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Introduction

Agriculture and scientific research have been intertwined for hundreds of years, trac-
ing back to the very notable example of Mendelian inheritance. For a long time the
purpose of research in agriculture was to select for desirable traits and increase pro-
duction. The last fifty years have seen a rising concern in society for sustainability
and more environmentally-minded practices spurred by incontrovertible proof of cli-
mate change and a loss of biodiversity so staggering that it has been called a sixth
extinction, [39], [9]. These concerns had a gradual but significant effect on consumer
choices and have been reflected in policies regarding the environment and agriculture.

Currently, the European Green Deal and EU Commission mid-term Agricultural Out-
look, [24], both stress the importance of innovative approaches to land use and crop
management in order to reach European sustainability targets and preserve biodi-
versity. Indeed climate change is projected to interfere with current crop and land
management systems whereas the amount of available arable land is not projected to
increase. The challenges ahead indicate important research directions for researchers
within and outside academia.

Many advances in agricultural research have been facilitated in the past decades by
the popularization of high-throughput phenotyping technologies, i.e. devices and
software which have made the processing of large amounts of images or biological
samples faster and more affordable. This has culminated most recently in projects
such as WatchITGrow (WIG) and the Netherlands Plant Eco-phenotyping Centre
(NPEC) which allow practitioners, WIG, and academics, NPEC, to monitor plant
development at an unprecedented level of precision.

The project “Flight to Vitality” that provided funding for this research was started
in 2018 and involved a consortium of industry and academics: HZPC B.V., Averis
seeds, TU Delft and Utrecht University. The goal was to combine high-throughput
phenotyping technologies available in academia and industrial laboratories and com-
mercial remote sensing services to connect the composition of the seed tuber and the
vigor of the resulting potato plant.

Potato is the world’s third most important crop for human consumption, as food and
a source of starch [27]. Among carbohydrate-rich staple crops such as wheat, grain
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2 Introduction

maize, oats, and rice, potato is particularly important because it has the highest yield
per hectare thanks to water and space efficiency and therefore it is a crucial crop for
facing the food demands in areas where availability of arable land is not expanding,
[28].

The cultivation of potatoes presents unique challenges, most importantly because
potato plants rely on vegetative propagation as planting potatoes at scale from true
potato seeds presents difficulties. The production of certified seed tubers is closely
regulated by national and international organizations, with the purpose of guarantee-
ing that the seed has been produced and multiplied in pathogen-free soil, is healthy
and true to variety specifications, [48]. In the European Union, the Netherlands is
the biggest producer of seed potatoes, with HZPC being a market leader [26], both
thanks to favorable soil conditions and to a long history of innovation and improve-
ment of the certified seed tubers. The quality and health of the seed tubers is one of
the most important contributing factors to crop quality and yield. Awareness of this
fact motivates ambitious collaborative projects, see, e.g., [38], which aim to increase
the availability of high-quality seed potatoes in developing countries.

Even though the Netherlands is uniquely positioned in Europe for the production
of seed potatoes due to its fertile and pathogen-free soil, producers have been regis-
tering a non-uniformity in the growth of seedlots of the same variety. This creates
understandable friction between the seed-potato producers and their customers as
non-uniformity of potato plants can lead to a diminished harvest. These difficulties
are tied to the absence of an effective germination test for seed potatoes. Such a
test, present for other crops, e.g., barley, is a cheap way to measure the vitality of
a seedlot. Vitality, or vigor, is an important quality of plants, referring to several
simultaneously occurring traits: good emergence, uniform growth, and the number of
stems per plant. Strong vitality in the early stages of development usually implies a
strong yield. Several studies have linked vigor of seed tubers to their storage condi-
tions and physiological age, acknowledging also the importance of genotype [71], [40],
[21].

The idea for the project “Flight to Vitality” (FtV) was sparked by the heuristic
observation (HZPC, Averis Seeds B.V.) that the seed potatoes of the same variety
(genotype, cultivar) originating from different production fields exhibit nonuniform
growth pattern. This difference in the apparent vigor of seedlots of the same variety
contradicts the goals of the seed-potato producers who aim to deliver the seeds of
uniformly high quality, and may force the farmers to harvest plants some of which
have not yet reached their potential yield.

The main goal of the FtV project was to identify the discriminating features of the
seed tubers that cause the nonuniform emergence and growth rates of the potato
plants. To achieve this ambitious goal the project consortium set up a multi-year
experiment to analyze the seed tubers from different production fields and to monitor
the plant growth, both in realistic test-field conditions and in controlled climate rooms.
The latter were meant to mimic different climatic regions and potential stress factors
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affecting the growth of potato plants.

A variety of biochemical properties of the seed tubers could be measured in the lab-
oratory thanks to high-throughput techniques such as Fourier Transform InfraRed
(FTIR) spectroscopy, Hyper-Spectral Imaging (HSI), X-Ray Fluorescence (XRF),
rRNA amplicon sequencing for the microbiome, and untargeted metabolomic mass
spectroscopy. This wide spectrum of features was deemed to cover the main proper-
ties of the seed tubers that could potentially contribute to the observed difference in
vigor.

To acquire a robust picture of the seed-tuber performance, field trials have been
conducted during three consecutive years in three distinct geographic locations, two
in the Netherlands and one the south of France. The growth of plants was monitored
by unmanned-aerial-vehicle (UAV) imaging, with visual-spectrum (RGB) and multi-
spectral cameras, during the period between 15 and 70 days after planting (DAP).
Additionally, two climate rooms were built in Stiens (Netherlands), where potted
plants have been grown in four climatic conditions, warm and wet, cool and wet,
warm and dry, and cool and dry. The plant growth in the climate controlled rooms
was monitored by a moving RGB camera setup starting at 15 DAP until 40 DAP,
due to earlier closure of the the plant canopies compared to the field experiments.

The experimental design was updated in all environments after the first project year
(2019) in order to make the measurement of plant vigor more accurate. In the years
2020 and 2021, a new drone operator was contracted for monitoring the field experi-
ments, physical markers were placed in the field to be used for time-alignment, and a
more stable rolling scaffolding was bought for the camera in the climate rooms. The
author of this thesis was responsible for the extraction of the plant growth data from
the acquired images and the development of a predictive model for the seedlot vigor
in terms of the seed-tuber properties.

The quantification of the plant vigor from drone images is a challenging task, ini-
tially requiring the identification/definition of a quantity, measurable from an aerial
photograph, which is a good indicator of such a complex trait. Due to the limited
spatial resolution of the images, small size of plots, and a relatively large scale of the
project, measurements of the plant biomass, number of stems per plant, and the plant
height could not be achieved neither from the images nor directly on the ground. At
the same time, we could reliably measure the average canopy coverage in each plot,
thus being able to detect the nonuniformity of growth between the plots. Upon cor-
recting for various image distortions and removing the growth trends due to the field
inhomogeneity, the leaf-canopy-area data could be used as a dependent variable for
regression.

In 2020 we explored associations present between the leaf-canopy data for 2019 and
2020 and the seed-tuber data available at that point (FTIR, XRF, HSI). To this end,
we employed the chemometric standard method of regression – Partial Least-Squares
(PLS). This method has been developed for highly collinear datasets, such as those
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usually arising in chemometrics, where the number of independent variables (predic-
tors) is much larger than the number of studied samples (experiments). In our case,
we studied 180 seedlots, and the spectra resulting from the FTIR spectroscopy alone
contain 1400 features (spectral amplitudes). Therefore, we deal with an underde-
termined linear system and in more general terms, an overparameterized problem.
The preliminary results of this association study were presented at the ECMI 2021
conference and are published in the corresponding proceedings [3].

In a subsequent thorough analysis involving the the FTIR, XRF, HSI and microbiome
data, we observed that the cross-validated complexity of the PLS regression models
was very often equal to one, i.e., on average, only the first PLS component produced
the smallest residual on the testing dataset. The PLS algorithm finds a solution to an
underdetermined problem in a Krylov subspace of a given dimension. The choice of
the dimension is part of the model calibration and regularization procedure, and for
our purposes, this choice needed to be robust enough to be used on unseen datasets,
hence, the decision to use cross validation. This indicated the limited applicability of
the PLS method with the datasets at hand. In particular, a smooth solution (vector
of regression coefficients) found in the Krylov subspace of dimension one did not offer
much insight into the contribution of each individual feature to the model.

In March 2021 the microbiome sequencing for the years 2019 and 2020 was com-
pleted by the Plant-Microbe Interactions group at the University of Utrecht, which
resulted in a joint paper [58]. In this work the regression was performed with the
algorithm popular in the microbiome community – the Random Forest (RF) method.
This method allows naturally encoding the taxonomy of the measured microbiota,
but is highly nonlinear from the mathematical point of view, i.e., it implements a
nonlinear association model between the tuber features (microbial population sizes)
and the canopy area. The sophisticated nonlinear model behind the RF method,
however, produced results very similar to the linear model implemented in the PLS
method, which prompted us to question the applicability and choice between linear
and nonlinear association models, especially, in the case of limited training datasets.

This initiated a theoretical study that eventually led to the publication [4] where we
have revisited the topological structure of the multiple linear regression (MLR) model
and showed that it is equivalent to fitting a hyper-curve parameterizable by a single
scalar parameter. In particular, this approach allows viewing each individual predictor
variable as a function of the dependent variable, hence, the Inverse Regression (IR)
name of one of the possible realizations of our approach. This method is especially
suited for severely overparameterized problems with diverse predictor data and has
been further adapted by resorting to the Discontinous-Galerkin (DG) approach to
accommodate for the possible discontinuities in the dependence of the predictor (tuber
property) on the dependent variable (plant vigor) in the paper [5] and elaborated in
Chapter 4. The IR method also allows analyzing the quality of the predictor data
and systematically removing the features (predictors) that are either too noisy or do
not comply with the linearity assumption of the MLR model. In [5] we have applied
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the DGIR method to the complete range of the seed-tuber data (with the exception
of microbiome) and were able to narrow down the amount of seed-tuber information
necessary to make a vigor prediction.

This thesis describes the FtV project and its results with the focus on the algorithms
and mathematical techniques, and presents a detailed discussion of the PARCUR,
IR and DGIR regression methods. We begin by outlining the research questions and
previewing the main findings of the FtV project in Chapter 1.

In Chapter 2, we describe in detail the setup of the field and climate room experiments
and the procedures we devised to measure the leaf-canopy area in both. For the
measurement of plant vigor we had to rely on both existing and novel methods, and
this chapter provides sufficient information about all techniques and algorithms for
our results to be reproducible.

In Chapter 3, we introduce and explore the mathematical properties of the PARCUR
and IR models. We give explicit conditions for the model to make exact predictions
in an ideal case. We offer examples of how the method works on synthetic data and
on a publicly available dataset of FTIR spectra for PET yarn.

In Chapter 4, we develop a DGIR version of the IR method and present the results
of regression on the FTIR, XRF, HSI, and metabolomic datasets for all three project
years. We develop both variety-agnostic and variety-specific regression models and
identify seed-tuber features sufficient for a good prediction of the plant vigor.

In the Conclusions, we discuss the lessons learned from the FtV project with the
focus on how mathematics can further contribute to the solution of some challenging
problems in modern agriculture.

In Appendix A we include figures illustrating the model performance from 4 in all
cases.





Chapter 1

Research questions and
preview of results

Although this is a thesis on applied mathematics, since the main application area
was horticulture, in the tradition of scientific articles on biology, the main results of
the thesis will be summarized at the beginning. The research question of the project
“Flight to Vitality” was formulated by the industrial partners, and one of the results
of this thesis is the answer to this important practical question. The second research
question has emerged while trying to solve the first one, and is of mathematical
nature. A partial answer to that question is the second result of this thesis. Both the
questions and the results are only briefly described in this chapter and are further
elaborated in the subsequent chapters.

1.1 Is it possible to predict the vigor of potato
plants from seed-tuber properties?

On the most basic level the research question of the “Flight to Vitality” project can
be formulated as follows.

Given the data about the chemical constitution and microbiome of the seed
tuber, is it possible to predict the vigor of the potato plant?

Having carried out a three-year experimental campaign and having applied all the
necessary data-processing and machine-learning (ML) techniques we arrived at the
conclusion that the answer to this question is “sometimes, yes”. Specifically, we have
been able to predict the vigor of one potato variety in all conditions fairly well, the
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Vitality 
measure y Tuber data X

Figure 1.1: In the FtV experiment we study selected potato seed tubers in the lab and
in the field. Several chemical and biological aspects are measured in the laboratory,
these features constitute our matrix X of tuber data. In the field, thanks to UAV
imaging and some software specially developed for this project, we can measure the
plant’s vitality, which constitutes our dependent variable y.

vigor of one other variety to a lesser extent (under certain environmental conditions),
and failed to make a robust predictive model for the remaining four varieties.

Of course, there are many caveats to this answer. For example, why there had to be
a variety-specific model and not one model that would be predicting the vigor of any
potato variety? Such a variety-agnostic ML model was in fact created. However, it
did not perform well at all. Subsequent analysis of the predictor data has shown that,
for some predictors (spectral components, abundances of chemicals and metabolites,
etc.), the mathematical form of association with the vigor parameter was very different
between the varieties. This indicates that the vigor-enhancing properties or strategies
may depend on the seed-tuber genotype.

Another warning is about the way the different environmental conditions were treated.
It is well-known that different genotypes perform differently in the same environmen-
tal conditions. In our experiments, we have observed this G×E interaction when the
early-emerging varieties were adversely affected by abnormally low temperatures in
one field and left-over herbicide in another field. These effects were also observed
on the level of seedlots. Thus, a proper predictive model should have included this
genotype-specific reactions on the environment as well as the time-series of the envi-
ronmental variables. While the latter time-series were available, we had no calibrated
growth models for the genotypes in question at our disposal.

The lack of predictability of the vigor for certain varieties can thus have various
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explanations. On the one hand, there was a lack of consistency in the vigor of the
seedlots between the fields for these varieties. Hence, the vigor of these varieties
may simply be varying more randomly, independently of the seed-tuber origin. That
immediately poses a follow-up question for biologists: what makes the Festien variety
perform so consistently and predictably in various conditions? On the other hand,
is there perhaps a better, more robust, way to measure the vigor, such that the
‘unpredictable’ varieties, that are often better performing on average, can still be
predicted?

In the search for obvious and stable predictors of vigor, an over-abundance of data
about the chemical composition and microbiome of the seed tubers was collected dur-
ing this project. We have developed a special technique to characterize the predictive
power of each individual predictor, be it a component of the infrared spectrum (spec-
tral amplitude at a given wavelength) or a specific metabolite. Having applied this
technique to all datasets with the exception of microbiome, we observed a surpris-
ingly poor performance of the a priori most promising metabolome dataset. At the
same time, the technique revealed that the relatively cheap spectroscopic data had
the best predictive power. While this can be considered a good result from the prac-
tical/economic point of view, the reasons behind the lack of (linear) consistency in
the metabolome data are not clear. This could be the sign of either a natural high
variance in the abundances of metabolites in the seed tubers or a strongly nonlinear
dependence of the vigor on the metabolite content.

1.2 How to solve an overparameterized regression
problem?

While searching for a suitable machine-learning technique to answer the research
question discussed above we came across the following mathematical question.

Given p possible predictors and n training samples, where n ≪ p, will a
multiple linear regression model be able to make good predictions?

This question is especially important when a multiple linear regression (MLR) model
fails to make a good prediction of the testing dataset. Is it because the underlying
biological association is weak, or the training dataset is somehow incomplete, or is
the assumption about the (multiple) linear relation between the predictors and the
dependent variable too restrictive? If the latter is true, then one may have to consider
a more sophisticated nonlinear ML model, which, however, may also turn out to be far
less interpretable. Moreover, having additional, e.g., nonlinear, degrees of freedom in
an ML model does not come for free, as ‘learning’ the coefficients of such a model may
require more training data. Does it make sense to switch to a highly overparameterized
non-linear model when the linear model is already overparameterized, i.e., n ≪ p, and
there is no possibility to increase the size n of the training dataset?
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We have obtained partial answers to these questions. Yes, a well-trained MLR model
will be able to make good predictions even in the presence of nonlinear dependencies
of the dependent variable on the majority of the predictors. In fact, it is enough to
have a few ‘proper’ predictors in the dataset to achieve this. In the ideal (noiseless)
case, there is even no need to know which of the predictors are good and which are
bad. While this sounds very convenient, such a model would offer an illusion of
understanding of the underlying association, [46]. Hence, here and especially in the
realistic case with noisy data, it is prudent to remove the ‘improper’ predictors, which
incidentally also significantly improves the model performance.

To arrive at these answers, we had to reformulate the MLR model in a way that made
its topology more clear. The term ‘linear’, which stems from the algebraic structure
of the model equations, makes one think that the relation between the predictors and
the dependent variable is a multi-dimensional linear object in the (p+ 1)-dimensional
space. Indeed, an equation of the plane, e.g., in three dimensions, has the form:

β0 + β1x1 + β2x2 + β3x3 = 0, (1.1)

where (x1, x2, x3) are the three coordinates, and ⟨β1, β2, β3⟩ = n are the components
of the vector n normal to the plane.

The algebraic relation behind the multiple linear regression has the form:

β0 + β1x1 + β2x2 + · · · + βpxp = y, (1.2)

where xj are the predictors, y is the dependent variable, and βj are the unknown
coefficients that must be learned from the training data. The equation of the plane
(1.1) can be rewritten in a similar form:

β0 + β1x1 + β2x2 = y, (1.3)

where y = −β3x3 plays the role of the dependent variable. Hence, it appears that the
data points (x1, . . . , xp, y) of the multiple linear regression model are supposed to lie
on a hyper-plane in a (p + 1)-dimensional space.

While this is undoubtedly true, we were able to show that the points of the trained
overparameterized MLR model also lie on a hyper-curve that can be parameterized
by a single scalar parameter s. A hyper-curve is completely defined by p + 1 scalar
functions of this parameter:

y(s), xj(s), j = 1, . . . , p. (1.4)

Moreover, in many cases the parameter of the curve may be chosen as s = y, i.e., the
dependent variable. The latter choice allows to consider each predictor as a function
of the dependent variable and eventually delivers the tool for discarding improper
predictors from the model.

By shifting the focus onto the behavior of predictors as functions of the dependent
variable, the parametric hyper-curve model offers the possibility to choose the model



1.3. What can be improved? 11

of the functional relation sought between these variables. This relation may be contin-
uous, e.g., polynomial, but it may also be piecewise-continuous or even discontinuous
(a broken hyper-curve). To accommodate for the datasets that correspond to the
latter two cases, we develop a finite-element projection procedure for deriving the
discrete ML model, opening an interesting avenue of research at the interface of nu-
merical methods and machine learning. Finally, this approach offers an alternative
way of tackling the difficult problem of noisy predictors, [36], by regularizing the
functional representation for each predictor individually.

1.3 What can be improved?

1.3.1 Climate-controlled room experiments

In principle, acquiring experimental data in a climate-controlled room is an excellent
idea. The field experiments in 2020 and 2021 have shown that even minor changes
in climatic conditions at key stages may and do strongly affect the outcome of the
experiment. Therefore, validating the results of field experiments and/or extending
them to new conditions in climate-controlled rooms would be very helpful. However,
growing potatoes in containers, data acquisition, and data processing presented cer-
tain challenges that prevented us from realizing the full potential of climate-controlled
rooms in the FtV project.

First, the data acquisition was disproportionately costly in terms of the manual labor
and time spent by the operator taking the pictures. This process can and should
be automated by employing a fixed multiple-camera setup, rather than a moving
single camera. The latter option was realized in the FtV project and required the
development of a trivial but convoluted software for extracting the leaf-canopy data
that depends on the particularities of the moving-camera setup and is difficult to
generalize and deploy in practice.

Second, the standard techniques for removing the spatial trends from the data are
not applicable to individual containers that were used to grow the potato plants in
climate-controlled rooms. In this case, the trend, e.g., due to a non-uniform irrigation,
is a discontinuous function of space coordinates and a new approach, specifically
suited for container-based experiments, must be developed. Also, a smaller number
of replicates, necessitated by the spatial constraints of the rooms, must be taken into
account.

Third, the small size of containers significantly affects the growth of the plants, con-
voluting the correspondence between the field tests and the experiments in climate-
controlled rooms. Further biological, mechanistic modeling is required to elaborate
this correspondence and incorporate it into the data-processing pipeline.
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1.3.2 Multi-spectral drone data

In all three years, during the field tests, apart from the RGB camera, the drone was
also carrying a multi-spectral camera that took images of the same field in three
near-infrared frequency bands. This information can be used, e.g., to estimate the
chlorophyll content of the leaves, which could also be related to the plant vigor. While
recently, commercial drone operators have started implementing the necessary mea-
surements (e.g., GPS coordinates) and pre-processing steps in their software, in the
FtV project, the multi-spectral images could not be time-aligned (transformed to the
same frame of reference on each measurement date) with the RGB orthophotographs.
Therefore, the plot-identifying polygons found in the RGB images could not be re-
used with the multi-spectral images. Whereas, recreating the plot polygons and the
time-alignment directly on the multi-spectral images failed due to significantly lower
image resolution and the apparent invisibility of the ground-based markers in the
near-infrared spectrum.

1.3.3 Plant-level data

We developed an effective algorithm that detects plot boundaries for seedlot plots
of approximate size 3 by 4 meters, as shown in Figure 1.2, and can measure canopy
ridge-wise with a semi-automated canopy segmentation procedure. Although this
procedure does require some manual supervision and intervention, the segmented
plot boundaries could then be easily transferred onto the orthophotographs of the test
fields taken at different dates. We only had to detect the polygonal plot boundaries
in a suitable image taken on some selected date and use the field markers visible in
all images to transform the coordinates of the vertices to the reference frame of other
orthophotographs.

