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LIST OF SYMBOLS

In this section, we summarize the most common symbols adopted in this dissertation
grouped by category.

B-spline basis functions
Ξ Knot vector
ξi Knot
p Spline degree
h Knot span size (mesh width)
d Dimension of the domain of interest
φi ,p Univariate B-spline basis function of degree p
Φi ,p Multivariate B-spline basis function of degree p
F Geometry function (single patch)
F(k) Geometry function (multipatch)
DF Jacobian of the geometry function
K Number of patches
N Number of univariate B-spline basis functions
Ndof Number of multivariate B-spline basis functions
C B-spline curve
Bi Control point
S B-spline surface
Bi , j Control net
Ri ,p Rational B-spline basis function

Matrices, vectors and operators
Ah,p System matrix
Ãh,p Approximation of Ah,p

Dh,p Matrix containing the diagonal entries of Ah,p

uh,p Solution vector
fh,p Right-hand side vector
rh,p Residual vector
eh,p Error vector

I h̃,p
h,p Prolongation operator (h-multigrid)

Ih,p

h̃,p
Restriction operator (h-multigrid)

I1
p Restriction operator (p-multigrid)

Ip
1 Prolongation operator (p-multigrid)

Sh,p Smoothing operator

v
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Matrices, vectors and operators (continued)
Mp Mass matrix
ML

p Lumped mass matrix
Pp

1 Transfer matrix
Lh,p Lower-triangular matrix
Uh,p Upper-triangular matrix

Variational formulation
D Diffusion tensor
v Velocity field
R Reaction term
H 1 order 1 Sobolev space of L2-integrable functions
H 1

0 Functions in H 1 that vanish on the boundary
V H 1

0
Vh,p Space of B-spline basis functions of degree p
Ω Domain of interest
∂Ω Boundary of the domain of interest
Ω̂ Parameter domain
Ω(k) Single subdomain

Variables and parameters
Rd Euclidean space of dimension d
ξ Variable in the parameter domain
x Variable in the physical domain
ε Tolerance for stopping criterion
τ threshold in ILUT factorization
ρ fillfactor in ILUT factorization

Multigrid Reduced in Time
t Time variable
∆t Time step size
∆tF Fine time step size
∆tC Coarse time step size
A System matrix
u Solution vector
g Right-hand side vector
S Schur complement
m Coarsening factor
L Number of levels in MGRIT hierarchy



SUMMARY

Isogeometric Analysis is a methodology that bridges the gap between Computer Aided
Design (CAD) and the Finite Element Method (FEM) by adopting the building blocks
used in CAD, namely Non-Uniform Rational B-Splines and B-splines, as a basis for FEM.
The use of these high-order spline functions does not only lead to an accurate repre-
sentation of the geometry, but has shown to be advantageous in many different fields of
research.
In order to obtain accurate numerical solutions, sufficiently fine meshes have to be con-
sidered which results in very large linear systems of equations. Furthermore, the condi-
tion numbers of the system matrices grow exponentially in the spline degree p, making
the use of standard iterative solvers less efficient. Direct methods, on the other hand,
might not be a viable alternative for large problem sizes, due to memory constraints and
difficulties to parallelize. In recent years, the development of efficient iterative solvers
for Isogeometric Analysis has therefore become an active field of research.
For standard FEM, multigrid methods are known to be among the most efficient solvers
for elliptic partial differential equations. The direct application of these methods to lin-
ear systems arising in Isogeometric Analysis results, however, in multigrid methods with
deteriorating performance for higher values of the spline degree p, since the multigrid
smoother becomes less and less effective in damping the error. This has led to the devel-
opment of multigrid methods with non-standard smoothers.
In this dissertation, we propose the use of p-multigrid methods as an alternative solution
strategy. Within our p-multigrid method, the coarse grid correction is obtained at level
p = 1, enabling the use of well-known solution methods for standard Lagrangian FEM
(in particular h-multigrid methods). Furthermore, the support of the basis functions
significantly reduces at level p = 1, thereby reducing the number of non-zero entries
in the coarse grid operators. We analyze the performance of our p-multigrid method,
adopting different smoothers, for single patch and multipatch geometries. In particu-
lar, we perform a spectral analysis to investigate the interplay between the coarse grid
correction and smoothing procedure and obtain the asymptotic convergence rate of the
p-multigrid method for a representative scenario. Numerical results (i.e., iteration num-
bers and CPU timings) are obtained for a variety of two- and three-dimensional bench-
marks and compared to (state-of-the-art) h-multigrid methods to show the potential of
p-multigrid methods in the context of Isogeometric Analysis.
For time-dependent partial differential equations, we apply Multigrid Reduced in Time
(MGRIT), which is a parallel-in-time method, on discretizations arising in Isogeometric
Analysis. Here, MGRIT is successfully combined with a p-multigrid method to obtain an
overall efficient method.
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SAMENVATTING

Isogeometrische Analyse is een numerieke methode die een brug slaat tussen computer-
ondersteund ontwerpen (COO) en de eindige elementen methode (EEM) door de bouw-
stenen van COO, namelijk niet uniforme rationele B-splines en B-splines, als een basis
voor de EEM te gebruiken. Het gebruik van deze hogere orde spline functies leidt niet
alleen tot een accurate representatie van de geometrie, maar heeft aangetoond voordelig
te zijn in veel verschillende onderzoeksvelden.
Om nauwkeurige numerieke oplossingen te verkrijgen, moeten voldoende fijne roosters
gebruikt worden wat leidt tot erg grote lineaire systemen van vergelijkingen. Bovendien
groeit het conditiegetal van de matrices exponentieel met de spline graad p, wat het
gebruik van standaard iteratieve methoden minder efficient maakt. Directe methoden
zijn, echter, geen alternatief voor grote systemen van vergelijkingen, vanwege geheugen-
beperkingen. In recente jaren is de ontwikkeling van efficiente iteratieve oplossings-
methoden voor Isogeometrische Analyse daarom een actief onderzoeksveld geworden.
Voor standaard eindige elementen methodes staan multigrid methoden bekend als de
meest efficiente oplossingsmethoden voor elliptische partiële differentiaalvergelijkin-
gen. De directe toepassing van deze methoden op lineaire systemen die voorkomen
in Isogeometrische Analyse leidt, echter, tot multigrid methoden die verslechteren voor
hogere waarden van p, omdat de smoother minder effectief wordt. Dit heeft geleid tot
de ontwikkeling van multigrid methoden met niet-standaard smoothers.
In deze dissertatie stellen we het gebruik van p-multigrid methoden voor als alternatieve
oplossingsmethode. Met onze p-multigrid methode wordt de grove correctie verkregen
op level p = 1, wat het gebruik van welbekende oplossingsmethoden voor standaard La-
grangian eindige elementen (zoals h-multigrid methoden) mogelijk maakt. Bovendien
reduceert de support van de basis functies significant op level p = 1, waarmee het aan-
tal niet-nul elementen in de grof grid operatoren gereduceerd wordt. We analyseren de
prestatie van onze p-multigrid methode, gebruik makend van verschillende smoothers,
voor enkele patch en meervoudige patch geometrien. In het bijzonder voeren we een
spectraalanalyse uit om de wisselwerking tussen de grove correctie en de smoother te
onderzoeken en de asymptotische convergentiesnelheid van de onderliggende p-multi-
grid methode te verkrijgen. Numerieke resultaten (dat wil zeggen, het aantal iteraties en
CPU tijden) worden verkregen voor een verscheidenheid van twee- en driedimensionale
problemen en vergeleken met (state-of-the-art) h-multigrid methoden om de potentie
van p-multigrid methoden in de context van Isogeometrische Analyse te tonen.
Voor tijdsafhankelijke partiële differentiaalvergelijkingen, passen we Multigrid Geredu-
ceerd in Tijd (MGGT), wat een parallel in tijd methode is, toe op discretizaties in Isogeo-
metrische Analyse. Hierbij wordt MGGT succesvol gecombineerd met p-multigrid me-
thoden om een algeheel efficiente methode te verkrijgen.
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PREFACE

This dissertation presents the outcome of my scientific research that I performed from
April 2017 till May 2021 at the Delft Institute of Applied Mathematics (DIAM) of Delft
University of Technology. The aim of this research is the development of efficient solu-
tion strategies to solve linear systems of equations arising in Isogeometric Analysis. In
particular, we consider p-multigrid methods as the type of solver to investigate, in which
the coarse grid correction is obtained at a low-order level to update the solution at the
high-order level.
Chapter 2 and 3 can be considered as a basic introduction to Isogeometric Analysis and
multigrid methods. The reader familiar to these subjects could start reading from Chap-
ter 4 onwards. Chapter 4, 5 and 6 are all based on papers published (or submitted) during
the PhD research, indicated at the beginning of these chapters.
Chapter 7 has a special role in this thesis, as it focusses on the reproducibility of the re-
sults presented in the other chapters. In particular it gives a short introduction to the
library adopted in this work, G+Smo (Geometry plus Simulation modules), and shows
how results from this dissertation can be obtained by the reader using this library. I
strongly believe that this chapter adds a lot of value to this research, as the reproducibil-
ity of numerical experiments is key within the academic setting.

Roel Petrus Wilhelmus Maria Tielen
Delft, October 2021

xi





1
INTRODUCTION

The field of computational science and engineering (CSE) deals with the simulation of
complex problems that arise in engineering. Many of these problems can be described
by partial differential equations (PDEs), but, since for many applications analytic solu-
tions do not exist, numerical methods are required to obtain an accurate approximation
of the solution. The Finite Element Method (FEM) is widely used to numerically solve
partial differential equations in CSE.
Within FEM, the domain of computation is divided into smaller parts, so-called ele-
ments, on which the solution of the underlying PDE is approximated. This division is
obtained by dividing the domain of interest into triangles (or quadrilaterals in 2D and
tetrahedra or hexahedra in 3D) to obtain a so-called mesh. As a consequence, curved
geometries can not be approximated accurately with standard FEM. The PDE is then ap-
proximated by a linear combination of basis functions, which are defined locally on each
element.
Solving a PDE numerically with FEM requires the solution of a linear system of equa-
tions. The solution of this linear system then leads to a numerical approximation of
the quantity of interest (e.g. displacement, temperature or pressure). Within the field
of Computer Aided Design (CAD), computers are used to create, modify and optimize a
design. Typically, CAD is combined with FEM in order to develop designs that fulfil the
required prescribed goals. Since the mesh used within the FEM is an approximation of
the CAD geometry, remeshing is often necessary, in order to retain an accurate represen-
tation of the CAD geometry when performing the Finite Element Analysis (FEA).
Isogeometric Analysis (IgA) tries to unify these two fields, by adopting the same building
blocks of CAD, Non-Uniform Rational B-splines (NURBS) and B-splines, for the Finite
Element Analysis, thereby circumventing the approximation error of the geometry. Since
its introduction in [1], IgA has become a viable alternative to the standard FEM and has
been applied to a range of engineering fields, like structural mechanics [2–8], solid and
fluid dynamics [9–15] and shape optimization [16–23].
Solving the resulting linear system of equations in IgA, remains, however, a challenging
task for higher values of the spline degree of the B-spline basis functions as the condi-
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tion numbers of the mass and stiffness matrices increase exponentially with the spline
degree, rendering the use of (standard) iterative solvers inefficient. The use of (sparse)
direct solvers, on the other hand, is not straightforward due to the increasing stencil of
the basis functions and increasing bandwidth of matrices for higher values of the spline
degree. Furthermore, direct solvers may not be practical for large problem sizes due
to memory constraints, which is a common problem in high-order methods in general.
Therefore, research focusses more and more on the development of efficient solution
strategies for IgA [24–38]. An efficient class of solvers are multigrid methods [39–48],
which combine the use of a basic iterative method, called smoother, with a coarse grid
correction scheme. The computational costs of the resulting method have the potential
to grow only linearly in the number of degrees of freedom, making multigrid methods
one of the most efficient class of solvers. Within the context of IgA, most research fo-
cusses on h-multigrid (or geometric multigrid) methods, where a coarse grid correction
is obtained by reducing the number of elements on coarser meshes. It was noticed that
the use of standard iterative methods as a smoother (e.g. Gauss-Seidel or (damped) Ja-
cobi) leads to multigrid methods with deteriorating performance for higher values of the
spline degree which has led to the development of non-standard smoothers to overcome
this drawback.
For high-order discretizations, the use of p-multigrid methods has been investigated
[49–61] as well. Within p-multigrid methods, a low-order correction is obtained based
on linear B-spline basis functions. Since linear B-spline basis functions coincide with
(standard) P1 Lagrange basis functions, well-established solution methods from stan-
dard FEM can be adopted to obtain the coarse-grid correction. Coarsening in p has suc-
cessfully been combined with h-coarsening to further decrease the degrees of freedom
at the coarsest level, leading to hp-methods [62–66].
In this thesis, we examine the use of p-multigrid methods as an alternative solution strat-
egy within Isogeometric Analysis. More precisely, we:

• examine the use of p-multigrid methods, adopting different smoothers (e.g. Gauss-
Seidel, ILUT), to efficiently solve linear systems of equations arising in Isogeomet-
ric Analysis (Chapter 4).

• investigate the use of a block ILUT smoother (instead of a global ILUT smoother)
in case of multipatch geometries (Chapter 5).

• combine Multigrid Reduced in Time (MGRIT) methods with a p-multigrid method
to solve time-dependent problems in Isogeometric Analysis (Chapter 6).

Within our p-multigrid method, the coarse grid correction will be obtained at level p = 1,
which enables the use of well-known solution methods for standard Lagrangian FEM.
Furthermore, the support of the basis functions significantly reduces at level p = 1, there-
by reducing the number of non-zero entries in the coarse grid operators. We will analyze
the performance of our p-multigrid method, and adopt different smoothers, for single
patch and multipatch geometries. In particular, we perform a spectral analysis to inves-
tigate the interplay between the coarse grid correction and smoothing procedure and
obtain the asymptotic convergence rate of the underlying p-multigrid method. Numer-
ical results, including iteration numbers and CPU timings, are obtained for a variety of
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two- and three-dimensional benchmarks and compared to those obtained with (state-
of-the-art) h-multigrid methods to show the potential of p-multigrid methods in the
context of Isogeometric Analysis. For time-dependent partial differential equations, we
apply the Multigrid Reduced in Time (MGRIT) method on discretizations arising in Iso-
geometric Analysis. MGRIT is a parallel-in-time method that enables parallelism in the
temporal direction. In particular, MGRIT is successfully combined with a p-multigrid
method to obtain an overall efficient method on modern architectures.

Besides the introduction and conclusion, this thesis consists of six chapters:

2. Isogeometric Analysis
In this chapter, we give a short introduction to different concepts of Isogeometric
Analysis. Starting from the variational formulation, the spatial discretization in
Isogeometric Analysis is presented. In particular, we focus on the definition of
B-spline basis functions, NURBS and possible refinement strategies (h-, k- and
p-refinement).

3. Multigrid Methods
In this chapter, we provide a basic introduction to multigrid methods. Further-
more, we discuss both h- and p- multigrid methods and how they can be applied
as a stand-alone solver or as a preconditioner within an outer Krylov method.
Finally, we present a literature overview on the use of multigrid methods in the
context of Isogeometric Analysis.

4. p-multigrid methods for Isogeometric Analysis
In this chapter, we present our p-multigrid method and analyze its performance
in detail for single patch geometries. In particular, we consider the convection-
diffusion-reaction (CDR) equation on the unit square, Poisson’s equation on a
quarter annulus and Poisson’s equation on the unit cube. A spectral analysis is
performed for the p-multigrid method adopting different smoothers (e.g. Gauss-
Seidel and ILUT) and we compare our p-multigrid method to h-multigrid meth-
ods adopting a variety of smoothers.

5. p-multigrid methods for multipatch geometries
In this chapter, we focus on the use of p-multigrid methods for multipatch ge-
ometries. First, we investigate the performance of our p-multigrid method (as
introduced in Chapter 4) in this setting. Then, the use of a block ILUT smoother
is investigated to obtain a parallelizable p-multigrid method. Results are pre-
sented and compared to a global ILUT smoother for a variety of benchmarks.
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6. Multigrid Reduced in Time (MGRIT)
In this chapter, we adopt the parallel-in-time method MGRIT for discretizations
arising in Isogeometric Analysis. First, we introduce the MGRIT method and
how it can be used to solve time-dependent PDEs discretized in space by Iso-
geometric Analysis. The spatial solves necessary within the MGRIT method are
performed by adopting our p-multigrid method. Numerical results will be pre-
sented in this chapter, in terms of iteration numbers, CPU timings and strong
and weak parallel scaling.

7. p-multigrid methods in G+Smo
In this chapter, we provide a short introduction to the open-source library Geom-
etry plus Simulation modules (G+Smo), which is adopted throughout this thesis.
Furthermore, we describe how the numerical results obtained in this thesis can
be reproduced and extended by the reader using this library.

Each chapter is associated to a color, where the color indicates whether the chapter
should be considered as an introduction to the subject (yellow), is based on publications
(blue) or is software related (red).



2
ISOGEOMETRIC ANALYSIS

This chapter provides a basic introduction to Isogeometric Analysis. Starting from the
variational formulation, showing many similarities with the standard Finite Element Me-
thod, B-spline basis functions and Non-Uniform Rational B-splines are introduced. Then,
possible refinement strategies and assembly techniques commonly adopted within Isoge-
ometric Analysis are described.

5
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6 2. ISOGEOMETRIC ANALYSIS

2.1. INTRODUCTION
Isogeometric Analysis aims to bridge the gap between Computer Aided Design (CAD)
and the Finite Element Method (FEM) by adopting the same building blocks, B-splines
or Non-Uniform Rational B-splines (NURBS), within the variational formulation and ge-
ometry description. As such, Isogeometric Analysis can be considered as the natural
extension of the FEM to high-order B-spline basis functions. The use of these high-order
B-spline basis functions results in a highly accurate representation of (curved) geome-
tries. Furthermore, the (potential) smoothness of the basis functions leads to a higher
accuracy per degree of freedom compared to FEM [67] and has shown to be beneficial in
a variety of applications.
In this chapter, we provide a short introduction to Isogeometric Analysis. Section 2.2
describes the variational formulation and spatial discretization in Isogeometric Anal-
ysis. In Section 2.3, we introduce B-spline basis functions and Non-Uniform Rational
B-splines (NURBS). Different refinement strategies and assembly techniques typically
adopted within Isogeometric Analysis are discussed in Section 2.5 and 2.6, respectively.
The chapter ends with some concluding remarks.

2.2. VARIATIONAL FORMULATION
To illustrate the variational formulation and spatial discretization in Isogeometric Anal-
ysis, we consider the convection-diffusion-reaction (CDR) equation:

−∇· (D∇u)+v ·∇u +Ru = f , onΩ. (2.1)

Here D denotes the diffusion tensor, v a divergence-free velocity field and R a source
term. Furthermore,Ω⊂Rd is a connected, Lipschitz domain in d dimensions, f ∈ L2(Ω)
and u = 0 on the boundary ∂Ω. Let V = H 1

0 (Ω) denote the space of functions within the
Sobolev space H 1(Ω) that vanish on ∂Ω:

V = {
u ∈ H 1(Ω) | u|∂Ω = 0

}
. (2.2)

The variational form of (2.1) is then obtained by multiplication with an arbitrary test
function v ∈ V and application of integration by parts:

Find u ∈ V such that

a(u, v) = ( f , v) ∀v ∈ V , (2.3)

where

a(u, v) =
∫
Ω

(D∇u) ·∇v + (v ·∇u)v +Ruv dΩ (2.4)

and

( f , v) =
∫
Ω

f v dΩ. (2.5)

The physical domainΩ is then parameterized by a geometry function

F : Ω̂→Ω, F(ξ) = x. (2.6)
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The geometry function F describes a bijective mapping connecting the parameter do-
main Ω̂= (0,1)d with the physical domain Ω. In case Ω cannot be described by a single
geometry function or such a function would lead to a singularity, the physical domain is
divided into a collection of K non-overlapping subdomainsΩ(k) such that

Ω=
K⋃

k=1
Ω(k). (2.7)

A family of geometry functions F(k) is then defined to parameterize each subdomainΩ(k)

separately:

F(k) : Ω̂→Ω(k), F(k)(ξ) = x. (2.8)

In this case, we refer to Ω as a multipatch geometry consisting of K patches. Figure 2.1
shows, for illustrative purposes, a quarter annulus which is described by both a single
mapping and a collection of mappings.

ΩΩ̂

F

Ω̂

F1

F2

Ω

Figure 2.1: A quarter annulus described by a single mapping F and a collection of mappings F(k) (k = 1, . . . ,4).

2.3. B-SPLINE BASIS FUNCTIONS
Throughout this thesis, B-spline basis functions are considered for the spatial discretiza-
tion of Equation (2.3). Univariate B-spline basis functions are defined on the parameter
domain Ω̂ = (0,1) and are uniquely determined by a knot vector Ξ consisting of knots
ξi ∈R:

Ξ= {ξ1,ξ2, . . . ,ξN+p ,ξN+p+1}. (2.9)

Here, N denotes the number of basis functions of degree p described by this knot vec-
tor. The difference between two consecutive knots ξi and ξi+1 (assuming ξi 6= ξi+1) is
referred to as the knot span size hi . A knot vector is said to be uniform if all knot spans
have an equal knot span size. Throughout this thesis, all knot vectors considered are
uniform, where h denotes the knot span size of the knot vector (or ‘mesh width’). A knot
vector is called open if the first and last knots are repeated p times.
Based on the underlying knot vector Ξ = {ξ1,ξ2, . . . ,ξN+p ,ξN+p+1}, B-spline basis func-
tions are then defined by the Cox de Boor formula [68] for i = 1, . . . , N +p, starting with
the piecewise constants:

φi ,0(ξ) =
{

1, if ξi ≤ ξ< ξi+1,

0, otherwise.
(2.10)
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High-order B-spline basis functions of degree p are then defined for p > 0 (with 0
0 := 0):

φi ,p (ξ) = ξ−ξi

ξi+p −ξi
φi ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
φi+1,p−1(ξ), i = 1, . . . , N (2.11)

B-spline basis functions possess the following appealing properties. They:

• have a compact support given by [ξi ,ξi+p+1],

• are non-negative on the entire domain, i.e.,

φi ,p (ξ) ≥ 0 ∀ξ ∈ [ξ1,ξN+p+1], (2.12)

• are C p−mi continuous at knot ξi , where mi denotes the multiplicity of knot ξi ,

• form a partition of unity, i.e.,

N∑
i=1

φi ,p (ξ) = 1, ∀ξ ∈ [ξi ,ξi+p+1]. (2.13)

The compact support of the B-spline basis functions results in sparse system matrices,
although the bandwidth grows with the spline degree p. The non-negativity of the B-
spline basis functions implies that all entries of the mass matrix are greater or equal to
zero. As a consequence, row-sum lumping can easily be applied without ‘losing’ part of
the total mass. In fact, the partition of unity allows us to apply row-sum lumping already
within the variational formulation. In this thesis, we consider B-spline basis functions
based on an open and uniform knot vector. Figure 2.2 denotes linear and quadratic B-
spline basis functions based on such a knot vector.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

ξ

φ
(ξ

)

φ1,1 φ2,1 φ3,1 φ4,1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

ξ

φ
(ξ

)

φ1,2 φ2,2 φ3,2 φ4,2

φ5,2

Figure 2.2: Univariate linear (left) and quadratic (right) B-spline basis functions based on the knot vectors
Ξ1 = {0,0,1,2,3,3} (left) and Ξ2 = {0,0,0,1,2,3,3,3} (right), respectively.

