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Problem area
Radar cross section prediction tech-
niques are used to analyze the radar
signature of military platforms
when the radar signature cannot
be determined experimentally. This
may be the case when, for exam-
ple, the platform is in the design,
development or procurement phase;
or when the platform belongs to a
hostile party.

For jet powered fighter aircraft, the
radar signature is dominated by the
contribution of the jet engine air in-
take for a large range of forward ob-
servation angles. The intake can be
regarded as a one-sided open large
and deep forward facing cavity. Al-
though the contribution of the outer
mould shape of the platform can be
efficiently and accurately computed
using scattering models, these can-
not be used to accurately compute
the contribution of the jet engine air
intake. The storage requirements
of the existing solution algorithm
for the jet engine air intake, are too
stringent which prohibits the ap-
plication to the relevant excitation

frequency band.

Description of work
To deal with the storage require-
ments of the existing solution algo-
rithm, alternative solution methods
are analyzed and compared to the
original formulation. More specifi-
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rate so called multigrid acceleration
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Summary

RADAR (Radio Detection and Ranging) is technology to detect aircraft and ships by using elec-

tromagnetic waves. A measure of this detectability is the radar cross section (RCS). Generally, it

is known that the contribution of the jet engine air intake of a modern fighter aircraft accounts for

the major part of the RCS of the total aircraft, if the platform is excited from the front. The prop-

erties of the scattered electric and magnetic fields can be described by the Maxwell equations

whereupon the vector wave equation can be derived. This equation is discretized by the finite

element method resulting in a large system of linear equations.

In the present implementation, the iterative Krylov subspace method used to solve this linear

system is the Generalized Conjugate Residual (GCR) method. As the system matrix is highly

ill-conditioned, the convergence of the GCR method is generally slow. To improve the conver-

gence rate, the shifted Laplace operator is used as a preconditioner for the discretized vector

wave equation. As the memory requirements become difficult to satisfy when the number of de-

grees of freedom increases, this solution procedure cannot be used for very large systems. To

overcome these difficulties, the existing algorithm will be modified such that a Multigrid solution

method is incorporated.

Multigrid can be classified as geometric or algebraic, depending on the structuredness of the un-

derlying grid. When the grid is unstructured or irregular, algebraic multigrid can be used. In this

case, the coefficients in the system matrix will be used to specify the coarse grid operator, the

prolongation and restriction operator, etc., without any information about the computational grid.

The algebraic multigrid algorithm chosen in this thesis is a Multilevel (ML) Preconditioning

Package developed by Sandia National Laboratories (see ref. 7).

Another favorable consequence of using multigrid for the preconditioner solve, is that it leads

to a constant preconditioner system. Retaining a constant preconditioner matrix throughout the

solution sequence, means that the system can be solved by a short recurrence method e.g. sta-

bilized Bi-Conjugate Gradient (Bi-CGSTAB) method or IDR(4), instead of the currently used

GCR algorithm.
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1 Introduction

RADAR (Radio Detection and Ranging) is technology that can be used to detect aircraft and

ships by using electromagnetic waves. As it is important to predict this detectability of platforms

in the development stage, theoretical radar signature predicting techniques must be used. A mea-

sure to quantify the radar signature is the so called radar cross section (RCS).

It is known that the jet engine air intake of a fighter aircraft, a forward facing cavity, accounts

for the major part of the RCS for a large angular region, when excited from the front side. The

electric field scattered by the jet engine air intake can be computed by solving the vector wave

equation obtained from Maxwell’s equation(s) with the appropriate boundary conditions. This

equation is discretized using a finite element discretization method resulting in a large system of

linear equations. The system matrix is complex valued with a sparsely and a fully populated part.

In the present implementation the discretized system is solved using a nested Krylov method.

More specifically, this system is preconditioned by the shifted Laplace preconditioner and the so

called preconditioner system is solved using the generalized conjugate residual (GCR) method.

As GCR is a so called long recurrence method, the greatest disadvantage of this method is the

storage requirement it imposes.

The purpose of this thesis is to investigate alternative solution methods for the preconditioner

system, namely a solution method based on multigrid. Multigrid (MG) can be classified as

geometric or algebraic, depending on the structuredness of the underlying grid. When the grid is

unstructured or irregular, algebraic multigrid (AMG) can be used. In this case, the coefficients in

the system matrix will be used to specify the coarse grid operator, the prolongation and restric-

tion operator, etc., without any information about the computational grid.

