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Samenvatting

Wiskundige modellering van Snelle, Hoog Volume Infiltratie
in poro-elastische media met behulp van eindige elementen

Menel Rahrah

Naarmate de vraag naar water wereldwijd toeneemt, zal de beschikbaarheid van
zoetwater in veel regio’s waarschijnlijk afnemen als gevolg van een veranderend kli-
maat, een toename van de wereldbevolking en veranderingen in landgebruik en en-
ergieopwekking. Anderzijds, voorspellen klimaatscenario’s extreme perioden van re-
genval en droogte. Zware regenval leidt regelmatig tot overstromingen, schade aan
de infrastructuur en tot erosie van de waardevolle bovengrond. Een eenvoudige en
goedkope oplossing voor beide mondiale problemen is in opkomst: het opslaan van
regenwater in natte perioden voor gebruik in droge perioden. Snelle, Hoog Volume
Infiltratie (FHVI) is een recent ontdekte methode om, in perioden met extreme neer-
slag, snel grote hoeveelheden zoetwater in ondergrondse aquifers te infiltreren en werd
oorspronkelijk ontdekt in de bouwsector. Dit onderzoek omvat de wiskundige model-
lering en de numerieke simulatie van FHVI in poro-elastische media met behulp van
de eindige elementenmethode.

In Hoofdstuk 2 wordt de impact van mechanische trillingen en drukpulsen op de
stroming door de poriën van een poreus medium onderzocht. In deze studie, wordt
een axiale stroming als gevolg van een drukverschil gesimuleerd. Dit probleem wordt
beschreven met behulp van Biot’s poro-elasticiteitssysteem dat wordt opgelost door de
continue Galerkin eindige elementenmethode gecombineerd met het impliciete Euler-
schema. Bovendien worden Monte Carlo-simulaties uitgevoerd om de invloed van
variatie in de invoerparameters op de modeloutput te kwantificeren. Allereerst, wor-
den mechanische oscillaties toegepast als randvoorwaarde voor de vervorming van het
poreuze medium. Uit de numerieke resultaten bleek dat de waterstroom wordt gestim-
uleerd door lopende golven die dezelfde richting hebben als de stroming. Vervolgens
toonde het opleggen van een oscillerende mechanische spanning op de rand van het
domein aan dat water sneller stroomt door poreuze media met grote korreldiame-
ters en/of hoge initiële porositeiten. Ten slotte gaven de numerieke simulaties met
drukpulsen aan dat de gepulseerde injectie een gunstig effect heeft op de waterstroom
door poreuze media.

In Hoofdstuk 3 wordt de injectie van water in de watervoerende laag gesimuleerd,
waarbij de vloeistof radiaal wegstroomt van het injectiefilter ten gevolge van een
drukverschil. Deze studie bevat Monte Carlo-simulaties om de impact van variatie

ix
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in de bodemeigenschappen en de injectieparameters op de stroomsnelheid te kwan-
tificeren. Verder worden twee verschillende injectiemethoden getest en met elkaar
vergeleken om de beste methode voor regenwaterinfiltratie te bepalen. De numerieke
simulaties wezen erop dat, ongeacht het type grond waarin de vloeistof wordt geïn-
jecteerd, gepulseerde injectie de hoeveelheid regenwater kan vergroten die snel in de
ondergrond kan worden opgeslagen.

Het onderzoek naar de relatie tussen de permeabiliteit en de porositeit die in
deze poro-elasticiteitssimulaties wordt gebruikt, begint in Hoofdstuk 4. De Kozeny-
Carman vergelijking wordt meestal gebruikt om de permeabiliteit van het poreuze
medium te bepalen uit de porositeit. Deze vergelijking stelt dat stroming door de
poriën mogelijk is zolang de porositeit groter is dan nul. In tegenstelling tot de
Kozeny-Carman relatie, uit discrete netwerkmodellen is bekend dat de vloeistof niet
zal stromen als de porositeit kleiner wordt dan een bepaalde waarde groter dan nul.
Deze waarden worden bepaald door de percolatiedrempels. Het verschil tussen de
Kozeny-Carman vergelijking en de netwerk-geïnspireerde relatie, die gebaseerd is op
de percolatietheorie, wordt onderzocht in dit hoofdstuk. Uit de numerieke resultaten
kunnen we concluderen dat voor lage percolatiedrempels de netwerk-geïnspireerde
relatie resulteert in hogere stroomsnelheden dan de Kozeny-Carman vergelijking.
Bovendien wordt aangetoond dat de stroomsnelheid aanzienlijk verandert als functie
van de percolatiedrempel, wat betekent dat de waterstroom afhangt van de topologie
van de verbonden porieruimte. Voor hoge percolatiedrempels verschenen ongewenste
oscillaties in de numerieke oplossing. Omdat we kunnen bewijzen dat de oplossing
van Biot’s model convergeert naar de oplossing van een zadelpuntprobleem voor kleine
tijdstappen en een lage permeabiliteit en omdat de hoge percolatiedrempels snel leidt
tot lokaal zeer lage permeabiliteiten, hebben we stabilisatie nodig in de eindige ele-
mentenbenadering.

Hoofdstuk 5 presenteert de toepasbaarheid van de netwerk-geïnspireerde relatie
tussen de permeabiliteit en de porositeit op een driedimensionaal probleem. Dit
probleem bestudeert de infiltratie van een vloeistof in het watervoerende pakket. Het
sterkste kenmerk van de netwerk-geïnspireerde relatie hangt samen met het vermo-
gen om de permeabiliteit goed te beschrijven in geval van lage porositeiten. Daarom
wordt aan de rand van het domein een verticale mechanische spanning uitgeoefend
om een grote dichtheid van de korrels te creëren, wat resulteert in een afname van
de porositeit. Het doel van dit numerieke experiment is om de toepasbaarheid van
deze microscopisch netwerk-geïnspireerde relatie op de driedimensionale macroschaal
te analyseren.

Lineaire poro-elasticiteitstheorie, die werd gebruikt in de bovengenoemde simu-
laties, is een goed model voor zeer kleine vervormingen. De bekende theorie van grote
vervormingen is daarentegen geschikter om poro-elasticiteitsproblemen met matige tot
grote vervormingen op te lossen. Echter, het oplossen van dit niet-lineaire wiskundige
model is complex en heeft hoge rekentijden. In Hoofdstuk 6 vergelijken we de be-
naderingen van de poro-elasticiteitstheorie met grote vervorming met die van de lin-
eaire poro-elasticiteitstheorie voor de oplossing van een tweedimensionaal modelprob-
leem waarbij stroming door poreuze media wordt beschouwd. Bovendien wordt de
impact van een vervormingsafhankelijke permeabiliteit volgens de Kozeny-Carman
vergelijking onderzocht. De numerieke resultaten laten zien dat de fouten in de be-
naderingen voor de vervorming en het drukveld die worden verkregen met behulp van
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de lineaire poro-elasticiteitstheorie voornamelijk te wijten zijn aan het ontbreken van
de kinematische niet-lineariteit. Verder wordt de benaderingsfout in het drukveld
groter als we een constante permeabiliteit gebruiken in plaats van een vervorm-
ingsafhankelijke permeabiliteit.

Omdat het moeilijk is om de samenstelling van een natuurlijke bodem te bepalen,
wordt stroming door de poriën van de bodem meestal gemodelleerd uitgaande van
een homogeen grondmengsel in plaats van een heterogeen mengsel. In Hoofdstuk 7
wordt het verschil tussen de waterstroom in een model met een heterogeen gelaagd
poreus medium en een model met een homogeen poreus medium beschouwd om te
onderzoeken of deze vereenvoudiging gerechtvaardigd is. De studie bevat simulaties
met mechanische trillingen en drukpulsen. Bovendien worden Monte Carlo-simulaties
uitgevoerd om de impact van variatie van modelparameters op de waterstroom te
kwantificeren. De numerieke resultaten laten zien dat water twee keer zo snel door
heterogene gelaagde poreuze media stroomt dan door homogene poreuze media.

In Hoofdstuk 8 wordt het verschil tussen een vloeistofstroom door een homogeen
poreus medium en een macroscopisch-heterogeen poreus medium onderzocht door een
bromide-tracer in een aquifer te injecteren. Gebaseerd op de combinatie van Biot’s
model en de advectie-dispersievergelijking, wordt een gekoppeld model voorgesteld
dat stoftransport in een vervormbare grond beschrijft, rekening houdend met niet-
lineaire permeabiliteit. De numerieke resultaten wezen erop dat een hogere waarde
van de longitudinale dispersiviteit (d.w.z. een grotere microscopische heterogeniteit)
resulteert in een grotere afstand die kan worden bereikt door de bromide-tracer en in
hogere concentratiewaarden in de buurt van het injectiefilter. Verder worden hogere
concentratiewaarden berekend in het heterogene gelaagde poreuze medium dan in het
homogene poreuze medium.





Summary

Mathematical modelling of Fast, High Volume Infiltration
in poroelastic media using finite elements

Menel Rahrah

As demand for water increases across the globe, the availability of fresh water in
many regions is likely to decrease due to a changing climate, an increase in human
population and changes in land use and energy generation. On the other hand, climate
scenarios predict extreme periods of drought and rainfall. Heavy rainfall regularly
leads to flooding, damaging infrastructure, and to erosion of valuable top soil. A
simple and cheap solution for both global problems is emerging: storing rainwater
in wet periods for use in dry periods. Fast, High Volume Infiltration (FHVI) is
a recently discovered method to quickly infiltrate high volumes of fresh water and
it was originally discovered in the field of construction. This research entails the
mathematical modelling and the numerical simulation of FHVI in poroelastic media
using the finite element method.

In Chapter 2, an axial flow owing to a pressure difference is simulated to investigate
the impact of mechanical vibrations and pressure pulses on the flow through the
pores of a porous medium. This problem is described using Biot’s poroelasticity
system which is solved by the continuous Galerkin finite element method combined
with the implicit Euler scheme. Furthermore, Monte Carlo simulations are performed
to quantify the impact of variation in the input parameters on the model output.
Firstly, soil vibrations are applied as oscillatory displacement boundary condition.
Numerical results showed that the water flow is being stimulated by waves travelling
in the same direction. Subsequently, applying an oscillating load on the boundary
showed that water flows faster through porous media with large grain sizes and/or
high initial porosities. Numerical simulations of pressure pulsing pointed out that
pulsed injection has a beneficial effect on the water flow in porous media.

In Chapter 3, the injection of water into an aquifer is simulated where the fluid
flows radially outward owing to a pressure difference. This study contains Monte
Carlo simulations to quantify the impact of variation in the soil characteristics and the
injection parameters on the flow rate. Furthermore, two different injection methods
are tested and compared with each other in order to determine the best method for
rainwater infiltration. Numerical simulations pointed out that, regardless of the type
of soil into which the fluid is injected, by applying pulsed injection we can increase
the amount of rainwater that can be stored quickly in the underground.
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The investigation of the permeability-porosity relation that is used in these poroe-
lasticity simulations is initiated in Chapter 4. The Kozeny-Carman equation is com-
monly used to determine the permeability of the porous medium from the porosity.
This relation states that flow through the pores is possible as long as the porosity
is larger than zero. In contrast, from discrete network models it is known that the
fluid will stop flowing if the porosity becomes smaller than a certain value larger than
zero, dictated by percolation thresholds. The difference between the Kozeny-Carman
equation and the network-inspired relation that is based on the percolation theory, is
investigated. From the numerical results we could conclude that for low percolation
thresholds, the network-inspired relation results in higher flow rates than the Kozeny-
Carman relation. In addition, it is shown that the flow rate changes significantly as
a function of the percolation threshold which means that the water flow depends on
the topology of the connected pore space. For high percolation thresholds, spurious
oscillations appeared in the numerical solution. Since we can prove that the solution
of Biot’s model converges to the solution of a saddle point problem for small time
steps and low permeability, we need stabilisation in the finite element approximation.

Chapter 5 presents the applicability of the network-inspired permeability-porosity
relation on a three-dimensional problem. This problem studies the infiltration of a
fluid into an aquifer. The strongest feature of the network-inspired approach is related
to its capability to give a good description of the permeability in case of low porosities.
Hence, on the top of the domain, a vertical mechanical load is applied in order to
create a large density of the grains which results in a decrease of the porosity. The
goal of this numerical experiment is to analyse the applicability of this microscopic
network-inspired relation on the three-dimensional macro-scale.

Linear poroelasticity theory, which is used in the above-mentioned simulations,
is a good model for very small deformations. On the other hand, the well-known
large-deformation theory is more suitable to solve poroelasticity problems with mod-
erate to large deformations. However, adopting this nonlinear mathematical model
comes with a high computational complexity and cost. In Chapter 6, we compare the
predictions of linear poroelasticity with those of large-deformation poroelasticity in
the context of a two-dimensional model problem where flow through porous media is
considered. In addition, the impact of introducing a deformation-dependent perme-
ability according to the Kozeny-Carman equation is explored. The numerical results
showed that the errors in the displacement and pressure fields that are obtained using
the linear poroelasticity are primarily due to the lack of the kinematic nonlinearity.
Furthermore, the error in the pressure field is amplified by incorporating a constant
permeability rather than a deformation-dependent permeability.

Since it is hard to determine the composition of a natural soil, flow through the
voids in the soil is usually modelled assuming a homogeneous soil mixture rather than
a heterogeneous mixture. In Chapter 7, the difference between the flow of water in a
model with a heterogeneous layered porous medium and a model with a homogeneous
porous medium is explored, in order to investigate whether this simplification is justi-
fied. The study contains simulations with mechanical oscillations as well as pressure
pulses. Furthermore, Monte Carlo simulations are performed to quantify the impact
of variation of model parameters on the volumetric flow rate. From the numerical re-
sults, we could conclude that water flows twice as fast through heterogeneous layered
porous media than through homogeneous porous media.



xv

In Chapter 8, the difference between a fluid flow through a homogeneous porous
medium and a macroscopic-heterogeneous porous medium is investigated by injecting
a bromide tracer into an aquifer. Based on the combination of Biot’s theory of lin-
ear poroelasticity and the advection-dispersion equation, a coupled model describing
solute transport in a deforming soil is proposed, taking into account nonlinear per-
meability. The numerical results pointed out that a higher value of the longitudinal
dispersivity (i.e. a larger microscopic heterogeneity) results in a larger distance that
can be reached by the bromide tracer and in higher concentration values in the vicin-
ity of the injection filter. Furthermore, higher concentration values are computed in
the heterogeneous layered porous medium than in the homogeneous porous medium.





Chapter 1
Introduction

1.1 Motivation

Access to fresh water is considered a universal human right [131]. However, climate
change and the growing population and industrial activity put water resources world-
wide under severe pressure [107]. This issue has already resulted in desiccation in
large areas of the world and in a global freshwater crisis. For this reason, authori-
ties, knowledge institutions and private companies collaborate closely to develop new
approaches to the growing freshwater demand. On the other hand, climate scenarios
predict extreme periods of drought and rainfall. Heavy rainfall regularly leads to
flooding, damaging buildings and infrastructure, and to erosion of valuable top soil.
Traditionally, during periods of heavy rainfall, the approach is to transport water
quickly to surface waters and the sea in order to prevent flooding. However, a simple
and cheap solution for both global problems is emerging: storing water in wet peri-
ods for use in dry periods. Especially the infiltration of large amounts of rainwater
into the shallow subsurface can have great value for battling flooding and for the
underground storage of fresh water. Groundwater is currently the primary freshwater
supply source for approximately two billion people and the dependence on it will in-
crease into the future [76]. A prerequisite for effective storing of rainwater in periods
of extreme precipitation is that the water can be stored quickly. A new method to
quickly infiltrate high volumes of fresh water has been discovered recently. We refer
to this method as Fast, High Volume Infiltration (FHVI).

Another field in which FHVI constitutes a significant breakthrough is in construc-
tion, where this method was originally discovered. Building sites have to be pumped
dry to enable construction. In the past, extracted water was often released into surface
water. However, since the potential impact on the ecology is negative, new regulations
prescribe that water should be returned to the ground. Conventionally, infiltration
has to be applied at a certain distance from the pit, thereby affecting groundwater
levels in a relatively large area. FHVI can be much closer to the pit, as the infiltrated
water is rapidly transported away from the infiltration points. This means that the
effect on groundwater levels is much smaller (see Figure 1.1). However, according to
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preliminary research and findings, this infiltration method does not obey the classical
Dupuit’s law that is commonly used in hydrogeology, and it is currently impossible
to predict its applicability. To describe this infiltration method, we consider a model
for aquifers in which water is injected. The flow of water induces local deformations
in the aquifer, which are described by a poroelastic formalism.

infiltration infiltration

excavation
for construction

extraction

FHVI FHVI

excavation
for construction

extraction

Figure 1.1: A simplified scheme of a conventional infiltration (top) and FHVI (bot-
tom). This scheme emphasises the difference between both infiltration techniques.

In petroleum reservoirs, observations from the last 50 years suggest that seismic
waves generated from earthquakes and passing trains may alter water and oil produc-
tion. It has also been observed in some laboratory measurements and field applications
that imposing harmonic signals into cores or reservoirs sometimes may induce higher
fluid flow rates [97]. Further the fact that the pore pressure may undergo variations
under the influence of seismic waves is well known to geotechnical engineers [11]. In
addition, laboratory experiments have shown that ultrasonic radiation can consider-
ably increase the rate of flow of a liquid through a porous medium [1]. Furthermore,
Davidson et al. [42] performed experiments in a wide range of configurations, grain
sizes, viscosities and flow factors, showing that high-amplitude pressure pulsing or
mechanical excitation of a saturated porous medium under a pressure gradient in-
creases the flow rate of the liquid along the direction of the flow gradient. Based on
the experimental results, they concluded that flow rate enhancement occurred for all
liquids, and for all the grain sizes that were tested.

The research problems we address in the present dissertation is how to mathemat-
ically model FHVI and to investigate whether during FHVI, oscillatory and pulsating
forces that are induced by large injection rates increase the amount of water that can
be injected into an aquifer.
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1.2 Background

Porous media consist of a structure phase (the skeleton) and a viscous fluid phase,
flowing through connected pores. The connected porous space is the space through
which the fluid actually flows and whose two points can be joined by a path lying
entirely within it so that the fluid phase remains continuous there. The matrix is
composed of both a solid part and a possible occluded porosity, whether saturated or
not, but through which no filtration occurs. The connected porosity is the ratio of
the volume of the connected porous space to the total volume. A saturated porous
medium is composed of a porous solid material, the connected porous space of which
is fully saturated by a viscous fluid. Poroelasticity involves fluid flow in porous media
that are elastic and can deform when subjected to external forces and to variations in
pressure of the saturating fluid. Moreover, poromechanical deformations are poroe-
lastic when they are controlled by the reversible storage and release of elastic energy.
In deformable porous materials such as soils, rocks and tissues, the flow of the pore
fluid and the deformation of the solid matrix are tightly coupled to each other.

Poroelasticity theory was originally developed to study several geophysical appli-
cations [61, 68, 91]. In the last few decades, the mechanics of porous media has been of
great interest due to its potential application in many geological and biological systems
across a wide range of scales such as civil engineering [22, 52, 95, 116, 122, 127] with
applications including flow in porous media [34, 55], energy and environmental tech-
nologies [37, 49, 69, 109, 111, 140], materials science [85] and biophysics [50, 92], where
poromechanics plays an important role in modelling bones and soft tissues [3, 41, 120]
and the macroscopic processes in a human lung [133], and it is the dominant mecha-
nism underlying plant motion [45]. In physical chemistry, poromechanical processes
include mass and heat transfer [144]. Additionally, poromechanics has been studied
intensely in geophysics, in the context of consolidation of aquifers [96, 104] and in the
context of enhanced oil and gas recovery [9, 110, 124].

1.2.1 Poroelasticity equations

The theory of poroelasticity has been largely successful in modelling poromechan-
ical behaviour in relatively simple systems. It forms a simplified mixture theory
where a complex fluid-structure interaction problem is replaced by a superposition
of both components, each of them representing a fraction of the complete material.
Assuming only a poroelastic medium with intrinsically incompressible solid and fluid
constituents, a poromechanical problem is described mathematically by a coupled
system of two partial differential equations: the momentum balance equation which
governs the solid deformation, and the mass balance equation which governs the fluid
flow. This continuum theory is fundamentally limited by the high complexity and in
most cases also unknown geometry of porous media on the micro-scale as well as our
limited understanding of the pore-scale interactions between the fluid and the solid.
Hence, a fully resolved model is nearly impossible to obtain, but most of the times
also not necessary to answer important questions.

The theory of poroelasticity originally emerged in soil mechanics with the work
of Terzaghi [128]. Based on Terzaghi’s findings, a theory of porous materials fully
filled with a viscous fluid was presented by Biot [16]. In the following years, Biot
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extended his work to anisotropic materials [17] and later to poroviscoelasticity [18].
Biot gave a complete theory about poroelasticity that describes the behaviour of
fluid-filled porous materials undergoing deformation in the infinitesimal deformation
range. Assuming that the solid material is linearly elastic, the classical theory of
linear poroelasticity developed by Biot [84, 135] can be used to analyse the coupled
interaction between fluid flow and matrix deformation. The classical theory of linear
poroelasticity captures this coupling by describing the mechanical behaviour of a
porous medium using a linear elastic formulation for the solid matrix, and Darcy’s
law for the fluid flow through the matrix. These theories mentioned above are quasi-
static theories, i.e., no inertia effects have been taken into account. Furthermore, in
Biot’s theory a fully saturated material is considered, hence an elastic skeleton with
a statistical distribution of the interconnected pores is considered.

The classical theory of linear poroelasticity is a good model for infinitesimal defor-
mations of the solid, but it becomes increasingly inappropriate for moderate to large
deformations. Since many real systems feature large deformations, such as damage,
fractures or swelling, that lead to a strongly nonlinear coupling between the pore
structure and the fluid flow [50, 109], it is important to consider the complete poroe-
lasticity theory without linearisation. In the well-known theory of large-deformation
poroelasticity, fluid flow is described by Darcy’s law and mass conservation, and ma-
trix deformation is described by Biot’s constitutive relations and nonlinear elasticity.

1.2.2 Permeability-porosity relationschips

For the description of different physical processes, such as consolidation, it is of a
pivotal importance to have a valid estimation of permeability. The permeability of
porous media is usually expressed as a function of some physical properties of the
interconnected pore system such as porosity. One of the first published relations
introduced by Hazen [59], relates the hydraulic conductivity of a porous medium to
the characteristic particle diameter, the maximum diameter of the finest 10% of the
grains in that solid medium, using an empirical coefficient. The applicability of the
Hazen relation is limited to a small range of characteristic particle diameters, which,
together with the variability of the empirical coefficient, make it unsuitable for general
use.

Although it is natural to assume that the permeability depends on the porosity,
it is not simple to formulate satisfactory theoretical models for the relation between
them, mainly due to the complexity of the connected pore space. The most widely
used permeability-porosity relationships is the Kozeny-Carman relation, which was
originally published in [75] and was later modified in [35]. This relation assumes that
the connectivity of a porous space does not vary in time, either by assuming a pore
space that stays fully connected or by taking the effective porosity initially and as-
suming no loss of connectivity. Therefore, the Kozeny-Carman relation assumes that
flow through the porous medium is possible as long as the porosity is nonzero. Hence,
this relation is not capable of predicting blocking of the flow if the porosity is too
low in some parts of the porous medium leading to poorly connected porous media,
as is shown by Mostaghimi et al. [93]. Moreover, it is empirically proven that the
permeability decreases dramatically with decreasing porosity [15], indicating that the
Kozeny-Carman relation is less accurate at low porosities. To improve the behaviour
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of this relation for small values of the porosity, Mavko and Nur [88] incorporated a
simple porosity adjustment into the Kozeny-Carman relation, by taking the perco-
lation threshold into account. This approach resulted in a better prediction of the
permeability for low porosities. However, in the study of Mavko and Nur the perco-
lation threshold was chosen empirically to give a good fit for the experimental data.
Another approach to take into account the percolation threshold was presented by
Porter et al. [99], based on the work of Koltermann and Gorelick [72], who adapted
the Kozeny-Carman equation to represent bimodal grain-size mixtures.

In the literature, the relationship between the permeability and the porosity is also
derived using upscaling-based approaches, in case the underlying pore geometry of a
representative elementary volume is prescribed [112]. Application of these approaches
provides a link from the micro- to macroscopic behaviour of the material and allows
the derivation of effective properties. Starting from mathematical models at the pore
scale, such as the Stokes equation for fluid flow, an averaging procedure is performed
in order to derive effective models. Possible averaging methods that may be applied to
these equations are volume averaging [139] and two-scale asymptotic expansion [10].
The effective permeability tensor is given as the integral over solutions of auxiliary
cell problems which are defined on the representative elementary volume. Upscal-
ing methods directly enable calculating the full, potentially anisotropic, permeability
tensor and one only needs the geometric information in terms of a representative el-
ementary volume as input [112]. In contrast, well-established relations such as the
Kozeny-Carman equation relate the porosity to a scalar permeability coefficient. An-
other upscaling method is the fast marching method (FMM), that is employed by
Sharifi et al. [114] as an efficient tool for permeability upscaling. Their approach is
based on the minimisation of the difference between dynamic behaviours of fine-scale
and up-scaled reservoir models that is provided by the FMM.

1.2.3 Numerical procedure

The equations describing poroelastic flow and deformation are derived from the prin-
ciples of conservation of fluid mass and the balance of forces on the porous matrix.
These equations can be solved either iteratively or simultaneously as a fully coupled
system. In the fully coupled method the equations of flow and soil mechanics are
solved simultaneously at each time step. The iterative coupling method solves the
pore fluid flow variables and the mechanical variables independently and sequentially.
The iterative coupling between the fluid pressure and the mechanical deformations is
then performed at the end of each time step [81]. A widely used approach in cou-
pling the flow and the mechanics in porous media iteratively, is the fixed stress split
iterative algorithm [25, 71, 90]. The monolithic approach is consistent and rigorous,
because the fluid flow and the mechanics equations are solved simultaneously on the
same discretised grid [61]. Consequently, the coupled poroelasticity model requires
intensive computation. However, the fully coupled method is more efficient in poroe-
lasticity problems with strong hydromechanical coupling [43]. Hence, the monolithic
approach for solving the quasi-static poroelasticity equations is adopted in this study.

Since it is difficult to obtain analytical solutions for poroelasticity problems, solv-
ing these problems relies mainly on numerical methods. In particular, numerical
methods are necessary to solve poromechanical problems with large deformation since
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these systems are inherently nonlinear. Solving the poroelasticity equations has been
attracting attention from the scientific computing community [63, 94, 138], and refer-
ences therein. More recent work can be found in [51, 62, 63, 102, 121]. The classical
poroelasticity equations have been solved by Luo et al. [83] using the finite volume
method combined with a nonlinear multigrid method. In addition, stabilised finite
difference methods using central differences on staggered grids are used by Gaspar
et al. [53, 54] to solve Biot’s model. However, the numerical solution of the two-
dimensional poroelasticity equations is usually approached using finite element meth-
ods [8, 79, 98]. Hence, in this dissertation, numerical models have been developed
to solve the poroelasticity equations following the continuous Galerkin (CG) finite
element method.

The linear poroelastic equations are often solved in a two-field formulation with
the solid skeleton displacements and the fluid pressures as primary variables. From
these variables the fluid flux can be recovered [94, 141]. However, since a differen-
tial operator is acting on the fluid pressure, the flow is of a lower accuracy than the
pressure in the two-field approach. Hence, a three-field formulation with the displace-
ment, fluid flux and pressure as primary variables [13] is used in many applications
of the poroelastic equations in which the flow of the fluid through the medium is of
primary interest. This avoids the need for post-processing to calculate the fluid flux
and allows physically meaningful boundary conditions to be applied when modelling
the interaction between a fluid and a poroelastic structure [6]. A clear disadvantage
of the three-field formulation is the increased number of degrees of freedom of the
linear system arising from the finite element discretisation. The simplicity of the
displacement-pressure two-field formulation is attractive and hence pursued by this
dissertation.

When using the finite element method to solve the two-field poroelastic equations,
the main challenge is to ensure convergence of the method and to prevent numerical in-
stabilities. These instabilities often manifest themselves in the form of localised spuri-
ous oscillations in the pressure field, when seeking to approximate steep pressure gradi-
ents in the solution. The nonphysical pressure oscillations are especially observed in fi-
nite element calculations of poroelastic problems involving low-permeable media [102]
and in problems with Dirichlet pressure boundary conditions such as Terzaghi’s prob-
lem [94, 141]. It has been proved that this problem is caused by the saddle point
structure in the poroelasticity equations leading to a violation of the Ladyzhenskaya-
Babuska-Brezzi (LBB) inf-sup stability condition (see Chapter 4). Solving this prob-
lem requires a stable mixed element pair [57] such as the popular Taylor-Hood element,
that employs one order higher interpolation for the displacement compared to the fluid
pressure [125]. When using equal-order interpolations of displacement and pressure
field, these oscillations can be alleviated and, in some cases, completely eliminated
by using stabilisation techniques [123, 129, 134, 141]. Various stabilisation schemes
have been developed, including the Brezzi-Pitkäranta scheme [31], the Galerkin least-
squares approach [66], the variational multiscale method [65], the polynomial pressure
projection technique [19, 44], and the pressure stabilisation procedure [2, 108].
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1.3 Dissertation objectives

The aim of this dissertation is to model the infiltration method FHVI mathematically
and to investigate whether during FHVI, oscillatory and pulsating forces that are
induced by large injection rates increase the amount of water that can be injected
into an aquifer. The research objectives are defined as follows:

• Construct a methodology to investigate the impact of mechanical vibrations and
pressure pulses on the flow through porous media and to quantify the impact
of variation in the input parameters on the model output using Monte Carlo
simulations;

• Investigate the applicability of the permeability-porosity relation based on the
percolation theory on poroelasticity problems;

• Develop a finite element solver for linear and nonlinear poroelasticity problems,
which will be used to compare the predictions of linear poroelasticity with those
of large-deformation poroelasticity;

• Explore the difference between the fluid flow in a model with a homogeneous
porous medium and the same fluid flow through a heterogeneous layered porous
medium.

1.4 Dissertation outline

The rest of this dissertation is organised as follows:

• In Chapter 2, an axial flow is simulated to investigate the impact of mechanical
vibrations and pressure pulses on the flow through the pores of a porous medium.
Furthermore, Monte Carlo simulations are performed to quantify the impact of
variation in the input parameters on the model output.

• In Chapter 3, the injection of water into an aquifer is simulated where the fluid
flows radially outward owing to a pressure difference. This study contains Monte
Carlo simulations to quantify the impact of variation in the soil characteristics
and the injection parameters on the flow rate. Furthermore, two different injec-
tion methods are tested and compared with each other in order to determine
the best method for rainwater infiltration.

• Chapter 4 analyses the permeability-porosity relation that is used in the poroe-
lasticity simulations. Therefore, the difference between the Kozeny-Carman
equation and the network-inspired relation that is based on the percolation
theory, is investigated. In addition, the convergence of the solution of Biot’s
model to the solution of a saddle point problem for small time steps and low
permeability is proven.

• In Chapter 5 the applicability of the microscopic network-inspired permeability-
porosity relation on a three-dimensional macro-scale problem is presented. This
problem studies the infiltration of a fluid into an aquifer.
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• In Chapter 6, the predictions of linear poroelasticity with those of nonlin-
ear poroelasticity are compared. In addition, the impact of introducing a
deformation-dependent permeability according to the Kozeny-Carman equation
is explored.

• Chapter 7 presents the difference between the water flow in a model with a
heterogeneous layered porous medium and a model with a homogeneous porous
medium. The study contains simulations with mechanical oscillations as well
as pressure pulses. Furthermore, Monte Carlo simulations are performed to
quantify the impact of variation of model parameters on the flow rate.

• In Chapter 8, the difference between a fluid flow through a homogeneous porous
medium and a macroscopic-heterogeneous porous medium is investigated by
injecting a bromide tracer into an aquifer. Based on the combination of Biot’s
theory of linear poroelasticity and the advection-dispersion equation, a coupled
model describing solute transport in a deforming soil is proposed, taking into
account nonlinear permeability.



Chapter 2
Monte Carlo assessment of the impact
of oscillatory and pulsating boundary

conditions

Stress and water injection induce deformations and changes in pore
pressure in the soil. The interaction between the mechanical deforma-
tions and the flow of water induces a change in porosity and permeability,
which results in nonlinearity. To investigate this interaction and the im-
pact of mechanical vibrations and pressure pulses on the flow rate through
the pores of a porous medium under a pressure gradient, a poroelastic
model is proposed. In this chapter, a Galerkin finite element method
is applied for solving the quasi-static Biot’s consolidation problem for
poroelasticity, considering nonlinear permeability. Space discretisation
using Taylor-Hood elements is considered, and the implicit Euler scheme
for time stepping is used. Furthermore, Monte Carlo simulations are
performed to quantify the impact of variation in the parameters on the
model output. Numerical results show that pressure pulses and soil vi-
brations in the direction of the flow increase the amount of water that
can be injected into a deformable fluid-saturated porous medium.