The resolution of orthophotographs in the FtV project was fine enough to estimate the
canopy area on the sub-plot (ridge) level. Knowing the number of plants in the ridge,
we could estimate the average canopy per ridge. This gave us the potentially valuable
information about the variance of the seedlot canopy area. However, as there were only
four ridges inside each plot, the actual plot variance was significantly underestimated
by the variance of the ridge data. Hence, the next step in the processing of the RGB
drone data is to extract the canopy area of individual plants, e.g., with a parallel-
moving ridge-conformal window searching for gaps between the plants. Apart from
the possible need to increase the image resolution, there are many other challenges
on this path. For example, in the images taken at the earlier dates, it is hard to
distinguish the emerging plants from the stones and cracks in the soil. Whereas, in
the images taken at the later dates, it is difficult to distinguish between the joint
canopies of two separate plants and the important case where a plant has failed to
emerge. A way forward is to increase the temporal resolution by taking the images
more often, and to incorporate the dynamic information into the plant segmentation
procedure.
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Figure 1.2: The figure shows the polygonal boundaries detected in the field of Kolum-
merwaard, in black is the plot number from the field scheme for seedlot association.

1.3.4 Modeling environment and new genotypes

The main hypothesis of the FtV project was the possibility to predict the vigor of
potato plants from the properties of the seed tubers. This is a data-based approach
and we have shown that such a prediction is possible to some extent. A variety that
is less vigorous, but more stable across different environmental conditions was much
better predictable than the other varieties. The “unpredictable” varieties reacted
much more strongly on the adverse conditions, such as residual herbicide and early
cold temperatures, but are also generally more vigorous, i.e., grow more rapidly and
have larger canopies.

We believe that the predictive ability for the vigorous varieties could be improved,
if the models were augmented with the environmental data, e.g., temperature, air
and soil humidity, Nitrogen content, etc. As a source of inspiration for this new type
of data-based model, we suggest to look into the mechanistic plant growth models,
[51], such as WOFOST [62], [13], which codify the response of a variety to various
environmental factors. However, it also clear that the mathematical structure of these
mechanistic models will have to be revisited first, with the goal to reduce the number
of tuning parameters.

In the FtV project we have considered six different potato varieties and come to the
conclusion that the vigor-predictive model should be variety specific. This raises the
natural question on how to extend these models to other genotypes. Does it mean that
the costly experiments similar to the ones in the FtV project will have to be performed
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with each new variety? While we believe that additional experiments are, probably,
inevitable, one should seek a data-based explanation of the model coefficients in terms
of the genetic information, such as Single Nucleotide Polymorphisms that distinguish
one variety from another. Hopefully, with enough experimental data and a suitable
machine-learning approach, a mathematical pattern will be uncovered that allows
to predict the tuber-vigor connection even for previously unseen or yet to be bred
varieties.







Chapter 2

Experiments and data
extraction

While academic mathematicians were not involved in the initial formulation of this
project and the design of its experiments, mathematical methods played substantial
role in the subsequent stages, namely, in the extraction of plant-growth data, the
definition of the vitality measure, and the creation of a predictive machine-learning
model.

The measurement of plant features, e.g., the size, shape and physiological state of a
leaf, is called phenotyping and represents both a well-studied subject and a rapidly
developing research direction, [18], [29], [44]. It involves the methods from computer
vision and photogrammetry, [42], [2], and has recently been reinforced by the tech-
niques of Artificial Intelligence (AI), [57].

In this project, the main plant feature of interest was the size of the leaf canopy.
Since the source of the data about the canopy were the RGB images of the test field
acquired by a drone-mounted camera, several intermediate data-processing steps have
been performed to extract the desired canopy data.

This chapter describes the design of experiments, and elaborates both the standard
methods and the techniques specifically developed in this project, pertaining to the
extraction and spatial correction of the vitality data. All these techniques have been
published in the Protocols section of [7] and in the expanded and updated Protocol
section of [6].

17
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2.1 Project hypothesis and design of experiments

Seed potato production aims to breed varieties or genotypes that exhibit one or mul-
tiple desirable traits. Potatoes are used in many ways by the food industry, as an
ingredient for direct consumption, and as a source of starch. This division is reflected
in the breeding, for example Averis Seeds focuses on the production of starch-rich
potato varieties.

The focus of this research are seedlots or batches. A seedlot is a group of seed
tubers of the same variety with the common origin, i.e., the production field, the
producing farmer, and the storage conditions. In the subsequent growing season,
potato plants grown from the seedlots of the same variety exhibit variations that
can not be explained by genetic properties, since the seedlots of a variety contain
genetically identical tubers (clones). These variations have been observed for many
years with different potato varieties and in different growth conditions. Therefore, the
project’s main hypothesis is that the ability of a seed tuber to produce a healthy plant
(vitality of a tuber) depends on the origin of the seed tuber and that this variation in
vitality may happen across a variety-specific range. Another assertion of the project
is that the origin of the tuber is imprinted in its bio-chemical properties. Thus, one
should be able to predict the vitality of the potato plant by analyzing the chemistry
and the microbiome of the seed tuber.

To validate this hypothesis, a three-year field experiment was carried out with a set of
six varieties of varying average vitalities. Each variety was represented by 30 seedlots,
amounting to 180 seedlots per year. The seed potatoes involved in the experiment
were cultivated in the production fields all over the Netherlands with varying soil and
crop management histories and were subject to possibly different storage conditions.

To confirm the consistency of the vitality variations between the seedlots, the same
seedlots were simultaneously grown in different natural and artificially controlled en-
vironments. The natural variations were achieved in the years 2019, 2020, and 2021
by planting in the following three test fields:

1. Montfrin (M), in the South of France (54.4980 N, 5.1090 E)

2. Kollumerwaard-SPNA (S), in the North of the Netherlands (70.4325 N, 6.9825
E)

3. Veenklooster (V), in the North of the Netherlands (70.3935 N, 6.7080 E)

The artificial environments were created in two climate-controlled rooms located at
the HZPC facilities in Stiens. The two rooms were kept at different temperatures,
one at 10◦C, and another at 20◦C, and each room was subdivided into a wet and
a dry zone according to the levels of applied irrigation. Thus the climate rooms
implemented four different conditions: warm-wet, warm-dry, cold-wet, and cold-dry.
Three experiments were conducted in the rooms between April 2019 and August 2020.
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Figure 2.1: Randomized complete block design of the Veenklooster test field in 2021.
Each genotype is repeated four times as four randomly located compact blocks (col-
ors). Each seedlot has one plot (small polygons) randomely located inside the corre-
sponding genotype block, i.e., there are four plots of each seedlot in total.

As mentioned above, a single field trial involved 180 seedlots belonging to 6 varieties
(30 seedlots per variety). The seedlots were planted according to a randomized com-
plete block design (RCBD). Each seedlot was represented by 96 seed tubers. These
tubers were divided into four replicating plots, each containing 24 tubers. Thus, with
180 seedlots, this resulted in 720 plots distributed over the test field. As potatoes are
planted inside the elevated soil structures called ridges, each seedlot plot stretched
across four neighboring ridges containing 6 tubers of this seedlot planted along (in-
side) each ridge. This planting arrangement was achieved by manually placing the
tubers into the ground from a tractor while it was creating the ridges, which some-
times resulted in a significant irregularity of the plot boundaries as can be seen in the
experimental design of the Veenklooster test field in 2021 shown in Figure 2.1.

In the climate room trials 11×11×12 cm containers were filled with sand and hosted
a single seed tuber each. These containers were placed on large tables in a grid-like
pattern along 10 columns and 72 rows, implementing a randomized complete block
design. Studying the emergence of potato plants in such small containers was an
untested approach. Unfortunately, many of the potato plants have failed to emerge
in these experiments and the canopies of individual plants that did emerge tended
to cross the boundaries of the corresponding containers, complicating the task of
measuring the canopy area. Therefore, the data from the climate room trials were
eventually discarded. Yet, some of the phenotyping techniques that were developed
for the climate-controlled room setup may be re-used in future modified experiments.

The development of potato plants over time was monitored by taking the RGB and
multi-spectral images of the complete field and climate-room tables at certain mo-
ments after the planting of the seed tubers up until (and sometimes also after) the
canopy closure, i.e., the moment when the leaf canopies of the neighboring plants
begin to overlap. The images of the test fields were acquired with a drone-mounted
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camera, whereas the images of the climate-room tables were acquired with a camera
mounted on a frame manually positioned by a human operator. The dates of the
drone images of the test fields can be found in Table 2.1.

Although the same 6 genotypes were studied in all years, the seedlots that represented
these genotypes had a different origin between the years. The idea was to train a
machine-learning model explaining the variations in vitality between the seedlots on
the experimental data from one year and test it on the data from another year.

For each seedlot, a vast range of seed tuber features has been measured at the HZPC
facilities in Metslawier and at the microbiology department of the Utrecht University.
Specifically, the following seed-tuber data was acquired:

1. Infrared spectra of frieze-dried samples with the Fourier-Transform Infrared-
Spectroscopy technique (FTIR)

2. Near-infrared spectral images of the wet tuber slices with Hyperspectral Imaging
camera (HSI)

3. Abundances of 11 elements in the frieze-dried samples with the X-Ray Fluores-
cence technique (XRF)

4. Abundances of small molecules in frieze-dried samples with the Quantitative
Time of Flight Mass-Spectroscopy technique (Metabolome)

5. Abundances of microbial and bacterial species with the micro-array technique
based on sequencing and identifying of the genetic material on the peeled skin
and in the ‘eyes’ of the tubers (Microbiome)

The seed lots were collected from the various seed growers and stored at 8 °C. From
each seed lot 4 batches of 5 tubers were washed, dried and peeled. Both the flesh
and peel fraction was cut into small pieces using ceramic knives and frozen in liquid
nitrogen. Two 50 ml tubes were filled with frozen potato flesh and peel respectively,
weighed and stored at -80 °C before freeze drying. A separate 150 ml container was
filled with 100 g frozen potato flesh, weighed and stored at -20 °C before freeze
drying. All samples were weighed after freeze drying and dry matter percentages
were calculated.

XRF data

From the 150 ml container, 8.3 grams of freeze dried potato flesh was milled in a
zirconium oxide grinder and sieved. A mixture of 8.0 g powder and 2.0 g binder
was well homogenized and pressed into a pellet. The dry weight concentrations of
Mg, K, Ca, Fe, Cu, Zn, P, S, Cl and Mn were determined using energy dispersive
X-ray fluorescence spectroscopy (Bruker S2 PUMA) and converted to concentrations
in fresh weight using the dry matter percentage.
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Field Date DAP 0-plots (%)

M 19-04-10 36 626 (86.9%)
M 19-04-19 45 20 (2.78 %)
M 19-04-26 52 0 (0.0 %)

V 19-05-24 36 44 (6.1 %)
V 19-05-29 41 0 (0.0 %)
V 19-06-07 50 0 (0.0 %)

S 19-06-07 36 4 (0.56 %)
S 19-06-19 48 0 (0.0 %)

Field Date DAP 0-plots (%)

M 20-04-10 35 discarded
M 20-04-13 38 199 (27.6%)
M 20-04-16 41 38 (5.3 %)
M 20-04-18 43 13 (1.8 %)
M 20-04-22 47 0 (0.0 %)
M 20-04-25 50 0 (0.0 %)

V 20-05-27 35 1 (0.14 %)
V 20-05-30 38 0 (0.0 %)
V 20-06-07 46 0 (0.0 %)
V 20-06-10 49 0 (0.0 %)
V 20-06-12 51 0 (0.0 %)

S 20-06-03 35 7 (0.97 %)
S 20-06-10 42 0 (0.0 %)
S 20-06-12 44 0 (0.0 %)
S 20-06-15 47 0 (0.0 %)
S 20-06-19 51 0 (0.0 %)

Field Date DAP 0-plots (%)

M 21-04-02 24 26 (3.61 %)
M 21-04-07 29 7 (0.97 %)
M 21-04-08 30 3 (0.42 %)
M 21-04-16 38 29 (4.03 %)
M 21-04-19 41 3 ( 0.42 %)
M 21-04-22 44 1 (0.14 %)
M 21-04-26 48 0 (0.00 %)
M 21-05-02 54 0 (0.00%)
M 21-05-04 56 0 (0.00%)
M 21-05-08 60 0 (0.00%)
M 21-05-11 63 0 (0.00%)
M 21-05-14 66 0 (0.00%)
M 21-05-19 71 0 (0.00%)

V 21-05-20 29 13 (1.81%)
V 21-05-24 33 5 (0.69%)
V 21-05-28 37 0 (0.0 %)
V 21-05-31 40 0 (0.0%)
V 21-06-04 44 0 (0.0%)
V 21-06-07 47 0 (0.0%)
V 21-06-11 51 0 (0.0%)
V 21-06-18 58 0 (0.0%)
V 21-06-23 63 0 (0.0%)

S 21-06-18 15 653 (90.69%)
S 21-06-23 20 31 (4.31 %)
S 21-06-28 25 0 (0.0 %)
S 21-07-03 30 0 (0.00%)
S 21-07-05 32 0 (0.00%)
S 21-07-08 35 0 (0.00%)
S 21-07-14 41 0 (0.00%)
S 21-07-16 43 0 (0.00%)

Table 2.1: The dates (year-month-day) of the drone images of the three test fields
(M, V, and S) in 2019 (left-top), in 2020 (left-bottom), and in 2021 (right). The
‘DAP’ column shows the time of the drone image in Days After Planting (DAP). The
column ‘zero plots (%)’ gives the number of plots with no measurable canopy and
their fraction among all plots in the field. The measurement on 35 DAP at Montfrin
in 2020 was discarded due to unreliable segmentation. Measurements highlighted in
green are used for regression.
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FTIR data
The freeze dried potato flesh of the 50 ml tube was grinded to a fine powder and
homogenized. The powder of each batch was put into 3 wells of a 96-well sample plate
and measured in a high-throughput FTIR spectrometer (Bruker Tensor II + HTS-
XT). Spectral outliers among the replicates were identified and the corresponding
samples were remeasured.

HSI data
From each seedlot, approximately 50 tubers were selected and a 1 cm wide longitudinal
slice from the center of each tuber was cut. The slices were placed on a moving
platform and scanned using a push broom SWIR hyperspectral camera (900 – 2500
nm, Specim). Before each scan, a dark and white reference was scanned and used to
convert the data to absorbance units.

The scans have been further processed as described in Section 2.9 in order to obtain
the spectral measurements for pith and cortex.

Metabolome
From both sample types (flesh and peel) untargeted metabolic profiles were measured
in an incomplete block design following guidelines from the Metabolomics Quality
Assurance and Quality Control Consortium (mQACC) [17]. Pooled samples were
created by mixing 60 random lots, 10 per variety, for flesh and peel separately. These
samples were used in separate dilution series and as precision references every 10
sample injections in the experiment runs.

The freeze dried sample (100 mg) was weighed in a 2 ml Eppendorf tube, 1.3 ml
of methanol was added, vortexed and shaken for 30 minutes. After centrifugation
(14000 rpm, 5 min.), 1 ml supernatant was transferred to a new tube and dried
using a vacuum concentrator (1 mbar, 35 °C,150 min.). The residue was redissolved
in cyclohexane (200 µl), milliQ water (300 µl) was added, shaken (10 min.) and
centrifuged (14000 rpm, 10 min.). Using extended length tips, 180 µl of the lower
aqueous phase was transferred to a 0.2 µl PVDF filter plate and centrifuged (1200
rpm, 4 min.).

The filtered samples were analyzed using a Waters Acquity I-class UPLC coupled
with a Waters Xevo G2-XS QTOF MS. Chromatographic separation was achieved
on a reverse-phase Acquity UPLC HSS T1.8 µm (2.1 x 100 mm) column (Waters)
at 40°C. The mobile phases employed were A: water (MilliQ) containing 0.1% formic
acid (UPLC grade, BioSolve) and B: acetonitrile (UPLC grade, BioSolve). The flow
rate was maintained at 0.5 mL/min, and the injection volume was 5 µL. A gradient
elution was employed, starting with 99% A for the first minute, followed by a linear
gradient to 30% A over the next 10 minutes. A cleanup step was performed at 99%
B for 1 minute, followed by 3 minutes of re-equilibration at the initial conditions.
The total runtime was 15 minutes. The ESI source was operated in both positive
and negative ionization modes with the following settings: capillary voltage, 3.00 kV;
cone voltage, 40 V; source temperature, 120°C; desolvation temperature, 350°C; gas
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flow rate, 800 L/h (N2); cone gas flow rate, 50 L/h (N2). Leucine enkephalin was
used as a Lock Spray reference.

Mass data were collected over the m/z range of 50-1200. MSe (Multiplexed Selected
Ion Monitoring) was employed to acquire both parent ions and fragmentation data
in a single run. The collision energy ramp was set from 10 to 40 V, allowing for the
fragmentation of precursor ions across a range of energies.

Alignment of the chromatograms and peak picking was performed in Progenesis QI.
The precision reference results were used to perform batch and drift correction for
each individual peak in the nPYc-Toolbox [55]. Feature selection was done based on
the linearity in the dilution series and relative standard deviation in the precision
references.

2.2 Standard techniques

In this section we describe the standard tools used in the project: software for the
orthophoto generation from drone images, and software for the removal of spatial
effects from canopy measurements.

2.2.1 Orthophoto generation

During flight, drone-mounted cameras take hundreds of pictures along a pre-programmed
path over the experimental field. These pictures are taken at a specific height of flight
(30 meters in FtV) and are redundant, meaning that multiple pictures portray the
same region in the field from different perspectives, in other words, they are over-
lapping. These images are not meant to be used as is. However, the stable height
of the flight path and the redundancy of images are the features that facilitate the
creation of the so-called orthophotograph of the entire scene. An orthophoto is a
single picture of the full experimental field that portrays an orthogonal projection of
each plant on the horizontal plane, i.e., as if seen from above at an infinite distance.
An orthophoto makes the geometric measurements made from the image at any two
different locations in the field comparable.

The creation of an orthophoto involves techniques of photogrammetry: feature ex-
traction, 3D point-clouds, digital elevation models, etc. The quality and resolution of
the original overlapping images and the flight-path stability influence the quality of
the resulting orthophoto. For example, too little overlap between images leads to an
excessive use of interpolation during the creation of the 3D point-cloud, which results
in the presence of artifacts in the orthophoto. The creation of an orthophoto from
drone images is required in many applications and several open-source and commercial
solutions were available in 2019, at the start of our project.

In 2019 we obtained orthophotos from UAV imaging with the open-source WebODM
software (Version 1.1.3) with the input parameters specified in Table 2.2.
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Parameter Value Effect
custom setting high-resolution
mesh-octree-depth 12
min-num-features 20.000
texturing-nadir-weight 0
orthophoto-resolution 1.0 cm - pixel for the orthophoto
dem-resolution 1.0 cm - pixel for the elevation model
ignore-gsd true
build-overviews true
crop 0 orthophoto is not cropped
camera-lens brown
skip-3dmodel true
depthmap-resolution 2000

Table 2.2: WebODM input parameters

Parameter Value
Software name Agisoft Metashape Professional
Software version 1.6.0 build 9925
OS Windows 64 bit
RAM 127.69 GB
CPU Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz
GPU(s) GeForce RTX 2080 Ti

Table 2.3: Software used to produce stitched orthophotographs of the fields in 2020

In 2020 the orthophotos were provided by the drone operator (Aurea Imaging), accord-
ing to industry standards, and were obtained with the commercial Agisoft package,
see Table 2.3, with the input parameters set as in Table 2.4.

2.2.2 Spatial effect removal

The average plot canopies obtained after the time alignment of images, removal of ar-
tifacts, plot localization, and segmentation, described below in Section 2.3, constitute
the raw data and cannot be used to estimate of the mean seedlot canopy (by taking
the average of plot repetitions), since the test fields are usually spatially non-uniform,
which may systematically increase or decrease the measured canopy size in certain
parts of the field.

Field inhomogeneities are a well known source of noise and bias in agricultural research
and methods to minimize this error both by experimental design and by modeling have
been studied since the 1930’s. Indeed, the presence of the so-called field effect is one
of the reasons for which agricultural trials are planted according to specific random-
ized designs. In our case, the trial fields were planted according to the randomized
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Parameter Value
Coordinate system W GS 84 (EPSG::4326)
Rotation angles Yaw, Pitch, Roll
Point Cloud
Points 218,658 of 237,470
RMS reprojection error 0.202082 (0.684417 pix)
Max reprojection error 0.607143 (18.1591 pix)
Mean key point size 2.90074 pix
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 8.24931
Alignment parameters
Accuracy High
Generic preselection No
Reference preselection Source
Key point limit 40,000
Tie point limit 4,000
Guided image matching No
Adaptive camera model fitting Yes
Depth maps generation parameters
Quality High
Filtering mode Moderate
Dense Point Cloud
Points 185,097,287
Point colors 3 bands, uint8
Depth maps generation parameters
Quality High
Filtering mode Moderate
Model
Faces 84,330
Vertices 42,722
Vertex colors 3 bands, uint8
Surface type Height field
Source data Sparse cloud
General
Interpolation Enabled
Strict volumetric masks No
DEM
Coordinate system W GS 84 / UTM zone 31N (EPSG::32631)
Source data Dense cloud
Interpolation Enabled
Orthomosaic
Coordinate system W GS 84 / UTM zone 31N (EPSG::32631)
Colors 3 bands, uint8
Blending mode Mosaic
Surface DEM
Enable hole filling Yes
Software version 1.6.0.9925

Table 2.4: Agisoft input parameters
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complete-block design, which randomly distributes the seedlots over compact variety
blocks and distributes the repetitions of such variety blocks randomly across the field.
Planting schemes can be very effective in mitigating the field-induced distortion of
the measurements but, as shown in [14], particularly in large-scale experiments, the
adoption of a good experimental design does not eliminate the need for additional
accurate spatial modeling.

