tm+1, X ∆

m+1)N ({ jℓ},∆t)
]

−Ex
m

[

v(tm+1, X ∆

m+1)
]

ν({ jℓ})∆t . (6.A.6)

The first part in (6.A.6) can be written as

Ex
m

[

v(tm+1, X ∆

m+1)N ({ jℓ},∆t)
]

≈
N−1
∑′

k=0
Vk (tm+1)ℜ

{

Ex
m

[

N ({ jℓ},∆t)exp
(

i u(X ∆

m+1 −a)
)]}

,

(6.A.7)

with

Ex
m

[

N ({ jℓ},∆t)exp
(

i u(X ∆

m+1 −a)
)]

= Ex
m

[

exp
(

i u(x +µ(tm , x)∆t +σ(tm , x)∆ωm+1 −a)
)]

·Ex
m

[

N ({ jℓ},∆t)exp

(

i u

∫

E
J N (d J ,∆t)

)]

. (6.A.8)

Now let τq , q = 1,2, . . . , N∆t denote the jump times between tm and tm+1, with jump sizes
Jτq . Then, we find by the law of iterated expectations the following equality

E

[

N ({ jℓ},∆t)exp

(

i u

∫

E
J N (d J ,∆t)

)]

= E

[

N∆t
∑

q=1
1 jℓ (Jτq )exp

(

i u
N∆t
∑

l=1
Jτl

)]

= E

[

E

[

N∆t
∑

q=1
1 jℓ(Jτq )exp

(

i u
N∆t
∑

l=1
Jτl

)

∣

∣

∣N∆t

]]

=
∞
∑

n=0
e−λ∆t (λ∆t )n

n! E

[

n
∑

q=1
1 jℓ(Jτq )exp

(

i u
n
∑

l=1
Jτl

)]

=
∞
∑

n=0
e−λ∆t (λ∆t )n

n!

n
∑

q=1
E

[

1 jℓ(Jτq )exp
(

i u Jτq

)]

E

[

exp

(

i u
n
∑

l=1,l 6=q

Jτl

)]

=
∞
∑

n=0
e−λ∆t (λ∆t )n

n! npℓeiu jℓ
(

ϕJ (u)
)n−1

= eiu jℓ pℓλ∆teλ∆t (ϕJ (u)−1). (6.A.9)

We end up with the approximation

Ex
m

[

v(tm+1, X ∆

m+1)Ñ({ jℓ},∆t)
]

≈
N−1
∑′

k=0
Vk (tm+1)ℜ

{

φ(u)eiu(x−a) [exp
(

i u jℓ
)

−1
]

pℓλ∆t
}

.

(6.A.10)





CHAPTER 7

Numerical Fourier Method and Second-Order Taylor Scheme for

Backward SDEs in Finance

7.1. INTRODUCTION
Backward stochastic differential equations (BSDEs) form an interesting recent concept in
financial mathematics. Their range of applicability has increased, for example, by coun-
terparty credit exposure and also insurance applications [Cré12]. The asset dynamics have
also been generalized, for example to jump diffusion processes (see [BE08] and the previous
chapter). Recently, several advanced probabilistic numerical methods have been developed
for FBSDEs, like advanced Monte Carlo methods [LGW06, GLW05, BS12], integration meth-
ods [ZCP06] and also Fourier methods [HO14]. Of course, a natural aim for these solution
methods is to make them highly efficient so that they can compete with semilinear PDE dis-
cretization and solution methods. With the BCOS method (Backward Stochastic Differential
Equation COS method), in Chapter 6, we developed an efficient FBSDE solution method for
asset dynamics for which a characteristic function of the continuous process can easily be
derived.

In this chapter we extend the BCOS method. We apply the well-known Euler and Mil-
stein schemes and an Order 2.0 weak Taylor scheme to the forward stochastic differential
equation. Then we explicitly derive the characteristic function for the discrete form of a for-
ward stochastic differential equation (FSDE), which will give us interesting opportunities
and generalizations. Traditionally, we know that a characteristic function can be derived, as
the Fourier transform of the probability density function for models from the class of regu-
lar affine processes of [DFS03], which also includes the exponentially affine jump-diffusion
class of and some stochastic volatility models, and for exponentially Lévy models. When
FSDE dynamics are not affine, like in the case of local volatility dynamics of Constant Elas-
ticity of Variance (CEV) process, on which the Stochastic Alpha Beta Rho (SABR) model is
based, we cannot traditionally employ Fourier techniques. The characteristic function cor-
responding to the discrete process can be however used, as we will show, to price options
by a Fourier technique. This feature forms a natural generalization of our BCOS method. In
Chapter 6 we focused on normal, lognormal and jump processes for which we could rela-
tively easily achieve second-order convergence, in the number of timesteps, in an FBSDE
context by means of a θ-time-discretization scheme ([Ise09]) and the COS Fourier cosine ex-
pansion technique. In this chapter the second-order accuracy is achieved, in combination
with a fast and efficient scheme, also for the CEV model, for time- and spatially-dependent

This chapter is based on the article ‘Numerical Fourier method and second-order Taylor scheme for backward
SDEs in finance’, submitted for publication, 2014 [RO14].

145



7

146 7. FOURIER METHOD AND 2ND-ORDER TAYLOR SCHEME FOR BSDES IN FINANCE

processes, as well as for the Cox-Ingersoll-Ross (CIR) process. In the traditional context, it
has been shown in [FO08] that Fourier cosine expansions will lead to exponentially conver-
gent computational methods for smooth density functions. Here, in the discrete case, we
will not observe exponential convergence in the number of Fourier coefficients, but second-
order convergence, due to the use of discrete Fourier cosine transforms.

We start in Section 7.2 with definitions of forward and backward SDEs and present the
link between coupled FBSDEs and semilinear partial differential equations. Section 7.2.2
discusses discrete schemes for the FSDE, such as the Euler, Milstein, and Order 2.0 weak
Taylor schemes and exact simulation schemes. Our numerical algorithm is described in
Section 7.3, where we start with the characteristic function of the discretized FSDE and an
example of Bermudan options (under the risk-neutral measure). A general time-discretiza-
tion of a BSDE results in expressions with conditional expectations (Section 7.3.2). These
conditional expectations are computed by the COS formulas (Section 7.3.3) and the prob-
lem is then solved backwards in time. Section 7.3.4 presents the overall algorithm. An error
analysis is performed in Section 7.4. We demonstrate the numerical method by extensive
experiments in Section 7.5. Section 7.6 concludes.

7.2. BACKWARD AND FORWARD STOCHASTIC DIFFERENTIAL

EQUATIONS
For notation and definitions for BSDEs, for which we follow the survey paper [EKPQ97], we
refer to Section 6.2.

7.2.1. DECOUPLED FBSDES

Here, we consider a semilinear parabolic PDE of the form1

∂v
∂t

(t , x)+µ(x)Dx v(t , x)+ 1
2σ

2(x)D2
x v(t , x)+ f (t , x, v(t , x),σ(x)Dx v(t , x)) = 0,

(t , x) ∈ [0,T )×R, (7.2.1a)

v(T, x) = g (x), x ∈R. (7.2.1b)

This PDE has a probabilistic representation, by means of the following FSDE,

Xt = x, d Xs =µ(Xs )d s +σ(Xs )dωs , t ≤ s ≤ T. (7.2.2)

and BSDE
dYs =− f (s, Xs ,Ys , Zs)d s +Zs dωs , YT = g (XT ), (7.2.3)

whose terminal condition is determined by the terminal value of FSDE (7.2.2). Notice that
also the driver function now depends on the state of the FSDE. Let X t ,x

s denote the solu-
tion to (7.2.2), starting from x at time t , and (Y

t ,x
s , Z

t ,x
s ) be the corresponding solution to

the BSDE. For assumptions on the functions σ, µ, f and g , to guarantee the existence of a
unique solution (Y , Z ) to the BSDE (7.2.3), we refer to Section 6.2. The following results hold

Result 7.2.1. ([PP92, Pha09]) Let v ∈C 1,2 be a classical solution to (7.2.1a) and suppose there

exists a constant C ≥ 0 such that, for all (t , x), |v(t , x)|+ |σ(x)Dx v(t , x)| ≤C (1+|x|). Then the

pair (Y , Z ), defined by

Y t ,x
s = v(s, X t ,x

s ), Z t ,x
s =σ(X t ,x

s )Dx v(s, X t ,x
s ), t ≤ s ≤ T, (7.2.4)

1In Chapter 6 the drift µ(x) and diffusion term σ(x) also depend on time. Here we omit this time-dependency for
ease of notation. In Section 7.5.4 we include an example with time-dependent functions.
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is the solution to BSDE (7.2.3) (a so-called verification result).

The converse result states: Suppose (Y , Z ) is the solution to the BSDE, then the function

defined by v(t , x) = Y t ,x
t is a viscosity solution to the PDE.

For our numerical method, we wish to discretize both the forward and backward
stochastic processes by schemes higher than order one and aim to find a flexible and ef-
ficient solution method, competitive in performance. In the following subsection we recap
the Itô-Taylor expansion and discretization schemes for the FSDEs.

7.2.2. ITÔ-TAYLOR EXPANSION AND DISCRETIZATION SCHEMES
For an extensive survey on stochastic Taylor expansions we refer to [KP92]. We consider the
integral form of the FSDE,

Xt = Xt0 +
∫t

t0

µ(Xs )d s +
∫t

t0

σ(Xs )dωs , t0 ≤ t ≤ T. (7.2.5)

Drift function µ(.) and volatility function σ(.) are assumed to be sufficiently smooth. Itô’s
formula for a general sufficiently smooth function h(t , x) gives

h(t , Xt ) = h(t0, Xt0 )+
∫t

t0

L
0h(s, Xs )d s +

∫t

t0

L
1h(s, Xs )dωs , t0 ≤ t ≤ T, (7.2.6)

with diffusion operators

L
0 := ∂

∂t
+µ ∂

∂x
+ 1

2σ
2 ∂2

∂x2 , L
1 :=σ ∂

∂x
. (7.2.7)

By applying Itô’s formula to the functions µ(Xs ) and σ(Xs) in (7.2.5) we find

Xt = Xt0 +µ(Xt0 )I(0),t0 ,t +σ(Xt0 )I(1),t0 ,t +
∫t

t0

∫s

t0

L
0µ(Xu )dud s (7.2.8)

+
∫t

t0

∫s

t0

L
1µ(Xu )dωud s +

∫t

t0

∫s

t0

L
0σ(Xu)dudωs +

∫t

t0

∫s

t0

L
1σ(Xu )dωudωs ,

with Itô integrals

I(0),ρ,τ :=
∫τ

ρ
d s = τ−ρ, I(1),ρ,τ :=

∫τ

ρ
dωs =ωτ−ωρ . (7.2.9)

The general multiple Itô integral is defined recursively by (see [KP92], Chapter 5.2)

Iα[h(., X .)]ρ,τ :=















h(τ, Xτ), l(α) = 0,
∫τ
ρ Iα−[h(., X .)]ρ,sd s, l(α) ≥ 1,αl = 0,

∫τ
ρ Iα−[h(., X .)]ρ,sdωs , l(α) ≥ 1,αl = 1,

(7.2.10)

with l(α) the size of multi-index vector α= (α1,α2, . . . ,αl (α)), α− := (α1,α2, . . . ,αl (α)−1), and
−α := (α2, . . . ,αl ). α; denotes the multi-index of length zero. For notational convenience we
write Iα,ρ,τ = Iα[1]ρ,τ. The Itô coefficient functions are defined by hα = L

α1L
α2 . . .L αl h.

Let M denote the set of all multi-indices. Subset A ⊂M is called a hierarchical set if A 6= ;,
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supα∈A l(α) <∞, and −α ∈A for all α∈A \α;. For any hierarchical set A the correspond-
ing remainder set B(A ) is defined by B(A ) = {α ∈ M \A : −α ∈ A }. By iterating Itô’s for-
mula we obtain the Itô-Taylor expansion, as follows

h(t , Xt ) =
∑

α∈A

hα(t0, Xt0 )Iα,t0 ,t +
∑

α∈B(A )
Iα[hα(., X .)]t0,t . (7.2.11)

Notice that for the Itô-Taylor expansion of (7.2.5) we use h(t , x) = x.
We now briefly discuss some discretization schemes for FSDE (7.2.5). We define a time-

grid t0, t1, . . . , tm , . . . , tM = T , with fixed timesteps ∆t := tm+1 − tm . For notational conve-
nience we write Xm = Xtm , ωm = ωtm , ∆ωm+1 := ωm+1 −ωm , and Iα,m+1 := Iα,tm ,tm+1 . The
approximated process is denoted by X ∆

m = X ∆

tm
. We start with X ∆

0 = X0 and one of the follow-

ing forward schemes is used to determine the values X ∆

m+1, for m = 0, . . . , M −1. The strong
convergence rate γs and weak convergence rate γw satisfy, for sufficiently small ∆t , ([KP92],
Chapter 9.6 and 9.7)

E0[|XT −X ∆

T |] ≤C (∆t)γs , |E0[P (XT )−P (X ∆

T )]| ≤C (∆t)γw , (7.2.12)

with C > 0 a constant, which does not depend on ∆t , and P (.) any 2(γw +1) times continu-
ously differentiable function of polynomial growth.