This chapter is based on the journal article:

M. Rahrah and F. Vermolen. Monte Carlo Assessment of the Impact of Oscillatory and Pulsating
Boundary Conditions on the Flow Through Porous Media. Transp. Porous Med., 123(1):125 –
146, 2018.

9
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2. Monte Carlo assessment of oscillatory and pulsating BC’s

2.1 Introduction

Our aim is to investigate whether during Fast, High Volume Infiltration (FHVI), large
injection rates induce an oscillatory or a pulsating force near the injection point and
whether induced vibrations increase the amount of water that can be injected into an
aquifer. In this chapter, we tackle the second question by investigating the impact of
soil vibrations and pressure pulses on the effective transmigration of water through
the pores of the soil. For this purpose, a tube filled with a deformable fluid-saturated
porous medium is simulated, into which water is injected. In the current chapter,
Biot’s consolidation model for poroelasticity [16, 17] is used to determine the local
deformation of the porous medium as a result of the injection of water. Darcy’s
law [64] is used in Biot’s model to describe the fluid flow, while linear elasticity of
the porous medium determines the local deformations as a result of the vibrations.
More precisely, we use in this chapter a simplistic Hookean representation of the
deformation of the soil.

In this study, a finite element method based on Taylor-Hood elements, with linear
and quadratic basis functions, has been developed for solving the system of incom-
pressible poroelasticity equations. This method is commonly used for flow problems
modelled by (Navier-)Stokes equations. Furthermore, the fully coupled scheme was
employed which involves solving the coupled governing equations of flow and geome-
chanics simultaneously at every time step. In this manuscript, we consider a nonlinear
relation between the permeability and the dilatation. Subsequently, to quantify the
impact of variation of model parameters such as Young’s modulus, the oscillatory
modes and the injection pressure pulses, we further present results from an uncer-
tainty quantification. This uncertainty quantification is used to quantify the propa-
gation of uncertainty in the input data. Such uncertainty quantifications have been
applied in biomedical mathematics [73] and in geomechanics [82], where an uncer-
tainty quantification is carried out by modelling the permeability as a stochastic field
parameter.

The rest of this chapter is organised as follows: Section 2.2 describes Biot’s con-
solidation model. Section 2.3 presents the numerical experiments that are used to
demonstrate the impact of oscillatory and pulsating boundary conditions on the volu-
metric flow rate. In Section 2.4, the numerical method is formulated. Here, the weak
form of the partial differential equations is derived and the Galerkin finite element ap-
proximations are described. Section 2.5 presents some of our numerical experiments
and results. Lastly, in Section 2.6 the conclusions and some suggestions for further
work are given.

2.2 Governing equations

Sand and gravel layers (aquifers) are not rigid, but constitute an elastic matrix, if
the deformations are very small. To be able to determine the local displacement of
the skeleton of the porous medium, as well as the fluid flow through the pores, after
injection of water, the model provided by Biot’s theory of linear poroelasticity with
single-phase flow is used [16, 17]. In this model, flow in porous media is combined
with mechanical deformations of the soil into which water is injected. Furthermore,
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Darcy’s law [64] and infinitesimal strain theory [26] are used to describe the fluid flow
and the local displacements, respectively. Note that this is an approximation if the
displacements and the strains are large.

2.2.1 Biot’s partial differential equations

The quasi-static Biot model for soil consolidation describes the time-dependent in-
teraction between the displacement of the solid matrix and the pressure of the fluid.
We assume the porous medium to be linearly elastic, homogeneous, isotropic and
saturated by an incompressible Newtonian fluid. According to Biot’s theory, the
consolidation process satisfies the following system of equations [2, 36, 135]:

mechanical balance: −∇ · σ′ + (∇p+ ρgez) = 0; (2.1)
constitutive equation: σ′ = λtr(ε)I + 2µε; (2.2)

compatibility condition: ε(u) =
1

2
(∇u +∇uT ); (2.3)

Darcy’s law: v = −κ
η

(∇p+ ρgez); (2.4)

continuity equation:
∂

∂t
(∇ · u) +∇ · v = 0, (2.5)

where σ′ and ε are the effective stress and strain tensors for the porous medium, p is
the pore pressure, ρ is the density of water, g is the gravitational acceleration, λ and
µ are the Lamé coefficients, u is the displacement vector of the porous medium, v is
the percolation fluid velocity relative to the porous medium, κ is the permeability of
the porous medium and η is the dynamic viscosity of the fluid.

2.2.2 Permeability and porosity relations

In the physical problem presented here, we will focus on the interaction between the
mechanical deformations and the flow of water. Therefore, we consider the spatial
dependency of the porosity and the permeability. We calculate the porosity using a
procedure outlined by Tsai et al. [130]. Their derivation is based on the mass balance
of solids in saturated porous media:

∂[(1− θ)ρs]
∂t

+∇ · [(1− θ)ρs
∂u

∂t
] = 0, (2.6)

where θ is the porosity and ρs is the density of the solid skeleton. Assuming that ρs is
constant and that u is sufficiently smooth to interchange the order of differentiation
with respect to time and space, we get

∂θ

∂t
+∇θ · ∂u

∂t
= (1− θ) ∂

∂t
(∇ · u). (2.7)

By Tsai et al. [130], it is assumed that |∂θ∂t | � |∇θ ·
∂u
∂t |; herewith, they arrive at

∂θ

∂t
= (1− θ) ∂

∂t
(∇ · u). (2.8)
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From this equation, we get

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (2.9)

with θ0 the initial porosity. Note that the above relation differs from the one of
Tsai et al. [130], where in Eq. (2.8) they used a linearisation. By not applying this
linearisation, we think that our approach is slightly more accurate. The permeability κ
is determined using the Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ3

(1− θ)2
, (2.10)

where ds is the mean grain size of the soil. As a result of the dependency of the
permeability on the mechanical deformations, problem (2.1)-(2.5) becomes nonlinear.

2.3 The set-up of the model

In this section, we will use Eqs. (2.1)-(2.5) to describe the flow pattern of water in a
tube filled with a poroelastic material, after the injection of water into the left end
of the tube. The situation is as shown in Figure 2.1a. We assume that the gravity-
induced contribution to the flow of water is much smaller than the other contributions,
which yields that the flow is axisymmetric, hence ∂

∂θ̂
(.) = 0 in which θ̂ is the azimuthal

coordinate. Therefore, it is sufficient to determine the solution for a fixed azimuth
(for example, the grey region in Figure 2.1a). The computational domain Ω is thus
a rectangular two-dimensional surface with cylindrical coordinates (x, r), as depicted
in Figure 2.1b.

poroelastic material

L

R
water

(a)

Ω

Γ1

Γ2

Γ3

Γ4

L

R

x

r

(b)

Figure 2.1: Sketch of the set-up for the tube problem: (top) physical problem and
(bottom) numerical discretisation. Taking advantage of the symmetry of geometry
and boundary conditions, only the grey region is discretised.
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In order to solve this problem, Biot’s consolidation model is applied on the com-
putational domain Ω, with two spatial dimensions x = (x, r) and with t denoting
time:

−µ∆̃u− (λ+ µ)∇(∇ · u) +∇p = 0 for x ∈ Ω, t > 0;
∂

∂t
(∇ · u)−∇ · (κ

η
∇p) = 0 for x ∈ Ω, t > 0,

(2.11)

where ∆̃ is the vector Laplacian

∆̃ =

(
∆ 0
0 ∆

)
, (2.12)

where ∆ represents the Laplace operator. To complete the formulation of a well-posed
problem, appropriate boundary and initial conditions are specified in Sections 2.3.1
and 2.3.2.

2.3.1 Water flow in a vibrating tube

To investigate the effect of vibrations on the water flow in the tube, we present two
numerical experiments in this section. In these experiments, several ways of imposing
vibrations are described, whereafter the effect on the volumetric flow rate at the right
end of the tube is determined. In all problems, a tube of length L and initial radius
R is considered. Furthermore, we assume that the casing of the tube is deformable,
so that R = R(x, t) holds. The poroelastic material in the tube is assumed to be
isotropic and homogeneous.

Effect of an oscillating casing of the tube on the flow In this problem, a tube
is considered with a frictionless, impermeable casing on which transverse waves are
imposed (as shown in Figure 2.2).

poroelastic material

L

R
water

waves

Figure 2.2: Illustration of the waves imposed on the casing of the tube.

Water is injected at a constant pressure into the soil through the left side surface
(x = 0), while the right side surface (x = L) is kept at an ambient pressure at all
times. Furthermore, filters are placed along the side surfaces to prevent that the
grains exit the tube. More precisely, the boundary conditions for this problem are
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given as follows:
κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ3; (2.13a)

p = 0 on x ∈ Γ2; (2.13b)
p = ppump on x ∈ Γ4; (2.13c)

(σ′n) · t = 0 on x ∈ Γ; (2.13d)
u · n = uvib on x ∈ Γ1; (2.13e)

u · n = 0 on x ∈ Γ2 ∪ Γ3; (2.13f)
u · n ≤ 0 on x ∈ Γ4, (2.13g)

where Γ = Γ1∪Γ2∪Γ3∪Γ4, t is the unit tangent vector at the boundary, n is the outer
normal vector, uvib is a prescribed boundary displacement due to the vibrations and
ppump is a prescribed boundary pore pressure due to the injection of water. Figure 2.1b
shows the definition of the boundary segments. Note that the boundary conditions
on boundary segment Γ3 are required by the definition of symmetry. The variational
inequality in condition (2.13g) accounts for the fact that the grains cannot exit the
tube through boundary segment Γ4. More specifically, condition (2.13g) states

u · n ≤ 0 and (σ′n) · n = 0 or u · n = 0. (2.14)

This boundary condition could also be used on boundary segment Γ2. However, in
this case it is possible that (σ′n) · n = 0 on both boundary segments Γ2 and Γ4.
Then, there is no Dirichlet boundary condition for the horizontal displacement (in
the x-direction). This leads to a degenerate elliptic operator for the displacement u,
which could make the problem ill-posed. Initially, the following condition is fulfilled:

u(x, 0) = 0 for x ∈ Ω. (2.15)

As mentioned earlier, transverse waves are imposed for the boundary displacement
uvib, represented by

uvib(x, t) = γ sin

(
2π

λw
(x− vt)

)
, (2.16)

with γ the amplitude of the wave, λw the wavelength and v the phase velocity. Note
that for v < 0 the wave is travelling to the left, while for v > 0 the wave is travelling
to the right.

Effect of a vibrating imposed load on the flow While in the previous sec-
tion the vibrations were imposed as an oscillating casing of the tube, in this section
the effect of an oscillating load applied on the casing is analysed. Accordingly, the
boundary condition for the mechanical deformation on Γ1 becomes

(σ′n) · n = σ′vib on x ∈ Γ1, (2.17)

with σ′vib is an oscillating vertical load. Similar to the previous section, transverse
waves are used for the oscillating load

σ′vib(x, t) = γσ sin

(
2π

λw,σ
(x− vσt)

)
. (2.18)

On t = 0, the initial condition (2.15) is fulfilled.
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2.3.2 Pulsed injection
Instead of applying mechanical vibrations on the displacement, we can also investigate
the effect of a pulsed injection of water into the left end of the tube. In this case, the
prescribed boundary pore pressure ppump caused by the injection of water will have a
pulsating behaviour rather than being constant. Hence, for the boundary conditions
for the mechanical deformation on Γ1 and for the water pressure on Γ4 holds

p = ppump(t) on x ∈ Γ4; u · n = 0 on x ∈ Γ1, (2.19)

with ppump(t) represented by the Heaviside step function

H(t) =


0 t < 0

1/2 t = 0

1 t > 0

. (2.20)

A rectangular pulse wave with period Tp and pulse time τ can now be defined as

ppump(t) = pmax

Np∑
k=0

(H(t− kTp)−H(t− kTp − τ)), (2.21)

where pmax is the maximum injection pressure and Np is the number of periods.
An example of a rectangular pulse is shown in Figure 2.3. Furthermore, the initial
condition (2.15) is fulfilled.
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Figure 2.3: A visualisation of a rectangular pulse with pmax = 5.0 · 104 Pa, τ = 0.5 s
and Tp = 1.0 s.

2.4 Numerical method
In this section, we outline the numerical procedures used to discretise the poroelastic
model presented in Section 2.2 and to solve the resulting coupled fluid/solid finite-
dimensional problem. The weak form of the governing equations will be derived and
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discretised using a continuous Galerkin finite element approach with displacements
and fluid pressures as primary variables. The suitability of the proposed methodology
to model flow through elastic, saturated porous media will be demonstrated using the
illustrative numerical examples described in the previous section.

2.4.1 Weak formulation
To present the variational formulation of these problems, we first introduce the ap-
propriate function spaces. Let L2(Ω) be the Hilbert space of square integrable scalar-
valued functions f on Ω defined in cylinder coordinates (x, r) as

L2(Ω) = {f : Ω→ R :

∫
Ω

|f |2 r dΩ <∞}, (2.22)

with inner product

(f, g) =

∫
Ω

fgr dΩ. (2.23)

Let H1(Ω) denote the subspace of L2(Ω) of functions with first derivatives in L2(Ω).
We further introduce the function space

Q = {q ∈ H1(Ω) : q = 0 on Γ2 and q = ppump on Γ4} (2.24)

for all the problems that we consider. Subsequently, we use the function spaces

W = {w ∈ (H1(Ω))2 : w · n = uvib on Γ1 and w · n = 0 on Γ2} (2.25)

and
W0 = {w ∈ (H1(Ω))2 : w · n = 0 on Γ1 ∪ Γ2} (2.26)

for the problems with boundary conditions as stated in Eqs. (2.13) and (2.19), re-
spectively. For the problem with boundary conditions (2.17), we introduce

W = {w ∈ (H1(Ω))2 : w · n = 0 on Γ2}. (2.27)

Furthermore, we consider the bilinear forms [100]

a(u,w) = λ(∇ · u,∇ ·w) + 2µ

nd∑
i,j=1

(εij(u), εij(w)); (2.28)

b(p, q) =

nd∑
i=1

(
κ

η

∂p

∂xi
,
∂q

∂xi
), (2.29)

with nd the spatial dimension of the problem. The variational formulation in cylinder
coordinates (x, r) for problem (2.11) with boundary and initial conditions (2.13)-(2.15)
and also for problem (2.11) with initial and boundary conditions (2.15) and (2.19)
consists of the following, using the notation u̇ = ∂u

∂t :
For each t > 0, find (u(t), p(t)) ∈ (W ×Q) and (u(t), p(t)) ∈ (W0 ×Q) such that

a(u(t),w)− (p(t),∇ ·w) = h(w) ∀w ∈ W0; (2.30)
(∇ · u̇(t), q) + b(p(t), q) = 0 ∀q ∈ Q0, (2.31)
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with the initial condition u(0) = 0, and where

h(w) = −ppump
∫

Γ4

w · n r dΓ; (2.32)

Q0 = {q ∈ H1(Ω) : q = 0 on Γ2 ∪ Γ4}. (2.33)

The variational formulation for problem (2.11) in cylinder coordinates (x, r) with
initial and boundary conditions (2.15) and (2.17) consists of the following:

For each t > 0, find (u(t), p(t)) ∈ (W ×Q) such that

a(u(t),w)− (p(t),∇ ·w) + c(p(t),w) = h(w) + g(w) ∀w ∈ W ; (2.34)
(∇ · u̇(t), q) + b(p(t), q) = 0 ∀q ∈ Q0, (2.35)

with the initial condition u(0) = 0, and where

c(p,w) =

∫
Γ1

p w · n r dΓ; (2.36)

g(w) =

∫
Γ1

σ′vib w · n r dΓ. (2.37)

2.4.2 Finite element discretisation
Problems (2.30)-(2.33) and (2.34)-(2.37) are solved by applying the finite element
method, with triangular Taylor-Hood elements [28, 70, 113]. Let Pk

h ⊂ H1(Ω) be
a function space of piecewise polynomials on Ω of degree k. Hence, we define finite
element approximations for W and Q as W k

h = W ∩ (Pk
h ×Pk

h) with basis

{φφφi = (φi, φi) ∈ (W k
h ×W k

h ) : i = 1, . . . , nu}

and Qk′

h = Q ∩Pk′

h with basis {ψj ∈ Qk′

h : j = 1, . . . , np}, respectively [2, 100].
Subsequently, we approximate the functions u(t) and p(t) with functions uh(t) ∈ W k

h

and ph(t) ∈ Qk′

h , defined as

uh(t) =

nu∑
i=1

ui(t)φφφi, ph(t) =

np∑
j=1

pj(t)ψj , (2.38)

in which the Dirichlet boundary conditions are imposed. Then, the semi-discrete
Galerkin approximation of problem (2.30)-(2.33) is defined as follows:

For each t > 0, find functions (uh(t), ph(t)) ∈ (W k
h ×Qk′

h ) and (uh(t), ph(t)) ∈
(W k

0h ×Qk′

h ) such that

a(uh(t),wh)− (ph(t),∇ ·wh) = h(wh) ∀wh ∈ W k
0h; (2.39)

(∇ · u̇h(t), qh) + b(ph(t), qh) = 0 ∀qh ∈ Qk′

0h, (2.40)

and for t = 0: uh(0) = 0.

Simultaneously, discretisation in time is applied using the backward Euler method.
Let ∆t be the time step size and define a time grid {tm = m∆t : m ∈ N}, then the
discrete Galerkin scheme of (2.39)-(2.40) is formulated as follows:
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For m ≥ 1, find (umh , p
m
h ) ∈ (W k

h ×Qk′

h ) and (umh , p
m
h ) ∈ (W k

0h ×Qk′

h ) such that

a(umh ,wh)− (pmh ,∇ ·wh) = h(wh) ∀wh ∈ W k
0h; (2.41)

(∇ · umh , qh) + ∆t b(pmh , qh) = (∇ · um−1
h , qh) ∀qh ∈ Qk′

0h, (2.42)

while for m = 0: u0
h = 0.

The discrete Galerkin scheme for problem (2.34)-(2.37) is derived similarly. These
discrete Galerkin schemes are solved using triangular Taylor-Hood elements. The
displacements are spatially approximated by quadratic basis functions, whereas con-
tinuous piecewise linear approximation is used for the pressure field. We remark that
the Taylor-Hood elements are suitable as a stable approach for this problem. However,
spurious oscillations are diminished but not completely removed for small time steps.
To fully remove the nonphysical oscillations, one may use the stabilisation techniques
as considered by Aguilar et al. [2]. The numerical investigations are carried out using
the matrix-based software package MATLAB (version R2011b). At each time step,
we solve Eqs. (2.41)-(2.42) as a fully coupled system, where we use the permeability
from the previous time step. After having obtained the numerical approximations for
u and p, we update the porosity using Eq. (2.9). Subsequently, the Kozeny-Carman
relation (2.10) is used to calculate the permeability. The new value for the perme-
ability is then used for the next time step. An iterative method is not used in this
approach because of efficiency and since no instability was observed in our results. In
order to use Eq. (2.9), we determine the dilatation

∇ · umh =
∂umx,h
∂x

+
1

r

∂(rumr,h)

∂r
, (2.43)

using the numerical solution uh = (ux,h, ur,h) at time tm. The spatial derivatives in
the dilatation

ωm1 =
∂umx,h
∂x

and ωm2 =
1

r

∂(rumr,h)

∂r
, (2.44)

are then computed by applying the finite element method. Firstly, we introduce
the functions d ∈ L2(Ω) and we define the finite element approximation as Dk

h =
L2(Ω) ∩Pk

h with basis {ξi ∈ Dk
h : i = 1, . . . , nu}. Secondly, we approximate the

function ωm1 with the function ωm1,h ∈ Dk
h , defined as

ωm1,h =

nu∑
i=1

ωm1,iξi. (2.45)

Hence, the discrete Galerkin scheme is given by
For m ≥ 1, find ωm1,h ∈ Dk

h such that

(ωm1,h, dh) = (
∂umx,h
∂x

, dh) ∀dh ∈ Dk
h .

The discrete Galerkin scheme for the function ωm2 is derived similarly. In these fi-
nite element schemes, the spatial derivatives are approximated by quadratic basis
functions. For the integrals in the element matrices and the element vectors, exact
integration is used. Regarding accuracy, our numerical experiments showed that this



2.5. Numerical results

2

19

strategy produced sufficiently reliable results. We note that improvements of the accu-
racy can be obtained using gradient recovery techniques which yield superconverging
behaviour [147]. The aim of this study is to investigate the impact of oscillatory and
pulsating boundary conditions on the volumetric flow rate at the right end of the
tube. We compute the volumetric flow rate at the right boundary segment, using
the velocity field as described by Darcy’s law (2.4). To compute the velocity field
for post-processing issues, the finite element method is applied analogously to the
computation of the derivatives of the displacements, combined with piecewise linear
approximation and exact integration.

2.5 Numerical results

In this section, we discuss the solution results for the discrete Galerkin approximation
of the quasi-two-dimensional problems that are presented in Section 2.3. The sim-
ulation domain is a rectangle with length 1.0 m and width 10 cm (see Figure 2.1b).
The domain is discretised using a 101 by 11 regular triangular grid, which provides
sufficient resolution according to a mesh refinement study. The chosen values for the
material properties of the porous medium are given in Table 2.1, where λ and µ are
related to Young’s modulus E and Poisson’s ratio ν by [2]:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Table 2.1: An overview of the values of the material properties and the parameters of
the model.

Property Symbol Value Unit

Young’s modulus E 107 Pa
Poisson’s ratio ν 0.3 -
Fluid viscosity η 1.307 · 10−3 Pa · s
Initial porosity θ0 0.375 -
Mean grain size ds 0.2 · 10−3 m
Pump pressure ppump 0.5 · 105 Pa

The values in Table 2.1 are chosen based on discussions with experts from engi-
neering and consultancy company Fugro GeoServices B.V. and on the literature [142].

2.5.1 The impact of an oscillating casing of the tube on the
water flow

In order to obtain some insight into the impact of an oscillating casing of the tube
on the water flow, we present an overview of the simulation results in Figures 2.4
and 2.5. In this simulation, water is injected into the soil at a constant pump pressure
equal to 0.5 bar. As a consistency check, we start with the simulation results for
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problem (2.41)-(2.42) without any vibrations, i.e. uvib = 0. The simulated pressure,
fluid velocity, permeability and displacement profiles are provided in Figure 2.4.
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Figure 2.4: Numerical solutions for the pressure, the fluid velocity, the permeability
and the displacement, without vibrations, at time t = 5 using a constant time step
size ∆t = 0.1. The values of the remaining parameters are as depicted in Table 2.1.

As shown in Figure 2.4, the simulated pressure is almost linear and the behaviour
of the fluid velocity is completely horizontal. This means that the injected water flows
in a horizontal direction through the tube from the left end of the tube to the right
end. Mechanically, the deformations in the porous medium are negligible, other than
a small shift of the grains to the right, as a result of the force exerted on the grains
by the injected water. As a result of this small shift of the grains and the assumption
that the grains cannot exit the tube, we expect a higher grain density near the right
end. Consequently, the permeability will linearly decrease towards the right end of
the tube, as depicted in Figure 2.4c. In Figure 2.5, the numerical solutions are shown
for a test case of problem (2.41)-(2.42) with vibrations. In this test case, a transverse
wave (2.16) travelling to the right is chosen as prescribed boundary displacement uvib,
with γ = 1 cm, λw = 1 m and v = 1 m/s.

In contrast to the pressure shown in Figure 2.4a, the numerical solution for the
pressure in the problem with vibrations is no longer linear, but shows an oscillatory
behaviour, as depicted in Figure 2.5a. The vibrations also provide an oscillatory
profile in the permeability, as shown in Figure 2.5c. In this figure, we can see that the
permeability decreases when the grains are pressed together by the vibration, while
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(c) Numerical solution for the per-
meability.
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Figure 2.5: Numerical solutions for the pressure, the fluid velocity, the permeability
and the displacement, at time t = 5 using a constant time step size ∆t = 0.1. For the
vibrations a travelling wave to the right is chosen as prescribed boundary displacement
uvib, with γ = 1 cm, λw = 1 m and v = 1 m/s. The values of the remaining parameters
are as depicted in Table 2.1.

it increases when the grains are pulled apart. The simulation results in Figures 2.4
and 2.5 show an impact of the vibrations, imposed on the casing, on the water flow.
However, by only looking at these results, the impact of vibrations on the amount of
water that flows through the tube stays unmeasurable. For this reason, the impact of
the vibrations and pulses on the water flow is defined in this chapter as the impact on
the volumetric flow rate Q at the right end of the tube. In Figure 2.6, two graphs are
presented that sketch the behaviour of the volumetric flow rate over time at the right
end of the tube. In these simulations, the aforementioned test cases are used. For
the test case without vibrations, the time average of the volumetric flow rate Q over
the time interval (0, 5] is equal to 6.86 · 10−5 m3/s. For the test case with imposed
vibrations, the time average of the volumetric flow rate Q over the time interval (0, 5]
is equal to 9.69 · 10−4 m3/s. Thus, the percentage change Q% of the time average of
the volumetric flow rate as result of the imposed vibration is 1311.7%. Based on these
test cases, we can conclude that the volumetric flow rate at the right end of the tube
increases as a result of the imposed vibrations on the casing, as depicted in Figure 2.6.
We finally note that the area enclosed by the Q-curve and the t-axis represents the
total amount of water that flows out of the domain over a certain period.
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Figure 2.6: The volumetric flow rate at the right end of the tube over time, using a
constant time step size ∆t = 0.1. The continuous line represents the volumetric flow
rate for the test case without vibrations. The dashed line represents the volumetric
flow rate for the test case with vibrations, in which for the vibrations a travelling wave
to the right is chosen, with γ = 1 cm, λw = 1 m and v = 1 m/s. The values of the
remaining parameters are as depicted in Table 2.1.

Monoparametric variation

In this section, we will investigate the impact of the transverse waves (2.16) on the
flow of water. Furthermore, the contributions of the variations in the values of the
vibration characteristics to the volumetric flow rate are quantified by assigning a range
of possible values to the parameters: γ, λw and v. Firstly, a monoparametric variation
is applied whereby the values of the parameters are varied one by one, within ranges
of possible values. In Figure 2.7, the volumetric flow rate at the right end of the
tube is depicted over time after applying a monoparametric variation in the values of
the vibration characteristics γ, λw and v. For the variation, the following ranges of
possible values are chosen:

γ ∈ [0, 1, 5, 10] · 10−3, λw ∈ [1/4, 1/2, 1], v ∈ [−2.0,−1.0,−0.5, 0.5, 1.0, 2.0].

In the generations of the simulation results presented in Figure 2.7, the time step size
∆t is determined using the formula ∆t = 1

8f , in which f is the frequency computed
by

f =
|v|
λw

. (2.46)

In case variation is applied to the values of λw or v, the maximum value of f is used to
determine the time step size. Figure 2.7a indicates that an increase in the amplitude
of the imposed wave, with fixed wavelength and phase velocity, results in an increase
in the volumetric flow rate. However, an increase in the wavelength, with fixed am-
plitude and phase velocity, leads to a decrease in the volumetric flow rate, as shown
in Figure 2.7b. Figure 2.7c indicates that an increase in the phase velocity magnitude
|v|, with fixed amplitude and wavelength, leads to a larger impact on the flow rate.
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(a) The flow rate over time, after applying variation in the values of
γ. The other vibration characteristics are λw = 1 and v = 1.
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(b) The flow rate over time, after applying variation in the values
of λw. The other vibration characteristics are γ = 0.01 and v = 1.
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(c) The flow rate over time, after applying variation in the values of
v. The other vibration characteristics are γ = 0.01 and λw = 1.

Figure 2.7: The volumetric flow rate profiles at the right end of the tube over time,
after applying a monoparametric variation in the values of γ, λw and v.
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Furthermore, assigning positive values to the phase velocity v (corresponding with
transverse waves travelling to the right) results in positive volumetric flow rate pro-
files. Assigning negative values to the phase velocity v (corresponding with transverse
waves travelling to the left) produces negative volumetric flow rates. As expected,
the water flow, which is directed to the right, is stimulated by waves travelling in the
same direction. However, waves travelling in the opposite direction counteract the
flow, resulting in negative volumetric flow rates. In fact, the negative volumetric flow
rates are a result of the force applied by the oppositely directed waves that is larger
than the pump pressure. At a higher pump pressure, the effect of these waves on the
volumetric flow rate is smaller, as illustrated in Figure 2.8.
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Figure 2.8: The volumetric flow rate at the right end of the tube over time for different
values of the pump pressure ppump, using a constant time step size ∆t = 0.1. In all
test cases, a travelling wave to the left is chosen as prescribed boundary displacement
uvib, with γ = 1 cm, λw = 1 m and v = −1 m/s.

Multiparametric variation

In the previous section, the contributions of the variations in the values of the vi-
bration characteristics to the volumetric flow rate were quantified by applying a
monoparametric variation where the values of the parameters are varied one by one,
within ranges of possible values. As we choose to fix a number of parameter val-
ues each time, we are not able to draw any conclusions from this monoparametric
variation. In this section, a multiparametric variation is applied to the values of the
vibration characteristics. Multiparametric variation means that all possible combina-
tions of the values of these parameters are considered, in which the values are selected
from sets of possible values. In Figure 2.9, the time average of the volumetric flow
rate at the right end of the tube is depicted after applying a multiparametric varia-
tion to the values of the vibration characteristics γ, λw and v. For the variation, the
following sets of possible values are chosen:

γ ∈ [2, 4, 6, 8, 10] · 10−3, λw ∈ [1/4, 1/3, 1/2, 1],

v ∈ [−2.0,−1.0,−0.5, 0.5, 1.0, 2.0].
(2.47)
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(a) The time average of the volumetric flow
rate as function of γ.
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(b) The time average of the volumetric flow
rate as function of λw.
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(c) The time average of the volumetric flow
rate as function of v.

Figure 2.9: Scatter plots of the time average of the volumetric flow rate over the time
interval (0, 60], after applying a multiparametric variation to the values of the param-
eters γ, λw and v. For the vibrations, transverse waves (2.16) are used as prescribed
boundary displacement uvib, with γ ∈ [2, 4, 6, 8, 10] mm, λw ∈ [1/4, 1/3, 1/2, 1] m and
v ∈ [−2.0,−1.0,−0.5, 0.5, 1.0, 2.0] m/s.

Figure 2.9a shows that an increase in the amplitude of the imposed wave leads
to a larger impact on the time average of the volumetric flow rate Q. However, an
increase in the wavelength results in a smaller impact on Q, as shown in Figure 2.9b.
In both figures, we observe a mirroring across a line near the horizontal axis. Values
of Q above the mirror line correspond with positive values of the phase velocity,
while values of Q bellow the mirror line correspond with negative values of v, as can
be concluded from Figure 2.9c. Furthermore, Figure 2.9c shows that an increasing
phase velocity magnitude |v| leads to a larger impact on Q. In addition, we observe in
Figure 2.9c that for v < 0 some of the values of Q are positive, these values correspond
with small values of the amplitude. In this case, the pump pressure is larger than the
force applied by the oppositely directed waves, which results in positive volumetric
flow rates. Note that these results are consistent with the results from the previous
section.
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Monte Carlo method

The sets of values (2.47) used in the previous section are not covering all possible val-
ues for the vibration characteristics. Hence, instead of varying the parameter values
using sets of predetermined values, we can also sample them from probability distri-
butions. In this section, Monte Carlo method is applied to the values of the vibration
characteristics using samples from uniform distributions with chosen boundaries. In
Figure 2.10, the time average of the volumetric flow rate is depicted after applying
Monte Carlo simulations to the values of the vibration characteristics γ, λw and v. For
the simulations, 300 samples from the following uniform distributions are generated:

γ ∼ U(0.001, 0.01), λw ∼ U(1/4, 1), v ∼ U(−2, 2). (2.48)
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Figure 2.10: Scatter plots of the time average of the volumetric flow rate over the
time interval (0, 70.86], after applying Monte Carlo simulations to the values of γ,
λw and v. For the vibrations transverse waves (2.16) are used as prescribed boundary
displacement uvib, with γ ∼ U(1, 10) mm, λw ∼ U(1/4, 1) m and v ∼ U(−2, 2) m/s.

Similar to the results shown in Figure 2.9, Figures 2.10a and 2.10b indicate that
an increase in the amplitude leads to a larger impact on Q. While an increase in
the wavelength results in a smaller impact on Q. Furthermore, Figure 2.10c shows
that an increasing fase velocity magnitude |v| leads to a larger impact on Q. From
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the formula for the frequency and Figure 2.10, we can conclude that large amplitudes
and high frequencies lead to high volumetric flow rates for v > 0. In Table 2.2, the
Pearson correlation coefficients are given together with the associated p-values. From
this table we can conclude that the vibration characteristics γ and v have the most
impact on the time average of the volumetric flow rate.