2.4. SPATIAL DISCRETIZATION
For the spatial discretization of Equation (2.3) the tensor product of univariate B-spline
basis functions is adopted. In this section, we consider the two-dimensional case, where
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univariate B-spline basis functions φix ,p (ξ) and φi y ,q (η) of degree p and q , respectively,
with maximum continuity are adopted:

Φ~i ,~p (ξ) :=φix ,p (ξ)φi y ,q (η), ~i = (ix , i y ), ~p = (p, q). (2.14)

Here, ξ = (ξ,η) and ~i and ~p are multi-indices, with ix = 1, . . . ,nx and i y = 1, . . . ,ny de-
noting the univariate basis functions in the x-dimension and y-dimension, respectively.
Furthermore, i = ix nx + (i y −1)ny assigns a unique index to each pair of univariate basis
functions, where i = 1, . . . , Ndof. Here, Ndof denotes the number of degrees of freedom, or
equivalently, the number of tensor-product basis functions and depends on both h and
p. Figure 2.3 shows a quadratic B-spline basis in two dimensions based on univariate
quadratic B-spline basis functions. In this thesis, all univariate B-spline basis functions
are assumed to be of the same degree (i.e., p = q).

Figure 2.3: A quadratic B-spline basis in two dimensions from the top (left) and side (right) based on univariate
quadratic B-spline basis functions.

The spline space Vh,p can then be written, using the inverse of the geometry mapping
F−1 as pull-back operator, as follows:

Vh,p := span
{
Φ~i ,~p ◦F−1|Φ~i ,~p = 0 on ∂Ω̂

}
i=1,...,Ndof

. (2.15)

The Galerkin formulation of (2.3) becomes: Find uh,p ∈ Vh,p such that

a(uh,p , vh,p ) = ( f , vh,p ) ∀vh,p ∈ Vh,p . (2.16)

The discretized problem can be written as a linear system

Ah,p uh,p = fh,p , (2.17)

where Ah,p denotes the system matrix resulting from this discretization with B-spline
basis functions of degree p and mesh width h. For a more detailed description of the
variational formulation in Isogeometric Analysis, we refer to [1].
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B-SPLINE CURVES AND SURFACES
A B-spline curve can be constructed by taking a linear combination of B-spline basis
functions:

C (ξ) =
N∑

i=1
Biφi ,p (ξ), (2.18)

where Bi denote the N control points of the underlying B-spline curve. The control poly-
gon of the B-spline curve can be obtained by piecewise linear interpolation of the control
points. Figure 2.4 denotes a B-spline curve with its control polygon in R2. Note that, in
general, the B-spline curve is not interpolatory at the control points unless the multi-
plicity of a certain knot is equal to the polynomial degree of the B-spline functions. This
is only the case for the first and last control point, as this example is based on B-spline
functions defined by an open knot vector.

Figure 2.4: A B-spline curve and its control points in R2, taken from [1].

When the knots and control points are not repeated, the resulting B-spline curve has
continuous derivatives up to degree p − 1. Increasing the multiplicity of the knots or
control points by k, results in a decrease of the number of continuous derivatives by k.
Next, we introduce the concept of B-spline surfaces. A B-spline surface S(ξ,η) is defined
as follows:

S(ξ,η) =
N∑

i=1

M∑
j=1

φi ,p (ξ)φ j ,q (η)Bi , j , (2.19)

where Bi , j is the control net and φi ,p and φ j ,q the B-spline basis functions of degree p
and q , respectively. Here, N and M denote the number of B-spline basis functions of
degree p and q , respectively. Figure 2.5 shows a biquadratic B-spline surface with its
control net. B-spline solids can be defined in an analogous way, see [1] for more details.
The construction of Non-Uniform Rational B-splines (NURBS) is based on these curves,
surfaces and solids. For example, a NURBS curve is defined as follows:

C(ξ) =
N∑

i=1
Bi Ri ,p (ξ), (2.20)

where the rational basis functions Ri ,p are defined as follows:

Ri ,p (ξ) = wiφi ,p (ξ)∑N
j=1 w jφ j ,p (ξ)

. (2.21)
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Figure 2.5: A B-spline surface and its control net in R3, taken from [1].

Here, wi denotes the i th weight. Again, Non-Uniform Rational B-spline surfaces and
solids are defined in an analogous way. As B-spline basis functions, NURBS basis func-
tions form a partition of unity. Furthermore, their continuity and support is the same
as for B-splines. Figure 2.6 shows a control net for a toroidal surface and the resulting
NURBS surface.

Figure 2.6: Control net (left) for a toroidal surface and the resulting NURBS surface (right), taken from [1].

2.5. REFINEMENT STRATEGIES
Within Isogeometric Analysis, three types of refinement can be distinguished, which are
all based on the insertion of knots within the knot vector. The first one, h-refinement,
increases the number of basis functions while keeping the degree of the basis functions
the same. In particular, we consider uniform h-refinement, in which a knot is inserted
halfway each knot span of non-zero size. Starting with the knot vector Ξ from the previ-
ous section, uniform h-refinement results in the following knot vector:

Ξ= {0,0,0,1,2,3,3,3} ⇒ Ξ= {0,0,0, 1
2 ,1, 3

2 ,2, 5
2 ,3,3,3}. (2.22)

Figure 2.7 shows both the original basis functions and those after applying uniform h-
refinement. Starting from the knot vector Ξ = {0,1}, applying h-refinement l times, re-
sults in a knot span size of h = 2−l and 1

h +p basis functions.
The second type of refinement is referred to as p-refinement. With p-refinement, both
the degree of the basis functions and multiplicity of each knot is increased:

Ξ= {0,0,1,2,3,3} ⇒ Ξ= {0,0,0,1,1,2,2,3,3,3}. (2.23)



2

12 2. ISOGEOMETRIC ANALYSIS

0 0.5 1 1.5 2 2.5 3

0

0.5

1

φ1,2 φ2,2 φ3,2 φ4,2

φ5,2

0 0.5 1 1.5 2 2.5 3

0

0.5

1

φ1,2 φ2,2 φ3,2 φ4,2

φ5,2 φ6,2 φ7,2 φ8,2

Figure 2.7: A quadratic B-spline basis before (left) and after (right) h-refinement. Here, the initial knot vector
is given by Ξ= {0,0,0,1,2,3,3,3}.

As a consequence, the number of basis functions is increased, but they remain as smooth
as the original basis functions. Figure 2.8 shows the original basis functions and those
after applying p-refinement.
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Figure 2.8: p-refinement applied on a linear B-spline basis defined by the knot vector Ξ= {0,0,1,2,3,3}.

Finally, there is the possibility to apply k-refinement to the knot vector. With k-refinement,
knots are inserted at the end points:

Ξ= {0,0,1,2,3,3} ⇒ Ξ= {0,0,0,1,2,3,3,3}. (2.24)

The spline degree is then elevated and the continuity is raised accordingly too. Hence,
the resulting basis functions are C p−1 continuous. Furthermore, the number of basis
functions after applying k-refinement is significantly lower compared to p-refinement.
Figure 2.9 shows the original basis functions and those after applying k-refinement. It
should be noted that k-refinement does not yield nested spaces. Note that there is no
equivalent in standard Finite Element Methods for k-refinement.
In this thesis, both uniform h-refinement and k-refinement will be used extensively.
Hence, B-spline basis functions with maximum continuity based on an open and uni-
form knot vector are considered within the p-multigrid methods.

Remark: The reader should not be confused by the fact that even though k-refinement
is applied throughout this thesis, we refer to p-multigrid methods. The terminology ‘p-
multigrid methods’ has been adopted from other fields (Finite Element Methods, Dis-
continuous Galerkin methods), where they have been applied successfully.
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Figure 2.9: k-refinement applied on a linear B-spline basis defined by the knot vector Ξ= {0,0,1,2,3,3}.

2.6. MATRIX ASSEMBLY
The linear system given by Equation (2.17) is formed by evaluating the integrals aris-
ing in the variational formulation. Typically, an element-based assembly is considered,
where one loops over all elements and determines all non-zero contributions to the lin-
ear system of equations by means of numerical quadrature. Therefore, it is necessary
to determine which integrals are non-zero, which depends on the overlap between the
basis functions within these integrals. Figure 2.10 shows the support of two quadratic B-
spline basis functions in the parameter domain Ω̂= (0,1)2 and their common support.

0
0

1

1

Figure 2.10: Support of two quadratic B-spline basis functions in the parameter domain Ω̂ = (0,1)2 with their
common support denoted in green.

It should be noted that integrals are typically evaluated on the parameter domain rather
than the physical domain, using the well known integration rule:

∫
Ω

g (x) dΩ=
∫
Ω̂

g (F(ξ)) |detDF(ξ)| dΩ̂, (2.25)

where DF(ξ) is the Jacobian matrix of the geometry mapping. In standard FEM a simi-
lar transformation occurs to evaluate the integrals in a reference domain, although this
mapping is then defined per element rather than globally.
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Assuming an element-based assembly loop with standard Gaussian quadrature, assem-
bling the stiffness matrix based on B-spline basis functions of degree p costs O (Ndofp

3d )
floating point operations (flops). Here, the assembly costs grow significantly for higher
values of the spline degree p, due to the increasing support of the B-spline basis func-
tions which results in an increased bandwidth of the stiffness matrix. As the assembly
costs are responsible for a significant part of the total computational costs, recent re-
search has focused on more efficient assembly strategies. Examples of such assembly
techniques are weighted quadrature [69], sum factorizations [70], low tensor rank ap-
proximations [71] and the surrogate matrix methodology [72, 73]. In this dissertation,
the element-based assembly loop with standard Gauss-quadrature is adopted. There-
fore, assembly costs will be listed separately when presenting the computational times
later in this dissertation, as they might dominate the overall computational costs.
The number of non-zero entries per row only grows with the spline degree of the B-
spline basis functions and, therefore, the resulting system matrix is sparse. Figure 2.11
shows the stiffness matrix based on quadratic B-spline basis functions for a single patch
(left) and multipatch (right) geometry. In case a multipatch geometry is considered, the
system matrix has a block structure, where each block is associated to a single patch. The
off-diagonal blocks denote the coupling between degrees of freedom at the interface,
resulting in an arrowhead matrix. In Chapter 5, this structure will be used to develop a
block ILUT smoother for multipatch geometries.
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Figure 2.11: Sparsity pattern of the stiffness matrix based on quadratic B-spline basis functions for a single
patch (left) and multipatch (right) geometry.
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2.7. CONCLUDING REMARKS
In this chapter, we introduced Isogeometric Analysis as a discretization method to solve
the convection-diffusion-reaction equation. In particular, we discussed the variational
formulation, spatial discretization and B-spline basis functions and their properties. Fur-
thermore, potential refinement strategies and assembly techniques have briefly been in-
troduced.
For other partial differential equations arising in computational science and engineer-
ing, an analogous approach as presented here is adopted. In case of time-dependent
problems, however, the spatial discretization is typically combined with a time integra-
tion method as will be discussed in more detail in Chapter 6.
To solve the resulting linear systems of equations given by Equation (2.17), different so-
lution strategies can be adopted. As we consider the use of a special type of multigrid
methods (i.e., p-multigrid methods) in this thesis, the next chapter provides a basic in-
troduction to multigrid methods.





3
MULTIGRID METHODS

This chapter provides a basic introduction to multigrid methods. After discussing the con-
cepts of coarse grid correction and smoothing, the solution procedure of a general multi-
grid method is presented. In particular, we discuss how multigrid methods can be used as
a stand-alone solver or as a preconditioner within a Krylov method. Finally, the state-of-
the-art of using multigrid methods to solve linear systems arising in Isogeometric Analysis
within the literature is presented.

17
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3.1. INTRODUCTION
Multigrid methods [39–48] are known to be among the most efficient solvers for ellip-
tic problems, such as Equation (2.1), as they can be designed such that the computa-
tional costs to solve the resulting linear systems of equations only grows linearly with
the number of unknowns. Different types of multigrid methods (e.g. h-multigrid and
p-multigrid) exist, which will be discussed in this chapter.
This chapter provides a brief introduction to multigrid methods and is organized as fol-
lows: The basics of multigrid are briefly explained in Section 3.2. Section 3.3 then de-
scribes the solution procedure, starting from the two-grid cycle. An overview of existing
multigrid methods adopted in the context of Isogeometric Analysis is provided in Sec-
tion 3.4. The chapter ends with some concluding remarks.

3.2. BASIC MULTIGRID
Any multigrid method consist of a smoothing procedure and a coarse grid correction.
The combination of both results in a highly efficient method. To describe these basis
components, we consider Equation (2.17):

Ah,p uh,p = fh,p . (3.1)

Recall that h denotes the (constant) knot span size and p the spline degree of the B-
spline basis functions. Given an approximate solution ûh,p of Equation (3.1), we define
the residual as follows:

rh,p = fh,p −Ah,p ûh,p . (3.2)

The error is defined as:

eh,p = uh,p − ûh,p . (3.3)

Combining Equation (3.2) and (3.3) leads to the residual equation:

Ah,p eh,p = rh,p . (3.4)

Solving Equation (3.4) exactly would directly lead to the solution of Equation (3.1). How-
ever, since solving the residual equation is as hard as solving the original linear system of
equations, it is not useful to do so. Instead, the operator Ah,p is approximated by a sim-

pler operator Âh,p and a correction êh,p is determined. Given an initial guess u(0)
h,p and

the approximated operator Âh,p , a natural iterative solution procedure can be defined:

1. Determine the residual:

rh,p = fh,p −Ah,p u(0)
h,p . (3.5)

2. Obtain a correction by approximately solving the residual equation:

Âh,p êh,p = rh,p . (3.6)
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3. Update the initial guess based on this correction:

u(1)
h,p = u(0)

h,p + êh,p . (3.7)

By combining the different steps of the iterative procedure, we obtain:

u(n+1)
h,p = u(n)

h,p + êh,p ,

u(n+1)
h,p = u(n)

h,p + (Âh,p )−1rh,p ,

u(n+1)
h,p = u(n)

h,p + (Âh,p )−1
(
fh,p −Ah,p u(n)

h,p

)
,

In this scheme, the operator Âh,p still has to be defined. The iterative procedure de-
scribed above to solve the residual equation leads to a smoothing procedure and coarse
grid correction, depending on the choice of Âh,p , as we will discuss in the remainder of
this section.

SMOOTHING
We consider the iterative procedure from the previous section:

u(n+1)
h,p = u(n)

h,p + (Âh,p )−1
(
fh,p −Ah,p u(n)

h,p

)
. (3.8)

For an efficient procedure, the operator Âh,p in Equation (3.8) should represent the orig-
inal operator Ah,p well. On the other hand, the effect of applying the inverse of Âh,p on
the residual should be easy to determine. A common choice of Âh,p is the following:

Âh,p = 1

ω
Dh,p , (3.9)

where Dh,p denotes the diagonal of the original operator Ah,p . Note that, in this case,
(Âh,p )−1 can easily be determined. This choice of Âh,p leads to damped-Jacobi iteration.
Another popular choice of Âh,p is the lower triangular part of the original operator (in-
cluding the diagonal), which leads to Gauss-Seidel iteration. In general, all basic iterative
methods can be defined by a certain choice of Âh,p in Equation (3.8). Within multigrid
methods, the commonly adopted basic iterative methods (e.g. Gauss-Seidel) are referred
to as smoother, as they reduce the high-frequency components of the error. It should be
noted, however, that not all basic iterative methods have this property.

COARSE GRID CORRECTION

Instead of choosing Âh,p as a part of the original operator, one could also replace Ah,p

by a lower-dimensional operator. Considering Ah,p is the result of a discretization with
B-spline basis functions of degree p with mesh width h, we could choose Âh,p to be the
results of a discretization with different values of h and/or p. Following our notation,
this would lead to:

Âh,p = Ah̃,p̃ , (3.10)
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where h̃ and p̃ have to be chosen. In fact, we are looking for a low-dimensional correc-
tion from the space Vh̃,p̃ instead of Vh,p . Depending on the choice of h̃ and p̃, a different
space Vh̃,p̃ is obtained. Since the dimensions of the coarse grid operator are different
from the original operator, operators have to be defined to transfer the residual and er-
ror from one space to another. To transfer the error from Vh̃,p̃ to Vh,p , a prolongation
operator is defined, while a restriction operator is defined to transfer the residual from
Vh,p to Vh̃,p̃ :

Ih,p

h̃,p̃
: Vh̃,p̃ 7→ Vh,p , I h̃,p̃

h,p : Vh,p 7→ Vh̃,p̃ . (3.11)

Here, both operators act on the vector of coefficients representing a function from the
considered spline space as a linear combination of B-spline basis functions. Based on
this choice of Âh,p , the resulting iterative procedure is as follows:

1. Compute the residual at the fine level:

rh,p = fh,p −Ah,p u(0)
h,p . (3.12)

2. Restrict the residual to the coarse level:

I h̃,p̃
h,p (rh,p ) = rh̃,p̃ . (3.13)

3. Solve the residual equation to obtain a coarse correction:

Ah̃,p̃ eh̃,p̃ = rh̃,p̃ . (3.14)

4. Prolongate the error to the fine level:

Ih,p

h̃,p̃
(eh̃,p̃ ) = êh,p . (3.15)

5. Update the solution according to the obtained correction:

u(1)
h,p = u(0)

h,p + êh,p . (3.16)

The coarse grid correction can be described, due to the linearity of all operators, in a
single formula as follows:

u(n+1)
h,p =

(
Ih,p − Ih,p

h̃,p̃
(Âh,p )−1I h̃,p̃

h,p Ah,p

)
u(n)

h,p . (3.17)

3.3. SOLUTION PROCEDURE
It is widely known that only applying the smoothing procedure or the coarse grid correc-
tion, does not result in an efficient (or even converging) method. Therefore, the two-grid
solution procedure consists of the combination of smoothing and a coarse grid correc-
tion. In particular, we apply presmoothing, a coarse grid correction and postsmoothing:
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1. Starting from an initial guess u(0,0)
h,p , apply a fixed number ν1 of presmoothing steps:

u(0,m)
h,p = u(0,m−1)

h,p +Sh,p

(
fh,p −Ah,p u(0,m−1)

h,p

)
, m = 1, . . . ,ν1, (3.18)

where Sh,p is a smoothing operator applied to the high-dimensional problem based
on the specific choice of Âh,p in Equation (3.8).

2. Determine the residual and project it onto the space Vh̃,p̃ using the restriction op-

erator I h̃,p̃
h,p :

rh̃,p̃ = I h̃,p̃
h,p

(
fh,p −Ah,p u(0,ν1)

h,p

)
. (3.19)

3. Solve the residual equation to determine the coarse grid error:

Ah̃,p̃ eh̃,p̃ = rh̃,p̃ . (3.20)

4. Project the error eh̃,p̃ using the prolongation operator Ih,p

h̃,p̃
and update u(0,ν1)

h,p :

u(0,ν1)
h,p := u(0,ν1)

h,p + Ih,p

h̃,p̃

(
eh̃,p̃

)
. (3.21)

5. Apply ν2 postsmoothing steps described by (3.18) to obtain u(0,ν1+ν2)
h,p =: u(1,0)

h,p .

Note that in the solution procedure, presmoothing and postsmoothing are identical.
However, in case Gauss-Seidel is combined with a Conjugate Gradient method, a for-
ward and backward sweep will be applied in this thesis, respectively, to keep the multi-
grid method symmetric. In literature, steps (2)− (4) are referred to as coarse grid correc-
tion. The two-grid cycle can be extended to a multigrid cycle by recursively applying the
procedure above on Equation (3.20). At the coarsest level, the residual equation is then
typically solved by means of direct solver. In case the aforementioned procedure is ap-
plied exactly once, the resulting cycle is referred to as a V-cycle. Other types are possible,
however, as shown in Figure 3.1.

Figure 3.1: Description of a V-cycle (left) and W-cycle (right).

This iterative procedure is repeated until a certain stopping criterion is satisfied. Through-
out this thesis, this criterion is based on a reduction of the relative residual:

||r(i )
h,p ||2

||r(0)
h,p ||2

< ε. (3.22)
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Here, r(i )
h,p denotes the residual after iteration i and ||·||2 the Euclidean norm. Throughout

this thesis, a random initial guess is chosen, where each entry is sampled from a uniform
distribution on the interval [−1,1] using the same seed. Note that, in case a zero initial
guess is adopted, r(0)

h,p can be replaced by fh,p due to linearity.