Indeed, even though our fields have been carefully prepared for the experiments, the
spatial effect is visible to the naked eye, as is well-illustrated in Figure 2.4, showing
the four plots of the same batch, with the plot depicted in the right-most image having
significantly smaller canopies than the other three plots. Obviously this plot has been
affected by some unfavorable growth conditions and would pull down the estimate of
the mean canopy if included in the calculations as it is.

1 library(statgenSTA)

2 library(SpATS)

3

4 CanopyMeasurement <- read.csv("/Path_to_Canopy_measurement.csv",

5 header = TRUE , sep = ",")

6

7 TableToFit <- createTD(data = CanopyMeasurement , genotype = "Batch",

8 repId = "Block", subBlock = "Block",

9 rowCoord = "Row", colCoord = "Col")

10

11 FittedModel <- fitTD(TD = TableToFit , trials=’trialname ’,

12 traits = "Canopy", design = "rcbd")

13

14 BLUEsTable <- extractSTA(STA = FittedModel , what = "BLUEs",

15 keep = "Variety")

Listing 2.1: Code to produce the array of spatially corrected canopies from the raw
measured array in R

Historically, correction for spatial inhomogeneities was, probably, first introduced by
Papadakis in 1937 [50], and Bartlett in 1938 [10] as the so-called Nearest-Neighbor
Adjustment (NNA), which connects the measurement yi at the location i and the
measurement at its neighbor or neighbors. The basic assumption of most methods
implementing the NNA is that some degree of data-differencing removes the locally-
linear growth trend [12]. In the various realizations of the NNA approach, one has
to choose between the first and the second differences, but the quality of the cor-
rected data depends on the assumption that the resulting residuals are stochastically
independent, i.e. one needs to know or assume the level of spatial trend affecting
the measurement. The NNA approach was revisited in the late seventies when the
advances in computer technology made the data processing more accessible, [8].

Mathematically, the correction/representation for the measurement at the location i
via the measurement at i− 1 is of the form:

yi = ρyi−1 + ei,
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where the factor ρ is assumed to be very close or equal 1, and the ei is a residual
uncorrelated with yi−1. This model is an example of an auto-regressive model of
order one, and the correction is based on the retrieval of spatial variance-covariance
structures from the data. In this way one can recover locally linear trends, but it is
not possible to include any variety information, and missing data points cannot be
easily handled.

The NNA model was expanded, [12], to include treatment information for an experi-
ment with n plots and p treatments, with the plots planted in a long one-dimensional
column:

y = γ1 + Xτ + e,

where y ∈ Rn is the vector of plot measurements, γ ∈ R is a global effect, 1 ∈ Rn is
a vector of ones, X ∈ Rn×(p−1) is the design matrix of the effects, τ ∈ R(p−1) is the
vector of fixed effects, and e ∈ Rn is the vector of random spatial effects. A connection
between this linear mixed-effect model and the ANN approach is derived from the
formulation of the ANN method as the model Dy = ϵ, where D is a differencing
matrix, and ϵ is the uncorrelated random noise. However, the need and amount of
data-differencing has become a point of dispute in subsequent work [69] (as cited in
[31]).

Another approach to modeling spatial variation without explicit differencing was in-
troduced in [72] and [31] for n plots organized in a r × c grid. Importantly, this
formulation aims to take into account two sources of spatial variation: local and
global, which are modeled not by estimating the variance-covariance structures, but
by fitting a smooth function of the spatial variables. The residuals are assumed to
be separable and second-order stationary so that their covariance can be represented
as a function of two variables. The user has to choose the covariance functions em-
pirically, with the aid of cross validation. All model parameters, including the two
auto-regressive (AR) coefficients, one for the rows of the grid and one for the columns,
are estimated by (restricted) maximum likelihood (REML). This approach admits the
following mixed-model formulation:

y = Xτ + Zu + ξ + η,

where y ∈ Rn is the vector of plot measurements, X ∈ Rn×t is the design matrix of the
fixed effects, τ ∈ Rt is the vector of fixed effects, Z ∈ Rn×b is the design matrix of the
random effects, u ∈ Rb is the vector of random effects, ξ ∈ Rn is the vector of spatially
dependent random error, and η ∈ Rn is the zero mean random vector of pair-wise
independent errors. In particular, ξ is modeled as an anisotropic separable bivariate
AR process commonly referred to as AR1×AR1. This mixed-effect formulation also
allows to estimate all variance parameters using REML, [30]. Important in NNA and
AR models is the assumption that autocorrelation between the measurements decays
exponentially with distance, which is a property of AR processes. In applications
of this model the user needs to inspect the variogram of the estimated residuals and
determine whether the error structure is devoid of spatial effect, if not, a new iteration
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should be applied. The model also allows for the addition of terms to estimate other
sources of spatial variation known to the user.

We estimate and remove the field-induced spatial variation with the state of the art
spatial-effect removal method introduced in [52], and implemented in the R-package
SpATS [53]. This method models the vector y ∈ R720×1 of raw measured canopies
from 720 plots arranged in 60 rows and 12 columns and featuring 180 seedlots as
follows:

y = f(w,v) + Xsτs + Zcuc + Zrur + Zbub + ε, (2.1)

where y ∈ R720×1 is the vector of raw measured canopies, f(w,v) is the fitted two
dimensional surface, Xs ∈ 720 × 180 is the design matrix assigning measurements to
seedlots interpreted as fixed effects, Zc ∈ R720×12 is encoding the column information,
Zr ∈ R720×60 is encoding the row information, and Zb ∈ R720×4 encodes the block
information. All the Z matrices refer to random effects and the X matrix corresponds
to the fixed effect.

The package provides an estimate of the smooth field variation, models row, columns,
and block effects and provides the Best Linear Unbiased Estimate (BLUE) of the
mean seedlot canopy size. The presence of an user-friendly implementation, and
good convergence behavior motivated our choice of this method and software for this
project. The typical output of the SpATS package is illustrated in Figure 2.2. In
Section 5 of [52] the proposed model, SpATS, is benchmarked against AR1×AR1,
showing that the performance of the two is similar, with a net improvement in terms
of convergence demonstrated by SpATS.

The spatial variation is modeled as a two dimensional smooth surface using p-splines
and, thanks to the mixed-model representation of p-splines, the spatial variation
and the genotype and block effects can be modeled simultaneously. In contrast to
previous smoothing methods, p-splines allow to model two-dimensional smooth trends,
both globally and locally without the need to include spatially-correlated components.
Variances for the residual and the noise in the random effects are found through
REML.

We apply the spatial-effect removal to the raw canopy data obtained from all available
orthophotos. We retrieve the BLUE of the seedlot canopy, which corresponds to the
interpretation of the seedlot as a fixed effect. Therefore, after this correction step, we
obtain a vector of size 180 per field and measurement, containing one estimate of the
canopy mean per seedlot.

2.3 Specialized methods and algorithms

Given the large scale of the project and the level of precision to which we observed
the canopies, the development of ad hoc techniques was necessary.
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Figure 2.2: Spatial plot produced by the package SpaTS as an illustration of spatial
effect removal.

In this section we detail our methodology for measuring the plant vitality, with par-
ticular emphasis on the procedure developed for the field trials.

2.3.1 Plot localization

Due to the relatively large scale of each trial (180 seedlots with 4 repetitions) and
limited human resources, the chosen planting technique, which involved manual plac-
ing of the seed tubers from a moving vehicle, resulted in the trial fields that did not
exhibit the usual regular plot structure. A regular structure, with the easily identi-
fiable rows and columns of plots, aids the subsequent algorithmic plot identification
and demarcation in the remote sensing data, e.g., drone images. In the absence of
plot regularity, one has to isolate all plots in the drone images by relying on some
kind of ground marks or image features.

In our case, six tubers were placed along each of the four neighboring ridges of the
plot. Then, a small gap was left along each of the four ridges before planting the
tubers of the next plot, which resulted in inter-plot gaps. These gaps become visible
when all plants have emerged but are not yet too large, i.e., their canopies do not
bridge and cover the gaps.

We have exploited these peculiarities by detecting the plot boundaries in a single
suitable image and transforming (overlaying) these plot boundaries onto other images
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of the season, taken on both the preceding the subsequent dates. The main steps of
the applied plot-detection algorithm are:

1. From the provided row-column plot labeling and schematics, the expected num-
ber N of plots along the ridges of the trial fields is identified

2. We identify the field image best suited for gaps detection. Such an image is
usually found towards the end of the canopy growth season, where canopies
inside a plot are touching, but have not yet grown as to bridge the inter-plot
gaps

3. The beginning and the end of the trial field along each ridge is interactively
determined in the selected image

4. The expected number of N − 1 inter-plot gaps is automatically detected in the
images along each ridge. To this end:

(a) The field image is binarized using a strict green filter such that decidedly
green regions will be white and soil will be black in the resulting image.
Since the purpose is to find gaps between lots the use of a strict filter is
not detrimental in this case

(b) The morphological operation of closure is applied to the binarized image
to discard possible noise left over from the binarization procedure

(c) Each ridge is uniformly divided into N sub-intervals

(d) Image intensity is extracted along three lines parallel and in the neighbor-
hood of the mid-ridge line

(e) The regions for which the intensity along all three lines is zero (black, i.e.
soil in our binarization) are considered the inter-plot gaps and the image
coordinates of the midpoint of these regions is saved for further processing

5. The detected plot polygons are displayed and inspected for eventual remaining
inaccuracies and distortions and the wrongly identified plot boundary points are
corrected interactively

6. For each plot a set of image coordinates of the plot polygonal boundary is saved

Examples of detected inter-plot gaps along the ridges can be found in Figure 2.3. For
an example seedlot, the four plots detected in a trial field are shown in Figure 2.4.

2.3.2 Time alignment and distortion correction

The stitched RGB orthophotographic images of the trial fields obtained at several
dates during the growth season are not spatially aligned between the dates, i.e., the
same pixel coordinates in two images do not correspond to the same locations on the
ground. In order to overlay the polygons (plot boundaries) found on a given date
on the images taken on other dates, we look for the transformations between the
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Figure 2.3: Examples of polygon boundary vertices found in different fields at different
times throughout the season with vertex labels. Numbers inside yellow rectangles are
the distances between the two vertices in pixels. Image titles show the field average
of the inter-ridge distance in pixels, which is subsequently used for the conversion of
the canopy area measurements to cm2.

Figure 2.4: The four plots of the same batch detected in the field on a given date.
Also shown are the three inter-ridge boundaries within the plots.

Markers day A Reference polygon Markers day A Markers day B Transformed polygon

Figure 2.5: This figure illustrates the need for alignment. The markers and polygon
found in day A (left panel) are not in the right spot in the coordinate system of
day B (right panel), but using the day specific marker coordinates we can correctly
transform day A’s polygons to the coordinates of day B (orange polygon in the right
panel) without needing to recompute them.
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reference frame of the image selected for plot detection and all other images of the
growth season. We call this procedure the time alignment of the orthophotographs.
While, in general, this transformation can be rather complicated, in the majority
of the cases, an affine transformation turned out to be completely sufficient, as was
confirmed by the visual inspection of the transformed superimposed polygonal plot
boundaries.

Time alignment relies on the presence of time-invariant features, visible in all images,
with the same physical position on the ground. In the 2019 trials we had to rely on
natural time-invariant features, such as the connectors of irrigation pipes. In the 2020
and 2021 trials we had artificial, square, 10 cm×10 cm, red-colored markers installed
in the fields that were visible in all RGB images and we could use as reference points.
Unfortunately, these markers turned out to be invisible in the multi-spectral images,
which prevented us from time-aligning and using these valuable data.

The detection of the red markers is aided by the pre-processing of the images, where
bright red pixels are identified and grouped so that their position can be highlighted
on an interactive image plot. The user is shown the image in question with dots
in contrasting color plotted at the positions of the algorithmically detected markers.
The user has to zoom in on the relevant portions of the field and manually select the
geometric middle point of the markers. This is an important step, since the accuracy
of the marker locations on the orthophoto directly influences the accuracy of the
transformation.

To understand the simple mathematics behind the recovery of the affine transforma-
tion, let there be N markers with their (pixel) coordinates (xi, yi), i = 1, . . . , N , on
the reference date stored in the vector p ∈ R2N as pT = [x1, y1, . . . , xN , yN ]. Sup-
pose that the same N markers have the coordinates (x̃i, ỹi), i = 1, . . . , N in another
orthophoto taken on another date. Since a two-dimensional affine transformation is
defined by just four numbers, two or more markers with known (same) physical po-
sitions in both orthophotos are sufficient. Although, the more markers one has, the
more robust is the recovery of the transformation against the noise. With N markers
the four transformation elements stored in the vector t ∈ R4 can be recovered by
solving the following linear algebraic problem:

1 0 x1 −y1
0 1 y1 x1

...
...

...
...

1 0 xN −yN
0 1 yN xN



t1
t2
t3
t4

 =


x̃1

ỹ1
...

x̃N

ỹN

 . (2.2)

Given a sufficient number of markers, there exists the unique least-squares solution
t̂T = [t̂1, t̂2, t̂3, t̂4] to this problem.

The obtained least-squares solution of the problem (2.2) can be used to determine
the location of each vertex of the polygonal plot boundary in the second orthophoto.
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Figure 2.6: Original distorted orthophotograph of the Montfrin field taken in 2019
(left). The same image with distortion corrected by warping to achieve approximately
the same inter-ridge distance across the field (middle). High-quality orthophoto of
the Montfrin field taken in 2021 (right) confirms that the distortion in 2019 was and
artifact of image stitching.

Let the (pixel) vertex coordinates on the reference date be (x, y), then the pixel
coordinates (x̃, ỹ) of this vertex in the orthophoto from another date can be obtained
as: [

x̃
ỹ

]
=

[
t̂1
t̂2

]
+

[
t̂2 −t̂3
t̂3 t̂2

] [
x
y

]
. (2.3)

While the above affine transformation was sufficient for the time alignment of all
images in 2020, in 2019 and in one field in 2021, this transformation did not produce
the desired results. Namely, applying (2.3) with the parameters obtained by solving
(2.2) in the least-squares sense, yielded the transformed markers of the first field that
were still not aligned with the ground markers of the second field. This means that,
apart from the shift, rotation and anisotropic (but uniform) scaling, an additional
non-linear distortion is present in one or both images. Such a distortion could be
caused, for example, by a particularly nonuniform flight path of the drone that was
not properly reconstructed during the stitching procedure. In the case where the affine
transformation was insufficient, the polygons were transformed using the radial-basis
interpolator function rbf() from the Python scipy package.

Having taken care of all relative distortions between the images taken on different
dates, we have noticed an additional strong distortion in all images of the Montfrin
test field in 2019, see Figure 2.6, which made the the presumably parallel ridges di-
verge towards one side of the field. The fact that it was a distortion of the image
rather than the natural shape of the field is obvious from the high-quality orthopho-
tograph of the same field taken in 2021 (Figure 2.6, right). Since this distortion has
consequences for both the estimation of the green area and the spatial correction, the
original orthophoto was re-processed. The field image was warped with the function
warpPerspective() from the Python opencv package, so that the inter-ridge dis-
tance in the “left” part of the image, as measured with the help of selected polygonal
vertices, became equal to the inter-ridge distance measured on the “right”. The same
transformation was used to warp the polygonal plot boundaries. No such distortions
were observed or had to be corrected in other fields and years.
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2.3.3 Leaf canopy segmentation and estimation

To measure the canopy area within the polygonal plot boundary, the image pixels are
segmented into two disjoint sets: pixels of the canopy and pixels of the surrounding
soil. Then, the canopy pixels are counted and the result converted to the cm2 units.

While a human operator is usually very successful in segmenting an image, a fully
automated segmentation procedure that would work in all circumstances is not avail-
able. The present dataset featured a variety of illumination and moisture conditions,
both of which affect the color of pixels. Also, leaf canopy colors have systematic differ-
ences between genotypes, ranging from light green to almost purple. Therefore, every
orthophoto had to be processed individually, resulting in different segmentation filters
with date- and field-specific parameters. In all cases, the quality of segmentation has
been confirmed by visual inspection of randomly selected plots of each genotype.

The green segmentation procedure consists of the following steps:

1. Convert the image to HSV format

2. Find date-specific range of the Hue channel for the canopy. This is done by
analyzing the Hue channel histogram, which shows two peaks, canopy and soil,
with the canopy peak growing in time. The Otsu method finds a good first
guess of the lower Hue boundary. This guess can be refined by inspection of
sample plots. Set all the pixels outside the Hue range to ‘black’

3. Equalize Saturation and Value channels

4. Filter the Value channel by allowing only the pixels with the value below a
threshold and setting all other pixels to ‘black’

5. Obtain a grayscale image by applying a weighted combination (weights are man-
ually adjusted to achieve the best segmentation) of some standard agricultural
‘green’ filters. The Hue Index (HI) [45], Excess Green (EXG) [19], and Bright-
ness Index (BI) [25]:

BI =

√
r2 + g2

2
(2.4)

EXG =2g − (r + b) (2.5)

HI =
2r − g − b

g − b
(2.6)

6. Normalize the image, set all pixels below the threshold in column ”thresh.” in
Table 2.5 to ‘black’, and binarize the image

7. Remove ‘salt and pepper’ noise by applying median blur with 3 × 3 kernel

8. White pixels – canopy, black pixels – soil
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Figure 2.7: This image shows an example of plot segmentation for each variety (from
left to right: Festien, Colomba, Seresta, Challenger, Sagitta, Innovator). The first row
contains the original RGB image cropped to the plot boundary, the middle row shows
the average of the RGB vegetation indices according to the day-specific weights, the
bottom row shows the segmented images where all soil pixels are set to black.

The parameters of the above segmentation procedures are provided in Table 2.5 for
each field and date.

After segmentation, the mean canopy area Spx (in pixels) over each plot is determined
by summing all white pixels within the geometrical boundaries of the plot and dividing
by 24 – the number of plants in each plot. To convert a canopy area in pixels to its
area in cm2, we use the fact that the distance dcm between the ridges in the field is
determined by the planting device and is dcm = 75 cm in the Veenklooster (V) and
Kollumerwaard-SPNA (S) fields, and dcm = 74 cm in the Montfrin (M) field.

To find the pixel-to-cm conversion factor, we compute the average pixel distance dpx
between the adjacent ridges in the field for a specific date (see Figure 2.3). Then, the
area S1 of a single pixel in cm2 is given by:

S1 =

(
dcm
dpx

)2

. (2.7)

Thus, the canopy area S in cm2 is obtained from the canopy area Spx in pixels as:

S = S1Spx. (2.8)

2.3.4 Climate room data

The measurement of vitality from climate room images poses different challenges
with respect to the experimental field setup, thus a different algorithm is necessary
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field/date H range S range S,V eq. V filter (BI,HI,EXG) thresh. blur
M-19-04-10 [30, 80] [0, 255] yes [0, 100] 0.8, 0.8, 1.0 0.5 yes
M-19-04-19 [25, 100] [0, 255] no [0, 110] 0.1, 0.3, 0.6 0.25 yes
M-19-04-26 [25, 80] [0, 255] no no 0.0, 0.0, 1.0 0.35 no
V-19-05-24 [34, 180] [52, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-19-05-29 [34, 180] [52, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-19-06-07 [54, 180] [52, 255] – – 0.0, 0.0, 1.0 0.2 yes
S-19-06-07 [36, 180] [18, 255] – – 0.0, 0.0, 1.0 0.2 yes
S-19-06-19 [40, 180] [41, 255] – – 0.0, 0.0, 1.0 0.2 yes
M-20-04-13 [31, 180] [30, 255] – – 0.2, 0.2, 0.6 0.45 no
M-20-04-16 [32, 180] [30, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-20-04-18 [34, 180] [52, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-20-04-22 [38, 180] [52, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-20-04-25 [36, 180] [47, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-20-05-27 [36, 180] [33, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-20-05-30 [27, 80] [60, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-20-06-07 [44, 180] [41, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-20-06-10 [50, 180] [50, 255] – – 0.0, 0.0, 1.0 0.2 yes
V-20-06-12 [50, 180] [55, 255] – – 0.0, 0.0, 1.0 0.2 yes
S-20-06-03 [44, 120] [80, 255] – – 0.0, 0.0, 1.0 0.2 yes
S-20-06-10 [35, 120] [70, 255] – – 0.0, 0.0, 1.0 0.2 yes
S-20-06-12 [35, 120] [75, 255] – – 0.0, 0.0, 1.0 0.25 yes
S-20-06-15 [35, 120] [75, 255] – – 0.0, 0.0, 1.0 0.15 yes
S-20-06-19 [40, 120] [52, 255] – – 0.0, 0.0, 1.0 0.2 yes
M-21-04-02 [35, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-07 [26, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-08 [28, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-16 [35, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-19 [35, 100] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-22 [35, 90] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-04-26 [30, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-02 [36, 90] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-04 [38, 100] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-08 [36, 90] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-11 [38, 80] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-14 [38, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
M-21-05-19 [40, 80] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-05-20 [26, 50] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-05-24 [34, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-05-28 [26, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-05-31 [26, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-06-04 [34, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-06-07 [26, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-06-11 [26, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-06-18 [34, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
V-21-06-23 [34, 60] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-06-18 [31, 50] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-06-23 [30, 50] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-06-28 [24, 40] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-07-03 [28, 62] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-07-05 [34, 60] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-07-08 [31, 62] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-07-14 [36, 75] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes
S-21-07-16 [34, 62] [0, 255] – – 0.2, 0.2, 0.6 0.45 yes

Table 2.5: Field- and date-specific parameters for canopy segmentation in or-
thophoto’s.
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to identify the seedlots.