Well-known schemes include the Euler scheme (γs = 1
2 , γw = 1), i.e.,

X ∆

m+1 = X ∆

m +µ(X ∆

m)I(0),m+1 +σ(X ∆

m)I(1),m+1

= X ∆

m +µ(X ∆

m)∆t +σ(X ∆

m )∆ωm+1 (7.2.13)

and the Milstein scheme (γs = 1, γw = 1), i.e.,

X ∆

m+1 = X ∆

m +µ(X ∆

m )I(0),m+1 +σ(X ∆

m)I(1),m+1 +L
1σ(X ∆

m )I(1,1),m+1

= X ∆

m +µ(X ∆

m )∆t +σ(X ∆

m )∆ωm+1 +σ(X ∆

m )σx (X ∆

m) 1
2 [(∆ωm+1)2 −∆t ]. (7.2.14)

Here we use the short-hand notation σx = Dxσ. We also consider the Order 2.0 weak Taylor

scheme (γs = 1, γw = 2), defined as,

X ∆

m+1 = X ∆

m +µ(X ∆

m )I(0),m+1 +σ(X ∆

m)I(1),m+1 +L
1σ(X ∆

m)I(1,1),m+1

+L
1µ(X ∆

m )I(1,0),m+1 +L
0σ(X ∆

m )I(0,1),m+1 +L
0µ(X ∆

m )I(0,0),m+1

= X ∆

m +µ(X ∆

m )∆t +σ(X ∆

m )∆ωm+1 +σ(X ∆

m )σx (X ∆

m ) 1
2 [(∆ωm+1)2 −∆t ]

+µx (X ∆

m )σ(X ∆

m)∆̟m+1

+
(

µ(X ∆

m )σx (X ∆

m)+ 1
2σxx (X ∆

m)σ2(X ∆

m )
)

[∆ωm+1∆t −∆̟m+1]

+
(

µ(X ∆

m )µx (X ∆

m )+ 1
2µxx (X ∆

m )σ2(X ∆

m )
) 1

2 (∆t)2, (7.2.15)

with

∆̟m+1 := I(1,0),m+1 ∼N (0, 1
3 (∆t)3), (7.2.16)

E[∆̟m+1] = 0, Var(∆̟m+1) = 1
3 (∆t)3, Cov(∆ωm+1,∆̟m+1) = 1

2 (∆t)2. (7.2.17)

If we replace the Wiener process ωt by a trinomial tree with increments ∆ω̂m+1 ∈
{

−
p

3
p
∆t , 0, +

p
3
p
∆t

}

and replace ∆̟m+1 by 1
2∆ω̂m+1∆t , this leads to the so-called Order
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2.0 simplified weak Taylor scheme [KP92]. However, we do not replace ∆ωm+1 by a discrete
tree, but keep the continuous random variable. We replace ∆̟m+1 by ∆ ˜̟ m+1 := 1

2∆ωm+1∆t .
The moments do not change up to order two:

E[∆ ˜̟m+1] = 0, Var(∆ ˜̟ m+1) = 1
2 (∆t)3, Cov(∆ωm+1,∆ ˜̟m+1) = 1

2 (∆t)2. (7.2.18)

This gives us the Order 2.0 ‘continuous’ simplified weak Taylor scheme

X ∆

m+1 = X ∆

m +µ(X ∆

m )∆t +σ(X ∆

m )∆ωm+1

+σ(X ∆

m )σx (X ∆

m ) 1
2 [(∆ωm+1)2 −∆t ]

+
(

µx (X ∆

m)σ(X ∆

m)+µ(X ∆

m )σx (X ∆

m )+ 1
2σxx (X ∆

m )σ2(X ∆

m )
) 1

2∆ωm+1∆t

+
(

µ(X ∆

m )µx (X ∆

m)+ 1
2µxx (X ∆

m)σ2(X ∆

m )
) 1

2 (∆t)2. (7.2.19)

We abbreviate the Order 2.0 ‘continuous’ simplified weak Taylor scheme by 2.0-weak-Taylor

scheme. With the theory in [KP92] it can be proved that γw = 2.
For, for example, the Cox-Ingersoll-Ross (CIR) process and Heston model exact simula-

tion schemes exist to simulate

Xm+1 = Xm +
∫tm+1

tm

µ(Xs )d s +
∫tm+1

tm

σ(Xs )dωs , (7.2.20)

by sampling directly the explicit transitional density function. For the CIR process we have

µ(x) = ̹(x̄ − x), σ(x) = η
p

x. (7.2.21)

There holds Xt ≥ 0. If the Feller condition, 2̹x̄ ≥ η2, is satisfied, then the process is
strictly positive. If the Feller condition is not satisfied then the process can become zero. We
define qF := 2̹x̄/η2−1 and ζ := 2̹/

(

(1−e−̹∆t )η2
)

. Then 2ζXm+1 is noncentral chi-squared
distributed with degrees of freedom 2(qF +1) and noncentrality parameter 2ζXm e−̹∆t (see
[FO11, JYC09]). The characteristic function of Xm+1 is known, i.e.,

ϕXm+1 (u|Xm = x) = exp

(

iuxe−̹∆t

1−
iu(1−e−̹∆t )η2

2̹

)

(

1− iu(1−e−̹∆t )η2

2̹

)−2̹x̄/η2

. (7.2.22)

7.3. BCOS METHOD
In Section 7.3.1 we derive the characteristic function of the underlying discretized FSDE. In
Section 7.3.2 we discuss the θ- and ∆-time-discretization schemes for the coupled FBSDE
and in Section 7.3.3 we derive COS formulas to approximate the occurring expectations by
using the characteristic function. Section 7.3.4 presents the overall BCOS algorithm.

7.3.1. CHARACTERISTIC FUNCTION DISCRETIZATION SCHEMES FSDE
We can write the Euler, Milstein, and 2.0-weak-Taylor discretization schemes from the pre-
vious section in the following general form

X ∆

m+1 = x +m(x)∆t + s(x)∆ωm+1 +κ(x)(∆ωm+1)2, X ∆

m = x. (7.3.1)

For the Euler scheme we have

m(x) =µ(x), s(x) =σ(x), κ(x) = 0, (7.3.2)
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for the Milstein scheme

m(x) =µ(x)− 1
2σ(x)σx (x), s(x) =σ(x), κ(x) = 1

2σ(x)σx (x), (7.3.3)

and for the 2.0-weak-Taylor scheme

m(x)= µ(x)− 1
2σ(x)σx (x)+ 1

2

(

µ(x)µx (x)+ 1
2µxx (x)σ2(x)

)

∆t , (7.3.4a)

s(x) =σ(x)+ 1
2

(

µx (x)σ(x)+µ(x)σx (x)+ 1
2σxx (x)σ2(x)

)

∆t , (7.3.4b)

κ(x) = 1
2σ(x)σx (x). (7.3.4c)

Lemma 7.3.1. The characteristic function of X ∆

m+1, given X ∆
m = x, in equation (7.3.1) is given

by

ϕX ∆

m+1
(u|X ∆

m = x) = E

[

exp
(

i uX ∆

m+1

)

∣

∣

∣X ∆

m = x
]

= exp

(

i ux + i um(x)∆t −
1
2 u2s2(x)∆t

1−2iuκ(x)∆t

)

(1−2i uκ(x)∆t)−1/2 . (7.3.5)

For κ(x) = 0 it follows that2

ϕX ∆

m+1
(u|X ∆

m = x) = eiux+ium(x)∆t− 1
2 u2s2(x)∆t . (7.3.6)

Proof. With polynomial factorization we can rewrite equation (7.3.1) as (for κ(x) 6= 0)

X ∆

m+1 = x +m(x)∆t +κ(x)
(

∆ωm+1 + 1
2

s(x)
κ(x)

)2
− 1

4
s2(x)
κ(x)

d= x +m(x)∆t − 1
4

s2(x)
κ(x) +κ(x)∆t

(

εN

m+1 +
√

λ(x)
)2

, (7.3.7)

with λ(x) := 1
4

s2(x)
κ2(x)∆t

and ∆ωm+1
d=

p
∆tεN

m+1, εN

m+1 ∼ N (0,1). Random variable
(

εN

m+1 +
p
λ(x)

)2 ∼ χ
′2
1 (λ(x)) is governed by a noncentral chi-squared distribution with de-

grees of freedom ν= 1 and λ(x) the noncentrality parameter. The characteristic function of
a noncentral chi-squared distributed random variable reads

ϕ
χ
′2
ν (λ)

(u) = exp
(

iλu
1−2iu

)

(1−2i u)−ν/2 . (7.3.8)

The characteristic function of X ∆

m+1, given X ∆
m = x, is then given by

ϕX ∆

m+1
(u|X ∆

m = x) = E

[

exp
(

i uX ∆

m+1

)

∣

∣

∣X ∆

m = x
]

= exp
(

i ux + i um(x)∆t − i u 1
4

s2(x)
κ(x)

)

ϕ
χ
′2
1 (λ(x))

(uκ(x)∆t)

= exp
(

i ux + i um(x)∆t − i u 1
4

s2(x)
κ(x)

)

exp

(

iu
1
4

s2(x)
κ(x)

1−2iuκ(x)∆t

)

(1−2i uκ(x)∆t)−1/2

= exp

(

i ux + i um(x)∆t −
1
2 u2s2(x)∆t

1−2iuκ(x)∆t

)

(1−2i uκ(x)∆t)−1/2 . (7.3.9)

2In Section 7.5.1 we discuss an example with κ(0) = 0.
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7.3.1.1. INTERMEZZO: BERMUDAN PUT OPTION - CEV - Q-MEASURE

To test the discretization schemes of the FSDE and the discrete characteristic function, we
perform an option pricing experiment with the COS method for a Bermudan put option. We
take ten early-exercise dates τ j , j = 1, . . . ,10, with fixed time intervals T /10. The underlying
asset price under the risk-neutral Q-measure follows a Constant Elasticity of Variance (CEV)
process,

d Xs = r Xs d s + σ̄X
γ
s dωs . (7.3.10)

The option price v(t , Xt ) is given by the risk-neutral valuation formula

v(t , x) = sup
τ j

e−r (τ j −t )EQ
[

g (Xτ j
)|Xt = x

]

, (7.3.11)

with payoff function g (x) = max(K − x,0). This problem can also be represented by a linear
parabolic PDE variational inequality by means of the Feynman-Kac theorem. We take the
number of timesteps of the time-discretization schemes, that is M , equal to a multiple of
the number of early-exercise dates. The dynamic programming principle gives

v(tm , x) =







e−r∆tE

[

v(tm+1, Xm+1)
∣

∣

∣Xm = x
]

, for tm 6= τ j ,

max
[

e−r∆tE

[

v(tm+1, Xm+1)
∣

∣

∣Xm = x
]

, g (x)
]

, for tm = τ j .
(7.3.12)

The COS formula gives us

E

[

v(tm+1, Xm+1)
∣

∣

∣Xm = x
]

≈ E

[

v(tm+1, X ∆

m+1)
∣

∣

∣X ∆

m = x
]

≈
N−1
∑′

k=0
Vk (tm+1)E

[

cos

(

kπ
X ∆

m+1−a

b−a

)

∣

∣

∣X ∆

m = x

]

=
N−1
∑′

k=0
Vk (tm+1)ℜ

{

E

[

exp

(

i kπ
X ∆

m+1
b−a

)

∣

∣

∣X ∆

m = x

]

exp
(

i kπ −a
b−a

)

}

=
N−1
∑′

k=0
Vk (tm+1)ℜ

{

ϕX ∆

m+1

(

kπ
b−a

∣

∣

∣X ∆

m = x
)

exp
(

i kπ −a
b−a

)

}

, (7.3.13)

where Vk (tm+1) denote the Fourier cosine coefficients of v(tm+1, x), i.e.,

Vk (tm+1) = 2
b−a

∫b

a
v(tm+1, x)cos

(

kπ x−a
b−a

)

d x. (7.3.14)

The coefficients are recovered recursively backwards in time (similar as in Section 7.3.4).
The characteristic function of the discretized FSDE, X ∆

m+1, is known, whereas the charac-
teristic function of the FSDE, Xm+1, is only available in closed form for γ ∈ {0, 0.5, 1, 1.5}
[Lew00]. For the tests, we use the following parameter values

X0 = 100, K = 100, r = 0.1, T = 0.1. (7.3.15)

We take the elasticity of variance equal to γ = 0.2 and γ = 0.8 and choose σ̄ so that
σ(X0) = 25. The exact solutions for corresponding European options ([Hul09]) are given by
v(t0, X0) = 2.6650 and v(t0, X0) = 2.6655, respectively. The Bermudan values are v(t0, X0) =
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2.7353 and v(t0, X0) = 2.7373, where we computed our reference values by taking high val-
ues of M and N .

The results for the Euler, Milstein, and 2.0-weak-Taylor schemes are shown in Figure
7.3.1 for N = 29. The 2.0-weak-Taylor scheme results in second-order convergence in M . It
is interesting to see that the 2.0-weak-Taylor does not only have a better convergence rate,
but also the absolute value of the error is lower even for small M . Because of that, we only
need a small number of timesteps to achieve a small error. For comparison, with the 2.0-
weak-Taylor scheme we need only 20 timesteps to get errors smaller than 10−5, whereas the
Euler scheme requires approximately 900 timesteps.

Table 7.3.1 presents the errors for the 2.0-weak-Taylor scheme for different values of N ,
with M = 1000 timesteps. The convergence in N , the number of Fourier coefficients, is of
second order, due to the use of discrete Fourier cosine transforms (see Section 7.3.4).

The CPU time is shown in the last row. The computation time for the Euler scheme
is only slightly shorter. The computation of the expected values, with the COS formula,
on an x-grid with length N is O(N 2), due to matrix-vector multiplications. The usage of
discrete Fourier cosine transforms (DCTs) for the recovery of the coefficients is of order
O(N log N ). As the use of the DCTs is the most time-consuming part we do not observe
quadratic complexity for these values of N .

We would like to mention that this method can also be applied to time-dependent drift
and diffusion terms and to other local volatility models.
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Figure 7.3.1: Results Bermudan put, γ= 0.2 (lines) and γ= 0.8 (dashes) (N = 29).

Table 7.3.1: Error and CPU time for 2.0-weak-Taylor scheme (γ= 0.2, M = 1000).