Although the general description for each multigrid method is identical, each type of
multigrid method is defined by a specific choice of the coarse grid operator, the prolon-
gation and restriction operator and smoother. Throughout this thesis, we will distinguish
two main types of multigrid methods: h-multigrid and p-multigrid methods.

h-multigrid methods

Within h-multigrid methods, the coarse grid operator is obtained adopting larger mesh
widths, but keeping the same spline degree. Typically, this is done by setting h̃ = 2h:

Âh,p = A2h,p . (3.23)

This choice of Âh,p has a clear geometric interpretation, as it refers to the operator ob-
tained by a discretization adopting B-spline basis functions with knot span size 2h and
spline degree p. Since the space V2h,p is contained in Vh,p , a natural choice for the pro-
longation operator is injection or the canonical embedding. The restriction operator is
then defined as the transposed of the prolongation operator:

I2h,p
h,p = Ih,p

2h,p . (3.24)

Note that, with h-multigrid methods, the size of the coarse grid operator is significantly
smaller compared to the size of the original operator. Therefore, applying the smoother
at the coarser levels and solving the residual equation is relatively cheap. As the degree
of the B-spline basis functions remains the same with h-multigrid methods, the sparsity
pattern is similar at all level of the multigrid hierarchy. Throughout this dissertation, we
will use h-multigrid methods to assess the performance of our p-multigrid method. Fur-
thermore, the residual equation in our p-multigrid method at the low-order level will be
solved by means of an h-multigrid method.

p-multigrid methods

With p-multigrid methods the coarse grid operator is chosen by adopting a low-order
discretization while keeping the same mesh width, for example p̃ = p −1:

Âh,p = Ah,p−1. (3.25)

Here, Ah,p−1 corresponds to a discretization with B-spline basis functions of degree p−1
and knot span size h. In contrast to h-multigrid methods, the number of degrees of
freedom is similar at the coarser level with p-multigrid methods. However, the sparsity
pattern differs significantly, as B-spline basis functions of a different spline degree are
considered. To transfer errors and residuals between different levels of the multigrid
hierarchy, prolongation and restriction operators have to be defined. In Chapter 4 we
discuss the proposed prolongation and restriction operator for the p-multigrid method
in more detail.
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MULTIGRID METHODS AS A PRECONDITIONER

Multigrid methods can be used as a stand-alone solver as described before, or as a pre-
conditioner within an outer Krylov solver. That is, instead of applying the precondi-
tioner directly, the equivalent linear system of equations is solved with an intentionally
reduced tolerance or a fixed number of multigrid cycles. Using an intentionally reduced
tolerance should be done with care, however, as it transforms multigrid from a linear
preconditioner to a non-linear preconditioner. Combining a multigrid method with a
Krylov solver can not only result in a speed-up of the computation, but might also lead
to a more robust overall method. It should be mentioned that the resulting precondi-
tioned Krylov solver might still converge in O (Ndof) iterations.
The application of a symmetric multigrid method implies that the preconditioner is sym-
metric. Provided the matrix is symmetric and positive definite (SPD), the Conjugate-
Gradient method [74] can be adopted as an outer Krylov solver. Alternatively, Bi-CGSTAB
[75], GMRES [76] or IDR(s) [77] can be adopted for non-symmetric preconditioners. The
preconditioned Conjugate-Gradient method applied to the system Ax = b is given by:

Preconditioned Conjugate-Gradient method

• r0 := b−Ax0 determine residual

• z0 := M−1r0 apply preconditioner

• p0 := z0 initialize search direction vector

while
( ||rk ||2
||r0||2 > ε

)
• αk := r>k zk

p>
k Apk

determine step length

• xk+1 := xk +αk pk update solution vector

• rk+1 := rk −αk Apk update residual vector

• if
( ||rk+1||2

||r0||2
)

exit loop, else:

• zk+1 := M−1rk+1 apply preconditioner

• βk := r>k+1zk+1

r>k zk
determine step length

• pk+1 := zk+1 +βk pk update search direction vector

end

Here, the preconditioner M−1 is applied by applying a single multigrid cycle on the re-
lated linear system of equations, for example Azk = rk . As a stopping criterion for the
outer Krylov method, we adopt a reduction of the relative residual: ||rk ||2

||r0||2 . Throughout
this thesis, the Bi-CGSTAB method is adopted as an outer Krylov method in case of a non-



3

24 3. MULTIGRID METHODS

symmetric preconditioner. Note that, two iterations of the Conjugate-Gradient method
is roughly as expensive as a single Bi-CGSTAB iteration. The preconditioned Bi-CGSTAB
method is given by:

Preconditioned Bi-CGSTAB method

• r0 := b−Ax0 determine residual

• ρ0 =α0 =ω0 := 1 initialize step length

• v0 = p0 := 0 initialize search direction vector

while
( ||rk ||2
||r0||2 > ε

)
• ρk = (r>0 ,rk−1)

• β= (ρk /ρk−1)(α/ωk−1) determine step length

• pk = rk−1 +β(pk−1 −ωk−1vk−1) update search direction vector

• y = M−1pk apply preconditioner

• vk = Ay

• αk = ρk /(r>0 ,vk ) determine step length

• h = xk−1 +αk y update solution vector

• if (||h||2 < ε) xk = h, exit loop else:

• s = rk−1 −αk vk update residual vector

• z = M−1s apply preconditioner

• t = Az

• ωk = (M−1t,M−1s)/(M−1t,M−1t) determine step length

• xk = h+ωk z update solution vector

• if (||rk ||/||r0|| < ε) exit loop

• rk = s−ωk t update residual vector

end
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3.4. MULTIGRID METHODS FOR ISOGEOMETRIC ANALYSIS
Over the years, various multigrid methods have been applied to solve linear systems of
equations arising in Isogeometric Analysis. This section provides a global overview of
the existing literature on the use of multigrid methods for Isogeometric Analysis.
A first study on h-multigrid methods in the context of Isogeometric Analysis was pre-
sented in [78] for second-order elliptic equations. In this paper, both the approximation
and smoothing property of the two-grid solver were analyzed, implying h-independence
of this solver. Furthermore, numerical results in both two and three dimensions were
presented using (forward) Gauss-Seidel as a smoother. The resulting multigrid method
showed, indeed, h-independency, but the number of iterations needed to achieve con-
vergence depended on the spline degree p. The paper showed as well that p-refinement
(i.e., C 0-continuous functions) leads to slower convergence compared to k-refinement,
when the same spline degree is considered. The use of p-multigrid as an alternative
solution strategy was already mentioned in this paper (see Remark 10).
A numerical spectral analysis for h-multigrid methods was presented in [79] and showed
that standard smoothers (i.e., Gauss-Seidel and Jacobi) fail to reduce the high-frequency
error components for higher values of p. These problems became even more prominent
in higher dimensions. Furthermore, the use of h-multigrid methods as a preconditioner
within a Conjugate-Gradient method was investigated, showing a reduced number of
iterations even though a dependency on p still remained visible. Numerical results with
a full multigrid method, in contrast to the often adopted V-cycle, were presented in [80],
showing that a very limited amount of cycles were needed to obtain the optimal order of
spatial convergence.
These observations led to the development of non-standard smoothers to overcome this
problem. For example, a boundary-corrected mass-Richardson smoother has been de-
veloped [81] for which it was shown that the convergence rate is indeed independent of
both h and p. Numerical results, obtained for one- and two-dimensional benchmark
problems, confirm this. In a continuation of this work by the same authors, a smoother
based on the stable splitting of spline spaces was presented [82]. As with the boundary-
corrected mass-Richardson smoother, a special treatment for the boundary is suggested
to capture the spectral difficulties encountered in Isogeometric Analysis. In particular,
the spline space is splitted in a (large) interior part and multiple smaller spaces to cap-
ture the boundary effects.
An alternative approach is the use of multiplicative Schwarz methods as a smoother
[83]. Based on a local Fourier analysis (LFA), the optimal size of the blocks within this
smoother has been determined. Numerical results, obtained in one and two dimen-
sions, showed the independence of both h and p for Poisson’s equation on single patch
geometries. This smoother has been applied as well to the biharmonic equation [84],
where a local Fourier analysis is performed to predict the behaviour of the multigrid
algorithm. Convergence rates independent of h and p are shown in one and two dimen-
sions, provided that the block size is adjusted based on the considered spline degree p.
As an alternative, a preconditioned Krylov method can be applied as a smoother. In [85]
such a multigrid method has been designed, based on the careful analysis of the spectral
properties of matrices arising in Isogeometric Analysis. The resulting multigrid method
shows, indeed, convergence rates independent of h and p and outperforms a similar
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multigrid method adopting Gauss-Seidel as a smoother on the fine level.
Further research then led to the development of a parallel multigrid solver [86] for multi-
patch geometries. Here, each patch was assigned to a single processor as it would be the
case in non-overlapping domain decomposition methods. For the resulting multigrid
method, both weak and strong scaling were investigated. In [87], estimates of the ap-
proximation error were derived for two-dimensional multipatch geometries and a multi-
grid method for conforming and non-conforming multipatch geometries was presented
in [88].
In general, most of the proposed multigrid methods were initially applied to Poisson type
problems. However, research has been done on robust h-multigrid solvers for the bihar-
monic equation [89], in which Gauss-Seidel smoothing was combined with the subspace
corrected mass-smoother. It was shown that the Gauss-Seidel smoother is able to cap-
ture the effects of the geometry transformation quite well and leads to a lower number of
iterations compared to the mass-smoother (unless the spline degree p is very high). On
the other hand, the mass-smoother is robust in the spline degree, but does not perform
well on more complex geometries. Although the hybrid smoother is approximately twice
as expensive as each smoother separately, the overall costs with the hybrid smoother are
lower compared to each of the smoothers applied separately.

3.5. CONCLUDING REMARKS
In this chapter, we briefly discussed the basics of multigrid methods, including the coarse
grid correction and smoothing procedure. Furthermore, both h-multigrid and p-multigrid
methods were introduced and an overview has been presented of the application of
multigrid methods in Isogeometric Analysis. In the next chapter, we present a p-multigrid
method for discretizations arising in Isogeometric Analysis which will be applied to the
CDR-equation on single patch and multipatch geometries throughout this thesis. Fi-
nally, the p-multigrid method will be applied in the context of the Multigrid Reduced in
Time (MGRIT) method.
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This chapter presents the p-multigrid method and its components as adopted throughout
this dissertation in detail. A spectral analysis is then performed to analyze the interplay
between the coarse grid correction and smoother for the p-multigrid method. Numeri-
cal results, obtained with the p-multigrid method adopting different smoothers, are com-
pared to h-multigrid methods in terms of iteration numbers and computational efficiency.
Finally, the proposed p-multigrid method is applied to THB-spline discretizations.

Parts of this chapter have been published in:
R.Tielen, M. Möller, D. Göddeke and C.Vuik, p-multigrid methods and their comparison
to h-multigrid methods within Isogeometric Analysis, Computer Methods in Applied Me-
chanics and Engineering 372 (2020)

Parts of this chapter have been published in:
R.Tielen, M. Möller and C.Vuik: A direct projection to low-order level for p-multigrid meth-
ods in Isogeometric Analysis, in The Proceedings of the European Numerical Mathematics
and Advanced Applications Conference (2019)
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4.1. INTRODUCTION
The previous chapters provided a brief introduction to Isogeometric Analysis and multi-
grid methods. This chapter focusses on our p-multigrid method and its application to
linear systems arising in Isogeometric Analysis for single patch geometries. In Section
4.2, the considered benchmarks are presented, while the p-multigrid method is pre-
sented in Section 4.3 and a spectral analysis is performed in Section 4.4. Numerical re-
sults obtained for the p-multigrid method are presented in Section 4.5 and compared to
h-multigrid methods in Section 4.6. In particular, we compare the performance of both
multigrid methods when adopting a state-of-the-art smoother in Section 4.7. Finally, we
apply our p-multigrid method in the context of THB-splines in Section 4.8. The chapter
ends with some concluding remarks.

4.2. BENCHMARKS
To analyze the performance of the proposed p-multigrid method, different benchmarks
are considered. In this chapter, we consider a variety of two- and three-dimensional
benchmarks on single patch geometries:

Benchmark 1. Let Ω be the quarter annulus with an inner and outer radius of 1 and
2, respectively. The coefficients are chosen as follows:

D =
[

1 0
0 1

]
, v =

[
0
0

]
, R = 0. (4.1)

Furthermore, homogeneous Dirichlet boundary conditions are applied and the right-
hand side is chosen such that the exact solution u is given by

u(x, y) =−(x2 + y2 −1)(x2 + y2 −4)x y2.

Benchmark 2. Here, the unit square is adopted as domain of interest, i.e.,Ω= [0,1]2, and
the coefficients are chosen as follows:

D =
[

1.2 −0.7
−0.4 0.9

]
, v =

[
0.4

−0.2

]
, R = 0.3. (4.2)

Homogeneous Dirichlet boundary conditions are applied and the right-hand side is cho-
sen such that the exact solution u is given by

u(x, y) = sin(πx)sin(πy).

Benchmark 3. The unit cube is here adopted as domain of interest, i.e., Ω = [0,1]3, and
the coefficients are chosen as follows:

D =
1 0 0

0 1 0
0 0 1

 , v =
0

0
0

 , R = 0. (4.3)

Homogeneous Dirichlet boundary conditions are applied and the right-hand side is cho-
sen such that the exact solution u is given by:

u(x, y) = sin(πx)sin(πy)sin(πz).
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These benchmarks investigate the influence of the geometric factor, coefficients in the
CDR equation and spatial dimension on the performance of the p-multigrid method.
More information regarding the adopted geometry functions for these benchmarks can
be found in Chapter 7. Multipatch geometries, which are often encountered in more
practical engineering problems, will be considered in Chapter 5.

4.3. p-MULTIGRID METHOD
As discussed in the previous chapter, multigrid methods aim to solve linear systems of
equations by defining a hierarchy of discretizations. At each level of the multigrid hier-
archy a smoother is applied, whereas on the coarsest level a correction is determined by
means of a direct solver. With p-multigrid methods, this correction is based on a low-
order discretization. In this section, we present our p-multigrid method in detail.
Starting from Vh,1, a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying k-refinement.
Note that, since basis functions with maximal continuity are considered, the spaces are
not nested. A single step of the two-grid correction scheme for the p-multigrid method
consists of the following steps:

1. Starting from an initial guess u(0,0)
h,p , apply a fixed number ν1 of presmoothing steps:

u(0,m)
h,p = u(0,m−1)

h,p +Sh,p

(
fh,p −Ah,p u(0,m−1)

h,p

)
, m = 1, . . . ,ν1, (4.4)

where Sh,p is a smoothing operator applied to the high-order problem.

2. Determine the residual at level p and project it onto the space Vh,p−1 using the

restriction operator Ip−1
p :

rh,p−1 = Ip−1
p

(
fh,p −Ah,p u(0,ν1)

h,p

)
. (4.5)

3. Solve the residual equation at level p −1 to determine the coarse grid error:

Ah,p−1eh,p−1 = rh,p−1. (4.6)

4. Project the error eh,p−1 onto the space Vh,p using the prolongation operator Ip
p−1

and update u(0,ν1)
h,p :

u(0,ν1)
h,p := u(0,ν1)

h,p + Ip
p−1

(
eh,p−1

)
. (4.7)

5. Apply ν2 postsmoothing steps described by (4.4) to obtain u(0,ν1+ν2)
h,p =: u(1,0)

h,p .

Recursive application of this scheme until level p = 1 is reached, leads to a V-cycle.
In contrast to h-multigrid methods, the coarsest problem in p-multigrid methods can
still be large for small values of h. However, since we restrict to level p = 1, the coarse
grid problem corresponds to a standard low-order Lagrange FEM discretization of the
problem at hand. Therefore, we use a standard h-multigrid method to solve the coarse
grid problem in our p-multigrid scheme, which is known to be optimal (in particular h-
independent) in this case. As a smoother, Gauss-Seidel is applied within the h-multigrid
method, as it is both cheap and effective for low-order problems. Applying a single W-
cycle using canonical prolongation, weighted restriction and a single smoothing step
turned out to be sufficient and has therefore been adopted throughout this thesis as
coarse grid solver.



4

30 4. P-MULTIGRID METHODS FOR ISOGEOMETRIC ANALYSIS

DIRECT OR INDIRECT PROJECTION
Note that, for the p-multigrid method, the residual can be projected directly to each
p-level or directly to level p = 1. We refer to these strategies as an indirect or direct
projection, respectively. Figure 4.1 illustrates both coarsening strategies within the p-
multigrid method. The use of a direct projection would lead to lower setup costs, as
less p-levels have to be considered. Furthermore, the costs of a single p-multigrid cycle
would decrease. The question remains, however, to which extend this direct projection
influences the obtained convergence rate of the resulting p-multigrid method.
It was shown in [90] that a direct projection hardly affects the performance of the p-
multigrid method (in terms of iteration numbers), while the setup costs indeed decrease
significantly. In Appendix A, numerical results are presented for the first benchmark
confirming this observation. Throughout this dissertation, a direct projection to level
p = 1 is therefore adopted for the p-multigrid method.

p = 3

p = 2

p = 1

p = 1

p = 1

{
{

IgA

P1 FEM

h = 2−5

h = 2−5

h = 2−5

h = 2−4

h = 2−3

}
p-multigrid

}
h-multigrid

Figure 4.1: Illustration of both an indirect (left) and direct (right) projection scheme within p-multigrid. At
p = 1, Gauss-Seidel is always adopted as a smoother (•), whereas at the high order level different smoothers
will be applied (N). At the coarsest level, a direct solver is applied to solve the residual equation (■)

PROLONGATION AND RESTRICTION
To transfer coarse grid corrections and residuals between different levels of the p-multigrid
hierarchy, prolongation and restriction operators are defined. The prolongation and re-
striction operator adopted in this thesis are based on a (discrete) L2 projection and have
been used extensively in the literature [91–93]. The coarse grid error at level p = 1 (see
Section 4.3) is prolongated directly to level p by projection onto the space Vh,p . The pro-

longation operator Ip
1 : Vh,1 → Vh,p is given by

Ip
1 (v1) = (Mp )−1Pp

1 v1. (4.8)

Here, the mass matrix Mp and transfer matrix Pp
1 are defined as follows:

(Mp )(i , j ) :=
∫
Ω
Φi ,pΦ j ,p dΩ, (Pp

1 )(i , j ) :=
∫
Ω
Φi ,pΦ j ,1 dΩ, (4.9)

where the value of the integrals is determined by adopting Gaussian quadrature. The
residuals are restricted from level p to level 1 by projection onto the space Vh,1. The
restriction operator I1

p : Vh,p → Vh,1 is defined by

I1
p (vp ) = (M1)−1P1

p vp . (4.10)
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To prevent the explicit solution of a linear system of equations for each projection step,
the consistent mass matrix Mp in both transfer operators can be replaced by a diagonal
matrix ML

p by applying row-sum lumping:

ML
p(i ,i )

=
Ndof∑
j=1

Mp(i , j ) . (4.11)

Numerical experiments, presented in Appendix B, show that lumping the mass matrix
hardly influences the convergence behaviour of the resulting p-multigrid method. More
precisely, the number of iterations needed to reach convergence for the p-multigrid
method (using ILUT as a smoother) is identical for all considered configurations. When
Gauss-Seidel is applied as a smoother, the number of iterations slightly varies, but re-
mains very similar. It should be noted that the overall accuracy obtained with the p-
multigrid method is not affected when the lumped projection is adopted. However, the
use of a lumped mass matrix significantly reduces the computational costs of the p-
multigrid method, as no explicit solves are necessary when applying the restriction or
prolongation operator. Alternatively, one could invert the mass matrix efficiently by ex-
ploiting the tensor product structure, see e.g. [94], but this has not been explored in this
thesis.

It should be noted that this choice of prolongation and restriction operators yields a non-
symmetric coarse grid correction and, hence, a non-symmetric multigrid solver. As a
consequence, the multigrid solver will only be applied as a preconditioner for a Krylov
method suited for non-symmetric matrices, like Bi-CGSTAB.

Remark: Choosing the prolongation and restriction operator tranpose to each other
would restore the symmetry of the multigrid method. Furthermore, only one of the
lumped mass matrices ML

1 or ML
p has to be assembled, which leads to a slight decrease of

the computational costs. However, numerical experiments, not presented in this thesis,
show that this leads to a less robust p-multigrid method. More precisely, the number
of iterations needed to reach convergence increases significantly for some of the consid-
ered benchmark problems. Choosing the prolongation and restriction operator tranpose
to each other has not been considered without lumping the mass matrices, as it would
increase the computational costs too much. Therefore, the prolongation and restriction
operators are adopted as defined in Equation (4.8) and (4.10), respectively.

SMOOTHER

Within multigrid methods, a basic iterative method (e.g. damped Jacobi) is typically used
as a smoother. However, it is known from literature that the performance of classical
smoothers such as (damped) Jacobi and Gauss-Seidel decreases significantly for higher
values of p. Therefore, apart from Gauss-Seidel, the use of an Incomplete LU Factor-
ization with a dual threshold strategy (ILUT) [95] to approximate the operator Ah,p is
investigated. The ILUT factorization considered in this dissertation is closely related to
an ILU(0) factorization [96]. This factorization has been applied in the context of Isoge-
ometric Analysis as a preconditioner, showing good convergence behaviour [97].
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An ILUT factorization decomposes the operator in a lower and upper triangular part:

Ah,p ≈ Lh,p Uh,p . (4.12)

The ILUT factorization is determined completely by a tolerance τ and fillfactor ρ. Two
dropping rules are applied during factorization:

1. All elements smaller (in absolute value) than the dropping tolerance are dropped.
The dropping tolerance is obtained by multiplying the tolerance τwith the average
magnitude of all elements in the current row.

2. Apart from the diagonal element, only the M largest elements are kept in each row.
Here, M is determined by multiplying the fillfactor ρ with the average number of
non-zeros in each row of the original operator Ah,p .

An efficient implementation of ILUT is available in the Eigen library [98] based on [99].
Once the factorization is obtained, a single smoothing step is applied as follows:

e(n)
h,p = (Lh,p Uh,p )−1

(
fh,p −Ah,p u(n)

h,p

)
, (4.13)

= U−1
h,p L−1

h,p

(
fh,p −Ah,p u(n)

h,p

)
, (4.14)

u(n+1)
h,p = u(n)

h,p +e(n)
h,p , (4.15)

where the two matrix inversions in Equation (4.14) amount to forward and backward
substitution. Throughout this thesis, the fillfactor ρ = 1 is used (unless stated otherwise)
and the dropping tolerance equals τ = 10−12. Hence, the number of non-zero elements
of Lh,p +Uh,p is similar to the number of non-zero elements of Ah,p . Figure 4.2 shows the
sparsity pattern of the stiffness matrix Ah,3 and Lh,3 +Uh,3 for the first benchmark and
h = 2−5. Since a fill-reducing permutation is performed during the ILUT factorization
within the Eigen library, sparsity patterns differ significantly. However, the number of
non-zero entries of Ah,3 and Lh,3 +Uh,3 is comparable. In fact, due to the considered
dropping rules, the number of non-zero entries of Lh,3 +Uh,3 is even slightly smaller.
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Figure 4.2: Sparsity pattern of Ah,3 (left) and Lh,3 +Uh,3 (right) for h = 2−5.

4.4. SPECTRAL ANALYSIS
In this section, the performance of the proposed p-multigrid method is analyzed in dif-
ferent ways. First, a spectral analysis is performed to investigate the interplay between
the coarse grid correction and the smoother. In particular, we compare the effectiveness
of two smoothers (Gauss-Seidel and ILUT) for different values of p. Furthermore, the
spectral radius of the iteration matrix is determined to obtain the asymptotic conver-
gence rates of the p-multigrid methods. Throughout this section, the geometries of the
first two benchmarks (see Section 4.2) are considered for the analysis.

REDUCTION FACTORS
To investigate the effect of a single smoothing step or coarse grid correction, a spectral
analysis [79] is carried out for different values of p. For this analysis, we consider−∆u = 0
with homogeneous Dirichlet boundary conditions and, hence, u = 0 as its exact solution.
Let us define the error reduction factors as follows:

r S(u0
h,p ) =

||Sh,p (u0
h,p )||2

||u0
h,p ||2

, r CGC (u0
h,p ) =

||CGC(u0
h,p )||2

||u0
h,p ||2

, (4.16)

where Sh,p (·) denotes a single smoothing step and CGC(·) an exact coarse grid correction.
For the coarse grid correction, a direct projection to p = 1 is considered. As an initial
guess, the generalized eigenvectors vi are chosen which satisfy

Ah,p vi =λi Mh,p vi , i = 1, . . . , Ndof. (4.17)

Here, Mh,p is the consistent mass matrix. The error reduction factors for the first bench-
mark for both smoothers are shown in Figure 4.3 for h = 2−5 and different values of p.
The reduction factors obtained with Gauss-Seidel as a smoother are shown in the left
column, while the plots in the right column show the reduction factors for the ILUT
smoother. In general, the coarse grid corrections reduce the coefficients of the eigenvec-
tor expansion corresponding to the low-frequency modes, while the smoother reduces
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the coefficients associated with high-frequency modes. However, for increasing values
of p, the reduction factors of the Gauss-Seidel smoother increase for the high-frequency
modes, implying that the smoother becomes less effective. On the other hand, the use of
ILUT as a smoother leads to decreasing reduction factors for all modes when the value
of p is increased.
Figure 4.4 shows the error reduction factors obtained for the second benchmark, show-
ing similar, but less oscillatory, behaviour. These results indicate that the use of ILUT as
a smoother (with ν1 = ν2 = 1) could significantly improve the convergence properties of
the p-multigrid method compared to the use of Gauss-Seidel as a smoother.
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Figure 4.3: Error reduction in (v j ) for Poisson’s equation on the quarter annulus with p = 2,3,4 and h = 2−5

obtained with Gauss-Seidel (left) and ILUT (right) as a smoother.
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Figure 4.4: Error reduction in (v j ) for Poisson’s equation on the unit square with p = 2,3,4 and h = 2−5 obtained
with Gauss-Seidel (left) and ILUT (right) as a smoother.
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ITERATION MATRIX
For any multigrid method, the asymptotic convergence rate is determined by the spec-
tral radius of the iteration matrix. To obtain this matrix explicitly, consider, again, −∆u =
0 with homogeneous Dirichlet boundary conditions and, hence, u = 0 as its exact solu-
tion. By applying a single iteration of the p-multigrid method using the unit vector ei

h,p

as initial guess, one obtains the i th column of the iteration matrix [100].
Figure 4.5 shows the spectra for the first benchmark for h = 2−5 and different values of
p obtained with both smoothers. For reference, the unit circle has been added in all
plots. The spectral radius of the iteration matrix, defined as the maximum eigenvalue in
absolute value, is then given by the eigenvalue that is the furthest away from the origin.
Clearly, the spectral radius significantly increases for higher values of p when adopting
Gauss-Seidel as a smoother. The use of ILUT as a smoother results in spectra clustered
around the origin, implying fast convergence of the resulting p-multigrid.
The spectra of the iteration matrices for the second benchmark are presented in Figure
4.6. Although the eigenvalues are more clustered with Gauss-Seidel compared to the first
benchmark, the same behaviour can be observed.
The spectral radii for both benchmarks, where ν1 = ν2 = 1, are presented in Table 4.1. For
Gauss-Seidel, the spectral radius of the iteration matrix is independent of the mesh width
h, but depends strongly on the spline degree p. The use of ILUT leads to a spectral radius
which is significantly lower for all values of h and p. Although ILUT exhibits a small
h-dependence, the spectral radius remains low for all values of h. As a consequence,
the p-multigrid method is expected to show essentially both h- and p-independence
convergence behaviour when ILUT is adopted as a smoother.