Pots in the climate rooms are also distributed according to a RCBD on two tables
per condition. In each genotype block a seedlot is represented by a box of 2 × 2 pots
as visible in Figure 2.8. The pictures are taken from a rolling camera scaffolding
taking care that consecutive pictures overlap by a third, since we originally thought
this would be sufficient for the stitching of a table orthophoto. Unfortunately, the
distance between the camera and the table is too small to obtain satisfactory results
with the available open-source software WebODM. In the absence of an orthophoto,
our approach to the detection and association of the seedlot box needed substantial
modifications with respect to the field algorithm. In this case we exploited the fact
that the table sides, as well as the labels, are found more or less in the same region
of each image and that the pots are placed on trays. The pot recognition steps are as
follows:

• With the Python package pytesseract and user confirmation when needed, we
detect the labels at the center of the table

• based on the label number we can refer to the table scheme in order to know
which seedlots are present in the image and the images of which seedlot con-
tainers are complete; note that in Figure 2.8 the seedlots in row 55 and 48 are
only partially visible, and will have to be extracted from another image

• based on the horizontal coordinates of the label strip and the vertical coordinates
of each single label we plot a fixed lattice, in red in Figure 2.8, bounding the
boxes of the fully visible seedlots, and calculate the pot centroids, blue dots in
Figure 2.8

• the calculated lattice is displayed over an interactive image and the user is given
the opportunity to adjust the lattice by shifting it up or down

• upon receiving the confirmation from the user, the coordinates of the bounding
boxes and the pots’ centroids are stored in a csv file with the corresponding
seedlot name and the image file name.

Once an association between pixel coordinates and seedlots is established, one can
proceed with the canopy segmentation in order to measure the canopy size. However
it was already possible to see at that stage that the canopy extraction will not be very
accurate. For example, in the bottom panel of Figure 2.8, one can see that plants
do not remain within the pot boundaries and, starting with the DAP 36, part of this
seedlot is occupying the neighboring box.

2.3.5 HSI segmentation

Hyperspectral imaging (HSI) captures information regarding both the composition
and the distribution of materials in a sample, with the material composition indi-
rectly characterized by the local infrared spectrum. Thus, an HSI image is a three-
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Figure 2.8: The figure illustrates the pot-detection algorithm in the climate room.
Each 2 × 2 group of pots contains the same seedlot. In this final version of the
experimental set up the pots sit on plastic trays in order to have a fixed distance
and colored numbered tags in the middle of the table indicate the row number to aid
with seedlot association. The tags are read by the algorithm and the pot centroids
and boundaries are found in each image, each pot is present in multiple consecutive
images, so one image has to be selected from which to measure the canopy. We opt
for the image in which the plant is seen from the top. In the sequence on the bottom
of the figure we see the growth of one pot from 0 to 40 days after planting. Note that
canopies develop beyond the pot boundaries.
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dimensional array. In fact, a visual-spectrum RGB image, where each pixel is a
weighted mixture of three colors, red, green and blue, and the image itself has two
spatial dimensions, height and width, is also a three dimensional array. An HSI im-
age features hundreds of ‘color’ channels, and covers a subset of the electromagnetic
spectrum from near infrared to long-wave infrared wavelengths, so that each pixel
contains a quasi-continuous spectral curve.

In our setup the images portray several slices of tubers of the same seedlot, see
Figure 2.9 (upper-left image). Due to the expected biological differences that may
possibly result in distinct infrared spectra, we divide each slice into two disjoint par-
titions: pith and cortex. The pith is the innermost part of the tuber, so also the
innermost part of the slice, while the cortex in the part of the slice closest to the peel.
The HSI seedlot data represent the average spectral signatures of the cortex and pith
of all sampled slices of a seedlot, see Figure 2.9 (bottom plot).

Technically, the most involved stage in the extraction of the HSI seedlot data is
the automated segmentation of the slices into the pith and cortex parts. The outer
boundary of each slice is detected on the gray-scale image obtained by averaging over
the first 50 spectral components. In this average image, the pixels corresponding to
the table have a value of zero. Then, we detect the non-zero connected components
whose area exceeds a threshold θ and compute their rectangular bounding boxes, see
Figure 2.9 (upper-left image).

The cortex is a relatively thin outer layer of the tuber surrounding the inner core,
the pith. In order to find such a boundary-conforming region for every slice, given
the variation in size and the shape of each slice, we define a two-dimensional Poisson
equation with the source at the detected centroid of the slice and the homogeneous
Dirichlet boundary condition:

−∆u(x) = f(x), x ∈ Ω,

f(x) =

{
1, x ∈ Ωc,

0, otherwise,

u(x) = 0, x ∈ ∂Ω,

(2.9)

where Ωc is a single-pixel cell surrounding the centroid xc, Ω ⊂ R2 is the entire slice,
and ∂Ω is its boundary. According to the Maximum Principle and the Positivity
Theorem, [65], the solution u(x) of the boundary-value problem (2.9) is positive
inside Ω, i.e., u(x) ≥ 0, x ∈ Ω, and, due to the imposed boundary condition, equals
zero at the boundary ∂Ω. Moreover, although it does not immediately follow from
the mentioned theorems, it is easy to anticipate that the structure of the source will
cause the solution, similarly to the Green’s function of the Poisson equation, to reach
its maximum at xc. These facts give a natural way to segment the domain by defining
the cortex as the subdomain of Ω, bounded on the outside by the boundary ∂Ω and
on the inside by the level curve u(x) = u0, 0 ≤ u0.
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To arrive at the solution u(x), for each slice, we solve the boundary-value problem
(2.9) numerically on the doubly-uniform Cartesian grid formed by the image pixels
(pixels selected by the slice mask). We employ the standard second-order accurate
Finite-Difference approximation of the Lapacian operator, which results in a sparse
linear system of equations that is then solved by the direct sparse-LU solver imple-
mented in the spsolve() method of the scipy.sparse.linalg library.

The main property of the obtained level curve u(x) = u0 is that it conforms to
the outer boundary for the level u0 = 0 and gradually changes its shape towards a
shrinking circle around the centroid xc for higher positive values of u0. For each slice,
the level u0 of the curve is chosen in such a way that the area of the cortex part
constitutes 30% of the total slice area, see Figure 2.9 (upper-right image).

Figure 2.9: Extraction of the HSI spectral signatures. Top-left panel: spectrum-
average image of the tray containing the seedlot tuber slices with the bounding boxes
of individual slices. Top-right panel: the result of the segmentation of a single slice into
its cortex (outer, yellow) and pith (inner, green) parts. Bottom panel: the spectra
of all the cortex and pith pixels (shaded) and the corresponding average spectral
signatures.

2.4 Choice of the vigor measure

There is no universally accepted measure of the plant vitality that is mentioned in
the title of the project “Flight to Vitality”. In fact, although it may be a matter
of semantics, one could argue that the term ‘vigor’ is more applicable in the present
situation.
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In any case, the size of the leaf canopy around the time of tuber bulking, determines
the rate of tuber growth and the eventual yield of potato plants, which is the main
trait of interest for potato farmers. Therefore, the sooner a plant can develop a
large canopy the more vigorous or vital is this plant. From this point of view, it
appears that considering the time evolution of the canopy could eventually lead to
a measure of vigor. Unfortunately, due to sparsity and inconsistency of the imaging
dates, a systematic analysis of the canopy time evolution could not be achieved in this
project. In this circumstances, a well-chosen single-time measurement of the canopy
size may also be considered an indicator of the plant vigor.

From the observational point of view, the relative difference in the vigor of potato
plants can manifest itself in several ways. First, some seed tubers can sprout sooner
than others. Second, the sprouts can grow at different rates, emerging above the
ground at different times. Finally, the rates of growth of the leaf canopies can be
different, so that canopies achieve different sizes at the moment when the plant blooms
and produces the tubers. Hence, a large canopy at a certain point in time could be
either due to an early-emergent but relatively slow-growing plant or due to a late-
emergent and fast-growing plant. Nevertheless, a relatively large canopy somewhere
in the middle of the growth season, after the early ‘transients’ related to the emergence
time and the initial rate of growth have passed, is surely indicative of the plant vigor.
Indeed, as long as a plant acquires a sufficiently large canopy at a physiologically
useful point in time, e.g., around the time of tuber bulking, it can be considered a
vigorous plant, and it does not really matter whether it is due to an early emergence
time or a fast initial growth rate.

Figure 2.11, Figure 2.12, and Figure 2.13 show the summary of the BLUE canopy
data for each of the six genotypes at the available time points for each year and field.
As one can see, the growth pattern and the attained canopy size are different between
the fields and years. This can be attributed to the varying weather conditions and
soil types, caused mainly by the difference in geographic location and the different
times of the year the seed tubers were planted in each field, see Table 2.1. Hence, a
single a priori chosen day after planting cannot be used as a time point to take the
vitality measurement. Therefore, our choice of the canopy measurement date is year-
and field-specific and is guided by the data and the following basic principles:

• It should be possible to compare different seedlots within each genotype

• The plant-plant and seedlot-seedlot interactions should be avoided

• The growth has reached a phase in which the ordering of seedlots by their
average canopy size is more stable

From this point of view, there are only one or two dates per year and field among the
available data that can be used as the vitality measure. Indeed, in the early measure-
ments not all plants have emerged yet, which does not allow for a fair comparison
of the seedlots. In the late measurements, the canopies of rapidly growing genotypes
start “merging” not only inside the plots, but also with those of the neighboring plots,
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thus introducing plant-plant and seedlot-seedlot interactions and make it impossible
to properly estimate the canopy size from drone images.

As a measure of seedlot order stability, we have chosen to the Kendall τ on the vector
of quantized canopy size, Figure 2.10. This means that we have labeled the canopy
sizes as large, 1, average, 2, and small, 3, in each measurement date and calculated the
Kendall τ on the vectors of these labels for all measurement dates of a field, pair-wise.
The Kendall τ ranges from −1 to 1 and, in our case, quantifies the instability of the
three canopy classes, i.e., if in two dates the labels of the seedlots have not changed,
the Kendall τ will be equal to 1 and close to −1 if all labels have perfectly reversed.

From 47 to 50 DAP’s all plants have emerged, the canopies are not yet overlapping,
and the seedlot ranking as measured by the Kendall τ has stabilized making this a
good time range to consider and reducing the choice to one or two dates per field
in each year. From Figure 2.11, Figure 2.12, and Figure 2.13 it is clear that this
corresponds to the end of the exponential growth period and precedes the period of
‘saturation’ in the expected sigmoid growth curves. In the year 2019, with only a
few dates available, the choice was mostly dictated by the seedlot order stability. In
2020 and 2021 the 47-th DAP was chosen where available and in the test field V in
2020, the choice was again based on the date of maximal order stability. It should
be mentioned that these final choices do not alter the conclusions of the subsequent
association/regression studies in any significant way, since the data at these time
points are very highly correlated, see Table 2.6.

In Figure 2.14 one can see how the choice of the DAP affects the (Pearson) correlation
in the vigor parameters between the test fields – the quantity which is eventually
displayed in Figure 2.15. It is clear that, due to the adverse weather conditions in
France in 2021, no choice of DAP could significantly improve the correlations with
the test field M in 2021.

2019 M 52
45 96%

2019 S 48
36 90 %

2019 V 41
36 64%

2020 M 47 50
43 96% 96 %
47 - 98%

2020 S 47 51
44 99% 97 %
47 - 99 %

2020 V 49 51
46 99% 97%
49 - 97%

2021 M 54 56
48 98% 98 %
54 - 99%

2021 S 25 32
30 98% 97 %
25 - 97 %

2021 V 63 51
58 97% 96%
63 - 92%

Table 2.6: Correlations (Pearson) of canopy size at neighboring DAPs in 2019 (left),
in 2020 (center), and in 2021 (right). For all correlations holds p < 0.001.

Our final choices of the dates for the vitality measurement are highlighted in green
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Figure 2.10: The Kendall τ coefficient is computed for each pair of measurements in
one field. As we see the general trend is for the ordering to stabilize towards the end
of the growth (bottom right of each correlation subplot). In this plot we show the
stability measure with respect to a quantization of the vigor into three classes. We
indicate the significance of the coefficient with stars, ∗ if p < 0.05, ∗∗ if p < 0.01, ∗∗∗
if p < 0.001. If no ∗ is present, the coefficient is not statistically significant.
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along the x-axis of Figure 2.11, Figure 2.12, and Figure 2.13 and in Table 2.1 and are
separately summarized in Table 2.7.
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Figure 2.11: Summary of all available measurements in 2019 per genotype as scat-
terplots. The choice of the date for the vitality measurement is highlighted in green
color on the x-axis.
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Figure 2.12: Summary of all available measurements in 2020 per genotype as scat-
terplots. The choice of the date for the vitality measurement is highlighted in green
color on the x-axis.

2.5 Correlations in vigor across fields

After all the necessary steps for the vitality data extraction and removal of known
effects, an exploratory analysis of the vitality data has been performed to ascertain the
plausibility of the main project hypothesis that the vitality of a plant is determined,
at least to a certain extent, by the seed tuber from which the plant has grown. The
presence of such dependence could be inferred if the vitality of the plants produced
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Figure 2.13: Summary of all available measurements in 2021 per genotype as scat-
terplots. The choice of the date for the vitality measurement is highlighted in green
color on the x-axis.

M S V
2019 52 48 36
2020 47 47 51
2021 54 30 58

Table 2.7: Measurement dates (in DAP’s) per test field and year, when the canopy
area is considered to be the seedlot vigor parameter.

by the seed tubers of a given seedlot, relative to other seedlots, is consistent for
repetitions inside the field and across different fields.

The Pearson correlation coefficient of the vigor data provides an adequate measure
of consistency. Correlation analysis can only be applied within a given year, where
tubers of the same seedlot were planted in three different fields. As was mentioned
above, while the same genotypes were tested in both years, the seed-tuber seedlots
had a different production origin in each year and cannot be directly compared for
consistency.

Correlations between the raw and spatially corrected (BLUE) vigor data across fields
in each year are shown in Figure 2.15. One can see that both the raw and the BLUE
data significantly correlate across the fields in all years, with the spatial effect removal
leading to an increase in the correlation. It is also apparent that the field of Montfrin
(M) in 2021 does not correlate with the other two experimental fields. We hypothesize
that this lack of correlation is due to frost early in the growth season, which affected
the early-emerging varieties (Challenger, Festien, and Seresta) and, on a finer scale,
the early-emergent seedlots, thus resulting in a lack of correlation for the full field
measurements. In general, the lack of correlation in other cases could be attributed
to different weather and soil conditions, inconsistent application of herbicides, and
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Figure 2.14: Pearson’s correlation coefficient for the canopy sizes on different dates
(DAP’s) between the three test fields in each year.
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Figure 2.15: Observed correlations (Pearson) in the canopy area on selected dates
between the three fields (M, S, and V) in each year. The table on the left shows
correlations for the raw measurements, the table on the right shows correlations for
the spatially corrected measurements. The rows show the correlations for each va-
riety as well as for all varieties together (’All’). Dark-green background highlights
large significant positive correlations, red background indicates the significant neg-
ative correlation. The corresponding p-values are displayed between the brackets,
insignificant correlations, i.e., with the p-value larger than 0.05, are displayed on a
gray background.

the aging of seed tubers.

It is also clear that not all varieties show the same level of correlation between the test
fields. One variety, namely, Festien, stands out as having the most consistent high
correlations (70%-90%) when the M field in the year 2021 is excluded. The M-2021
field also shows the most significant negative correlation with respect to other fields
for the Festien variety, which confirms our hypothesis that the early emergent and
therefore normally vigorous seedlots were negatively affected by the cold temperatures
early in the season. While high correlations are observed for other varieties as well,
these are not as consistent. i.e., observed only between some of the test fields. Note
also that only the correlations above 50% will result in useful predictions according
to our metric, see (4.20).





Chapter 3

Overparameterized Multiple
Linear Regression as
Hyper-Curve Fitting

1

This chapter shows that the application of the fixed-effect multiple linear regres-
sion model to an overparameterized dataset is equivalent to fitting the data with a
hyper-curve parameterized by a single scalar parameter. This equivalence allows for
a predictor-focused approach, where each predictor is described by a function of the
chosen parameter. It is proven that a linear model will produce exact predictions
even in the presence of nonlinear dependencies that violate the model assumptions.
Parameterization in terms of the dependent variable and the monomial basis in the
predictor function space are applied here to both synthetic and experimental data.
The hyper-curve approach is especially suited for the regularization of problems with
noise in predictor variables and can be used to remove noisy and ‘improper’ predictors
from the model.

3.1 Overparameterized regression

Many models encountered in practical applications of Machine Learning (ML) are
overparameterized. Some are superficially so, e.g., a linear random-effect model [67]
with many predictors that come from the same probability distribution, which by

1This chapter is based on E. Atza and N. Budko. Overparameterized multiple linear regression
as hyper-curve fitting. SIAM Journal on Mathematics of Data Science (Under review), 2024. URL
https://arxiv.org/abs/2404.07849
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itself is described by a few unknown parameters only. Others, like a linear fixed-
effect model, also known as the Multiple Linear Regression (MLR) model, with fewer
training samples than unknowns, may happen to be truly overparameterized. While
there is no universally accepted definition of an overparameterized ML model, research
in this area has recently uncovered several interesting phenomena, such as the double-
dipping of the prediction error [34], and the so-called benign overfitting [11], [32].

The problems where the number of predictors is extremely large are common in many
applications. Recent technological developments in chemistry, biology, medicine and
agriculture have allowed for high-throughput data acquisition pipelines resulting in
relatively large amounts of predictor variables compared to the feasible number of
experiments in which a target phenotype or a trait is measured. For instance, in
chemometric research, where one seeks to predict a physical or biological property
from the infrared spectrum of the substance, the number of spectral components is in
the order of thousands [43] [54]. In metabolomics, the biological traits are predicted
from the relative abundance of small-molecule chemicals in a biological sample, the
number of metabolites can reach tens of thousands [59], [66]. Similar numbers of
predictors are used in the microbiome-based predictions [49]. Finally, in genomics, the
number of Single-Nucleotide Polymorphisms (SNP’s), that may potentially predict the
phenotype of some living organism, can be as high as tens of millions [68], [56]. At the
same time, the duration and costs of experiments aimed at measuring the dependent
variables (phenotype, traits, etc.) are often much higher. Therefore, the number of
such experiments, i.e., the number of training samples, is typically a fraction of the
number of predictors (features) – hundreds or a few thousands at most [20], [1], [41],
thus making the overparameterized nature of such problems inescapable.

Due to the enormous success of the Artificial Neural Networks (ANN’s) in image
classification, the current focus in the omics-related ML is on the application of these
sophisticated nonlinear models to the existing and new data. However, truly deep
ANN’s are also overparameterized, which leads to learning problems when the number
of training samples is low and require a large training/validation dataset to tune
hyperparameters and avoid overfitting. Sometimes this problem is circumvented by
creating an artificial augmented training dataset [16]. Therefore, it is not surprising
that whenever the training is performed on small datasets, the quality of predictions
obtained with an ANN is only marginally better, if at all, when compared to the
predictions with the simple overparameterized MLR model [23], [33].

One could argue that the good results by the overparameterized MLR are also due
to overfitting or a poor testing procedure (e.g. data leakage). While this certainly
may be the case in some practical studies, generally, the fixed-effect MLR model
with fewer training samples than predictors is well-understood on a theoretical level
[63],[37]. The solution to the resulting underdetermined linear system, if it exists,
is not unique. As the next best thing, one aims at recovering the minimum-norm
least-squares (LS) solution, which always exists and is unique. The minimum-norm
LS solution may, however, be sensitive to noise in the dependent variable. If the
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Figure 3.1: The figure shows an histogram of the cross-validated optimal number of
PLS components for over 2000 models fitted on partitions of our data. It is clear to
see that in the vast majority of cases the optimal number of components is chosen to
be one.

level of noise in the dependent variable is known, then there is a regularized solution,
which minimizes the error with respect to the noise-free minimum-norm LS solution.
If, as it often happens in practice, the level of noise in the dependent variable is not
known, then the level of regularization can either be estimated from the data with
the cross-validation method or a similar technique, or has to be chosen subjectively.
The case of the noise in predictor variables is much less understood, but there exist
various errors-in-variables models [36].

In our research, we conducted an exhaustive association analysis on different chemical
and biological datasets, most of which result in an underdetermined linear system. In
a first instance, we chose to solve these by means of regularized partial least squares
(PLS), where the dimension of the solution space is used for regularization. This
study showed that in most cases the optimal dimension for the solution space is
one, Figure 3.1. This result, which surprised us, motivated us to question ourselves
about the need, true or perceived, to abandon linear models for more sophisticated
non-linear ones.

The main focus of the present chapter is the adequacy, performance and optimization
of overparameterized linear models. Specifically, the authors aimed at understanding
the nature of overparameterized datasets, identifying the circumstances where the
MLR model makes good or bad predictions of such datasets, improving the inter-
pretability of regression results beyond the traditional feature weights, and increasing
the prediction accuracy, simultaneously making the model more adequate, i.e., satis-
fying the linear assumptions. This has lead us to the column-centered reformulation
of the MLR, where the (inverse) relation between each predictor variable and the
dependent variable can to a large extent be analyzed independently of other predictor
variables. We show that the predictions made by such an Inverse Regression (IR)
model are identical to the predictions of the MLR model on a class of overparame-
terized datasets. Topologically this means that on such datasets the MLR model is
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not a hyper-plane as suggested by its mathematical form, but a hyper-curve, param-
eterizable by a single scalar parameter, which, for the sake of interpretability can be
chosen as the dependent variable.

Due to its column-centered nature, the hyper-curve approach allows to filter out
the predictors (features) that are either too noisy or do not satisfy the topological
requirements of a linear model, which significantly improves the predictive power
of the trained linear model, removes the features that may otherwise introduce the
illusion of understanding [46], and suggests the subsets of predictors where a non-
linear or a higher-dimensional-manifold model would be more adequate.