N 24 25 26 27 28 29

2.0-weak-Taylor 3.2235e-02 2.5416e-03 2.9661e-04 1.1736e-04 7.9437e-05 1.6482e-05
CPU time (s) 0.0127 0.0128 0.0132 0.0143 0.0169 0.0352
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7.3.2. ∆-TIME-DISCRETIZATION SCHEME

In this section, we focus on the full discretization scheme of the decoupled FBSDE system3.
First, we consider the integral form of the BSDE,

Yt = g (XT )+
∫T

t
f (s,Λs )d s −

∫T

t
Zsdωs , (7.3.16)

with Λs := (Xs ,Ys , Zs ). For the discretization of the BSDE at time-point tm , we then start
with

Ym = Ym+1 +
∫tm+1

tm

f (s,Λs )d s −
∫tm+1

tm

Zsdωs . (7.3.17)

Taking conditional expectations at both sides of equation (7.3.17) and applying the θ-
method ([Ise09]) results in

Ym = Em [Ym+1]+
∫tm+1

tm

Em

[

f (s,Λs )
]

d s

≈ Em [Ym+1]+∆tθ f (tm ,Λm)+∆t(1−θ)Em

[

f (tm+1,Λm+1)
]

, (7.3.18)

where Em[.] represents the conditional expectation E[.|Ftm ]. Multiplying both sides of equa-
tion (7.3.17) by ∆ωm+1, taking the conditional expectations, and applying the θ-method
gives us

0= Em [Ym+1∆ωm+1]+
∫tm+1

tm

Em

[

f (s,Λs)(ωs −ωtm )
]

d s −
∫tm+1

tm

Em [Zs]d s

≈ Em [Ym+1∆ωm+1]+∆t(1−θ)Em

[

f (tm+1,Λm+1)∆ωm+1
]

−∆tθZm −∆t(1−θ)Em [Zm+1] . (7.3.19)

For the approximation of the FSDE we will use the Euler, Milstein, or 2.0-weak-Taylor
schemes, as described in Section 7.2.2. Then the following ∆-time-discretization scheme

algorithm is used to approximate the BSDE

Y ∆

M = g (X ∆

M ), Z∆

M =σ(X ∆

M )Dx g (X ∆

M ), (7.3.20a)

for m = M −1, . . . ,0 :

Z∆

m = 1
∆t

θ−1Em

[

Y ∆

m+1∆ωm+1
]

+θ−1(1−θ)Em

[

f (tm+1,Λ∆

m+1)∆ωm+1
]

−θ−1(1−θ)Em

[

Z∆

m+1

]

, (7.3.20b)

Y ∆

m = Em

[

Y ∆

m+1

]

+∆tθ f (tm ,Λ∆

m)+∆t(1−θ)Em

[

f (tm+1,Λ∆

m+1)
]

. (7.3.20c)

The values Y ∆
m and Z∆

m depend on the value of the forward process. Then it is easily
seen, using an induction argument, that there are deterministic functions y∆

m (x) and z∆
m (x),

so that

Y ∆

m = y∆

m(X ∆

m ), Z∆

m = z∆

m(X ∆

m). (7.3.21)

Xm denotes the exact solution of the FSDE (7.2.2) at time tm and X ∆
m is its discrete ap-

proximation. Let X
m,x
k

denote the value of Xk , given Xm = x. Similarly, X
∆,m,x
k

denotes the

value of X ∆

k
, given X ∆

m = x. We use the following notation

3The scheme is similar to the discretization scheme in Section 6.3. However, we here use θ1 = θ2 = θ.
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• (ym (x), zm(x)) is the exact solution of BSDE (7.3.16) at time tm , given Xm = x.

• (yθ
m (x), zθ

m(x)) is the discrete approximation of the BSDE with the θ-time-discretiza-
tion scheme, given exact solution Xm = x, and, for m = M −1, . . . ,0,

zθ
m(x) = 1

∆t θ
−1

E

[

yθ
m+1(X

m,x
m+1)∆ωm+1

]

(7.3.22a)

+θ−1(1−θ)E
[

f (tm+1,Λθ
m+1(X m,x

m+1))∆ωm+1

]

−θ−1(1−θ)E
[

zθ
m+1(X m,x

m+1)
]

,

yθ
m(x) = E

[

yθ
m+1(X m,x

m+1)
]

+∆tθ f (tm ,Λθ
m(x))

+∆t(1−θ)E
[

f (tm+1,Λθ
m+1(X

m,x
m+1))

]

. (7.3.22b)

• (y∆
m (x), z∆

m(x)) is the discrete approximation with the ∆-time-discretization scheme,
given discrete approximation X ∆

m = x, and, for m = M −1, . . . ,0,

z∆

m(x) = 1
∆t

θ−1E

[

y∆

m+1(X ∆,m,x
m+1 )∆ωm+1

]

(7.3.23a)

+θ−1(1−θ)E
[

f (tm+1,Λ∆

m+1(X ∆,m,x
m+1 ))∆ωm+1

]

−θ−1(1−θ)E
[

z∆

m+1(X ∆,m,x
m+1 )

]

,

y∆

m(x) = E

[

y∆

m+1(X
∆,m,x
m+1 )

]

+∆tθ f (tm ,Λ∆

m(x))

+∆t(1−θ)E
[

f (tm+1,Λ∆

m+1(X ∆,m,x
m+1 ))

]

. (7.3.23b)

The values yθ
m(x) and y∆

m(x) are implicit for θ > 0 and are determined by performing

P = 10 Picard iterations, starting with initial guesses E
[

yθ
m+1(X m,x

m+1)
]

and E

[

y∆

m+1(X ∆,m,x
m+1 )

]

,

respectively.

In the BCOS method we here use the characteristic function of the underlying
discretized FSDE, as discussed in Section 7.3.1, to approximate the appearing con-

ditional expectations E

[

y∆

m+1(X ∆,m,x
m+1 )

]

, E

[

z∆

m+1(X ∆,m,x
m+1 )

]

, and E

[

f (tm+1,Λ∆

m+1(X ∆,m,x
m+1 ))

]

.

Besides, we need to approximate the expected values E

[

y∆

m+1(X
∆,m,x
m+1 )∆ωm+1

]

and

E

[

f (tm+1,Λ∆

m+1(X
∆,m,x
m+1 ))∆ωm+1

]

. Details are discussed in the following subsection.

7.3.3. EXPECTED VALUES ∆-TIME-DISCRETIZATION SCHEME FBSDE

In this section we derive an equation for the conditional expectations E

[

h(tm+1, X
∆,m,x
m+1 )

]

and E

[

h(tm+1, X
∆,m,x
m+1 )∆ωm+1

]

under the general discrete dynamics (7.3.1). Here h(t , x) is a

general function.

Let Hk (tm+1) denote the Fourier cosine coefficients of h(tm+1, x), i.e.,

Hk (tm+1) = 2
b−a

∫b

a
h(tm+1, x)cos

(

kπ x−a
b−a

)

d x, (7.3.24)
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With the COS formula we get

E

[

h(tm+1, X ∆,m,x
m+1 )

]

≈
N−1
∑′

k=0
Hk (tm+1)E

[

cos

(

kπ
X

∆,m,x
m+1 −a

b−a

)]

=
N−1
∑′

k=0
Hk (tm+1)ℜ

{

ϕX ∆

m+1

(

kπ
b−a

∣

∣

∣X ∆

m = x
)

exp
(

i kπ −a
b−a

)

}

(7.3.25)

and Fourier cosine series give

E

[

h(tm+1, X
∆,m,x
m+1 )∆ωm+1

]

≈
N−1
∑′

k=0
Hk (tm+1)E

[

cos

(

kπ
X ∆,m,x

m+1 −a

b−a

)

∆ωm+1

]

=
N−1
∑′

k=0
Hk (tm+1)ℜ

{

E

[

exp

(

i kπ
X

∆,m,x
m+1
b−a

)

∆ωm+1

]

exp
(

i kπ −a
b−a

)

}

. (7.3.26)

Integration by parts gives

E

[

exp(i uX
∆,m,x
m+1 )∆ωm+1

]

= E

[

exp
(

i ux + i um(x)∆t + i us(x)∆ωm+1 + i uκ(x)(∆ωm+1)2
)

∆ωm+1

]

= 1p
2π

p
∆t

∫

R
exp

(

i ux + i um(x)∆t + i us(x)ζ+ i uκ(x)ζ2
)

ζe
− 1

2

(

ζp
∆t

)2

dζ

= 1p
2π

p
∆t

∫

R

{

s(x)+2κ(x)ζ
}

∆tDx exp
(

i ux + i um(x)∆t + i us(x)ζ+ i uκ(x)ζ2
)

e
− 1

2

(

ζp
∆t

)2

dζ

= s(x)∆tE
[

Dx exp(i uX ∆,m,x
m+1 )

]

+2κ(x)∆tE
[

Dx exp(i uX ∆,m,x
m+1 )∆ωm+1

]

. (7.3.27)

Using the same procedure for the last term in (7.3.27) and iterating recursively gives us

E

[

exp(i uX ∆,m,x
m+1 )∆ωm+1

]

= s(x)∆tE
[

Dx exp(i uX ∆,m,x
m+1 )

]

+ s(x)∆t(2κ(x)∆t)E
[

D2
x exp(i uX ∆,m,x

m+1 )
]

+ s(x)∆t(2κ(x)∆t)2E

[

D3
x exp(i uX

∆,m,x
m+1 )

]

+ s(x)∆t(2κ(x)∆t)3
E

[

D4
x exp(i uX

∆,m,x
m+1 )

]

+ . . . . (7.3.28)

It holds that

E

[

∂(ℓ)

∂(X ∆,m,x
m+1 )(ℓ)

exp
(

i uX ∆,m,x
m+1

)

]

= (i u)ℓE
[

exp
(

i uX ∆,m,x
m+1

)]

= (i u)ℓϕX ∆

m+1
(u|X ∆

m = x). (7.3.29)

For the numerical experiments, it appears sufficient to take only the first two terms in
(7.3.28), as the other terms are at least of order O((∆t)3), and we end up with

E

[

h(tm+1, X ∆,m,x
m+1 )∆ωm+1

]

≈
N−1
∑′

k=0
Hk (tm+1)ℜ

{(

s(x)∆t
(

i kπ
b−a

)

ϕX ∆

m+1

(

kπ
b−a

∣

∣

∣X ∆

m = x
)

(7.3.30)

+ s(x)∆t2κ(x)∆t
(

i kπ
b−a

)2
ϕX ∆

m+1

(

kπ
b−a

∣

∣

∣X ∆

m = x
)

)

exp
(

i kπ −a
b−a

)

}

,

which enables us to approximate the conditional expectations in (7.3.20).
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7.3.3.1. EXACT SIMULATION SCHEME

For, for example, the CIR process and Heston stochastic volatility models an exact simula-

tion scheme exists based on directly sampling from the available transitional density func-
tion. In this section, we explain how to use exact simulation schemes to solve the discrete
problem (7.3.22). The characteristic function of X

m,x
m+1 can be found as the Fourier transform

of the density function and is denoted by ϕXm+1 (u|Xm = x). With the COS formula we get

E
[

h(tm+1, X m,x
m+1)

]

≈
N−1
∑′

k=0
Hk (tm+1)ℜ

{

ϕXm+1

(

kπ
b−a

∣

∣

∣Xm = x
)

exp
(

i kπ −a
b−a

)

}

. (7.3.31)

The question is how to approximate the expected value E
[

h(tm+1, X m,x
m+1)∆ωm+1

]

. Notice
that X

m,x
m+1 and ∆ωm+1 are correlated. We first use Fourier cosine series to get

E
[

h(tm+1, X
m,x
m+1)∆ωm+1

]

≈
N−1
∑′

k=0
Hk (tm+1)ℜ

{

E

[

exp
(

i kπ
X m,x

m+1
b−a

)

∆ωm+1

]

exp
(

i kπ −a
b−a

)

}

,

(7.3.32)

and then with the theory in Section 7.2.2 and [KP92] we find

E
[

exp(i uX m,x
m+1)∆ωm+1

]

= E

[

∑

α∈A

L
α exp(i ux)Iα,m+1∆ωm+1

]

+E

[

∑

α∈B(A )
Iα[L α exp(i uX m,x

. )]m+1∆ωm+1

]

=L
1 exp(i ux)∆t +L

1
L

0 exp(i ux) 1
2 (∆t)2 +L

0
L

1 exp(i ux) 1
2 (∆t)2 +O((∆t)3). (7.3.33)

Notice that exp(i ux) does not depend on time and

L
1 exp(i ux) =σ(x)i u exp(i ux), (7.3.34a)

L
1
L

0 exp(i ux) =
[

σ(x)µx (x)i u+ (σ(x)µ(x)+σ2(x)σx (x))(i u)2

+ 1
2σ(x)3(i u)3

]

exp(i ux), (7.3.34b)

L
0
L

1 exp(i ux) =
[

(µ(x)σx (x)+ 1
2σ

2(x)σxx (x))i u+ (µ(x)σ(x)

+σ2(x)σx (x))(i u)2 + 1
2σ(x)3(i u)3

]

exp(i ux). (7.3.34c)

This enables us to approximate the conditional expectations in (7.3.22).

7.3.4. RECOVERY OF COEFFICIENTS AND ALGORITHM
Now we return to FBSDE problem (7.3.23), where we obtained deterministic functions
y∆

m(x) and z∆
m (x). Let Y

∆

k
(tm) be the Fourier cosine coefficients of y∆

m(x) in (7.3.23b), i.e.,

Y
∆

k (tm) = 2
b−a

∫b

a
y∆

m (x)cos
(

kπ x−a
b−a

)

d x, (7.3.35)

Z
∆

k
(tm ) the Fourier cosine coefficients of function z∆

m(x) in (7.3.23a), i.e.,

Z
∆

k (tm) = 2
b−a

∫b

a
z∆

m(x)cos
(

kπ x−a
b−a

)

d x, (7.3.36)
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and F
∆

k
(tm) the Fourier cosine coefficients of driver function f (tm ,Λ∆

m(x)), i.e.,

F
∆

k (tm) = 2
b−a

∫b

a
f (tm ,Λ∆

m(x))cos
(

kπ x−a
b−a

)

d x. (7.3.37)

The computation of functions z∆
m(x) and y∆

m (x) at time-point tm requires the Fourier co-
sine coefficients Z

∆

k
(tm+1), Y ∆

k
(tm+1), and F

∆

k
(tm+1) at time-point tm+1 , with COS formulas

(7.3.25) and (7.3.30). The coefficients can be computed recursively backwards in time, as we
explain in this section.

We start with the coefficients at the terminal time

Y
∆

k (tM ) = 2
b−a

∫b

a
g (x)cos

(

kπ x−a
b−a

)

d x, (7.3.38a)

Z
∆

k (tM ) = 2
b−a

∫b

a
σ(x)Dx g (x)cos

(

kπ x−a
b−a

)

d x, (7.3.38b)

F
∆

k (tM ) = 2
b−a

∫b

a
f (tm , x, g (x),σ(x)Dx g (x))cos

(

kπ x−a
b−a

)

d x. (7.3.38c)

For some problems the above integrals can be computed analytically. Otherwise we
may approximate them, for example by computing the function on the x-grid and using
the discrete Fourier cosine transform (see Appendix C) or another numerical integration
method.

We then compute functions z∆

M−1(x), f (tM−1,Λ∆

M−1(x)), and y∆

M−1(x), see equations
(7.3.23), on the equidistant x-grid with N grid points. For this we use the Fourier cosine
coefficients at time tM and COS formulas (7.3.25) and (7.3.30). Subsequently the Fourier
cosine coefficients Z

∆

k
(tM−1), F

∆

k
(tM−1), and Y

∆

k
(tM−1) are approximated by a discrete

Fourier cosine transform.
We repeat this procedure for all times tm . So, we estimate the Fourier cosine coefficients

Z
∆

k
(tm), F

∆

k
(tm), and Y

∆

k
(tm) by using the Fourier cosine coefficients at time tm+1 and the

COS formulas. The approximation of the Fourier cosine coefficients introduces an addi-
tional error, which has been discussed in detail in [FO09]. The final approximations of the
functions y∆

m(x) and z∆
m(x) by the BCOS method are denoted by ŷ∆

m (x) and ẑ∆
m(x), respec-

tively. The overall algorithm to solve the FBSDE backwards in time by ∆-time-discretization
scheme (7.3.20) can be summarized as:

Algorithm 4. (BCOS method)

Initialization: Compute, or approximate, the terminal coefficients Y
∆

k
(tM ),

F
∆

k
(tM ), and Z

∆

k
(tM ), equations (7.3.38a), (7.3.38b), and (7.3.38c).