Another favorable consequence of using multigrid for the preconditioner solve, is that it leads

to a constant preconditioner system. Retaining a constant preconditioner matrix throughout the

solution sequence, means that the system can be solved by a short recurrence method e.g. sta-

bilized Bi-Conjugate Gradient (Bi-CGSTAB) method or IDR(4)1, instead of the currently used

GCR algorithm2.

1See Chapter 5
2Note that in the current implementation, GCR is used to solve the preconditioned and the preconditioner system
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Since the current project does not allow for the development of an algebraic multigrid method

from scratch and because there are several AMG black box methods freely available, the ob-

jective was to choose a black box solver that seemed most suitable to incorporate in the exist-

ing algorithm. According to Maclachlan and Oosterlee (ref. 14), the multigrid package with this

property was Sandia’s Multilevel (ML) preconditioning package (ref. 7).

This report is outlined as follows. In Chapter 2 the governing equations will be discussed, to-

gether with the finite element discretization method and the resulting linear system. The choice

of elements and basis functions is explained and some important properties of the system matrix

are stated.

Chapter 3 considers an iterative solution method of the discretized vector wave equation using

the multilevel algebraic multigrid algorithm (ML-AMG) from Sandia’s laboratories. The present

implementation is explained together with the structure of the preconditioner and preconditioned

system. The ML-AMG algorithm is applied to a small cavity problem and it is concluded that

multigrid is a very efficient solver for the preconditioner system. Unfortunately, the convergence

behaviour of the Krylov method is still unsatisfactory compared to the algorithm of Erlangga

(ref. 6).

In Chapter 4 the differences between the original algorithm of Erlangga (ref. 6) and the proposed

algorithm are analyzed. It turns out that the approximation of the discrete shifted Helmholtz op-

erator by its block upper triangular part, leads to a preconditioned system that still has an unfa-

vorable spectrum.

It also turns out that changing the Krylov method from Bi-CGSTAB to IDR(4), dramatically

improves the convergence. This is the subject of Chapter 5.

In Chapter 6 the influence of all the distinguishing features identified in Chapter 4 is analyzed.

Finally, Chapter 7 illustrates the improvements made in the algorithm for a cavity of intermediate

size, followed by conclusions and recommendations for future research.

16
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2 An algorithm for full wave analysis of cavity scattering

2.1 Introduction
In this chapter a numerical method for the analysis of cavity scattering is described, based on a

finite element discretization of the Maxwell equations. The focus of this project is on the effi-

cient solution of the linear system that results after discretization of the Maxwell equations.

In Section 2.2 the Maxwell equations are introduced after which the dimensionless form is pre-

sented in Subsection 2.2.2. The application of the FEM using zeroth order basis functions, un-

fortunately leads to a large number of unknowns for a large scatterer and has a low convergence

rate. To overcome these problems, higher order basis functions can be used. The finite element

method, using higher order basis functions to discretize the system, is the subject of Section 2.3.

This chapter will be completed with some properties of the resulting linear system in Section 2.4.

2.2 Physical model
In the introduction of this thesis it is already mentioned that for forward observation angles, the

field scattered by jet engine air intake of a modern fighter aircraft accounts for the main part of

the total scattered field for an electromagnetic wave that excites the platform. This air intake is

a deep open cavity and is characterized by a large Length/diameter ratio: L
d > 3. Because of

this large ratio, it is not possible to use high frequency asymptotic methods to approximate the

solution and therefore full wave methods will be used (see Van der Heul, Van der Ven and Van

der Burg, ref. 4).

2.2.1 Maxwell equations
In 1873, James Clerk Maxwell coupled the work of several scientists, covering the equations of

electromagnetism. Below they are stated for a general domain Ω in differential form1:

∇∗ × E∗ = −∂
∗B∗

∂∗t∗
, (2.2.1)

∇∗ ×H∗ =
∂∗D∗

∂∗t∗
+ J ∗, (2.2.2)

∇∗ · D∗ = Q∗, (2.2.3)

∇∗ · B∗ = 0, (2.2.4)

∇∗ · J ∗ = −∂
∗Q∗

∂∗t∗
. (2.2.5)

1In this thesis dimensionfull variables are denoted with a *.
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Here the following variables are used with their S.I. unit between brackets:

E∗ = electric field intensity [ V
m ],

D∗ = electric flux density [ C
m2 ],

H∗ = magnetic field intensity [ A
m ],

B∗ = magnetic flux density [Wb
m2 ],

J ∗ = electric current density [ A
m2 ],

Q∗ = electric charge density [ C
m3 ],

t∗ = time [s].