The chapter is structured as follows. In section 3.2 we define Fundamentally Over-
parameterized (FOP) Datasets, MLR, PARametric hyper-CURve (PARCUR) and IR
models, prove their equivalence and identify the condition for the exact prediction of a
test dataset. In section 3.3 we study the behavior of the polynomial IR model applied
to a dataset which contains both the polynomial predictors as well as predictors that
have a non-functional relation to the dependent variable. We establish conditions
under which such a dataset is a FOP dataset. In section 3.4 we consider noisy data
and introduce a polynomial degree truncation regularization scheme that can handle
the noise in both the dependent and predictor variables. In section 3.5 we propose
a novel predictor removal algorithm that does not suffer from the ambiguities com-
mon to heuristic feature selection methods. In section 3.6 we apply the regularized
IR model with predictor removal to the widely available experimental chemometric
Yarn dataset [47], [60], and demonstrate the presence of both curve-like and higher-
dimensional manifolds in this dataset. Finally, we present our conclusions and discuss
the possible extensions of the PARCUR and IR models.

3.2 PARCUR and IR models

In this and the following section we focus on the mathematical properties of the model
and all data is assumed to be exact. Data with additive noise will be considered in
section 3.4. Given a sample (y, x1, . . . , xp), the standard multiple regression model is
a conditional parametric model whose goal is to recover the conditional distribution
function fY |X=(x1,...,xp) of the random variable Y generating the observed y. In
particular it expresses the conditional expectation of the dependent variable Y as a
function of the p predictor variables xj , j = 1, . . . , p, i.e.,

E [y|x1, . . . , xp] = f(x1, . . . , xp), f : Rp → R, (3.1)

where in the case of noiseless observations E [y|x1, . . . , xp] = E [y] = y. The Multiple
Linear Regression (MLR) model, which assumes the function f to be linear,

y =

p∑
j=1

βjxj , (3.2)
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obviously, belongs to this class of models. Topologically, the MLR equation (3.2)
describes a p-dimensional linear object, a hyper-plane, in a (p+1)-dimensional space.

Now, consider the model of the form:

y = x0(s),

xj = xj(s), j = 1, . . . , p;

s ∈ [a, b] ⊂ R,
(3.3)

which simply states that all data are considered to be the functions of some scalar
parameter s. The equations (3.3), describe a parametric hyper-curve in a (p + 1)-
dimensional space, essentially, a one-dimensional object. We shall call this model the
PARametric hyper-CURve (PARCUR) model.

Under a monotone transformation of variables, the PARCUR model is equivalent to
the Inverse Regression (IR) model:

xj = xj(y), j = 1, . . . , p. (3.4)

In the inverse relation (3.4) the independent variables xj , j = 1, . . . , p, are considered
to be the functions of the dependent variable y. This model naturally emerges in the
context of calibration problems [61]. It is also the most easily interpretable version
of the PARCUR model as the functions xj(y) provide an insight into the change of
each individual predictor variable as a function of the dependent variable y, if such a
functional dependence exists.

Obviously, the general model (3.1) and the IR model (3.4) are completely equivalent
only under very stringent constraints on the function f . Specifically, for a complete
equivalence the function f(x1, . . . , xp) as well as all individual functions xj(y) should
be invertible. While an inverse of the MLR model (3.2) in the form (3.4) may exist
on certain subsets of Rp, a general nonlinear function f in (3.1) is not invertible and
neither is a general IR or PARCUR model. Yet, the predictive power of both the MLR
and the PARCUR models trained on a finite training dataset of a certain general type
appears to be the same even when they are not mutually invertible.

Our main results, expressed in theorem 3.3 and theorem 3.4, are the conditions on the
exact prediction by the MLR model and the equivalence of the predictions made by
the MLR and PARCUR models for what we call a Fundamentally OverParameterized
(FOP) dataset. This equivalence allows to analyze the different types of column
functions xj(s), j = 1, . . . , p, and establish the conditions on the existence of a FOP
dataset for different types of predictor data.

In practice, any regression model is trained on a finite discrete dataset. An overpa-
rameterized dataset arises whenever the number n of training samples is smaller than
the number p of parameters or predictors. This can happen simply due to the lack of
experimental data and additional data can transform an overparameterized dataset
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into a well-defined or even an underparameterized one. However, in the present pa-
per, we shall focus on the more fundamental case, where the simple addition of the
training data does not change the overparameterized nature of the dataset.
Definition 3.1. The dataset

S = {(yi, xi,1, . . . , xi,p), yi, xi,j ∈ R| i = 1, . . . ,m; j = 1, . . . , p}
is a fundamentally overparameterized (in the linear sense) dataset of rank q, if, for
any m, the data-matrix Sm ∈ Rm×(p+1) with its rows from S, i.e.,

Sm = [y, X], y =

 y1
...
ym

 , X =

x1,1 . . . x1,p

...
. . .

...
xm,1 . . . xm,p

 ,

has the property:

rank(Sm) ≤ q ≤ p. (3.5)

A training dataset is any fixed-size data matrix Sn ∈ Rn×(p+1) with the rows from
the FOP dataset S. A training dataset is complete if rank(Sn) = q. The complement
dataset St = S \ Sn, is called the test dataset.

In practice we are dealing with arbitrary but fixed-size testing datasets as well. To
summarize, the dependent-variable data from Sn and St will be stored in the data-
vectors y ∈ Rn and yt ∈ Rm, and the corresponding predictor-variable data will be
stored in the data-matrices X ∈ Rn×p and Xt ∈ Rm×p, respectively.

An overparameterized MLR model (3.2) corresponds to an underdetermined linear
algebraic system Xβ = y, which is usually solved in the minimum-norm least-squares
sense as β̂ = XT (XXT )−1y, where we have assumed that rank(X) = n. Then, such
a ‘trained’ MLR model will make the following predictions for the testing dataset:

ŷt = XtX
T (XXT )−1y,

X̂t = XtX
T (XXT )−1X.

(3.6)

Both y and X are considered to be given in the training dataset Sn, whereas only
the predictor data-matrix Xt is considered to be given in the testing dataset St.
Hence, strictly speaking, the prediction X̂t of the given matrix Xt is not necessary.
However, the fact that it represents a projection of the rows of Xt on the row space
of the training matrix X will be used in our subsequent analysis. Moreover, the two
predictions (3.6) can now be written as the prediction Ŝt of the testing dataset matrix
St:

Ŝt = XtX
T (XXT )−1Sn. (3.7)

The following definition 3.2 establishes the connection between the continuous world
of predictor variables as described by the predictor functions and the discrete world
of datasets, i.e., the columns of the data matrices.
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Definition 3.2. A linear vector space Vn, with dim(Vn) = n, is called a column
function space of the dataset S of rank n if there exist p+ 1 column functions xj(s) ∈
Vn, xj : R → R, j = 0, . . . p, such that:

yi = x0(si),

xi,j = xj(si), j = 1, . . . , p,
(3.8)

for any data-point (yi, xi,1, . . . , xi,p) from S.

Notice, we use the same notation for the predictor data xi,j and the column functions
xj(s), with the relation being xi,j = xj(si). Also, obviously, s = y in the IR model
(3.4).

Let {vk : R → R| k = 1, . . . , n} be a basis of the column function space Vn of the
dataset S of rank n. Then, each column function xj(s) can be expanded as:

xj(s) =

n∑
k=1

ak,jvk(s). (3.9)

The entries of the basis matrix V ∈ Rn×n are the sampled basis functions vk(si),
k = 1, . . . , n, i = 1, . . . , n:

V =

v1(s1) . . . vn(s1)
...

. . .
...

v1(sn) . . . vn(sn)

 . (3.10)

If V is invertible, then the data-vector y and the data-matrix X of the training set
Sn can be decomposed as follows:

X = V A, y = V a0, (3.11)

where the elements [A]k,j = ak,j of the matrix A ∈ Rn×p and the elements [a0]k = ak,0
of the vector a0 ∈ Rn are the expansion coefficients from (3.9).

Formally, the PARCUR model (3.4) can be trained by computing the matrix A and
the vector a0 as:

A = V −1X, a0 = V −1y. (3.12)

To predict the test dataset St, one has to solve the following minimization problem:

V̂t = arg min
Vt∈Rm×n

∥Xt − VtA∥22, (3.13)

where Xt is the given predictor test data-matrix. If rank(A) = rank(Sn) = n, the
solution of the problem (3.13) is given by:

V̂t = XtA
T (AAT )−1. (3.14)
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Then, applying the relations (3.11), the predictions of the PARCUR model can be
written as follows:

ŷt = V̂ta0 = XtA
T (AAT )−1a0,

X̂t = V̂tA = XtA
T (AAT )−1A.

(3.15)

This can also be combined into the prediction Ŝt of the testing dataset matrix St:

Ŝt = XtA
T (AAT )−1An, (3.16)

where An = [a0, A] and, from (3.11), Sn = V An.

The following theorem 3.3 establishes the condition under which the prediction made
by the MLR is going to be exact.
Theorem 3.3. The prediction Ŝt produced by the MLR model is exact for any data
matrix St from the fundamentally overparameterized dataset S of rank q if and only
if the training dataset Sq is complete and rank(X) = q.

Proof. Let Sq = [y, X] be a complete training set of the FOP dataset S. By defini-
tion 3.1, for any test set St ⊂ S with the data matrix St = [yt, Xt] there exists the
matrix U such that St = USq and Xt = UX. Hence, from (3.7),

Ŝt = XtX
T (XXT )−1Sq = UXXT (XXT )−1Sq = USq = St. (3.17)

If the training set Sq is not complete, then there exists a data row st ∈ S that is not
a linear combination of the rows of Sq.

Whether the training dataset is compete or not, the MLR and the PARCUR models
are equivalent in the following sense.
Theorem 3.4. Let Sn = [y, X], rank(X) = n, and St = [yt, Xt] be a training and a
testing datasets of the fundamentally overparameterized dataset S of rank q, n ≤ q.
Let also Vq be the column function space of S. Then, for any basis {vj} in Vq with
the invertible basis matrix V ∈ Rn×n, the predictions of the testing dataset (3.6) and
(3.15) made, respectively, by the MLR and the PARCUR models are equal.

Proof. The proof follows from substituting the relations (3.12) into (3.15).

If the training dataset is incomplete and the testing data-matrix St is not (yet) in
the row-range of the training data-matrix Sn, there will be an error in the predictions
made by the MLR and PARCUR models. Let St be decomposed as

St = USn + S⊥
t , S⊥

t ST
n = y⊥

t y
T + X⊥

t XT = 0k,n, (3.18)

where S⊥
t = [y⊥

t , X
⊥
t ], and 0k,n ∈ Rk×n is the matrix of all zeros. The existence of

this decomposition stems from the fact that rank(Sn) = n, i.e., SnS
T
n is invertible.
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Then, Xt = UX + X⊥
t , and the prediction error will be:

St − Ŝt = USn + S⊥
t − (UX + X⊥

t )XT (XXT )−1Sn

= S⊥
t + X⊥

t XT (XXT )−1Sn = S⊥
t − y⊥

t y
T (XXT )−1Sn

=
[
y⊥
t − y⊥

t y
T (XXT )−1y, X⊥

t − y⊥
t y

T (XXT )−1X
]
.

(3.19)

Hence, apart from the obvious case y⊥
t = 0, the prediction of the dependent variable

will also be exact if yT (XXT )−1y = 1.

Technically, the difference between the MLR and PARCUR models can be expressed
as a simple transformation of the columns of the training dataset Sn by the basis
matrix V . The relative advantage of the IR version, s = y, of the PARCUR model over
other choices of the parameter s stems from the direct interpretation of the coefficient
matrix A since it provides an insight into the dependence of each predictor variable
on the dependent variable. The magnitude and the sign of the coefficients in A reflect
the type (e.g., linear, quadratic, etc) and the strength of these dependencies. It is also
clear why interpreting the β vector of the MLR model might be more problematic, as
its relation to the coefficient matrix, β̂ = AT (AAT )−1a0, is rather convoluted. In the

standard MLR formulation (3.2), a component β̂j of the vector β̂ is interpreted as
the weight of the additive contribution by the corresponding predictor xj . However,
it does not further specify the nature of the mathematical relation between y and xj .

It is also possible, and sometimes profitable, to train the PARCUR model on an
overcomplete overparameterized training data set Sn ∈ Rn×(p+1), where rank(Sn) =
q ≤ p, but n > q. However, since the basis matrix V ∈ Rn×q, rank(V ) = q, is
now singular, one has to resort to the Ordinary Least-Squares (OLS) solution of the
training problem:

Ân = (V TV )−1V TSn. (3.20)

In that case, Â = (V TV )−1V TX, and the prediction of the test set makes use of
these OLS estimates as Ŝt = XtÂ

T (ÂÂT )−1Ân. Although, the equivalence to the
MLR model is only achieved if the chosen basis matrix V coincides with the matrix
of the left singular vectors of X.

3.3 Data containing polynomial column functions

theorem 3.3 shows that the prediction by the MLR model is exact if the training set
is complete. From the definition 3.1 it is clear that a complete dataset is a subset of
a FOP dataset, such that its data matrix has the maximal possible rank q, which can
be smaller than the number of predictors p. Given a finite training dataset of size n
it is hard to tell if: a) it is a subset of a FOP dataset with some q < p, b) it is a
complete dataset, i.e. n = q. In this section, working under the assumption that the
data set Sm does not contain statistical noise, we establish the sufficient condition
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for the existence of a FOP dataset. To formulate these conditions it is convenient to
make a choice of the column function space, see definition 3.2. Here, we consider the
polynomial function space and the monomial basis, which lead to easily interpretable
regression results.

We note a well-known fact that the monomial basis {vk(y) = yk | k = 0, . . . , n−1} for
the column function space Vn will produce an invertible Vandermonde basis matrix
V , given by

V =


1 y1 y21 . . . yn−1

1

1 y2 y22 . . . yn−1
2

...
... · · ·

...
1 yn y2n . . . yn−1

n

 , (3.21)

if all entries of the dependent variable data-vector y = [y1, . . . , yn]T are distinct. In
this basis, the entries ai,j of the coefficient matrix A represent the coefficients of the
polynomial functions xj(y) that may generate some of the columns of the predictor
data-matrix X:

xj(y) = a1,j + a2,jy + · · · + an,jy
n−1. (3.22)

This also puts the PARCUR model into the context of polynomial fitting. Whether
the columns of X have or have not been generated by polynomial functions of y,
the IR model with the basis matrix (3.21) will be projecting all columns of X on the
monomial basis. From the computational point of view, Vandermonde matrices, while
theoretically invertible, are hard to work with for sizes above n = 15 and become the
source of significant round-off errors. Luckily, one normally does not need polynomial
functions of very high degree to adequately describe a data column. To minimize the
numerical errors, we also normalize the range of the y-data to fit within the interval
[−1, 1].

In general, it is difficult to decide whether the training dataset is complete by simply
inspecting the entries of its data matrix Sn. In theory, one could compute the Singular-
Value Decomposition (SVD) of the matrix and see if the zero singular value appears
after adding any new sample (row) to the training dataset. However, here we are
interested in an arbitrary column function space Vq with the square invertible basis
matrix V ∈ Rn×n, and the conclusions about the eventual completeness of Sn will be
based on the shape of the corresponding coefficient matrix An = V −1Sn.

Each of the p + 1 data columns xj in a dataset S belongs to one of the three classes:

1. xj(y) is a polynomial in y of degree less or equal to n− 1

2. xj(y) is a polynomial in y of degree higher than n− 1

3. there is a non-functional dependence between xj and y
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Figure 3.2: Examples of column data produced by non-functional relationships be-
tween the dependent variable y and the predictor variables x1 and x2. Left: data
on a curve that cannot be parameterized by y. Right: data on a conical surface.
Two-dimensional scatter-plots: x1 and x2 column data sorted by y and displayed as
‘functions’ of y.

In particular, the first column x0 = y, i.e., the dependent variable, obviously, belongs
to the first class with n = 2.

A non-functional dependence between the predictor xj and the dependent variable
y would emerge if the data was situated on a curve that cannot be parameterized
by y, fig. 3.2 (left). Choosing a different parameterization could transform these
’nonfunctional’ data to functions y(s), xj(s), j = 1, . . . , p, as in the general PARCUR
formulation. A more severe case of non-functional dependence arises where the data
is situated on a higher-dimensional manifold, such as a hyper-surface, fig. 3.2 (right),
and no alternative parameterization can fix this problem. The column data that
one observes in such ‘nonfunctional’ cases are illustrated in fig. 3.2 (bottom, two-
dimensional scatter plots).
Theorem 3.5. Let S be a dataset with one independent variable y and p predictor
variables xj, j = 1, . . . , p. Let also S contain k ≤ p predictors that are polynomials
in y of degrees greater than q − 1, or have a non-functional relation to y. Then, S is
a fundamentally overparameterized dataset (in linear sense) of rank q, 2 ≤ q ≤ p, if
its remaining p− k predictors are the polynomials in y of degree r, 1 ≤ r ≤ q− k− 1.

Proof. Without the loss of generality we may assume that for any subset of size m of
the dataset S, the dependent variable data y contains only the distinct values of y
so that the square monomial basis matrix V ∈ Rm×m is invertible. Then, any data-
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matrix Sm = [y, X] ∈ Rm×(p+1) can be represented as Sm = V Am. By the conditions
of the Theorem, for any m > q, subject to column reordering, the coefficient matrix
Am ∈ Rm×(p+1) has the structure:

Am =

[
e2 A1,1 A1,2

0 O A2,2

]
, A1,1 ∈ R(q−k)×(p−k), A1,2 ∈ R(q−k)×k, A2,2 ∈ R(m−q+k)×k,

(3.23)

where V −1y = e2 ∈ Rm is the second standard basis vector and O ∈ R(m−q+k)×(p−k)

is the matrix of all zeros. Here we have used the fact that the polynomial fit to non-
functional data may produce a polynomial of degree greater than q− 1. It is obvious
that rank(A1,1) ≤ (q − k) and, for any m ≥ (q − k), rank(A2,2) ≤ k. Therefore,
rank(A) ≤ q, and rank(Sm) ≤ q for any m, showing that S is a FOP dataset.

The above theorem 3.5 shows that having extremely high-degree polynomials, e.g.,
with degrees higher than p−1 and non-functional dependencies among the predictors
does not prevent the MLR and the IR models from making exact predictions as long
as there are also polynomial data of sufficiently low degree and the set on which
the model is trained is complete. Moreover, a complete dataset can, in principle, be
achieved with n < p samples. The latter fact may seem surprising as it appears that
we are able to recover a polynomial of degree higher than n − 1 or a non-functional
dependence by training on just n data points. However, it becomes less surprising if
we consider the form of the MLR and IR predictors given by (3.6) and (3.15), as in
both cases the leftmost matrix Xt contains the X-data from the test dataset which
ones is trying to ‘predict’.

In the limiting case with p high-degree polynomials and/or non-functional dependen-
cies, a complete dataset will only be achieved with n = p samples. It seems to be a
waste of time and resources, though, to collect so much training data knowing that
the majority of predictors do not even satisfy the model assumptions. We come back
to this question in Section 3.5. In the other limiting case, where all predictors are
polynomials, the size of the complete training dataset can be as small as n = 2 if the
maximal degree of all polynomials is at most one and there is at least one predictor
which is a linear function of y.

Figure 3.3 (top) illustrates the performance of the IR model with the three classes
of column data discussed above. Specifically, we are considering the cases where: all
predictors are polynomial functions in y of degree r − 1 ≤ q (blue, circles), some of
the predictors are high-degree polynomials in y (orange, squares), and some of the
predictors have non-functional relation to the dependent variable y (green, triangles).

In these numerical experiments the data xj(y) are generated by randomly sampling
the range of y ∈ [−1, 1] and evaluating polynomial functions of various degrees at the
sampled points. Columns that are not functions of y are generated as non-invertible
functions y(xj), similar to those in the examples of fig. 3.2. The predictions are
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Figure 3.3: Top: prediction errors of the IR model as functions of the training dataset
rank obtained with invertible basis matrix V and exact data (see text for full expla-
nation). Bottom: test of the regularization algorithm on exact (noiseless) data and
over-complete training dataset. Bright enlarged colored markers correspond to the
minima of the validation errors that indicate the optimal polynomial degree r∗ along
the horizontal axis (bottom, right) and show the values of the test errors attained
with these r∗ (bottom, left). Note, the horizontal axis displays rank(Â) = r + 1,
rather than the actual polynomial degree r.

computed as in Eq.’s (3.15), where the coefficient matrix A is obtained from the
training X-data as in Eq. (3.12).

The ranks of the complete datasets are: q = 11 (p = 200 polynomials of degree
r ≤ 10), q = 14 (p = 203, with 200 polynomials of degree r ≤ 10 and three polynomials
of degree r = 17), and q = 13 (p = 202, with 200 polynomials of degree r ≤ 10 and
two non-functional predictors). In all three cases, we expect the prediction errors to
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vanish as soon as the rank of the training dataset reaches q.

The prediction errors in y and X are measured on both the training and the test sets
as follows:

ρ(yv) =
∥yv − ŷv∥2

∥yv∥2
, ρ(Xv) =

∥Xv − X̂v∥F
∥Xv∥F

,

ρ(yt) =
∥yt − ŷt∥2

∥yt∥2
, ρ(Xt) =

∥Xt − X̂t∥F
∥Xt∥F

,

(3.24)

where yv and Xv are the training (validation) set data and yt and Xt are the test set
data.

fig. 3.3 shows the prediction errors as functions of the training set rank (top row),
and of the polynomial representation degree (bottom row). The bright colored dashed
lines give the training set errors and the dim solid gray lines show the corresponding
errors on the test dataset. Plots on the left show the dependent variable errors and
on the right – the errors for the predictor variables. As expected, the errors drop
as soon as the training dataset becomes complete. With the high-degree polynomial
predictors and especially with non-functional predictors the errors on the training set
begin to rise at the end and the errors on the test set do not drop to machine precision
values as happens with the low-degree polynomial predictors. This is due to the fact
that the coefficient matrices in the former two cases become ill-conditioned, making
the predictors more sensitive to numerical round-off errors.