Table 2.2: The Pearson correlation coefficients together with the associated p-values.
A p-value less than 0.05 means that the two paired sets of data are most probably
related, at the significance level 0.05.

corr(γ,Q) corr(λw, Q) corr(v,Q)

v > 0 v < 0 v > 0 v < 0 v > 0 v < 0

r 0.82 −0.81 −0.09 0.07 0.40 0.47
p < 0.05 < 0.05 0.27 0.39 < 0.05 < 0.05

To measure the real impact of the transverse waves (2.16) on the water flow, the
percentage change Q% of the time average of the volumetric flow rates as result of
the imposed vibrations is determined by the formula

Q% =
Q−Q0

Q0

· 100, (2.49)

where Q0 is the time average of the volumetric flow rate in the test case without
vibrations. The percentage change Q% of the time average Q, that is computed after
applying the above described Monte Carlo method (see Figure 2.10), is depicted as
function of γ in Figure 2.11.
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Figure 2.11: Scatter plot of the percentage change Q% over the time interval (0, 70.86]
as function of γ, after applying Monte Carlo method to the values of γ, λw and v.

Figure 2.11 shows that, for v > 0, the volumetric flow rate at the right end of
the tube increases as a result of the imposed vibrations on the casing. For vibrations
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with a large amplitude and a high frequency, the time average of the volumetric flow
rate can become as large as 42 times the time average of the volumetric flow rate
in the test case without vibrations. While the smallest percentage change in the
volumetric flow rate as cause of the vibrations is equal to 6.0%. On the other hand,
for v < 0, all vibrations lead to a negative percentage change Q%, even the vibrations
with small values of the amplitude γ. Given the probability space (Ωp,F , P ), with
sample space Ωp (which is the set of all possible outcomes), the set of events F
(where each event is a set with zero or more outcomes), and the probability P , with
P : F → [0, 1], we can compute the cumulative distribution function. In Figure 2.12,
the histogram and the cumulative distribution function of the percentage change Q%

are presented. Since 51% of the sampled values of v are negative, we see in Figure 2.12
that P (Q% ≤ 0) ≈ 0.51. Furthermore, using the probability space we can compute the
probabilities that the percentage change is greater than 100%: P (Q% ≥ 100) ≈ 0.43
and P (Q% ≥ 100|v > 0) ≈ 0.89.
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Figure 2.12: The histogram and the cumulative distribution function of the percentage
change

2.5.2 The impact of a vibrating load on the water flow
In this section, the impact of a vibrating load, which is applied on the casing of the
tube, on the water flow is investigated. This numerical experiment makes it possible
to analyse the contributions of the variations in the values of the porous medium
properties to the volumetric flow rate. These contributions are quantified by assigning
a range of possible values to the parameters: E, ν, θ0 and ds. For this purpose, four
types of soil are distinguished: clay, silt, sand and gravel. In the literature, there is a
large consensus that the Kozeny-Carman equation (2.10) applies to sands but not to
clays [38]. Therefore, this experiment is only applied to sand and gravel.

Monte Carlo method for sand and gravel

Monte Carlo method is applied to the values of the material properties of sand and
gravel, using samples of uniform distributions with boundaries found in the litera-
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ture [56, 117]. As the values within these boundaries are all equally likely to occur,
we have chosen to use uniform distributions instead of another frequently used distri-
butions like the log-normal distribution. In Figures 2.13 and 2.14, the time average of
the volumetric flow rate at the right end of the tube is depicted after applying Monte
Carlo simulations to the values of the material properties E, ν, θ0 and ds. For sand,
300 samples from the following uniform distributions are generated:

E ∼ U(30 · 106, 50 · 106), ν ∼ U(0.15, 0.40), θ0 ∼ U(0.26, 0.46),

ds ∼ U(0.05 · 10−3, 2.00 · 10−3),
(2.50)

while for gravel, 300 samples from these uniform distributions are generated:

E ∼ U(80 · 106, 160 · 106), ν ∼ U(0.30, 0.40), θ0 ∼ U(0.23, 0.38),

ds ∼ U(2 · 10−3, 50 · 10−3).
(2.51)
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Figure 2.13: Scatter plots of Q over the time interval (0, 25], after applying
Monte Carlo simulations to the values of the material properties of sand using the
ranges (2.50). For the vibrations transverse waves (2.18) are used as prescribed ver-
tical load σ′vib, with γσ = 104 Pa, λw,σ = 1/4 m and vσ = 1 m/s.

Figures 2.13 and 2.14 show that water flows faster through porous media with
large mean grain sizes or high initial porosities, after imposing a vibrating load on
the casing. On the other hand, these figures show that the volumetric flow rate is
invariant under variation in the values of Young’s modulus and Poisson’s ratio. This
can also be concluded from the values of the Pearson correlation coefficients given in
Table 2.3.
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Figure 2.14: Scatter plots of Q over the time interval (0, 25], after applying Monte
Carlo simulations to the values of the material properties of gravel using the
ranges (2.51). For the vibrations transverse waves (2.18) are used as prescribed ver-
tical load σ′vib, with γσ = 104 Pa, λw,σ = 1/4 m and vσ = 1 m/s.

Table 2.3: The Pearson correlation coefficients together with the associated p-values.

corr(E,Q) corr(ν,Q) corr(θ0, Q) corr(ds, Q)

sand gravel sand gravel sand gravel sand gravel

r −0.11 0.05 0.05 −0.06 0.52 0.52 0.75 0.77
p 0.07 0.43 0.39 0.30 < 0.05 < 0.05 < 0.05 < 0.05

2.5.3 The impact of a pulsed injection on the water flow

Based on over 160 laboratory tests, Dusseault [46] demonstrated the beneficial effects
of pressure pulsing on the water flow in porous media. To theoretically examine his
findings, we investigated the impact of a pulsed injection of water, into the left end
of the tube, on the water flow. The results of this research are presented in this
section. In addition, the contributions of the variations in the values of the pulse
wave characteristics to the volumetric flow rate are analysed. These contributions
are examined by applying Monte Carlo method to the pulse wave period Tp and the
relative pulse time τ̃ , defined as τ̃ = τ

Tp
, with τ the pulse time (see Formula (2.21)).

Subsequently, in order to be able to draw reliable conclusions about the impact of
pressure pulsing on the volumetric flow rate, we compare the volumetric flow rate
caused by the pulsed injection with the volumetric flow rate by a constant pump
pressure ppump. In this comparison, the percentage change Q% of the time average of
the volumetric flow rate Q is used, determined by

Q% =
Q−QC
QC

· 100, (2.52)
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where QC is the time average of the volumetric flow rate caused by a constant pump
pressure. In each simulation, the constant pump pressure is chosen equal to the total
pump pressure over time by pulsed injection. Hence, for a particular relative pulse
time τ̃ , the constant pump pressure is computed by ppump = τ̃ pmax. In Figure 2.15,
the percentage change in the time average of the volumetric flow rate at the right
end of the tube is depicted after applying Monte Carlo simulations to the values of
the pulse wave characteristics Tp and τ̃ . For the simulation, 300 samples from the
following uniform distributions are generated:

Tp ∼ U(0.5, 4), τ̃ ∼ U(0.1, 0.9). (2.53)

In the generations of the simulation results presented in Figure 2.15, the time step
size ∆t is determined by ∆t =

Tp

20 . As variation is applied to the values of Tp, the
minimum value of ∆t is used as time step size.
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Figure 2.15: Scatter plots of the percentage change Q% of the time average of the
volumetric flow rate over the time interval (0, 20], after applying Monte Carlo method
to the values of Tp and τ̃ using the distributions (2.53). For the pump pressure, pulse
waves (2.21) are used with pmax = 0.5 · 105 Pa.

Figure 2.15 shows that pressure pulsing with small relative pulse times τ̃ leads to
a major increase in the volumetric flow rate, while it increases slightly by increasing
the pulse period Tp. This can also be confirmed by the Pearson correlation coefficients
and the p-values given in Table 2.4.

Table 2.4: The Pearson correlation coefficients together with the associated p-values.

corr(Tp, Q) corr(τ̃ , Q)

r 0.38 −0.83
p < 0.05 < 0.05

In Figure 2.16, the histogram and the cumulative distribution function of the
percentage change Q% are depicted. Since P (Q% ≤ 0) = 0, we can conclude from
Figures 2.15 and 2.16 that pulsed injection has a beneficial effect on the water flow
in porous media.
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Figure 2.16: The histogram and the cumulative distribution function of the percentage
change.

2.6 Discussion and conclusions

In this study, the poroelasticity system with nonlinear permeability is solved using
the Galerkin finite element method based on Taylor-Hood elements, combined with
a backward Euler time integration. The study contains simulations with oscillatory
force boundary conditions as well as pressure pulses. Furthermore, to quantify the
impact of variation of model parameters such as Young’s modulus, the oscillatory
modes and the injection pressure pulses, a probabilistic approach is carried out.

To begin with, soil vibrations are applied on the casing of a tube as oscillatory
displacement boundary condition. Numerical results showed that large amplitudes
and high frequencies of the imposed mechanical vibrations lead to high-volumetric
flow rates for positive values of the phase velocity, corresponding with transverse
waves travelling to the right. Therefore, the flow rate at the right end of the tube
increased as a result of the imposed mechanical vibrations. On the other hand, for
negative values of the phase velocity, corresponding with waves travelling to the left,
the vibrations lead to a decrease in the volumetric flow rate at the right end of the
tube. As expected, the water flow, which is directed to the right, is stimulated by
waves travelling in the same direction, while waves travelling in the opposite direction
counteract the flow, resulting in negative volumetric flow rates in case the force applied
by the oppositely directed waves is larger than the pump pressure. In this chapter,
these effects have been quantified. Subsequently, applying an oscillating load on
the casing of the tube showed that water flows faster through porous media with
large grain sizes and/or high initial porosities. On the other hand, variation in the
values of Young’s modulus and Poisson’s ratio indicated that these parameters do not
have a large impact on the volumetric flow rate. Numerical simulations of pressure
pulsing pointed out that injection pulses with small relative pulse times lead to a
major increase in the volumetric flow rate, while an increasing pulse period results
in a slight increase in the flow rate. Most importantly, we can conclude that pulsed
injection has a beneficial effect on the water flow in porous media.
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In the current chapter, we use a “brute-force” Monte Carlo simulation procedure.
Doing simulations with thousands of samples can reduce the Monte Carlo error. How-
ever, as in our case each sample simulation takes about two hours, we instead adopted
300 samples. In recent studies [40], multilevel Monte Carlo methods (MLMC) have
been applied to various systems, such as groundwater flow. These MLMC methods
are characterised by the advantage that relatively few simulations are needed at high
mesh resolutions, whereas one performs large numbers of simulations at lower reso-
lutions. The MLMC methods are therefore thought to be a suitable candidate for
future applications.

In conclusion, pressure pulses and soil vibrations in the direction of the flow in-
crease the amount of water that can be injected into a tube filled with a deformable
fluid-saturated porous medium. However, to elucidate the underlying mechanisms of
FHVI, the injection of water into an aquifer should be simulated. In addition, fur-
ther research should be carried out to examine the validity and applicability of the
Kozeny-Carman equation especially for the problems in which vibrations can lead to
very large gradients of the porosity and permeability in the soil. Furthermore, it is
important to note that the model we are currently using is based on the assumption
that the displacements and the strains are small. For this reason, we used Hooke’s
law and the assumption that the strain tensor is only determined by the deformation
gradient (and its transpose), while higher-order terms are neglected. However, as
the mechanical vibrations can lead to large strains and displacements, it is probably
more realistic to use a morphoelastic model or another plasticity model for soil. The
treatment of large deformations would imply nonlinear terms. For the morphoelastic
model, for example, an additional nonlinear time-dependent equation would have to
be solved, which would increase the computational complexity. Since the purpose
of this study is to investigate how vibrations can influence the fluid flow using un-
certainty quantification, these nonlinear terms are neglected and the model is kept
simple and cheap from a computational point of view. In Chapter 6 and in [105],
the accuracy of Biot’s linear poroelasticity model in approximating the solutions of
poroelasticity problems with moderate to large deformations is investigated.





Chapter 3
Uncertainty quantification in injection

and soil characteristics

As demand for water increases across the globe, the availability of fresh
water in many regions is likely to decrease due to a changing climate, an
increase in human population and changes in land use and energy gen-
eration. Many of the world’s freshwater sources are being drained faster
than they are being replenished. To solve this problem, new techniques
are developed to improve and optimise renewable groundwater sources,
which are an increasingly important water supply source globally. One of
this emerging techniques is rainwater storage in the subsurface. In this
chapter, different methods for rainwater infiltration are presented. Fur-
thermore, Monte Carlo simulations are performed to quantify the impact
of variation in the soil characteristics and the infiltration parameters on
the infiltration rate. Numerical results show that injection pulses may
increase the amount of water that can be injected into an aquifer.

This chapter is based on the article:

M. Rahrah and F. Vermolen. Uncertainty Quantification in Injection and Soil Characteristics for
Biot’s Poroelasticity Model. In European Conference on Numerical Mathematics and Advanced
Applications ENUMATH 2017, pages 645 – 652. Springer, 2019.
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3.1 Introduction

During rainwater infiltration, different injection methods could be used. Our aim is to
investigate the impact of these injection methods on the percolation fluid velocity of
the injected water into an aquifer. Two injection methods are considered in this chap-
ter: constant injection and pulsed injection. Furthermore, to be able to determine the
fluid flow through the pores of the aquifer, taking into account the local displacement
of the skeleton of the porous medium, Biot’s model for poroelasticity [16] is used in
this study. In addition, the impact of uncertainty in the soil characteristics and in
the injection parameters is quantified using Monte Carlo techniques and statistical
analysis.

The poroelasticity equations are often solved using finite element methods [79, 87].
In this study, a finite element method based on Taylor-Hood elements, with linear and
quadratic basis functions, has been developed for solving the system of incompressible
poroelasticity equations. We remark that the Taylor-Hood elements are suitable as
a stable approach for this problem. Spurious oscillations are diminished but not
completely removed for small time steps. To fully remove the nonphysical oscillations,
one may use the stabilisation techniques as considered in [108].

The rest of this chapter is organised as follows: In Section 3.2 the considered model
equations are presented, including the employed permeability model. The numerical
experiments for the different methods for rainwater infiltration are described in Sec-
tion 3.3. Section 3.4 discusses the numerical results and some concluding remarks are
reported in Section 3.5.

3.2 Governing equations

Assuming that the deformations are very small, the model provided by Biot’s theory
of linear poroelasticity with single-phase flow [16] is used to determine the local dis-
placement of the skeleton of a porous medium, as well as the fluid flow through the
pores. We assume that the deformable fluid-saturated porous medium has a linearly
elastic solid matrix and is saturated by an incompressible Newtonian fluid. The solid
matrix is assumed to be fully connected. Let Ω ⊂ R3 denote the domain occupied by
the porous medium with boundary Γ, and x = (x, y, z) ∈ Ω. Furthermore, t denotes
time, belonging to a half-open time interval I = (0, T ], with T > 0.

The initial boundary value problem for the consolidation process of a fluid flow in
a deformable porous medium is stated as follows [2, 135]:

equilibrium equations: −∇ · σ′ + (∇p+ ρgez) = 0 on Ω× I; (3.1a)

continuity equation:
∂

∂t
(∇ · u) +∇ · v = 0 on Ω× I, (3.1b)

where σ′ and v are defined by the following equations

Biot’s constitutive equations: σ′ = λ(∇ · u)I + µ(∇u +∇uT ); (3.2)

Darcy’s law: v = −κ
η

(∇p+ ρgez). (3.3)
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In the above relations, σ′, p, ρ, g, u, v, λ and µ; κ and η respectively, denote the
effective stress tensor for the porous medium, the pore pressure, the fluid density, the
gravitational acceleration, the displacement vector of the porous medium, Darcy’s
velocity, the Lamé coefficients, the permeability of the porous medium, and the fluid
viscosity. To complete the formulation of a well-posed problem, appropriate boundary
and initial conditions are specified in Section 3.3.

In this study, we focus on the interaction between the mechanical deformations
and the fluid flow during an infiltration process. Therefore, we consider the spa-
tial dependency of the porosity and the permeability of the porous medium. The
permeability can be determined using the Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ(x, t)3

(1− θ(x, t))2
, (3.4)

where ds is the mean grain size of the soil and the porosity θ is computed from the
displacement vector using the porosity-dilatation relation (see [130])

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (3.5)

with θ0 the initial porosity, which is treated in the current chapter as a given constant
in each sample computation. Problem (3.1) is solved as a fully coupled system. At
each time step, after having obtained the numerical approximations for u and p, we
update the porosity using Eq. (3.5). Subsequently, the Kozeny-Carman relation (3.4)
is used to calculate the permeability. The new value for the permeability is then used
for the next time step.

3.3 Problem formulation

The infiltration of a fluid through a filter into an aquifer is shown in Figure 3.1a. We
assume that the flow pattern is axisymmetric, hence for the azimuthal coordinate θ̂
holds ∂

∂θ̂
(.) = 0. Therefore, we determine the solution for a fixed azimuth. The

computational domain Ω is an L-shaped two-dimensional surface with cylindrical
coordinates r = (r, z), as depicted in Figure 3.1b. In order to solve this problem, Biot’s
consolidation model, as described in Section 3.2, is applied on the computational
domain Ω with radius R and height H. The fluid is injected into the soil through a
filter placed on boundary segment Γ3.

The fluid injection can be described by two different boundary conditions: the
volumetric flow rate is prescribed at the injection filter (Neumann boundary condition
for the pore pressure p) or the boundary pore pressure caused by the injection of
the fluid is prescribed at boundary segment Γ3 (Dirichlet boundary condition for
the pore pressure p). Furthermore, the injection tube (boundary segments Γ2, Γ3

and Γ4) is fitted with a casing (boundary segments Γ2 and Γ4) and a perforated
section (boundary segment Γ3) to prevent loose material from entering and potentially
clogging the injection tube.
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Figure 3.1: Sketch of the set-up for the aquifer problem: (left) physical problem and
(right) numerical discretisation. Taking advantage of the symmetry of geometry and
boundary conditions, only the grey region is discretised.

3.3.1 Prescribed injection volumetric flow rate
First, we start by prescribing the injection of a fluid into the soil through a filter
(boundary segment Γ3) using the volumetric flow rate. More precisely, the boundary
conditions for this problem are given as follows:

p = ρg(H − z) on r ∈ Γ1 ∪ Γ6 ∪ Γ7; (3.6a)
κ

η
(∇p+ ρgez) · n = 0 on r ∈ Γ2 ∪ Γ4 ∪ Γ5; (3.6b)

κ

η
∇p · n =

Qin(t)

2πRfLf
on r ∈ Γ3; (3.6c)

σ′n = 0 on r ∈ Γ1 ∪ Γ6; (3.6d)
(σ′n) · t = 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5; (3.6e)

u · n ≤ 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4; (3.6f)
u · n = 0 on r ∈ Γ5; (3.6g)

u = 0 on r ∈ Γ7, (3.6h)

where t is the unit tangent vector at the boundary, n the outward unit normal vector
and Qin is a prescribed injection volumetric flow rate due to the injection of the fluid
through a filter with radius Rf and length Lf . Figure 3.1b shows the definition of
the boundary segments. Note that the boundary conditions on boundary segment Γ5

appear as a result of symmetry. Initially, the following condition is fulfilled:

u(r, 0) = 0 for r ∈ Ω. (3.7)

To infiltrate a fluid into the soil, several injection methods can be used. In this
chapter, we present two different injection methods in order to investigate the impact
of the injection on the water flow in an aquifer.

Constant injection volumetric flow rate We start with the simulation of prob-
lem (3.1) with a constant injection volumetric flow rate Qin,c(t) = Qin,c. Note that
the injection rate is continuous over time.
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Pulsed injection In this method, the prescribed injection volumetric flow rate
will have a pulsing behaviour rather than being constant. In this case, the injection
volumetric flow rate is represented by a combination of the Heaviside step functions

H(t) =


0 t < 0

1/2 t = 0

1 t > 0

. (3.8)

A rectangular pulse wave with period TQ and pulse time τQ is defined as

Qin,p(t) = γQ

NQ∑
k=0

(H(t− kTQ)−H(t− kTQ − τQ)), (3.9)

where γQ is the maximum injection volumetric flow rate and NQ is the number of
periods. Note that the injection rate contains discontinuities over time.

3.3.2 Prescribed pump pressure

Another way to describe the fluid injection is by considering a prescribed pump pres-
sure at the injection filter. Hence, we use a Dirichlet boundary condition for the pore
pressure on boundary segment Γ3. Accordingly, the boundary condition for the pore
pressure on Γ3 becomes

p = ρg(H − z) + ppump(t) on r ∈ Γ3, (3.10)

where ppump is a prescribed pump pressure. On t = 0, the initial condition (3.7) is
fulfilled. Similar to the previous section, two different injection methods to infiltrate
a fluid into the soil are presented, in order to investigate the impact of the injection
on the water flow in an aquifer.

Constant pump pressure We start with the simulation of problem (3.1) with a
constant pump pressure ppump,c(t) = ppump,c. Note that the injection pressure is
continuous over time.

Pulsed pump pressure In this method, the prescribed pump pressure will have
a pulsing behaviour rather than being constant. In this case, the pump pressure is
represented by a rectangular pulse wave with period Tp and pulse time τp, defined as

ppump,p(t) = pmax

Np∑
k=0

(H(t− kTp)−H(t− kTp − τp)), (3.11)

where pmax is the maximum injection pressure and Np is the number of periods. Note
that the injection pressure contains discontinuities over time.
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3.4 Numerical results

The Galerkin finite element method [113], with triangular Taylor-Hood elements,
is employed for the solution of the discretised quasi-two-dimensional problem (3.1).
The displacements are spatially approximated by quadratic basis functions, whereas a
continuous piecewise linear approximation is used for the pressure field. For the time
integration, the backward Euler method is applied. The numerical investigations are
carried out using the matrix-based software package MATLAB (version R2011b).

The computational domain is an L-shaped surface with radius R = 5.0 m, height
H = 5.0 m, filter radius Rf = 20.0 cm and filter length Lf = 1.0 m. The filter is
placed between z = 2 and z = 3. The domain is discretised using a regular triangular
grid, with ∆r = ∆z = 0.1. Mesh refinement did not yield any significant changes
of the numerical solution. In addition, values for some model parameters have been
chosen based on the literature (see Table 3.1).

Table 3.1: An overview of the values of the model parameters.

Property Symbol Value Unit

Fluid viscosity η 1.307 · 10−3 Pa · s
Fluid density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2

Furthermore, the Lamé coefficients λ and µ are related to Young’s modulus E and
Poisson’s ratio ν by [2]:

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (3.12)

In this chapter, we will investigate the impact of two different injection methods
on the flow of water. This impact is defined in this chapter as the impact on the time
average of the volumetric flow rate Qout at a distance R−Rf from the injection filter.
Subsequently, the Monte Carlo method is applied to the values of the soil character-
istics E, ν, θ0 and ds, using samples of uniform distributions with boundaries found
in the literature [89]. Hence, for these simulations, 300 samples from the following
uniform distributions are generated:

E ∼ U(30 · 106, 160 · 106), ν ∼ U(0.15, 0.40), θ0 ∼ U(0.23, 0.46),

ds ∼ U(0.05 · 10−3, 50.0 · 10−3).
(3.13)

In the generations of the simulation results, the time step size ∆t is determined by

∆t =
Ti
10
, (3.14)

where i ∈ {Q, p}.
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3.4.1 Numerical results using a prescribed volumetric flow
rate

To quantify the difference between a pulsed injection and a constant injection of
water into an aquifer, the contributions of the variations in the values of the pulse
wave characteristics to the volumetric flow rate are analysed. These contributions are
examined by applying Monte Carlo method to γQ, TQ and the relative pulse time τ̃ ,
defined as (see Formula (3.9))

τ̃ =
τQ
TQ

. (3.15)

The number of periods NQ is equal to five in all simulations. In each simulation, the
constant injection velocity is chosen equal to the total pulsed injection velocity over
time, in order to be able to draw reliable conclusions. Hence, the constant injection
velocity is computed by

Qin,c = τ̃ γQ. (3.16)

For the simulations, 300 samples from the following uniform distributions are gener-
ated:

γQ ∼ U(10/3600, 40/3600), TQ ∼ U(1, 10), τ̃ ∼ U(0.1, 0.9). (3.17)

Let ‘p’ be an abbreviation for pulsed injection and ‘c’ for constant injection. The
Pearson correlation coefficients ri, with i ∈ {p, c}, are presented together with the
associated pi-values in Table 3.2.

Table 3.2: The Pearson correlation coefficients together with the associated p-values.
A p-value less than 0.05 means that the two paired sets of data are most probably
related, at the significance level 0.05.

rp pp rc pc

corr(E,Qout) 0.09 0.11 0.10 0.10
corr(ν,Qout) 0.05 0.36 0.07 0.21
corr(θ0, Qout) 0.01 0.94 0.01 0.85
corr(ds, Qout) 0.10 0.10 0.09 0.13
corr(γQ, Qout) 0.31 < 0.05 0.28 < 0.05
corr(TQ, Qout) −0.69 < 0.05 −0.66 < 0.05
corr(τ̃ , Qout) 0.45 < 0.05 0.49 < 0.05

From Table 3.2 we can conclude that, for both injection methods, the variation in
the soil characteristics does not have a large impact on the numerical results, while
variation in the injection parameters influence the time average of the volumetric flow
rate at a distance R − Rf from the injection filter significantly. Furthermore, the
results in Table 3.2 show that injection pulses with small pulse periods TQ lead to
a major increase in the volumetric flow rate Qout, while Qout increases slightly by
increasing the relative pulse time τ̃ and the maximum injection velocity γQ. These
conclusions can also be confirmed by the scatter plots shown in Figure 3.2.
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Figure 3.2: Scatter plots of the time average of the volumetric flow rate, after applying
Monte Carlo simulations to the values of γQ, TQ and τ̃ .

To compare the injection methods, the percentage change Q% of the time average
of the volumetric flow rate Qout is used, determined by

Q% =
Qout,p −Qout,c

Qout,c
· 100, (3.18)

where Qout,c and Qout,p are the time averages of the volumetric flow rate as result
of the constant injection and the pulsed injection respectively. In Figure 3.3, the
histogram and the cumulative distribution function of the percentage change Q% are
presented. Since P (Q% > 0) ≈ 0.98, we can conclude that the pulsed injection has a
beneficial effect on the water flow in an aquifer, with a maximal percentage change of
105.7%.
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Figure 3.3: The histogram and the cumulative distribution function of the percentage
change Q% of the time average of the volumetric flow rate.

3.4.2 Numerical results using a prescribed pore pressure
The low impact of the soil characteristics on Qout, as indicated in the previous section,
may be attributed to boundary condition (3.6c). In this section, we will investigate
whether prescribing the pore pressure pressure on the filter instead of the volumetric
flow rate will change this significance. In addition, the contributions of the variations
in the values of the pulse wave characteristics to the volumetric flow rate at a distance
R−Rf from the injection filter are analysed by applying Monte Carlo simulations to
pmax, Tp and the relative pulse time τ̃ as defined in (3.15). For these simulations, 300
samples from the following uniform distributions are generated:

pmax ∼ U(0.1 · 105, 2 · 105), Tp ∼ U(1, 10), τ̃ ∼ U(0.1, 0.9). (3.19)

In each simulation, the constant pump pressure is chosen equal to the total pump
pressure over time by pulsed injection. Hence, for a particular relative pulse time τ̃ ,
the constant pump pressure is computed by

ppump = τ̃ pmax. (3.20)

Similarly to the previous section, the number of periods Np is equal to five in all
simulations. In Figure 3.4, the time average of the volumetric flow rate at the right
end of the tube is depicted after applying Monte Carlo simulations to the values of the
material properties E, ν, θ0 and ds, using the uniform distributions given in (3.13).

From Figure 3.4, we can conclude that water flows faster through porous media
with large mean grain sizes or high initial porosities. On the other hand, these results
indicate that the volumetric flow rate is invariant under variation in the values of
Young’s modulus and Poisson’s ratio. This can also be concluded from the values of
the Pearson correlation coefficients given in Table 3.3. Note that these conclusions
are in agreement with the results presented in Section 2.5.2.
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Figure 3.4: The histogram and the cumulative distribution function of the percentage
change Q% of the time average of the volumetric flow rate.

Table 3.3: The Pearson correlation coefficients together with the associated p-values.
A p-value less than 0.05 means that the two paired sets of data are most probably
related, at the significance level 0.05.

rp pp rc pc

corr(E,Qout) 0.02 0.79 0.01 0.88
corr(ν,Qout) 0.04 0.48 0.04 0.45
corr(θ0, Qout) 0.43 < 0.05 0.42 < 0.05
corr(ds, Qout) 0.45 < 0.05 0.44 < 0.05
corr(pmax, Qout) 0.34 < 0.05 0.34 < 0.05
corr(Tp, Qout) −0.12 < 0.05 −0.12 < 0.05
corr(τ̃ , Qout) 0.23 < 0.05 0.25 < 0.05

From the results presented in Table 3.3 and the scatter plots shown in Figure 3.5,
we can also conclude that pressure pulses with large relative pulse times τ̃ and max-
imum injection pressures pmax lead to an increase in the volumetric flow rate Qout.
However, in contrast with the results in the previous section, the scatter plot in Fig-
ure 3.5b points out that the pulse period Tp does not have a significant impact on the
volumetric flow rate Qout.

To compare the injection methods, the percentage change Q% of the time average
of the volumetric flow rate Qout is used, as defined in (3.18). In Figure 3.6, the
histogram and the cumulative distribution function of the percentage change Q% are
presented. With these numerical results we come to a similar conclusion as in the
previous section, namely that pressure pulses have a beneficial effect on the storage
of rainwater in the shallow subsurface.
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Figure 3.5: Scatter plots of the time average of the volumetric flow rate, after applying
Monte Carlo simulations to the values of pmax, Tp and τ̃ .
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Figure 3.6: The histogram and the cumulative distribution function of the percentage
change Q% of the time average of the volumetric flow rate.
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3.5 Discussion and conclusions
In this work, a numerical model for the quasi-static Biot’s consolidation problem for
poroelasticity has been developed, considering nonlinear permeability. The model is
discretised by a continuous Galerkin finite element method based on Taylor-Hood ele-
ments, combined with the implicit Euler scheme for time stepping. The study contains
Monte Carlo simulations to quantify the impact of variation in the soil characteristics
and the injection parameters on the time average of the volumetric flow rate at a
particular distance from the injection filter. Furthermore, two injection methods: a
pulsed injection and a constant injection, are tested and compared with each other
in order to determine the best infiltration method that can be used for the storage of
rainwater in the shallow subsurface. Finally, two different types boundary conditions
are considered to describe the fluid injection.

To reduce the Monte Carlo error, simulations should be performed with thousands
of samples. However, as in our case each sample simulation takes more than one hour,
we instead adopted 300 samples. Another approach is to use Multilevel Monte Carlo
methods [40]. By applying these methods, relatively few simulations are needed at
high mesh resolutions, whereas one performs large numbers of simulations at lower
resolutions.

The first boundary condition that we used is a Neumann boundary condition
for the pore pressure, where the volumetric flow rate is prescribed at the injection
filter. The numerical simulations of pulsed injection pointed out that injection pulses
with small pulse periods lead to a major increase in the volumetric flow rate, while
an increasing relative pulse time and maximum injection velocity result in a slight
increase in the flow rate. On the other hand, variation in the values of the soil
characteristics indicated that these parameters do not have a large impact on the
volumetric flow rate. On the contrary, numerical simulations using Dirichlet boundary
conditions, in which the boundary pore pressure caused by the injection of the fluid is
prescribed, indicated that water flows faster through porous media with large mean
grain sizes or high initial porosities. On the other hand, the results indicated that
the volumetric flow rate is invariant under variation in the values of Young’s modulus
and Poisson’s ratio. In addition, pressure pulses with large relative pulse times and
maximum injection pressures lead to an increase in the volumetric flow rate. However,
the numerical results pointed out that the pulse period does not have a significant
impact on the volumetric flow rate.

Most importantly, we can conclude that, regardless of the type of soil into which
we inject, by applying pulsed injection we can increase the amount of rainwater that
can be stored quickly in the underground.



Chapter 4
Network-inspired versus
Kozeny-Carman based

permeability-porosity relations
Water injection in an aquifer induces deformations in the soil. These me-

chanical deformations give rise to a change in porosity and permeability, which
results in nonlinearity of the mathematical problem. Assuming that the defor-
mations are very small, the model provided by Biot’s theory of linear poroelas-
ticity is used to determine the local displacement of the skeleton of a porous
medium, as well as the fluid flow through the pores. In this continuum scale
model, the Kozeny-Carman equation is commonly used to determine the perme-
ability of the porous medium from the porosity. The Kozeny-Carman relation
states that flow through the pores is possible at a certain location as long as
the porosity is larger than zero at this location in the aquifer. However, from
network models it is known that percolation thresholds exist, indicating that
the permeability will be equal to zero if the porosity becomes smaller than these
thresholds. In this chapter, the relationship between permeability and porosity
is investigated. A new permeability-porosity relation, based on the percola-
tion theory, is derived and compared with the Kozeny-Carman relation. The
strongest feature of the new approach is related to its capability to give a good
description of the permeability in case of low porosities. However, with this
network-inspired approach small values of the permeability are more likely to
occur. Since we show that the solution of Biot’s model converges to the solu-
tion of a saddle point problem for small time steps and low permeability, we
need stabilisation in the finite element approximation.