Main loop to recover Z
∆

k
(tm), F

∆

k
(tm ), and Y

∆

k
(tm):

For m = M −1 to 1:

• Compute the functions ẑ∆
m(x), f (tm ,Λ̂

∆

m(x)), and ŷ∆
m(x), see equations

(7.3.23), with COS formulas (7.3.25) and (7.3.30).

• Determine the corresponding Fourier cosine coefficients Z
∆

k
(tm),

F
∆

k
(tm), and Y

∆

k
(tm) by using a DCT (Appendix C).

Final step: Compute ẑ∆

0 (X0) and ŷ∆

0 (X0).
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The algorithm for the exact simulation scheme, with final values ẑθ
0 (X0) and ŷθ

0 (X0), is
similar, except that we use COS formulas (7.3.31) and (7.3.32)-(7.3.33).

Remark 7.3.1. For constant drift µ and volatility σ terms we can apply the efficient Fast

Fourier transform (FFT) algorithm to recover the Fourier cosine coefficients, as explained in

Section 6.4.4.

7.4. ERROR ANALYSIS
In this section we perform an error analysis of the discretization with timesteps ∆t for
the 2.0-weak-Taylor scheme and parameter θ = 1/2. The convergence in N , the number
of Fourier coefficients, is of second order, due to the use of discrete Fourier cosine trans-
forms. The error of the Fourier cosine formulas has been analyzed in the previous chapters
and we refer to them for more details. We start with Itô-Taylor expansions and related ex-
pected values in Section 7.4.1. In Section 7.4.2 we look at the local errors related to the
discretization scheme for the FSDE. In Section 7.4.3 we discuss the local errors of the θ-
time-discretization. A global error result is presented in Section 7.4.4.

7.4.1. ITÔ-TAYLOR EXPANSION
The Itô-Taylor expansion of a general sufficiently smooth function h(t , x) reads ([KP92])

h(tm+1, X
m,x
m+1) =

∑

α∈A

hα(tm , x)Iα,m+1 +
∑

α∈B(A )
Iα[hα(., X m,x

. )]m+1, (7.4.1)

h(tm+2, X
m,x
m+2) =

∑

β∈A

∑

α∈A

hαβ(tm , x)Iα,m+1Iβ,m+2

+
∑

β∈A

∑

α∈B(A )
Iα[hαβ(X m,x

. )]m+1Iβ,m+2 +
∑

β∈B(A )

Iβ[hβ(., X m,x
. )]m+2, (7.4.2)

with A a hierarchical set.

Lemma 7.4.1. For a sufficiently smooth function h(t , x) we have the following conditional

expectations of the Itô-Taylor expansion

E
[

h(tm+1, X m,x
m+1)

]

= h(tm , x)+h(0)(tm , x)∆t +h(0,0)(tm , x) 1
2 (∆t)2 +O((∆t)3), (7.4.3a)

E
[

h(tm+1, X
m,x
m+1)∆ωm+1

]

= h(1)(tm , x)∆t +
[

h(1,0)(tm , x)+h(0,1)(tm , x)
] 1

2 (∆t)2 +O((∆t)3), (7.4.3b)

E
[

h(tm+2, X m,x
m+2)

]

= h(tm , x)+h(0)(tm , x)2∆t +h(0,0)(tm , x)2(∆t)2 +O((∆t)3), (7.4.3c)

E
[

h(tm+2, X
m,x
m+2)∆ωm+1

]

= h(1)(tm , x)∆t +h(0,1)(tm , x) 1
2 (∆t)2 +h(1,0)(tm , x) 3

2 (∆t)2 +O((∆t)3), (7.4.3d)

E
[

h(tm+2, X
m,x
m+2)∆ωm+2

]

= h(1)(tm , x)∆t +h(0,1)(tm , x) 3
2 (∆t)2 +h(1,0)(tm , x) 1

2 (∆t)2 +O((∆t)3), (7.4.3e)
2
∆t E

[

h(tm+2, X
m,x
m+2) (∆ωm+1 −∆ωm+2)

]

= 2
∆t

[

h(1,0)(tm , x)−h(0,1)(tm , x)
]

(∆t)2 +O((∆t)2). (7.4.3f)

This lemma can be proved with the help of [KP92], Chapter 5.7. The definitions of the
operators L

0 and L
1, equation (7.2.7), give

h(1,0)(tm , x)−h(0,1)(tm , x) = Dx h(tm , x)
[

σ(x)µx (x)−µ(x)σx (x)− 1
2σ

2(x)σxx (x)
]

. (7.4.4)
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7.4.2. LOCAL ERROR ∆-TIME-DISCRETIZATION FSDE
The weak convergence rate of the 2.0-weak-Taylor scheme is denoted by γ2T

w = 2.

Lemma 7.4.2. For a sufficiently smooth function h(t , x) we have the following local weak

errors of the 2.0-weak-Taylor scheme

E

[

h(tm+1, X
m,x
m+1)−h(tm+1, X

∆,m,x
m+1 )

]

=O((∆t)γ
2T
w +1), (7.4.5a)

E

[(

h(tm+1, X
m,x
m+1)−h(tm+1, X

∆,m,x
m+1 )

)

∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.4.5b)

E

[

h(tm+2, X m,x
m+2)−h(tm+2, X ∆,m,x

m+2 )
]

=O((∆t)γ
2T
w +1), (7.4.5c)

E

[(

h(tm+2, X
m,x
m+2)−h(tm+2, X

∆,m,x
m+2 )

)

∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.4.5d)

E

[(

h(tm+2, X
m,x
m+2)−h(tm+2, X

∆,m,x
m+2 )

)

∆ωm+2

]

=O((∆t)γ
2T
w +1), (7.4.5e)

2
∆t

E

[

(h(tm+2, X m,x
m+2)−h(tm+2, X ∆,m,x

m+2 ))(∆ωm+1 −∆ωm+2)
]

=O((∆t)γ
2T
w +1). (7.4.5f)

For a proof we refer to Appendix 7.A.

7.4.3. LOCAL ERROR θ-TIME-DISCRETIZATION SCHEME
The equation for ym(x) is given by (see (7.3.18))

ym(x) = E
[

ym+1(X
m,x
m+1)

]

+∆t 1
2 f (tm ,Λm(x))+∆t 1

2E
[

f (tm+1,Λm+1(X
m,x
m+1))

]

+R
y
m(x),

(7.4.6)

and the equation for zm(x) reads (see (7.3.19))

zm (x) = 2
∆t

E
[

ym+1(X
m,x
m+1)∆ωm+1

]

+E
[

f (tm+1,Λm+1(X
m,x
m+1))∆ωm+1

]

−E
[

zm+1(X
m,x
m+1)

]

+ 2
∆t Rz

m(x), (7.4.7)

with θ-discretization errors

R
y
m(x) =

∫tm+1

tm

E
[

f (s,Λs(X m,x
s ))

]

d s

−
{

∆t 1
2 f (tm ,Λm (x))+∆t 1

2E
[

f (tm+1,Λm+1(X m,x
m+1))

]}

, (7.4.8)

Rz
m(x) =

∫tm+1

tm

E
[

f (s,Λs(X m,x
s ))(ωs −ωtm )

]

d s −
{

∆t 1
2E

[

f (tm+1,Λm+1(X
m,x
m+1))∆ωm+1

]}

−
∫tm+1

tm

E
[

zs(X m,x
s )

]

d s +
{

∆t 1
2 zm(x)+∆t 1

2E
[

zm+1(X
m,x
m+1)

]}

. (7.4.9)

Here x denotes the exact solution of the FSDE (7.2.2) at time tm , in other words, x = Xm .

Lemma 7.4.3. For sufficiently smooth functions f (.) and g (.) the θ-discretization errors are

of order

R
y
m (x) =O((∆t)3), (7.4.10a)

Rz
m (x) =O((∆t)3). (7.4.10b)
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Besides,

E
[

R
y
m+1(X m,x

m+1)∆ωm+1
]

=O((∆t)4), (7.4.11a)

E
[

Rz
m+1(X

m,x
m+1)

]

−Rz
m (x) =O((∆t)4). (7.4.11b)

Proof. For equations (7.4.10a) and (7.4.10b) we use that for a general sufficiently smooth
function h(t , x), with bounded derivatives, it holds that

E

[∫tm+1

tm

h(s, X m,x
s )d s −∆t 1

2

(

h(tm , x)+h(tm+1, X
m,x
m+1)

)

]

= h(tm , x)∆t +h(0)(tm , x) 1
2 (∆t)2 +h(0,0)(tm , x) 1

3! (∆t)3 +O
(

(∆t)4)

−∆t 1
2

(

h(tm , x)+h(tm , x)+h(0)(tm , x)∆t +h(0,0)(tm , x) 1
2 (∆t)2 +O

(

(∆t)3))

= h(0,0)(tm , x)−1
12 (∆t)3 +O

(

(∆t)4)=O
(

(∆t)3) . (7.4.12)

For equation (7.4.10b) we use:

E

[∫tm+1

tm

h(s, X m,x
s )∆ωm+1d s −∆t 1

2 h(tm+1, X
m,x
m+1)∆ωm+1

]

= h(1)(tm , x) 1
2 (∆t)2 +

[

h(1,0)(tm , x)+h(0,1)(tm , x)
] 1

3! (∆t)3 +O((∆t)4)

−∆t 1
2

(

h(1)(tm , x)∆t +
[

h(1,0)(tm , x)+h(0,1)(tm , x)
] 1

2 (∆t)2 +O((∆t)3)
)

=
[

h(1,0)(tm , x)+h(0,1)(tm , x)
] −1

12 (∆t)3 +O
(

(∆t)4)=O
(

(∆t)3) . (7.4.13)

For equation (7.4.11a) we use:

E

[

∆ωm+1

(∫tm+2

tm+1

h(s, X m,x
s )d s − 1

2∆t
(

h(tm+1, X
m,x
m+1)+h(tm+2, X

m,x
m+2)

)

)]

= E

[

∆ωm+1E

[∫tm+2

tm+1

h(s, X
m+1,X m,x

m+1
s )d s −∆t 1

2

(

h(tm+1, X
m,x
m+1)+h(tm+2, X

m+1,X m,x
m+1

m+2 )

)]]

= E
[

∆ωm+1h(0,0)(tm+1, X m,x
m+1)

] −1
12 (∆t)3 +O

(

(∆t)4)

= h(1,0,0)(tm , x)−1
12 (∆t)4 +O

(

(∆t)4)=O
(

(∆t)4) . (7.4.14)

For equation (7.4.11b) we use:

E

[

E

[∫tm+2

tm+1

h(s, X
m+1,X m,x

m+1
s )d s −∆t 1

2

(

h(tm+1, X m,x
m+1)+h(tm+2, X

m+1,X m,x
m+1

m+2 )

)]]

−E

[∫tm+1

tm

h(s, X m,x
s )d s −∆t 1

2

(

h(tm , x)+h(tm+1, X m,x
m+1)

)

]

= E
[

h(0,0)(tm+1, X
m,x
m+1)

] −1
12 (∆t)3 −h(0,0)(tm , x)−1

12 (∆t)3 +O
(

(∆t)4)

=
(

h(0,0)(tm , x)+h(0,0,0)(tm , x)∆t +O
(

(∆t)2)) −1
12 (∆t)3

−h(0,0)(tm , x)−1
12 (∆t)3 +O

(

(∆t)4)

= h(0,0,0)(tm , x)−1
12 (∆t)4 +O

(

(∆t)4)=O
(

(∆t)4) (7.4.15)
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and

E

[

E

[∫tm+2

tm+1

h(s, X
m+1,X m,x

m+1
s )∆ωm+2d s −∆t 1

2 h(tm+2, X
m+1,X m,x

m+1
m+2 )∆ωm+2

]]

−E

[∫tm+1

tm

h(s, X m,x
s )∆ωm+1d s −∆t 1

2 h(tm+1, X
m,x
m+1)∆ωm+1

]

= E
[

h(1,0)(tm+1, X m,x
m+1)+h(0,1)(tm+1, X m,x

m+1)
] −1

12 (∆t)3

−
[

h(1,0)(tm , x)+h(0,1)(tm , x)
] −1

12 (∆t)3 +O
(

(∆t)4)

=
(

[h(1,0)(tm , x)+h(0,1)(tm , x)]+
[

h(0,1,0)(tm , x)+h(0,0,1)(tm , x)
]

∆t +O
(

(∆t)2)
)

−1
12 (∆t)3

−
[

h(1,0)(tm , x)+h(0,1)(tm , x)
] −1

12 (∆t)3 +O
(

(∆t)4)

=
[

h(0,1,0)(tm , x)+h(0,0,1)(tm , x)
] −1

12 (∆t)4 +O
(

(∆t)4)=O
(

(∆t)4) . (7.4.16)

7.4.4. GLOBAL ERROR ∆-TIME-DISCRETIZATION SCHEME FBSDE
The equation for y∆

m(x) is now given by

y∆

m(x) = E

[

y∆

m+1(X
∆,m,x
m+1 )

]

+∆t 1
2 f (tm ,Λ∆

m (x))+∆t 1
2E

[

f (tm+1,Λ∆

m+1(X
∆,m,x
m+1 ))

]

, (7.4.17)

and the equation for z∆
m(x) reads

z∆

m(x) = 2
∆t E

[

y∆

m+1(X
∆,m,x
m+1 )∆ωm+1

]

+E

[

f (tm+1,Λ∆

m+1(X
∆,m,x
m+1 ))∆ωm+1

]

−E

[

z∆

m+1(X
∆,m,x
m+1 )

]

.