3.4 Polynomial regularization

All measured data are either random in nature or contain statistical noise. This is
already implicitly assumed in eq. (3.1) which interprets the observed y as a realization
of an unknown random variable Y . Indeed one usually measures the quantity yi + ϵi,
where the ‘noise’ ϵi is a single realization of a random variable ϵ with the distribution
from some well-defined class, e.g., ϵ ∼ N (0, σ2), see e.g. [37]. The role of the regression
model is to recover the parameters of the distribution generating y, such as the mean
and the variance σ2, which are unknown and estimated from the data. Being measured
quantities, the independent variables xj may also be contaminated by noise. In the
noisy setting, the PARCUR model becomes:

y = y(s) + ϵ0,

xj = xj(s) + ϵj , j = 1, . . . , p;

s ∈ [a, b] ⊂ R.
(3.25)

For simplicity we assume here the most common statistical hypotheses ϵj ∼ N (0, σ2
j ),

j = 0, . . . , p, which provides an adequate description of the “standard” errors due
to the finite sample size. We investigate the effect of the additive Gaussian noise
ϵj ∼ N (0, σ2

j ), j = 0, . . . , p applied in the following three ways:
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1. noise only in the dependent variable y: σ0 = σ ̸= 0, σj = 0, j = 1, . . . , p

2. independent and identically distributed (i.i.d.) noise in Sn: σj = σ ̸= 0, j =
1, . . . , p

3. independent, but not identically distributed noise in Sn:

σj =

{
σ ̸= 0, if j = 0 and xj ∈ {noisy predictors}
0, if j = 0 and xj ∈ {exact predictors} (3.26)

Obviously, the first ‘classical’ case belongs to the last class if considered over the
complete data matrix Sn.

To avoid overfitting and mitigate the effect of noise on the model predictions, one can
use any of the standard regularization techniques, such as the Tikhonov regularization
or the truncated SVD. In the case of the IR model, truncating the number of terms
of the monomial basis used to represent the column functions appears to be the most
natural regularization approach.

In the previous section 3.2, the exact training data y, could simply be sorted by
magnitude and used as the values of the curve parameter to construct the monomial
basis matrix V . While this is still permitted in the noisy case (we can choose the
parameter s as we wish), the interpretation of the coefficient matrix A is no longer
straightforward, if instead of y we are using y + ϵ.

At the risk of losing some of the interpretability of the coefficient matrix Â, we shall
nevertheless be sorting all our data by the magnitude of y + ϵ. Notice, that the
vector y + ϵ sorted by the (inaccessible) exact data y represents a smooth function
(irregularly sampled y) with an additive ‘white’ noise. Sometimes, sorting by the
exact y can be achieved if the predictors contain a ‘clean’ (noiseless) monotonous
function of y or even a noisy monotonous function that has been sorted in correct
order. In that case, all columns in Sn should be sorted by the column corresponding
to this predictor variable.

If y + ϵ is correctly sorted by y, then a multitude of denoising techniques is available
for such smooth noisy signals, e.g., the Wiener filter. However, numerical experi-
ments indicate that, in our case, the Wiener filter becomes effective starting from
approximately n = 150 data samples and is of little use below that threshold. Similar
lower bound seems to hold for the effectiveness of the cross-validation and similar
techniques that allow to deduce the optimal value of the regularization parameter
(maximal degree r∗ of the monomial basis functions) from the training data. There-
fore, we propose a regularization approach that depends on the number of available
training samples, see table 3.1.

The optimally regularized representation x̂j(r
∗) of a noisy data-column xj + ϵj mini-

mizes the error between the exact (noiseless) column xj and its regularized represen-
tation x̂j(r

∗), e.g. ∥xj − x̂j(r
∗)∥2, where r∗ is the truncation index in terms of the

monomial basis.
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n < 150 n ≥ 150

Step 1 Sort y + ϵ (if possible by y)

Step 2 – Apply Wiener filter on sorted y + ϵ

Step 3 Sort all columns by sorted y + ϵ Sort columns by sorted and filtered y + ϵ

Step 4 Choose r∗ subjectively Use CV to find r∗

Table 3.1: Regularization strategies for the IR model with truncated monomial basis,
depending on the number of training samples.

Since the noiseless column is not known, the optimal truncation index r∗ is determined
either subjectively by observing the quality of fit for several columns (n < 150) or by
the Cross Validation (CV) technique (n ≥ 150).

We employ a 10-fold CV, where during each fold the model is trained on a randomly
chosen subset of the training dataset and evaluated on a complementary (validation)
subset. As a metric, we consider the following validation errors:

ρ(yv) =

〈∥yv − ŷv(r)∥2
∥yv∥2

〉
, ρ(Xv) =

〈
∥Xv − X̂v(r)∥F

∥Xv∥F

〉
, (3.27)

where the angular brackets denote the arithmetic averaging over the CV folds. The
optimal truncation index r∗ corresponds to the polynomial degree for which the min-
imum of ρ(Xv) is attained.

There is a curious reason behind the fact that we have to use the error ρ(Xv) in the
X-data rather than the usual error ρ(yv) in the y-data. In the polynomial IR method,
the vector of the dependent variable (either exact or noisy) is the second column of the
basis Vandermonde matrix V , see (3.21). Therefore, in exact arithmetic, the training
y-data is exactly reproduced for any r ≥ 2. Hence, strictly speaking, the IR model
always over-fits the training y-data. The regularization of the IR model is validated
and tuned on the columns of the matrix X. This is possible, since apart from the
noise in X itself, the y-noise is always propagated into the Vandermonde matrix V
and then into the columns of the coefficient matrix Â = (V TV )−1V TX. Thus, the
prediction X̂t = XtÂ

T (ÂÂT )−1ÂX will be always affected by noise. Simply put, using
the noisy data y + ϵ to construct V is equivalent to using a wrong parameterization
s ̸= y, whereas the column data are generated in the s = y parameterization.

Finally, it is important to realize that there are two ways to regularize the noisy data.
One, which is the focus of the present section, is to choose a single optimal (max-
imal) degree r∗ for the representation of all data columns, i.e., both y and all xj ,
j = 1, . . . , p. This, obviously, has its drawbacks, since some of the columns may be
noiseless or contain a different level of noise. A more flexible and precise way is to
determine the optimal degree r∗j , j = 0, 1, . . . , p, for each column individually. Our
preliminary numerical experiments have shown that the latter ‘flexible’ regulariza-
tion approach does not necessarily result in a better prediction of the test yt data.
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Nonetheless, in our opinion, this flexible regularization deserves a separate in-depth
investigation in the case of the non-i.i.d noise and for the purposes described in the
next section 3.5.

fig. 3.3 (bottom) illustrates the testing of the polynomial-degree truncation regulariza-
tion scheme for the IR model on the three noiseless datasets described in section 3.3.
The meaning of the lines and symbols is the same as in fig. 3.3 (top), see section 3.3.
The errors ρ(yv) (left, colored, dashed) and ρ(Xv) (right, colored, dashed) on the
training dataset are the mean CV errors (3.27). All data are exact up to numerical
precision. The only differences with the IR model of fig. 3.3 (top) are the over-
complete nature of the training datasets (n = 150) and the application of the LS
estimates (3.20) of the coefficient matrix Âr. Therefore, the horizontal axis in fig. 3.3
is the number r of columns in the rectangular basis matrix V ∈ Rn×r, which is no
longer equal to the number of samples n.

In the tests of fig. 3.3 (bottom-left), the ρ(yv) error starts at the level of machine
precision for r = 2 and increases thereafter due to the accumulation of numerical
errors. That the ρ(yv) error grows for r > 2 has to do with the fact that the exact
representation of y is attained already at r = 2 in the monomial basis. The enlarged
coloured markers in the right plot indicate the minima of the ρ(Xv), the same markers
in the left plot show the levels of ρ(yt) errors attained with the corresponding r∗. As
can be seen, the optimal r∗ gives the smallest achievable error ρ(yt). Hence, in this
noiseless case the regularization procedure correctly identifies the rank of the complete
dataset as the optimal r∗.

In the next numerical experiments, for training, validation and testing, we use a
synthetic dataset with p = 202 predictors. Two of these 202 predictors are generated
by randomly sampling a non-functional relationship such as those shown in Figure 3.2.
One of these ‘non-functional’ columns has the data from a curve that cannot be
parameterized by y, another has the data from a cone. The remaining 200 features
are obtained by evaluating polynomials of degree lower than 12 at the sample points
yi. While we have investigated all three types of noise listed above Eq. (3.26), we only
present the results for the first and the third cases, as the second, i.i.d. case appeared
to be very similar to the third, non-i.i.d case. In all examples we use n = 150 and
the optimal polynomial degree r∗ is found with the CV method at the minimum of
ρ(Xv).

fig. 3.4 (top) illustrates the application of the regularization procedure to the problem
where only the dependent-variable data y contains additive Gaussian noise. The
columns of the matrix X are exact up to machine precision. We consider three
different standard deviations σ = 0.05, 0.1, and 0.2, corresponding to 5%, 10%, and
20% levels of noise relative to the y-data magnitude. As can be seen from the test-
error curves (top-left plot, dim solid gray), the errors ρ(yt) attained with these choices
of r∗ (top-right plot, enlarged colored squares) are close to the smallest achievable
ρ(yt) errors for all considered noise levels. At the same time, the minimal ρ(Xv)
errors do not correspond to the smallest achievable ρ(Xt) errors (top-right plot, dim
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solid gray curves).

fig. 3.4 (bottom) illustrates the case of additive noise in the dependent variable and
in one-third of the predictors. While the behavior is generally similar to the previous
case, the attained optimal ρ(yt) errors increase more rapidly with the level of noise.
The growth of the ρ(yv) error (bottom-left, colored dashed) is now caused not only
by the accumulation of numerical errors and the statistical noise in y (via V ), but by
the statistical noise in the X-data as well (via Â).

Finally, we remark that the error ρ(yv) attained with the optimal r∗ on the training-
validation dataset is always much smaller (see the range of the right vertical axis)
than the corresponding error ρ(yt) on the test dataset. This is, obviously, one more
case of the benign overfitting [11], [32], caused by the choice of the monomial column
basis in or IR model rather than the statistical properties of the noise.

3.5 Removal of improper predictors

From the analysis and examples of the previous sections it is clear that a linear model,
be it the classical MLR implementation or the present IR formulation, will produce
reasonably exact predictions even if some of the predictor variables do not satisfy
the model assumptions. In the regularized IR formulation of section 3.4 the model
assumption is that the predictor is a polynomial in the dependent variable y of degree
at most r∗ − 1, where r∗ is the rank of the optimally regularized Â. In the case of
exact data discussed in section 3.3, the training set may become complete way before
some of the predictor functions have been properly sampled. Success of predictions
in the presence of such ‘improper’ predictors gives an illusion of understanding of
the underlying natural phenomena [46]. In section 3.4 we have also investigated the
case where the noise is present only in some of the predictors. Such noisy predictors
may be negatively affecting the predictive power of the model. Thus, there appear
to be two good reasons to detect and possibly discard both the high-degree/non-
functional and the noisy predictors from the model. Additionally, in biological and
agricultural applications, the large number of predictors included in the FOP dataset
is often due to a broad (untargeted) experimental search in the absence of any a-priori
information. The practical goal of such studies is to identify a preferably small subset
of microbiota, fungi, molecules, metabolites, or genes, allowing for future targeted
and less expensive measurements of these predictor variables.

Discarding ‘unnecessary’ predictors is known as feature or variable selection in statis-
tics and ML. The main idea of feature selection is simple: one can sometimes achieve
the same or even better prediction with just a subset of predictors. However, no clear
principle for the inclusion or removal of any particular predictor has been put forward
so far. Therefore, feature selection methods are either combinatorial or heuristic in
the ways they produce the candidate subsets of predictors. Moreover, the criterion for
choosing a particular subset is the prediction error on the training dataset. Since this
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Figure 3.4: Top: application of the regularization procedure in the case of exact
predictor data X and noisy dependent-variable data y + ϵ, ϵ ∼ N (0, σ2

i I), with
σ1 = 0.05 (blue), σ2 = 0.1 (orange), and σ3 = 0.2 (green). Bright colored lines:
validation errors ρ(yv) (left, right vertical axis) and ρ(Xv) (right). Dim dashed gray
lines: errors on the test dataset, ρ(yt) (left, left vertical axis) and ρ(Xt) (right).
Bright colored square markers: values of the test errors ρ(yt) and ρ(Xt) attained at
r∗ (left and right respectively). Bright colored diamond markers: values of the test
errors ρ(yt) (left, left vertical axis) and ρ(Xt) (right) attained with r∗ and the optimal
set {p}opt of predictors. Bottom: same as in the row above, but with a third of the
columns of X affected by the additive Gaussian noise of the same type as the noise
in the dependent variable y.

error has already been used to find the optimal regularization parameter, the feature
selection methods are often regarded with suspicion in statistics [37], Chapter 5.

So far we have tuned one hyper-parameter, the optimal degree r∗, to define the
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hyper-parameter data used
optimal degree r∗ ρ(Xv), training X-data

which predictor to remove χj , test Xt-data
optimal threshold τopt ρ(y), training y-data

Table 3.2: Hyper-parameters of the regularized polynomial IR model with predictor
removal and the datasets used to tune these hyper-parameters.

regularized polynomial IR model. We have used the CV procedure on the training
X-data to determine this hyper-parameter. This leaves the training y-data and the
test Xt-data available for tuning other hyper-parameters in our model.

Since the goal is to remove the eventual ‘improper’ predictors, it is logical to use the
prediction of the Xt-data as the ‘usefulness’ criterion for each predictor. We introduce
the column-wise test set prediction error:

χj =
∥x̂j − xj∥2

∥xj∥2
, j = 1, . . . , p, (3.28)

where xj and x̂j are, respectively, the jth columns of the test matrix Xt and its

predictor X̂t. One would, naturally, like to remove the predictors with large χj ’s. For
example, all predictors with χj ≥ τ .

This introduces another hyper-parameter, the threshold τ , which can be tuned uti-
lizing the last available portion of our data – the training y-data. Recall that this
data could not be used to tune the regularization parameter r∗, since ρ(y) always
grows with r. Yet, for a fixed r = r∗ the error ρ(y) depends on the set of included
predictors, and we call it the feature removal error. table 3.2 summarizes the data
usage by the regularized polynomial IR algorithm with predictor removal for tuning
its hyper-parameters.

We define the optimal threshold τopt to be the one for which the feature-removal error
ρ(y) with r = r∗ is minimal. Unfortunately, while ρ(y) normally tends to grow for
small τ , since one starts to loose the useful predictors, the overall dependence of ρ(y)
on τ is neither unimodal nor smooth. Meaning, that there may be a set or a range of
τopt that gives approximately the same ρ(y) at r = r∗. In such cases we suggest to
make a subjective choice of r∗ favouring the smallest number of retained predictors.

We have applied the predictor removal procedure to the case of 200 polynomial
columns with degrees q − 1 ≤ 12 and two non-functional columns in the data-matrix
X, where the dependent variable and a third of the columns of X are affected by
additive Gaussian noise with σ = 0.05.

fig. 3.5 presents two examples of the feature removal error on the training y-data
(solid blue) together with the corresponding non-accessible feature removal errors on
the test yt-data (dashed gray). In the left plot, where the level of noise is σ = 0.05,
the choice of the optimal threshold τopt from the minimum of the training y-data
corresponds to the smallest possible number of predictors. In the right plot, where
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Figure 3.5: Feature removal errors ρ(y) (solid blue) and ρ(yt) (dashed gray), both
with r = r∗, for synthetic datasets containing additive noise in the dependent variable
and one-third of predictors, σ = 0.05 (left) and σ = 0.1 (right).On the y-axis is the
value of the residuals, on the x-axis is the value of the threshold τ . Red squares
indicate the minima, corresponding to the optimal thresholds τopt.

σ = 0.1, the detected minimum of the feature removal error is situated in the second
valley of the error function and corresponds to many unnecessary predictors retained
in the model, as the depth of both valleys is approximately the same. Checking for
other local minima in this case and choosing the leftmost along the τ -axis would
be a better strategy to find τopt. Regardless, it is comforting to observe that the
feature removal errors on the training and test datasets appear synchronous in these
numerical examples.

In fig. 3.6 (top) the green triangles show the true ‘degrees’ (lengths of the nonzero
parts of the corresponding columns of the coefficient matrix A, used to generate the
predictor data) for each predictor. The vertical dashed dark-grey lines indicate the
predictors containing the Gaussian noise. The vertical dashed red lines indicate the
non-functional predictors. The horizontal solid orange line depicts the optimal degree
r∗.

In fig. 3.6 (bottom) the orange circles show the value of the column prediction error
ρ(xj) on the test Xt-data for each predictor obtained with r = r∗. The dashed blue
line is the optimal threshold τopt. All predictors with the errors above that line (solid
light-gray vertical lines) are discarded. Notice that all noisy predictors, as well as
both non-functional predictors are successfully removed.

Diamond markers in fig. 3.4 show by how much the removal of ‘improper’ predictors
improves the prediction error ρ(yt). In fact, it is close to the minimal achievable error
with all predictors retained. That level of error was, however, not always obtained
with the crude global regularization procedure. Hence, the removal of predictors
may sometimes compensate for the errors in determining the optimal regularization
parameter.
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Figure 3.6: Removal of ‘improper’ predictors (vertical solid light-gray lines) from
synthetic data. Top: actual degrees of each predictor (green triangles), the global
truncation degree r∗ (orange horizontal line), predictors containing Gaussian noise
(vertical dashed dark-gray lines), non-functional predictors (vertical dotted red lines).
Bottom: χj errors (orange circles), the optimal threshold τopt (horizontal dashed blue
line).
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3.6 Application to chemometric data

In this section we present the application of the regularized IR model with predictor
removal to the experimental dataset that is often used to compare various regularized
MLR models, such the Principal Component Regression (PCR) or the Partial Least
Squares (PLS) [37]. This dataset was first published in [60] and is also included in
the R-library pls [47] under the name of yarn. The dataset consists of 28 Near
InfraRed (NIR) spectra of Polyethylene terephthalate (PET) yarns, measured at p =
268 wavelengths, and 28 corresponding yarn densities. Seven of these 28 samples
are designated as the test dataset and the remaining n = 21 constitute the training
dataset. The predictor variables (spectral amplitudes) change continuously with the
wavelength, which becomes clear if one plots the rows of X as curves, see the middle
plot of fig. 3.7a.

The training dataset columns have been sorted by the y-data. Since n = 21 < 150,
we use the visual inspection of the fitted polynomials, see fig. 3.7b, rather than the
CV procedure to determine the optimal degree r∗ = 5. The corresponding validation
error ρ(Xv) is shown in fig. 3.8a (left plot) with its minimum reached at the maximum
displayed degree r∗ = 5. The first three rows of the coefficient matrix Ã obtained with
r = r∗ are shown as curves in the bottom plot of fig. 3.7a. These curves correspond
to the constant, linear and quadratic components in the polynomial fits xj(y) of each
predictor. The column-wise prediction errors χj are shown in the top plot of fig. 3.7b
(solid blue), together with the optimal threshold τopt (horizontal dashed red). The
ρ(y) error with r = r∗ = 5 as a function of τ can be seen in fig. 3.8a (right plot,
solid blue), with its minimum indicated by the red square marker. This minimum is
close to the minimum of the inaccessible ρ(yt) error (dashed gray). Here, as in the
numerical examples of section 3.5, we also observe the synchronous behavior of the
feature removal errors on the training and test datasets.

The removed ‘improper’ predictors are indicated with vertical solid light-gray lines in
fig. 3.7b (middle and bottom). We have also extracted a few typical predictor data
(colored vertical lines in fig. 3.7a) and displayed them in fig. 3.7b using the same
colors and line styles for the corresponding polynomial fits. The retained predictors
are in the left plot of fig. 3.7b and the removed predictors are in the right plot. It is
easy to recognize the cone-type data, similar to the data in fig. 3.2 (right), in one of
the discarded predictors (blue). All predictor data in the discarded gray zone around
the dashed blue line in fig. 3.7a have this ‘conical’ shape. This means that the NIR
data in this frequency band is situated on a hyper-cone. Even if this frequency band
is not required to build a high-quality predictive IR model, it may become useful for
testing other higher-dimensional manifold and nonlinear models.

Finally, in fig. 3.8b we display the standard quality-of-prediction scatter plot which
compares the exact values of y against their predictions ŷ. As can be seen, the
removal of the ‘improper’ predictors significantly improves the quality of prediction.
In fact, the prediction error ρ(yt) on the test dataset goes down from 0.28 to 0.05
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Figure 3.7: (a): column-wise prediction errors χj and the optimal threshold τopt
(top); rows of X displayed as curves (middle); first three rows of Â displayed as
curves (bottom). Removed predictors are shown a vertical light-gray lines (middle,
bottom). (b): predictor data and the corresponding polynomial fits for the retained
(left) and removed (right) predictors.

after the predictor removal procedure.

3.7 Summary of results

The hyper-curve PARCUR model introduced in this Chapter provides an alternative,
predictor-centered look at the overparameterized multiple linear regression. Within
this framework we have been able to focus on the individual roles of predictors and to
show that a linear model can be trained and will make perfect predictions even in the
presence of predictor variables that violate the linear model assumptions, thus giving
an illusion of understanding of the underlying natural phenomena [46]. The column-
centered nature of our approach allowed us to come up with a rigorous algorithm
for detecting such ‘improper’ predictors. Moreover, we observe that removing these
predictors improves not only the adequacy but also the predictive power of the model.