This chapter is based on the article:

M. Rahrah, L. Lopez-Peña, F. Vermolen, and B. Meulenbroek. Network-inspired versus Kozeny-
Carman based permeability-porosity relations applied to Biot’s poroelasticity model. Journal
of Mathematics in Industry, 10:19, 2020.
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4.1 Introduction

The Kozeny-Carman equation is based on only having spherical grains in the porous
medium, whereas these grains can have various shapes. In this sense, the Kozeny-
Carman relation represents a limit case. Another limit case is the assumption that the
voids between the grains are represented by straight channels. In this study, we briefly
introduce a new approach for the permeability that is derived on a micro-scale network
model. At the pore-scale, this network model offers a detailed description of the
porous medium [14]. The current modelling framework deals with the latter limit case,
and can be used for general network topologies (such as rectangular, triangular and
cubic arrangements of the channels). In contrast with the Kozeny-Carman equation,
the new network-inspired approach yields that the permeability is nonzero only if the
porosity is larger than a specific percolation threshold, that depends on the topology
of the network. This means that the new approach may give a better prediction of
the permeability in physics problems where abrupt changes in the porous medium
occur resulting in a loss of connectivity of the connected pore space. In addition,
the current model provides a computational framework to determine the percolation
threshold for any given network with straight channels, which implies that there is no
need for fitting on the basis of experiments if the network topology is known. This
numerically determined threshold value agrees very well with the known values of the
percolation thresholds from the literature. The new permeability-porosity approach
is derived from percolation theory, which is a branch of probability that describes the
effects of randomness arising from the porous media structure [32].

In percolation theory, the nodes of the network are called sites and the edges are
called bonds. This leads to two approaches: site percolation and bond percolation.
In this chapter, we consider the bond percolation approach, whose basic idea can be
explained as follows. Consider a network such as shown in Figure 4.1. Whether a
bond is open or closed depends on a certain probability and it is independent of the
neighbouring bonds. If one bond is open and the nearest neighbours are closed, it is
said that a 1-cluster is formed. If two adjacent bonds are open, they form a 2-cluster
and so on. If the probability p of a bond being open increases, then larger clusters
are created. There exists a critical probability at which the first cluster that spans
the entire network from the inlet to the outlet is obtained. For infinite networks, this
critical probability is well defined and it is called the percolation threshold pc [14].

     Channel      Node

Figure 4.1: An illustration of a rectangular network.
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Some macroscopic properties of porous media are mainly determined by the con-
nectivity of the pore system [14]. Hence, it is possible to find a relation between the
permeability of a porous medium and the percolation properties using the network
model. For instance, if each of the open bonds conducts a fluid and there exists a
cluster that spans the network from the inlet to the outlet, then a volumetric flow
is possible through the network. By adding more open bonds to the cluster, the
volumetric flow through the network may increase. Since the number of open bonds
represents the porosity of the network, it is possible to find a relation between the
volumetric flow and the porosity [7, 143]. In addition, Darcy’s law gives a relationship
between the permeability of the porous medium and the volumetric flow. As a result,
a relation between the permeability and the porosity can be derived.

The applicability of these permeability-porosity relations will be demonstrated
using two illustrative numerical examples. The three-dimensional analogue can be
found in the next chapter and in [106]. In these two-dimensional examples, flow
of an incompressible fluid through a linearly elastic, saturated porous medium is
modelled, using the classical theory of linear poroelasticity. Originally developed by
Biot [16], poroelasticity theory assumes a superposition of solid and fluid components
and couples the mechanical deformation of a porous solid with fluid flow through
its internal structure. This approach is valid in the infinitesimal deformation range.
Poroelasticity problems exist widely in the real world, making this theory of a great
interest due to its applicability in various branches of science and engineering (see
e.g. [12, 39, 104, 118, 120]).

In order to investigate the difference between the Kozeny-Carman approach and
the equation based on the percolation theory, the boundary conditions in both aca-
demic poroelasticity examples are chosen such that a decrease in porosity is realised
in some parts of the computational domain. This decrease in porosity will lead in
both relations to a decrease in the permeability of the porous medium. When using
the finite element method to solve the poroelastic equations, it is well known that
the numerical solution of these equations may exhibit nonphysical oscillations in the
pressure field for low permeabilities and short time steps [57, 132]. In Section 4.5.1,
we will prove that under these conditions, the resulting finite element discretisation
approaches saddle point problems. Hence, a considerate numerical methodology in
terms of possible spurious oscillations is needed. Therefore, a Galerkin finite element
method based on Taylor-Hood elements has been developed, combined with the sta-
bilisation technique proposed in [2, 108]. Another stabilised finite element method is
employed by Wan [134], Korsawe and Starke [74] and Tchonkova et al. [126], based
on the Galerkin least-squares method.

The rest of this chapter is organised as follows: In Section 4.2, a detailed de-
scription of the model is presented. In addition, the considered permeability-porosity
relations are derived in Section 4.3. Subsequently, two numerical experiments are
described in Section 4.4. To solve these numerical experiments, the applied numerical
algorithm is provided in Section 4.5. In this section, the convergence of the solution
of Biot’s model to the solution of a saddle point problem for small time steps and
low permeability is proven. The simulation results are presented in Section 4.6 and
finally, these results are discussed in Section 4.7.
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4.2 Governing equations
The model provided by Biot’s theory of linear poroelasticity with single-phase flow [16]
is used in this study to determine the local displacement of the grains of a porous
medium and the fluid flow through the pores, assuming that the deformations are
very small. The fluid-saturated porous medium has a linearly elastic solid matrix
and is saturated by an incompressible Newtonian fluid. Let Ω ⊂ R2 denote the
computational domain with boundary Γ, and x = (x, y) ∈ Ω. Furthermore, t denotes
time, belonging to a half-open time interval I = (0, T ], with T > 0. The initial
boundary value problem for the consolidation process of an incompressible fluid flow
in a deformable porous medium is stated as follows [2, 135]:

−∇ · σ′ +∇p = 0 on Ω× I; (4.1a)
∂

∂t
(∇ · u) +∇ · v = 0 on Ω× I, (4.1b)

where σ′ and v are defined by the following equations

σ′ = λtr(ε)I + 2µε; (4.2)

ε =
1

2
(∇u +∇uT ); (4.3)

v = −κ
η
∇p. (4.4)

In the above relations, σ′ and ε denote the effective stress and strain tensors, p
the pore pressure, u the displacement vector, v Darcy’s velocity, λ and µ the Lamé
coefficients; κ the permeability of the porous medium and η the fluid viscosity. The
parameter values used in this chapter are given in Table 4.5. In addition, appropriate
boundary and initial conditions are specified in Section 4.4.

4.3 The permeability-porosity relations
In this study, we consider the spatial dependency of the porosity and the permeability
of the porous medium. The porosity θ is computed from the displacement vector using
the porosity-dilatation relation (see [103, 130])

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (4.5)

with θ0 the initial porosity. Subsequently, the permeability can be determined using
the Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ(x, t)3

(1− θ(x, t))2
, (4.6)

where ds is the mean grain size of the soil. The Kozeny-Carman relation assumes
that the permeability becomes zero if and only if the porosity also becomes zero. A
new approach for the relation between the porosity and the permeability is inspired
by the fluid flow through a network, where the fluid flows into the edges (channels) of
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the network. The network-inspired relation takes into account that a certain number
of the channels are removed randomly, therefore the fluid cannot flow through those
particular channels causing an alteration in the permeability and the porosity of the
network. The number of removed channels increases from 1% of the total number of
channels to 100%. For a certain number of removed channels, there are no connected
paths anymore between the inlet and the outlet. In this case, the fluid will stop
flowing and the permeability will be expected to become zero. For an arbitrary
network topology, the network-inspired relation states:

κ(x, t) =

0 θ < θ̂
θ−θ̂
θ0−θ̂

κ0 θ ≥ θ̂
, (4.7)

where κ0 is the initial permeability. The percolation threshold porosity θ̂ = pcθ0,
represents the minimal porosity needed to have connection via voids or channels from
one end to the other, and is dependent on the topology of the network. For θ̂ = 0.5θ0,
the normalised permeability for the network-inspired relation and the Kozeny-Carman
relation is depicted in Figure 4.2 as function of the normalised porosity. In the coming
section, we will show how the permeability-porosity relation (4.7) is derived using a
network model.
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Figure 4.2: The normalised permeability as function of the normalised porosity for the
Kozeny-Carman relation and the network-inspired relation, with θ̂ = 0.5θ0.

4.3.1 The network-inspired permeability-porosity relation

In this section, we explain the procedure followed to obtain the network-inspired
permeability-porosity relation. According to Balberg [7] and Wong [143], it is possible
to obtain a relation between the number of open bonds (or channels) in the network
No and the flow rate through the network Q. This relation is determined by a power
law as follows:

Q ∝ (No − N̂)b for No > N̂, (4.8)
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in which N̂ is the number of bonds corresponding with the percolation threshold
porosity and b is an exponent that can be determined by theory or via computer
simulations. A similar relation between the permeability κ and the porosity θ will be
obtained in this section.

First, we consider a network with all channels open and with a pressure gradient
∆p imposed over the horizontal direction of the network. Second, we assume that
mass conservation holds in each node of the network ni, hence∑

j∈Si

qij = 0, (4.9)

where Si = {j | node nj is adjacent to node ni}, and qij is the flow rate in the chan-
nels connected to node ni. This flow rate is given by the Poiseuille flow

qij =
πr4

8ηl
∆pij , (4.10)

where r and l are the radius and the length of a channel between two neighbouring
nodes, respectively, and ∆pij is the pressure drop.

A linear system for the pressure pi in each node arises from substituting Eq. (4.10)
in Eq. (4.9). This system is solved via a direct method and, subsequently, the flow
rate in each channel is computed via Eq. (4.10). Finally, the flow rate through the
network Q is computed by the summation of the flow rates in the channels that are
connected with the outlet of the network. After this, we randomly close the channels,
starting with 1% of the total number of channels in the network until that 100%
of the channels is closed. In each stage, 500 simulations are performed and in each
simulation, the linear system for the pressure is solved and the flow rate through
the network is computed. From the computed flow rate Q, the permeability of the
network can be determined using Darcy’s law

κ = −Q
A

ηL

∆p
, (4.11)

where A is the cross-sectional area of the network and L is the length over which the
pressure gradient is taking place. In addition, there is a direct relation between the
porosity of the network and the volume of the open channels Vo

θ =
Vo
Vt
θ0, (4.12)

in which Vt is the total volume of the channels. This procedure yields a relation
between the permeability and the porosity of the network. In the coming sections,
this procedure will be demonstrated for three two-dimensional networks: rectangular,
triangular and triangular unstructured.

Rectangular network

We start by describing the results obtained for a rectangular network (see Figure 4.1).
In this case, we use a network with Nx = 100 horizontal nodes and Ny = 60 vertical
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nodes. We computed the fraction of closed channels fc = Vc/Vt, that is needed to
obtain a normalised permeability κn = κ/κ0 such that ki − 0.05 < κn < ki + 0.05,
where ki ∈ {0.1, 0.2, . . . , 0.9}. In Figure 4.3, the histograms for ki = 0.1, ki = 0.5 and
ki = 0.9 are shown. The mean µ̄ and the standard deviation σ of the distribution of
fc depend on the normalised permeability κn as presented in Table 4.1.

(a) The histogram of the fraction fc that satis-
fies 0.05 < κn < 0.15.

(b) The histogram of the fraction fc that satis-
fies 0.45 < κn < 0.55.

(c) The histogram of the fraction fc that satis-
fies 0.85 < κn < 0.95.

Figure 4.3: The histograms of the fraction of closed channels fc for the rectangular
network.
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Table 4.1: The mean µ̄ and the standard deviation σ of the distribution of fc for the
rectangular network.

µ̄ σ

0.05 < κn < 0.15 0.4789 0.0037
0.15 < κn < 0.25 0.4188 0.0026
0.25 < κn < 0.35 0.3678 0.0023
0.35 < κn < 0.45 0.3195 0.0022
0.45 < κn < 0.55 0.2717 0.0019
0.55 < κn < 0.65 0.2240 0.0018
0.65 < κn < 0.75 0.1760 0.0016
0.75 < κn < 0.85 0.1273 0.0014
0.85 < κn < 0.95 0.0777 0.0012

Triangular network

In this section, we present the results obtained with a triangular network as shown in
Figure 4.4. The number of nodes in the horizontal direction Nx = 100 and the number
of nodes in the vertical direction Ny = 60. The coordination number of the interior
nodes is eight or four (see Figure 4.4). In Figure 4.5, the histograms for ki = 0.1,
ki = 0.5 and ki = 0.9 are depicted. In addition, the values of the mean µ̄ and the
standard deviation σ of the distribution of fc are presented in Table 4.2.

     Channel      Node

Figure 4.4: An illustration of a triangular network.
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(a) The histogram of the fraction fc
that satisfies 0.05 < κn < 0.15.

(b) The histogram of the fraction fc
that satisfies 0.45 < κn < 0.55.

(c) The histogram of the fraction fc
that satisfies 0.85 < κn < 0.95.

Figure 4.5: The histograms of the fraction of closed channels fc for the triangular
network.

Table 4.2: The mean µ̄ and the standard deviation σ of the distribution of fc for the
triangular network.

µ̄ σ

0.05 < κn < 0.15 0.6226 0.0077
0.15 < κn < 0.25 0.5522 0.0086
0.25 < κn < 0.35 0.4882 0.0099
0.35 < κn < 0.45 0.4240 0.0102
0.45 < κn < 0.55 0.3604 0.0105
0.55 < κn < 0.65 0.2975 0.0108
0.65 < κn < 0.75 0.2333 0.0111
0.75 < κn < 0.85 0.1687 0.0104
0.85 < κn < 0.95 0.1052 0.0103

Triangular unstructured network

Finally, we present the results obtained with a triangular unstructured network such
as shown in Figure 4.6. The total number of nodes in this network is 6921. The
histograms of the fraction of closed channels for some values of the normalised per-
meability are depicted in Figure 4.7. Moreover, in Table 4.3, the values of the mean
µ̄ and the standard deviation σ of the distribution of fc are given.

This method is also used to compute fc for κn = 0. The mean µ̄ of the smallest
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     Channel      Node

Figure 4.6: An illustration of a triangular unstructured network.

(a) The histogram of the fraction fc
that satisfies 0.05 < κn < 0.15.

(b) The histogram of the fraction fc
that satisfies 0.45 < κn < 0.55.

(c) The histogram of the fraction fc
that satisfies 0.85 < κn < 0.95.

Figure 4.7: The histograms of the fraction of closed channels fc for the triangular
unstructured network.

value of fc for which holds κn = 0 is depicted in Table 4.4. Since θ/θ0 = 1 − fc, we
observe from the results obtained with the different networks that the permeability
becomes zero for porosities below a certain threshold. These percolation thresholds
are different for the different networks used in this study, as can be seen in Table 4.4.
The values are in good agreement with the literature [119]. We also observe that, for
all three networks, the relation between the permeability and the porosity exhibits an
almost linear increase for values of the porosity larger than the percolation thresh-
old. Moreover, the slope of these linear lines depends on the percolation threshold
and hence on the network topology. The normalised permeabilities, for the different
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Table 4.3: The mean µ̄ and the standard deviation σ of the distribution of fc for the
triangular unstructured network.

µ̄ σ

0.05 < κn < 0.15 0.6030 0.0066
0.15 < κn < 0.25 0.5385 0.0062
0.25 < κn < 0.35 0.4773 0.0059
0.35 < κn < 0.45 0.4168 0.0063
0.45 < κn < 0.55 0.3555 0.0062
0.55 < κn < 0.65 0.2938 0.0063
0.65 < κn < 0.75 0.2308 0.0061
0.75 < κn < 0.85 0.1667 0.0059
0.85 < κn < 0.95 0.1024 0.0049

network topologies used in this chapter and for the Kozeny-Carman equation, are
depicted in Figure 4.8.

Table 4.4: The percolation threshold for different network topologies.

Network type fc pc

Rectangular 0.5065 0.4935
Triangular 0.6768 0.3232
Triangular unstructured 0.6562 0.3438

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Rectangular

Triangular

Triangular unstructured

Kozeny-Carman

Figure 4.8: The network-inspired versus Kozeny-Carman based permeability-porosity
relations.
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4.4 Problem formulation

The following numerical experiments are designed to study the different relations for
the porosity and the permeability. In both experiments, the boundary conditions are
chosen such that a decrease in porosity is realised in some parts of the computational
domain.

4.4.1 Problem with high pump pressure

In this numerical experiment, the infiltration of an incompressible fluid through a
filter into a two-dimensional area is considered, as shown in Figure 4.9. During the
infiltration, a high pump pressure is used to inject water into the porous medium.
Leading to a compression of the material against the rigid right boundary Γ4.

Ω

Γ1

Γ2

Γ3

Γ4

L

H

Figure 4.9: Sketch of the set-up for the two-dimensional problem with high pump
pressure.

The computational domain Ω is a two-dimensional rectangular surface with Carte-
sian coordinates x = (x, y). In order to solve this problem, Biot’s consolidation model,
as described in Section 4.2, is applied on the computational domain Ω with width L
and height H. The fluid is injected into the soil through a filter placed on boundary
segment Γ2. More precisely, the boundary conditions for this problem are given as
follows:

κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ3; (4.13a)

p = ppump on x ∈ Γ2; (4.13b)
p = 0 on x ∈ Γ4; (4.13c)

(σ′n) · t = 0 on x ∈ Γ1 ∪ Γ3 ∪ Γ4; (4.13d)
u · n = 0 on x ∈ Γ1 ∪ Γ3 ∪ Γ4; (4.13e)
σ′n = 0 on x ∈ Γ2, (4.13f)

where t is the unit tangent vector at the boundary, n the outward unit normal
vector and ppump is a prescribed high pump pressure due to the injection of the fluid.
Figure 4.9 shows the definition of the boundary segments. Initially, the following
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condition is imposed:

u(x, 0) = 0 for x ∈ Ω. (4.14)

4.4.2 Squeeze problem

The infiltration of a fluid through a filter into a rectangular two-dimensional area is
shown in Figure 4.10. In this numerical experiment, the porous medium is squeezed
by applying a vertical load on the middle of the top and bottom edges of the domain.

+

+

+

+
Ω

Γ1Γ2 Γ2

Γ3

Γ4 Γ4Γ5

Γ6

L

H

Figure 4.10: Sketch of the set-up for the two-dimensional squeeze problem.

This problem is solved using Biot’s consolidation model, that is applied on the
computational domain Ω with width L and height H. The fluid is injected into the
soil through a filter placed on boundary segment Γ3. The boundary conditions for
this problem are given as follows:

κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ2 ∪ Γ4 ∪ Γ5; (4.15a)

p = ppump on x ∈ Γ3; (4.15b)
p = 0 on x ∈ Γ6; (4.15c)

σ′n = (0,−σ′0)T on x ∈ Γ1; (4.15d)
σ′n = 0 on x ∈ Γ2 ∪ Γ3 ∪ Γ4; (4.15e)

σ′n = (0, σ′0)T on x ∈ Γ5; (4.15f)
u = 0 on x ∈ Γ6, (4.15g)

where t is the unit tangent vector at the boundary, n the outward unit normal vector,
ppump is a prescribed pump pressure due to the injection of the fluid and σ′0 is the
intensity of a uniform vertical load. Figure 4.10 shows the definition of the boundary
segments. Initially, the following condition is imposed:

u(x, 0) = 0 for x ∈ Ω. (4.16)
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4.5 Numerical method
To present the variational formulation of problem (4.1), we first introduce the appro-
priate function spaces. Let L2(Ω) be the Hilbert space of square integrable scalar-
valued functions, with inner product (f, g) =

∫
Ω
fg dΩ. And let H1(Ω) denote the

subspace of L2(Ω) of functions with first derivatives in L2(Ω). We further introduce
the function spaces

W (Ω) = {w ∈ (H1(Ω))2 : (w · n)|Γ1∪Γ3∪Γ4 = 0}; (4.17)

Q(Ω) = {q ∈ H1(Ω) : q|Γ2
= ppump and q|Γ4

= 0}. (4.18)

In addition, we consider the bilinear forms

a(u,w) = λ(∇ · u,∇ ·w) + 2µ

2∑
i,j=1

(εij(u), εij(w)); (4.19)

b(p,w) = (p,∇ ·w); (4.20)

c(p, q) =

2∑
i=1

(
κ

η

∂p

∂xi
,
∂q

∂xi
). (4.21)

The variational formulation for poroelasticity problem (4.1) with boundary and initial
conditions (4.13)-(4.14), consists of the following, using the notation u̇ = ∂u

∂t :
Find (u(t), p(t)) ∈ (W ×Q) such that

a(u(t),w)− b(p(t),w) = h(w) ∀w ∈ W ; (4.22a)
b(q, u̇(t)) + c(p(t), q) = 0 ∀q ∈ Q0, (4.22b)

with the initial condition u(0) = 0, and where

h(w) = −ppump
∫

Γ2

w · n dΓ;

Q0(Ω) = {q ∈ H1(Ω) : q|Γ2∪Γ4 = 0}.

Subsequently, problem (4.22) is solved by applying the finite element method. Let
Pk
h ⊂ H1(Ω) be a function space of piecewise polynomials on Ω of degree k. Hence,

we define finite element approximations for W and Q as W k
h = W ∩ (Pk

h ×Pk
h)

with basis {φφφi = (φi, φi) ∈ (W k
h × W k

h ) : i = 1, . . . , nu} and Qk′

h = Q ∩Pk′

h with
basis {ψj ∈ Qk′

h : j = 1, . . . , np}, respectively [2]. Afterwards, we approximate the
functions u(t) and p(t) with functions uh(t) ∈ W k

h and ph(t) ∈ Qk′

h , defined as

uh(t) =

nu∑
i=1

ui(t)φφφi, ph(t) =

np∑
j=1

pj(t)ψj , (4.23)

in which the Dirichlet boundary conditions are imposed. Simultaneously, discretisa-
tion in time is applied using the backward Euler method. Let ∆t be the time step
size and define a time grid {tm = m∆t : m ∈ N}, then the discrete Galerkin scheme
of (4.22) is formulated as follows:
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For m ≥ 1, find (umh , p
m
h ) ∈ (W k

h ×Qk′

h ) such that

a(umh ,wh)− b(pmh ,wh) = h(wh) ∀wh ∈ W k
h ; (4.24)

b(qh,u
m
h ) + ∆tc(pmh , qh) = b(qh,u

m−1
h ) ∀qh ∈ Qk′

0h, (4.25)

while for m = 0: u0
h = 0. The discrete Galerkin scheme for problem (4.1) with

boundary and initial conditions (4.15)-(4.16) is derived similarly.
In the network-inspired relation (4.7), the permeability is equal to zero for θ ∈

[0, θ̂]. Hence for high percolation thresholds, is it more likely that the permeability
goes to zero. In the next section, the convergence of problem (4.1) to a saddle point
problem when κ goes to zero is proven.

4.5.1 Convergence to a saddle point problem
In this section, we will prove that the solution of the variational formulation (4.22)
converges to the solution of the related saddle point problem as ∆tκ→ 0, both in the
continuous as in the discrete system. Since we are interested in the case ∆tκ → 0,
we can assume without loss of generality that κ is bounded and that it fulfils the
following relation (see Figure 4.8):

κ(x, t) = κmaxf(θ), (4.26)

where κmax > 0 is constant and f(θ) ∈ [0, 1]. Consequently, define the bilinear form

cθ(p, q) =

2∑
i=1

(
f(θ)

η

∂p

∂xi
,
∂q

∂xi
), (4.27)

and define ũ = um−um−1, which gives um = ũ+um−1. This transformation results
in the following variational formulation:

For m ≥ 1, find (ũ, pm) ∈ (W ×Q) such that

(P∆tκ) :=

{
a(ũ,w)− b(pm,w) = g(u,w) ∀w ∈ W ;

b(q, ũ) + ∆tκmaxcθ(p
m, q) = 0 ∀q ∈ Q0,

where g(u,w) = h(w) − a(um−1,w). The well-posedness of this problem has been
analysed in [115, 145].

Using the inequality |2ab| ≤ (a2 + b2) for a, b ∈ R, we can show that

∣∣cθ(pm, q)∣∣ ≤ 1

2η

 2∑
i=1

(
∂pm

∂xi
,
∂pm

∂xi
) +

2∑
i=1

(
∂q

∂xi
,
∂q

∂xi
)


≤ 1

2η
(‖pm‖2H1(Ω) + ‖q‖2H1(Ω)) <∞, (4.28)

where the second inequality is a result of the definition of the H1-norm

‖p‖2H1(Ω) = (p, p) +

2∑
i=1

(
∂p

∂xi
,
∂p

∂xi
). (4.29)
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Furthermore, define the spaces R(Ω) = {q ∈ L2(Ω) : q|Γ2 = ppump and q|Γ4 = 0}
and R0(Ω) = {q ∈ L2(Ω) : q|Γ2∪Γ4 = 0}. Hence, assuming that ∆tκmax → 0, the
variational formulation becomes:

For m ≥ 1, find (ũ0, p
m
0 ) ∈ (W ×R) such that

(P0) :=

{
a(ũ0,w)− b(pm0 ,w) = g(u,w) ∀w ∈ W ;

b(q, ũ0) = 0 ∀q ∈ R0.

Brenner and Scott [30] showed, using Korn’s inequality, that the bilinear form a(u,w)
is coercive in W . In addition, the bilinear form b(p,w) satisfies the inf-sup condition
on (W × R) as proven in [29]. The continuity of both bilinear forms follows from
the Cauchy-Schwarz inequality. Hence, from Brezzi’s splitting theorem [29] we can
conclude that a unique solution exists for problem (P0). This problem is referred to
as a saddle point problem. We assume that our domain allows classical solutions to
exist for problem (P0), and as a result the solution of this problem is in the spaces
(W ×Q). Then we prove that solutions to (P∆tκ) converge to solutions of (P0), which
illustrates that the solutions of (P∆tκ) inherit the saddle point structure of (P0).

Theorem 4.5.1. The solution of (P∆tκ) converges to the solution of (P0) for

∆tκmax → 0.

Proof. Subtracting (P0) from (P∆tκ) yields

a(ũ− ũ0,w)− b(pm − pm0 ,w) = 0 ∀w ∈ W ; (4.30a)
b(q, ũ− ũ0) + ∆tκmaxcθ(p

m, q) = 0 ∀q ∈ Q0. (4.30b)

Take w = ũ− ũ0 in (4.30a), hence we get

a(ũ− ũ0, ũ− ũ0)− b(pm − pm0 , ũ− ũ0) = 0. (4.31)

Using (4.30b) and the bilinearity of the form cθ(p, q) gives

a(ũ− ũ0, ũ− ũ0) + ∆tκmaxcθ(p
m, pm) = ∆tκmaxcθ(p

m, pm0 ). (4.32)

From the coercivity of a(u,w) and the definition of cθ(p, q), we can state that

0 ≤ a(ũ− ũ0, ũ− ũ0) + ∆tκmaxcθ(p
m, pm) (4.33a)

= ∆tκmaxcθ(p
m, pm0 ) <∞, (4.33b)

where the last inequality follows from (4.28). Let ∆tκmax → 0, then follows that
a(ũ − ũ0, ũ − ũ0) → 0. Consequently, the coercivity of a(u,w) implies that ũ → ũ0

as ∆tκmax → 0. Therefore, we have a(ũ− ũ0,w)→ 0 for all w ∈ W . Subsequently,
this last result together with Eq. (4.30a) lead to b(pm − pm0 ,w) → 0. Hence, we can
conclude that pm → pm0 as ∆tκmax → 0.

Numerically, the discrete Galerkin scheme (4.24)-(4.25) can be expressed as a
linear equations system

(PD∆tκ) :=

{
Aum −BTpm = h,

Bum + ∆tκmaxCp
m = Bum−1,
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with u = (u1,u2, . . . ,unu) and p = (p1, p2, . . . , pnp). The matrix A ∈ R2nu×2nu is
the symmetric positive definite elasticity matrix, B ∈ Rnp×2nu the divergence matrix
and C ∈ Rnp×np is the diffusive matrix. The vector h is the right-hand side vector
with components hi = h(φφφi), i = 1, . . . , nu. Initially, u0 = 0. For ∆tκmax → 0, we
have

(PD0 ) :=

{
Aum0 −BTpm0 = h,

Bum0 = Bum−1
0 .

Theorem 4.5.2. The solution of (PD∆tκ) converges to the solution of (PD0 ) as

∆tκmax → 0.

Proof. The convergence proof in the discrete problem is similar to the continuous
problem. Hence, it is sufficient to show that a(u,w) is coercive in W k

h . Since W k
h ⊂ W ,

the coercivity property is automatically verified in the discrete case.

Since Biot’s poroelasticity problem converges to the related saddle point problem
as ∆tκ→ 0, the Taylor-Hood elements can be used to solve this problem numerically.
These elements represent finite element pairs that satisfy the inf-sup condition for
the saddle point problem [21, 48]. Although the inf-sup condition and the coercivity
and boundedness of bilinear form a(u,w) warrant existence and uniqueness of the
finite element solution, the inf-sup condition is not sufficient for reliable numerical
solutions of Biot’s problem (4.1). Since for low permeabilities and/or small time
steps, the approximation to the pressure exhibits nonphysical oscillations due to loss
of the M-matrix property, as shown in [2]. In order to improve the monotonicity
properties of the finite element scheme and to obtain oscillation free approximations
of the pressure, the stabilisation procedure outlined in [2, 108] is applied in this study.
Therefore, a stabilisation term is added to the continuity equation in Biot’s model

with stabilisation parameter β =

√
∆x2+∆y2

4(λ+2µ) .

4.6 Numerical results
The Galerkin finite element method, with triangular Taylor-Hood elements [103, 113],
is adopted to solve the discretised quasi-two-dimensional problem (4.1). The displace-
ments are spatially approximated by quadratic basis functions, whereas a continu-
ous piecewise linear approximation is used for the pressure field. From the system
of equations (4.1) and the boundary conditions (4.13) it is obvious that this two-
dimensional problem is symmetrical in the y-direction and that it can be reduced to a
one-dimensional problem. Aguilar et al. [2] solved this one-dimensional problem ana-
lytically and showed that the finite element method with Taylor-Hood elements gives
accurate numerical results. For the time integration, the backward Euler method is
applied. The numerical investigations are carried out using the matrix-based software
package MATLAB (version R2015a).

The computational domain is a rectangular surface with width L = 2.0 m and
height H = 1.0 m. The domain is discretised using a regular triangular grid, with
∆x = ∆y = 0.02. In addition, values for some model parameters have been chosen
based on the literature (see Table 4.5).
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Table 4.5: An overview of the values of the model parameters.

Property Symbol Value Unit

Young’s modulus E 35 · 106 Pa
Poisson’s ratio ν 0.3 -
Fluid viscosity η 1.307 · 10−3 Pa · s
Initial porosity θ0 0.4 -
Mean grain size ds 0.2 · 10−3 m
Pump pressure ppump 50 · 105 / 5 · 105 Pa
Uniform load σ′0 3 · 106 N/m2

Furthermore, the Lamé coefficients λ and µ are related to Young’s modulus E and
Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (4.34)

The impact of the permeability-porosity relation on the water flow is defined in this
study as the impact on the time average of the volumetric flow rate Qout at a distance
L from the injection filter. The initial permeability κ0 used in Eq. (4.7) is computed
by the Kozeny-Carman relation (4.6), in order to have a reliable comparison between
the two relations. In the generations of the simulation results, the time step size is
chosen to be ∆t = 0.5.

4.6.1 Numerical results for the problem with high pump pres-
sure

In order to obtain some insight into the impact of a high pump pressure on the water
flow, we present an overview of the simulation results in Figures 4.11 - 4.13. In these
simulations, water is injected into the soil at a constant pump pressure of 50 bar. The
simulated fluid velocity, permeability and porosity profiles that have been obtained
using the Kozeny-Carman relation are provided in Figure 4.11, while the simulated
results that have been obtained using the network-inspired relation with pc = 0.3232,
corresponding with a triangular structured network, are provided in Figure 4.12. In
Figure 4.13, the simulated results that have been obtained using the network-inspired
relation with pc = 0.4935, corresponding with a rectangular network, are depicted.
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(a) Numerical solution for the
fluid velocity.

(b) Numerical solution for the
permeability.