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.635 0.014 h = 2−4 0.849 0.003 h = 2−4 0.963 0.003
h = 2−5 0.631 0.039 h = 2−5 0.845 0.019 h = 2−5 0.960 0.029
h = 2−6 0.647 0.058 h = 2−6 0.844 0.017 h = 2−6 0.960 0.023

(a) Poisson’s equation on quarter annulus

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.352 0.043 h = 2−4 0.703 0.002 h = 2−4 0.916 0.003
h = 2−5 0.351 0.037 h = 2−5 0.699 0.011 h = 2−5 0.913 0.020
h = 2−6 0.352 0.042 h = 2−6 0.699 0.017 h = 2−6 0.914 0.016

(b) Poisson’s equation on unit square

Table 4.1: Spectral radii for Poisson’s equation on the quarter annulus and unit square using p-multigrid for
different values of the mesh width h and spline degree p.
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Figure 4.5: Spectra of the iteration matrix for Poisson’s equation on the quarter annulus obtained with Gauss-
Seidel (left) and ILUT (right).
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Figure 4.6: Spectra of the iteration matrix for Poisson’s equation on the unit square obtained with Gauss-Seidel
(left) and ILUT (right).
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4.5. NUMERICAL RESULTS
In the previous section, a spectral analysis showed that the use of ILUT as a smoother
within a p-multigrid method significantly improves the asymptotic convergence rate
compared to the use of Gauss-Seidel as a smoother. In this section, p-multigrid is ap-
plied as a stand-alone solver and as a preconditioner within a Bi-CGSTAB method to
verify this analysis. Results in terms of iteration numbers and CPU times are obtained
using Gauss-Seidel and ILUT as a smoother.
For all numerical experiments, the initial guess u(0)

h,p is chosen randomly, where each en-

try is sampled from a uniform distribution on the interval [−1,1] using the same seed.
Furthermore, we choose ν1 = ν2 = 1 for consistency. Application of multiple smooth-
ing steps, which is in particular common for Gauss-Seidel, decreases the number of it-
erations until convergence, but does not qualitatively or quantitatively change the p-
dependence as long as the number of smoothing steps is kept independent of the spline
degree. Furthermore, since the smoother costs dominate when solving the linear sys-
tems, CPU times are only mildly affected. The stopping criterion is based on a relative
reduction of the initial residual, where a tolerance of ε= 10−8 is adopted. Boundary con-
ditions are imposed by eliminating the degrees of freedom associated to the boundary.

p-MULTIGRID AS STAND-ALONE SOLVER
Table 4.2 shows the number of multigrid cycles needed to achieve convergence for the
p-multigrid method using different smoothers for the benchmarks considered in this
chapter. For the first benchmark, the number of multigrid cycles needed with Gauss-
Seidel is in general independent of the mesh width h, but strongly depends on the spline
degree p. For the second benchmark, however, the use of Gauss-Seidel leads to a method
that diverges, indicated with (−). The p-multigrid method was said to be diverged in case
the norm of the relative residual at the end of a V-cycle was significantly higher than at
the end of the previous V-cycle. In general, the use of ILUT as a smoother leads to a
p-multigrid method which converges for all configurations and exhibits both indepen-
dence of h and p.
For Poisson’s equation on the unit cube, the p-dependence when Gauss-Seidel is adopted
as a smoother is stronger compared to the dependence for the two-dimensional bench-
marks. Furthermore, the number of iterations slightly decreases for smaller values of the
meshwidth h. The number of iterations needed with ILUT as a smoother, is effectively
independent of the spline degree p. An h-dependence is visible, however, in particular
for higher values of p.
Note that for the first two benchmarks we consider a mesh width up to and including
h = 2−9, which corresponds to (approximately) a quarter million degrees of freedom.
For the three-dimensional problem, a significantly larger mesh width is adopted (h =
2−5), leading to around fifty thousand degrees of freedom. The significant higher amount
of non-zero entries in the three-dimensional leads, however, to memory issues on the
considered platform when a smaller mesh width is considered.
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p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

(a) Poisson’s equation on quarter annulus

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 5 − 3 − 3 − 4 −
h = 2−7 5 − 3 − 4 − 4 −
h = 2−8 5 − 3 − 3 − 4 −
h = 2−9 5 − 4 − 3 − 4 −

(b) CDR-equation on unit square

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−2 3 65 3 405 3 3255 5 22788
h = 2−3 3 59 3 339 3 2063 3 8128
h = 2−4 4 57 3 281 3 1652 5 7152
h = 2−5 4 55 4 273 6 1361 10 6250

(c) Poisson’s equation on the unit cube

Table 4.2: Number of multigrid cycles needed to achieve convergence with p-multigrid using Gauss-Seidel
(GS) and ILUT as a smoother. To reproduce these and other tables presenting iteration numbers, we refer to
Chapter 7 of this dissertation.

p-MULTIGRID AS A PRECONDITIONER

As an alternative, the p-multigrid method can be applied as a preconditioner within a Bi-
CGSTAB method. In the preconditioning phase of each iteration, a single multigrid cycle
is applied. Numerical results can be found in Table 4.3. When applying Gauss-Seidel as
a smoother, the number of iterations needed with Bi-CGSTAB is significantly lower com-
pared to the number of p-multigrid multigrid cycles and even restores stability for the
second bechmark (see Table 4.2). However, a dependence of the iteration numbers on
p is still present. When adopting ILUT as a smoother, the number of iterations needed
for convergence slightly decreases compared to the number of p-multigrid multigrid cy-
cles for all configurations and benchmarks. Furthermore, the number of iterations is
independent of both h and p.

CPU TIMES

Besides iteration numbers, computational times have been determined when adopting
p-multigrid as a stand-alone solver. A serial implementation in the C++ library G+Smo
[101] is considered on an Intel(R) Core(TM) i7-8650U CPU (1.90GHz). Figure 4.7 illus-
trates the CPU times obtained for the p-multigrid method for the first benchmark adopt-
ing both Gauss-Seidel and ILUT as a smoother. The detailed CPU timings can be found
as well in Appendix C. The assembly times denote the CPU time needed to assemble all
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p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2 13 2 18 2 41 2 78
h = 2−7 2 12 2 20 2 41 2 92
h = 2−8 3 13 2 19 2 43 2 95
h = 2−9 3 13 2 21 2 41 2 95

(a) Poisson’s equation on quarter annulus

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2 7 2 13 2 29 2 65
h = 2−7 2 8 2 13 2 29 2 70
h = 2−8 2 7 2 12 2 29 2 64
h = 2−9 2 7 2 14 2 28 2 72

(b) CDR-equation on unit square

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−2 2 14 2 30 2 94 3 276
h = 2−3 2 16 2 40 2 105 2 229
h = 2−4 2 19 2 44 2 119 3 285
h = 2−5 2 19 2 49 3 136 3 310

(c) Poisson’s equation on the unit cube

Table 4.3: Number of iterations needed to achieve convergence with Bi-CGSTAB, using p-multigrid as precon-
ditioner.

operators, including the prolongation and restriction operators, which are independent
of the smoother. The setup costs of the smoother, however, differ significantly for both
smoothers: Gauss-Seidel does not require any setup costs, while the setup costs with
ILUT as a smoother increase significantly for higher values of p. When adopting Gauss-
Seidel as a smoother, the time needed to solve the linear systems is significantly higher
compared to the use of ILUT. However, since the factorizations costs are relatively high,
the p-multigrid method using ILUT as a smoother is faster for only a limited amount of
configurations. It should be noted that, if multiple solves are necessary using the same
system matrix, the setup costs become relatively seen less important compared to the
solver costs, as can be the case with time-dependent problems.

Remark: For all numerical experiments, the ’coarse grid’ operators of the multigrid hier-
archy have been obtained by rediscretizing the bilinear form. Alternatively, all operators
of the h-multigrid hierarchy at level p = 1 could be obtained by applying the Galerkin
projection. Furthermore, alternative (and more efficient) assembly strategies exist (see
Section 2.6). Therefore, the assembly, smoother setup and solving costs are presented
separately in this section.
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Figure 4.7: CPU timings for p-multigrid (pMG) adopting ILUT and Gauss-Seidel (GS) as a smoother for differ-
ent values of h for the first benchmark.
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4.6. COMPARISON TO h-MULTIGRID METHODS
Throughout this dissertation, the use of ILUT and Gauss-Seidel as a smoother has been
investigated within a p-multigrid method. In this section, both smoothers will be ap-
plied within h-multigrid methods and compared to the results obtained in the previous
section to investigate the effect of the different coarsening strategies. This section starts
with a spectral analysis in case h-multigrid is adopted as coarsening strategy. Then, both
iteration numbers and CPU times are determined for the h-multigrid method adopting
Gauss-Seidel and ILUT as a smoother.

SPECTRAL ANALYSIS
The error reduction factors for the first benchmark for both smoothers and coarsening
strategies are shown in Figure 4.8 for h = 2−5 and different values of p. The reduction
factors obtained with both smoothers, which are independent of the coarsening strategy,
are shown in the left column and were obtained in the previous section as well. The plots
in the right column show the reduction factors for both coarsening strategies. The coarse
grid correction obtained by coarsening in h (e.g. CGCh) is more effective compared to
a correction obtained by coarsening in p. Note that, for higher values of p, both types
of coarse grid correction remain effective in reducing the coefficients of the eigenvector
expansion corresponding to the low-frequency modes. The oscillatory behaviour of the
reduction rates in Figure 4.8 has been observed in the literature for a similar benchmark,
see [79], although the exact cause is unknown and requires further investigation. Figure
4.9 shows the error reduction factors obtained for the second benchmark, showing sim-
ilar, but less oscillatory, behaviour. Note that, the reduction rates of the smoother itself
are uniformly smaller than 1 for both benchmarks, implying the smoother is a solver as
well.
Figure 4.10 shows the spectra for the first benchmark for h = 2−4 and various values of
p obtained with both coarsening strategies using Gauss-Seidel and ILUT as a smoother.
For reference, the unit circle has been added in all plots. Clearly, the spectral radius sig-
nificantly increases for higher values of p when adopting Gauss-Seidel as a smoother for
h-multigrid methods as well, while the use of ILUT as a smoother results in spectra clus-
tered around the origin, implying fast convergence of the resulting multigrid method.
The spectra of the iteration matrices for the second benchmark are presented in Figure
4.11. Although the eigenvalues are more clustered with Gauss-Seidel compared to the
first benchmark, the same behaviour can be observed.
The spectral radii for both benchmarks, where ν1 = ν2 = 1, are presented in Table 4.4.
Here, the results for both the p-multigrid method and h-multigrid method are presented
for comparison. For Gauss-Seidel, the spectral radius of the iteration matrix is indepen-
dent of the mesh width h and coarsening strategy, but depends strongly on the spline
degree p. The use of ILUT leads to a spectral radius which is significantly lower for all
values of h and p. Although ILUT exhibits a small h-dependence, the spectral radius
remains low for all values of h and both coarsening strategies. As a consequence, the
p-multigrid and h-multigrid method are expected to show essentially both h- and p-
independent convergence behaviour when ILUT is adopted as a smoother.
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Figure 4.8: Error reduction in (v j ) for Poisson’s equation on the quarter annulus with p = 2,3,4 and h = 2−5

obtained with different smoothers (left) and coarsening strategies (right).
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Figure 4.9: Error reduction in (v j ) for Poisson’s equation on the unit square with p = 2,3,4 and h = 2−5 obtained
with different smoothers (left) and coarsening strategies (right).
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Figure 4.10: Spectra of the iteration matrix for Poisson’s equation on the quarter annulus obtained with p-
multigrid (left) and h-multigrid (right).
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Figure 4.11: Spectra of the iteration matrix for Poisson’s equation on the unit square obtained with p-multigrid
(left) and h-multigrid (right).



4.6. COMPARISON TO h-MULTIGRID METHODS

4

49

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.635 0.014 h = 2−4 0.849 0.003 h = 2−4 0.963 0.003
h = 2−5 0.631 0.039 h = 2−5 0.845 0.019 h = 2−5 0.960 0.029
h = 2−6 0.647 0.058 h = 2−6 0.844 0.017 h = 2−6 0.960 0.023

(a) p-multigrid, Poisson’s equation on quarter annulus

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.630 0.012 h = 2−4 0.848 0.004 h = 2−4 0.963 0.003
h = 2−5 0.627 0.039 h = 2−5 0.845 0.018 h = 2−5 0.960 0.029
h = 2−6 0.646 0.059 h = 2−6 0.844 0.014 h = 2−6 0.960 0.023

(b) h-multigrid, Poisson’s equation on quarter annulus

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.352 0.043 h = 2−4 0.703 0.002 h = 2−4 0.916 0.003
h = 2−5 0.351 0.037 h = 2−5 0.699 0.011 h = 2−5 0.913 0.020
h = 2−6 0.352 0.042 h = 2−6 0.699 0.017 h = 2−6 0.914 0.016

(c) p-multigrid, CDR-equation on unit square

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT
h = 2−4 0.367 0.043 h = 2−4 0.698 0.002 h = 2−4 0.916 0.003
h = 2−5 0.367 0.036 h = 2−5 0.696 0.008 h = 2−5 0.913 0.020
h = 2−6 0.359 0.042 h = 2−6 0.698 0.006 h = 2−6 0.913 0.016

(d) h-multigrid, CDR-equation on unit square

Table 4.4: Spectral radii for the first and second benchmark using p-multigrid and h-multigrid for different
values of the mesh width h and spline degree p.

ITERATION NUMBERS

Table 4.5 shows the number of iterations needed to reach convergence with an h-multigrid
method for the three considered benchmark problems and can be compared to Table
4.2. The number of multigrid cycles needed with Gauss-Seidel is in general independent
of the mesh width h, but strongly depends on the spline degree p. The use of ILUT as
a smoother leads to an h-multigrid method which converges for all configurations and
exhibits both independence of h and p. Furthermore, the number of iterations needed
for convergence is significantly lower. Compared to the use of p-multigrid as a method,
the results are very similar.
Table 4.6 shows the number of iterations when h-multigrid is applied as a precondi-
tioner. Note that, since the h-multigrid method is symmetric, a Conjugate Gradient
(CG) method can be applied as well. In general, a single iteration performed with a Bi-
CGSTAB method is twice as expensive compared to a single CG iteration. Results with a
CG method have been added between brackets.
With a Bi-CGSTAB method, results obtained with the h-multigrid method are very sim-
ilar to the use of p-multigrid as a preconditioner. Note that, the use of CG as outer
Krylov solver, approximately doubles the number of iterations when ILUT is applied as
a smoother. For Gauss-Seidel, the use of Bi-CGSTAB yields significant lower iteration
numbers compared to the use of CG, but this does not fully compensate for the higher
costs per iteration associated to the Bi-CGSTAB method.
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p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 175 3 492
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 60 3 163 3 473
h = 2−9 5 32 3 61 3 164 3 452

(a) Poisson’s equation on quarter annulus

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 5 − 3 − 3 − 4 −
h = 2−7 5 − 3 − 4 − 4 −
h = 2−8 5 − 3 − 3 − 4 −
h = 2−9 5 − 3 − 3 − 4 −

(b) CDR-equation on unit square

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−2 3 65 3 405 3 2269 5 22785
h = 2−3 3 59 3 339 3 2065 3 8135
h = 2−4 3 57 3 281 3 1652 5 7148
h = 2−5 4 55 3 273 5 1361 10 6248

(c) Poisson’s equation on the unit cube

Table 4.5: Number of multigrid cycles needed to achieve convergence with h-multigrid.

CPU TIMES
CPU times have been obtained as well in case h-multigrid methods are considered. Fig-
ure 4.12 shows the CPU time needed to assemble all operators, including the prolonga-
tion and restriction operators, which can be found as well in Appendix D. Compared
to p-multigrid methods, less operators have to be assembled. However, most of the
operators in the p-multigrid method are assembled at level p = 1, where the number
of nonzero entries is significantly lower compared to the matrices resulting from high-
order discretizations. As a consequence, the total assembly costs are higher with h-
multigrid methods for higher values of p. It should be noted, however, that in case of
nested spaces, the coarse matrices can be obtained by a Galerkin projection as well. This
reduces the assembly costs for the h-multigrid method (and to a lesser extent for the
p-multigrid method), making the assembly costs of both methods similar for the con-
sidered configurations.
With respect to the setup costs for the smoother, similar observation can be made: For
higher values of p, the ILUT factorization costs are significantly higher for the h-multigrid
method, due to the increasing number of nonzero entries. The time needed to solve lin-
ear systems is slightly lower for h-multigrid methods, since the costs of a single cycle
are lower compared to p-multigrid methods. Note that, as with p-multigrid methods,
adopting Gauss-Seidel as a smoother leads to significantly higher times needed to solve
the linear systems.
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Figure 4.12: CPU timings for p-multigrid (pMG) and h-multigrid (hMG) adopting ILUT and Gauss-Seidel (GS)
as a smoother for different values of h for Poisson’s equation on the quarter annulus.
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p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2(4) 8(15) 2(3) 15(23) 2(3) 24(42) 2(4) 43(80)
h = 2−7 2(4) 9(15) 2(3) 15(23) 2(3) 24(42) 2(4) 47(80)
h = 2−8 3(5) 9(16) 2(3) 14(23) 2(3) 25(41) 2(4) 41(78)
h = 2−9 3(5) 10(16) 2(3) 14(23) 2(3) 25(41) 2(4) 43(79)

(a) Poisson’s equation on quarter annulus

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2(4) 6(11) 2(3) 12(18) 2(3) 22(35) 2(4) 36(68)
h = 2−7 2(4) 7(11) 2(3) 11(18) 2(4) 22(33) 2(4) 40(66)
h = 2−8 2(4) 7(11) 2(3) 11(18) 2(4) 21(34) 2(4) 39(64)
h = 2−9 2(4) 6(11) 2(3) 11(18) 2(4) 22(34) 3(4) 40(67)

(b) CDR-equation on unit square

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−2 2(3) 16(24) 2(3) 37(58) 2(3) 120(158) 3(7) 590(459)
h = 2−3 2(3) 16(25) 2(3) 48(63) 2(3) 103(168) 2(3) 221(490)
h = 2−4 2(3) 17(25) 2(3) 43(65) 2(4) 104(188) 3(8) 286(543)
h = 2−5 2(3) 17(25) 2(3) 44(67) 3(5) 131(197) 3(12) 264(591)

(c) Poisson’s equation on the unit cube

Table 4.6: Number of iterations needed to achieve convergence with Bi-CGSTAB (CG), using h-multigrid as a
preconditioner.

4.7. COMPARISON TO ALTERNATIVE SMOOTHER
As mentioned in Chapter 3, alternative smoothers have been developed in recent years
for h-multigrid methods in the context of Isogeometric Analysis. An example of such a
smoother is a smoother based on stable splittings of spline spaces [82], known as the
subspace corrected mass smoother (SCMS). In this section, we compare a p-multigrid
and h-multigrid method using this smoother. For this comparison, we consider the
CDR-equation on the unit square with:

D =
[

1 0
0 1

]
, v =

[
0
0

]
, R = 1. (4.18)

Homogeneous Neumann boundary conditions are applied and the right-hand side is
given by:

f (x, y) = 2π2sin(π(x + 1

2
))sin(π(y + 1

2
)).

Table 4.7 shows the number of iterations needed to reach convergence with the p-multigrid
method and the h-multigrid method for the ILUT smoother and the subspace corrected
mass smoother. For the ILUT smoother, iteration numbers are independent of h and
p for both coarsening strategies. The smoother from [82] shows iteration numbers in-
dependent of h and p within an h-multigrid method. A slight p-dependency is visible
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when this smoother is applied within a p-multigrid method. With the ILUT smoother,
the number of iterations needed to reach convergence is significantly lower for all con-
figurations.

p = 2 p = 3 p = 4 p = 5
ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 5 40 5 44 5 47 5 52
h = 2−7 5 40 5 44 4 48 5 53
h = 2−8 5 40 4 44 5 48 4 53
h = 2−9 5 40 4 45 5 48 4 53

(a) p-multigrid

p = 2 p = 3 p = 4 p = 5
ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 4 48 4 48 4 48 4 48
h = 2−7 4 49 3 50 4 49 4 49
h = 2−8 4 49 3 50 5 50 4 49
h = 2−9 4 49 3 50 5 50 4 50

(b) h-multigrid

Table 4.7: Number of iterations with ILUT and the smoother from [82] using p-multigrid and h-multigrid.

CPU times for assembly, setting up the smoother and solving the linear system once are
presented in Figure 4.13 (left) and can be found in Appendix E and F. Again, a serial
implementation in the C++ library G+Smo [101] is considered on an Intel(R) Core(TM)
i7-8650U CPU (1.90GHz). The time needed to assemble the operators is comparable for
the p-multigrid and h-multigrid method. However, setting up the ILUT smoother is sig-
nificantly more expensive compared to the smoother from [82]. On the other hand, the
CPU time needed to solve the problem is lower when adopting the ILUT smoother. The
total solver costs are lower for all configurations when adopting the subspace corrected
mass smoother.
However, in case multiple solves are necessary with the same system matrix and differ-
ent right-hand sides, the ILUT smoother becomes relatively seen more efficient. This is
for example the case when ‘snapshot’ solutions are required to apply Proper Orthogonal
Decomposition [102]. Figure 4.13 (right) shows that, already when solving the linear sys-
tem for 10 different right-hand sides, the CPU times with ILUT as a smoother within the
p-multigrid method are lower for all values of p. For the h-multigrid method, however,
the use of the smoother from [82] remains more efficient for high values of p.
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Figure 4.13: CPU timings for p-multigrid and h-multigrid adopting ILUT and the smoother from [82], respec-
tively, for a single solve (left) and 10 solves (right).