(7.4.18)

We define the following global errors,

ǫ
y
m(Xm , X ∆

m ) := ym (Xm)− y∆

m (X ∆

m), (7.4.19a)

ǫz
m(Xm , X ∆

m ) := zm (Xm)− z∆

m(X ∆

m ), (7.4.19b)

ǫ
f
m(Xm , X ∆

m ) := f (tm ,Λm(Xm ))− f (tm ,Λ∆

m(X ∆

m )), (7.4.19c)

and

ǫ
y
m (x) := ym (x)− y∆

m(x), (7.4.20a)

ǫz
m (x) := zm(x)− z∆

m(x), (7.4.20b)

ǫ
f
m (x) := f (tm ,Λm(x))− f (tm ,Λ∆

m (x)). (7.4.20c)

For the error at time tm we find

ǫ
y
m(Xm , X ∆

m ) = ym(Xm )− y∆

m(Xm )+ y∆

m(Xm )− y∆

m(X ∆

m )

= ǫ
y
m (Xm)+ y∆

m (Xm)− y∆

m (X ∆

m), (7.4.21a)

|E0[ǫy
m (Xm , X ∆

m )]| ≤ |E0[ǫy
m (Xm)]|+ |E0[y∆

m (Xm)− y∆

m (X ∆

m)]|. (7.4.21b)

The second part is the weak error and, assuming that y∆
m (x) and z∆

m(x) are 2(γ2T
w +1)-

times continuously differentiable with polynomial growth, we have

|E0[ǫy
m (Xm , X ∆

m )]| ≤ |E0[ǫy
m(Xm )]|+O((∆t)γ

2T
w ). (7.4.22)
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Similarly, we get

|E0[ǫz
m(Xm , X ∆

m )]| ≤ |E0[ǫz
m (Xm)]|+O((∆t)γ

2T
w ). (7.4.23)

We find the following bounds on the errors ǫ
y
m(x) and ǫz

m (x).

Theorem 7.4.1. Given

EM−1[|ǫy

M
(XM )|] ∼O

(

(∆t)3) , Ex
M−1[|ǫz

M (XM )|] ∼O
(

(∆t)3) , (7.4.24)

then

E0
[

|ǫy
m (Xm )|+∆t |ǫz

m (Xm)|
]

≤O
(

(∆t)2) . (7.4.25)

Proof. Error Y For the Y -component we have with (7.4.6) and (7.4.17)

ǫ
y
m (x) = ym (x)− y∆

m(x) = E

[

ǫ
y
m+1(X

m,x
m+1, X

∆,m,x
m+1 )

]

+∆t 1
2ǫ

f
m(x)

+∆t 1
2E

[

ǫ
f
m+1(X m,x

m+1, X ∆,m,x
m+1 )

]

+R
y
m (x). (7.4.26)

It follows, with equality (7.4.5a), that

E

[

ǫ
y
m+1(X m,x

m+1, X ∆,m,x
m+1 )

]

= E
[

ǫ
y
m+1(X m,x

m+1)
]

+E

[

y∆

m+1(X m,x
m+1)− y∆

m+1(X ∆,m,x
m+1 )

]

= E
[

ǫ
y
m+1(X

m,x
m+1)

]

+O((∆t)γ
2T
w +1), (7.4.27a)

E

[

ǫ
f
m+1(X m,x

m+1, X ∆,m,x
m+1 )

]

= E

[

ǫ
f
m+1(X m,x

m+1)
]

+E

[

f (tm+1,Λ∆

m+1(X
m,x
m+1))− f (tm+1,Λ∆

m+1(X
∆,m,x
m+1 ))

]

= E

[

ǫ
f
m+1(X

m,x
m+1)

]

+O((∆t)γ
2T
w +1). (7.4.27b)

Driver function f (t , x, y, z) is Lipschitz in x, y , and z, so that

|ǫ f
m (x)| ≤ L f

(

|ǫy
m (x)|+ |ǫz

m (x)|
)

, (7.4.28a)
∣

∣

∣E

[

ǫ
f
m+1(X m,x

m+1)
]∣

∣

∣≤ L f E
[

|ǫy
m+1(X m,x

m+1)|+ |ǫz
m+1(X m,x

m+1)|
]

. (7.4.28b)

Then,

|ǫy
m (x)| ≤

1+ 1
2∆tL f

1− 1
2∆tL f

|E
[

ǫ
y
m+1(X m,x

m+1)
]

|+
1
2∆tL f

1− 1
2∆tL f

|ǫz
m (x)|

+
1
2∆tL f

1− 1
2∆tL f

E
[

|ǫz
m+1(X m,x

m+1)|
]

+ 1

1− 1
2∆tL f

O((∆t)γ
2T
w +1)+ 1

1− 1
2∆tL f

O((∆t)3). (7.4.29)

Error Z For the Z -component we have, with (7.4.7) and (7.4.18)

ǫz
m (x) = zm(x)− z∆

m (x)

= 2
∆t E

[

ǫ
y
m+1(X

m,x
m+1, X

∆,m,x
m+1 )∆ωm+1

]

+E

[

ǫ
f
m+1(X

m,x
m+1, X

∆,m,x
m+1 )∆ωm+1

]

−E

[

ǫz
m+1(X m,x

m+1, X ∆,m,x
m+1 )

]

+ 2
∆t

Rz
m(x). (7.4.30)
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Substituting the similar equations for ǫy
m+1 and ǫz

m+1 as in (7.4.26) and (7.4.30) gives,

ǫz
m (x) = 2

∆t E

[

ǫ
y
m+2(X

m,x
m+2, X

∆,m,x
m+2 )∆ωm+1

]

+E

[

ǫ
f
m+1(X

m,x
m+1, X

∆,m,x
m+1 )∆ωm+1

]

+E

[

ǫ
f
m+2(X

m,x
m+2, X

∆,m,x
m+2 )∆ωm+1

]

+ 2
∆t E

[

R
y
m+1(X

m,x
m+1)∆ωm+1

]

+E

[

ǫ
f
m+1(X m,x

m+1, X ∆,m,x
m+1 )∆ωm+1

]

− 2
∆t

E

[

ǫ
y
m+2(X m,x

m+2, X ∆,m,x
m+2 )∆ωm+2

]

−E

[

ǫ
f
m+2(X

m,x
m+2, X

∆,m,x
m+2 )∆ωm+2

]

+E

[

ǫz
m+2(X

m,x
m+2, X

∆,m,x
m+2 )

]

− 2
∆t

E
[

Rz
m+1(X

m,x
m+1)

]

+ 2
∆t

Rz
m (x). (7.4.31)

The different terms in the above equation can be bounded as follows:

• With equality (7.4.5c),

∣

∣

∣E

[

ǫz
m+2(X m,x

m+2, X ∆,m,x
m+2 )

]∣

∣

∣≤
∣

∣E
[

ǫz
m+2(X m,x

m+2)
]∣

∣+O((∆t)γ
2T
w +1). (7.4.32)

• With equality (7.4.5b),

∣

∣

∣2E
[

ǫ
f
m+1(X m,x

m+1, X ∆,m,x
m+1 )∆ωm+1

]∣

∣

∣≤C
p
∆t |ǫ f

m+1(X m,x
m+1)|∞+O((∆t)γ

2T
w +1), (7.4.33)

where |.|∞ denotes the infinite norm and C > 0 a constant.

• With equality (7.4.5d),

∣

∣

∣E

[

ǫ
f
m+2(X m,x

m+2, X ∆,m,x
m+2 )∆ωm+1

]∣

∣

∣≤C
p
∆t |ǫ f

m+2(X m,x
m+2)|∞+O((∆t)γ

2T
w +1). (7.4.34)

• With equality (7.4.5e),

∣

∣

∣E

[

ǫ
f
m+2(X m,x

m+2, X ∆,m,x
m+2 )∆ωm+2

]∣

∣

∣≤C
p
∆t |ǫ f

m+2(X m,x
m+2)|∞+O((∆t)γ

2T
w +1). (7.4.35)

• With4 equality (7.4.5f),

∣

∣

∣

2
∆t

E

[

ǫ
y
m+2(X m,x

m+2, X ∆,m,x
m+2 )(∆ωm+1 −∆ωm+2)

]∣

∣

∣

≤ 2
∆t

∣

∣E
[

ǫ
y
m+2(X m,x

m+2)(∆ωm+1 −∆ωm+2)
]∣

∣+O((∆t)γ
2T
w +1). (7.4.36)

We use the following inequality (see equation (7.4.3f))

2
∆t

∣

∣E
[

ǫ
y
m+2(X

m,x
m+2)(∆ωm+1 −∆ωm+2)

]∣

∣≤C∆t |σ(x)ǫ
Dx y
m (x)|, (7.4.37)

with

σ(x)ǫDx y
m (x) :=σ(x)Dx ym (x)−σ(x)Dx y∆

m (x)

= zm (x)− z∆

m(x)+ z∆

m(x)−L
1 y∆

m(x)

= ǫz
m (x)+ z∆

m(x)−L
1 y∆

m(x) (7.4.38)

4For constant drift µ(.) and volatility σ(.) this term cancels, see Chapter 6.
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and

z∆

m(x)−L
1 y∆

m (x) = 2
∆t

E

[

y∆

m+1(X ∆,m,x
m+1 )∆ωm+1

]

+E

[

f (tm+1,Λ∆

m+1(X
∆,m,x
m+1 ))∆ωm+1

]

−E

[

z∆

m+1(X
∆,m,x
m+1 )

]

−L
1 y∆

m(x)

= 2
∆t

E
[

y∆

m+1(X m,x
m+1)∆ωm+1

]

+E
[

f (tm+1,Λ∆

m+1(X m,x
m+1))∆ωm+1

]

−E
[

z∆

m+1(X m,x
m+1)

]

+O((∆t)γ
2T
w )−L

1 y∆

m(x). (7.4.39)

With equations (7.4.3a) and (7.4.3b) we find

z∆

m(x)−L
1 y∆

m (x) ≈ 2
∆t

L
1 y∆

m (x)∆t + 2
∆t

[L 1
L

0 y∆

m (x)+L
0
L

1 y∆

m (x)] 1
2 (∆t)2

+L
1 f (tm ,Λ∆

m(x))∆t + [L 1
L

0 f (tm ,Λ∆

m (x))+L
0
L

1 f (tm ,Λ∆

m (x))] 1
2 (∆t)2

− z∆

m(x)−L
0z∆

m(x)∆t +O((∆t)γ
2T
w )−L

1 y∆

m(x). (7.4.40)

We deduce that z∆
m(x)−L

1 y∆
m(x) =O(∆t) and

2
∆t

∣

∣E
[

ǫ
y
m+2(X

m,x
m+2)(∆ωm+1 −∆ωm+2)

]∣

∣≤C∆t |ǫz
m (x)|+O

(

(∆t)2) . (7.4.41)

We can now bound the absolute error by

(1−C∆t)|ǫz
m (x)| ≤ |E

[

ǫz
m+2(X m,x

m+2)
]

|+c
p
∆t |ǫ f

m+2(X m,x
m+2)|∞

+c
p
∆t |ǫ f

m+1(X m,x
m+1)|∞+ 2

∆t

∣

∣E
[

ǫ
y
m+2(X m,x

m+2)(∆ωm+1 −∆ωm+2)
]∣

∣

+O((∆t)2)+O((∆t)γ
2T
w +1). (7.4.42)

Total error Summing up the errors gives us, for ∆t ≤ 1, (m ≤ M −3)

E
[

|ǫy
m (x)|∞+∆t |ǫz

m (x)|∞+∆t |ǫz
m+1(X m,x

m+1)|∞
]

≤ AE
[

|ǫy
m+2(X m,x

m+2)|∞+∆t |ǫz
m+2(X m,x

m+2)|∞+∆t |ǫz
m+3(X m,x

m+3)|∞
]

+B

with A = 1+Q∆t , (7.4.43)

B =O((∆t)3)+O((∆t)γ
2T
w +1),

with Q > 0 a constant. Iterating this equality results in Theorem 7.4.1.

Theorem 7.4.1 states second-order convergence for Y and first-order convergence for
Z . However, in our numerical experiments we also find second-order convergence for Z if
we apply the 2.0-weak-Taylor scheme and θ = 1/2. The authors of [ZZJ14] apply an Order
2.0 weak Taylor scheme and a slightly different θ-scheme and they also obtain second-order
convergence in their numerical experiments, for which they use a Gauss-Hermite quadra-
ture rule to approximate the conditional expectation. In our case a Fourier-based method
results in a very efficient numerical scheme. For the scheme with θ = 1 the θ-discretization
errors are one order lower and we find first-order convergence. For the Euler and Milstein
schemes, the weak convergence rate γ2T

w = 2 should be replaced by their weak convergence
rates γE

w = 1 and γM
w = 1, respectively, and we find, for both θ = 1/2 and θ = 1, first order

convergence.
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7.5. NUMERICAL EXPERIMENTS FBSDE
In this section we discuss numerical experiments. MATLAB 7.11.0 is used for the computa-
tions. In the experiments we use θ = 1/2 and θ = 1. We prescribe a computational domain
[a,b] by

[a,b]=
[

κ1 −L
p
κ2, κ1 +L

p
κ2

]

, (7.5.1)

with cumulants of one Euler step κ1 = X0 +µ(X0)T and κ2 =σ2(X0)T , and L = 10. Further-
more, we set the number of terms in the Fourier cosine series expansions equal to N = 29.
For these values the BCOS method has converged in N to machine precision.

7.5.1. EXAMPLE 1
The first example is derived from [MT06, MSZ08]. We take drift and diffusion term

µ(x) = x(1+x2)
(2+x2)3 , σ(x) = 1+x2

2+x2 . (7.5.2)

The driver function and terminal condition are given by

f (t , x, y, z) = 1
t+1 exp

(

− x2

t+1

)(

4x2(1+x2)
(2+x2)3 + (1+x2)2

(2+x2)2

(

1− 2x2

t+1

)

− x2

t+1

)

− zx
(2+x2)2

√

√

√

√

1+y2+exp

(

− 2x2

t+1

)

1+2y2 , (7.5.3a)

g (x)= exp
(

− x2

T+1

)

. (7.5.3b)

The exact solution reads v(t , x) = exp
(

− x2

t+1

)

. For the experiment we use parameter val-

ues T = 10 and X0 = 1. The results are shown in Figure 7.5.1. Only with the 2.0-weak-Taylor
scheme and θ = 1/2 we achieve second-order convergence in M , as expected. Notice that
κ(x) = 0 for x = 0, and then the characteristic function is given by equation (7.3.6). The
characteristic function decreases at a lower exponential rate in u for x ≈ 0. This gives rise to
an unstable behavior when N is not sufficiently high. In the figure this is visible for values
M < 4.
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Figure 7.5.1: Results example 1, left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

Table 7.5.1 shows CPU times, where the small values demonstrate the efficiency of the
BCOS method. Computation of the characteristic function and the function f on an x-grid
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are the most time-consuming parts of the algorithm. The computation time is linear in the
number of timesteps M and of O(N 2) in the number of terms in the Fourier cosine series
expansions. The latter is not clearly measurable for these values of N as a significant part
of the computation time is spend on discrete Fourier cosine transforms, which is of order
O(N log N ).