(c) Numerical solution for the
porosity.

Figure 4.11: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the Kozeny-Carman relation.
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Figure 4.12: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the network-inspired relation with pc = 0.3232.
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Figure 4.13: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the network-inspired relation with pc = 0.4935.

As shown in these figures, the injected water flows in the horizontal direction
through the domain from the inlet to the outlet. Furthermore, the magnitude of
the velocity |v| in the inlet is larger than in the outlet. This change in |v| can be
explained by the permeability profiles shown in Figures 4.11b-4.13b. In these figures
we observe that the permeability decreases almost linearly from the inlet to the outlet.
In addition, the permeability obtained using the Kozeny-Carman relation exhibits a
larger decrease than the permeabilities obtained with the network-inspired model.
The normalised permeability using the Kozeny-Carman relation decreases from 1 to
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0.4659, while the normalised permeabilities for the network-inspired relation decrease
from 1 to 0.7519 and from 1 to 0.6684 for the triangular structured and the rectangular
network respectively. This behaviour is clarified by Figure 4.8 and Figures 4.11c-4.13c.
Due to boundary condition (4.13e), the values of the normalised porosity in all three
cases are almost the same in the outlet and are equal to 0.8321. In Figure 4.8, we
see that for this value of the porosity, the normalised permeability is the lowest for
the Kozeny-Carman relation and the highest for the network-inspired relation derived
from the triangular structured network. This explains the difference in decrease in
the permeability profiles.

In Figure 4.14, the time average of the volumetric flow rate Qout is depicted for
different values of the percolation threshold. As expected from Figure 4.8, for low
percolation thresholds the network-inspired relation results in higher flow rates than
the Kozeny-Carman relation. Furthermore, the flow rate changes significantly as a
function of the percolation threshold. Hence the water flow depends on the topology
of the network. The negative values of the flow rate Qout for the large values of
the percolation threshold from the network-inspired relation are caused by violation
of the M-matrix property that gives loss of monotonicity of the numerical solution.
To demonstrate this, the problem is solved for a coarser grid ∆x = ∆y = 0.04, as
shown in Figure 4.15. In this figure, it becomes even worse, and we observe spurious
oscillations for the network-inspired relation for percolation thresholds larger than
0.85 approximately. The reason for this behaviour is that for large values of the
percolation threshold, the permeability goes to zero very soon. Therefore, even the
used stabilisation did not diminish the nonphysical oscillations. Probably a stronger
stabilisation will alleviate these spurious oscillations. This was behind the scope of
the current chapter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4.14: The time average of the volumetric flow rate Qout as a function of the
percolation threshold pc, using ∆x = ∆y = 0.02.
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Figure 4.15: The time average of the volumetric flow rate Qout as a function of the
percolation threshold pc, using ∆x = ∆y = 0.04.

4.6.2 Numerical results for the squeeze problem
The impact of the imposed vertical load on boundary segments Γ1 and Γ5 is shown
in Figures 4.16 - 4.18, using the Kozeny-Carman relation and the network-inspired
relation respectively. In these simulations, water is injected into the porous medium at
a constant pump pressure equal to 5.0 bar. The simulated fluid velocity, permeability
and porosity profiles that are obtained using the Kozeny-Carman relation are provided
in Figure 4.16, while the simulated results that are obtained using the network-inspired
relation with pc = 0.3232, corresponding with a triangular structured network, are
provided in Figure 4.17. In Figure 4.18, the simulated results that are obtained using
the network-inspired relation with pc = 0.4935, corresponding with a rectangular
network, are depicted.
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Figure 4.16: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the Kozeny-Carman relation.
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Figure 4.17: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the network-inspired relation with pc = 0.3232.
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Figure 4.18: Numerical solutions for the fluid velocity, the permeability and the poros-
ity, at time t = 300, obtained using the network-inspired relation with pc = 0.4935.

In Figures 4.16a-4.18a, the impact of the imposed vertical load on the computa-
tional domain is shown. The magnitude of the velocity is small near the boundary
segments where the vertical load is applied and large in the middle near the symmetry
axis y = H/2. In the outlet, the magnitude of the velocity is maximal near the upper
and lower boundary segments and decreases towards the symmetry axis. In all three
cases, the fluid flows mainly in the horizontal direction. In the region where the load is
imposed, the domain is squeezed, resulting in a larger density of the grains. This leads
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to a lower porosity in this region, with minimum values 0.8809, 0.8811 and 0.8810
for the Kozeny-Carman relation, the triangular structured network-inspired relation
and the rectangular network-inspired relation respectively. The abrupt transition in
the boundary condition between boundary segments Γ1 and Γ2 (and between Γ4 and
Γ5), which results in a discontinuous force, results in a small numerical artefact at the
location of these transitions. As expected from Figure 4.8 and the minimum values
for the porosities, the decrease in permeability by the Kozeny-Carman relation, as
shown in Figure 4.16b, is larger than the decrease in the porosities obtained using the
network-inspired relation, Figures 4.17b and 4.18b.

In Figure 4.19, the time average of the volumetric flow rate Qout is depicted
for different values of the percolation threshold. Similarly to the high pump pressure
problem, the flow rates for small values of the percolation threshold using the network-
inspired relation are higher than the flow rates obtained using the Kozeny-Carman
relation. In addition, we observe that the flow rate depends significantly on the
percolation threshold and hence on the topology of the network for high percolation
thresholds.
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Figure 4.19: The time average of the volumetric flow rate Qout as a function of the
percolation threshold pc.

4.7 Discussion and conclusions

In this chapter, the network-inspired permeability-porosity relation is applied on two
two-dimensional poroelasticity problems. This numerical experiment is designed in
order to analyse the applicability of this microscopic relation on the macro-scale.
Furthermore, we compare the results obtained with the network-inspired relation to
the Kozeny-Carman relation which is often used in these physical problems. In the
first problem, a high pump pressure is imposed in the inlet of a porous medium
package. This high pressure forces the grains to move towards the outlet. In the
second problem the package is squeezed by applying a load on the middle of the top
and bottom edges of the domain. The purpose of considering these two-dimensional
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poroelasticity problems is to create a large density of the grains in the computational
domain which results in a decrease of the porosity. In these problems, Biot’s model
for poroelasticity is used to determine the water pressure and the displacements of the
grains that are needed to compute the porosity. From the porosity the permeability is
determined either by the network-inspired relation or by the Kozeny-Carman relation.
Depending on the topology, three different percolation thresholds, corresponding with
a rectangular network (pc = 0.4935), triangular structured network (pc = 0.3232) and
triangular unstructured network (pc = 0.3438), are distinguished. However, since the
topology of macro-scale porous media is not known, computations are also performed
with percolation thresholds in the interval [0, 0.975] to investigate the influence of the
percolation threshold (and hence the topology of the porous medium) on the flow
rate.

First, the problems are solved with the Kozeny-Carman relation, the network-
inspired relation based on the triangular structured network and the relation based
on the rectangular network. From the numerical results we conclude that the per-
meability obtained using the Kozeny-Carman relation exhibits a larger decrease than
the permeabilities obtained with the network-inspired relations, which is clarified by
Figure 4.8. In contrast, the porosity profile is not affected significantly by the selected
permeability-porosity relation. Second, the time average of the volumetric flow rate
was computed for percolation thresholds in the interval [0, 0.975]. For low percolation
thresholds the network-inspired relation results in higher flow rates than the Kozeny-
Carman relation, as expected from Figure 4.8. In addition, it is shown that the flow
rate changes significantly as a function of the percolation threshold which means that
the water flow depends on the topology of the network. For high percolation thresh-
olds, spurious oscillations appeared due to the violation of the M-matrix property
in the discretisation matrix that resulted from the convergence of Biot’s problem to
the related saddle point problem, as proven in Section 4.5.1. The results for these
percolation thresholds could be improved by using a finer grid.

For the studied problems and the set of parameters chosen, we noticed that the
applied permeability-porosity relations result in small changes in the porosity while
a major change is realised in the permeability profiles. A possible explanation for
this behaviour is that the relation between the velocity field and the change of the
displacements in time as stated in Eq. (4.1b), is not strong enough to lead to significant
changes in the porosity profile.



Chapter 5
A three-dimensional poroelasticity

model using a network-inspired
porosity-permeability relation

Compressing a porous material or injecting fluid into a porous mate-
rial can induce changes in the pore space, leading to a change in porosity
and permeability. In a continuum scale PDE model, such as Biot’s the-
ory of linear poroelasticity, the Kozeny-Carman equation is commonly
used to determine the permeability of the porous medium from the poros-
ity. The Kozeny-Carman relation assumes that there will be flow through
the porous medium at a certain location as long as the porosity is larger
than zero at this location. In contrast, from discrete network models it is
known that percolation thresholds larger than zero exist, indicating that
the fluid will stop flowing if the average porosity becomes smaller than
a certain value dictated by these thresholds. In this study, the differ-
ence between the Kozeny-Carman equation and the equation based on
the percolation theory, is investigated considering a three-dimensional
poroelasticity problem.

This chapter is based on the article:

M. Rahrah, F. J. Vermolen, L. A. Lopez-Peña, and B. J. Meulenbroek. A Poroelasticity Model
Using a Network-Inspired Porosity-Permeability Relation. In Progress in Industrial Mathemat-
ics at ECMI 2018, pages 83 – 88. Springer, 2019.
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5.1 Introduction
Having a good estimation of permeability is of a pivotal importance for the descrip-
tion of different physical processes. However, mainly due to the complexity of the
connected pore space, it has been very difficult to formulate satisfactory theoreti-
cal models for the relation between the porosity and the permeability. One of the
most largely used methods remains the Kozeny-Carman approach. In this study, we
briefly introduce a new approach for the permeability that is derived on a micro-scale
network model. We refer to this approach as the network-inspired relation. The
Kozeny-Carman relation assumes that the pore space is fully connected, therefore,
flow through the porous medium is possible as long as the average porosity is larger
than zero. In contrast, the new network-inspired approach states that the permeabil-
ity is positive only if the porosity is larger than a specific percolation threshold, that
depends on the topology of the network. As application, we consider the flow of an
incompressible fluid through a poroelastic porous medium.

The rest of this chapter is organised as follows: In Section 5.2 the considered model
equations are presented, including the employed porosity-permeability relations. Sec-
tion 5.3 presents the numerical experiment that is used to demonstrate the applica-
bility of the network-inspired permeability-porosity relation on a three-dimensional
problem. The numerical results of this experiment are shown in Section 5.4 and lastly,
the conclusions are given in Section 5.5.

5.2 Governing equations
The model provided by Biot’s theory of linear poroelasticity with single-phase flow [16]
is used in this study to determine the local displacement of the grains of a porous
medium and the fluid flow through the pores, assuming that the deformations are very
small. We assume that the fluid-saturated porous medium has a linearly elastic solid
matrix and is saturated by an incompressible Newtonian fluid. Let Ω ⊂ R3 denote
the computational domain with boundary Γ, and x = (x, y, z) ∈ Ω. Furthermore,
t denotes time, belonging to a half-open time interval I = (0, T ], with T > 0. The
initial boundary value problem of an incompressible fluid flow in a deformable porous
medium in the two-field (u/p) formulation, where u and p are the unknown functions,
is stated as follows [135]:

equilibrium equations: −∇ · σ′ + (∇p+ ρgez) = 0 on Ω× I; (5.1a)

continuity equation:
∂

∂t
(∇ · u) +∇ · v = 0 on Ω× I, (5.1b)

where σ′ and v are defined by the following equations

Biot’s constitutive equations: σ′ = λ(∇ · u)I + µ(∇u +∇uT ); (5.2)

Darcy’s law: v = −κ
η

(∇p+ ρgez). (5.3)

Here, σ′ denotes the effective stress tensor, p the pore pressure, ρ the fluid density,
g the gravitational acceleration, u the displacement vector, v Darcy’s velocity, λ and
µ the Lamé coefficients; κ the permeability of the porous medium and η the fluid



5.3. Problem formulation

5

73

viscosity. In addition, appropriate boundary and initial conditions are specified in
Section 5.3.

5.2.1 The porosity-permeability relations
In this study, we consider the spatial dependency of the porosity and the permeability
of the porous medium. The porosity θ is computed from the displacement vector using
the porosity-dilatation relation (see [103, 130])

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (5.4)

with θ0 the initial porosity. Subsequently, the permeability can be determined using
the Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ(x, t)3

(1− θ(x, t))2
, (5.5)

where ds is the mean grain size of the soil. The Kozeny-Carman relation assumes that
the permeability becomes zero if and only if the porosity also becomes zero. A new
approach for the relation between the porosity and the permeability is inspired by
the fluid flow through the edges (channels) of a network. In a network with a random
topology, the network-inspired porosity-permeability relation states:

κ(x, t) =

0 θ ≤ θ̂
θ−θ̂
θ0−θ̂

κ0 θ > θ̂
, (5.6)

where κ0 is the initial permeability computed using the Kozeny-Carman relation and θ̂
the percolation threshold, which represents the minimal porosity needed to have con-
nection via voids or channels from one end to the other. This percolation threshold
depends on the topology of the network. The normalised permeability κ/κ0 obtained
using both relations as function of the normalised porosity θ/θ0, is depicted in Fig-
ure 5.1.
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Figure 5.1: The normalised permeability as function of the normalised porosity.
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5.3 Problem formulation

The following numerical experiment is designed to study the different relations for the
porosity and the permeability. As shown in Figure 5.2, the infiltration of a fluid into a
porous medium is studied. In addition, a vertical load is applied on a part of the top
edge of the domain, in order to create a region with a high density of the grains which
will emphasise the difference between the porosity-permeability relations. We assume
that the flow pattern is axisymmetric. Therefore, we determine the solution for a
fixed azimuth. Hence, the computational domain Ω is an L-shaped two-dimensional
surface with cylindrical coordinates r = (r, z) and boundary Γ.

H

R
+

Ω

Γ1

Γ2

Γ3

Γ4
Γ5

Γ6

Γ7

Γ8

r
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Figure 5.2: Sketch of the set-up for the aquifer problem: (left) physical problem and
(right) numerical discretisation. Taking advantage of the symmetry of geometry and
boundary conditions, only the grey region is discretised.

The fluid is injected into the soil through a filter placed on boundary segment Γ3,
using a pump pressure. The vertical load is applied on boundary segment Γ8. Further-
more, the injection tube is fitted with a casing (boundary segments Γ2 and Γ4) and
a perforated section (boundary segment Γ3) to prevent loose material from entering
and potentially clogging the injection tube. More precisely, the boundary conditions
for this problem are given as follows:

κ

η
(∇p+ ρgez) · n = 0 on r ∈ Γ \ Γ3 ∪ Γ7; (5.7a)

p = ρg(H − z) + ppump on r ∈ Γ3; (5.7b)
p = ρg(H − z) on r ∈ Γ7; (5.7c)

σ′n = 0 on r ∈ Γ1 ∪ Γ7; (5.7d)
u · n ≤ 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4; (5.7e)

(σ′n) · t = 0 on r ∈ Γ \ Γ1 ∪ Γ7 ∪ Γ8; (5.7f)
u · n = 0 on r ∈ Γ5 ∪ Γ6; (5.7g)

σ′n = (0,−σ′0)T on r ∈ Γ8, (5.7h)

where t and n are the unit tangent and the outward normal vectors. Further, ppump
is a prescribed pump pressure and σ′0 is the intensity of a uniform vertical load. Note
that the boundary conditions on boundary segment Γ5 appear as a result of symmetry.
The initial condition is u(r, 0) = 0 for r ∈ Ω.
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5.4 Numerical results
To solve the discretised problem of (5.1), the Galerkin finite element method with
triangular Taylor-Hood elements [103], is adopted. Quadratic basis functions are used
for the approximation of the displacements, while the pressure field is approximated
by continuous piecewise linear functions. In addition, the backward Euler method is
applied for the time integration. The computational domain is an L-shaped surface
with radius R = 1.0 m, height H = 2.0 m, filter radius Rf = 10.0 cm and filter length
Lf = 1.0 m. The filter is placed between z = 0.5 and z = 1.5, while the vertical load
is applied between r = 0.5 and r = 1.0. The domain is discretised using a regular
triangular grid, with ∆r = ∆z = 0.05. The time step size is chosen to be ∆t = 0.5.
Furthermore, values for some model parameters have been chosen (see Table 5.1).

Table 5.1: An overview of the values of the model parameters.

Property Symbol Value Unit

Young’s modulus E 35 · 106 Pa
Poisson’s ratio ν 0.3 -
Fluid viscosity η 1.307 · 10−3 Pa · s
Fluid density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2

Initial porosity θ0 0.4 -
Mean grain size ds 314 · 10−6 m
Pump pressure ppump 105 Pa
Uniform load σ′0 107 N/m2

The Lamé coefficients λ and µ are related to Young’s modulus E and Poisson’s
ratio ν by: λ = νE

(1+ν)(1−2ν) and µ = E
2(1+ν) . The impact of the porosity-permeability

relations on the fluid flow is defined in this study as the impact on the time average of
the volumetric flow rate Q at a distance R−Rf from the injection filter. We compute
the volumetric flow rate using the velocity field as described by Darcy’s law (5.3). The
velocity field is obtained from the gradient of the pressure ∇p by applying the finite el-
ement method with piecewise linear approximation. For the Kozeny-Carman relation
as well as for the network-inspired relation, Q is depicted in Figure 5.3 as a function
of the percolation threshold. In this figure, Q is normalised by dividing on the time
average of the volumetric flow rate obtained by the Kozeny-Carman relation QKC . As
expected from Figure 5.1, for low percolation thresholds the network-inspired relation
results in higher flow rates than the Kozeny-Carman relation. In addition, the flow
rate changes significantly as a function of the percolation threshold. Hence, the fluid
flow depends on the topology of the connected pore space.



76

5

5. A 3D poroelasticity model using a network-inspired relation

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

Figure 5.3: The time average of the volumetric flow rate Q as a function of the
percolation threshold θ̂.

5.5 Discussion and conclusions
In this study, a three-dimensional poroelasticity problem is designed in order to anal-
yse the applicability of the microscopic network-inspired porosity-permeability rela-
tion on the macro-scale. Furthermore, the results obtained with this relation are
compared with the Kozeny-Carman relation, which is often used for this type of
physical problems. To determine the displacements of the grains that are needed to
compute the porosity, Biot’s model for poroelasticity is used. Since the topology of
macro-scale porous media is not known, computations are performed with different
values of the percolation threshold. The numerical results indicate that for low per-
colation thresholds the network-inspired relation results in higher flow rates than the
Kozeny-Carman relation, as expected from Figure 5.1. In addition, it is shown that
the flow rate changes significantly as a function of the percolation threshold which
means that the water flow depends on the topology of the connected pore space.



Chapter 6
A moving finite element framework

for fast infiltration in nonlinear
poroelastic media

Poroelasticity theory can be used to analyse the coupled interaction be-
tween fluid flow and porous media (matrix) deformation. The classical
theory of linear poroelasticity captures this coupling by combining Terza-
ghi’s effective stress with a linear continuity equation. Linear poroe-
lasticity is a good model for very small deformations; however, it be-
comes less accurate for moderate to large deformations. On the other
hand, the theory of large-deformation poroelasticity combines Terzaghi’s
effective stress with a nonlinear continuity equation. In this chapter,
we present a finite element solver for linear and nonlinear poroelastic-
ity problems on triangular meshes based on the displacement-pressure
two-field model. We then compare the predictions of linear poroelasticity
with those of large-deformation poroelasticity in the context of a two-
dimensional model problem where flow through elastic, saturated porous
media, under applied mechanical oscillations, is considered. In addition,
the impact of introducing a deformation-dependent permeability accord-
ing to the Kozeny-Carman equation is explored. We computationally
show that the errors in the displacement and pressure fields that are
obtained using the linear poroelasticity are primarily due to the lack
of the kinematic nonlinearity. Furthermore, the error in the pressure
field is amplified by incorporating a constant permeability rather than a
deformation-dependent permeability.

This chapter is based on the journal article:

M. Rahrah and F. Vermolen. A moving finite element framework for fast infiltration in nonlinear
poroelastic media. Comput. Geosci., 2020.
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6.1 Introduction
A saturated porous medium is composed of a porous solid material, fully saturated by
a viscous fluid, flowing through connected pores. In deformable porous materials such
as soils, rocks and tissues, the flow of the pore fluid and the deformation of the solid
matrix are tightly coupled to each other. Poromechanics involves fluid flow in porous
media that can deform when subjected to external forces and to variations in pressure
of the saturating fluid. Moreover, poromechanical deformations are poroelastic when
they are controlled by the reversible storage and release of elastic energy.

In the last few decades, the mechanics of porous media has been of great interest
due to its potential application in many geological and biological systems across a
wide range of scales such as civil engineering [22, 34, 52, 55, 95, 116, 122, 127], energy
and environmental technologies [37, 49, 69, 109, 111, 140], material science [85] and
biophysics [50, 92], where poromechanics plays an important role in modelling bones
and soft tissues [3, 41, 120]. In physical chemistry, poromechanical processes include
mass and heat transfer [144]. Additionally, poromechanics has been studied intensely
in geophysics, in the context of consolidation of aquifers [96, 104] and in the context of
enhanced oil or gas recovery [9, 110, 124]. Our current main motivation is related to
the development of a comprehensive model for fluid injection into a monolayer of soil
particles subjected to surface mechanical oscillations. Therein, we include dynamic
effects, especially a time and space dependent porosity and permeability.

Due to the high complexity and the unknown geometry of porous media, a fully
resolved model is nearly impossible to obtain. Classically, in the theory of linear poroe-
lasticity [16, 135], fluid flow is described by Darcy’s law and fluid mass conservation,
and matrix deformation is described by Terzaghi’s effective stress and linear elasticity.
This theory is originally emerged in soil mechanics with the work of Terzaghi [128],
but its general statement was given by Biot [16, 18] using an elastic formulation for
the solid matrix and Darcy’s law for the fluid flow. This approach, as formulated
in Biot’s consolidation model [16], is valid for infinitesimal deformations of the solid.
However, it becomes increasingly inappropriate for moderate to large deformations.
The well-known theory of large-deformation poroelasticity [84] combines Darcy’s law
with Terzaghi’s effective stress and nonlinear elasticity in a rigorous kinematic frame-
work, leading to a strongly nonlinear coupling between the pore structure and the fluid
flow [50, 109]. Another nonlinear poroelasticity model that takes large deformations
into account is considered in [23]. In this model, the mechanical deformation follows
the Saint Venant-Kirchhoff constitutive law for hyperelastic solid materials and the
fluid compressibility in the fluid equation is assumed to be nonlinear. In the current
chapter, the fluid phase is assumed to be incompressible and a linear stress-strain
constitutive law is considered.

In this chapter, we propose finite element methods for the resolution of the gov-
erning equations both in the theory of linear poroelasticity as in the large-deformation
poroelasticity. The fluid-mass balance equation is discretised in time by a backward
Euler scheme. The resulting system of nonlinearly coupled equations is solved by a
standard Picard iterative procedure, which is linearly convergent. In the literature,
this system is also solved by Newton’s method [23], which is quadratically conver-
gent. The drawbacks of the Newton-Raphson method are that the method is only
locally convergent and that the computation of derivatives is needed. Another valu-
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able alternative to Picard’s method is the L-scheme [23, 24]. The L-method is robust
and linearly convergent, and does not involve the computation of any derivatives.
Moreover, the convergence rate does not depend on the mesh size. Only a relatively
mild constraint on the time step size is required when the hydraulic conductivity is
not taken constant [80]. The L-scheme contains a constant parameter L > 0 which
mimics the Jacobian from Newton iteration. However, in order to determine the pa-
rameter L, for any given problem, it is necessary to use apriorily derived convergence
estimates [33]. In the current chapter, Picard’s iterative method is used since it is
easy to understand and to implement and since it does not involve the computation of
derivatives or unknown parameters. Furthermore, monolithic approaches for solving
the quasi-static two-field poroelasticity equations are adopted. Another approach that
is widely used in coupling the flow and the mechanics in porous media is the fixed-
stress split method [25], which falls within the class of segregated approaches. This
method can be combined with a linearisation scheme for the nonlinear poroelasticity
models (see [24] where the L-scheme is used for the linearisation).

To assess the accuracy of aforementioned constitutive laws and the performance
of finite element methods presented herein, we consider a two-dimensional simulation.
The obtained numerical results from both linear and nonlinear poroelasticity theo-
ries are compared with each other. The research problem we address in the present
chapter is for which applied mechanical oscillations it is sufficient to solve the linear
poroelasticity model, which is computationally cheaper and simpler to solve.

The rest of this chapter is organised as follows: In Section 6.2 the considered
constitutive equations are summarised, including the employed permeability model.
Section 6.3 presents a two-dimensional numerical example that is used to demonstrate
the difference between the linear and nonlinear poroelasticity models. In Section 6.4,
the nonlinear equations are discretised and the finite elements are combined with the
first-order implicit Euler temporal discretisation to establish a solver for linear and
nonlinear poroelasticities on triangular meshes, which couples the solid displacement
and fluid pressure in a monolithic system. Furthermore, the nonlinear equation sys-
tems are solved using a Picard iterative method. Section 6.5 discusses the numerical
results and some concluding remarks are reported in Section 6.6.

6.2 Governing equations

In the following, we briefly recall the equations governing the problem of a porous ma-
terial subjected to oscillating mechanical deformations characterised by displacements
u of the solid skeleton.

We consider a two-phase mixture composed of an elastic solid matrix whose voids
are continuous and completely saturated by an incompressible Newtonian fluid. In
this study, it is further assumed that the porous material is in an initial state of
hydraulic and mechanical equilibrium, gravitational body force remains constant and
the matrix grains are incompressible. Let Ωt ⊂ R3 denote a bounded domain occupied
by a homogeneous and isotropic elastic body with boundary Γt and x = (x, y, z) ∈ Ωt.
Denote by Ω0 the reference domain corresponding to the poroelastic medium in the
initial state and Ωt the deformed domain. Furthermore, t denotes time, belonging to
a half-open time interval I = (0, T ], with T > 0. To determine the local displacement
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of the skeleton of a porous medium as well as the fluid flow through the pores, the
poroelastic equations with single-phase flow can be expressed as [84]

−∇ · σ′ + (∇p+ ρg) = 0 on Ωt × I; (6.1a)

∇ · Du

Dt
+∇ · vf = 0 on Ωt × I, (6.1b)

where σ′ and vf are defined by the following equations

Stress-strain constitutive law: σ′ = λtr(ε)I + 2µε; (6.2)

Darcy’s law: vf = −κ
η

(∇p+ ρg), (6.3)

where σ′ is Terzaghi’s effective stress tensor for the porous medium, p is the fluid
pressure, ρ is the fluid density, g is the gravitational acceleration vector, u is the solid
displacement vector, vf is Darcy’s velocity, λ and µ are the Lamé constants; ε is the
effective strain tensor, κ is the permeability of the porous medium and η is the fluid
viscosity. Note that in Eq. (6.1b) we have used the material derivative, which reads
as

D

Dt
(·) =

∂

∂t
(·) + vs · ∇(·), (6.4)

where
vs =

∂u

∂t

∣∣∣∣
Ω0

, (6.5)

is the solid velocity. This system needs to be complemented by appropriate boundary
and initial conditions that will be specified in Section 6.3.

In the infinitesimal deformation range, corresponding to the assumptions that
‖u‖ � 1 and ‖∂u/∂x‖ � 1, the model provided by Biot’s theory of linear poroelas-
ticity [16] is used

−∇ · σ′ + (∇p+ ρg) = 0 on Ωt × I; (6.6a)

∇ · ∂u
∂t

+∇ · vf = 0 on Ωt × I. (6.6b)

In the finite deformation range, the deformations are not very small and cannot be
neglected. Hence, the poroelastic equations with single-phase flow are expressed as

−∇ · σ′ + (∇p+ ρg) = 0 on Ωt × I; (6.7a)

∇ · ∂u
∂t

+∇ · (∇u vs) +∇ · vf = 0 on Ωt × I. (6.7b)

Furthermore, for the solid skeleton, we consider linear and nonlinear constitutive laws
for the relationship between strain and displacement. Assuming that the solid deforms
elastically, these relationships are quasi-static and reversible. Hencky elasticity is
a nonlinear hyperelastic model that is based on a logarithmic strain measure and
provides good agreement for the elastic behaviour of a wide variety of materials under
moderate to large deformations [4, 58]. The Hencky strain tensor can be written as [84]

εN =
1

2
ln(FFT ), (6.8)
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where F = (I−∇u)−1 is the deformation gradient tensor, with I denoting the identity
tensor. The natural logarithm ln(·) is computed in each element of the tensor FFT .
On the other hand, assuming that the porous material is linearly elastic, the linear
strain tensor can be defined by

εL =
1

2
(∇u +∇uT ). (6.9)

Considering Hencky elasticity law (6.8) combined with nonlinear poroelasticity (6.7) is
the most appropriate model for moderate to large deformations. However, this model
is computationally expensive. According to Auton and MacMinn [5], using nonlinear
poroelasticity (6.7) combined with linear elasticity (6.9) offers a good compromise
between accuracy, robustness and computational efficiency, demonstrating the same
qualitative behaviour as the fully nonlinear model. Hence, in this chapter, we adopt
linear elasticity (6.9) for all models: ε = εL.

In addition, we assume that the solid and fluid phases are individually incompress-
ible, such that deformation occurs only through rearrangement of the solid skeleton
with corresponding changes in the local porosity. This is then likely to alter the perme-
ability of the material. The deformation-dependent permeability can be determined
using the Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ(x, t)3

(1− θ(x, t))2
, (6.10)

where ds is the mean grain size of the soil and the porosity θ is computed from the
displacement vector using the porosity-dilatation relation (see [103, 130])

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (6.11)

with θ0 the initial uniform porosity. In this study, the term porosity refers to the
entire connected porosity.

Since in linear poroelasticity it is assumed that the deformations are infinitesi-
mal, this model is in the literature often combined with constant permeability. In
this study, we consider three models: linear poroelasticity, where Eqs. (6.6) are used,
combined with constant permeability κ(x, t) = κ(x, 0) which we abbreviate as (LC),
linear poroelasticity combined with the Kozeny-Carman equation (LKC) and non-
linear poroelasticity, where Eqs. (6.7) are used, combined with the Kozeny-Carman
equation (NKC).

6.3 Numerical experiment
This section presents a numerical example that verifies the proposed finite element
formulation and highlights the differences between the infinitesimal deformation and
the finite deformation regimes in a poromechanical problem. In this example, we
consider the effect of applied mechanical oscillations with small and large amplitudes.

In this problem, a poroelastic medium is instantaneously subjected to uniform
boundary pressure on the left boundary. As soon as the boundary pressure is ap-
plied, excess pore pressure develops inside the domain, and so, the pore fluid starts
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to drain through the right boundary. The boundary pressure is maintained constant
throughout. Figure 6.1 illustrates the set-up of the problem. We consider a rectan-
gular domain with initial width L and initial height H. At the top of the domain, an
oscillating mechanical deformation is applied. No-flow conditions are imposed on the
top and bottom boundaries. The material is assumed to be fully saturated and free
of gravitational forces throughout.

Ω

Γ1

Γ2

Γ3

Γ4

L

H

y

x

Figure 6.1: Sketch of the set-up for the two-dimensional problem.

The boundary conditions for this problem are as follows:
κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ3; (6.12a)

p = ppump on x ∈ Γ2; (6.12b)
p = 0 on x ∈ Γ4; (6.12c)

u = (0, uvib)
T on x ∈ Γ1; (6.12d)

σ′n = 0 on x ∈ Γ2 ∪ Γ4; (6.12e)
u · n = 0 on x ∈ Γ3; (6.12f)

(σ′n) · t = 0 on x ∈ Γ3, (6.12g)

where t is the unit tangent vector at the boundary, n the outward unit normal
vector and ppump is a prescribed pump pressure. Figure 6.1 shows the definition of
the boundary segments. Initially, the following condition is fulfilled:

u(x, 0) = 0 for x ∈ Ω0. (6.13)

For the boundary displacement uvib, a standing wave is considered, represented by

uvib(x, t) = −γ cos

(
π

2L
(x− L)

)
cos

(
π

2∆t
(t−∆t)

)
, (6.14)

with γ the amplitude of the oscillation and ∆t the time increment.

6.4 Numerical procedure
In this section, we outline the numerical procedures used to discretise the poroelastic
models presented in Section 6.2 and to solve the resulting coupled fluid/solid finite-
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dimensional problem. The weak form of the governing equations will be derived and
discretised using a continuous Galerkin finite element approach with displacements
and fluid pressures as primary variables. The suitability of the proposed methodology
to model flow through elastic, saturated porous media under finite deformations will
be demonstrated using the illustrative numerical example described in the previous
section.