4.8. TRUNCATED HIERARCHICAL B-SPLINES ( THB-SPLINES)
Finally, to illustrate the versatility of the proposed p-multigrid method, we consider dis-
cretizations obtained with THB-splines [103]. THB-splines are the result of a local refine-
ment strategy, in which a subset of the basis functions on the fine level are truncated. As
a result, not only linear independence and non-negativity are preserved (as with HB-
splines, see [104, 105]), but also the partition of unity property.
In the literature, the use of multigrid methods for THB-spline discretizations is an ongo-
ing topic of research [106–108]. We consider Poisson’s equation on the unit square, where
the exact solution is the same as for the second benchmark. Starting from a tensor prod-
uct B-spline basis with meshwidth h and degree p, two and three levels of refinement
are added as shown in Figure 4.14, leading to a THB-spline basis consisting of, respec-
tively, three and four levels. Figure 4.15 shows the sparsity pattern of the stiffness matrix
and the ILUT factorization for p = 4 and h = 2−5 for configuration (b) (see Figure 4.14).
Compared to the (standard) tensor-product B-spline basis the bandwidth of the stiffness
matrix significantly increases.
Table 6.8 shows the results obtained with the p-multigrid method (as described in sec-
tion 4.3) applied as a stand-alone solver, where a stopping criterion is adopted of ε =
10−8. The number of iterations needed with p-multigrid (and ILUT as a smoother) de-
pends only mildly on p. Furthermore, the number of iterations are significantly lower
compared to the use of Gauss-Seidel as a smoother.
For the configurations denoted in bold, a fillfactor of 2 was adopted, to prevent the p-
multigrid from diverging. Figure 4.16 illustrates the reason for it in the case p = 4 and h =
2−4 for configuration (a). A fillfactor of 1 does not reduce the norm of the (generalized)
eigenvectors, while a fillfactor of 2 reduces the eigenvectors over the entire spectrum. In
general, a higher fillfactor was necessary for only a limited amount of configurations.
For all numerical experiments, smoothing is performed globally at each level of the multi-
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(a) (b)

Figure 4.14: Two hierarchical mesh adopted for THB-Spline basis with the second (green), third (orange) and
fourth (red) refinement levels coloured.
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Figure 4.15: Sparsity pattern of the stiffness matrix Ah,4 (left) and Lh,4 +Uh,4 (right).

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−4 5 16 6 45 5 178 5 713
h = 2−5 5 17 6 40 7 182 5 882
h = 2−6 5 17 5 41 7 189 11 936

(a) THB-spline basis with three levels of refinement

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−4 6 17 8 47 7 177 10 1033
h = 2−5 6 16 7 44 8 182 7 923
h = 2−6 6 17 5 43 6 201 12 1009

(b) THB-spline basis with four levels of refinement

Table 4.8: Number of multigrid cycles needed for different THB-spline discretizations.



4

56 4. P-MULTIGRID METHODS FOR ISOGEOMETRIC ANALYSIS

grid hierarchy. Alternatively, local smoothing can be adopted to ensure optimal order of
the complexity. In [108] it was shown that adopting Gauss-Seidel as a smoother results
in h-independent convergence for h-multigrid methods when applied to both HB-spline
and THB-spline discretizations. Results presented in this section should be considered
as a first step towards the use of p-multigrid methods for THB-spline discretizations.
Future research should focus on more efficient applications of p-multigrid solvers for
THB-spline discretizations, considering in particular local smoothing.
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Figure 4.16: Reduction factors obtained for fillfactor 1 (left) and 2 (right).

4.9. CONCLUDING REMARKS
In this chapter, we presented a p-multigrid method to solve linear systems of equations
arising in Isogeometric Analysis for single patch geometries. The effectiveness of dif-
ferent smoothers (e.g. Gauss-Seidel and ILUT) have been investigated by means of a
spectral analysis. In general, the smoother and coarse grid correction showed to be com-
plementary to each other. The coarse grid correction reduces the coefficients associated
with the low-frequency components, while the smoother reduces the high-frequency
components. For higher values of p, however, the Gauss-Seidel smoother becomes less
and less effective, leading to asymptotic convergence rates which strongly depend on p.
The use of ILUT as a smoother, leads to convergence rates which are essentially inde-
pendent of p.
Numerical results, obtained for the CDR-equation on the unit square and Poisson’s equa-
tion on a quarter annulus and unit cube, confirm this analysis. Here, p-multigrid has
been applied as well as a preconditioner within a Bi-CGSTAB method. Compared to h-
multigrid methods, similar iteration numbers were obtained for the considered bench-
marks. In terms of CPU times, p-multigrid showed to be competitive with h-multigrid
methods, when Gauss-Seidel and ILUT were adopted as a smoother. In fact, p-multigrid
with ILUT as a smoother is even competitive to an h-multigrid method adopting a state-
of-the-art smoother when multiple solves are required.



5
P-MULTIGRID METHODS FOR

MULTIPATCH GEOMETRIES

In this chapter we apply the p-multigrid method as presented in Chapter 4 to benchmarks
involving multipatch geometries. In particular, we consider the use of Krylov methods to
accelerate the p-multigrid method if the number of patches is increased. Finally, a block
ILUT smoother is presented which is specifically designed for multipatch geometries and
is suited for parallel computing within an HPC framework.

Parts of this chapter have been published in:
R.Tielen, M. Möller and C.Vuik, Efficient p-Multigrid based solvers for multipatch geome-
tries in Isogeometric Analysis, Lecture Notes in Computational Science and Engineering,
Springer, 133 (2020)

Parts of this chapter have been published in:
R.Tielen, M. Möller and C.Vuik, A block ILUT smoother for multipatch geometries in Isoge-
ometric Analysis, In: Springer INdAM Series, Springer (2021)
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5.1. INTRODUCTION
In Chapter 4, we applied the proposed p-multigrid method to a variety of two- and three-
dimensional benchmarks on single patch geometries. In general, the use of ILUT as a
smoother leads to iteration numbers which are independent of both the knot span size
h and spline degree p. In this chapter, we apply the p-multigrid method on benchmarks
involving multipatch geometries. Multipatch geometries are adopted when the geome-
try cannot be described by a single mapping, which is typically the case for more practi-
cal applications.
The benchmarks considered throughout this chapter are presented in Section 5.2. In
Section 5.3, we apply the p-multigrid method as described in Chapter 4 directly on these
benchmarks and investigate the use of a Krylov outer solver to accelerate the overall con-
vergence of the p-multigrid method as well. Section 5.4 then introduces a block ILUT
smoother 1 specifically designed for multipatch geometries and presents numerical re-
sults obtained with this smoother. In Section 5.5, a p-multigrid method adopting this
block ILUT smoother is applied to a more challening benchmark (i.e, a Yeti footprint).
This chapter ends with some concluding remarks.

5.2. BENCHMARKS
Throughout this chapter, we will consider the following benchmarks to assess the qual-
ity of the considered p-multigrid methods:

Benchmark 1. Let Ω be the unit square, i.e., Ω = [0,1]2. Poisson’s equation is consid-
ered, where the exact solution u is given by

u(x, y) = sin(πx)sin(πy).

Benchmark 2. Let Ω be the quarter annulus with an inner and outer radius of 1 and 2,
respectively. Again, Poisson’s equation is considered, where the exact solution u is given
by

u(x, y) =−(x2 + y2 −1)(x2 + y2 −4)x y2.

Benchmark 3. Let Ω = {[−1,1]× [−1,1]}\{[0,1]× [0,1]} be an L-shaped domain. As with
the other benchmarks, Poisson’s equation is considered, where the exact solution u is
given by

u(x, y) =


3
√

x2 + y2sin
(

2atan2(y,x)−π
3

)
if y > 0,

3
√

x2 + y2sin
(

2atan2(y,x)+3π
3

)
if y < 0,

where atan2 is the 2-argument arctangent function. The right-hand side is chosen ac-
cording to the exact solution. For the first two benchmarks, homogeneous Dirichlet
boundary conditions are applied on the entire boundary ∂Ω, while for the third bench-
mark inhomogeneous Dirichlet boundary conditions are applied. Note that the geom-
etry of each benchmark can be described by a single patch. The multipatch geometries

1To make a clear distinction, we will refer to the ILUT smoother discussed in Chapter 4 as global ILUT smoother
throughout this chapter.
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considered throughout this chapter are obtained by splitting the single patch uniformly
in both directions.

5.3. GLOBAL ILUT
Figure 5.1 illustrates a multipatch geometry consisting of 4 patchesΩ(k), k = 1, . . . ,4, and
the resulting block structure of the system matrix Ah,p . The first 4 diagonal blocks are
associated with the interior degrees of freedom onΩi , i = 1, . . . ,4, while the right-bottom
block, shown in grey, denotes the degrees of freedom at the interface Γ. Finally, the off-
diagonal blocks denote the coupling between degrees of freedom at the interior and the
interface, resulting in an arrowhead matrix. It should be noted that this structure is re-
lated to a particular numbering of the degrees of freedom. Note that this block structure
is common within domain decomposition (DD) methods [109], which decompose the
global domainΩ into subproblems and solve small boundary value problems per subdo-
main individually using data at the interface as boundary conditions. A coarse problem
is then typically solved to exchange information about the solution between the subdo-
mains. When non-overlapping subdomains are considered, the resulting block structure
is similar to the structure shown in Figure 5.1.

Ω1

Ω2

Ω3

Ω4
A11 0 0 0 A1Γ

0 A22 0 0 A2Γ

0 0 A33 0 A3Γ

0 0 0 A44 A4Γ

AΓ1 AΓ2 AΓ3 AΓ4 AΓΓ




Figure 5.1: A multipatch geometry, consisting of 4 patches and the resulting block structure of the system
matrix. The block associated to the interior DOF of Ω2 is highlighted in red, while the coupling between the
interface Γ andΩ3 is highlighted in blue. Furthermore, the DOF at Γ result in the gray block.

As a first step towards p-multigrid methods for multipatch geometries, we apply the p-
multigrid method from Chapter 4 to the different benchmarks. Table 5.1 shows the num-
ber of p-multigrid cycles needed to reach convergence with the global ILUT smoother.
For some configurations, the application of the global ILUT smoother results in an di-
verging p-multigrid method (indicated by ‘−’). In general, the iteration numbers are
(more or less) independent of h and p. However, a dependency on the number of patches
can be observed, in particular for coarser meshes.
To further investigate this dependency, the spectra of the iteration matrices of the re-
sulting p-multigrid methods have been determined. Table 5.2 presents the spectral ra-
dius of the iteration matrix for the first benchmark when global ILUT is applied as a
smoother. As the spectral radii are obtained numerically, the considered meshes are rel-
atively coarse (h = 2−5). Note that, the spectral radius increases when the number of
patches is increased. Furthermore, the dependence on p is more erratic. In particular,
the resulting p-multigrid method might diverge for one of the configurations, indicated
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p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 6 8 11 6 9 15 6 8 15 5 7 14
h = 2−6 6 7 8 6 8 10 7 9 13 7 8 13
h = 2−7 6 6 7 6 7 8 7 7 10 6 8 12

(a) CDR-equation on the unit square

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 5 7 9 5 7 11 4 6 − 4 6 −
h = 2−6 5 5 7 5 7 10 6 7 11 5 7 10
h = 2−7 5 5 5 5 6 8 5 6 10 5 7 11

(b) Poisson’s equation on a quarter annulus

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 6 7 11 5 8 13 5 6 11 4 5 −
h = 2−6 6 6 8 6 8 10 5 8 12 5 7 10
h = 2−7 7 7 8 6 7 8 5 6 10 5 7 12

(c) Poisson’s equation on an L-shaped domain

Table 5.1: Number of p-multigrid cycles needed to achieve convergence using global ILUT as a smoother.

by a spectral radius larger than 1. Note that, this is indeed the case, see Table 5.1.
Figure 5.2 shows the spectra of the iteration matrix (with p = 3 and h = 2−5) for the first
benchmark. Note that, for all number of patches, most of the eigenvalues are relatively
close to the origin. However, a small number of eigenvalues is positioned significantly
further from the origin in case of multiple patches. In case only a limited number of
eigenvalues are relatively large, in absolute value, the use of an outer Krylov method
to accelerate the overall convergence might be beneficial [100]. Note that, this is also
known as using p-multigrid as a preconditioner. Table 5.3 shows the number of iter-
ations needed with a Bi-CGSTAB method to achieve convergence when p-multigrid is
applied as preconditioner. Here, a single V-cycle of the p-multigrid method, adopting
global ILUT as a smoother, is applied every iteration.

# patches p = 2 p = 3 p = 4
4 0.094 0.090 0.062

16 0.156 0.187 0.146
64 0.275 0.374 3.659

Table 5.2: Asymptotic convergence rate of the p-multigrid adopting a global ILUT for different values of the
spline degree p and number of patches.
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For a relatively large value of the mesh width h, there is still a mild dependence on the
number of patches, see for example h = 2−5 and p = 4. The number of iterations is, how-
ever, independent of the spline degree p. For small values of h, the number of iterations
is independent of p and the number of patches. Note that the use of the Bi-CGSTAB
method restores stability for configurations that diverged before, but lead to a relatively
high number of iterations.

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 2 3 3 2 3 4 2 3 13 2 3 353
h = 2−6 2 2 3 3 3 4 2 3 4 2 3 3
h = 2−7 2 2 3 2 3 3 2 3 3 2 3 4

Table 5.3: Number of Bi-CGSTAB iterations needed to achieve convergence for the Poisson’s equation on the
quarter annulus. Here, a single p-multigrid cycle is applied as a preconditioner using global ILUT as smoother.

5.4. BLOCK ILUT
In the following, we consider a block ILUT smoother as an alternative to the global ILUT
smoother in case of a multipatch geometry. This smoother is based on the observation
that, in case of a multipatch geometry consisting of K patches, the resulting system ma-
trix can be written as follows (see Figure 5.1):

A =


A11 0 A1Γ

. . .
...

0 AK K AKΓ

AΓ1 · · · AΓK AΓΓ

 . (5.1)

Note that, in the remainder of this section, we drop the h and p as subscripts to improve
readability. In [110] a preconditioner P is defined consisting of a coarse part PC and
fine part PF in a multiplicative way. That is, the iteration matrix of the resulting precon-
ditioner is obtained by multiplying the iteration matrix of both preconditioners:

I−P A = (I−PC A)(I−PF A), (5.2)

= I−PF A−PC A+PF APC A (5.3)

and hence:

P =PF +PC −PF APC . (5.4)

The coarse part consists of a subdomain deflation approach [111] and takes care of
the low-frequency components. However, it is known from multigrid that the coarse
grid correction decreases the low-frequency components of the error. We therefore only
adopt the fine part of the preconditioner (i.e., PF ) in our block ILUT smoother and ig-
nore PC . Hence, we have P = PF and will use the linear iteration with respect to P as
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Figure 5.2: Spectra of the iteration matrix for Poisson’s equation on the unit square obtained with p-multigrid
(h = 2−5). Here, global ILUT is applied as a smoother.
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our smoother. Based on these considerations, the smoother P is then defined by ob-
serving that A can be written as follows:

A = LU =


L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

S

 . (5.5)

Here Ai i = Li Ui , based on a complete LU factorization. Furthermore, we have Bi =
AΓi U−1

i and Ci = L−1
i AiΓ. Finally, we have S = AΓΓ−∑K

i=1 Bi Ci to ensure that A = LU.
A smoother can now be obtained by replacing the LU factorizations by ILUT factoriza-
tions:

A ≈ L̃Ũ =


L̃1

. . .
L̃K

B̃1 · · · B̃K I




Ũ1 C̃1

. . .
...

ŨK C̃K

S̃

 . (5.6)

Here Ai i
(!)≈ L̃i Ũi and all other blocks (B̃i = AΓi Ũ−1

i , C̃i = L̃−1
i AiΓ and S̃) are based on this

ILUT factorization. Figure 5.3 depicts the sparsity pattern of the operator Ah,p and the
block ILUT factorization Lh,p +Uh,p for p = 4, h = 2−4 and 4 patches. Note that, com-
pared to the global ILUT factorization, the factorizations are obtained within each block.
As a consequence, all non-zero entries of the global matrix Lh,p +Uh,p stay within these
blocks.

COMPUTATIONAL COSTS
In this subsection, the computational costs of the p-multigrid method adopting both
smoothers are discussed. First, we discuss the assembly costs of the considered oper-
ators after which both setup and application costs of the block ILUT and global ILUT
smoother are presented.
Assuming an element-based assembly loop with standard Gauss-quadrature, the assem-
bly costs at level p for the stiffness matrix and transfer matrix are O (Ndofp

3d ) floating
point operations (flops) [97]. Note that the stiffness matrix has to be assembled both
at the high-order level and level p = 1 as a direct projection is considered within the p-
multigrid method (see Section 4.3). Furthermore, the (variationally) lumped mass ma-
trices have to be assembled for the prolongation and restriction operator, at the cost of
O (Ndof) flops. It was shown in [112] that the assembly costs form a significant part of
the total computational costs within the p-multigrid method. Alternative (and more ef-
ficient) assembly techniques exist [69–71], but will not be explored in this dissertation.
At the low-order level, Gauss-Seidel is applied as a smoother, which costs O (Ndof) flops
per smoothing step and has no setup costs. The costs of setting up the block ILUT and
global ILUT smoother at the high-order level differ significantly. The global ILUT factor-
ization of Ah,p costs O (Ndofp

2d ) flops, provided that ρ = 1 and τ= 10−13 (i.e., no fill-in is

allowed). Under these assumptions, applying the global ILUT smoother costs O (Ndofp
d )

flops. Setting up the block ILUT smoother consists of different steps. Here, we assume
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Figure 5.3: Sparsity pattern of Ah,p (left) and Lh,p +Uh,p (right) for p = 4, h = 2−5 and 4 patches for Poisson’s
equation on the quarter annulus.

that the total number of degrees of freedom Ndof is given by Ndof = K Npatch +Ninterface,
where Npatch is the number of degrees of freedom associated to the interior of a single
patch and Ninterface denotes the total number of degrees of freedom associated to the
interface. In general, Npatch is significantly higher compared to Ninterface.

First, an ILUT factorization is determined for all patches, which costs O (Npatchp2d ) for
each patch. The matrices B̃i , C̃i (i = 1, . . . ,K ) are obtained by solving the following sytems,
respectively, with multiple matrices:

Ũ>
i B̃>

i = A>
iΓ, L̃i C̃i = AΓi .

Note that these solves only require forward substitutions and can therefore be performed
efficiently and in parallel at the cost of O (Npatchpd ). Finally, S̃ can be determined at the
costs of O (N 3

interface), assuming the worst-case scenario of a full matrix S. However, it
holds that the off-diagonal entries S can only be non-zero if two basis functions belong
to the same patch or neighbouring patches. Hence, for a large number of patches, S will
not be a full matrix, but the number of non-zero entries per row grows when refinement
is applied within a patch. Applying the block ILUT smoother O (Npatchpd ) flops, assum-
ing the smoother is applied in parallel. The analysis of the computational costs show
that the competitiveness of the block ILUT smoother in terms of CPU timings depends
heavily on a parallel implementation of this smoother. This chapter, however, places
the focus on the analysis of the above block ILUT smoother when applied to multipatch
discretizations in Isogeometric Analysis and not on its efficient parallel implementation.
Future research will focus on a parallel and distributed implementation of the consid-
ered block ILUT smoother.
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SPECTRAL ANALYSIS
To analyze the asymptotic convergence rate of the p-multigrid method adopting the
block ILUT smoother, the spectrum of the iteration matrix has been determined. Ta-
ble 5.4 shows the spectral radius obtained for the first benchmark for different values of
p with the block ILUT smoother for h = 2−5. For comparison, the spectral radii obtained
with the global ILUT smoother have been added as well.

p = 2 p = 3 p = 4
# patches Global Block Global Block Global Block

4 0.094 0.015 0.090 0.011 0.062 0.005
16 0.156 0.019 0.187 0.015 0.146 0.005
64 0.275 0.039 0.374 0.067 3.659 0.058

Table 5.4: Asymptotic convergence rate of the p-multigrid adopting a global ILUT and block ILUT smoother
for different values of the spline degree p and number of patches.

For both smoothers, the spectral radius increases when the number of patches is in-
creased. For higher values of p, the spectral radius decreases when block ILUT is ap-
plied as a smoother. Note that, for all configurations, the spectral radius obtained with
the block ILUT smoother is significantly lower compared to the one obtained with the
global ILUT smoother. As a consequence, the p-multigrid method (using block ILUT
as a smoother) is expected to show superior convergence behaviour. Figure 5.4 shows
the spectrum of the iteration matrix for the p-multigrid method (h = 2−5) adopting the
global and block ILUT smoother. For the block ILUT smoother, the spectra are more
clustered around the origin, resulting in a lower spectral radius. Furthermore, the de-
pendency on the number of patches is hardly visible in the spectra, although it is mildly
visible in Table 5.4. Therefore, the use of an outer Krylov solver is not expected to signif-
icantly decrease the dependency on the number of patches when block ILUT is applied
as a smoother.

ITERATION NUMBERS
Based on the spectral analysis in the previous subsection, the use of the block ILUT
smoother is expected to show improved iteration numbers compared to the p-multigrid
method equiped with the global ILUT smoother. In this section, the number of p-multigrid
cycles needed to achieve convergence is determined using the block ILUT smoother. As
before, a reduction of the relative residual by 108 is chosen as a stopping criterion. We
consider a random vector as an initial guess, where each entry is sampled from a uniform
distribution on the interval [−1,1] using the same seed.
Table 5.5 shows the number of multigrid cycles needed to achieve convergence for the
considered benchmarks with block ILUT as a smoother. The number of iterations needed
to achieve convergence with block ILUT as a smoother is, in general, independent of h.
For higher values of p, the number of iterations slightly decreases. For one configura-
tion, however, Poisson’s equation on the quarter annulus, where p = 5 and h = 2−5, the
p-multigrid method is diverging (indicated by ‘−’). A small dependence on the num-
ber of patches is visible on the coarse mesh, but this depedency becomes negligible for
smaller values of h. Note that, compared to global ILUT, the use of block ILUT leads to a
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Figure 5.4: Spectra of the iteration matrix for Poisson’s equation on the unit square obtained with p-multigrid
(h = 2−5). Here, global ILUT and block ILUT are applied as a smoother.
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lower number of iterations for all configurations.

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 4 4 7 3 3 5 2 3 5 2 2 4
h = 2−6 4 4 5 3 3 4 3 3 4 3 3 3
h = 2−7 4 4 4 3 3 3 3 3 3 4 3 3

(a) CDR-equation on the unit square

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 3 4 4 3 3 4 2 2 4 2 2 −
h = 2−6 3 3 4 3 3 4 3 3 3 3 3 3
h = 2−7 3 3 3 3 3 3 3 3 3 − 6 3

(b) Poisson’s equation on a quarter annulus

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 3 3 4 2 3 4 2 2 3 2 2 2
h = 2−6 3 3 3 3 3 3 2 2 3 2 2 2
h = 2−7 3 3 3 2 3 3 2 2 3 2 2 3

(c) Poisson’s equation on an L-shaped domain

Table 5.5: Number of p-multigrid cycles needed to achieve convergence using block ILUT as a smoother for
the considered benchmarks.