Table 7.5.1: CPU time (s).

(N = 29) M 4 8 16 32 64 128 256 512

Euler θ= 1 0.0376 0.0507 0.0563 0.0852 0.1442 0.2620 0.5005 0.9958
2.0-weak-Taylor θ= 1

2 0.0976 0.1247 0.1249 0.1738 0.2738 0.4698 0.8668 1.6545

(M = 256) N 26 27 28 29

Euler θ= 1 0.1760 0.2028 0.2661 0.5005
2.0-weak-Taylor θ= 1

2 0.2068 0.2438 0.4711 0.8668

7.5.2. EXAMPLE 2: EUROPEAN CALL OPTION - CEV - P-MEASURE
In the second example we compute the price v(t , Xt ) of a European call option where the
underlying asset follows the CEV asset price process,

d Xs = µ̄Xs d s + σ̄X
γ
s dωs , (7.5.4)

with γ > 0. The exact solution is given by the CEV price [Hul09]. For the derivation of the
corresponding semilinear PDE we set up a self-financing portfolio Ys with as assets and
bonds with risk-free return rate r . Markets are assumed to be complete in this model, there
are no trading restrictions, and the option can be exactly replicated by the hedging portfolio,
that is, YT = max(XT −K ,0). Then, the option value at initial time should be equal to the
initial value of the portfolio. The hedge portfolio evolves according to the SDE

dYs = r (Ys −as Xs )d s +as d Xs =
(

r Ys + (µ(Xs )− r Xs )as

)

d s +σ(Xs )asdωs . (7.5.5)

If we set Zs =σ(Xs )as , then (Y , Z ) solve the FBSDE

dYs =− f (s, Xs ,Ys , Zs )d s +Zsdωs , YT = max(XT −K ,0), (7.5.6a)

f (t , x, y, z) =−r y − µ(x)−r x
σ(x) z =−r y − µ̄−r

σ̄ x1−γz. (7.5.6b)

Yt corresponds to the value of the portfolio and Zt is related to the hedging strategy. The
option value is given by v(t , Xt ) = Yt and σ(Xt )Dx v(t , Xt ) = Zt .

For the tests, we use the following parameter values

X0 = 100, K = 100, r = 0.1, µ̄= 0.2, T = 0.1. (7.5.7)

We take the elasticity of variance equal to γ= 0.2 and γ= 0.8 and choose σ̄ so that σ(X0) =
25.

As the terminal coefficients Z
∆

k
(tM ) (equation (7.3.38b)) and F

∆

k
(tM ) (equation

(7.3.38c)) are not known analytically and the corresponding functions are not smooth we
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take θ = 1 in the first iteration with time step (∆t)2. With this choice we do not need to com-
pute these terminal coefficients but keep second-order convergence in the first iteration.
We use a very large number of timesteps M = 104 to get reference values Z0. The results
for the Euler, Milstein, and 2.0-weak-Taylor schemes are shown in Figure 7.5.2. Again we
achieve second-order convergence in M with the 2.0-weak-Taylor scheme and θ = 1/2.
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Figure 7.5.2: Results example 2, left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0), γ= 0.2 (lines) and γ= 0.8 (dashes).

7.5.3. EXAMPLE 3: BOND PRICE - CIR
In this section we consider the CIR interest rate process

d Xs = ̹(x̄ −Xs )d s +η
√

Xs dωs . (7.5.8)

The PDE for the zero-coupon bond price is given by [Shr08, p.275]

∂v
∂t

(t , x)+̹(x̄ − x)Dx v(t , x)+ 1
2η

2xD2
x v(t , x)− xv(t , x) = 0, (t , x) ∈ [0,T )×R+, (7.5.9a)

v(T, x) = 1, x ∈R+. (7.5.9b)

This problem is related to the FBSDE

dYs =− f (s, Xs ,Ys , Zs)d s +Zs dωs , YT = 1, (7.5.10a)

f (t , x, y, z) =−x y. (7.5.10b)

The exact solution is given by

h =
√

̹2 +2η2, (7.5.11a)

A(t ,T ) =





2he
1
2 (̹+h)(T−t )

2h+ (̹+h)(eh(T−t ) −1)





2̹x̄/η2

, (7.5.11b)

B(t ,T ) =
2(e(T−t )h −1)

2h+ (̹+h)(eh(T−t ) −1)
, (7.5.11c)

v(t , x) = A(t ,T )exp(−B(t ,T )x). (7.5.11d)

For the tests, we use the following parameter values

X0 = 0.04, x̄ = 0.01, ̹= 0.2, η= 0.1, T = 0.25. (7.5.12)
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The Feller condition is not satisfied and the process may reach zero. This is a nontrivial
situation for Monte Carlo methods but for BCOS it is no problem, as we take the left-hand
side of the computational domain equal to a = 0. For the exact simulation approach (Sec-
tion 7.3.3.1) we use the characteristic function in equation (7.2.22). The results for the Euler,
Milstein, 2.0-weak-Taylor and exact simulation schemes are shown in Figure 7.5.3. The 2.0-
weak-Taylor and exact simulation scheme give almost the same results, with second-order
convergence for θ = 1/2.
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Figure 7.5.3: Results example 3, left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

7.5.4. EXAMPLE 4: TIME-DEPENDENT DRIFT AND DIFFUSION
The drift and diffusion terms of the FSDE, see equation (7.2.2), did not depend on time. In
this last example we generalize the method by a time-dependent drift µ(t , x) and diffusion
σ(t , x). The numerical schemes in Sections 7.2 and 7.3 remain valid and the only change
is due to the time-derivative in the diffusion operator L

0, equation (7.2.7). The functions
m(x) and s(x) in Section 7.3.1 for the 2.0-weak-Taylor scheme become time-dependent:

m(t , x) =µ(t , x)− 1
2σ(t , x)σx (t , x)

+ 1
2

(

µt (t , x)+µ(t , x)µx (t , x)+ 1
2µxx (t , x)σ2(t , x)

)

∆t , (7.5.13a)

s(t , x) =σ(t , x) (7.5.13b)

+ 1
2

(

µx (t , x)σ(t , x)+σt (t , x)+µ(t , x)σx (t , x)+ 1
2σxx (t , x)σ2(t , x)

)

∆t .

We perform a test for the price v(t , Xt ) of a call option where the underlying asset fol-
lows a geometric Brownian motion with time-dependent drift and volatility. We choose the
following periodic functionals:

µ(t , x) := µ̄(t)x, µ̄(t) := µ̄0 + µ̄1 sin
(

2πt
ζ1

)

+ µ̄2 sin
(

2πt
ζ2

)

, (7.5.14a)

σ(t , x) := σ̄(t)x, σ̄(t) := σ̄0 + σ̄1 sin
(

2πt
ζ1

)

+ σ̄2 sin
(

2πt
ζ2

)

. (7.5.14b)

The hedge portfolio, see Section 7.5.2, evolves according to the SDE

dYs =
(

r Ys + µ̄(s)−r
σ̄(s) σ̄(s)as Xs

)

d s +σ(s, Xs )as dωs . (7.5.15)



7.6. CONCLUSION

7

169

If we set Zs =σ(s, Xs )as , then (Y , Z ) solve the FBSDE

dYs =− f (s, Xs ,Ys , Zs)d s +Zs dωs , YT = max(XT −K ,0), (7.5.16a)

f (t , x, y, z) =−r y − µ̄(t )−r
σ̄(t ) z. (7.5.16b)

Again the option value is given by v(t , Xt ) = Yt and σ(t , Xt )Dx v(t , Xt ) = Zt . The ex-
act solution of this local volatility model is given by the Black-Scholes price and Delta with

volatility parameter
√

1
T−t

∫T
t σ̄2(s)d s [Pas11]. For the tests, we use the following parameter

values

X0 = 100, K = 100, r = 0.1, µ̄0 = 0.2, σ̄0 = 0.25, T = 0.25,

µ̄1 = 0.1, µ̄2 = 0.02, σ̄1 = 0.125, σ̄2 = 0.025, ζ1 = 1, ζ2 = 1
4 , (7.5.17)

with the exact solutions Y0 = v(t0, X0) = 7.8159 and Z0 = σX0Dx v(t0, X0) = 14.8115. The
results are shown in Figure 7.5.4. The computation time has increased because the charac-
teristic function (7.3.5) changes with each timestep. The computation time for M = 1000 is
about eight times longer.
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Figure 7.5.4: Results example 4, left: error in ŷ∆0 (x0), right: error in ẑ∆0 (x0).

7.6. CONCLUSION
In this chapter we extended the probabilistic numerical BCOS method from Chapter 6, for
solving decoupled forward-backward stochastic differential equations. The underlying for-
ward stochastic differential equation is now approximated by different Taylor discretization
schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simu-
lation. The discretization of the FBSDE with the θ-method results in a backward induction
scheme with conditional expectations. The expected values are approximated by a Fourier
cosine method and relies on the availability of the characteristic function for these discrete
Taylor schemes. In this way we generalize the applicability of the BCOS method to FSDEs
for which the ‘continuous’ characteristic function is not available. The Fourier cosine coef-
ficients are recovered recursively in an efficient way by using discrete Fourier cosine trans-
forms and an FFT algorithm. Numerical tests demonstrate the applicability of the BCOS
method for BSDEs in financial problems. In the tests we observed different convergence
results for Z0 and Y0. The 2.0-weak-Taylor and exact simulation scheme with θ = 1/2 result
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in second-order convergence in the number of timesteps of the BCOS method, as expected
from the error analysis.

Appendix

7.A. PROOF LEMMA 7.4.2
The Itô-Taylor expansion of FSDE Xt reads (with c(x) = x)

X
m,x
m+1 =

∑

α∈A

cα(x)Iα,m+1 +
∑

α∈B(A )
Iα[cα(X m,x

. )]m+1, (7.A.1a)

X
m,x
m+2 =

∑

β∈A

cβ(X
m,x
m+1)Iβ,m+2 +

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2. (7.A.1b)

For the Order 2.0 weak Taylor scheme we have

A = {v, (0), (1),(1,1),(1,0),(0,1),(0,0)} and (7.A.2)

B(A )= {(1,1,1),(0,0,1),(0,1,0),(1, 0, 0),(0, 1, 1),(1,0, 1),(1,1,0), (0,0,0)}.

The discrete approximations read

X
∆,m,x
m+1 =

∑

α∈A

cα(x)Iα,m+1, X
∆,m,x
m+2 =

∑

β∈A

cβ(X
∆,m,x
m+1 )Iβ,m+2. (7.A.3)

With the theory in Chapter 5.7 of [KP92] we find

Em

[

∑

α∈B(A )
Iα[h(., X .)]m+1

]

=O((∆t)γ
2T
w +1), (7.A.4a)

Em

[

∑

α∈B(A )
Iα[h(., X .)]m+1∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.A.4b)

2
∆t Em

[

∑

α∈B(A )
I(0,α)[h(0,α)(., X .)]m+1∆ωm+1

]

= 0, (7.A.4c)

2
∆t

Em

[

∑

α∈B(A )
I(1,α)[h(1,α)(., X .)]m+1∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.A.4d)

2
∆t Em

[

∑

α∈B(A )
I0[h(0,α)(., X .)]m+1

]

=O((∆t)0), (7.A.4e)

2
∆t

Em

[

∑

α∈B(A )
I1[h(1,α)(., X .)]m+1

]

= 0, (7.A.4f)

2
∆t

Em

[

∑

α∈A \α;

Iα,m+1

]

+ 2
∆t

Em+1

[

∑

α∈A \α;

Iα,m+1∆ωm+1

]

=O((∆t)0). (7.A.4g)

With the above equations we find

E

[

X m,x
m+1 −X ∆,m,x

m+1

]

= E

[

∑

α∈B(A )
Iα[cα(X m,x

. )]m+1

]

=O((∆t)γ
2T
w +1), (7.A.5a)

E

[(

X m,x
m+1 −X ∆,m,x

m+1

)

∆ωm+1

]

= E

[

∑

α∈B(A )
Iα[cα(X m,x

. )]m+1∆ωm+1

]

=O((∆t)γ
2T
w +1). (7.A.5b)
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The Taylor series of function h(tm+1, x) in x gives

h(tm+1, X
m,x
m+1)−h(tm+1, X

∆,m,x
m+1 ) = (−1)ℓ+1

∞
∑

ℓ=1

1
ℓ! h

(ℓ)(tm+1, X
m,x
m+1)

(

X
m,x
m+1 −X

∆,m,x
m+1

)ℓ
. (7.A.6)

By using the strong error result ([KP92], Chapter 5.9)

E

[∣

∣

∣X
m,x
m+1 −X

∆,m,x
m+1

∣

∣

∣

ℓ ]

=O((∆t)1.5ℓ) (7.A.7)

for ℓ≥ 2 and formula (7.4.1) for ℓ= 1, we find

E

[

h(tm+1, X
m,x
m+1)−h(tm+1, X

∆,m,x
m+1 )

]

=O((∆t)γ
2T
w +1), (7.A.8a)

E

[(

h(tm+1, X m,x
m+1)−h(tm+1, X ∆,m,x

m+1 )
)

∆ωm+1

]

=O((∆t)γ
2T
w +1). (7.A.8b)

We can rewrite the difference between X m,x
m+2 and X ∆,m,x

m+2 as

X m,x
m+2 −X ∆,m,x

m+2 =
(

∑

β∈A

cβ(X m,x
m+1)Iβ,m+2 +

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2

)

−
∑

β∈A

cβ(X m,x
m+1)Iβ,m+2 +

∑

β∈A

cβ(X m,x
m+1)Iβ,m+2 −

∑

β∈A

cβ(X ∆,m,x
m+1 )Iβ,m+2

=
∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2 +
∑

β∈A

(

cβ(X
m,x
m+1)−cβ(X

∆,m,x
m+1 )

)

Iβ,m+2

=
∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2

+
∑

β∈A \α;

(

cβ(X m,x
m+1)−cβ(X ∆,m,x

m+1 )
)

Iβ,m+2 +
∑

α∈B(A )
Iα[cα(X m,x

. )]m+1. (7.A.9)

Then we find

E

[

X
m,x
m+2 −X

∆,m,x
m+2

]

= E

[

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2

]

+E

[

∑

β∈A

(

cβ(X m,x
m+1)−cβ(X ∆,m,x

m+1 )
)

Iβ,m+2

]