6.4.1 Weak formulation
We present a finite element framework for Eqs. (6.6) and (6.7), using the continuously
deforming domain Ωt with initially Ωt = Ω0. Firstly, we introduce the appropriate
function spaces. Let L2(Ωt) be the Hilbert space of square integrable scalar-valued
functions on Ωt defined as L2(Ωt) = {f : Ωt → R :

∫
Ωt
|f |2 dΩt < ∞}, with inner

product (f, g) =
∫

Ωt
fg dΩt. Let H1(Ωt) denote the subspace of L2(Ωt) of functions

with first derivatives in L2(Ωt). Subsequently, we define the function spaces Q =
{q ∈ H1(Ωt) : q|Γ2

= ppump and q|Γ4
= 0} and W = {w ∈ (H1(Ωt))

2 : w|Γ1
=

(0, uvib)
T and (w · n)|Γ3

= 0}. Furthermore, we consider the bilinear forms [102]

a(u,w) = λ(∇ · u,∇ ·w) + 2µ

2∑
i,j=1

(εij(u), εij(w));

b(p,w) = (p,∇ ·w);

c(p, q) =

2∑
i=1

(
κ

η

∂p

∂xi
,
∂q

∂xi
).

Using the notation u̇ = ∂u/∂t, the variational formulation for Eqs. (6.6) with bound-
ary and initial conditions (6.12)-(6.13) consists of the following:

Find (u(x, t), p(x, t)) ∈ (W ×Q) such that

a(u,w)− b(p,w) = h(w) ∀w ∈ W0; (6.15a)
b(q, u̇) + c(p, q) = 0 ∀q ∈ Q0, (6.15b)

with the initial condition u(0) = 0, and where

h(w) = −ppump
∫

Γ2

w · n dΓ;

W0(Ω0) = {w ∈ (H1(Ω0))2 : w|Γ1
= 0 and (w · n)|Γ3

= 0};
Q0(Ω0) = {q ∈ H1(Ω0) : q|Γ2∪Γ4

= 0}.

In this work, we use the implicit Euler method for the discretisation in time, which
is unconditionally stable and commonly used in the computational poromechanics
literature. Let us denote by ∆t = tm − tm−1 the time increment from time tm−1 to
tm and add the superscripts (·)m−1 and (·)m to denote respective values at these time
instances. After applying this method we get:

For m ≥ 1, find (um(x), pm(x)) ∈ (W ×Q) such that

a(um,w)− b(pm,w) = h(w) ∀w ∈ W0; (6.16)

b(q,um) + ∆t c(pm, q) = b(q,um−1) ∀q ∈ Q0, (6.17)
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while for m = 0: u0 = 0. At each time step, we solve the equations as a fully coupled
system.

Now we derive the variational formulation for Eq. (6.7b), first we multiply this
equation by a basis function q ∈ Q0, and integrate the result over Ωt, to get∫

Ωt

[
∇ · ∂u

∂t
+∇ · (∇u vs) +∇ · vf

]
q dΩt = 0. (6.18)

First, we introduce J = [∇u − (∇ · u)I]vs + vf , then using Clairaut’s theorem on
equality of mixed partials for C2-functions over time and position, we obtain∫

Ωt

[
∂

∂t
(∇ · u) +∇ · (vs∇ · u) +∇ · J

]
q dΩt = 0. (6.19)

The definition of the material derivative (6.4) gives∫
Ωt

[
D

Dt
(∇ · u) + (∇ · vs)(∇ · u) +∇ · J

]
q dΩt = 0. (6.20)

According to Dziuk and Elliott [47], it holds that Dq
Dt = 0 for the Lagrangian basis

functions that we will use in this study. Hence, we get using the definition of the
material derivative (6.4)∫

Ωt

[
∂

∂t
[(∇ · u)q] + vs · ∇[(∇ · u)q] + (∇ · vs)(∇ · u)q + (∇ · J)q

]
dΩt = 0. (6.21)

The divergence theorem gives∫
Ωt

∇ · [vs(∇ · u)q]dΩt =

∫
∂Ωt

vs(∇ · u)q · n dΓt. (6.22)

Furthermore, from Reynolds’ theorem, it follows∫
Ωt

∂

∂t
[(∇ · u)q] dΩt =

d

dt

∫
Ωt

(∇ · u)q dΩt −
∫
∂Ωt

(∇ · u)q vs · n dΓt. (6.23)

This results into
d

dt

∫
Ωt

(∇ · u)q dΩt +

∫
Ωt

(∇ · J)q dΩt = 0. (6.24)

Applying the divergence theorem again yields

d

dt

∫
Ωt

(∇ · u)q dΩt −
∫

Ωt

J · ∇q dΩt +

∫
∂Ωt

Jq · n dΓt = 0. (6.25)

From boundary conditions (6.12) it follows, using the definition of J, that

d

dt

∫
Ωt

(∇ · u)q dΩt +

∫
Ωt

[(∇ · u)I−∇u]vs · ∇q dΩt −
∫

Ωt

vf · ∇q dΩt = 0. (6.26)

After applying the implicit Euler method for the temporal discretisation of vs

vms =
∂um

∂t
≈ um − um−1

∆t
, (6.27)



6.5. Numerical results

6

85

it follows that∫
Ωt

(∇ · um)qm dΩt −
∫

Ωt

[(∇ · um)I−∇um](um − um−1) · ∇qm dΩt− (6.28)

−∆t

∫
Ωt

vmf · ∇qm dΩt =

∫
Ωt−∆t

(∇ · um−1)qm−1 dΩt.

We thus obtain, for each time step, a nonlinear system to be solved using an iterative
scheme. Nonlinear algebraic system (6.28) can be solved by Picard’s iterative proce-
dure, where the subscripts (·)k−1 and (·)k denote the values of the previous and the
current iterations respectively. In addition, we choose the initial guess um0 = um−1

and the stopping criterion ‖uk−uk−1‖
‖uk‖ + ‖pk−pk−1‖

‖pk‖ ≤ 10−5, to get∫
Ωt

(∇ · umk )qmk−1 dΩt −
∫

Ωt

[(∇ · umk )I−∇umk ](umk−1 − um−1) · ∇qmk−1 dΩt− (6.29)

−∆t

∫
Ωt

vmf,k · ∇qmk−1 dΩt =

∫
Ωt−∆t

(∇ · um−1)qm−1 dΩt.

Picard’s iterative scheme is also applied for solving the models that use the Kozeny-
Carman equation. Thus, after having obtained the numerical approximation for the
displacement in the previous iteration uk−1, we update the porosity using Eq. (6.11).
Subsequently, the Kozeny-Carman relation (6.10) is used to calculate the permeability
in the current iteration k.

6.4.2 Finite element formulation
Equations (6.15) and Eqs. (6.15a) and (6.29) are solved by applying the finite element
method, with triangular Taylor-Hood elements [28]. Regarding spatial discretisation,
the displacement field is approximated using finite elements with quadratic basis
functions, whereas continuous piecewise linear approximation is used for the pressure
field. Time discretisation of the above dynamical equations is performed by using the
implicit Euler method.

Let P l
h ⊂ H1(Ωt) be a function space of piecewise polynomials on Ωt of degree l.

Hence, we define finite element approximations for W and Q as W l
h = W ∩(P l

h×P l
h)

with basis {φφφi = (φi, φi) ∈ (W l
h × W l

h) : i = 1, . . . , nu} and Ql′

h = Q ∩P l′

h with
basis {ψj ∈ Ql′

h : j = 1, . . . , np}, respectively. Subsequently, we introduce a spatial
approximation for the functions u(x, t) and p(x, t), writing this in the form

uh(x, t) =

nu∑
i=1

ui(t)φφφi(x), ph(x, t) =

np∑
j=1

pj(t)ψj(x), (6.30)

in which the Dirichlet boundary conditions are imposed. When a continuously de-
forming grid is used, each trial function is time-dependent due to the motion of the
grid. Hence, the finite-element trial solution is of the form

uh(x, t) =

nu∑
i=1

ui(t)φφφi(x(t), t), ph(x, t) =

np∑
j=1

pj(t)ψj(x(t), t). (6.31)

For the mesh points, it holds x(t) = x0 + u(t), where x0 are the coordinates of the
reference domain Ω0.
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6.5 Numerical results
The Galerkin finite element method with triangular Taylor-Hood elements is employed
for the solution of the discretised quasi-two-dimensional problems (6.6) and (6.7).
The numerical investigations are carried out using the matrix-based software package
MATLAB (version R2017a). The computational domain is a rectangular surface with
initial width L = 1.0 m and initial height H = 1.0 m. The domain is discretised
using a regular triangular grid, with ∆x = ∆y = 1/200. Mesh refinement did not
yield any significant changes of the numerical solution. In addition, the hydraulic and
mechanical properties used in the simulation can be found in Table 6.1. The solid
material properties are characteristic of an unconsolidated, sandy formation.

Table 6.1: An overview of the values of physical properties used in the simulation.

Property Symbol Value Unit

Elasticity modulus E 35 · 106 Pa
Poisson’s ratio ν 0.3 -
Mean grain size ds 0.2 · 10−3 m
Initial porosity θ0 0.4 -
Fluid viscosity η 1.307 · 10−3 Pa · s
Pump pressure ppump 5 · 105 Pa

Furthermore, the Lamé constants λ and µ in Eq. (6.2) are related to elasticity
modulus E and Poisson’s ratio ν by:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (6.32)

The suitability of the proposed methodology to model flow through elastic porous me-
dia under infinitesimal and finite deformations is investigated in this study by means
of the L2-norm of the computed displacements ‖u‖ and pressure field ‖p‖. Subse-
quently, to compare the results from the different models, we compute the percentage
change as follows:

‖u‖%,AB =
‖uA‖ − ‖uB‖
‖uB‖

· 100, (6.33)

where A and B are two different models from the three models considered in this
study: LC , LKC and NKC . In the generations of the simulation results, the time
increment is chosen to be ∆t = 0.1.

In order to obtain some insight into the impact of the applied mechanical oscilla-
tions on the solid displacements and the fluid pressure, we present an overview of the
simulation results in Figures 6.2 and 6.3. In these simulations, water is injected into
the soil at a constant pump pressure of 5 bar. We start with the simulation results
for the nonlinear model (NKC) without any oscillations applied, i.e. γ = 0. The
simulated pressure and displacement profiles are provided in Figures 6.2a and 6.2b.
Mechanically, the deformations in the porous medium are negligible, other than a
small shift of the grains to the right, as a result of the force exerted on the grains by
the injected water. As shown in Figure 6.2b, the simulated pressure is almost linear.
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This means that the injected water flows in a horizontal direction through the domain
from the left to the right boundary. In Figures 6.2c and 6.2d, the numerical solutions
at t = 0.9 are shown for the nonlinear model using applied oscillations with γ = 0.1.

(a) Positions of the mesh points after subject-
ing them to the calculated displacement vec-
tor u, γ = 0.

(b) Numerical solution for the pressure, γ = 0.

(c) Positions of the mesh points after subject-
ing them to the calculated displacement vec-
tor u, γ = 0.1.

(d) Numerical solution for the pressure, γ =
0.1.

Figure 6.2: Numerical solutions for the pressure and the displacement at time t = 0.9.

Figures 6.2c and 6.2d show the impact of the applied oscillations, imposed on the
top of the domain, on the water flow. In contrast to the pressure shown in Figure 6.2b,
the numerical solution for the pressure in the problem with oscillations is no longer
linear, but shows an oscillatory behaviour, as depicted in Figure 6.2d. In this figure,
we can see that the fluid pressure increases when the grains are pressed together by
the applied oscillation. The norm of the simulated displacement and pressure profiles
that have been obtained using an applied oscillation with γ = 0 (no oscillation) are
depicted in Figures 6.3a and 6.3b, while the simulated results that have been obtained
using an applied oscillation with γ = 0.1 are provided in Figures 6.3c and 6.3d.

In Figures 6.3a and 6.3b, the behaviours of the displacement and pressure fields as
function of the time, without applied oscillations, are shown. The difference between
the linear models LC and LKC is negligibly small in the displacement field, while this
difference is more visible in the pressure field for small times. This is a consequence
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(a) The norm of the displacement, γ = 0.
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(b) The norm of the pressure, γ = 0.
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(c) The norm of the displacement, γ = 0.1.
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(d) The norm of the pressure, γ = 0.1.

Figure 6.3: The norm of the simulated displacement ‖u‖ and pressure profiles ‖p‖ as
function of the time t.

of the different permeability relationships that are used in these models and that
have more effect on the pressure field than on the solid deformations. Over time, the
difference between the three models becomes smaller in the pressure field. However,
the value of the norm of the displacement as a result of the nonlinear model is larger
than the norm of the displacements in the linear models. Hence, for larger times,
the nonlinearity has more effect on the displacement than on the pressure field. This
is also expected from Eqs. (6.6) and (6.7). The impact of the applied mechanical
oscillation is shown in Figures 6.3c and 6.3d, where we notice an oscillatory behaviour
in the displacement and pressure profiles. In these figures, we notice more similarity
in the results of the three models for the displacement than for the fluid pressure.
Furthermore, it is clear that the applied oscillation, which has an amplitude equal to
10% of the height of the domain, has a larger impact on the results than the adopted
mathematical models.

The percentage change (6.33) in the norms of the simulated displacement ‖u‖% and
pressure ‖p‖% is depicted in Figures 6.4 and 6.5, for different values of the amplitude
of the applied oscillations.
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(a) The percentage change in the norm of the
displacement, γ = 0.
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(b) The percentage change in the norm of the
displacement, γ = 0.04.
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(c) The percentage change in the norm of the
displacement, γ = 0.08.
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(d) The percentage change in the norm of the
displacement, γ = 0.12.

Figure 6.4: The percentage change in the norm of the simulated displacement ‖u‖%
as function of the time t.

When comparing the linear models in Figures 6.4 and 6.5, we notice that the
impact of the Kozeny-Carman relation on the displacement is small, whereas this
impact on the fluid pressure field becomes larger with increasing amplitude of the ap-
plied oscillation. The reason for this behaviour is that the permeability relationship
is directly related to the pressure through Eq. (6.3). Moreover, the influence of the
deformations on the porosity (see Eq. (6.11)), and thus on the Kozeny-Carman per-
meability, is greater for larger deformations. In addition, the comparison between the
linear and the nonlinear models both combined with Kozeny-Carman equation leads
to the conclusion that the nonlinearity has a larger impact on the displacement field
more than the permeability relationship. In contrast, the pressure field is more influ-
enced by the permeability relation that is used than the nonlinearity in the models.
In the extrema, the percentage change between the nonlinear model and the linear
model with constant permeability is as large as the percentage change between the
linear models and the percentage change between the nonlinear model and the linear
model combined with the Kozeny-Carman relation.

Picard’s iterative scheme is used to solve the nonlinear poroelasticity model (NKC).
For the previous values of the amplitude of the applied oscillations, the number of
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pressure, γ = 0.
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(b) The percentage change in the norm of the
pressure, γ = 0.04.
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pressure, γ = 0.12.

Figure 6.5: The percentage change in the norm of the simulated pressure ‖p‖% as
function of the time t.

iterations per time step as function of the time t is depicted in Figure 6.6. It can be
seen from Figure 6.6 that the number of Picard iterations stabilises with time and
depends mildly on the magnitude of γ.

The aim of this study was to quantify the amplitudes for which the linear poroe-
lasticity model is accurate enough and demonstrates the same qualitative behaviour
as the nonlinear poroelasticity model. As expected, for small applied mechanical os-
cillations, the difference between the linear and the nonlinear models is small both
in the displacement as in the pressure fields. In Table 6.2, the upper limits of the
absolute values of the percentage change for the different models are depicted.
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Figure 6.6: The number of iterations per time step as function of the time t, for
different values of the amplitude γ.

Table 6.2: The upper limits of the absolute values of the percentage change.

γ [m] ‖u‖%,NKCLKC
‖u‖%,NKCLC

‖p‖%,NKCLKC
‖p‖%,NKCLC

0.00 0.8242 0.8236 0.6140 0.8402
0.01 0.8889 0.9045 0.3345 0.7937
0.02 1.2588 1.2373 1.0128 2.2942
0.03 1.6468 1.4731 1.8968 4.2280
0.04 1.1095 1.0415 2.8980 7.3587
0.05 1.1938 1.6926 4.7570 11.6912
0.06 2.5034 3.1282 6.4628 15.1482
0.07 3.6431 4.3453 7.8815 18.0029
0.08 4.6264 5.3951 9.1113 20.4882
0.09 5.4970 6.3267 10.2152 22.7376
0.10 6.2852 7.1733 11.2296 24.8238
0.11 7.0107 7.9559 12.1755 26.7877
0.12 7.6857 8.6876 13.0655 28.6535

For instance, given an applied oscillation with an amplitude γ = 0.08 (8% of the
height of the domain), an accuracy of 10% can be obtained in both the displacement
and the pressure fields using the linear poroelasticity model combined with Kozeny-
Carman equation. However, this accuracy can only be obtained using the linear model
combined with constant permeability for applied oscillations with an amplitude of 0.04
or smaller. For applied mechanical oscillations with amplitudes larger than γ = 0.12,
the nonlinear poroelasticity model becomes unstable resulting in negative porosities.
Hence, we will not consider these oscillations in this chapter.
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6.6 Discussion and conclusions

In this work, we have developed a mathematical model for fluid injection into a mono-
layer of soil particles subjected to surface mechanical oscillations, based on the two-
field model (solid displacement and fluid pressure). This two-field mixed formulation
is employed to calculate the solid displacement and the fluid pressure directly, in a
monolithic system. In addition, we have included dynamic effects, such as a time- and
space-dependent porosity and permeability. Firstly, we have summarised the govern-
ing equations both in the theory of linear poroelasticity as in the large-deformation
poroelasticity. Subsequently, we have presented a finite element solver for the lin-
ear and nonlinear poroelasticity models, combined with constant and deformation-
dependent permeability. This solver is developed on a triangular mesh and relies on
quadratic basis functions for the discretisation of the displacement in elasticity and
the continuous piecewise linear approximation for discretisation of pressure in Darcy’s
flow. These spatial discretisations are combined with the backward Euler temporal
discretisation of the fluid-mass balance equation. For the nonlinear poroelasticity
equation, a weak formulation based on the motion of the solid was first presented,
then linearisation of the resulting nonlinear coupled equation systems has been made
using a standard Picard iterative procedure, which is subsequently implemented in
a finite element code that is based on Taylor-Hood elements. The suitability of the
proposed methodology to model flow through elastic, saturated porous media under
finite deformations is demonstrated using an illustrative numerical example. In this
example, injection of a fluid into a two-dimensional fully saturated porous medium
is considered, assuming that the solid material is subjected to surface mechanical os-
cillations with different amplitude sizes and that the fluid and solid constituents are
individually incompressible.

Linear poroelasticity is a good model for very small deformations, besides that
it is a simple model to solve and is computationally cheap. On the other hand, the
well-known large-deformation theory is more suitable to solve poroelasticity problems
with moderate to large deformations. However, adopting this nonlinear mathematical
model increases the computational complexity and cost, especially because the basis
functions in the finite element code have to be updated in every iteration within the
time integration. For this reason, the two-dimensional numerical example is used in
this study to investigate the accuracy of the linear poroelasticity model for applied
mechanical oscillations with different sizes. In addition, the impact of introducing
a deformation-dependent permeability according to the Kozeny-Carman equation is
explored.

The numerical example is solved using mechanical oscillations with amplitudes
in the range [0, 0.12] corresponding with [0, 12]% of the height of the domain. For
solving this physical problem, three different mathematical models are considered:
linear poroelasticity combined with constant permeability (LC), linear poroelastic-
ity combined with the Kozeny-Carman equation (LKC) and nonlinear poroelasticity
combined with the Kozeny-Carman equation (NKC). Since the nonlinear poroelas-
ticity model was unstable for applied mechanical oscillations with amplitudes larger
than 0.12, resulting in negative porosities, we did not do any simulations for larger
oscillations. In order to remove the nonphysical behaviour, one could analyse the
improvement of the initial condition for the Picard iteration scheme of the displace-
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ment by the use of the linear model. As an alternative, one could investigate the
performance of different time-integration schemes and time stepping. Another aspect
is that, in the current work, we first applied time integration, followed by the finite
element discretisation and finally the Picard method was implemented. One could
reverse the order between the application of the finite element discretisation and Pi-
card’s method and investigate whether this reversal gives any improvement of the
results. On the other hand, we could also analyse whether the model would actually
predict these negative porosities and look whether the model (in terms of the Kozeny-
Carman relation (6.10) and in the wake of Eq. (6.11)) is entirely appropriate for this
regime.

Firstly, by considering the numerical example without applied oscillations, we have
shown that the nonlinearity has more effect on the displacement than on the pressure
field. This is a consequence of the nonlinearity in the displacement that can be seen in
Eqs. (6.7). On the contrary, the impact of including a deformation-dependent perme-
ability was larger on the pressure field than on the solid deformations. The reason for
this behaviour is that the permeability relationship is directly related to the pressure
through Darcy’s law (6.3). Secondly, the impact of the applied mechanical oscillation
was investigated by applying standing waves on the top surface of the solid matrix.
From the numerical results, we noticed that the oscillatory behaviour was visible in
the displacement and pressure profiles. Moreover, the differences between the three
models (LC), (LKC) and (NKC) are small for small applied oscillations, while these
differences become larger by an increasing amplitude of the applied oscillation. Hence,
the errors in the simulated displacement and pressure as a result of solving the linear
poroelasticity model in the finite-deformation range increase when we choose applied
oscillations with large amplitudes. The difference between the linear models can be
explained by the impact of the large deformations on the porosity, which in turn has a
larger impact on the Kozeny-Carman permeability. While this influence is not taken
into account in the linear model combined with constant permeability.

In summary, for the studied problem and the set of parameters chosen, the use of
the linear poroelasticity model for solving physical problems with finite deformations
results in errors in the displacement and pressure fields that are mainly the conse-
quence of the lack of the kinematic nonlinearity. To reduce these errors, especially in
the pressure field, the linear poroelasticity model can preferably be combined with a
deformation-dependent permeability, such as the Kozeny-Carman relationship.





Chapter 7
Fluid flow through homogeneous

versus heterogeneous layered porous
media

All natural soils are heterogeneous mixtures. To determine the compo-
sition of soil, laboratory tests and field experiments are needed. However,
since these tests and experiments can only been performed on a limited
number of locations in the soil, flow through the voids in a soil is usually
modelled assuming a homogeneous soil mixture rather than a heteroge-
neous mixture. In this chapter, we investigated whether this simplifica-
tion is justified by exploring the difference between the flow of water in
a model with a heterogeneous layered porous medium and a model with
a homogeneous porous medium. The study contains simulations with os-
cillatory force boundary conditions as well as pressure pulses. Further-
more, Monte Carlo simulations are performed to quantify the impact of
variation of model parameters on the volumetric flow rate. From the nu-
merical results, we could conclude that water flows twice as fast through
heterogeneous layered porous media than through homogeneous porous
media.
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7.1 Introduction

Soil is a mixture of broken rocks and minerals, living organisms, and decaying organic
matter called humus [137]. A homogeneous mixture is a solid, liquid or gaseous
mixture that has the same proportions of its components throughout a given sample.
In contrast, a heterogeneous mixture is not uniform in composition, but proportions
of its components vary throughout the sample [60]. According to this definition, all
natural soils are heterogeneous mixtures, because no two nature soil samples will have
the exact proportions of its inherent components.

Simulations of groundwater flow in heterogeneous porous aquifers require a de-
tailed knowledge of the spatial distribution of aquifer parameters. In most cases, this
information cannot easily be obtained at acceptable expenses. In general, subsurface
investigation techniques are applied only at borehole locations, and the parameter val-
ues measured have to be regionalised in order to obtain continuous parameter fields.
For this reason, aquifers are usually simulated as homogeneous mixtures. Similarly, in
all the models that we considered in this dissertation, the porous medium is assumed
to be homogeneous. In this chapter, we will investigate whether this simplification is
justified by exploring the difference between the flow of water in a model with a het-
erogeneous layered porous medium and a model with a homogeneous porous medium.
This difference will be quantified in this study by the impact of mechanical oscilla-
tions and pressure pulses on the water flow through the porous medium. In these
investigations, we make use of the results from laboratory tests and field experiments
to describe the soil layers. For the homogeneous porous medium, the values of the
soil characteristics are obtained by averaging the values of the different layers. Note
that the heterogeneous layered model is unrealistic on the assumption that the soil
consists of homogeneous horizontal layers, since the heterogeneities may be arranged
in an entirely different way.

The rest of this chapter is organised as follows: In Section 7.2 the considered model
equations are given, including the employed porosity-permeability relation. The nu-
merical experiments with homogeneous and heterogeneous layered porous media are
described in Section 7.3. The simulation results from these models are presented in
Section 7.4 and, lastly, some concluding remarks are reported in Section 7.5.

7.2 Governing equations

The model provided by Biot’s theory of linear poroelasticity with single-phase flow
is used to determine the local displacement of the skeleton of a porous medium, as
well as the fluid flow through the pores. The initial boundary value problem for
the consolidation process of a fluid flow in a deformable porous medium is stated as
follows:

equilibrium equations: −∇ · σ′ + (∇p+ ρgez) = 0 on Ω× I; (7.1a)

continuity equation:
∂

∂t
(∇ · u) +∇ · v = 0 on Ω× I, (7.1b)
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where σ′ and v are defined by the following equations

Biot’s constitutive equations: σ′ = λ(∇ · u)I + µ(∇u +∇uT ); (7.2)

Darcy’s law: v = −κ
η

(∇p+ ρgez). (7.3)

In the above relations, σ′, p, ρ, g, u, v, λ and µ; κ and η respectively, denote the
effective stress tensor for the porous medium, the pore pressure, the fluid density, the
gravitational acceleration, the displacement vector of the porous medium, Darcy’s
velocity, the Lamé coefficients, the permeability of the porous medium, and the fluid
viscosity. The permeability can be determined using the Kozeny-Carman equation

κ(x, t) =
d2
s

α

θ(x, t)3

(1− θ(x, t))2
, (7.4)

where ds is the mean grain size of the soil, α is a parameter related to the shape
of the grains and the porosity θ is computed from the displacement vector using the
porosity-dilatation relation

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (7.5)

with θ0 the initial porosity.

7.3 Problem formulation
The infiltration of a fluid through a filter into an aquifer is shown in Figure 7.1a. We
assume that the flow pattern is axisymmetric, hence we determine the solution for a
fixed azimuth. The computational domain Ω is an L-shaped two-dimensional surface
with cylindrical coordinates r = (r, z), as depicted in Figure 7.1b.

H

R

(a)

Ω
Γ1

Γ2

Γ3

Γ4
Γ5

Γ6

Γ7

r

z

(b)

Figure 7.1: Sketch of the set-up for the aquifer problem: (left) physical problem and
(right) numerical discretisation.

The fluid is injected into the soil through a filter placed on boundary segment Γ3.
Furthermore, the injection tube (boundary segments Γ2, Γ3 and Γ4) is fitted with
a casing (boundary segments Γ2 and Γ4) and a perforated section (boundary seg-
ment Γ3) to prevent loose material from entering and potentially clogging the injection
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tube. More precisely, the boundary conditions for this problem are given as follows:

p = ρg(H − z) on r ∈ Γ1 ∪ Γ6 ∪ Γ7; (7.6a)
κ

η
(∇p+ ρgez) · n = 0 on r ∈ Γ2 ∪ Γ4 ∪ Γ5; (7.6b)

p = ρg(H − z) + ppump on r ∈ Γ3; (7.6c)
σ′n = 0 on r ∈ Γ1 ∪ Γ6; (7.6d)

(σ′n) · t = 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5; (7.6e)
u · n ≤ 0 on r ∈ Γ2 ∪ Γ4; (7.6f)

u · n = uvib on r ∈ Γ3; (7.6g)
u · n = 0 on r ∈ Γ5; (7.6h)

(σ′n) · n = 0 on r ∈ Γ7; (7.6i)
u · t = 0 on r ∈ Γ7, (7.6j)

where ppump is a prescribed pump pressure used to inject the fluid through a filter with
radius Rf and length Lf and uvib is an imposed mechanical oscillation on boundary
segment Γ3. Initially, the following condition is fulfilled:

u(r, 0) = 0 for r ∈ Ω. (7.7)

From laboratory tests and field experiments we got a description of the soil layers
(see Table 7.1) and the values of the hydraulic conductivity K, the initial porosity
θ0 and the main grain size ds (see Table 7.2). From the hydraulic conductivity we
compute the initial permeability using the formula:

κ0 = K
η

ρg
. (7.8)

Subsequently, we determine the value of α in the Kozeny-Carman equation for every
soil layer by

α =
d2
s

κ0

θ3
0

(1− θ0)2
. (7.9)
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Table 7.1: A description of the soil layers from laboratory tests.

z [m] Layer description

24.7 - 25.0 Sand, moderately fine, moderately silty, weakly gravelly,
light grey

24.4 - 24.7 Sand, moderately fine, weakly silty, weakly gravelly,
remnants debris, remains of roots, grey

23.5 - 24.4 Sand, moderately fine, weakly silty, grey
22.5 - 23.5 Sand, moderately fine, weakly silty, weakly gravelly, grey
22.0 - 22.5 Sand, moderately coarse, weakly silty, grey
19.5 - 22.0 Sand, very coarse, weakly silty, grey
18.5 - 19.5 Sand, moderately fine, weakly silty, grey
16.5 - 18.5 Sand, moderately coarse, weakly silty, grey
15.5 - 16.5 Sand, very coarse, weakly silty, weakly gravelly, grey
15.0 - 15.5 Sand, extremely coarse, weakly silty, very gravelly, grey
14.5 - 15.0 Sand, very coarse, weakly silty, chunks of clay, grey
14.0 - 14.5 Sand, very coarse, weakly silty, very gravelly, brown-grey
13.5 - 14.0 Sand, very coarse, weakly silty, weakly gravelly, grey
13.0 - 13.5 Sand, extremely coarse, weakly silty, very gravelly, brown-grey
12.5 - 13.0 Sand, very coarse, weakly silty, weakly gravelly, grey
12.0 - 12.5 Sand, extremely coarse, weakly silty, very gravelly, grey
11.5 - 12.0 Sand, very coarse, weakly silty, weakly gravelly, grey
11.0 - 11.5 Sand, extremely coarse, weakly silty, moderately gravelly, grey
10.5 - 11.0 Sand, extremely coarse, weakly silty, moderately gravelly, grey
10.0 - 10.5 Sand, very coarse, weakly silty, moderately gravelly, grey
9.5 - 10.0 Sand, extremely coarse, weakly silty, weakly gravelly, grey
8.5 - 9.5 Sand, moderately coarse, weakly silty, weakly gravelly, grey
7.5 - 8.5 Sand, very coarse, weakly silty, moderately gravelly, grey
7.0 - 7.5 Sand, extremely coarse, weakly silty, very gravelly, grey
6.5 - 7.0 Sand, very coarse, weakly silty, weakly gravelly, brown
5.5 - 6.5 Sand, extremely coarse, weakly silty, very gravelly, brown
0.0 - 5.5 Sand, extremely coarse, weakly silty, very gravelly, brown

Young’s modulus E and Poisson’s ratio ν, that are used to compute the values of
the Lamé coefficients, are derived from the book Foundation analysis and design [27].
In this book, intervals are given for these parameters (see Table 7.3). In addition, the
Lamé coefficients λ and µ are related to Young’s modulus E and Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (7.10)
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Table 7.2: The values of the hydraulic conductivity K, the initial porosity θ0 and the
main grain size ds from laboratory tests and field experiments.

z [m] K [m/s] ds [µm] θ0

24.7 - 25.0 1.6 · 10−4 295 0.390
24.4 - 24.7 1.6 · 10−4 295 0.390
23.5 - 24.4 6.5 · 10−5 217 0.436
22.5 - 23.5 1.6 · 10−4 295 0.390
22.0 - 22.5 6.5 · 10−5 217 0.436
19.5 - 22.0 5.9 · 10−5 308 0.376
18.5 - 19.5 9.7 · 10−5 219 0.422
16.5 - 18.5 9.7 · 10−5 219 0.422
15.5 - 16.5 9.8 · 10−5 415 0.347
15.0 - 15.5 1.4 · 10−4 563 0.403
14.5 - 15.0 8.6 · 10−5 542 0.355
14.0 - 14.5 8.6 · 10−5 542 0.355
13.5 - 14.0 9.8 · 10−5 415 0.347
13.0 - 13.5 1.6 · 10−4 570 0.384
12.5 - 13.0 9.8 · 10−5 415 0.347
12.0 - 12.5 1.4 · 10−4 563 0.403
11.5 - 12.0 9.8 · 10−5 415 0.347
11.0 - 11.5 1.8 · 10−4 456 0.399
10.5 - 11.0 3.1 · 10−4 479 0.382
10.0 - 10.5 1.0 · 10−4 379 0.379
9.5 - 10.0 4.6 · 10−5 505 0.387
8.5 - 9.5 1.6 · 10−4 295 0.390
7.5 - 8.5 1.7 · 10−4 397 0.422
7.0 - 7.5 1.0 · 10−3 672 0.386
6.5 - 7.0 1.8 · 10−4 314 0.375
5.5 - 6.5 2.2 · 10−4 657 0.374
0.0 - 5.5 2.3 · 10−4 719 0.376

Table 7.3: The values of Young’s modulus E and Poisson’s ratio ν.