As the number of p-multigrid cycles when adopting (block) ILUT as a smoother is very
low, the use of (block) ILUT as a stand-alone solver has been investigated as well. Table
5.6 shows the number of iterations needed for the second benchmark when both block
ILUT and global ILUT are applied as a solver. For all configurations, the number of itera-
tions is significantly higher compared to the number of p-multigrid cycles (see Table 5.5
and 5.1). Furthermore, a dependency on the mesh width h can be observed, making the
use of (block) ILUT as a solver even less efficient for smaller values of h.
Alternatively, a single p-multigrid cycle can be applied as a preconditioner within a Bi-
CGSTAB method. Table 5.7 shows the number of Bi-CGSTAB iterations needed to achieve
convergence for the second benchmark, Poisson’s equation on the quarter annulus. Com-
pared to the use of p-multigrid as a solver, the number of Bi-CGSTAB iterations is only
slightly lower when block ILUT is applied as a smoother. However, for the global ILUT
smoother, a significant reduction of the iteration numbers can be achieved, as observed
in the previous section. Note that the use of a Krylov solver restores stability for configu-
rations that diverged before, but lead to a relatively high number of iterations.
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p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 28 22 16 14 10 14 8 6 10 4 4 −
h = 2−6 112 90 68 48 40 26 24 18 12 14 10 8
h = 2−7 406 386 312 178 162 130 86 64 54 48 38 26

(a) Block ILUT smoother

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 56 64 100 22 30 56 14 16 − 8 12 −
h = 2−6 220 218 234 84 84 100 40 42 56 24 26 36
h = 2−7 710 700 782 276 302 296 138 138 148 80 80 76

(b) Global ILUT smoother

Table 5.6: Number of iterations needed to achieve convergence for Poisson’s equation on the quarter annulus.
Here, block ILUT and global ILUT are used as a solver.

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 2 2 2 2 2 2 1 1 2 1 1 50
h = 2−6 2 2 2 2 2 2 2 2 2 2 2 2
h = 2−7 2 2 2 2 2 2 2 2 2 34 3 2

(a) Block ILUT smoother

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

h = 2−5 2 3 3 2 3 4 2 3 13 2 3 353
h = 2−6 2 2 3 3 3 4 2 3 4 2 3 3
h = 2−7 2 2 3 2 3 3 2 3 3 2 3 4

(b) Global ILUT smoother

Table 5.7: Number of Bi-CGSTAB iterations needed to achieve convergence for Poisson’s equation on the quar-
ter annulus. Here, a single p-multigrid cycle is applied as a preconditioner using block ILUT and global ILUT
as smoother.

5.5. APPLICATION: YETI FOOTPRINT

In the previous sections, we applied a global ILUT and the proposed block ILUT smoother
on benchmarks defined on geometries consisting of a different number of patches. In
general, the application of both smoothers within a p-multigrid method resulted in iter-
ation numbers independent of h and p. A small dependency on the number of patches
was noticeable, however, in particular on coarser meshes.

In this section, the block ILUT and global ILUT smoother are applied on a more chal-
lenging geometry. We consider Poisson’s equation on a two-dimensional Yeti footprint,
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where the exact solution is given by u(x, t ) = sin(5πx)sin(5πy):

−∆u = 50π2sin(5πx)sin(5πy), (x, y) ∈ Ω,

u = 0, (x, y) ∈ ∂Ω.

This benchmark has been considered in the literature in the context of a parallel multi-
grid method for Isogeometric Analysis, see [86]. Figure 5.5 shows the Yeti footprint mul-
tipatch geometry (left) and its exact solution (right) consisting of 21 patches.

Figure 5.5: Underlying multipatch geometry (left) and the exact solution (right) of the Yeti footprint.

Table 5.8 shows the number of multigrid cycles needed to reach convergence for the p-
multigrid method adopting both smoothers and the aforementioned convergence cri-
terion. For all configurations, the use of block ILUT leads to a lower number of cycles
compared to the use of global ILUT. Furthermore, the number of iterations needed to
reach convergence is, in general, lower for higher values of the spline degree p. Results
are, to a large extent, comparable with the ones presented in the previous section. A
small h-dependence can be observed, however, for smaller values of p when applying
the global ILUT smoother.

p = 2 p = 3 p = 4 p = 5
Global Block Global Block Global Block Global Block

h = 2−3 5 4 4 2 4 2 4 2
h = 2−4 8 4 5 3 5 3 4 2
h = 2−5 8 4 6 3 5 3 5 3

Table 5.8: Number of p-multigrid cycles needed to reach convergence for the Yeti footprint with global and
block ILUT as a smoother.
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5.6. CONCLUDING REMARKS
In this chapter, we applied the p-multigrid method presented in Chapter 4 to bench-
marks involving multipatch geometries. The direct use of this p-multigrid method us-
ing global ILUT as a smoother leads to iteration numbers which are independent of the
mesh width h and spline degree p. On coarser meshes, a dependency on the num-
ber of patches can be observed, which can be successfully mitigated by the use of an
outer Krylov solver. Furthermore, we presented a block ILUT smoother as an alternative
smoother in the multipatch setting. The block ILUT smoother is based on a precon-
ditioner, which has been developed in the context of domain decomposition methods
[110]. The key idea is to make use of the block structure of the resulting system matrix
when setting up the smoother. As a consequence, the ILUT factorizations are only ob-
tained for smaller blocks, where the number of blocks depends on the number of patches
describing the geometry. A spectral analysis showed that this smoother is more effective
when applied within a p-multigrid method compared to a global ILUT smoother. Nu-
merical results, obtained for a variety of two-dimensional benchmarks, indeed showed
that the number of iterations needed to achieve convergence is lower for all considered
configurations when adopting the block ILUT smoother. Future research will focus on
the comparison of the presented block ILUT smoother with the global ILUT smoother in
terms of computational efficiency.



6
MULTIGRID REDUCED IN TIME FOR

ISOGEOMETRIC ANALYSIS

In this chapter, we combine the Multigrid Reduced in Time (MGRIT) method with Isogeo-
metric Analysis to solve time-dependent partial differential equations parallel-in-time. In
particular, we investigate the convergence of MGRIT for different geometries, time integra-
tion schemes and cycle types adopting a standard iterative method for the spatial solves.
Then, we replace this standard solver with our p-multigrid method to further reduce the
computational costs, in particular for higher values of p. Finally, we determine the scaling
properties (i.e., weak and strong scaling) of the resulting method on modern architectures.

Parts of this chapter are based on:
R. Tielen, M. Möller and C. Vuik, Multigrid Reduced in Time for Isogeometric Analysis, in
The Proceedings of the Young Investigators Conference (2021)

Parts of this chapter are based on:
R. Tielen, M. Möller and C. Vuik, Combining p-multigrid and multigrid reduced in time
methods to obtain a scalable solver for Isogeometric Analysis, arXiv:2107.05337 [math.NA]

71



6

72 6. MULTIGRID REDUCED IN TIME FOR ISOGEOMETRIC ANALYSIS

6.1. INTRODUCTION
For time-dependent partial differential equations (PDEs), Isogeometric Analysis is of-
ten combined with a time integration scheme within the method of lines. However, as
with all traditional time integration schemes, the latter part is sequential by design and,
hence, a bottleneck for parallelization in numerical simulations. When the spatial reso-
lution is increased to improve accuracy, the time step size might have to be reduced as
well to reduce the overall discretization error. At the same time, processors’ clock speeds
are no longer increasing, but the core count goes up, which calls for the parallelization of
the calculation process to benefit from modern computer hardware. As traditional time
integration schemes are sequential by nature, new parallel-in-time methods are needed
to resolve this problem.
The Multigrid Reduced in Time (MGRIT) method [113] is a parallel-in-time algorithm
based on multigrid reduction (MGR) techniques [114] showing many similarities with
the Parareal algorithm [115]. In contrast to space-time methods, in which time is con-
sidered as an extra spatial dimension, traditional time stepping is still necessary within
MGRIT, but is performed in parallel. Space-time methods have been combined in the
literature with Isogeometric Analysis [116–119]. Although very successful, a drawback of
such methods is the fact that they are more intrusive on existing codes, while MGRIT just
requires a routine to integrate the fully discrete problem between two time instances.
Over the years, MGRIT has been studied in detail (see [120–124]) and applied to a vari-
ety of problems, including those arising in optimization [125, 126] and power networks
[127, 128].
In this chapter we combine the MGRIT method with Isogeometric Analysis to numeri-
cally solve time-dependent PDEs. First, we introduce the considered model problem and
its discretization in Section 6.2 after which we describe the MGRIT method in Section 6.3.
Numerical results, including CPU timings, obtained for different geometries and time
integration schemes are presented for different configurations of the MGRIT method in
Sections 6.4 and 6.5. In particular, we consider the use of a standard iterative method
and the p-multigrid method for the spatial solves within the MGRIT method. Further-
more, the scaling properties (i.e., weak and strong scaling) of the resulting method on
modern architectures are investigated in Section 6.6. Finally, conclusions are drawn in
Section 6.7.

6.2. MODEL PROBLEM AND DISCRETIZATION
As a model problem, we consider the transient diffusion equation:

∂t u(x, t )−κ∆u(x, t ) = f (x), x ∈Ω, t ∈ [0,T ]. (6.1)

Here, κ denotes a constant diffusion coefficient, Ω⊂ Rd a connected, Lipschitz domain
in d dimensions and f ∈ L2(Ω) a source term. The above equation is complemented by
initial conditions and homogeneous Dirichlet boundary conditions:

u(x,0) = u0(x), x ∈Ω, (6.2)

u(x, t ) = 0, x ∈ ∂Ω, t ∈ [0,T ]. (6.3)
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First, we discretize Equation (6.1) in time by dividing the time interval [0,T ] in Nt subin-
tervals of size ∆t and applying the θ-scheme to the temporal derivative, which leads to
the following equation to be solved at every time step k = 0, . . . , Nt :

u(x)k+1 −u(x)k

∆t
= κθ∆u(x)k+1 +κ(1−θ)∆u(x)k + f (x), x ∈Ω. (6.4)

Depending on the choice of θ, this scheme leads to the backward Euler (θ = 1), forward
Euler (θ = 0) or the second-order in time Crank-Nicolson (θ = 0.5) method, which will all
be adopted throughout this chapter. By rearranging the terms, the discretized equation
can be written as follows:

u(x)k+1 −κ∆tθ∆u(x)k+1 = u(xk )+κ∆t (1−θ)∆u(x)k +∆t f (x), x ∈Ω. (6.5)

To obtain the variational formulation, let V = H 1
0 (Ω) be the space of functions in the

Sobolev space H 1(Ω) that vanish on the boundary ∂Ω. Equation (6.5) is multiplied with
a test function v ∈ V and the result is then integrated over the domainΩ:∫

Ω
uk+1v −κ∆tθ∆uk+1vdΩ=

∫
Ω

uk v +κ∆t (1−θ)∆uk v +∆t f v dΩ. (6.6)

Applying integration by parts on the second term on both sides of the equation results
in ∫

Ω
uk+1v +κ∆tθ∇uk+1 ·∇v dΩ=

∫
Ω

uk+1v −κ∆t (1−θ)∇uk ·∇v +∆t f v dΩ, (6.7)

where the boundary integral vanishes since v = 0 on ∂Ω. As described in Chapter 2, a ge-
ometry function F (or a family of functions in case of a multipatch geometry) is defined
to parameterize the physical domainΩ. Furthermore, the solution u is approximated at
every time step by a linear combination of multivariate B-spline basis functions. Denot-
ing the total number of multivariate B-spline basis functionsΦi ,p by Ndof, the solution u
is thus approximated at every time step as follows:

u(x) ≈ uh,p (x) =
Ndof∑
i=1

uiΦi ,p (x), uh,p ∈ Vh,p , (6.8)

where we omit the superscript denoting the time step to improve readability. Here, the
spline space Vh,p is defined, using the inverse of the geometry mapping F−1 as pull-back
operator, as follows:

Vh,p := span
{
Φi ,p ◦F−1}

i=1,...,Ndof
. (6.9)

By setting v =Φ j ,p , Equation (6.7) can be written as follows:

(M+κ∆tθK)uk+1 = (M−κ∆t (1−θ)K)uk +∆t f, k = 0, . . . , Nt , (6.10)

where M and K denote the mass and stiffness matrix, respectively:

Mi , j =
∫
Ω
Φi ,pΦ j ,p dΩ, Ki , j =

∫
Ω
∇Φi ,p ·∇Φ j ,p dΩ, i , j = 1, . . . , Ndof. (6.11)

A traditional (i.e., sequential) time integration scheme would solve Equation (6.10) for
k = 0, . . . , Nt to obtain the numerical solution at each time instance. In this chapter, how-
ever, we apply the MGRIT method to solve Equation (6.10) parallel-in-time.



6

74 6. MULTIGRID REDUCED IN TIME FOR ISOGEOMETRIC ANALYSIS

6.3. MULTIGRID REDUCED IN TIME (MGRIT)
In this section, we discuss the Multigrid Reduced in Time (MGRIT) approach based on
the description presented in [113] and [129]. For the ease of notation, we set θ = 1 in
Equation (6.10) throughout the remainder of this section. Let Ψ= (M+κ∆tK)−1 denote
the inverse of the left-hand side operator. Equation (6.10) can then be written as follows:

uk+1 = ΨMuk +gk+1, k = 0, . . . , Nt , (6.12)

where gk+1 =Ψ∆t f. Setting g0 equal to the initial condition u0(x) projected on the spline
space Vh,p , the sequence of all time-integration steps can be written as a linear system of
equations:

Au =


I

−ΨM I
. . .

. . .
−ΨM I




u0

u1

...
uNt

=


g0

g1

...
gNt

= g. (6.13)

A sequential time integration scheme would correspond to a block-forward solve of this
linear system of equations. Throughout this chapter, we use MGRIT to solve Equation
(6.13). First, we introduce the two-level MGRIT method, showing similarities with the
well-known Parareal algorithm [115], which has been investigated in detail in the liter-
ature [130–134]. In fact, MGRIT can be considered as a generalization of the Parareal
method [123]. Afterwards, we will present the multilevel variant of MGRIT in more de-
tail.
The two-level MGRIT method combines the use of a computationally cheap coarse-level
time integration method with an accurate but more expensive fine-level one, which can
be performed in parallel. That is, Equation (6.13) can be solved iteratively by introducing
a coarse temporal mesh with time step size ∆tC = m∆tF . Here, the step size of the fine
temporal mesh ∆tF coincides with the ∆t from the previous sections and m denotes the
coarsening factor. Figure 6.1 illustrates both the fine and coarse temporal meshes.

T0 T1 · · · TNt /m

t0 t1 · · · tm tNt∆tF

∆tC = m∆tF

Figure 6.1: Coarse and fine temporal mesh from 0 to T .

The time instances T0,T1, . . . ,TNt /m are referred to as coarse points (or C -points), while
the remaining points are called fine points (or F-points). By applying a numbering strat-
egy that first numbers the F-points and then the C -points, we can write Equation (6.13)
as follows: [

AF F AFC

AC F ACC

][
uF

uC

]
=

[
gF

gC

]
, (6.14)
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where the matrix A can be decomposed as follows:[
AF F AFC

AC F ACC

]
=

[
IF 0

AC F A−1
F F IC

][
AF F 0

0 S

][
IF A−1

F F AFC

0 IC

]
, (6.15)

where IC and IF are identity matrices. The ‘ideal’ restriction and prolongation operator
are then defined as follows:

R = [
AC F A−1

F F IC
]

, P =
[−A−1

F F AFC

IC

]
. (6.16)

Within MGRIT, the ‘ideal’ prolongation operator P is typically adopted, while the ‘ideal’
restriction operator is replaced by R̃ = [

0 IC
]
. The matrix AF F is given by:

AF F =

AΨ
. . .

AΨ

 , AΨ =


I

−ΨM I
. . .

. . .
−ΨM I

 . (6.17)

Note that each solve with AΨ corresponds to a single time step within a coarse interval,
which is a completely independent process for each coarse interval and can therefore be
performed in parallel. The Schur complement matrix S in Equation (6.15) is given by:

S = ACC −AC F A−1
F F AFC =


I

−(ΨM)m I
. . .

. . .
−(ΨM)m I

 . (6.18)

Instead of solving for S directly, MGRIT solves for a modified matrix S̃ by replacing the
operator (ΨM)m ≈ ΦM, which corresponds to applying a single time step at the coarse
level. As a true multigrid method, the building blocks of the MGRIT method consist of
relaxation (= fine time stepping) and a coarse grid correction (= coarse time stepping).
Relaxation involves solving a linear system of the form

AF F uF = gF −AFC uC , (6.19)

where uF and uC denote the solution at all F-points and C -points, respectively. Within
relaxation, the solution is updated at the F-points based on the given values at the C -
points. This time stepping from a coarse point C to all neighbouring fine points is also
referred to as F-relaxation [113]. On the other hand, time stepping to a C -point from
the previous F-point is referred to as C -relaxation. It should be noted that both types
of relaxation are highly parallel and can be combined leading to so-called C F - or FC F -
relaxation. Figure 6.2 illustrates both C - and F-relaxation methods.
The coarse grid correction involves solving the linear system of equations

S̃uC = R̃
(
g−Au

)
, (6.20)

which is a sequential procedure by design, but is much cheaper compared to the fine
time integration (which can be performed in parallel). Here, the vector uC is obtained by
applying R̃ on u.
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C F F F F C F F F F C F F F F C F F F F C

C F F F F C F F F F C F F F F C F F F F C

Figure 6.2: Illustration of F-relaxation (top) and C-relaxation (bottom).

MULTILEVEL MGRIT METHOD
The solution procedure described above can be extented to a true multilevel MGRIT
method. First, we define a hierarchy of L temporal meshes, where the time step size
for the discretization at level l (l = 0,1, . . .L) is given by ∆tF ml . The total number of
levels L is related to the coarsening factor m and the total number of fine steps ∆tF by
L = logm(Nt ). Let A(l )u(l ) = g(l ) denote the linear system of equations based on the con-
sidered time step size at level l . The MGRIT method can then be written as follows:

MGRIT

1. Apply F-relaxation (= fine time stepping) on A(l )u(l ) = g(l ):

A(l )
F F u(l )

F = g(l )
F −A(l )

FC u(l )
C .

2. Determine the residual at level l and restrict it to level l + 1 using the re-
striction operator R̃:

r(l+1) = R̃
(
g(l ) −A(l )u(l )

)
.

3. Solve Equation (6.20) (= coarse time stepping) to obtain u(l+1):

S̃u(l+1) = r(l+1).

4. Prolongate the correction using the ‘ideal’ interpolation operator P and
update the solution at level l :

u(l ) := u(l ) +Pu(l+1).

Recursive application of this scheme until the coarsest level is reached, leads to a so-
called V-cycle. However, as with standard multigrid methods, alternative cycle types (i.e.
W-cycles, F-cycles) can be defined. At all levels of the multigrid hierarchy, the operators
are obtained by rediscretizing Equation (6.1) using a different time step size.
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6.4. NUMERICAL RESULTS (CONJUGATE GRADIENT METHOD)
To assess the effectiveness of the MGRIT method when applied in combination with Iso-
geometric Analysis, we solve Equation (6.1) on the time domain T = [0,0.1], where the
initial condition is chosen equal to zero and the right-hand side equal to one. The MGRIT
method is said to have reached convergence if the relative residual at the end of an iter-
ation is smaller than or equal to 10−10, unless stated otherwise. Figure 6.3 shows the
resulting solution u at different time instances for Ω = [0,1]2. Here, an inhomogeneous
Neumann boundary condition is applied at the left boundary.
Throughout this section, the MGRIT hierarchy, the domain of interest Ω and the time
integration scheme are varied. The MGRIT hierarchies that will be adopted are a two-
level method, a V-cycle and an F-cycle. As a domain, we consider the unit square (i.e.,
Ω = [0,1]2), a quarter annulus defined in the first quadrant with an inner radius of 1
and an outer radius of 2 and a multipatch geometry, see Figure 6.4. As a time integra-
tion scheme, we consider a value of θ within the θ-scheme of 0, 0.5 and 1 throughout
this section, which corresponds to forward Euler, Crank-Nicolson and backward Euler,
respectively.
All numerical experiments in the remainder of this chapter have been performed using
XBraid, a parallel-in-time software package that implements the MGRIT method. More
information on reproducing all numerical experiments can be found in Chapter 7.

(a) T = 0 (b) T = 0.005

(c) T = 0.010 (d) T = 0.020

Figure 6.3: Solution to Equation (6.1) on the unit square at different times T using a inhomogeneous Neumann
boundary condition at the left boundary using quadratic B-spline basis functions.
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Figure 6.4: Spatial domainsΩ considered throughout this section.

MGRIT HIERARCHIES
First, we consider the MGRIT method using different hierarchies when backward Euler
is adopted for the time integration to solve Equation (6.1). At each time step, the linear
system (i.e., Equation (6.10)) is approximately solved by the Conjugate Gradient method
combined with a diagonal preconditioner (where ε= 10−12). Table 6.1 shows the number
of MGRIT iterations for different values of Nt and p when a two-level method, V-cycles
or F-cycles are considered as MGRIT hierarchy. Varying the number of time steps is in
particular interesting as MGRIT is a parallel-in-time method, where speed-ups will pri-
marily come from parallelization in the temporal component. Here, F -relaxation is ap-
plied at all levels of the MGRIT hierarchy. The mesh width for all configurations equals
h = 2−6. For all three hierarchies, the number of MGRIT iterations needed to reach con-
vergence is independent of Nt and p. The results obtained with a two-level method or
F-cycles are identical and lead to a lower number of iterations compared to the use of
V-cycles for all configurations.

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

Nt = 250 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 500 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 1000 7 11 7 7 11 7 7 11 7 7 11 7
Nt = 2000 7 11 7 7 11 7 7 11 7 7 11 7

Table 6.1: Number of MGRIT iterations for solving the model problem when adopting a two-level (TL) method,
V-cycles (V) and F-cycles (F), respectively.

Instead of increasing the number of time steps, the mesh width can be varied as well. Ta-
ble 6.2 shows the number of MGRIT iterations adopting different hierarchies for a fixed
number of time steps (Nt = 100) and different values of p and h. For all configurations,
the use of a two-level method or F-cycles leads to a lower number of iterations com-
pared to the use of V-cycles. In particular, the number of iterations are independent of
the mesh width for all MGRIT hierarchies and comparable to the ones obtained when
considering different values of the number of time steps.



6.4. NUMERICAL RESULTS (CONJUGATE GRADIENT METHOD)

6

79

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

h = 2−4 7 9 7 7 9 7 7 9 7 7 9 7
h = 2−5 7 9 7 7 9 7 7 9 7 7 9 8
h = 2−6 8 9 8 8 9 8 8 9 8 8 9 8
h = 2−7 8 9 8 8 9 8 8 9 8 8 9 8

Table 6.2: Number of MGRIT iterations for solving the model problem when adopting a two-level (TL) method,
V-cycles (V) and F-cycles (F), respectively.

VARYING GEOMETRIES
Next, we apply MGRIT on a curved and a multipatch geometry, respectively. Table 6.3
shows the number of V-cycles needed with MGRIT when backward Euler is adopted for
the time integration. Results can be compared to the ones presented in Table 6.1, show-
ing identical iteration numbers for all geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 6.3: Number of MGRIT iterations for solving Equation (6.1) on a quarter annulus and multipatch geom-
etry when adopting V-cycles for varying time step sizes.