=O((∆t)γ
2T
w +1), (7.A.10a)

E

[(

X m,x
m+2 −X ∆,m,x

m+2

)

∆ωm+1

]

= E

[

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2∆ωm+1

]

+E

[

∑

β∈A

(

cβ(X
m,x
m+1)−cβ(X

∆,m,x
m+1 )

)

Iβ,m+2∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.A.10b)

E

[(

X m,x
m+2 −X ∆,m,x

m+2

)

∆ωm+2

]

= E

[

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2∆ωm+2

]

+E

[

∑

β∈A

(

cβ(X
m,x
m+1)−cβ(X

∆,m,x
m+1 )

)

Iβ,m+2∆ωm+2

]

=O((∆t)γ
2T
w +1). (7.A.10c)

Furthermore,

2
∆t

E

[

(X m,x
m+2 −X ∆,m,x

m+2 ) (∆ωm+1 −∆ωm+2)
]

=O((∆t)γ
2T
w +1). (7.A.11)
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For the above result we divide the expected value into three parts with equation (7.A.9).
Firstly

2
∆t

E

[

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2∆ωm+1

]

= 2
∆t

E

[(

∑

β∈B(A )
cβ(X m,x

m+1)Iβ,m+2 +
∑

β∈B(A )
I(0,β)[c(0,β)(X m,x

. )]m+2

+
∑

β∈B(A )
I(1,β)[c(1,β)(X m,x

. )]m+2

)

∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.A.12)

secondly

2
∆t

E

[

∑

β∈A \α;

(

cβ(X m,x
m+1)−cβ(X ∆,m,x

m+1 )
)

Iβ,m+2 (∆ωm+1 −∆ωm+2)
]

=O((∆t)γ
2T
w +1), (7.A.13)

and thirdly

2
∆t

E

[

∑

α∈B(A )
Iα[cα(X m,x

. )]m+1∆ωm+1

]

− 2
∆t

E

[

∑

β∈B(A )
Iβ[cβ(X m,x

. )]m+2∆ωm+2

]

= 2
∆t

E

[(

∑

α∈B(A )
cα(x)Iα,m+1 + I(0,α)[c(0,α)(X m,x

. )]m+1 + I(1,α)[c(1,α)(X m,x
. )]m+1

)

∆ωm+1

]

− 2
∆t E

[(

∑

β∈B(A )
cβ(x)Iβ,m+2 + I0[c(0,β)(X m,x

. )]m+1Iβ,m+2 + I1[c(1,β)(X m,x
. )]m+1Iβ,m+2

+ I(0,β)[c(0,β)(X m,x
. )]m+2 + I(1,β)[c(1,β)(X m,x

. )]m+2

)

∆ωm+2

]

=O((∆t)γ
2T
w +1). (7.A.14)

Note that in the above equation the terms cα(x)Iα,m+1 and cβ(x)Iβ,m+2 cancel out.
The Taylor series of function h(tm+2, x) in x gives

h(tm+2, X m,x
m+2)−h(tm+2, X ∆,m,x

m+2 ) = (−1)ℓ+1
∞
∑

ℓ=1

1
ℓ! h

(ℓ)(tm+2, X m,x
m+2)

(

X m,x
m+2 −X ∆,m,x

m+2

)ℓ
.

(7.A.15)

By using the strong error result

E

[∣

∣

∣X
m,x
m+2 −X

∆,m,x
m+2

∣

∣

∣

ℓ ]

=O((∆t)1.5ℓ) (7.A.16)

for ℓ≥ 2 and formula (7.4.2) for ℓ= 1, we find

E

[

h(tm+2, X m,x
m+2)−h(tm+2, X ∆,m,x

m+2 )
]

=O((∆t)γ
2T
w +1), (7.A.17a)

E

[(

h(tm+2, X
m,x
m+2)−h(tm+2, X

∆,m,x
m+2 )

)

∆ωm+1

]

=O((∆t)γ
2T
w +1), (7.A.17b)

E

[(

h(tm+2, X
m,x
m+2)−h(tm+2, X

∆,m,x
m+2 )

)

∆ωm+2

]

=O((∆t)γ
2T
w +1), (7.A.17c)

2
∆t

E

[

(h(tm+2, X m,x
m+2)−h(tm+2, X ∆,m,x

m+2 )) (∆ωm+1 −∆ωm+2)
]

=O((∆t)γ
2T
w +1). (7.A.17d)
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Remark 7.A.1. For the Euler scheme we have

A = {v, (0), (1)} and B(A ) = {(1,1),(1,0),(0,1),(0,0)} (7.A.18)

and for the Milstein scheme

A = {v, (0), (1),(1,1)} and B(A ) = {(1,0),(0,1),(0,0),(1,1,1),(0, 1,1)}. (7.A.19)

For the Euler and Milstein scheme the weak convergence rateγ2T
w = 2 is replaced by their weak

convergence rates γE
w = 1 and γM

w = 1, respectively.





CHAPTER 8

Conclusions and Outlook

8.1. CONCLUSIONS
In this thesis we have presented efficient numerical methods for classes of stochastic prob-
lems. Our methods are based on the COS method, which is developed in [FO08] and [FO09].
This method approximates expected values and is based on Fourier cosine series expan-
sions and the characteristic function of the underlying stochastic process.

In Chapter 2, we have presented a general approach for solving stochastic control prob-
lems under one-dimensional Lévy processes. The method relies on the dynamic program-
ming principle and the COS formula. A recursive algorithm has been defined, based on the
recursive recovery of the series coefficients. With the use of a Fast Fourier Transform (FFT)
algorithm for Lévy processes we achieve a computational complexity of order O(N log2 N )
per time step, where N denotes the number of terms in the series expansions. With an
extensive error analysis we have acquired knowledge about the origin and evolution of er-
rors. This understanding enabled us to improve the method by introducing an extrapolation
method in the vicinity of domain boundaries, in which the COS formula may give inaccu-
rate continuation values. Extrapolation by Taylor expansion or by exponential extrapolation
can easily be applied as the derivatives of approximated continuation values can be com-
puted easily based on the COS formula.

With the COS method we achieve an exponential convergence in the number of cosine
coefficients for smooth density functions. If the underlying density is not smooth, how-
ever, the method may suffer from the Gibbs phenomenon and the convergence is only of
algebraic order. In finance, the Variance Gamma asset process and stepwise cumulative
distribution functions from portfolio loss modeling are examples resulting in slower con-
vergence. A filtering technique improves the convergence rate significantly in terms of the
number of required Fourier coefficients as well as in CPU time, see Chapter 3. The Fourier
coefficients are premultiplied by a decreasing function ŝ(k/N ) so that the convergence rate
is greatly improved.

In Chapter 4 we have presented the generalization of the COS method to higher dimen-
sions. The developed recursive 2D-COS algorithm can be applied to, for example, pricing
two-color European and Bermudan options with various payoffs and performs highly sat-
isfactorily. For multidimensional stochastic processes in the class of Lévy processes, we can
apply efficient matrix-vector multiplication using an FFT algorithm. The 2D-COS method
can also be used for pricing single-asset options under the Heston stochastic volatility
model. The Heston model is not in the Lévy class and an FFT algorithm is then applica-
ble in only one dimension.
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The climate-economics model in Chapter 5 is solved by combining the COS method for
stochastic control problems and the 2D-COS formula. Economic equilibrium conditions
provide an equation for the social discount rate. The results show that the far-distant future
may be crucially important for long-term discounting. The results suggest that the key issue
in determining the level of the social discount rate is not how large damages are or might be,
although they surely must be substantial to invoke a sizeable response in the social discount
rate, but how large the probability of extreme climate change is.

In Chapter 6 we have proposed a probabilistic numerical method for solving backward
stochastic differential equations (BSDEs), which is called the BCOS method. The first step
consists of discretizing the BSDE by taking conditional expectations and applying a gen-
eral θ-discretization for the time-integrals. Then, the BCOS method solves the problem
backwards in time by approximating the conditional expectations with the help of COS for-
mulas. The Fourier cosine coefficients are recovered recursively in an efficient way by us-
ing discrete Fourier cosine transforms and an FFT algorithm. Besides, we have extended
our BCOS method to solve BSDEs with jumps under jump-diffusion with a finite number
of jump sizes. Numerical experiments have demonstrated the applicability of the BCOS
method for FBSDEs in economic and financial problems and have shown highly satisfacto-
rily and efficient results.

In Chapter 7 we extended the probabilistic numerical BCOS method. Now the underly-
ing forward stochastic differential equation is approximated by different Taylor discretiza-
tion schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by ex-
act simulation. The concerning expected values are approximated by the Fourier cosine
method and relies on the availability of the characteristic function for these discrete Taylor
schemes. In this way we have generalized the applicability of the BCOS method to FSDEs
for which the ‘continuous’ characteristic function is not available. Numerical tests demon-
strate the applicability of the BCOS method for BSDEs in financial problems, such as pric-
ing under the CEV model. The 2.0-weak-Taylor scheme with θ = 1/2 results in second-order
convergence, as expected from the error analysis.

8.2. OUTLOOK
Completing the research in this thesis we came up with the following interesting ideas for
future research.

The multidimensional-COS method can deal with multi-asset option problems of
medium-sized dimensionality, but suffers from the curse of dimensionality for high-
dimensional option contracts. Combining the COS method with, for example sparse grid
methods, projection methods, or Monte Carlo simulations may result in promising hybrid
numerical methods.

The theory of decoupled FBSDEs has been extended to coupled FBSDEs [PT99]
and second-order-BSDEs [CSTV07], which are related to quasilinear and fully nonlinear
parabolic PDEs, respectively. Extensions of the BCOS method to these classes provide a
way to solve nonlinear PDEs. A first step in this direction is provided in [HRO14]. BSDEs
driven by Lévy processes are discussed in [NS01]. They are also a challenging extension for
the BCOS method.

In portfolio valuation, the risk of counterparty’s default should be taken into account.
This is known as credit valuation adjustment. Relations with BSDEs are discussed in, among
others, [Cré12] and open a broad class of applications for numerical methods.
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The convergence of the partial sum of Fourier series is not necessarily monotone. The
same is true for the COS formula, where the error in the number of Fourier cosine coeffi-
cients generally shows oscillatory behavior. Finding a monotone COS scheme is an inter-
esting thought. Possibly a methodology similar to the filter-COS formula can deal with this.

Monotonicity together with ℓ∞ stability and local consistency are sufficient conditions
for convergence to the viscosity solution of the HJB equation. It is worthwhile to work out
these conditions for the COS method. Discontinuities like the Gibbs phenomenon may
require challenging technicalities.





CHAPTER 9

Appendix

A. FUNCTIONS χk , ψk , ξk , AND ξ2
k

The functions χk and ψk are given by:

χk (z1, z2, a,b) =
∫z2

z1

e y cos
(

kπ
y−a
b−a

)

d y

and ψk (z1, z2, a,b) =
∫z2

z1

cos
(

kπ
y−a
b−a

)

d y (A.1)

and admit the following analytic solutions (for example with Maple 14):

χk (z1, z2, a,b) = 1

1+
(

kπ
b−a

)2

[

cos
(

kπ z2−a
b−a

)

ez2 −cos
(

kπ z1−a
b−a

)

ez1

+ kπ
b−a

sin
(

kπ z2−a
b−a

)

ez2 − kπ
b−a

sin
(

kπ z1−a
b−a

)

ez1
]

, (A.2)

ψk (z1, z2, a,b) =
{ [

sin
(

kπ z2−a
b−a

)

− sin
(

kπ z1−a
b−a

)]

b−a
kπ , for k 6= 0,

z2 − z1, for k = 0.
(A.3)

The functions ξk and ξ2
k

are given by:

ξk (z1, z2, a,b) =
∫z2

z1

y cos
(

kπ
y−a
b−a

)

d y

= b−a
(kπ)2

[

cos
(

kπ z2−a
b−a

)

(b −a)−cos
(

kπ z1−a
b−a

)

(b −a)

+kπsin
(

kπ z2−a
b−a

)

z2 −kπsin
(

kπ z1−a
b−a

)

z1

]

(A.4)

and

ξ2
k (z1, z2, a,b) =

∫z2

z1

y2 cos
(

kπ
y−a
b−a

)

d y

= 2 b−a
(kπ)3

[

−kπz2(b −a)cos
(

kπ z2−a
b−a

)

+kπz1(b −a)cos
(

kπ z1−a
b−a

)

+
(

(b −a)2 − 1
2 (kπz2)2)sin

(

kπ z2−a
b−a

)

−
(

(b −a)2 − 1
2 (kπz1)2)sin

(

kπ z1−a
b−a

)

]

.

(A.5)
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B. FAST FOURIER TRANSFORM (FFT) ALGORITHM
In this thesis, the notation of the matrices M , M

+, and M
− differs between the different

chapters. In Chapter 4 we use the notation M
+(z1, z2, a,b) and M

−(z1, z2, a,b), with differ-
ent values for a and b (depending on the dimension). In Chapter 2 only matrix M

+ with
the same a and b values appears. Therefore, the notation in that chapter is simplified to
M (z1, z2). In Chapter 6 the arguments z1 and z2 equal a and b, respectively, and we shorten
notation to M .

Theorem 1. (Efficient computation of Ĉ , K , and K̂ )

The matrix-vector product M
+(z1, z2, a,b)w and M

−(z1, z2, a,b)w, can be computed in

O(N log2 N ) operations with the help of the Fast Fourier Transform algorithm, with N the

size of square-matrices M
+ and M

−.

The key insights of this efficient computation are the equalities

M
+
k , j (z1, z2, a,b) =− i

π

(

M
+c
k , j (z1, z2, a,b)+M

+s
k , j (z1, z2, a,b)

)

, (B.1a)

M
−
k , j (z1, z2, a,b) =− i

π

(

M
−c
k , j (z1, z2, a,b)+M

−s
k , j (z1, z2, a,b)

)

, (B.1b)

where

M
±c
k , j

(z1, z2, a,b) =
exp

(

i (± j +k) (z2−a)π
b−a

)

−exp
(

i (± j +k) (z1−a)π
b−a

)

± j +k
, (B.2a)

M
±s
k , j

(z1, z2, a,b) =
exp

(

i (± j −k) (z2−a)π
b−a

)

−exp
(

i (± j −k) (z1−a)π
b−a

)

± j −k
, (B.2b)

with special cases

M
+c
k , j (z1, z2, a,b) = (z2−z1)πi

b−a , for k = j = 0, (B.3a)

M
−s
k , j (z1, z2, a,b) = (z2−z1)πi

b−a , for k = j = 0, (B.3b)

M
−c
k , j (z1, z2, a,b) = (z2−z1)πi

b−a
, for k = j , (B.3c)

M
+s
k , j (z1, z2, a,b) = (z2−z1)πi

b−a
, for k = j . (B.3d)

The matrices M
+c and M

−s are Hankel matrices (Mi , j =Mi−1, j+1) and M
+s and M

−c are
Toeplitz matrices (Mi , j = Mi+1, j+1). These special Hankel and Toeplitz structures can be
embedded in a circulant matrix form and the matrix-vector products can be written as a
circular convolution of two vectors. Therefore, an FFT algorithm can be applied to achieve
O(N log2 N ) complexity, as described in [FO09].