From this point on, the assumption is made that the field quantities above are harmonic

oscillating functions with an angular frequency ω∗, so called time-harmonic functions. ω∗ is de-

fined as ω∗ = 2πf∗, with f∗ the frequency measured in hertz (Hz). In the current application

discussed in this thesis, f∗ = 10 GHz.

Let F∗(x∗, t∗) denote a time-harmonic function denoted by:

F∗(x∗, t∗) = F∗(x∗)ejω
∗t∗ , (2.2.6)

with j2 = −1. Then the derivative of F∗ with respect to time t∗ becomes:

∂F∗(x∗, t∗)
∂∗t∗

= jω∗F∗(x∗, t∗). (2.2.7)

Under this assumption for the other variables above, the general equations (2.2.1), (2.2.2) and

(2.2.5) above are rewritten as:

∇∗ × E∗ = jω∗B∗, (2.2.8)

∇∗ ×H∗ = jω∗D∗ + J∗, (2.2.9)

∇∗ · J∗ = −jω∗q∗, (2.2.10)

where the quantities E∗,D∗,B∗,H∗, J∗, and q∗ are the phasor quantities corresponding to the

variables defined before.

Additional relations are needed to close the problem. These so called constitutive relations de-

scribe the macroscopic properties of the medium of interest. They are given by:

D∗ = ε∗(x∗)E∗, (2.2.11)

B∗ = µ∗(x∗)H∗, (2.2.12)

J∗ = σ∗(x∗)E∗, (2.2.13)
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where the parameters ε∗, µ∗ and σ∗ represent:

• ε∗ = ε∗(x∗) the permittivity: [farads
meter ],

• µ∗ = µ∗(x∗) the permeability: [henrys
meter ],

• σ∗ = σ∗(x∗) the conductivity: [ siemens
meter ].

These parameters are written as a product of the vacuum value ε∗0 and a relatively constant εr.

So, e.g. ε∗ = ε∗0εr. For simple problems, these parameters are constant. For so called radar

absorbing materials, the permittivity and permeability can be complex valued. See appendix A

for the vacuum values and the relations to the standard SI-units.

When equations (2.2.8), (2.2.9), (2.2.11) and (2.2.12) are combined, the vector wave equation in

the presence of a source J∗ 6= 0 can be derived:

∇∗ ×

(
1
µ∗
∇∗ × E∗

)
− ω∗2ε∗E∗ = −jω∗J∗. (2.2.14)

When the following two definitions are used:

1. free-space wavenumber k∗0 := ω∗
√
ε∗0µ

∗
0 and

2. free-space impedance Z∗
0 :=

√
µ∗

0
ε∗0

,

Equation (2.2.14) can be rewritten as:

∇∗ ×

(
1
µ∗r
∇∗ × E∗

)
− k∗20 εrE∗ = −jk∗0Z∗

0J. (2.2.15)

If there is no source i.e. J∗ = 0, as is the case inside the cavity, the vector wave equation is

called homogeneous.

To define a well posed boundary value problem, appropriate boundary conditions have to be

imposed. Therefore, it is necessary to define either the tangential electric field or the tangential

magnetic field on the boundary of the domain (see Balanis, ref. 3). The boundary of the cavity

consists of the aperture (Saperture) and the mantle (Smantle) of the cavity (see Figure 2.2.1).

Firstly, the boundary conditions are stated in equations (2.2.16) and (2.2.17) and afterward, this

section will be ended with some notational issues:

(n̂×E∗)Smantle
= 0, (2.2.16)

(n̂×H∗
inc)Saperture = 4n̂×

{
∇∗2 · N∗ + k∗20 N∗

jω∗µ∗0

}
, (2.2.17)
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where:

1. the quantity K∗(r) = n̂× E∗(r) is a fictitious magnetic current,

2. H∗
inc(r) denotes the incident magnetic field,

3. N∗(r) = K∗(r) ∗G(r, r′) =
∫ ∫

Saperture
K∗(r′)G(r, r′)dr′ =

∫ ∫
Saperture

[n̂× E∗(r′)dr′],
4. G(r, r′) is the three dimensional Green’s function:

G(r, r′) = e−jk|r−r′|

4π|r−r′| ,

5. ‘*’ denotes the three-dimensional convolution.