Type of soil E [MPa] ν

Loess 15− 60 0.1 - 0.3
Sand 10− 81 0.3 - 0.4
Sand and gravel 50− 200 0.3 - 0.4
Sandy clay 25− 250 0.2 - 0.3

In the model with the homogeneous porous medium, the values of the soil charac-
teristics are obtained by averaging the values of the different soil layers. Assume that
we have two soil layers 1 and 2 in parallel with thicknesses h1 and h2, permeabilities
κ1 and κ2 and cross-sectional areas A1 and A2 respectively. Since the layers are in
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parallel, the total flow rate through both layers is equal to the sum of the flow rates
across individual soil layers, hence the following expression can be derived

Q = Q1 +Q2. (7.11)

Using Darcy’s law (7.3), the total flow rate is given by

Q = −κh
η
∇p(A1 +A2). (7.12)

Substituting Eq. (7.12) in Eq. (7.11) and using Darcy’s law (7.3) for the individual
layers gives

−κh
η
∇p(A1 +A2) = −κ1

η
∇pA1 −

κ2

η
∇pA2. (7.13)

Assuming that the width of each layer is identical, the average permeability of both
layers can be computed by

κh =
h1κ1 + h2κ2

h1 + h2
. (7.14)

Hence, the general expression for the average permeability of a parallel layered for-
mation with N layers is

κh =

∑N
i=1 hiκi∑N
i=1 hi

. (7.15)

For the porosity of a parallel layered formation with N layers holds

θh =

∑N
i=1 Viθi∑N
i=1 Vi

, (7.16)

where V is the volume of the layer. For the grain size, the median D50 of the layers
is used.

7.3.1 Mechanical oscillations
We start with the simulation of problem (7.1) with a constant pump pressure ppump
and an imposed mechanical oscillations on boundary segment Γ3. These mechanical
oscillations are induced by the injection of water through the filter. For the boundary
displacement uvib standing waves are used, represented by

uvib(r, t) =

∣∣∣∣∣∣γ sin

(
π(z − zfs)

Lf

)
cos

(
πt

2∆t

)∣∣∣∣∣∣ , (7.17)

where γ is the amplitude of the wave, zfs is the z-coordinate of the lower end of the
filter, and ∆t is the time step size.

7.3.2 Pulsed injection
In this numerical experiment, the prescribed pump pressure will have a pulsing be-
haviour rather than being constant. In this case, the pump pressure is represented by
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a combination of the Heaviside step functions. A rectangular pulse wave with period
Tp and pulse time τ is defined as

ppump(t) = pb1H(t) + (pb2 − pb1)

Np∑
k=0

[H(t− kTp)−H(t− kTp − τ)], (7.18)

where the pump pressure is pulsing between pb1 and pb2, and Np is the number of
periods. The boundary conditions are as follows

p = ρg(H − z) on r ∈ Γ1 ∪ Γ6 ∪ Γ7; (7.19a)
κ

η
(∇p+ ρgez) · n = 0 on r ∈ Γ2 ∪ Γ4 ∪ Γ5; (7.19b)

p = ρg(H − z) + ppump(t) on r ∈ Γ3; (7.19c)
σ′n = 0 on r ∈ Γ1 ∪ Γ6; (7.19d)

(σ′n) · t = 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5; (7.19e)
u · n ≤ 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4; (7.19f)
u · n = 0 on r ∈ Γ5; (7.19g)

(σ′n) · n = 0 on r ∈ Γ7; (7.19h)
u · t = 0 on r ∈ Γ7. (7.19i)

7.4 Numerical results
In this section, we discuss the solution results for the Galerkin finite element method,
with triangular Taylor-Hood elements [113], that are employed for the solution of the
discretised quasi-two-dimensional problems that are presented in Section 7.3. The
displacements are spatially approximated by quadratic basis functions, whereas a
continuous piecewise linear approximation is used for the pressure field. For the time
integration, the backward Euler method is applied. The numerical investigations are
carried out using the matrix-based software package MATLAB (version R2011b).

The computational domain is an L-shaped surface with radius R = 5.0 m, height
H = 25.0 m, filter radius Rf = 10.0 cm and filter length Lf = 2.0 m. The filter is
placed between z = zfs = 5.5 and z = 7.5. The domain is discretised using a regular
triangular grid, with ∆r = 0.1 and ∆z = 0.25. In addition, values for some model
parameters have been chosen based on the literature (see Table 7.4).

Table 7.4: An overview of the values of the model parameters.

Property Symbol Value Unit

Fluid viscosity η 1.307 · 10−3 Pa · s
Fluid density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2
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7.4.1 Numerical results for the problem with mechanical os-
cillations

In this section, we will investigate the impact of the standing waves (7.17) on the
flow of water in the homogeneous and in the heterogeneous layered porous media.
The impact of the injection methods on the water flow is defined in this study as
the impact on the time average of the volumetric flow rate Q at a distance R − Rf
from the injection filter. In these simulations, water is injected into the soil at a
constant pump pressure equal to 5.0 bar. Furthermore, as the exact values of Young’s
modulus E and Poisson’s ratio ν are unknown, we will apply the Monte Carlo method
and draw samples for these values, using 300 samples of uniform distributions with
characteristics that are presented in Table 7.3 and as corresponding with the soil type
in each layer. To quantify the impact of the variation in the values of Young’s modulus
E and Poisson’s ratio ν and as a consistency check, we start with the simulation
results for the problem with boundary conditions (7.6) and without any oscillations,
i.e. uvib = 0. The time average of the volumetric flow rate after applying the Monte
Carlo simulations to the values of Young’s modulus and Poisson’s ratio are provided
in the histograms in Figure 7.2. In the generations of the simulation results, the time
step size is chosen to be ∆t = 0.5.
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Figure 7.2: The histogram of the time average of the volumetric flow rate over the time
interval (0, 150], without oscillations and after applying Monte Carlo simulations to
the values of Young’s modulus and Poisson’s ratio.

Figure 7.2 shows that variation in the values of Young’s modulus and Poisson’s
ratio leads to a small variation in the simulation results, in both the homogeneous and
the heterogeneous layered model. The change in the time average of the volumetric
flow rate in the homogeneous model, due to this variation, is maximally 1.70% while
the change in the heterogeneous model is 0.23% maximal. Furthermore, this figure
presents the difference between the porous media. From these results, we can conclude
that water flows two times faster through heterogeneous layered porous media than
through homogeneous porous media, in case there are no external imposed body
forces.
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In the problem with oscillations, the Monte Carlo method is applied to the values
of the amplitude of the oscillations using samples of uniform distributions with chosen
boundaries. In Figure 7.3, the time average of the volumetric flow rate is depicted after
applying Monte Carlo simulations to the values of the oscillation characteristic γ. For
the simulations, 300 samples from the following uniform distribution are generated:

γ ∼ U(0.05, 0.10).
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Figure 7.3: Scatter plots of the time average of the volumetric flow rate over the
time interval (0, 150], after applying Monte Carlo simulations to the values of γ, E
and ν. For the oscillations, standing waves (7.17) are used as prescribed boundary
displacement uvib, with γ ∼ U(5, 10) cm.

Figure 7.3 indicates that an increase in the amplitude of the imposed standing
waves leads to an increase in the time average of the volumetric flow rate Q. More-
over, this impact is larger on the water flow in the heterogeneous layered porous
medium than the water flow in the homogeneous porous medium. In Table 7.5, the
Pearson correlation coefficients are given together with the associated p-values. The
notation Qh is used for the time average of the volumetric flow rate in the homo-
geneous model and Ql indicates the time average of the volumetric flow rate in the
heterogeneous layered porous medium. From this table, we can conclude that γ and
Ql are almost perfectly positively linearly related, since corr(γ,Ql) is almost equal
to 1. Furthermore, the correlation seems stronger for the heterogeneous case than for
the homogeneous case.

Table 7.5: The Pearson correlation coefficients and the associated p-values. p < 0.05
means that the two sets of data are most probably related, with significance level 0.05.

corr(γ,Qh) corr(γ,Ql)

r 0.58 0.97
p < 0.05 < 0.05
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To measure the impact of the standing waves (7.17) on the water flow, the per-
centage change Q% of the time average of the volumetric flow rates as result of the
imposed oscillations is determined by the formula

Q% =
Q−Q0

Q0

· 100, (7.20)

where Q0 is the time average of the volumetric flow rate in the test case without
oscillations. The percentage change Q% of the time average Q, that is computed after
applying the Monte Carlo method, is depicted as function of γ in Figure 7.4.
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Figure 7.4: Plots of the percentage change Q% over the time interval (0, 150] as func-
tion of γ, after applying Monte Carlo method to the values of γ, E and ν.

Figure 7.4 confirms that the impact of the imposed mechanical oscillations is larger
on the flow through heterogeneous layered porous media. However, the change in the
volumetric flow rate due to these oscillations is not significant, since the maximal
percentage change Q% is 2.0%.

7.4.2 Numerical results for the problem with pulsed injection

Instead of imposing a mechanical oscillation, the pulsing behaviour of the pump pres-
sure will be investigated in this section. Simultaneously, the Monte Carlo method will
be applied to the values of Young’s modulus E and Poisson’s ratio ν. In addition,
the contributions of the variations in the values of the pulse wave characteristics to
the volumetric flow rate are analysed. These contributions are examined by applying
the Monte Carlo method to the pulse wave period Tp and the relative pulse time τ̃ ,
defined as τ̃ = τ

Tp
, with τ the pulse time (see Formula (7.18)). Subsequently, in order

to be able to draw reliable conclusions about the impact of pressure pulsing on the
volumetric flow rate, we compare the volumetric flow rate caused by the pulsed injec-
tion with the volumetric flow rate stimulated by a constant pump pressure ppump,c.
In each simulation, the constant pump pressure is chosen equal to the total pump
pressure over time by pulsed injection. Hence, for a particular relative pulse time τ̃ ,
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the constant pump pressure is computed by

ppump,c = τ̃ pb2 + (1− τ̃)pb1. (7.21)

In Figure 7.5, the time average of the volumetric flow rate at a distance R−Rf from
the injection filter is depicted after applying Monte Carlo simulations to the values of
the pulse wave characteristics Tp and τ̃ and to the values of Young’s modulus E and
Poisson’s ratio ν. For the simulation, 300 samples are randomly generated from the
following datasets:

Tp ∈ {60, 120, . . . , 1800}, τ̃ ∈ {0.1, 0.2, . . . , 0.9}. (7.22)
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(a) Homogeneous porous medium.
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(b) Heterogeneous layered porous medium.

Figure 7.5: The histogram of the time average of the volumetric flow rate after 10
pulsing periods, after applying Monte Carlo simulations to the values of Tp, τ̃ us-
ing datasets (7.22) and to the values of E and ν. For the pump pressure, pulse
waves (7.18) are used with pb1 = 1.0 · 105 Pa and pb2 = 2.0 · 105 Pa.
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In the generations of the simulation results presented in Figure 7.5, the time step
size ∆t is determined by ∆t =

Tp

10 . The number of periods Np is equal to 10 and the
pump pressure is pulsing between pb1 = 1.0 · 105 Pa and pb2 = 2.0 · 105 Pa. Similarly
to the mechanical oscillations problem, Figure 7.5 illustrates that the water flow rate
at a distance R−Rf from the injection filter is in average two times higher through
heterogeneous layered porous media than through homogeneous porous media. More
importantly, Figure 7.5 reveals that pulsed injection does not lead to a higher water
flow rate in both models, in contrast with the results obtained in Chapter 3. The
difference in simulation results can be a consequence of the different pulse waves that
we have used in these problems. In the current problem with a homogeneous porous
medium, we are using rectangular pulse waves that are pulsing between two positive
pump pressure values pb1 > 0 and pb2 > 0. However, the pump pressure in Chapter 3
pulses between pb1 = 0 and pb2 = pmax > 0.

To measure the real impact of pulsed injection on the fluid flow and to compare
both pulsed and constant injection methods, the percentage of the change Q% of the
time average of the volumetric flow rate Q is used, which is determined by

Q% =
Q−QC
QC

· 100, (7.23)

where QC is the time average of the volumetric flow rate stimulated by a constant
pump pressure. In Figure 7.6, the percentage of the change of the time average of the
volumetric flow rate is depicted as function of Tp and τ̃ , for both the homogeneous
and the heterogeneous layered porous media.

Figure 7.6 provides insights into the impact of the variations in the values of the
pulse wave characteristics to the volumetric flow rate. Firstly, this figure shows that
the volumetric flow rate remains invariant while varying the values of the pulse period
Tp. Secondly, it reveals that for small values of the relative pulse time τ̃ the percentage
change of the time average of the volumetric flow rate is negative. This means that the
constant pump pressure results in higher flow rates than the pulsed injection for these
values of the relative pulse time. Even though, the percentage change the volumetric
flow rate in the homogeneous porous medium is positive in 82.3% of the simulations.
While 84.3% of the simulations in the heterogeneous layered model provides a positive
percentage change. Hence, we can conclude that pulsed injection has a beneficial effect
on the water flow in porous media. However, the increase in volumetric flow rate due
to the pump pressure pulses is insignificant. In both homogeneous and heterogeneous
models, this increase is in 90% of the simulations less than 0.07%. In 10% of the
simulation, the increase is between 3.8% and 4.0%.
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(a) Homogeneous porous medium.
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(b) Heterogeneous layered porous medium.

Figure 7.6: Scatter plots of the percentage of the change Q% of the time average of the
volumetric flow rate after 10 pulsing periods, after applying Monte Carlo simulations
to the values of Tp and τ̃ using datasets (7.22) and to the values of E and ν. For the
pump pressure, pulse waves (7.18) are used with pb1 = 1.0·105 Pa and pb2 = 2.0·105 Pa.

7.5 Discussion and conclusions

All natural soils are heterogeneous mixtures of broken rocks and minerals, living or-
ganisms, and humus. To determine the composition of soil, laboratory tests and field
experiments are needed. However, since these tests and experiments can only been
performed on a limited number of locations in the soil, flow through the voids in a
soil is usually modelled assuming a homogeneous soil mixture rather than a hetero-
geneous mixture. In this work, we investigated whether this simplification is justified
by exploring the difference between the flow of water in a model with a heterogeneous
layered porous medium and a model with a homogeneous porous medium. For this
purpose, two three-dimensional physical problems are considered, describing the in-
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filtration of a fluid through a filter into an aquifer. In the first simulated problem,
the infiltration is stimulated by a constant pump pressure. Furthermore, mechanical
oscillations, that are assumed to be induced by the injection of water, are imposed
on the infiltration boundary. In the second numerical experiment, the prescribed
pump pressure has a pulsing behaviour rather than being constant. To describe this
behaviour, rectangular pulse waves are used with different periods and pulse times.

These problems are solved using Biot’s theory of linear poroelasticity with single-
phase flow, considering nonlinear permeability. The model is discretised by a con-
tinuous Galerkin finite element method based on Taylor-Hood elements, combined
with the implicit Euler scheme for time stepping. The study contains simulations
with oscillatory force boundary conditions as well as pressure pulses. Furthermore,
Monte Carlo simulations are performed to quantify the impact of variation of model
parameters such as Young’s modulus, the oscillatory modes and the injection pressure
pulses on the volumetric flow rate at a particular distance from the injection filter.

We started by performing Monte Carlo simulations to the values of Young’s modu-
lus and Poisson’s ratio, on the first problem without imposing mechanical oscillations
nor pressure pulses. The numerical results of that variation in the values of Young’s
modulus and Poisson’s ratio indicated that these parameters do not have a large
impact on the volumetric flow rate. After applying mechanical oscillations on the
infiltration boundary in the form of standing waves with different amplitudes, the
numerical results showed that an increase in the amplitude leads to an increase in the
volumetric flow rate. Moreover, this impact is larger on the water flow in the hetero-
geneous layered porous medium than on the water flow in the homogeneous porous
medium. However, the change in the volumetric flow rate due to these oscillations
is not significant, since the maximal percentage change is 2.0%. Finally, numerical
simulations of pressure pulsing pointed out that injection pulses does not lead to a
higher water flow rate, regardless of the type of soil into which we inject. However,
if pressure pulses are preferable to a constant pump pressure, large pulse times must
be selected in order to increase the water outflow.

Most importantly, we can conclude that water flows twice as fast through het-
erogeneous layered porous media than through homogeneous porous media, in all
problems tested.

Acknowledgements We would like to sincerely thank engineering and consultancy
company Fugro GeoServices B.V. for providing us with the measurements of the
laboratory tests and the field experiments.





Chapter 8
Tracer dispersion through deforming

heterogeneous and homogeneous
porous media

The detection of preferential flow paths and the characterisation of
their hydraulic properties are important for the development of hydroge-
ological models in aquifers. Tracer tests offer the possibility to efficiently
investigate the aquifer properties and the preferential flow pathways of the
fluid injected into an aquifer. In this chapter, we investigate the prefer-
ential flow paths of a fluid by injecting a tracer into a heterogeneous lay-
ered porous medium and a homogeneous porous medium. For simulating
this problem, a tracer model is considered, using bromide as a tracer for
water flow. Based on the combination of Biot’s theory of linear poroelas-
ticity and the advection-dispersion equation, a coupled model describing
solute transport in deforming soil is proposed, taking into account non-
linear permeability. The numerical results point out that a higher value
of the longitudinal dispersivity (i.e. a larger microscopic heterogeneity)
results in a larger distance that can be reached by the bromide tracer and
in higher concentration values in the vicinity of the injection filter. Fur-
thermore, higher concentration values are computed in the heterogeneous
layered porous medium than in the homogeneous porous medium.
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8.1 Introduction

The objective of this dissertation is describing the flow paths of an incompressible
Newtonian fluid through the pores of a linear elastic porous medium. Tracer tests offer
the possibility to efficiently investigate the aquifer properties and the spreading of both
nonreactive and reactive solutes in groundwater. Hence it is possible to investigate
the preferential flow pathways and travel times in aquifers, surface waters and the
unsaturated zone, by marking the fluid by a tracer at a specific location along the
expected flow path. Tracer testing can be performed under forced or natural hydraulic
gradient conditions; and at field-scales and laboratory. Due to lacking information on
the aquifer transport behaviour, tracer tests very often even become a prerequisite to
obtain reliable transport model predictions. A typical example is the identification
of the main transport path of contaminants within natural attenuation studies [20].
A summary of some recent developments in the field of tracer testing and tracer
based aquifer investigations can be found in [101], in this chapter the importance and
advantages of tracer testing are emphasised.

In this chapter the tracer model will be considered, where a tracer is injected in the
porous medium. Based on the combination of Biot’s consolidation theory and solute
transport theory, a three-dimensional coupled model describing solute transport in
deforming soil has been proposed, taking into account the effect of consolidation on
solute transport processes. In this study, a bromide (Br−) is used as a tracer for
water flow. Bromide was selected as a tracer because it does not react with the
porous medium.

The rest of this chapter is organised as follows: A coupled model describing so-
lute transport in deforming soil is proposed in Section 8.2, based on the combination
of Biot’s theory of linear poroelasticity and the advection-dispersion equation. Sec-
tion 8.3 describes the numerical experiments. In Section 8.4, the numerical method
is formulated. Here, the weak form of the partial differential equations is derived and
the Galerkin finite element approximations are described. Section 8.5 discusses the
numerical results and, lastly, some concluding remarks and suggestions for further
work are reported in Section 8.6.

8.2 Governing equations

In this study, we assume that the deformations are very small. Hence, the model
provided by Biot’s theory of linear poroelasticity with single-phase flow [16] is used to
determine the local displacement of the skeleton of a porous medium, as well as the
fluid flow through the pores. We assume that the porous medium is a linear elastic
continuum and that it is saturated by a Newtonian fluid. The solid matrix is assumed
to be elastic and fully connected and the pore water is assumed to be incompressible.
In addition, we assume that the fluid flow obeys Darcy’s law and that the soil is in an
isotropic condition. Let Ω ⊂ R3 denote the domain occupied by the porous medium
with boundary Γ, and x = (x, y, z) ∈ Ω. Furthermore, t denotes time, belonging to a
half-open time interval I = (0, T ], with T > 0. Biot’s three-dimensional consolidation
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theory is described as follows [2, 135]:

equilibrium equations: −∇ · σ′ + (∇p+ ρgez) = 0 on Ω× I; (8.1a)

continuity equation:
∂

∂t
(∇ · u) +∇ · v = 0 on Ω× I, (8.1b)

where σ′ and v are defined by the following equations

Biot’s constitutive equations: σ′ = λtr(ε)I + 2µε; (8.2)

Darcy’s law: v = −κ
η

(∇p+ ρgez). (8.3)

In the above relations, σ′, p, ρ, g, u, v, λ and µ; ε, κ and η respectively, denote the
effective stress tensor for the porous medium, the pore pressure, the fluid density, the
gravitational acceleration, the displacement vector of the porous medium, Darcy’s
velocity, the Lamé coefficients, the effective strain tensor, the permeability of the
porous medium, and the fluid viscosity. To complete the formulation of a well-posed
problem, appropriate boundary and initial conditions are specified in Section 8.3.

Furthermore, we consider the spatial dependency of the porosity and the per-
meability of the porous medium. The permeability can be determined using the
Kozeny-Carman equation [136]

κ(x, t) =
d2
s

180

θ(x, t)3

(1− θ(x, t))2
, (8.4)

where ds is the mean grain size of the soil and the porosity θ is computed from the
displacement vector using the porosity-dilatation relation (see [130])

θ(x, t) = 1− 1− θ0

exp(∇ · u)
, (8.5)

with θ0 the initial porosity. As a result of the dependency of the permeability on the
displacement vector, Eq. (8.1b) becomes nonlinear.

In this study, we focus on the transport of a tracer during an infiltration process.
To describe the solute transport, the advection-dispersion equation in a moving mesh
is used (see [146]):

Dc

Dt
+ c(∇ · vmesh) +∇ · J = 0, (8.6)

where c is the concentration of the tracer and vmesh is the mesh velocity. The material
time derivative is given by [77]

Dc

Dt
=
∂c

∂t
+ vmesh · ∇c. (8.7)

The flux J is defined as
J = cv −D∇c, (8.8)

with D the hydrodynamic dispersion tensor defined in terms of two components:
mechanical dispersion and molecular diffusion [67, 86]

D =

αx vxθ +Ddiff 0 0
0 αy

vy
θ +Ddiff 0

0 0 αz
vz
θ +Ddiff

 , (8.9)
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where Ddiff is the diffusion coefficient, αx is the dispersivity in the flow direction, αy
is the transversal dispersivity and αz is the vertical dispersivity.

8.3 Problem formulation
The infiltration of a fluid through a filter into an aquifer is shown in Figure 8.1a. We
assume that the flow pattern is axisymmetric, hence for the azimuthal coordinate θ̂
holds ∂

∂θ̂
(.) = 0. Therefore, we determine the solution for a fixed azimuth. The

computational domain Ω is an L-shaped two-dimensional surface with cylindrical
coordinates r = (r, z), as depicted in Figure 8.1b.

H

R

(a)

Ω

Γ1

Γ2

Γ3

Γ4
Γ5

Γ6

Γ7

r

z

(b)

Figure 8.1: Sketch of the set-up for the aquifer problem: (left) physical problem and
(right) numerical discretisation. Taking advantage of the symmetry of geometry and
boundary conditions, only the grey region is discretised.

In order to solve this problem, Biot’s consolidation model, as described in Sec-
tion 8.2, is applied on the computational domain Ω with radius R and height H.
The tracer is injected into the soil through a filter placed on boundary segment Γ3.
Furthermore, the injection tube (boundary segments Γ2, Γ3 and Γ4) is fitted with a
casing (boundary segments Γ2 and Γ4) and a perforated section (boundary segment
Γ3) to prevent loose material from entering and potentially clogging the injection
tube. More precisely, the boundary conditions for this problem are given as follows:

p = ρg(H − z) on r ∈ Γ1 ∪ Γ6 ∪ Γ7; (8.10a)
κ

η
(∇p+ ρgez) · n = 0 on r ∈ Γ2 ∪ Γ4 ∪ Γ5; (8.10b)

p = ρg(H − z) + ppump on r ∈ Γ3; (8.10c)
σ′n = 0 on r ∈ Γ1 ∪ Γ6; (8.10d)

(σ′n) · t = 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5; (8.10e)
u · n ≤ 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4; (8.10f)
u · n = 0 on r ∈ Γ5; (8.10g)

u = 0 on r ∈ Γ7, (8.10h)

where t is the unit tangent vector at the boundary, n the outward unit normal vector
and ppump is a prescribed pump pressure due to the injection of the fluid through a
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filter with radius Rf and length Lf . Figure 8.1b shows the definition of the boundary
segments. Note that the boundary conditions on boundary segment Γ5 appear as a
result of symmetry. Initially, the following condition is fulfilled:

u(r, 0) = 0 for r ∈ Ω. (8.11)

For the tracer concentration we use the following boundary conditions:

c = 0 on r ∈ Γ1 ∪ Γ6 ∪ Γ7; (8.12a)
J · n = 0 on r ∈ Γ2 ∪ Γ4 ∪ Γ5; (8.12b)
c = cinj on r ∈ Γ3, (8.12c)

where cinj is the injection concentration of the tracer. The initial condition for the
concentration is:

c(r, 0) = 0 for r ∈ Ωt. (8.13)
In this study, the distribution of the substances of a tracer in the soil profile is

simulated in two models: in the first model, the porous medium is homogeneous while
the second model has a heterogeneous layered porous medium. A description of these
models is given in Section 7.3.

8.4 Numerical method
In this section, we outline the numerical procedures used to discretise the poroelastic
models coupled with the advection-dispersion equation as presented in Section 8.2 and
to solve the resulting coupled fluid-solid-concentration finite-dimensional problem.
First, the weak form of the governing equations will be derived and discretised using
a continuous Galerkin finite element approach with displacements and fluid pressures
as primary variables. Subsequently, the concentration profile of the tracer will be
computed using the solutions for u and p at each time step, by applying the finite
element method to Eq. (8.6).

8.4.1 Weak formulation
To present the variational formulation of these problems, we first introduce the ap-
propriate function spaces. Let L2(Ω) be the Hilbert space of square integrable scalar-
valued functions f on Ω defined in cylinder coordinates (r, z) as L2(Ω) = {f : Ω →
R :

∫
Ω
|f |2 r dΩ < ∞}, with inner product (f, g) =

∫
Ω
fgr dΩ. Let H1(Ω) denote

the subspace of L2(Ω) of functions with first derivatives in L2(Ω). We further intro-
duce the function space Q = {q ∈ H1(Ω) : q = ρg(H − z) on Γ1 ∪ Γ6 ∪ Γ7 and q =
ρg(H − z) + ppump on Γ3}. Subsequently, we use the function space W = {w ∈
(H1(Ω))2 : w ·n = 0 on Γ5 and w = 0 on Γ7}. Furthermore, we consider the bilinear
forms [100]

a(u,w) = λ(∇ · u,∇ ·w) + 2µ

2∑
i,j=1

(εij(u), εij(w)); (8.14)

b(p, q) =

2∑
i=1

(
κ

η

∂p

∂ri
,
∂q

∂ri
). (8.15)



116

8

8. Tracer dispersion through deforming porous media

The variational formulation in cylinder coordinates (r, z) for problem (8.1) with
boundary and initial conditions (8.10)-(8.11), consists of the following, using the no-
tation u̇ = ∂u

∂t :
For each t > 0, find (u(t), p(t)) ∈ (W ×Q) such that

a(u(t),w)− (p(t),∇ ·w) + l(p(t),w) = h(w)− (ρg, ez ·w) ∀w ∈ W ; (8.16)
(∇ · u̇(t), q) + b(p(t), q) = 0 ∀q ∈ Q0, (8.17)

with the initial condition u(0) = 0, and where

l(p,w) =

∫
Γ2∪Γ4

p w · n r dΓ; (8.18)

h(w) = −
∫

Γ3∪Γ6

ρg(H − z) w · n r dΓ−
∫

Γ3

ppump w · n r dΓ; (8.19)

Q0 = {q ∈ H1(Ω) : q = 0 on Γ1 ∪ Γ3 ∪ Γ6 ∪ Γ7}. (8.20)

8.4.2 Finite element discretisation
Problem (8.16)-(8.20) is solved by applying the finite element method, with triangular
Taylor-Hood elements [28, 70, 113]. Let Pk

h ⊂ H1(Ω) be a function space of piecewise
polynomials on Ω of degree k. Hence, we define finite element approximations for W
and Q as W k

h = W ∩(Pk
h×Pk

h) with basis {φφφi = (φi, φi) ∈ (W k
h ×W k

h ) : i = 1, . . . , nu}
and Qk′

h = Q ∩Pk′

h with basis {ψj ∈ Qk′

h : j = 1, . . . , np}, respectively [2, 100].
Subsequently, we approximate the functions u(t) and p(t) with functions uh(t) ∈ W k

h

and ph(t) ∈ Qk′

h , defined as

uh(t) =

nu∑
i=1

ui(t)φφφi, ph(t) =

np∑
j=1

pj(t)ψj , (8.21)

in which the Dirichlet boundary conditions are imposed. Then, the semi-discrete
Galerkin approximation of problem (8.16)-(8.20) is defined as follows:

For each t > 0, find functions (uh(t), ph(t)) ∈ (W k
h ×Qk′

h ) such that

a(uh(t),wh)− (ph(t),∇ ·wh) + l(ph(t),wh) = (8.22)

= h(wh)− (ρg, ez ·wh) ∀wh ∈ W k
h ;

(∇ · u̇h(t), qh) + b(ph(t), qh) = 0 ∀qh ∈ Qk′

0h, (8.23)

and for t = 0: uh(0) = 0.
Simultaneously, discretisation in time is applied using the backward Euler method.

Let ∆t be the time step size and define a time grid {tm = m∆t : m ∈ N}, then the
discrete Galerkin scheme of (8.22)-(8.23) is formulated as follows:

For m ≥ 1, find (umh , p
m
h ) ∈ (W k

h ×Qk′

h ) such that

a(umh ,wh)− (pmh ,∇ ·wh) + l(pmh ,wh) = h(wh)− (ρg, ez ·wh) ∀wh ∈ W k
h ; (8.24)

(∇ · umh , qh) + ∆t b(pmh , qh) = (∇ · um−1
h , qh) ∀qh ∈ Qk′

0h, (8.25)
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while for m = 0: u0
h = 0.

The discrete Galerkin scheme is solved using triangular Taylor-Hood elements.
The displacements are spatially approximated by quadratic basis functions, whereas
continuous piecewise linear approximation is used for the pressure field. At each
time step, we solve Eqs. (8.24)-(8.25) as a fully coupled system, where we use the
permeability from the previous time step. After having obtained the numerical ap-
proximations for u and p, we update the porosity using Eq. (8.5). Subsequently, the
Kozeny-Carman relation (8.4) is used to calculate the permeability. The new value
for the permeability is then used for the next time step.

8.4.3 Discretisation of the advection-dispersion equation

After obtaining the solutions for u and p at each time step, we compute the concen-
tration of the tracer c by applying the finite element method to Eq. (8.6). First we
derive the variational formulation, using the continuously deforming domain Ωt with
Ω0 = Ω. Therefore, we introduce the function space S = {s ∈ H1(Ωt) : s = 0 on Γ1∪
Γ6∪Γ7 and s = cinj on Γ3}. Let s ∈ S0 = {s ∈ H1(Ωt) : s = 0 on Γ1∪Γ3∪Γ6∪Γ7},
then we get ∫

Ωt

(
Dc

Dt
+ c(∇ · vmesh) +∇ · J

)
s dΩ = 0. (8.26)

For the material time derivative it holds

D

Dt
(cs) =

Dc

Dt
s+ c

Ds

Dt
=
Dc

Dt
s,

making use of the transport property (see [47]) for the Lagrangian interpolation func-
tions in S0:

Ds

Dt
= 0 on Ωt. (8.27)

Hence we get, using the definition of the material time derivative (8.7)∫
Ωt

(
∂

∂t
(cs) +∇ · (csvmesh) + (∇ · J)s

)
dΩ = 0. (8.28)

Reynolds’ transport theorem [77] reads as follows∫
Ωt

∂

∂t
(cs) dΩ =

d

dt

∫
Ωt

cs dΩ−
∫

Γt

cs vmesh · n dΓ. (8.29)

This gives, after applying the divergence theorem to the second term in Eq. (8.28)

d

dt

∫
Ωt

cs dΩ +

∫
Ωt

(∇ · J)s dΩ = 0. (8.30)

Rewriting this expression and applying the divergence theorem again yield

d

dt

∫
Ωt

cs dΩ +

∫
Γt

(J · n)s dΓ−
∫

Ωt

J · ∇s dΩ = 0. (8.31)
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From the boundary conditions (8.12) and the definition of the flux (8.8)

d

dt

∫
Ωt

cs dΩ−
∫

Ωt

(cv −D∇c) · ∇s dΩ = 0. (8.32)

The variational formulation in cylinder coordinates (r, z) for Eq. (8.6) with boundary
and initial conditions (8.12)-(8.13), consists of the following:

For each t > 0 and r ∈ Ωt, find c(r, t) ∈ S such that

d

dt

∫
Ωt

csr dΩ−
∫

Ωt

(cv −D∇c) · ∇s r dΩ = 0 ∀s ∈ S0, (8.33)

with the initial condition c(r, 0) = 0.
Subsequently, we define a finite element approximation for S as S 1

h = S ∩P1
h

with basis {χj ∈ S 1
h : j = 1, . . . , np}. Further we approximate the function c(r, t)

with ch(r, t) defined as

ch(r, t) =

np∑
j=1

cj(t)χj(r),

in which the Dirichlet boundary conditions are imposed. By applying the backward
Euler method, we get:

For m ≥ 1, find cmh ∈ S 1
h such that∫

Ωt

cmh shr dΩ−∆t

∫
Ωt

(cmh v−D∇cmh ) ·∇sh r dΩ =

∫
Ωt−∆t

cm−1
h shr dΩ ∀sh ∈ S 1

0h,

(8.34)
while for m = 0: c0h = 0.
In this finite element method, the concentration is approximated by linear basis

functions.