The polynomial IR version of the PARCUR model has been investigated here in
considerable detail. It attempts to build an ‘inverse’ relation between the dependent
variable and each predictor that we believe is much easier to interpret than the weights
of the regression vector in the classical MLR model. The polynomial IR model appears
to work well with chemometric data, but may also be suitable for other ‘smooth’
predictors. The main problem with applying the IR model is the difficulty of sorting
the dependent variable by magnitude in the presence of noise. While directly using a
noisy dependent variable as a parameter in the PARCUR model is not prohibited, it
complicates the interpretation of the regression results.
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Figure 3.8: (a): validation error ρ(yv) as a function of r (left); feature removal error
ρ(y) at r = r∗ as a function of threshold τ (right). (b): ŷ v.s. y for the training
dataset (blue circles) and the test dataset predicted at r = r∗ with all predictors
(green diamonds) and after the removal of ‘improper’ predictors (red squares).

Certain types of predictor data (microbiome, metabolome, genetic) may exhibit jump-
like changes with the dependent variable, especially, in its lower and higher ranges.
Successful application of the IR model to these kinds of data will depend on finding a
suitable basis for the column function space, e.g., a piecewise-continuous finite-element
basis.

Although the PARCUR model allows for a flexible per-column regularization, we have
failed to illustrate its potential advantage over the traditional global regularization
approach. A separate investigation of this regularization technique is warranted, since
it may provide with a more rigorous way to detect and remove ‘improper’ predictors.

Finally, as we have seen in the application of the polynomial IR model to chemo-
metric data, it can detect the subsets of predictors for which a higher-dimensional
model is more appropriate. Nonlinear functional relations between the predictors and
the dependent variable produce data that are situated on such higher-dimensional
manifolds. A two-parameter hyper-surface model would be a natural extension of the
present single-parameter hyper-curve model.





Chapter 4

Predicting potato-plant vigor
with the DGIR method

1

In this chapter we develop a version of the Inverse-Regression (IR) method, called
Discontinuous-Galerkin IR (DGIR) method, suitable for predictors that are poten-
tially discontinuous functions of the dependent variable. This chapter also presents
the results of the FtV project, i.e., conclusions drawn from the three-year experiment
about the predictability of the potato-plant vigor from the seed-tuber properties.

4.1 Discontinuous-Galerkin IR model

The explanatory and predictive model of the potato-plant vigor in terms of the seed-
tuber properties combines diverse datasets with some of them, like the metabolome
data, potentially causing the so-called zero inflation, [35]. This happens when a certain
metabolite or a chemical element is detected only in a few samples and is absent in
the remaining samples. Other datasets, like FTIR and HSI, where each feature is the
absorbance at a given frequency, are generally expected to be continuous not only
over the frequency range but also across the samples, see the example of Yarn data
at the end of Chapter 3. Our preliminary analysis has shown that, in fact, all types
of tuber data may exhibit a discontinuous behavior between different varieties, see
Figure 4.1. As one of the goals of the FtV project was to investigate the possibility of
a single predictive model that could work with any variety (variety-agnostic model),
the regression method should be able to handle such discontinuous data.

1This chapter is based on:
E. Atza and N. Budko. Predicting potato plant vigor from the seed tuber properties. Scientific
Reports (Under review), 2024. URL https://doi.org/10.48550/arXiv.2410.19875

75

https://doi.org/10.48550/arXiv.2410.19875
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Figure 4.1: Discontinuous behavior of tuber features as functions of plant vigor.
The vertical axes correspond to the value of a tuber feature in respective units for
metabolome (top), HSI (middle), and XRF (bottom). The horizontal axis corre-
sponds to the plant vigor (magnitude of the canopy in M 2019). The dots are colored
according to their variety. The features show variety-specific behaviors and strong
discontinuities between some varieties.

Here we use an Inverse Regression (IR) model [4], see Chapter 3, that accommodates
for this potential diversity in the predictor data via the freedom to choose a suitable
functional basis to represent the predictor variables xj , j = 1, . . . p as functions of
the dependent variable y. Due to the aforementioned possibility of discontinuities
in the predictor data across the samples, we apply the Discontinous-Galerkin Finite-
Element Method (DG-FEM) with the first-order (linear) Lagrange basis functions
[22] to represent the tuber features as potentially discontinuous functions of plant
vigor. Since this is the first time the FEM is applied in the multiple linear regression
and possibly also in the general Machine-Learning context, this section elaborates the
technical details of the approach.

Let X ∈ Rn×p be the predictor data matrix and y ∈ Rn – the vector of vigor data
sorted by the magnitude of its entries. The idea of the IR method is to represent
the predictor data as xi,j = xj(yi), i.e., as the (sampled) functions of the dependent



4.1. Discontinuous-Galerkin IR model 77

variable y. These functions are assumed to belong to a finite-dimensional function
space defined by the choice of a suitable basis, i.e., a finite-dimensional set of basis
functions. With the FTIR data [4] we have applied the monomial basis and a very
simple projection procedure leading to the decomposition X = V A of the data matrix
in terms of the basis matrix V and the coefficient matrix A. A more rigorous and
general projection procedure, suitable for a wider class of functions, is the Galerkin
projection scheme widely used in the numerical solution of partial differential equa-
tions [15].

The derivation of the DG formulation of the IR model starts from the discretization
of the y-range, i.e., the interval I = [min(y),max(y)], into m finite elements Ik,
k = 1, . . . ,m. The number of elements m plays the role of a regularization parameter
that will eventually be chosen through a cross validation (CV) procedure, similarly to
the maximal polynomial degree in the monomial-basis IR method [4], see Section 3.4,
or the maximal dimension of the Krylov subspace in the PLS method [70]. This y-
range discretization yields m+ 1 delimiters min(y) = y0, y1, . . . , ym−1, ym = max(y).
Here, for simplicity, we consider the uniform mesh with the step size h = yk+1 − yk.

Next, on each element Ik = [yk, yk+1], we introduce two local linear Lagrange basis
functions vk,1(y) and vk,2(y), defined as:

vk,1(y) =

{
yk+1−y

h , if y ∈ Ik

0, otherwise
, vk,2(y) =

{
y−yk

h , if y ∈ Ik

0, otherwise
. (4.1)

The main assumption of the IR method is that the predictor data are ‘generated’
by the functions xj(y), j = 1, . . . , p; all of which can be represented in terms of the
chosen basis as:

xj(y) =

m∑
k=1

2∑
q=1

α
(j)
k,qvk,q(y), (4.2)

and the observed predictor data xi,j are simply the sampled values xj(yi), j = 1, . . . , p;
i = 1, . . . , n.

The goal of the model training is to determine (learn) the expansion coefficients
αk,q, k = 1, . . . ,m, q = 1, 2 in the representation (4.2). For this purpose, we apply
the Galerkin scheme, where one chooses the test functions to be equal to the basis
functions. Multiplying both sides of the equation (4.2) with a test function and
integrating over the y-range, we arrive at the 2m equations for the 2m unknown
coefficients αk,q:∫ ym

y0

xj(y)vk̂,q̂(y) dy =

m∑
k=1

2∑
q=1

α
(j)
k,q

∫ ym

y0

vk,q(y)vk̂,q̂(y) dy, k̂ = 1, . . . ,m; q̂ = 1, 2.

(4.3)
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To further specify the system matrix and the right-hand side vector of this linear
algebraic system of equations, we first note that, by the nature of the DG finite-
element basis, the following partial orthogonality condition holds:∫ ym

y0

vk,q(y)vk̂,q̂(y) dy = δk,k̂

∫ ym

y0

vk̂,q(y)vk̂,q̂(y) dy. (4.4)

Therefore, the equations for the coefficients αk,q corresponding to the different ele-
ments Ik decouple, and it is possible to find all coefficients by solving m separate 2×2
linear systems:∫ yk̂

yk̂−1

xj(y)vk̂,q̂(y) dy =

2∑
q=1

α
(j)

k̂,q

∫ yk̂

yk̂−1

vk̂,q(y)vk̂,q̂(y) dy, k̂ = 1, . . . ,m; q̂ = 1, 2.

(4.5)

The integrals in (4.5) are further approximated by a numerical quadrature rule [64].
Since the values of xj(y) are only given at the available data points y1, . . . , yn, the
trapezoidal rule seems to be appropriate:∫ yk̂

yk̂−1

vk̂,q(y)vk̂,q̂(y) dy =

nk̂∑
m=1

wk̂,mvk̂,q(yk̂,m)vk̂,q̂(yk̂,m) + O(max
m

|yk̂,m+1 − yk̂,m|2),

∫ yk̂

yk̂−1

xj(y)vk̂,q̂(y) dy =

nk̂∑
m=1

wk̂,mxj(yk̂,m)vk̂,q̂(yk̂,m) + O(max
m

|yk̂,m+1 − yk̂,m|2),

(4.6)

where the data points yk̂,m, m = 1, . . . , nk̂ are situated within the element Ik̂ bounded
by the delimiters yk̂ and yk̂+1. The weights wk̂,m of the trapezoidal quadrature can
be explicitly written out as:

wk̂,1 = |yk̂,1 − yk̂| +
1

2
|yk̂,2 − yk̂,1|,

wk̂,m =
1

2
|yk̂,m − yk̂,m−1| +

1

2
|yk̂,m+1 − yk̂,m|, m = 2, . . . , nk̂−1,

wk̂,nk̂
= |yk̂,nk̂

− yk̂+1| +
1

2
|yk̂,nk̂

− yk̂,nk̂−1|.

(4.7)

Therefore we can write a linear approximation of Equation 4.5 for a given interval Ik̂
with the following notation:

Vk̂ =


vk̂,1(yk̂,1) vk̂,2(yk̂,1)

vk̂,1(yk̂,2) vk̂,2(yk̂,2)
...

...
vk̂,1(yk̂,nk̂

) vk̂,2(yk̂,nk̂
)

 , Wk̂ = diag


 wk̂,1

...
wk̂,nk̂


 , xj =

 xj(yk̂,1)
...

xj(yk̂,nk̂
)

 (4.8)
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as

V T
k̂
Wk̂xj = V T

k̂
Wk̂Vk̂

α(j)

k̂,1

α
(j)

k̂,2

 = V T
k̂
Wk̂Vk̂αj (4.9)

where the column vector αj is a subvector of aj , the j-th column of A, relative to the

k̂-th interval.

Since the linear systems concerning each interval are decoupled, the full linear system
is:

V TWX = V TWVA, V TWy = V TWV a0 (4.10)

where the block-diagonal matrices and the column-vectors are:

V =

V1

. . .

Vm

 , W =

W1

. . .

Wm

 , aj =


α

(j)
1
...

α
(j)
m

 . (4.11)

Thus, the coefficient matrix A and the coefficient vector a0 that solve (4.10) can
formally be written as:

A = (V TWV )−1V TWX, a0 = (V TWV )−1V TWy, (4.12)

and are in practice obtained by solving the corresponding linear systems, applying
standard parallel-computing techniques for the multiple right-hand sides.

Finally, the prediction ŷt of the test data-vector yt has the form

ŷt = V̂ a0, (4.13)

where the matrix V̂ is obtained by solving the following least-squares problem:

V̂ = arg min
V ∈Rs×2m

∥Xt − V A∥22 , (4.14)

where s is the number of points in the test set, and 2m is the chosen number of basis
functions. The matrix V̂ is given by:

V̂ = XtA
T (AAT )−1. (4.15)

Thus, the prediction ŷt can be expressed as:

ŷt = XtA
T (AAT )−1a0, (4.16)

which again can be obtained by solving the corresponding linear system.

For the purposes of predictor selection, we also compute the prediction X̂t of the
given test data-matrix Xt:

X̂t = XtA
T (AAT )−1A. (4.17)

Computing this prediction involves solving multiple linear systems with the same
system matrix and different right-hand sides, which admits efficient parallel imple-
mentation.
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Figure 4.2: Drone images of the V (top) and
S (bottom) test fields in 2021 with the over-
layed plot boundaries. Colors correspond
to the six varieties planted in a randomized
block design.

Figure 4.3: Plots of weak (left) and
strong (right) seedlots of the Sagitta
variety showing consistent perfor-
mance between the V (top) and the
S (bottom) test fields.

4.2 Application of the DGIR method

4.2.1 Measures of prediction quality

The standard measures of the MLR model quality, such as the R2 coefficient, are not
applicable to the severely overparameterized case, where the number of predictors
is significantly larger than the number of experiments [37]. To arrive at a similarly
interpretable measure, both the measured, y, and the predicted, ŷ, vigor data vectors,
each of length n, are normalized as:

ỹ =
1

∥y − n−111Ty∥2
(
y − n−111Ty

)
,

˜̂y =
1

∥ŷ − n−111T ŷ∥2
(
ŷ − n−111T ŷ

)
.

(4.18)

Here, 1 ∈ Rn is the vector of all ones. After this transformation, we have ∥ỹ∥2 =
∥˜̂y∥2 = 1, where ∥ · ∥2 denotes the Euclidean norm of the vector, and n−11T ỹ =
n−11T ˜̂y = 0, i.e., both vectors have the unit norm and the zero mean.

For these normalized vectors we compute the squared norm of the residual vector,
also known as Sum of Squared Errors (SSE):

r2 = ∥ỹ − ˜̂y∥22, (4.19)

which is a measure of the unexplained variance. In this case, the r2 is related to
the Pearson correlation coefficient c(ỹ, ˜̂y) between the measured and predicted data
vectors as follows:

r2 = 2(1 − c). (4.20)
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Since −1 ≤ c ≤ 1, we have the bounds 0 ≤ r2 ≤ 4. We consider the model to be
predictive if for the testing dataset it gives the values r2 < 1 and c > 0.5, with the
latter parameter also subject to the p-value analysis. The upper bound r2 = 1 for the
SSE and the corresponding lower bound c = 0.5 for the correlation, stem from the
fact that for 1 ≤ r2 ≤ 4 the prediction ˜̂y is usually of very poor quality, making it
impossible to correctly classify the vigor of the seedlot as belonging to the low, middle
or high quantile.

4.2.2 Training, validation and testing

Both the variety-agnostic and the six variety-specific DGIR models contain two hyper-
parameters that need to be tuned. The first is the number m of segments, see the
Equation (4.2), that divide the range of the vigor parameter. The more segments are
used, the better is the fit for each predictor variable. The 10-fold Cross Validation
is used to find the optimal number of segments and avoid overfitting. In the DGIR
method with linear basis functions, at least two data points should be present within
each segment. This puts a practical upper bound on the number of uniform segments,
so that one only has to check for a smaller number of segments in search of the optimal
parameter m. The results presented in Figure 4.6 illustrate the fits with the optimal
number of segments determined by the CV procedure.

The second hyper-parameter is the threshold τ which allows discarding the predictors
with the X-data residual above τ , see the dashed horizontal lines in Figure 4.5. Tuning
of this parameter is performed with the number of segments m fixed at the optimal
value.

To tune the abovementioned hyper-parameters of the DGIR model, the dataset is
split into the training-validation and testing subsets. When the testing is performed
on a different year, then the complete dataset of that year is used as the testing set.
This means that the complete dataset of the training year can be used for training
and validation (parameter tuning). When, however, the testing is performed on the
same year as the training, then 33% of the variety data is reserved for testing and the
remaining 67% is used for training and validation.

4.2.3 Variety-agnostic modeling

The present experiments were not designed to recover the genotype-by-environment
interaction, which was also not known a priori for the selected set of varieties. There-
fore, the available environmental information (solar radiation, temperature, water
etc.) could not be used to its full potential, i.e., in a way that would improve the
prediction quality within the specific growth conditions. In these circumstances one
can hope to predict the average vigor of a seedlot over several conditions, i.e., over
several fields within the same test year. However, this strategy only works if the con-
ditions are not too different between the fields. Since the V field in 2020 and the M
field in 2021 did suffer from adverse growth conditions around the emergence times,
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these fields are considered to be statistical outliers and the corresponding data are
treated with extra caution.

To predict the vigor of a plant from the seed tuber properties, a model should be
trained on both the tuber and the vigor data and then a prediction should be made
using only the tuber data with the measured vigor data used for the testing purposes
only. Since the present experiment spanned three years and three fields in each year,
there are many possibilities to train and to test the model. For completeness, all
possible training-testing possibilities have been implemented and the results are shown
as tables in Figures A.1–A.13, where the rows correspond to the training dataset and
the columns show the outcome of the testing. Note that the block-diagonal portions
of the table correspond to the testing on a randomly selected portion of the dataset
that was excluded from the training process. This means that the testing within the
same year (diagonal blocks) was performed on a smaller dataset than across the years
(off-diagonal blocks) and is therefore less reliable.

The results presented in Figure A.1 correspond to the variety-agnostic model which
does not code explicitly for the known variety of the seedlot, and both the SSE
residual or the unexplained variance (top table) and the correlation of the predicted
and measured vigor (bottom table) are shown. It turns out that the data from 2020
are most suited for the training of the linear model as it results in the best predictions
(smallest residuals and highest correlations) for the years 2019 and 2020. Hence, the
variety-agnostic model is able to explain around 70% of the variation of the vigor of
the plants (within the same year) and to predict from 50% to 70% of the variation
in another year. These residuals correspond to 70%-80% correlations between the
predicted and measured vitalities, which agrees with the magnitude of the observed
correlations (see Figure 2.15, rows marked ’All’) in vigor across the fields in each year.

However, these promising regression results mask the fact that the average vigor
(canopy size) of the six considered varieties is markedly different, with the canopy of
the ‘weakest’ variety Festien (around −1 on the normalized field-centered scale) being
almost three times smaller than that of the ‘strongest’ variety Colomba (around 2 on
the normalized field-centered scale). Therefore, mathematically speaking, it is easy
to achieve a relatively small residual by simply predicting the average vigor of each
variety rather than the true vigor of the seedlot.

The fact that the genotype (variety) effect dominates the regression results can be
deduced from the scatter-plots of Figure 4.4, where the vigor prediction of each seedlot
is colored according to the corresponding genotype. It is obvious that, with some
exceptions, the quality of predictions of the seedlot vigor within each individual variety
is rather poor.

4.2.4 Variety-specific modeling

Since in practice a single variety is usually planted in the field by potato farmers, it
is important to know how well one can predict the vigor of a seedlot not across all
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varieties but within its specific variety. The assumption behind the variety-agnostic
model is that the biochemical mechanisms behind a weak or a strong vigor are the
same for all potato varieties. However, it is also possible that these mechanisms de-
pend on the variety. Therefore, six separate variety-specific IR models have also been
trained and the results are presented in Figures A.2–A.13 next to the corresponding
segregated results of the variety-agnostic model.

From Figures A.2–A.13, it is clear that the quality of predictions within the varieties
is much lower than across the whole set of varieties, Figure A.1, which confirms
the strong genotype effect on the vigor of seedlots. Apart from the statistically less
reliable within-the-year results (diagonal blocks in the tables), for the four of the six
varieties (Challenger, Innovator, Seresta, Colomba) neither the variety-agnostic nor
the variety-specific models are able to explain the intra-varietal variations in the vigor
when presented with the tuber data of a different year. Although, the correlations
between the predicted and the measured vitalities do fall just a little short of 50% for
these varieties, this corresponds to the residuals with the magnitude above one, i.e.,
such predictions are practically useless.

The notable exception is the Festien variety, which exhibits a fairly predictable be-
haviour, see Figures A.6, A.7, with the variety-specific model showing somewhat
better performance if compared to the variety-agnostic model. The variety-specific
Festien model trained on the tuber data of the year 2020 and the average vigor data
of the M and S fields in 2020 predicts/explains 30% of the variation of the three-field
average vigor in the year 2019 and 27% of the three-field average vigor in 2021, when
presented with the corresponding seed tuber data.

In the second place is the Sagitta variety, which shows a similar partially predictable
behaviour between the years 2020 and 2021, see Figures A.10–A.11. However, this
predictability does not extend to the year 2019 for the Sagitta variety.

4.2.5 Predictive power of different tuber data types

The IR model provides a measure of the usefulness of each particular predictor vari-
able [4]. When a new predictor-variable dataset (tuber properties) is considered for
prediction purposes, the IR method can perform a ‘prediction’ of this known dataset
by the model created on the training dataset of tuber properties. For example, the
dataset of tuber properties in the year 2021 can be predicted from the dataset of
tuber properties in the year 2020. The quality of the X-data prediction is measured
by the normalized residuals for each individual predictor variable, i.e., abundance
of a metabolite, spectral amplitude of the FTIR or HSI signature, abundance of an
inorganic element. The smallness of such residuals is the necessary condition for the
usefulness of the particular predictor variable. One can only achieve a good prediction
of the dependent variable (vigor) if these residuals are small.

The predictor-variable residuals, or the X-data residuals, can be used in two ways: to
rank the predictive power of the different data types, and to perform feature selection.
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Figure 4.4: Performance of the variety-agnostic and variety-specific models trained
on the dataset of the field S in 2021 and tested on the average vigor data of the
fields M, S, and V in 2019. Horizontal axis – measured seedlot vigor y, vertical axis
– predicted seedlot vigor ŷ. Leftmost vertical panel: variety-agnostic model with
the seedlot results colored according to their variety. Dashed gray: the y = ŷ line;
solid black: the best linear fit between the measured and predicted data. Six panels
on the right: prediction per variety with the variety-agnostic model (diamonds) and
the variety-specific model (stars) with the variety vigor data (both measured and
predicted) shifted and scaled to have zero mean and unit norm. Dashed gray: the
y = ŷ line; solid black: the best linear fit for the variety agnostic model; solid colored:
the best linear fit for the variety-specific model.
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Figure 4.5: The X-data residuals for the variety-agnostic (top) and variety-specific
(bottom) 2020 models tested on the 2021 Festien tuber data. Colors indicate the data
type (see legend). Dashed horizontal lines show the feature selection thresholds, with
the rejected predictors marked by vertical gray lines.

Figure 4.5 shows the X-data residuals grouped and coloured by the type of the tuber
data for the training dataset of the year 2020 and the testing dataset of the year 2021.
In the top plot, the residuals of the 2020 variety-agnostic model predicting the 2021
Festien X-data are shown, and in the bottom plot, the residuals for the prediction
of the same X-data by the 2020 variety-specific Festien model are displayed. In this
and other training-testing configurations, the FTIR dataset consistently shows the
smallest residuals, followed by the two HSI datasets, the XRF and the metabolome
datasets.