In the formulation of boundary condition (2.2.17) it is assumed that the aperture of the cavity

is surrounded by an infinite groundplane. Through the presence of the groundplane, the electric

current distribution on the aperture vanishes. In the next subsection the procedure to make the

vector wave equation dimensionless will be discussed.

Fig. 2.2.1 Schematic view of cylindrical cavity with length L and cross section diameter d.
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2.2.2 Dimensional analysis
Dimensional analysis is a conceptual tool that can be used to reduce the number of parameters

in a given system of equations. In this report, dimensional analysis will be applied to the vector

wave equation to determine which parameter(s) characterize the problem.

The important parameters which are made dimensionless are stated. There are four scale factors

used to transform (→) the variables, parameters and operator:

• length: R,

• mass: M ,

• time: T and

• electric current: I .

Quantities:

E∗ : electric field intensity → E := E∗ T
3I

RM
.

J∗ : electric current density → J := J∗
R2

I
.

Position Variables:

Define x, y, z =
x∗

R
,
y∗

R
,
z∗

R
respectively.

Parameters:
• free space wavenumber k∗0 → k0 = k∗0R.

• intrinsic free space impedance Z∗
0 → Z0 := Z∗

0

I2T 3

MR2
.

Operator:
gradient ∇∗ → 1

R
∇.

Using these definitions, the vector wave equation can be rewritten in the following dimensionless

form:

∇×∇×E− k2
0εrE = −jk0Z0J. (2.2.18)

From this dimensionless form it is clear that the most important parameter in the left-hand side

of this equation is the dimensionless wavenumber k0. It can be shown that a (deep) cavity has

two characteristic lengths. One is the depth and the second one is the diameter d. It turns out that

the diameter is the most important characteristic length scale: the electric field inside the cavity

is directly related to the electric field modes that exist inside the cross section. Therefore, k0 is

defined as k0 := dk∗0 . The next subsection considers the dependency of the so called radar cross

section on the dimensionless wavenumber.
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2.2.3 Dependence of RCS on the dimensionless wavenumber
According to Knott et al. (ref. 5), the RCS of a scattering body has a strong relationship with the

non-dimensional wavenumber k0 (scaled by a characteristic length L). The following classifica-

tion for the RCS, depending on the value of k0, is made:

1. Rayleigh region: 0.1 < k0 < 1.

In this region the geometry is not a very important parameter. Only the characteristic di-

mensions of the object are of importance.

2. Resonance region: 1 < k0 < 10.

In this region the geometry has an important role in the interaction between the fields scat-

tered by different components of the body.

3. Optics region: 10 < k0 < 100.

In this region there is almost no interaction between different components of the scattering

body.

See Figure 2.2.2 for an illustration.
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Resonance region

Optics region

Rayleigh region

Fig. 2.2.2 The RCS σ of a metallic sphere with radius a illustrates the three scattering regions.

From a computational point of view, the following discussion about a comparison in the dimen-

sionless wavenumber is included. Suppose that the scattering by a certain body is analyzed for

two dimensionless wavenumbers k1 and k2 corresponding to two different frequencies of the in-

cident electromagnetic waves. Furthermore, assume that k1 > k2.
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It is worth mentioning that in this case with k1 > k2, there are two important things to note:

1. For equal accuracy of the solution, the total number of unknowns N required for dis-

cretization in case k1 will increase compared to case k2 with factor
(
k1

k2

)3

.

2. There is a negative effect on the indefiniteness2 of the system matrix. See Subsection 3.2.1

for more about this subject.

Indefinite matrices are not favorable because:

- The property of indefiniteness has a negative effect on the convergence rate of iterative

methods used to solve a system of linear equations.

- Standard multigrid methods do not converge (see Chapter 4 of Abdoel, ref. 1).

The subject of the next section is the finite element discretization method.