8.5 Numerical results

The Galerkin finite element method [113], with triangular Taylor-Hood elements,
is employed for the solution of the discretised quasi-two-dimensional problem (8.1)
and (8.6). The displacements are spatially approximated by quadratic basis functions,
whereas a continuous piecewise linear approximation is used for the pressure field
and for the concentration. For the time integration, the backward Euler method
is applied. Regarding the concentration, one can use a Streamline Upwind Petrov
Galerkin method to preserve monotonicity. This method, however, introduces an
additional finite element discretisation error of order O(h), where h denotes a measure
for the mesh size. Alternative better methods based on flux and slope limiting can
also be used to preserve monotonicity. This has not (yet) been done in obtaining the
preliminary results of this chapter. The numerical investigations are carried out using
the matrix-based software package MATLAB (version R2017a).

The computational domain is an L-shaped surface with radius R = 5.0 m, height
H = 25.0 m, filter radius Rf = 10.0 cm and filter length Lf = 2.0 m. The filter
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is placed between z = 5.5 and z = 7.5. The domain is discretised using a regular
triangular grid, with ∆r = 0.1 and ∆z = 0.25. Mesh refinement did not yield any
significant changes of the numerical solution. In the generations of the simulation
results, the time step size is chosen to be ∆t = 0.2. In addition, values for some
model parameters have been chosen based on the literature (see Table 8.1).

Table 8.1: An overview of the values of the model parameters.

Property Symbol Value Unit

Fluid density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2

Fluid viscosity η 1.307 · 10−3 Pa · s
Pump pressure ppump 0.5 · 105 Pa
Diffusion coefficient Ddiff 1.85 · 10−9 [78] m2/s
Longitudinal dispersivity αr 12 [67] m
Transversal dispersivity αz 1 [67] m
Injection concentration cinj 100 kg/m3

Since we have limited knowledge about the dispersivity coefficients in the different
soil layers, we assume in this study that the dispersivity is constant for all layers.
In addition, the Lamé coefficients λ and µ are related to Young’s modulus E and
Poisson’s ratio ν by [2]:

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (8.35)

Young’s modulus E and Poisson’s ratio ν, that are used to compute the values of the
Lamé coefficients, are derived from the book Foundation analysis and design [27] (see
Table 8.2).

Table 8.2: The values of Young’s modulus E and Poisson’s ratio ν.

Type of soil E [MPa] ν

Loess 21 0.3
Sand 26 0.3
Sand and gravel 193 0.4
Sandy clay 205 0.3

8.5.1 Numerical results for the homogeneous porous medium

First, the transport of the bromide tracer through a homogeneous porous medium is
simulated. Figure 8.2 shows the computed bromide concentration profiles in the soil
as a function of the radius, at different times t and at a depth of 18.5 m (i.e. z = 6.5).
From the results shown in this figure, it can be concluded that the bromide tracer
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reaches a maximal distance of 2.5 m after 35 seconds, given a longitudinal dispersivity
of 12.0 m, a transversal dispersivity of 1.0 m and a pump pressure of 0.5 · 105 Pa.
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Figure 8.2: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the radius r in meters, for different times. Given a longitudinal dispersivity of
12.0 m, a transversal dispersivity of 1.0 m and a pump pressure of 0.5 · 105 Pa.

In Figure 8.3, the results are presented for the computed bromide concentration
profiles as a function of the time, at different distances from the injection filter and
at a depth of 18.5 m (i.e. z = 6.5). These results show that the concentration drop
is almost 32% of the injection concentration after 0.4 m from the injection filter. At
a distance 0.9 m from the injection filter, the concentration of the bromide tracer is
approximately 30 kg/m3.
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Figure 8.3: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. Given a longitudinal dispersivity of 12.0 m, a transversal
dispersivity of 1.0 m and a pump pressure of 0.5 · 105 Pa.
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Mechanical dispersion is caused by variations in the flow channels of the porous
medium (microscopic heterogeneity). To examine the impact of the longitudinal dis-
persivity, we doubled the value of αr in the next simulations. Hence, we assume in
these simulations that the porous medium has more variations in the flow channels. In
Figure 8.4 the computed concentration profiles of the bromide tracer as a function of
the radius is depicted, at different times t and at 18.5 m depth. In these simulations,
the longitudinal dispersivity is 24.0 m, the transversal dispersivity is 1.0 m and the
pump pressure is 0.5 · 105 Pa. For these parameter values, the bromide tracer reaches
a maximal distance of 3.0 m after 35 seconds.
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Figure 8.4: Plots of the concentrations of the bromide tracer c at z = 6.5 as function of
the radius r in meters, for different times. Using the parameters: αr = 24.0, αz = 1.0
and ppump = 0.5 · 105.

In Figure 8.5, the results are presented for the computed concentration profiles of
the bromide tracer as a function of the time, at different distances from the injection
filter and for z = 6.5. At a distance of 0.4 m from the injection filter, the concentration
drop is approximately 25% of the injection concentration, as we can see in Figure 8.5.
Furthermore, the results indicate that the maximal concentrations after 35 seconds, at
the distances of 0.9 m and 1.4 m from the injection filter, are 44 kg/m3 and 17.5 kg/m3

respectively.
Hence, from these results we can conclude that a higher value of the longitudinal

dispersivity αr results in a larger distance that can be reached by the bromide tracer.
In addition, higher concentration values are detected in the vicinity of the injection
filter, when a higher value of the longitudinal dispersivity is used, as shown in Fig-
ure 8.6. Physically, these results mean that the tracer penetrates faster as microscopic
heterogeneity increases.
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Figure 8.5: Plots of the concentrations of the bromide tracer c at z = 6.5 as function of
the time t in seconds. Using the parameters: αr = 24.0, αz = 1.0 and ppump = 0.5·105.
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Figure 8.6: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds.

Since mechanical dispersion is dependent on the fluid velocity v (see Eq. (8.9))
and advection determines the penetration of the bromide tracer, we will investigate in
the following simulations the impact of a higher pump pressure on the concentration
profile of the tracer. In these simulations, a pump pressure of 1.0 · 105 Pa is chosen.
Furthermore, the longitudinal dispersivity is 12.0 m and the transversal dispersivity
is 1.0 m. In Figure 8.7 the computed concentration profiles of the bromide tracer as a
function of the radius is depicted, at different times t and at z = 6.5. For the chosen
parameter values, the bromide tracer reaches a maximal distance of 3.3 m after 35
seconds.
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Figure 8.7: Plots of the concentrations of the bromide tracer c at z = 6.5 as function of
the radius r in meters, for different times. Using the parameters: αr = 12.0, αz = 1.0
and ppump = 1.0 · 105.

In Figure 8.8, the results are presented for the computed concentration profiles of
the bromide tracer as a function of the time, for z = 6.5 and at different distances from
the injection filter. At a distance of 0.4 m from the injection filter, the concentration
drop is approximately 24% of the injection concentration, as we can see in Figure 8.5.
Furthermore, the results indicate that the maximal concentrations after 35 seconds, at
the distances of 0.9 m and 1.4 m from the injection filter, are 45 kg/m3 and 18.4 kg/m3

respectively.
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Figure 8.8: Plots of the concentrations of the bromide tracer c at z = 6.5 as function of
the time t in seconds. Using the parameters: αr = 12.0, αz = 1.0 and ppump = 1.0·105.

From the previous results and from Figure 8.9, we can conclude that doubling ei-
ther the value of the longitudinal dispersivity or the value of the pump pressure results
in almost the same concentration profile. From Eq. (8.9) it is clear that doubling the



124

8

8. Tracer dispersion through deforming porous media

value of the flow velocity in the r-direction vr will lead to the same mechanical dis-
persion as doubling the value of the longitudinal dispersivity. Furthermore, according
to Darcy’s law (8.3) the flow velocity in the r-direction is defined as

vr = −κ
η

∂p

∂r
, (8.36)

from which it follows that doubling the value of the pump pressure results in almost a
doubling of the flow velocity. In addition, from these results we can conclude that the
rate of solute transport by molecular diffusion is negligibly small in these simulations
relative to the rates of solute transport by advection and dispersion. Since the rate
of solute transport by mechanical dispersion is in balance with the rate by advection,
we can further conclude that for a twice microscopically more homogeneous porous
medium it is necessary that the applied pump pressure is twice as high in order to
obtain the same penetration of the bromide tracer.
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Figure 8.9: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. The values of the pump pressure ppump are given in bar.

8.5.2 Numerical results of the macroscopic-heterogeneous lay-
ered porous medium

Second, we simulated the transport of the bromide tracer through a heterogeneous
layered porous medium (see Section 7.3 for a description of this model). The com-
puted bromide concentrations in the soil at different times t and at a depth of 18.5 m
(i.e. z = 6.5) are plotted in Figure 8.10. Using these parameters, the bromide tracer
reaches a distance of 2.5 m in the homogeneous porous medium. While in the hetero-
geneous layered porous medium, the tracer reaches a maximal distance of 3.1 m after
35 seconds.
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Figure 8.10: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the radius r in meters, for different times. Given a longitudinal dispersivity of
12.0 m, a transversal dispersivity of 1.0 m and a pump pressure of 0.5 · 105 Pa.

In Figure 8.11, the numerical results are shown for the computed concentration
profiles of the bromide tracer as a function of the time, at different distances from
the injection filter and at z = 6.5. These results show that the concentration drop
is almost 30% of the injection concentration after 0.4 m from the injection filter. At
a distance 0.9 m from the injection filter, the concentration of the bromide tracer is
approximately 35 kg/m3 in the heterogeneous layered porous medium model.
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Figure 8.11: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. Given a longitudinal dispersivity of 12.0 m, a transversal
dispersivity of 1.0 m and a pump pressure of 0.5 · 105 Pa.

The difference between the numerical results in both models is presented in Fig-
ure 8.12, given a longitudinal dispersivity of 12.0 m, a transversal dispersivity of 1.0 m
and a pump pressure of 0.5 · 105 Pa. In this figure, the notation ch is used for the
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concentration in the homogeneous model and cl indicates the concentration in the het-
erogeneous layered porous medium. It is clear that, for the parameter values chosen,
the computed concentration is higher in the heterogeneous layered porous medium
than in the homogeneous porous medium, as shown in Figure 8.12. This conclusion
is in good agreement with the results mentioned in Chapter 7, where we concluded
that water flows faster through heterogeneous layered porous media than through
homogeneous porous media.
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Figure 8.12: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds, for different distances from the injection filter.

To investigate the impact of the longitudinal dispersivity, and herewith the micro-
scopic heterogeneity, on the concentration profile in a heterogeneous layered medium,
we choose the value of αr to be twice as large as the value of αr in the previous
simulations. In Figure 8.13 the computed concentration profiles of the bromide tracer
as a function of the radius are plotted, at different times t and at 18.5 m depth. In
these simulations, the longitudinal dispersivity is 24.0 m, the transversal dispersivity
is 1.0 m and the pump pressure is 0.5·105 Pa. For these parameter values, the bromide
tracer reaches a maximal distance of 3.8 m after 35 seconds, as can be seen in Fig-
ure 8.13, while the maximal distance was 3.0 m in the homogeneous porous medium.

In Figure 8.14, the results are presented for the computed concentration profiles of
the bromide tracer as a function of the time, at different distances from the injection
filter and for z = 6.5. At a distance of 0.4 m from the injection filter, the concen-
tration drop is approximately 23.4% of the injection concentration, as we can see in
Figure 8.14. Furthermore, the results indicate that the maximal concentrations after
35 seconds, at the distances of 0.9 m and 1.4 m from the injection filter, are 47 kg/m3

and 22 kg/m3 respectively.
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Figure 8.13: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the radius r in meters, for different times. Using the parameters: αr = 24.0,
αz = 1.0 and ppump = 0.5 · 105.
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Figure 8.14: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. Using the parameters: αr = 24.0, αz = 1.0 and ppump =
0.5 · 105.

Hence, from these numerical results we can conclude that a higher value of the
longitudinal dispersivity αr results in a larger distance that can be reached by the
bromide tracer. In addition, higher concentration values are detected in the vicinity
of the injection filter, when a higher value of the longitudinal dispersivity is used, as
shown in Figure 8.15.
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Figure 8.15: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. Using the parameters: αz = 1.0 and ppump = 0.5 · 105.

The impact of a higher pump pressure on the bromide concentration profile is
investigated in the following simulations. In these simulations, a pump pressure of
1.0 · 105 Pa is chosen. Furthermore, the longitudinal dispersivity is 12.0 m and the
transversal dispersivity is 1.0 m. In Figure 8.16 the computed concentration profiles
of the bromide tracer as a function of the radius is depicted, at different times t and
at z = 6.5. For the chosen parameter values, we notice in Figure 8.16 that the numer-
ical results become unstable and diverge for large times. In Figure 8.17 it is shown
that the solution for the concentration becomes unstable for t > 25 seconds. The
instability may possibly be prevented by using SUPG methods or by using limiters.
Moreover, a decrease in the time step size may help to reduce the instabilities, but
the problem remains unstable. Another possible strategy could be to make the whole
finite element method more implicit by using a monolithic (fully coupled) approach in
which a nonlinear problem is solved at each time step in conjunction with the coupled
advection-dispersion-Biot problem.
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Figure 8.16: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the radius r in meters, for different times. Using the parameters: αr = 12.0,
αz = 1.0 and ppump = 1.0 · 105.
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Figure 8.17: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the radius r in meters, for different times. Using the parameters: αr = 12.0,
αz = 1.0 and ppump = 1.0 · 105.

In Figure 8.18, the results are presented for the computed concentration profiles
of the bromide tracer as a function of the time, for z = 6.5 and at different distances
from the injection filter. With this figure we get a better picture of the instability of
the numerical solution for the concentration, when using a higher pump pressure in
the heterogeneous layered model. Note that this unstable behaviour did not appear
in the homogeneous porous medium in the interval t ∈ [0, 35] seconds. The reason for
these instabilities in the heterogeneous model has not been investigated in this study.
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Figure 8.18: Plots of the concentrations of the bromide tracer c at z = 6.5 as function
of the time t in seconds. Using the parameters: αr = 12.0, αz = 1.0 and ppump =
1.0 · 105.

8.6 Discussion and conclusions

The detection of preferential flow paths and the characterisation of their hydraulic
properties are important for the development of hydrogeological models in aquifers.
Due to lacking information on the aquifer transport behaviour, tracer studies became
a prerequisite to obtain reliable transport model predictions and to enhance our un-
derstanding of flow paths. Tracer tests offer the possibility to efficiently investigate
the aquifer properties and the preferential flow pathways and travel times of the fluid
injected into an aquifer.

In this work, we investigated the preferential flow paths of a fluid by injecting
a tracer into a heterogeneous layered porous medium and a homogeneous porous
medium. For simulating this problem, a tracer model is considered, using bromide
(Br−) as a tracer for water flow. Based on the combination of Biot’s theory of lin-
ear poroelasticity and the advection-dispersion equation, a coupled model describing
solute transport in deforming soil is proposed, taking into account nonlinear perme-
ability. The model is discretised by a continuous Galerkin finite element method based
on Taylor-Hood elements, combined with the implicit Euler scheme for time stepping.

We started by simulating the transport model of the bromide tracer through homo-
geneous porous medium. From the simulation results, we can conclude that choosing a
higher value for the longitudinal dispersivity (i.e. a larger microscopic heterogeneity)
results in a larger distance that can be reached by the bromide tracer. In addition,
higher concentration values are computed in the vicinity of the injection filter. The
same numerical results could be obtained by using a high value of the pump pressure,
which increases the flow velocity and hence leads to a larger mechanical dispersion.
Furthermore, from these numerical results we can conclude that the rate of solute
transport by molecular diffusion is negligibly small relative to the rates of solute
transport by advection and dispersion. Since the rate of solute transport by mechan-
ical dispersion is in balance with the rate by advection, we can further conclude that
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for a twice microscopically more homogeneous porous medium it is necessary that the
applied pump pressure is twice as high in order to obtain the same penetration of the
bromide tracer.

Subsequently, the transport of the bromide tracer through a layered, macroscopic-
heterogeneous porous medium is simulated. For the chosen parameter values, the
numerical results pointed out that the computed concentration is higher in the het-
erogeneous layered porous medium than in the homogeneous porous medium. This
conclusion is in good agreement with the results mentioned in Chapter 7, where we
concluded that water flows faster through heterogeneous layered porous media than
through homogeneous porous media. Furthermore, similarly to the homogeneous
porous medium model, the simulation results indicated that a higher value of the
longitudinal dispersivity results in a larger distance that can be reached by the bro-
mide tracer. In addition, the computed concentrations are higher in the vicinity of
the injection filter when a higher value of the longitudinal dispersivity is used. How-
ever, high pump pressures resulted in unstable solutions in which the concentration
diverges for large times. In contrast, this unstable behaviour did not appear in the
homogeneous porous medium in the interval t ∈ [0, 35] seconds. The instability may
possibly be prevented by using a Streamline Upwind Petrov Galerkin method, how-
ever, this method introduces an additional finite element discretisation error of order
O(h), where h denotes a measure for the mesh size. Better alternatives are meth-
ods based on flux and slope limiting. Another possible strategy could be to make
the whole finite element method more implicit by using a monolithic (fully coupled)
approach in which a nonlinear problem is solved at each time step in conjunction
with the coupled advection-dispersion-Biot problem. This has not yet been done in
obtaining the preliminary results of this chapter and we intend to elaborate these
possibilities in a future manuscript.
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Chapter 9
Conclusions

In the present dissertation, four research objectives have been ad-
dressed: the construction of a methodology to investigate the impact of
mechanical vibrations and pressure pulses on the flow through porous
media and to quantify the impact of variation in the input parameters
on the model output using Monte Carlo simulations; the investigation
of the applicability of the permeability-porosity relation based on the per-
colation theory on two-dimensional and three-dimensional poroelasticity
problems; the development of a finite element solver for linear and non-
linear poroelasticity problems, which is used to compare the predictions of
linear poroelasticity with those of large-deformation poroelasticity in the
context of a two-dimensional poroelasticity model; and the exploration
of the difference between the fluid flow in a model with a homogeneous
porous medium and the same fluid flow through a heterogeneous layered
porous medium. The conclusions from the findings of each research ob-
jective are given in this chapter.
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9.1 Uncertainty quantification using Monte Carlo sim-
ulations

In the first stage of this research, the quasi-static Biot’s poroelasticity system with
nonlinear Kozeny-Carman permeability is solved using the continuous Galerkin finite
element method based on Taylor-Hood elements, combined with the implicit Euler
scheme for time stepping.

The first simulated problem, is an axial flow owing to a pressure difference. In
this simulation we consider water injection into a tube filled with a deformable fluid-
saturated porous medium (Chapter 2). To begin with, soil vibrations are applied on
the casing of the tube as oscillatory displacement boundary condition. Numerical
results showed that large amplitudes and high frequencies of the imposed mechanical
vibrations lead to high volumetric flow rates for positive values of the phase velocity.
On the other hand, for negative values of the phase velocity, the vibrations lead to a
decrease in the volumetric flow rate at the right end of the tube. As expected, the
water flow, which is directed to the right, is being stimulated by waves travelling in the
same direction, while waves travelling in the opposite direction counteract the flow,
resulting in negative volumetric flow rates in case the force applied by the oppositely
directed waves is larger than the pump pressure. In this dissertation, these effects
have been quantified. Subsequently, applying an oscillating load on the casing of
the tube showed that water flows faster through porous media with large grain sizes
and/or high initial porosities. On the other hand, variation in the values of Young’s
modulus and Poisson’s ratio indicated that these parameters do not have a large
impact on the volumetric flow rate. Numerical simulations of pressure pulsing pointed
out that injection pulses with small relative pulse times lead to a major increase in the
volumetric flow rate, while an increasing pulse period results in a slight increase in the
flow rate. Most importantly, we can conclude that pulsed injection has a beneficial
effect on the water flow through porous media. In conclusion, pressure pulses and
soil vibrations in the direction of the flow increase the amount of water that can be
injected into a tube filled with a deformable fluid-saturated porous medium.

The second simulated problem is the injection of water into an aquifer where
the fluid flows radially outward owing to a pressure difference (Chapter 3). The
study contains Monte Carlo simulations to quantify the impact of variation in the soil
characteristics and the injection parameters on the time average of the volumetric
flow rate at a particular distance from the injection filter. Furthermore, two different
injection methods are tested and compared with each other in order to determine the
best infiltration method that can be used for the storage of rainwater in the shallow
subsurface. Finally, two different types boundary conditions are considered to describe
the fluid injection. To reduce the Monte Carlo error, simulations should be performed
with thousands of samples. However, as in our case each sample simulation takes
more than one hour, we instead adopted 300 samples. The first boundary condition
that we used is a Neumann boundary condition for the pore pressure, where the
volumetric flow rate is prescribed at the injection filter. The numerical simulations
of pulsed injection pointed out that injection pulses with small pulse periods lead
to a major increase in the volumetric flow rate, while an increasing relative pulse
time and maximum injection velocity result in a slight increase in the flow rate.
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On the other hand, variation in the values of the soil characteristics indicated that
these parameters do not have a large impact on the volumetric flow rate. On the
contrary, numerical simulations using a Dirichlet boundary condition, in which the
boundary pore pressure caused by the injection of the fluid is prescribed, showed that
water flows faster through porous media with large mean grain sizes or high initial
porosities. However, from these results we could conclude that the volumetric flow
rate is invariant under variation in the values of Young’s modulus and Poisson’s ratio.
In addition, pressure pulses with large relative pulse times and maximum injection
pressures lead to an increase in the volumetric flow rate. However, the numerical
results pointed out that the pulse period does not have a significant impact on the
water flow rate. Most importantly, we can conclude that, regardless of the type of
soil into which we inject, by applying pulsed injection we can increase the amount of
rainwater that can be stored quickly in the underground.

9.2 Permeability-porosity relations

Additionally, we investigated the permeability-porosity relation that is used in these
poroelasticity simulations. In this research area, the new-developed network-inspired
permeability-porosity relation is applied on two two-dimensional poroelasticity prob-
lems (Chapter 4) and on a three-dimensional problem (Chapter 5). This numeri-
cal experiment is designed in order to analyse the applicability of this microscopic
network-inspired relation on the macro-scale. Furthermore, the results obtained with
the network-inspired relation are compared to the Kozeny-Carman relation which is
often used for these types of physical problems. Starting with the two-dimensional
poroelasticity problems: In the first poroelasticity problem, a high pump pressure
is imposed in the inlet of a porous medium package. This high pressure forces the
grains to move towards the outlet. In the second problem, the poroelastic package is
squeezed by applying a load on the middle of the top and bottom edges of the do-
main. The three-dimensional problem studies the infiltration of a fluid into a porous
medium. On a part of the top edge of the domain, a vertical mechanical load is
applied. The purpose of considering these poroelasticity problems is to create a large
density of the grains in the computational domain which results in a decrease of the
porosity. Hence, we can emphasise the difference between the porosity-permeability
relations. In these problems, Biot’s model for poroelasticity is used to determine the
water pressure; and the displacements of the grains that are needed to compute the
porosity. From the porosity, the permeability is determined either by the network-
inspired relation or by the Kozeny-Carman relation. Depending on the topology, three
different percolation thresholds, corresponding with a rectangular network, triangular
structured network and triangular unstructured network, are distinguished. However,
since the topology of macro-scale porous media is not known, computations are also
performed with different values of the percolation threshold to investigate the influ-
ence of the percolation threshold (and hence the topology of the porous medium) on
the flow rate.

First, the problems are solved with the Kozeny-Carman relation, the network-
inspired relation based on the triangular structured network and the relation based
on the rectangular network. From the numerical results we conclude that the perme-
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ability obtained using the Kozeny-Carman relation exhibits a larger decrease than the
permeabilities obtained with the network-inspired relations. In contrast, the porosity
profile is not affected significantly by the selected permeability-porosity relation. Sec-
ond, the time average of the volumetric flow rate was computed for different values
of the percolation threshold. For low percolation thresholds, the network-inspired
relation results in higher flow rates than the Kozeny-Carman relation. In addition,
it is shown that the flow rate changes significantly as a function of the percolation
threshold which means that the water flow depends on the topology of the connected
pore space. For high percolation thresholds, spurious oscillations appeared due to
the violation of the M-matrix property in the discretisation matrix that resulted from
the convergence of Biot’s problem to the related saddle point problem, as proven in
Chapter 4. The results for these percolation thresholds could be improved by using a
finer grid.

For the studied problems and the set of parameters chosen, we noticed that the
applied permeability-porosity relations result in small changes in the porosity while
a major change is realised in the permeability profiles. A possible explanation for
this behaviour is that the relation between the velocity field and the change of the
displacements in time as stated in the continuity equation, is not strong enough to
lead to significant changes in the porosity profile.

9.3 Nonlinear poroelasticity equations

In this research topic, we compare the predictions of linear poroelasticity with those
of large-deformation poroelasticity in the context of a two-dimensional model prob-
lem where flow through elastic, saturated porous media, under applied mechanical
oscillations, is considered (Chapter 6). Linear poroelasticity is a good model for very
small deformations, besides that it is a simple model to solve and is computationally
cheap. On the other hand, the well-known large-deformation theory is more suit-
able to solve poroelasticity problems with moderate to large deformations. However,
adopting this nonlinear mathematical model increases the computational complexity
and cost, especially because the basis functions in the finite element code have to be
updated in every iteration within the time integration. The suitability of the proposed
methodologies to model flow through elastic porous media under finite deformations
is demonstrated using an illustrative numerical example. In this example, injection
of a fluid into a two-dimensional fully saturated porous medium is considered, as-
suming that the solid material is subjected to surface mechanical oscillations with
different amplitudes. In addition, the impact of introducing a deformation-dependent
permeability according to the Kozeny-Carman equation is explored. For solving this
physical problem, three different mathematical models are considered: linear poroelas-
ticity combined with constant permeability (LC), linear poroelasticity combined with
the Kozeny-Carman equation (LKC) and nonlinear poroelasticity combined with the
Kozeny-Carman equation (NKC).

Firstly, by considering the numerical example without applied oscillations, we have
shown that the nonlinearity has more effect on the displacement than on the pressure
field. This is a consequence of the nonlinearity in the displacements variable in the
large-deformation poroelasticity equations. On the contrary, the impact of including
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a deformation-dependent permeability was larger on the pressure field than on the
solid deformations. The reason for this behaviour is that the permeability relationship
is directly related to the pressure through Darcy’s law. Secondly, the impact of the
applied mechanical oscillations was investigated by applying standing waves on the
top surface of the solid matrix. From the numerical results, we noticed that the
oscillatory behaviour was visible in the displacement and pressure profiles. Moreover,
the differences between the three models (LC), (LKC) and (NKC) are small for small
applied oscillations, while these differences become larger by an increasing amplitude
of the applied oscillation. Hence, the errors in the simulated displacement and pressure
as result of solving the linear poroelasticity model in the finite-deformation range,
increase when we choose applied oscillations with large amplitudes. The difference
between the linear models can be explained by the impact of the large deformations on
the porosity, which in turn has a larger impact on the Kozeny-Carman permeability.
Note that this influence is not taken into account in the linear model combined with
constant permeability.

In summary, for this particular problem and the chosen parameter values, the use
of the linear poroelasticity model for solving physical problems with finite deforma-
tions results in errors in the displacement and pressure fields. These errors are mainly
the consequence of the lack of the kinematic nonlinearity, in which the geometry of the
domain evolves with the deformation resulting in a nonlinear term in the poroelasticity
equations. To reduce these errors, especially in the pressure field, the linear poroelas-
ticity model can preferably be combined with a deformation-dependent permeability,
such as the Kozeny-Carman relationship. In addition, the kinematic nonlinearity can
be incorporated.

9.4 Heterogeneous versus homogeneous porous me-
dia

In the above-mentioned models, the porous medium is assumed to be homogeneous.
However, all natural soils are heterogeneous mixtures of broken rocks and minerals,
living organisms, and humus. To determine the composition of soil, laboratory tests
and field experiments are needed. However, since these tests and experiments can
only been performed on a limited number of locations in the soil, flow through the
voids in a soil is usually modelled assuming a homogeneous soil mixture rather than a
heterogeneous mixture. In this research area, we investigated whether this simplifica-
tion is justified by exploring the difference between the flow of water in a model with
a heterogeneous layered porous medium and a model with a homogeneous porous
medium.

Firstly, this difference is studied by considering two three-dimensional physical
problems, describing the infiltration of a fluid through a filter into an aquifer (Chap-
ter 7). In the first simulated problem, the infiltration is stimulated by a constant pump
pressure. Furthermore, mechanical oscillations, that are assumed to be induced by
the injection of water, are imposed on the infiltration boundary. In the second numer-
ical experiment, the prescribed pump pressure has a pulsing behaviour rather than
being constant. To describe this behaviour, rectangular pulse waves are used with
different periods and pulse times. These problems are solved using Biot’s theory of
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linear poroelasticity with single-phase flow, considering nonlinear permeability. We
started by performing Monte Carlo simulations to the values of Young’s modulus and
Poisson’s ratio, considering a physical problem without imposing mechanical oscilla-
tions nor pressure pulses. The numerical results from these simulations indicated that
Young’s modulus and Poisson’s ratio do not have a large impact on the volumetric flow
rate. After applying mechanical oscillations on the infiltration boundary in the form
of standing waves with different amplitudes, the numerical results showed that an
increase in the amplitude leads to an increase in the volumetric flow rate. Moreover,
this impact is larger on the water flow in the heterogeneous layered porous medium
than on the water flow in the homogeneous porous medium. However, the change in
the volumetric flow rate due to these oscillations is not significant. Finally, numerical
simulations of pressure pulsing pointed out that injection pulses does not lead to a
higher water flow rate, regardless of the type of soil into which we inject. However, if
pressure pulses are preferable to a constant pump pressure, large pulse times must be
selected in order to increase the water outflow. More important, water flows twice as
fast through heterogeneous layered porous media than through homogeneous porous
media, in all problems tested.

Secondly, we investigated the difference between a heterogeneous layered porous
medium and a homogeneous porous medium by injecting a bromide tracer for water
flow into an aquifer (Chapter 8). Based on the combination of Biot’s theory of lin-
ear poroelasticity and the advection-dispersion equation, a coupled model describing
solute transport in deforming soil is proposed, taking into account nonlinear perme-
ability. The simulation results showed that a larger longitudinal dispersivity (i.e. a
larger microscopic heterogeneity) results in a larger distance that can be reached by
the bromide tracer. In addition, higher concentration values are computed in the
vicinity of the injection filter. In the homogeneous porous medium model, similar
results could be obtained by using a high value of the pump pressure, which increases
the flow velocity and hence leads to a larger mechanical dispersion. Consequently,
from these numerical results follows that the rate of solute transport by molecular
diffusion is negligibly small relative to the rates of solute transport by advection
and dispersion. However, high pump pressures resulted in unstable solutions of the
macroscopic-heterogeneous layered porous medium model. The instability may pos-
sibly be prevented by using a Streamline Upwind Petrov Galerkin method, however,
this method introduces an additional finite element discretisation error of order O(h),
where h denotes a measure for the mesh size. Better alternatives are methods based
on flux and slope limiting. Another possible strategy could be to make the whole
finite element method more implicit by using a monolithic (fully-coupled) approach
in which a nonlinear problem is solved at each time step in conjunction with the
coupled advection-dispersion-Biot problem. Above all, the numerical results pointed
out that the computed concentration is higher in the heterogeneous layered porous
medium than in the homogeneous porous medium. This conclusion is in good agree-
ment with the results mentioned in Chapter 7, where we concluded that water flows
faster through heterogeneous layered porous media than through homogeneous porous
media.
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