Table 6.4 shows the results when the number of time steps is kept constant (Nt = 100)
for the quarter annulus and multipatch geometry when adopting V-cycles. Results can
be compared to Table 6.2 and are (again) identical for all three geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−4 9 9 9 9 9 9 9 9
h = 2−5 9 9 9 9 9 9 9 9
h = 2−6 9 9 9 9 9 9 9 9
h = 2−7 9 9 9 9 9 9 9 9

Table 6.4: Number of MGRIT iterations for solving Equation (6.1) on a quarter annulus and multipatch geom-
etry when adopting V-cycles for varying mesh widths.
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TIME INTEGRATION SCHEMES

In addition to the implicit backward Euler scheme, we have considered alternative time
integration schemes as well. In this subsection, we investigate the use of the forward Eu-
ler and (second-order accurate) Crank-Nicolson method. The use of explicit time inte-
gration schemes in the context of parallel-in-time integration is on the one hand highly
relevant, as the required number of time steps needed to ensure stability is relatively
high. On the other hand, coarsening with respect to the time step size might still exhibit
stability issues at coarser levels. Therefore, explicit-implicit methods are often consid-
ered, where explicit time integration is applied on the finest temporal level, while im-
plicit methods are adopted at the coarser levels. The question remains to which extent
the resulting MGRIT algorithm remains robust in the mesh width and/or spline degree.
Table 6.5 shows the number of MGRIT iterations for different numbers of time steps
when adopting V-cycles and a mesh width of h = 2−4. Here, forward Euler/Crank-Nicolson
is applied at the fine level, while backward Euler is applied at the coarse levels. For some
of the considered configurations, the resulting MGRIT method does not converge within
100 iterations for forward Euler (indicated by ‘−’). It should be noted, however, that
for these configurations, forward Euler applied as a sequential time integration scheme
does not converge either, which is a direct consequence of the CFL condition. When the
Crank-Nicolson method is applied the resulting MGRIT method converges in a relatively
low number of iterations.

Forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 − − − − 11 11 14 24
Nt = 500 13 − − − 11 11 11 12
Nt = 1000 13 13 − − 11 11 11 11
Nt = 2000 13 13 13 − 11 11 11 11

Table 6.5: Number of MGRIT iterations for solving Equation (6.1) on the unit square using forward Euler and
Crank-Nicolson when adopting V-cycles.

Table 6.6 shows the number of MGRIT iterations for a varying mesh width and 1000 time
steps for both time integration methods. For many configurations, MGRIT using forward
Euler does not converge, while the Crank-Nicolson method converges for all configura-
tions. A small dependency on h and p is, however, visible.

Forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−3 13 13 13 14 11 11 11 12
h = 2−4 13 13 − − 11 11 11 11
h = 2−5 − − − − 11 11 13 23
h = 2−6 − − − − 13 28 52 88

Table 6.6: Number of MGRIT iterations for solving Equation (6.1) on the unit square using forward Euler and
Crank-Nicolson when adopting V-cycles.
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CPU TIMINGS
Up to now, focus has been on the number of iterations needed to reach convergence
with MGRIT. In this section, we will focus on the computational efficiency of the MGRIT
method for different values of the number of time steps Nt and spline degree p. Here,
we adopt V-cycles, a mesh width of h = 2−6 and the unit square as our domain of in-
terest. Note that the corresponding iteration numbers can be found in Table 6.1. The
computations are performed on three nodes, which consist each of an Intel(R) i7-10700
(@ 2.90GHz) processor with 8 cores.
Figure 6.5 shows the CPU time needed to reach convergence with MGRIT for a different
number of time steps Nt and spline degree p. Here the total number of cores is varied
between 3 and 24, but are always evenly distributed over the three nodes. As can be ob-
served in all figures, doubling the number of time steps roughly doubles the time needed
to reach convergence for all values of p.
Furthermore, it can be observed that the CPU times significantly increase for higher val-
ues of p which is related to the spatial solves required at every time step. As standard
iterative solvers (like the Conjugate Gradient method) have a deteriorating performance
for increasing values of p, more iterations are required to reach convergence for each
spatial solve, resulting in higher computational costs of the MGRIT method.
When focussing on the results obtained with 3 and 6 cores, it can be seen that doubling
the number of cores significantly reduces the CPU time needed to reach convergence.
More precisely, a reduction of 45−50% can be observed when doubling the number of
cores to 6, implying the MGRIT algorithm is highly parallelizable. When the number of
cores is further increased (i.e., 12 and 24) this reduction is, however, significantly lower.
Most likely, this is related to the amount of data that has to be transferred during the
computations, which is a relatively slow process (1 Gbit/s) on the considered cluster.
Therefore, it is expected that better speed-ups can be obtained when a larger mesh width
is considered.
Figure 6.6 shows, again, the CPU time needed to reach convergence with MGRIT for a
different number of time steps Nt and spline degree p. In contrast to Figure 6.5, where
a mesh width was chosen equal to h = 2−6, we consider a mesh width of h = 2−5 in-
stead. Doubling the number of time steps roughly doubles the time needed to reach
convergence and the deteriorating performance of the Conjugate Gradient method can
be observed as well for higher values of p. However, as smaller linear systems of equa-
tions are considered, the overall CPU times are lower compared to those presented in
Figure 6.5. Furthermore, a higher reduction of the CPU time can be observer when the
number of cores is increased from 12 to 24.
In both figures, a strong dependency of the CPU times on the spline degree p is visible,
related to the use of the Conjugate Gradient method for all spatial solves. To mitigate
this dependency, we will apply our p-multigrid method, as presentented in Chapter 4,
for all spatial solves in MGRIT in the next section.



6

82 6. MULTIGRID REDUCED IN TIME FOR ISOGEOMETRIC ANALYSIS

100

101

102

103

104

22

38

77

14
4

57

11
1

23
3

46
7

18
6

36
7

77
5

1,
57

7

55
3

1,
10

6 2,
39

6 4,
91

5

C
P

U
T

im
e

(s
)

3 cores

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000
100

101

102

103

104

11

20

40

76

30

59

12
3

25
0

95

19
3

42
1

85
5

29
2

59
0

1,
31

2 2,
74

3

C
P

U
T

im
e

(s
)

6 cores

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

100

101

102

103

104

8

14

27

51

20

39

85

17
0

67

13
4

29
7

61
3

22
0

43
9

87
5

1,
72

8

C
P

U
T

im
e

(s
)

12 cores

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000
100

101

102

103

104

4

7

16

30

15

26

56

11
3

61

11
5

25
1

52
2

20
9

39
5

86
4

1,
82

1

C
P

U
T

im
e

(s
)

24 cores

p = 2 p = 3 p = 4 p = 5

Nt = 250 Nt = 500 Nt = 1000 Nt = 2000

Figure 6.5: CPU times for MGRIT using V-cycles and backward Euler on the unit square for a fixed problem size
(h = 2−6) adopting a different number of cores.
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6.5. NUMERICAL RESULTS (p-MULTIGRID METHOD)
Within the MGRIT method, linear systems of equations have to be solved to account for
the fine- and coarse-level time stepping. In the previous section, a standard precon-
ditioned Conjugate Gradient method was adopted leading to a significant increase of
the computational costs for higher values of p. Instead of adopting a Conjugate Gradi-
ent method, we will adopt our p-multigrid method, as presented in Chapter 4, for the
spatial solves within MGRIT throughout the remainder of this section to mitigate this
dependency. That is, a direct projection to level p = 1 is considered and ILUT is adopted
as a smoother. At p = 1, a single W-cycle of a standard h-multigrid method is applied to
approximately solve the low-order system, where Gauss-Seidel is adopted as a smoother.

ITERATION NUMBERS
As a first step, we compare the number of MGRIT iterations to reach convergence when
the p-multigrid method is adopted while keeping all other parameters equal. Table 6.7
shows the results when the mesh width is kept constant (h = 2−6) for the unit square
and quarter annulus when adopting V-cycles. Results can be compared to Table 6.1 and
6.3. For both benchmarks and all configurations, the number of iterations needed with
MGRIT to reach convergence is identical.

Unit Square Quarter Annulus
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 6.7: Number of MGRIT iterations for solving Equation (6.1) on the unit square and a quarter annulus
when adopting V-cycles for a varying number of time steps. Here p-multigrid is adopted for the spatial solves.

Table 6.8 shows the results when the number of time steps is kept constant (Nt = 100) for
the unit square and quarter annulus when adopting V-cycles. Results can be compared
to Table 6.2 and 6.4 and show, again, a similar number of iterations.

Unit Square Quarter Annulus
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−4 9 9 9 9 9 9 9 9
h = 2−5 9 9 9 9 9 9 9 9
h = 2−6 9 9 9 9 9 9 9 9
h = 2−7 9 9 9 9 9 9 9 9

Table 6.8: Number of MGRIT iterations for solving Equation (6.1) on the unit square and a quarter annulus
when adopting V-cycles for varying mesh widths. Here p-multigrid is adopted for the spatial solves.
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CPU TIMINGS
CPU timings have been obtained when a p-multigrid method is adopted for the spatial
solves within MGRIT as well. As in the previous section, we adopt V-cycles, a mesh width
of h = 2−6 and the unit square as our domain of interest. Note that the corresponding
iteration numbers can be found in Table 6.7. The computations are performed on three
nodes, which consist each of an Intel(R) i7-10700 (@ 2.90GHz) processor with 8 cores.
Figure 6.7 shows the CPU time needed to reach convergence for a varying number of
cores, a different number of time steps and different values of p. As with the use of the
Conjugate Gradient method, doubling the number of time steps leads to an increase of
the CPU time by a factor of two. However, the dependency of the CPU times on the
spline degree is significantly mitigated, which leads to a serious decrease of the CPU
times compared to the use of the Conjugate Gradient method when higher values of p
are considered. Again, increasing the number of cores from 3 to 6, reduces the CPU time
needed to reach convergence by 45−50%. This does, however, not hold anymore when
the number of cores is further increased. Results obtained for a mesh width of h = 2−5

are shown in Figure 6.8, showing similar results compared to the ones presented in the
previous section when adopting the Conjugate Gradient method.
The results obtained in this and the previous section indicate that MGRIT combined with
a p-multigrid method leads to an overall efficient method. However, for an increased
number of cores, the observed speed-up significantly decreases on the considered clus-
ter. Therefore, a large computer cluster will be considered in the next section to further
investigate the scalability of MGRIT (i.e. weak and strong scalability) when combined
with a p-multigrid method.
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Figure 6.7: CPU times for MGRIT using V-cycles and backward Euler on the unit square for a fixed problem size
(h = 2−6) adopting a different number of cores. Here p-multigrid is used for all spatial solves within MGRIT.
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6.6. SCALABILITY
In the previous sections, we applied MGRIT on a relatively small cluster with up to 24
cores on 3 nodes. Here, it was shown that the use of a p-multigrid method significantly
reduces the dependency of the CPU timings on the spline degree. In this section, we in-
vestigate the scalability of MGRIT (combined with a p-multigrid method) on a modern
architecture. More precisely, we will investigate both strong and weak scalability on the
Lisa computer system, one of the nationally used clusters of the Netherlands 1. Although
the general description for each multigrid method is identical, each type of multigrid
method is defined by a specific choice of the coarse grid operator, the prolongation and
restriction operator and smoother. Throughout this thesis, we will distinguish two main
types of multigrid methods: h-multigrid and p-multigrid methods.

First, we fix the total problem size and increase the number of cores (i.e., strong scala-
bility). That is, we consider the same benchmark problem as in the previous sections,
but with a mesh width of h = 2−6 and a number of time steps Nt of 10.000. As before,
backward Euler is applied for the time integration and V-cycles are adopted as MGRIT
hierarchy. Figure 6.9 shows the CPU times needed to reach convergence for a varying
number of Intel Xeon Gold 6130 (@ 2.10GHz) processors, where each processor consists
of 16 cores. For all values of p, increasing the number of processors leads to significant
speed-ups which illustrates the parallizability of the MGRIT method. In contrast to the
previous section, the speed-up is not limited for a higher number of cores, but we ob-
serve scalability up to 2048 cores (128 nodes).
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Figure 6.9: Strong scalability study for MGRIT using V-cycles and backward Euler on the unit square. Here
p-multigrid is used for all spatial solves within MGRIT.

Figure 6.10 shows the obtained speed-ups as a function of the number of processors for
different values of p based on the results presented in Figure 6.9. As a comparison, the

1https://userinfo.surfsara.nl/systems/lisa
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ideal speed-up has been added, assuming a perfect parallizability of the MGRIT method.
The obtained speed-ups remain high, even when the number of processors is further
increased to 128, and is independent of the spline degree p.
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Figure 6.10: Speed-up with MGRIT using V-cycles and backward Euler on the unit square. Here p-multigrid is
used for all spatial solves within MGRIT.

As a next step, we consider the same benchmark problem but keep the problem size
per processor fixed (i.e., weak scalability). In case of four processors, the number of
time steps equals 1000 and is adjusted based on the number of cores. Figure 6.11 shows
the CPU time needed to reach convergence for a different number of processors and
different values of p. Clearly, the CPU times vary slightly when the number of processors
is increased, but overall the MGRIT method shows decent scalability. Although the CPU
times slightly increase for higher values of p, the strong p-dependency observed with
the Conjugate Gradient method is clearly mitigated.

6.7. CONCLUDING REMARKS
In this chapter, we combined the Multigrid Reduced in Time (MGRIT) method with Iso-
geometric Analysis to solve time-dependent partial differential equations. In particular,
we investigated the convergence for different geometries, time integration schemes and
multigrid hierarchies. Results show that the MGRIT method converges independent of
the mesh width h, spline degree p and number of time steps Nt . CPU times show that
the overall method is highly parallelizable, but the use of standard iterative methods (i.e.,
the Conjugate Gradient method) leads to a significant dependency of the CPU time on
the degree of the B-spline basis functions. Therefore, our p-multigrid method has been
adopted to successfully mitigate this dependency. Finally, the scaling properties of the
MGRIT method have been determined on a modern architecture, illustrating the scala-
bility of the overall method.
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Figure 6.11: Weak scalability study for MGRIT using V-cycles and backward Euler on the unit square. Here
p-multigrid is used for all spatial solves within MGRIT.



7
P-MULTIGRID METHODS IN G+SMO

This chapter provides a short introduction to the open-source library G+Smo (Geometry
plus Simulation modules), which has been used and extended throughout this thesis. Fur-
thermore, we give detailed instructions on how to reproduce the results presented in this
thesis.
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7.1. INTRODUCTION
G+Smo (Geometry + Simulation Modules, pronounced "gismo") [101] is an open-source
C++ library which has been developed specifically for Isogeometric Analysis and aims
to bring together the mathematical tools for geometric design and numerical simula-
tion. The G+Smo library is object-oriented and partitioned into modules (e.g. the PDE
discretization or adaptive spline module). All numerical experiments presented in this
thesis have been performed using and extending this library.
This chapter provides a short introduction to the G+Smo library in Section 7.2. The p-
multigrid class, which was developed during this PhD research is then discussed in Sec-
tion 7.3. Finally, we describe in Secion 7.4 and 7.5 how the numerical results (i.e., itera-
tion numbers) presented in thesis can be reproduced in G+Smo.

7.2. G+SMO: AN INTRODUCTION
G+Smo makes use of the version control system git, allowing to keep track of changes
in the code over time. The latest version of G+Smo can be obtained from GitHub in the
following way:

$ git clone https://github.com/gismo/gismo.git

Here, $ denotes the command prompt. The terminal command above clones the latest
revision of the code on your personal device. To compile the library, there are some min-
imal prerequisites (e.g. a C++ compiler and CMake) which can be found on the GitHub
page. Configuring and building, enabling the use of MPI and Xbraid, is done as follows:

$ mkdir gismo_build
$ cd gismo_build
$ cmake ../gismo/gismo.git -DGISMO_WITH_MPI=ON -DGISMO_WITH_XBRAID=ON
– Build files have been written to: home/gismo_build
$ make poisson_example
$ ./bin/poisson_example

This builds the G+Smo library in the folder "gismo_build" and executes poisson_example.
Within this example, the Poisson equation is solved on the unit square, where the right-
hand side is chosen such that the exact solution can be expressed in terms of sine func-
tions (i.e. the method of manufactured solutions). After assembling the stiffness matrix
and the right-hand side, the resulting linear system of equations is then solved by means
of a Conjugate Gradient method.
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7.3. THE p-MULTIGRID CLASS
Within G+Smo, a base class (called pMultigridBase) has been implemented, consist-
ing of all different aspects of the p-multigrid as described in this thesis. In particular, a
generic (recursive) multigrid cycle is implemented in this base class.
Apart from the multigrid cycle, the restriction and prolongation function are implemented
as well in the base class, while all other functions are pure virtual. As a consequence, the
remaining functions have to be implemented explicitly in the derived pMultigrid class.
This derived class has three template arguments:

• The data type considered, typically a real number (i.e., real_t).

• The solver to be applied at the coarsest level (e.g. gsSparseSolver<real_t>::LU).

• The assembler adopted (e.g. gsCDRAssembler<real_t> ).

Apart from these template arguments, the pMultigrid class is defined by three argu-
ments, namely a multipatch object gsMultiPatch<T> "mp", a low-order basis gsMultiBasis<T>
"basisL" and the boundary conditions gsBoundaryConditions<T> "bcInfo". Hence, a p-
multigrid structure can be declared as follows:

pMultigrid<T, Coarsesolver , Assembler> My_MG(mp, basisL, bcInfo);

The derived p-multigrid structure has two important functions:

• setup: Here, all operators are assembled and the smoother is set up.

• solve: This functions solves the model problem using the base class.

The pMultigrid class can be used to solve a given model problem by calling the setup
and solve functions. Next to those two functions, all pure virtual functions (restriction,
prolongation etc.) from the base class still have to implemented in the pMultigrid class.
Of course, the pMultigrid_example already contains versions of the prolongation and
resitriction functions as presented in this dissertation.
From all arguments the solve and setup require, we present the most important ones. In
the following table, we provide the names of the arguments, the flags that can be used
and a short description. Here, we distinguish between parameters that describe or define
the model problem to be solved and the arguments that define the multigrid hierarchy.
More information on these parameters can be found in the example folder of G+Smo in
the pMultigrid_example file.
All geometries considered in this thesis, apart from the Yeti footprint, are based on the
class gsNurbsCreator, which provides the NURBS geometry for each benchmark prob-
lem. In particular, the specific geometry function for each geometry can be found in the
source code of this class.
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p-multigrid parameters

numBenchmark b Adopt as a benchmark:

• CDR-equation, unit square (-b 1)

• Poisson’s equation, quarter annulus (-b 2)

• Poisson’s equation, quarter annulus (-b 3)

• Poisson’s equation, L-shaped domain (-b 4)

• Poisson’s equation, unit cube (-b 5)

• Poisson’s equation, Yeti footprint (-b 6)

typeSolver s Apply p-multigrid:

• as a stand-alone solver (-s 1)

• within a Conjugate Gradient method (-s 2)

• within a Bi-CGSTAB method (-s 3)

typeSmoother S Adopt as a smoother:

• Gauss-Seidel (-S 1)

• ILUT (-S 2)

• SCMS (-S 3)

• block ILUT (-S 4)

typeProjection D Consider:

• a direct projection to p = 1 (-D 1)

• an indirect projection (-D 2)

typeLumping L Adopt for the prolongation/restriction:

• a lumped L2 projection (-L 1)

• a consistent L2 projection (-L 2)

typeBChandling d Apply the boundary conditions:

• by eliminating the DOFs (-d 1)

• by means of Nitsche’s method (-d 2)

numSmoothing v Number of pre- and postsmoothing steps
numLevels l Degree of levels in the multigrid hierarchy
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7.4. PMULTIGRID_EXAMPLE
In this section, we discuss how results obtained in this thesis (with respect to iteration
numbers) can be obtained by any G+Smo user as well. To obtain the code adopted in
this dissertation, a permalink 1 can be used which leads directly to the source code.

This version of the code contains the pMultigrid_example within the examples folder
and can reproduce results from this thesis regarding iteration numbers. As an example,
one can run the following code in the terminal:

$ ./bin/pMultigrid_example -p 2 -r 6 -l 4 -S 1 -b 2 -z "hhp"

Here, the parameter -z provides the coarsening strategy by entering a string of length
l − 1 which defines if p-coarsening ("p") or h-coarsening ("h") is applied. The above
code leads to the following terminal output:

|| Benchmark information ||
Poisson equation on the quarter annulus (1)
Exact solution: -(x*x+y*y-1)*(x*x+y*y-4)*x*y*y
Right hand side solution: 2*x*(22*x*x*y*y+21*y*y*y*y-45*y*y+x*x*x*x-5*x*x+4)
Number of patches: 1

p-multigrid is applied as stand-alone solver

|| Multigrid hierarchy ||
Level 1, Degree: 1, Ndof: 306
Level 1, Degree: 1, Ndof: 1122
Level 1, Degree: 1, Ndof: 4290
Level 1, Degree: 2, Ndof: 4422

|| Setup timings ||
Total Assembly time: 0.253446
Total ILUT factorization time: 0.0677094
Total block ILUT factorization time: 2.38419e-07
Total SCMS time: 0
Total setup time: 0.405733

|| Solver information ||
Solver converged in 0.0217087 seconds!
Solver converged in 4 iterations!
Residual after solving: 2.42863e-05

1https://archive.softwareheritage.org/swh:1:dir:d3c61b86c91a9f031dda3b9bcbbbcff0ca80a821;
origin=https://github.com/roeltielen24/gismo_pmultigrid_xbraid;visit=
swh:1:snp:5e1a54efb88fa0bf85aa4efc012192862a981d0d;anchor=swh:1:rev:
523519f0e0691d576d8581e243905d84e241e14d

https://archive.softwareheritage.org/swh:1:dir:d3c61b86c91a9f031dda3b9bcbbbcff0ca80a821;origin=https://github.com/roeltielen24/gismo_pmultigrid_xbraid;visit=swh:1:snp:5e1a54efb88fa0bf85aa4efc012192862a981d0d;anchor=swh:1:rev:523519f0e0691d576d8581e243905d84e241e14d
https://archive.softwareheritage.org/swh:1:dir:d3c61b86c91a9f031dda3b9bcbbbcff0ca80a821;origin=https://github.com/roeltielen24/gismo_pmultigrid_xbraid;visit=swh:1:snp:5e1a54efb88fa0bf85aa4efc012192862a981d0d;anchor=swh:1:rev:523519f0e0691d576d8581e243905d84e241e14d
https://archive.softwareheritage.org/swh:1:dir:d3c61b86c91a9f031dda3b9bcbbbcff0ca80a821;origin=https://github.com/roeltielen24/gismo_pmultigrid_xbraid;visit=swh:1:snp:5e1a54efb88fa0bf85aa4efc012192862a981d0d;anchor=swh:1:rev:523519f0e0691d576d8581e243905d84e241e14d
https://archive.softwareheritage.org/swh:1:dir:d3c61b86c91a9f031dda3b9bcbbbcff0ca80a821;origin=https://github.com/roeltielen24/gismo_pmultigrid_xbraid;visit=swh:1:snp:5e1a54efb88fa0bf85aa4efc012192862a981d0d;anchor=swh:1:rev:523519f0e0691d576d8581e243905d84e241e14d
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That is, Poisson’s equation is solved on a quarter annulus using a p-multigrid method
combined with an ILUT smoother. Note that the output in the terminal describes the
benchmark problem, the p-multigrid hierarchy and details about the solver. By typing

$ ./bin/pMultigrid_example -p <INT> -r <INT> -l <INT> -S <INT> -b 2 -z <STRING>

one can obtain the results for different discretizations. Table 7.1 shows the results for
different values of p and h which can be reproduced by varying the different parameters
in the terminal. The red colored 4 is the result corresponding to the output above.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

Table 7.1: Number of multigrid cycles needed to achieve convergence with p-multigrid using Gauss-Seidel
(GS) and ILUT as a smoother.