The metabolome data, on average, demonstrate higher residuals, with some metabo-
lites producing smaller residuals that are still higher than the residuals of the FTIR
data. In mathematical terms, this means that the training metabolome dataset is less
complete than the training FTIR dataset [4]. There can be several reasons why the
IR algorithm indicates such incompleteness. First, the dependence of the majority
of metabolites on the vigor parameter is of ‘non-functional’ type, i.e., does not look
like a sampled graph of a function. This is indeed what is observed in the trained
variety-agnostic IR model. In Figure 4.6 one can see the fits produced by the IR algo-
rithm for the various predictor variables. The horizontal axis is the vigor parameter,
and the vertical axis is the value of the corresponding predictor. The data points are
colored in accordance with the seed tuber variety. The metabolome predictors shown



86 Predicting potato-plant vigor with the DGIR method

0.0005

0.0010

0.0015

Met. Peel + 1766

0.6
0.7
0.8
0.9
1.0

Met. Peel - 1027

0.000

0.005

0.010

0.015

0.020

Met. Flesh + 638

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
Met. Flesh - 1949

0.750
0.775
0.800
0.825
0.850
0.875 FTIR 1456.4836907564445

0.4

0.5

0.6

0.7

0.8

0.9
XRF K (g/kg)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.65

0.70

0.75

0.80

0.85

HSI P. 945.3557971014493

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.18
0.20
0.22
0.24
0.26
0.28

HSI C. 1374.0405797101448

Column fittings

CHALLENGER COLOMBA FESTIEN INNOVATOR SAGITTA SERESTAFigure 4.6: Individual predictor data (vertical axes) fitted by piece-wise linear func-
tions of the vigor parameter (horizontal axis). For each data type we show the predic-
tor with the lowest residual in the Festien specific model. The training was performed
on the average vigor of the three test fields and the resulting fits by the variety-agnostic
model are shown as broken solid black lines. The fits produced by the variety-specific
Festien model are shown as broken light-green lines. The data type is indicated in
the titles of the plots together with the predictor label. Plots with the light-gray
background show predictors that have been rejected by the variety-specific Festien
model.



4.3. Summary of results 87

in Figure 4.6 (top four plots) exhibits a typical nonfunctional behavior [4], since the
data points from different varieties represent vertically shifted clusters, i.e., it is im-
possible to draw a graph of a mathematical function of the vigor variable through
these clusters.

The second reason for the apparent incompleteness of the metabolome dataset, that
can be observed in the variety-specific Festien model, is the relatively high noise in
the data, where the data points appear to form a cloud rather than being aligned
along a graph of a function, see Figure 4.6 (left column, second plot from the top,
green point cloud). The noise in these plots comes from two sources: the vigor data
(error in the point location along the horizontal axis) and the metabolome data (error
in the point location along the vertical axis). It is not clear which of the two noise
sources is dominant, however, it is clear that the noise in the metabolome data is
higher than in, e.g., the FTIR or HSI data.

4.3 Summary of results

In summary, the variety agnostic model could be a useful tool to identify a range
of vitality for a variety but is not very informative when trying to compare different
seedlots within a variety. It appears that predicting vigor for seedlots within a variety
is not an easily generalizable task, indeed variety specific models perform quite differ-
ently. Therefore we cannot achieve the hoped for result of a variety-agnostic model
to predict seedlot vitality which generalizes to varieties not included in this project.

The vigor of two varieties, Festien and to a lesser extent Sagitta, appears to be fairly
predictable. Although, the model for the Sagitta variety fails to predict the vigor in
one of the three test years. Notably, it was also the year which showed relatively small
correlations in vigor between the test fields for this variety. Festien and Sagitta are
also the better predictable varieties in our microbiome study [58], where it was shown
that this level of predictability is enough to distinguish between the three practically
meaningful classes for the seedlots of these varieties: below average, average, and
above average. Moreover, the feature selection algorithm applied to all biochemical
tuber data, indicates that it is sufficient to measure the FTIR spectra of the dry
samples of the seed tubers to achieve a residual similar in magnitude to those achieved
on the microbiome dataset.

For the other four varieties (Challenger, Colomba, Innovator, and Seresta) the vigor
of the seedlots could not be predicted in any reliable way. It is worth noting that the
vigor correlations across the test fields were also not as consistent for these varieties,
which may be a sign of a purely stochastic nature of vigor variations within these
varieties. Nevertheless, in our opinion, the reasons behind this lack of predictability
are not entirely clear. On the one hand, it is possible that the biochemical composition
of the seed tubers simply does not define the vigor of these varieties to the same
extent as with the Festien variety, and there are other processes at play that were not
measured in the present experiment. A seed tuber is a slowly changing dynamical
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system. Therefore, measuring its biochemical constitution at a few points in time
may deliver better predictors of the potato plant vigor. This could mean that the
tubers of Festien are somehow more ‘stationary’ than the tubers of other varieties.



Conclusions

In this thesis a variety of tools has been applied to answer the main research question
of the “Flight to Vitality” project: is it possible to predict the vigor of potato plants
from biotic and abiotic features of seed tubers?

Having analyzed the data from three years of experiments carried out at different
locations in Europe, we have confirmed the hypothesis of practitioners that there
exists a significant link between the seed tuber and the plant vigor and have trained
Machine-Learning (ML) models that make predictions of the vigor from the tuber
properties. The most general variety-agnostic model, trained on the six varieties
studied in the FtV project, makes fairly good predictions when tested on the seedlots
of these varieties. However, a closer look at the results shows the dominant effect of
the genotype on the seedlot vigor and differences in the vigor-enhancing strategies of
the varieties. The six trained variety-specific ML models revealed that a more precise
prediction of the seedlot vigor is only possible for one of the studied varieties, whereas,
for the remaining five varieties the connection between the tuber and the plant vigor
is either inconsistent across environments or simply much weaker.

Conducting field experiments is an endeavor subject to uncontrollable but measurable
events. In our experiments we registered a strong influence of the environment on the
growth of some genotypes and seedlots. Therefore, a closer monitoring of weather
and modeling of the genotype-specific interactions with the environment appear to
be essential for increasing the accuracy of predictions at the seedlot level. Whether
such extended and accurate variety-specific models can be combined into a general
model able to predict the vigor of any, even completely new, variety, remains an open
question.

These conclusions are heavily dependent on the vigor parameter chosen in this study.
It is possible that a model trained to predict a trait other than a “snapshot” of the
canopy area, might indeed have a superior performance.

Execution of the FtV project, pre- and post-processing of the data, and the devel-
opment of predictive ML models required the application of various mathematical
methods. Some of these techniques were advanced but reasonably well-known, other
were new but theoretically trivial. One mathematical question, however, turned out

89
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to be both practically important and not yet completely understood on the theoretical
level. We were confronted with this question while developing predictive ML mod-
els for the project and pondering about the adequacy and meaning of the standard
multiple linear regression (MLR) algorithms, such as the PLS method.

When to switch from a linear to a non-linear model in practical applications where
increasing the number of experiments is disproportionally more expensive than in-
creasing the number of predictors? This has lead to the second research question
of the thesis and resulted in a fresh perspective on the overparameterized MLR and
its reformulation as a parametric hyper-curve (PARCUR) fitting problem. In the
inverse-regression (IR) version of PARCUR, we allow the user to adapt the MLR
model according to either a priori or observed information about the “shape” of pre-
dictors as functions of the dependent variable. The IR method was developed for
continuous functions and extended to discontinuous functions with the help of the
Discontinuous-Galerkin projection procedure when applying the model to the FtV
data.

On the theoretical level we prove that an overparameterized MLR model will be able
to make exact predictions even in the presence of a nonlinear relation between the
predictors and the dependent variable. Hence, from the practical point of view, there
may be no need for a nonlinear model even in the case of a (partially) nonlinear
relation. Since this fact may lead to an illusion of understanding, it is important to
identify and remove such nonlinear relations from the MLR model. We show that
the previously unutilized step of projecting the new but known predictor data on
the learned representation of predictors provides an efficient and objective way of
detecting such nonlinear relations. Moreover, this procedure also helps to identify
and exclude the noisy predictor data, thereby improving not only the adequacy of the
model but also the accuracy of its predictions.

Returning to the FtV project and its experiments, we regret not having been able
to use the climate-controlled room data and the multi-spectral images in the fields
to their full potential due to the problems mentioned in Chapter 1. We believe that
the rapid progress in high-throughput phenotyping and the improving quality of the
data-acquisition and pre-processing techniques will make these types of data more
accessible in the future projects.

As far the development of new mathematical methods for agricultural applications
is concerned, we would like to point out the open nature of the field-effect removal
problem. While the state-of-the-art software employed in this project allows removing
a smooth spatial trend, it does not elucidate the underlying physical and biological
causes of the test-field heterogeneity. A better model should connect the genotype-
specific physiological model of plant reaction to various environmental factors with the
physical model and local measurements of the corresponding environmental variables.



Appendix A

Figures

1. Variety-agnostic model - Residual and correlation

2. Challenger results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model

3. Colomba results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model

4. Festien results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model

5. Innovator results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model

6. Sagitta results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model

7. Seresta results

– Residuals for variety specific model and restricted variety-agnostic model

– Pearson correlation of variety specific model and variety-agnostic model
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Figure A.1: Performance of the variety-agnostic model tested on all six varieties simul-
taneously: the SSE residual r2 (top), the Pearson correlation coefficient c (bottom).
Rows correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out, correlations with p > 0.05 are omitted.
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Figure A.2: Performance (SSE residual r2) of the variety-specific Challenger model
(top) and the variety-agnostic model tested on the Challenger variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out.
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Figure A.3: Performance (Pearson correlation c) of the variety-specific Challenger
model (top) and the variety-agnostic model tested on the Challenger variety (bottom).
Rows correspond to the training dataset, columns show the testing configuration.
Correlations with p ≥ 0.05 are omitted.
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Figure A.4: Performance (SSE residual r2) of the variety-specific Colomba model
(top) and the variety-agnostic model tested on the Colomba variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out.
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Figure A.5: Performance (Pearson correlation c) of the variety-specific Colomba model
(top) and the variety-agnostic model tested on the Colomba variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. Correla-
tions with p ≥ 0.05 are omitted.
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Figure A.6: Performance (SSE residual r2) of the variety-specific Festien model (top)
and the variety-agnostic model tested on the Festien variety (bottom). Rows corre-
spond to the training dataset, columns show the testing configuration. SSE residuals
r2 ≥ 1 are grayed out.
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Figure A.7: Performance (Pearson correlation c) of the variety-specific Festien model
(top) and the variety-agnostic model tested on the Festien variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. Correla-
tions with p ≥ 0.05 are omitted.
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Figure A.8: Performance (SSE residual r2) of the variety-specific Innovator model
(top) and the variety-agnostic model tested on the Innovator variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out.
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Figure A.9: Performance (Pearson correlation c) of the variety-specific Innovator
model (top) and the variety-agnostic model tested on the Innovator variety (bottom).
Rows correspond to the training dataset, columns show the testing configuration.
Correlations with p ≥ 0.05 are omitted.
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Figure A.10: Performance (SSE residual r2) of the variety-specific Sagitta model
(top) and the variety-agnostic model tested on the Sagitta variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out.
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Figure A.11: Performance (Pearson correlation c) of the variety-specific Sagitta model
(top) and the variety-agnostic model tested on the Sagitta variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. Correla-
tions with p ≥ 0.05 are omitted.
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Figure A.12: Performance (SSE residual r2) of the variety-specific Seresta model
(top) and the variety-agnostic model tested on the Seresta variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. SSE
residuals r2 ≥ 1 are grayed out.
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Figure A.13: Performance (Pearson correlation c) of the variety-specific Seresta model
(top) and the variety-agnostic model tested on the Seresta variety (bottom). Rows
correspond to the training dataset, columns show the testing configuration. Correla-
tions with p ≥ 0.05 are omitted.
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[14] A. Borges, A. González-Reymundez, O. Ernst, M. Cadenazzi, J. Terra, and
L. Gutiérrez. Can spatial modeling substitute for experimental design in agri-
cultural experiments? Crop Science, 59(1):44–53, 2019. doi: https://doi.org/10.
2135/cropsci2018.03.0177. URL https://acsess.onlinelibrary.wiley.com/

doi/abs/10.2135/cropsci2018.03.0177.

[15] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, 2005.

[16] L. Brigato and L. Iocchi. A close look at deep learning with small data. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 2490–2497,
2021. doi: 10.1109/ICPR48806.2021.9412492.

[17] D. Broadhurst, R. Goodacre, S. N. Reinke, J. Kuligowski, I. D. Wilson, M. R.
Lewis, and W. B. Dunn. Guidelines and considerations for the use of system
suitability and quality control samples in mass spectrometry assays applied in
untargeted clinical metabolomic studies. Metabolomics, 14, 2018. doi: 10.1007/
s11306-018-1367-3.

[18] S. D. Choudhury, A. Samal, and T. Awada. Leveraging image analysis for high-
throughput plant phenotyping. Frontiers in Plant Science, 10:436562, 4 2019.
ISSN 1664462X. doi: 10.3389/FPLS.2019.00508/BIBTEX.

https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://www.jstor.org/stable/2531047
https://www.jstor.org/stable/2531047
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2018.03.0177
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2018.03.0177


Bibliography 109

[19] G. E. M. D. M. Woebbecke and K. V. B. et al. Color indices for weed identification
under various soil, residue, and lighting conditions. Transactions of the ASAE,
38(1):259–269, 1995. doi: https://doi.org/10.13031/2013.27838.

[20] G. de Los Campos, J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and M. P.
Calus. Whole-genome regression and prediction methods applied to plant and
animal breeding. Genetics, 193(2):327–345, 2013.

[21] K. E. Deshi, M. O. Obasi, and N. I. Odiaka. Growth and yield of potato
(solanum tuberosum l.) as affected by storage conditions and storage dura-
tion in jos, plateau state, nigeria. Open Agriculture, 6:779–797, 1 2021.
ISSN 23919531. URL https://www.degruyter.com/document/doi/10.1515/

opag-2021-0057/html.

[22] D. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Meth-
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Summary

Potato plant vitality is an important trait for good yield. Unfortunately, even with
the best potato seed, vitality variation within a genotype is significant and it hurts
both farmers and potato seed producers. HZPC and Averis Seeds hypothesize the
existence of a link between the variation in the vitality of a plant and the field of
production of the seed tuber. TU Delft, Utrecht University, HZPC and Averis Seeds
joined forces to determine the existence and strength of this link in a multi-year
project funding this research. In this thesis we describe TU Delft’s contribution both
in the measurement of plant vitality and the development of a model to predict plant
vigor from chemical properties of the tuber.

We start this thesis with a discussion of the results achieved and of the goals that
were not attained. We give some context as well as some suggestions so that future
projects can learn from our experience.

Our work in the first years focused on the extraction of a precise vitality measure-
ment from field and climate controlled room imaging. To this purpose we developed
software to deal with specific challenges connected to our project setup and goals. In
Chapter 2 we describe the experimental design both in the fields and in the climate
rooms, we outline the main steps leading from a field image to a measurement of
vitality and describe in detail the image processing and the choices made to arrive at
a single vitality measure per field. From the vitality measurement is already possi-
ble to confirm the project’s hypothesis by observing a strong, statistically significant
Pearson correlation coefficient between canopy areas in different fields.

The development of a predictive model for vitality has been an iterative process,
starting from the chemometric data (FTIR, HSI, and XRF) and gradually expanding
to encompass the microbiome and metabolome. Our initial association analysis used
Partial Least Squares (PLS) to connect vitality to the chemometric data. This is a
method developed by Wold in 1974 to solve linear problems with high collinearity in
the independent variables, such as those arising in chemometrics applications. As we
expanded our model to include biotic data, we noticed that linear methods failed to
predict. We developed the PARCUR method, described in Chapter 3 which inverts
the usual regression approach by expressing the columns of the matrix of features
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X as functions of the dependent variable y. This approach is customizable in that
the representation basis can be adapted to model specific needs, the choice of basis
can also carry a built in regularization approach and lastly the method measures the
quality of feature representation per feature, this is used to discard uninformative
features without need to retrain. In this chapter we illustrate the method both on a
synthetic dataset and on a publicly available FTIR dataset for PET-yarn.

Finally in Chapter 4 we apply the ”PARCUR” method to the data of three years.
We combine chemical and metabolic data in this model, for this purpose we use the
modified version of ”PARCUR” which represents features in a Discontinuous Galerkin
basis. We confirm some of the conclusions reached by the microbiome predictive
model, i.e. the degree of precision to which we can predict vitality varies with the
variety. We also restrict the set of predictive features considerably, attaining precise
results with one of the cheapest-to-measure datasets: FTIR.

In conclusion our model can predict the vitality of a genotype from the seed tu-
ber composition, but within the genotype the model is only capable of predicting a
seedlot’s vitality for some of the studied genotypes, generally, those genotypes whose
vitality is not too strong. It is our belief that given the strong influence of environ-
mental variables on the field data, the sample size in this project was too small to
achieve a meaningful representation of the true seedlot distribution.



Samenvatting

De vitaliteit van aardappelplanten is een belangrijk kenmerk voor een goede op-
brengst. Helaas is zelfs met het beste aardappelzaad de vitaliteitsvariatie binnen
een genotype aanzienlijk en dit schaadt zowel boeren als aardappelzaadproducenten.
HZPC en Averis Seeds stellen de hypothese dat er een verband bestaat tussen de
variatie in vitaliteit van een plant en het productieveld van de pootknol. TU Delft,
Universiteit Utrecht, HZPC en Averis Seeds hebben hun krachten gebundeld om het
bestaan en de sterkte van dit verband vast te stellen in een meerjarig project dat
dit onderzoek financiert. In dit proefschrift beschrijven we de bijdrage van de TU
Delft, zowel in het meten van plantvitaliteit als de ontwikkeling van een model om
plantvitaliteit te voorspellen op basis van chemische eigenschappen van de knol.

We beginnen dit proefschrift met een bespreking van de bereikte resultaten en van
de doelen die niet zijn bereikt. We geven wat context en enkele suggesties zodat
toekomstige projecten kunnen leren van onze ervaring.

Ons werk in de eerste jaren richtte zich op het extraheren van een nauwkeurige vi-
taliteitsmeting uit veld- en klimaatgecontroleerde kamerbeelden. Voor dit doel on-
twikkelden we software voor specifieke uitdagingen die samenhingen met onze projec-
topzet en -doelen. In hoofdstuk 2 beschrijven we de proefopzet, zowel op het veld als
in de klimaatkamers, schetsen we de belangrijkste stappen die leiden van een veldop-
name tot een meting van vitaliteit en beschrijven we in detail de beeldverwerking en
de keuzes die gemaakt zijn om tot een enkele vitaliteitsmeting per veld te komen. Op
basis van de vitaliteitsmeting is het al mogelijk om de hypothese van het project te
bevestigen door een sterke, statistisch significante Pearson correlatiecoëfficiënt tussen
de kroonoppervlakten in verschillende velden te observeren.

De ontwikkeling van een voorspellend model voor vitaliteit is een iteratief proces
geweest, beginnend bij de chemometrische data (FTIR, HSI en XRF) en geleidelijk
aan uitgebreid met het microbioom en metaboloom. Onze eerste associatieanalyse ge-
bruikte Partial Least Squares (PLS) om vitaliteit te verbinden met de chemometrische
data. Dit is een methode die in 1974 door Wold werd ontwikkeld om lineaire prob-
lemen op te lossen met een hoge collineariteit in de onafhankelijke variabelen, zoals
die zich voordoen in chemometrische toepassingen. Toen we ons model uitbreidden
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met biotische data, merkten we dat lineaire methoden er niet in slaagden te voor-
spellen. We ontwikkelden de PARCUR-methode, beschreven in hoofdstuk 3, die de
gebruikelijke regressiebenadering omkeert door de kolommen van de matrix van ken-
merken X uit te drukken als functies van de afhankelijke variabele y. Deze benadering
is aanpasbaar in die zin dat de representatiebasis kan worden aangepast aan model-
specifieke behoeften, de keuze van de basis ook een ingebouwde regularisatieaanpak
kan bevatten en tot slot de methode de kwaliteit van de representatie van kenmerken
per kenmerk meet, wat wordt gebruikt om niet-informatieve kenmerken te verwijde-
ren zonder dat opnieuw hoeft te worden getraind. In dit hoofdstuk illustreren we
de methode zowel op een synthetische dataset als op een publiek beschikbare FTIR
dataset voor PET-garen.

Tot slot passen we in hoofdstuk 4 de “PARCUR”-methode toe op de data van drie
jaar. In dit model combineren we chemische en metabole data. Hiervoor gebruiken we
de gewijzigde versie van “PARCUR”, die kenmerken weergeeft in een Discontinuous
Galerkin basis. We bevestigen een aantal conclusies van het microbioom voorspellende
model, namelijk dat de mate van precisie waarmee we vitaliteit kunnen voorspellen
varieert met de soort. We beperken ook de verzameling van voorspellende kenmerken
aanzienlijk en bereiken nauwkeurige resultaten met een van de goedkoopste datasets
om te meten: FTIR.

Concluderend kan ons model de vitaliteit van een genotype voorspellen op basis van
de pootknolsamenstelling, maar binnen het genotype is het model alleen in staat om
de vitaliteit van een partij pootgoed te voorspellen voor sommige van de bestudeerde
genotypen, over het algemeen die genotypen waarvan de vitaliteit niet te sterk is.
We zijn ervan overtuigd dat gezien de sterke invloed van omgevingsvariabelen op de
velddata, de steekproefgrootte in dit project te klein was om een zinvolle weergave
van de werkelijke pootgoedverdeling te bereiken.
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