C. DISCRETE FOURIER COSINE TRANSFORM (DCT)
In this appendix, we explain the idea of using discrete Fourier cosine transforms to approx-
imate the Fourier cosine coefficients Fk of function f (x), i.e.,

Fk = 2
b−a

∫b

a
f (x)cos

(

kπ x−a
b−a

)

d x. (C.1)
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For this, we take N grid-points and define an equidistant x-grid

xn := a +
(

n+ 1
2

)

b−a
N and ∆x := b−a

N . (C.2)

We determine the value of function f (x) on the N grid-points. The midpoint-rule integra-
tion gives us

Fk ≈
N−1
∑

n=0

2
b−a f (xn )cos

(

kπ xn−a
b−a

)

∆x =
N−1
∑

n=0
f (xn)cos

(

kπ 2n+1
2N

) 2
N . (C.3)

The appearing DCT (Type II) can be calculated efficiently by, for example, the function dct

of MATLAB. The error of the numerical integration is second order in N .
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[DFS03] D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in fi-

nance. The Annals of Applied Probability, 13(3):984–1053, 2003.
[dFV05] Y. d’Halluin, P. A. Forsyth, and K. R. Vetzal. Robust numerical methods for contingent

claims under jump diffusion processes. IMA Journal of Numerical Analysis, 25(1):87–
112, 2005.

[DI06] P. Den Iseger. Numerical transform inversion using Gaussian quadrature. Probability in

the Engineering and Informational Sciences, 20(1):1–44, 2006.
[DP94] A. K. Dixit and R. S. Pindyck. Investment under uncertainty. Princeton University Press,

Princeton, 1994.
[DPS00] D. Duffie, J. Pan, and K. J. Singleton. Transform analysis and asset pricing for affine

jump-diffusions. Econometrica, 68(6):1343–1376, 2000.
[Duf05] D. Dufresne. Bessel processes and Asian options. In H. Ben-Ameur and M. Breton, edi-

tors, Numerical Methods in Finance, pages 35–57. Springer-Verlag, New-York, 2005.
[DW05] P. Dupuis and H. Wang. On the convergence from discrete to continuous time in an

optimal stopping problem. The Annals of Applied Probability, 15(2):1339–1366, 2005.
[EKPQ97] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in

finance. Mathematical Finance, 7(1):1–71, 1997.
[EKQ95] N. El Karoui and M. C. Quenez. Dynamic programming and pricing of contingent claims

in an incomplete market. SIAM Journal on Control and Optimization, 33(1):29–66, 1995.
[Fan12] F. Fang. Use COS method to calculate portfolio credit loss. Internal report and private

communication, 2012.
[Fej00] L. Fejér. Sur les fonctions bornées et intégrables. Comptes Rendus de l’Académie des

Sciences, 131:984–987, 1900.
[FL07] P. A. Forsyth and G. Labahn. Numerical methods for controlled Hamilton-Jacobi-

Bellman PDEs in finance. Journal of Computational Finance, 11(2):1–43, 2007.
[FMM11] G. Fusai, D. Marazzina, and M. Marena. Pricing discretely monitored Asian options by

maturity randomization. SIAM Journal on Financial Mathematics, 2(1):383–403, 2011.
[FO08] F. Fang and C. W. Oosterlee. A novel pricing method for European options based on

Fourier-cosine series expansions. SIAM Journal on Scientific Computing, 31(2):826–848,
2008.

[FO09] F. Fang and C. W. Oosterlee. Pricing early-exercise and discrete barrier options by
Fourier-cosine series expansions. Numerische Mathematik, 114(1):27–62, 2009.

[FO11] F. Fang and C. W. Oosterlee. A Fourier-based valuation method for Bermudan and barrier
options under Heston’s model. SIAM Journal on Financial Mathematics, 2(1):439–463,
2011.

[FS86] H. Föllmer and D. Sondermann. Hedging of non-redundant contingent claims. In
W. Hildenbrand and A. Mas-Colell, editors, Contributions to Mathematical Economics,
pages 205–223. Elsevier Science, North-Holland, Amsterdam, 1986.

[FTW11] A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear
parabolic pdes. The Annals of Applied Probability, 21(4):1322–1364, 2011.

[Gel00] A. Gelb. A hybrid approach to spectral reconstruction of piecewise smooth functions.
Journal of Scientific Computing, 15(3):293–322, 2000.

[Gen72] W. M. Gentleman. Implementing Clenshaw-Curtis quadrature, I methodology and ex-
perience. Communications of the ACM, 15(5):337–342, 1972.

[GKPP07] B. Groom, P. Koundori, K. Panipoulou, and T. Pantelides. Discounting the distant future:



186 REFERENCES

How much does model selection affect the certainty equivalent discount rate? Journal

of Applied Econometrics, 22(3):641–656, 2007.
[GL10] E. Gobet and C. Labart. Solving BSDE with adaptive control variate. SIAM Journal on

Numerical Analysis, 48(1):257–277, 2010.
[GLW05] E. Gobet, J. P. Lemor, and X. Warin. A regression-based Monte Carlo method to

solve backward stochastic differential equations. The Annals of Applied Probability,
15(3):2172–2202, 2005.

[Gob10] E. Gobet. Numerics of Backward SDEs. Presentation slides, 2010. Summer School in
Probability Theory - Disentis - 26-30 July 2010.

[Gol14] C. Gollier. Gamma discounters are short-termist. TSE Working Paper Series 14-499,
2014.

[GRM06] P. Glasserman and J. Ruiz-Mata. Computing the credit loss distribution in the Gaussian
copula model: a comparison of methods. Journal of Credit Risk, 2(4):33–66, 2006.

[GS97] D. Gottlieb and C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM Review,
39(4):644–668, 1997.

[GT13] E. Gobet and P. Turkedjiev. Linear regression MDP scheme for discrete backward
stochastic differential equations under general conditions. HAL : hal-00642685, version
3, 2013.

[Gut05] A. Gut. Probability: A Graduate Course. Springer Texts in Statistics. Springer Sci-
ence+Business Media, Inc., 2005.

[Han05] S. L. Hansen. A Malliavin-based Monte-Carlo approach for numerical solution of
stochastic control problems: Experiences from Merton’s problem. Working paper, 2005.

[Hes93] S. L. Heston. A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options. Review of Financial Studies, 6(2):327–343, 1993.

[HG08] S.-F. Huang and M. Guo. Valuation of multidimensional Bermudan options. In H. K.
Wolfgang, N. Hautsch, and L. Overbeck, editors, Applied Quantitative Finance, pages
295–309. Springer, Berlin Heidelberg, 2008.

[HGG07] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-Dependent Prob-

lems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, 2007.

[HH09] V. Henderson and D. Hobson. Utility indifference pricing - an overview. In R. Carmona,
editor, Indifference Pricing: Theory and Applications, pages 44–74. Princeton University
Press, 2009.

[HIM05] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete markets. The Annals

of Applied Probability, 15(3):1691–1712, 2005.
[HitH13] T. Haentjens and K. J. in ’t Hout. ADI schemes for pricing American options under the

Heston model. arXiv:1309.0110, 2013.
[HN89] S. Hodges and A. Neuberger. Optimal replication of contingent claims under transac-

tions costs. Review of Futures Markets, 8(2):222–239, 1989.
[HO14] C. B. Hyndman and P. Oyono Ngou. A convolution method for numerical solution of

backward stochastic differential equations. arXiv:1304.1783, 2014.
[HRO14] T. P. Huijskens, M. J. Ruijter, and C. W. Oosterlee. Numerical methods for coupled FBS-

DEs. Working paper, submitted for publication, 2014.
[Hua09] X. Huang. Credit Portfolio Losses. PhD thesis, Delft University of Technology, the Nether-

lands, 2009.
[Hul09] J. C. Hull. Options, Futures and Other Derivatives. Pearson/Prentice-Hall, New Jersey,

2009.
[Ise09] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge

Texts in Applied Mathematics. Cambridge University Press, 2009.
[JKWW11] A. Janek, T. Kluge, R. Weron, and U. Wystup. FX smile in the Heston model. In P. Čížek,

W. K. Härdle, and R. Weron, editors, Statistical Tools for Finance and Insurance, pages



REFERENCES 187

133–162. Springer Verlag, 2011.
[JO12] S. Jain and C. W. Oosterlee. Pricing high-dimensional Bermudan options using the

stochastic grid method. International Journal of Computer Mathematics, 89(9):1186–
1211, 2012.

[JYC09] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Markets.
Springer Finance, 2009.

[Kah08] C. Kahl. Modelling and Simulation of Stochastic Volatility in Finance. Universal-
Publishers, 2008.

[KD01] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control Problems in

Continuous Time. Springer, 2001.
[Keh] S. Kehtari. private communication. ETH Zürich, Switzerland.

[KFV09] J. S. Kennedy, P. A. Forsyth, and K. R. Vetzal. Dynamic hedging under jump diffusion with
transaction costs. Operations Research, 57(3):541–559, 2009.

[KJ05] C. Kahl and P. Jäckel. Not-so-complex logarithms in the Heston model. Wilmott Maga-

zine, 19(9):94–103, 2005.
[KKK10] R. Korn, E. Korn, and G. Kroisandt. Monte Carlo Methods and Models in Finance and

Insurance. Financial Mathematics. CRC Press/Taylor & Francis, 2010.
[Kob00] M. Kobylanski. Backward stochastic differential equations and partial differential equa-

tions with quadratic growth. Annals of Probability, 28(2):558–602, 2000.
[KP92] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Ap-

plications of Mathematics Series. Springer, 1992.
[Kry99] N. V. Krylov. Approximating value functions for controlled degenerate diffusion pro-

cesses by using piece-wise constant policies. Electronic Journal of Probability, 4(2):1–19,
1999.

[Kry00] N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellmans
equations with variable coefficients. Probability Theory and Related Fields, 117(1):1–16,
2000.

[Lan56] C. Lanczos. Applied analysis. Prentice-Hall mathematics series. Prentice-Hall, 1956.
[Lel85] H. E. Leland. Option pricing and replication with transactions costs. The Journal of

Finance, 40(5):1283–1301, 1985.
[Lew00] A. L. Lewis. Option valuation under stochastic volatility: with Mathematica code. Fi-

nance Press, 2000.
[LFBO08] R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee. A fast and accurate FFT-based method

for pricing early-exercise options under Lévy processes. SIAM Journal on Scientific Com-

puting, 30(4):1678–1705, 2008.
[LGW06] J. P. Lemor, E. Gobet, and X. Warin. Rate of convergence of an empirical regression

method for solving generalized backward stochastic differential equations. Bernoulli,
12(5):889–916, 2006.

[Lio83] P.-L. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equa-
tions part 2: viscosity solutions and uniqueness. Communications in Partial Differential

Equations, 8(11):1229–1276, 1983.
[LK06] R. Lord and C. Kahl. Why the rotation count algorithm works. Tinbergen Institute Dis-

cussion Paper No. 2006-065/2, 2006.
[LK07] R. Lord and C. Kahl. Optimal Fourier inversion in semi-analytical option pricing. Journal

of Computational Finance, 10(4):1–30, 2007.
[LK10] R. Lord and C. Kahl. Complex logarithms in Heston-like models. Mathematical Finance,

20(4):671–694, 2010.
[LO08a] C. C. W. Leentvaar and C. W. Oosterlee. Multi-asset option pricing using a parallel

Fourier-based technique. Journal of Computational Finance, 12(1):1–26, 2008.
[LO08b] C. C. W. Leentvaar and C. W. Oosterlee. On coordinate transformation and grid stretching

for sparse grid pricing of basket options. Journal of Computational and Applied Mathe-



188 REFERENCES

matics, 222(1):193–209, 2008.
[LS14] R. J. A. Laeven and M. Stadje. Robust portfolio choice and indifference valuation. Math-

ematics of Operations Research, 39(4):1109–1141, 2014.
[LSM97] J. P. Lepeltier and J. San Martin. Backward stochastic differential equations with contin-

uous coefficient. Statistics & Probability Letters, 32(4):425–430, 1997.
[LZ10] Y. Li and W. Zhao. Lp-error estimates for numerical schemes for solving certain kinds of

backward stochastic differential equations. Statistics & probability letters, 80(21):1612–
1617, 2010.

[MCC98] D. B. Madan, P. Carr, and E. C. Chang. The Variance Gamma process and option pricing.
European Finance Review, 2(1):79–105, 1998.

[Mer69] R. C. Merton. Lifetime portfolio selection under uncertainty: The continuous-time case.
Review of Economics & Statistics, 51(3):247–257, 1969.

[Mer90] R. C. Merton. Continuous-time finance. Blackwell, 1990.
[MMP13] J. Masoliver, M. Montero, and J. Perelló. Uncertain growth and the value of the future.

Cowles Foundation Discussion Papers 1930, yale university, 2013.
[MOG11] J. J. Masdemont and L. Ortiz-Gracia. Haar wavelet-based approach for quantifying credit

portfolio losses. Quantitative Finance, 2011.
[Mor10] M. A. Morlais. A new existence result for quadratic BSDEs with jumps with applica-

tion to the utility maximization problem. Stochastic Processes and their Applications,
120(10):1966–1995, 2010.

[MPSMT02] J. Ma, P. Protter, J. San Martín, and S. Torres. Numerical method for backward stochastic
differential equations. The Annals of Applied Probability, 12(1):302–316, 2002.

[MS05] M. Mania and M. Schweizer. Dynamic exponential utility indifference valuation. The

Annals of Applied Probability, 15(3):2113–2143, 2005.
[MSZ08] J. Ma, J. Shen, and Y. Zhao. On numerical approximations of forward-backward stochas-

tic differential equations. SIAM Journal on Numerical Analysis, 46(5):2636–2661, 2008.
[MT06] G. N. Milstein and M. V. Tretyakov. Numerical algorithms for forward-backward stochas-

tic differential equations. SIAM Journal on Scientific Computing, 28(2):561–582, 2006.
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