7.5. XBRAID_HEATEQUATION_EXAMPLE
In a similar way, results obtained with MGRIT can be obtained as well. The correspond-
ing source file xbraid_heatEquation_example can be found in the following way:

$ cd extensions/gsXbraid/examples

One can then run the following code in the terminal:

$ mpirun -np 4 ./bin/xbraid_heatEquation_example -n 100 -i 2 -r 4

This command runs the MGRIT method (using 4 processors) adopting 100 time steps, a
mesh width of h = 2−4 and spline degree equal to 2. The obtained output provides all the
details with respect to the settings of the MGRIT method and the p-multigrid method. A
part of the output shows the convergence of the MGRIT method:

Braid: Begin simulation, 100 time steps
Braid: || r_0 || not available, wall time = 5.56e-02
Braid: || r_1 || = 1.572381e-01, conv factor = 1.00e+00, wall time = 1.61e-01
Braid: || r_2 || = 5.147275e-03, conv factor = 3.27e-02, wall time = 3.31e-01
Braid: || r_3 || = 3.185626e-04, conv factor = 6.19e-02, wall time = 5.56e-01
Braid: || r_4 || = 2.021004e-05, conv factor = 6.34e-02, wall time = 7.40e-01
Braid: || r_5 || = 1.209229e-06, conv factor = 5.98e-02, wall time = 8.87e-01
Braid: || r_6 || = 7.119758e-08, conv factor = 5.89e-02, wall time = 1.04e+00
Braid: || r_7 || = 4.077797e-09, conv factor = 5.73e-02, wall time = 1.18e+00
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Braid: || r_8 || = 2.237164e-10, conv factor = 5.49e-02, wall time = 1.32e+00
Braid: || r_9 || = 1.143291e-11, conv factor = 5.11e-02, wall time = 1.47e+00

By typing

$ mpirun -np 4 ./bin/xbraid_heatEquation_example -n <INT> -i <INT> -r <INT>

one can obtain the results for different discretizations. It should be noted that this exam-
ple makes use of an XML-file (heat2d_square_ibvp1.xml) which provides all the MGRIT
and p-multigrid settings and should be adjusted accordingly. Table 7.2 shows the results
for different values of p and h which can be reproduced in this example. Here, the red
colored 9 is the result corresponding to the output above.

Unit Square Quarter Annulus
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−4 9 9 9 9 9 9 9 9
h = 2−5 9 9 9 9 9 9 9 9
h = 2−6 9 9 9 9 9 9 9 9
h = 2−7 9 9 9 9 9 9 9 9

Table 7.2: Number of MGRIT iterations for solving Equation (6.1) on the unit square and a quarter annulus
when adopting V-cycles for varying mesh widths. Here p-multigrid is adopted for the spatial solves.
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In this thesis, we presented a p-multigrid method to solve linear systems of equations
arising in Isogeometric Analysis. The use of p-multigrid methods was motivated by the
fact that low-order (i.e., p = 1) discretizations in IgA coincide with standard P1 Lagrange
finite elements. Therefore, well-established solution techniques can be adopted from
standard FEM to obtain the coarse grid correction at the low-order level. Furthermore,
the smaller support of P1 basis functions leads to less non-zero entries in the system
matrices, resulting in lower assembly costs and memory requirements compared to h-
multigrid methods for certain configurations when applied within Isogeometric Analy-
sis.
In practice, a single W-cycle of a standard h-multigrid method using Gauss-Seidel as a
smoother is adopted to solve the residual equation at level p = 1. To project residuals
and corrections from the high-order level onto the low-order level (and vice versa), a
row-sum lumped L2 projection is used. Here, the row-sum lumping prevents the explicit
solution of a linear system of equations at each projection step, while remaining accurate
enough to have an overall efficient numerical method. It should be noted that from the
high-order level a direct projection to level p = 1 is adopted, which has shown to be more
efficient in terms of computational times, while keeping (more or less) the same number
of iterations compared to an indirect projection, where all p levels are traversed.
For single patch geometries, we applied the proposed p-multigrid method for a variety
of two- and three-dimensional benchmark problems. Here, both Gauss-Seidel and ILUT
have been applied as a smoother at the high-order level. As with h-multigrid methods,
the use of Gauss-Seidel leads to h-independent, but p-dependent convergence rates of
the resulting p-multigrid method. When ILUT is applied as a smoother, however, the
number of iterations needed to achieve convergence is independent of both h and p.
Compared to h-multigrid methods, the observed convergence rates with p-multigrid
methods are comparable for all smoothers. Finally, we compared the p-multigrid method
(using ILUT as a smoother) with an h-multigrid method adopting a subspace corrected
mass smoother and applied it to THB-spline based discretizations.
For multipatch geometries, the dependency of the convergence rate of the p-multigrid
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method on the number of patches has been investigated. For sufficiently fine meshes,
the number of iterations is constant in the number of patches, while the number of it-
erations slightly grows for a higher number of patches on coarser meshes. Although the
use of an outer Krylov solver reduces the number of iterations needed to achieve conver-
gence, the use of p-multigrid method as a stand-alone solver might be more benificial
when considering the total computational time. As a second improvement, we consid-
ered the use of a block ILUT smoother that makes use of the typical block structure of the
resulting system matrix in case of a multipatch geometry. The block ILUT smoother can
be set up (and applied) in parallel and shows an improved convergence rate compared
to the use of a global ILUT smoother.
In Chapters 4 and 5, the focus lied on time-independent benchmark problems. For time-
dependent bechmark problems, a time-integration scheme is typically adopted for the
temporal discretization. A drawback of this approach is, however, the sequential nature
of these schemes. Therefore, we adopted a Multigrid Reduced in Time (MGRIT) method
in the context of Isogeometric Analysis for the first time in the literature, which allows us
to parallelize the time integration. The spatial solves arising in the MGRIT method have
been solved by the proposed p-multigrid method. Finally, we described how the numer-
ical results presented in this thesis can be (easily) reproduced using the open-source C++
library G+Smo (Geometry + Simulation modules).

These findings lead to the following conclusions of this dissertation:

• p-multigrid methods enhanced with an ILUT smoother are robust in the spline
degree p and the mesh width h. Moreover, combined with an h-multigrid method
at level p = 1, they are competitive in terms of computational efficiency to state-
of-the-art multigrid methods for Isogeometric Analysis.

• The use of a block ILUT smoother within the p-multigrid method is an effective
approach for multipatch geometries in Isogeometric Analysis and leads to better
convergence rates compared to the use of a global ILUT smoother.

• Multigrid Reduced in Time (MGRIT) methods have been successfully combined
with p-multigrid methods to obtain a scalable and robust solver for Isogeometric
Analysis.

FUTURE WORK
In the future, further progress can be made regarding the algorithmic design of the p-
multigrid method, the application of p-multigrid methods to more challenging bench-
marks and the theoretical insight on the effectiveness of p-multigrid methods. For each
of these categories, we briefly describe potential directions for future research.

ALGORITHMIC IMPROVEMENTS
• Currently, we apply a direct projection from the high-order level to level p = 1, after

which a standard h-multigrid method is applied. That is, we first coarsen (aggres-
sively) in p, after which successive h-coarsening is applied. Alternatively, one can
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combine both h- and p-coarsening to obtain a coarser system before applying the
h-multigrid method, thereby reducing the computational costs of the p-multigrid
method. In fact, this procedure has been persued in a recent preprint [135], where
a local Fourier analysis (LFA) showed that this indeed improves the computational
efficiency of the multigrid method in case a multiplicative Schwarz smoother is
adopted.

• In this thesis, we considered Gauss-Seidel, ILUT and the subspace corrected mass
smoother (SCMS) as smoothers within the p-multigrid methods. However, a va-
riety of smoothers have been developed for h-multigrid methods in recent years.
In particular, we suggest to consider the smoother presented in [84, 135], as it has
been applied in a variant of the p-multigrid method presented in this thesis.

• We applied the p-multigrid method presented in this thesis to THB-spline dis-
cretizations in Chapter 4, where smoothing was applied globally, making the over-
all complexity suboptimal. Alternatively, local smoothing can be pursued [108]
to ensure optimal order of complexity. Therefore, we suggest to consider local
smoothing strategies when the p-multigrid method is applied in the context of
THB-spline discretizations.

• In Chapter 5 of this thesis, we presented a block ILUT smoother for multipatch ge-
ometries, suited for parallel computations. In future work, we see high potential in
implementing this smoother explicitly in parallel to obtain a parallel p-multigrid
method. Potentially, this approach can be combined with MGRIT, to obtain a full
parallel method (in space and time).

APPLICATIONS
• The p-multigrid method presented in this thesis has been applied to a variety of

benchmark problems in two and three dimensions. For these benchmarks, the
solution is found in a subspace of the space H 1(Ω), implying C 0 continuity of the
basis functions is sufficiently smooth. For PDEs involving fourth-order derivatives
(e.g. the biharmonic equation), as often encountered in engineering, the solution
should be at least C 1, implying that a low-order correction found at level p = 1
is not sufficiently smooth. Therefore, for these type of benchmark problems, a
p-multigrid where the low-order level corresponds to p = 2 would be worthwhile
investigating.

• Typically, multigrid methods are applied on diffusion-dominated (i.e., Poisson-
type) problems. However, it might be interesting to investigate to which extend the
p-multigrid method can be applied to more convection-dominated problems. In
fact, the p-multigrid method presented in this thesis has already been applied suc-
cessfully to projection-type problems within the Material Point Method (MPM),
see [136].

• Recently, the use of Isogeometric Analysis to discretize the Helmholtz equation has
shown to significantly reduce the pollution error. Iterative solvers to solve the re-
sulting linear systems of equations have obtained increased interest in recent years
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[137]. In particular, the use of deflation combined with the approximated Complex
Shifted Laplacian Preconditioner (CSLP) has shown to lead to wave-number inde-
pendent convergence rates [138]. Here, the CSLP is approximated by a fixed num-
ber of V-cycles using a standard h-multigrid method adopting (damped) Jacobi as
a smoother. The use of p-multigrid methods combined with a suitable smoother
could further improve the convergence rates, in particular for higher values of p.

THEORETICAL INSIGHT
• Throughout this thesis, we analyzed the spectral properties of the p-multigrid

method by determining the reduction factors of the coarse grid correction and
smoother on the generalized eigenvectors. Furthermore, the spectrum of the iter-
ation matrix was obtained numerically to determine the asymptotic convergence
rate and investigate to which extend the use of an outer Krylov solver would fur-
ther improve the overall convergence. Alternatively, a local Fourier analysis (LFA)
can be performed to analyze the (expected) performance of a multigrid method.
In [135], a LFA has been applied to a variant of the p-multigrid method presented
in this thesis.

• In this thesis, numerical experiments are used to show the effectiveness, robust-
ness and efficiency of the proposed p-multigrid method. However, mathematical
theory on p-multigrid methods is non trivial, in particular when rediscretization
is applied to obtain the coarse grid operators. Future research could focus on a
theoretical foundation to quantify the effectiveness of p-multigrid methods in the
context of Isogeometric Analysis.
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APPENDIX

APPENDIX A. DIRECT OR INDIRECT PROJECTION
To investigate the effect of a direct projection to p = 1, we consider Poisson’s equation
on the quarter annulus. The number of multigrid cycles needed to achieve convergence
with a direct projection and indirect projection has been determined for different val-
ues of h and p. Table 1 shows the number of iterations needed to achieve convergence
with a direct and indirect projection, respectively. For most configurations, the number
of iterations is very similar. Only for higher values of p, the indirect project leads to a
diverging method when Gauss-Seidel is applied as a smoother. With a direct projection,
all configurations lead to a converging multigrid method. It should be noted that these
conclusions also hold for the other considered test problems in Chapter 4.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

(a) p-multigrid with a direct projection

h = 2−6 4 30 3 62 3 − 3 −
h = 2−7 4 29 3 61 3 − 3 −
h = 2−8 5 30 3 61 3 − 3 −
h = 2−9 5 32 3 63 3 − 3 −

(b) p-multigrid with an indirect projection

Table 1: Number of multigrid cycles needed to achieve convergence with p-multigrid for Poisson’s equation on
the quarter annulus with a direct and an indirect projection.
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APPENDIX B. CONSISTENT VS. LUMPED PROJECTION
In Chapter 4, the prolongation and restriction operator to transfer residuals and correc-
tions from level p to 1 and vice versa have been defined. Note that, the mass matrix in
Equation (4.8) and (4.10) can be lumped to reduce computational costs. To investigate
the effect of lumping the mass matrix within the L2 projection, the first benchmark is
considered.
Table 2 shows the number of multigrid cycles needed to achieve convergence using the
lumped or consistent mass matrix in Equation (4.8) and (4.10) for Poisson’s equation on
the quarter annulus. When ILUT is adopted as a smoother, the number of multigrid
cycles needed to reach convergence is identical for all configurations. For Gauss-Seidel,
the use of the consistent mass matrix leads to a slightly lower number of iterations. It
should be noted that these conclusions also hold for the other considered test problems
in Chapter 4. Considering the decrease of computational costs, however, the lumped
mass matrix is adopted throughout this dissertation in the prolongation and restriction
operator.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 63 3 163 3 452

(a) Lumped mass matrix ML
k

h = 2−6 4 29 3 57 3 171 3 475
h = 2−7 4 29 3 52 3 174 3 524
h = 2−8 5 29 3 54 3 165 3 446
h = 2−9 5 31 3 52 3 164 3 441

(b) Consistent mass matrix Mk

Table 2: Number of multigrid cycles to reach convergence with p-multigrid adopting a lumped or consistent
mass matrix in the prolongation and restriction operator for Poisson’s equation on the quarter annulus.
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APPENDIX C. CPU TIMES p-MULTIGRID
Table 3 shows the CPU timings with p-multigrid as a stand-alone solver for Poisson’s
equation on the quarter annulus when adopting ILUT and Gauss-Seidel (GS) as a smoother.
For each configuration, the assembly, factorization and solver costs are shown sepa-
rately. Note that, a small difference between the assembly costs can be observed when
adopting both smoothers, which are caused by random fluctuations. As Gauss-Seidel
does not require any setup costs, only the factorization costs for the ILUT smoother are
presented.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 0.65 0.66 1.20 1.19 2.21 2.14 3.63 3.91
h = 2−7 2.58 2.63 4.64 4.52 8.58 8.53 15.06 14.78
h = 2−8 10.22 10.77 18.93 19.41 34.77 34.07 57.95 60.81
h = 2−9 41.52 41.86 74.74 76.70 135.79 131.66 243.64 248.11

(a) Assembly costs in seconds

h = 2−6 0.10 − 0.27 − 0.55 − 0.93 −
h = 2−7 0.50 − 1.43 − 2.85 − 4.76 −
h = 2−8 2.13 − 6.70 − 13.98 − 25.32 −
h = 2−9 8.66 − 29.78 − 75.89 − 134.57 −

(b) Factorization costs in seconds

h = 2−6 0.02 0.11 0.02 0.29 0.03 1.03 0.03 3.74
h = 2−7 0.07 0.35 0.07 1.00 0.09 3.54 0.11 13.24
h = 2−8 0.32 1.46 0.26 3.82 0.36 13.62 0.49 50.39
h = 2−9 1.30 6.48 1.07 15.80 1.46 56.15 1.88 195.28

(c) Solver costs in seconds

h = 2−6 0.77 0.77 1.49 1.48 2.79 3.17 4.59 7.65
h = 2−7 3.15 2.98 6.14 5.52 11.52 12.07 19.93 28.02
h = 2−8 12.67 12.23 25.89 23.23 49.11 47.69 75.97 111.20
h = 2−9 51.48 48.34 105.59 92.50 213.14 187.81 380.09 443.39

(d) Total costs in seconds

Table 3: CPU timings for Poisson’s equation on the quarter annulus using p-multigrid.
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APPENDIX D. CPU TIMES h-MULTIGRID
Table 4 shows the CPU timings with h-multigrid as a stand-alone solver for Poisson’s
equation on the quarter annulus when adopting ILUT and Gauss-Seidel (GS) as a smoother.
For each configuration, the assembly, factorization and solver costs are shown sepa-
rately. Note that, a small difference between the assembly costs can be observed when
adopting both smoothers, which are caused by random fluctuations. As Gauss-Seidel
does not require any setup costs, only the factorization costs for the ILUT smoother are
presented.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 0.47 0.50 1.11 1.08 2.31 2.16 4.32 4.14
h = 2−7 2.03 1.80 4.21 4.00 9.35 9.16 15.82 17.28
h = 2−8 7.68 7.17 17.33 17.64 36.17 33.53 64.25 68.57
h = 2−9 31.77 30.14 67.10 64.69 143.86 145.38 272.68 265.49

(a) Assembly costs in seconds

h = 2−6 0.13 − 0.35 − 0.71 − 1.22 −
h = 2−7 0.70 − 1.84 − 3.85 − 6.12 −
h = 2−8 2.93 − 8.98 − 18.74 − 32.94 −
h = 2−9 12.52 − 40.53 − 94.89 − 178.58 −

(b) Setup costs smoother in seconds

h = 2−6 0.01 0.07 0.02 0.23 0.02 0.98 0.04 4.24
h = 2−7 0.05 0.18 0.06 0.66 0.09 3.12 0.13 13.26
h = 2−8 0.21 0.70 0.21 2.49 0.34 10.85 0.49 45.14
h = 2−9 0.86 3.01 0.87 9.93 1.35 43.12 1.94 168.74

(c) Solver costs in seconds

h = 2−6 0.61 0.57 1.48 1.31 3.05 3.14 5.59 8.39
h = 2−7 2.78 1.98 6.11 4.66 13.29 12.28 22.07 30.54
h = 2−8 10.82 7.87 26.52 20.13 55.25 44.38 97.68 113.71
h = 2−9 45.15 33.15 108.50 74.62 240.10 188.50 453.20 434.22

(d) Total costs in seconds

Table 4: CPU timings for Poisson’s equation on the quarter annulus using h-multigrid with different smoothers.
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APPENDIX E. CPU TIMES WITH AN ALTERNATIVE SMOOTHER
Table 5 shows the CPU timings with p-multigrid adopting the smoother from [82] (SCMS)
and the ILUT smoother to solve Equation (4.18). For each configuration, the assembly,
factorization and solver costs are shown separately. Note that, a small difference be-
tween the assembly costs can be observed when adopting both smoothers, which are
caused by random fluctuations. The setup times of the ILUT smoother are significantly
higher compared to the setup costs of the SCMS smoother. On the other hand, solving
the resulting linear system of equations is significantly faster when adopting the ILUT
smoother.

p = 2 p = 3 p = 4 p = 5
ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 0.42 0.41 0.76 0.81 1.46 1.42 2.70 2.84
h = 2−7 1.62 1.62 3.04 2.94 6.26 5.91 11.74 11.22
h = 2−8 6.50 6.65 12.47 12.96 24.19 24.64 46.63 43.60
h = 2−9 26.91 25.86 47.85 49.10 93.50 94.84 184.05 178.78

(a) Assembly costs in seconds

h = 2−6 0.06 0.01 0.19 0.01 0.41 0.01 0.78 0.02
h = 2−7 0.30 0.02 0.96 0.03 2.20 0.04 4.64 0.05
h = 2−8 1.25 0.09 4.16 0.10 10.64 0.17 22.53 0.20
h = 2−9 5.26 0.34 17.44 0.37 44.30 0.66 120.64 0.77

(b) Setup costs smoother in seconds

h = 2−6 0.02 0.19 0.02 0.26 0.03 0.31 0.05 0.44
h = 2−7 0.06 0.62 0.09 0.77 0.09 1.08 0.16 1.46
h = 2−8 0.23 2.08 0.26 2.76 0.48 4.03 0.54 5.51
h = 2−9 0.80 9.05 0.99 11.54 1.82 16.72 2.02 22.31

(c) Solver costs in seconds

h = 2−6 0.50 0.61 0.97 1.08 1.90 1.74 3.53 3.30
h = 2−7 1.98 2.26 4.09 3.74 8.55 7.03 16.54 12.73
h = 2−8 7.98 8.82 16.89 15.82 35.31 28.84 69.70 49.31
h = 2−9 32.97 35.25 66.28 61.01 139.62 112.22 306.71 201.86

(d) Total costs in seconds

Table 5: CPU times (in seconds) for convergence with p-multigrid to solve Equation (4.18).
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APPENDIX F. CPU TIMES WITH AN ALTERNATIVE SMOOTHER
Table 6 shows the CPU timings with h-multigrid adopting the smoother from [82] (SCMS)
and the ILUT smoother to solve Equation (4.18). For each configuration, the assembly,
factorization and solver costs are shown separately. Note that, a small difference be-
tween the assembly costs can be observed when adopting both smoothers, which are
caused by random fluctuations. The setup times of the ILUT smoother are significantly
higher compared to the setup costs of the SCMS smoother. On the other hand, solving
the resulting linear system of equations is significantly faster when adopting the ILUT
smoother.

p = 2 p = 3 p = 4 p = 5
ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 0.30 0.30 0.73 0.71 1.60 1.62 3.24 3.19
h = 2−7 1.13 1.19 2.90 2.86 6.42 6.47 12.78 11.73
h = 2−8 4.56 4.88 11.63 11.59 26.06 25.86 48.84 49.67
h = 2−9 19.08 19.44 46.63 46.19 95.92 104.10 202.52 202.64

(a) Assembly costs in seconds

h = 2−6 0.08 0.01 0.25 0.01 0.63 0.02 1.02 0.02
h = 2−7 0.39 0.02 1.25 0.03 2.80 0.06 5.79 0.08
h = 2−8 1.66 0.09 5.71 0.12 14.23 0.22 27.66 0.27
h = 2−9 7.27 0.33 24.74 0.43 59.12 0.88 156.73 1.04

(b) Setup costs smoother in seconds

h = 2−6 0.03 0.07 0.06 0.11 0.09 0.16 0.14 0.25
h = 2−7 0.08 0.22 0.11 0.34 0.23 0.58 0.37 0.80
h = 2−8 0.25 0.96 0.34 1.45 0.91 2.22 1.11 3.03
h = 2−9 0.88 4.34 1.17 5.72 3.19 9.11 3.85 12.13

(c) Solver costs in seconds

h = 2−6 0.41 0.38 1.04 0.83 2.32 1.80 4.40 3.46
h = 2−7 1.60 1.43 4.26 3.23 9.45 7.11 18.94 12.61
h = 2−8 6.47 5.93 17.68 13.16 41.20 28.30 77.61 52.97
h = 2−9 27.23 24.11 72.54 52.34 158.23 114.09 363.10 215.81

(d) Total costs in seconds

Table 6: CPU times (in seconds) for convergence with h-multigrid to solve Equation (4.18).
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