2.3 Finite element discretization method
From the ongoing research on computational electromagnetics it is known that the following nu-

merical methods are the most popular to solve electromagnetic scattering problems: the method

of moments (MOM)3, the finite difference method (FDM) and the finite element discretization

method (FEM)4. In problems with inhomogeneous materials, the MOM has the disadvantage

that the computational complexity increases rapidly because of the usage of a volume formula-

tion, rather than a surface formulation and a full matrix structure is the result. The application of

a FDM however, results in a sparse system which is computationally efficient. The major draw-

back of FDM’s is that they rely on rectangular grids. The FEM can remove all of these difficul-

ties associated with the MOM and the FDM. Another great favorable point associated with the

FEM is that it can be used in problems where discontinuous coefficients are involved. In compu-

tational electromagnetics, these problems will occur in the case of discontinuities in the material

properties (permittivity and permeability). To handle these discontinuities, the so called weak

formulation is used.

In order to combine efficiency and accuracy in the FEM, higher order vector basis functions will

be used. Important in higher order methods are the higher order approximations of the geometry

and the higher order representation of the unknown field quantities. For the FEM these unknown

quantities can be the electric or magnetic field as seen in the Maxwell equations.

To avoid the occurence of spurious solutions and to ensure that the numerical solution obeys the

correct interface combinations at material interfaces, edge elements or so called Nedelec ele-

ments are used.

2See for the definition of definiteness Section 2.4.
3See Chapter 14 of Jin (ref. 13).
4See Jin (ref. 13).
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In the context of the FEM used here, the higher order vector basis functions proposed by Graglia,

Wilton and Peterson (ref. 16) are used. The following setup is stated:

• Consider a curvilinear tetrahedral element in the xyz-space5.

• Tetrahedra can be mapped to a rectilinear element in the ξ-space. The mapping is given

by:

r =
10∑

j=1

ϕj(ξ1, ξ2, ξ3, ξ4)rj .

• The shape functions ϕj are defined in terms of the parametric coordinates ξ1, ξ2, ξ3, ξ4 as:

ϕ1 = ξ1(2ξ1 − 1) ϕ2 = ξ2(2ξ2 − 1) ϕ3 = ξ3(2ξ3 − 1)

ϕ4 = ξ4(2ξ4 − 1) ϕ5 = 4ξ1ξ2 ϕ6 = 4ξ1ξ3
ϕ7 = 4ξ1ξ4 ϕ8 = 4ξ2ξ3 ϕ9 = 4ξ3ξ4

ϕ10 = 4ξ2ξ4
Note that ξ1 + ξ2 + ξ3 + ξ4 = 1; ξ = (ξ1, ξ2, ξ3, ξ4).

• The i-th face of the dimensional tetrahedra is the zero-coordinate surface for the

normalized coordinate ξi.

• The edges of the faces of the tetrahedra must be consistently numbered for successful im-

plementation (see edge definition in Table 1 and Figure 2.3.1).

• The four nodes of the tetrahedra are labeled as (γ, β,m, n) and the face opposite node γ is

called γ as well.

• Normalized coordinate ξi varies linearly across the element attaining the value 1 at the face

opposite the zero-coordinate surface (e.g.: ξm or ξn has value 1 at node m or n and 0 on

face m or n).

• An independent set of three coordinates is selected and indexed in a “right-handed” sense

such that ∇ξ3 · (∇ξ1 ×∇ξ2) is strictly positive.

• The vector basis function associated with the edge shared by faces γ and β is given by:

Nγβ(r) = ξn∇ξm − ξm∇ξn. (2.3.1)

• It can be shown that the basis functions Nγβ have tangential components only on faces γ

and β and they guarantee the continuity of the tangential field, while allowing the normal

component of the field to be discontinuous, as occurs at the interface between two media

with different permeability.

In the literature, the vector basis functions defined above are referred to as zeroth order basis

functions, but obviously that would imply that no grid convergence (O(1)) would be achieved.

5Tetrahedral elements are the natural (simpler) extension of triangular elements in two dimensions.
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Fig. 2.3.1 The ordering of Table 1 is used here to number the edges of the tetrahedron.

Edge i Node n1 Node n2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

Table 1 Edge definition for a tetrahedral element.

These zeroth order basis functions are used to define the higher order interpolatory vector basis

functions as follows. The zeroth order basis functions Nγβ are multiplied by a set of interpola-

tory polynomial functions, which are complete to specified order, say p.

In this setup, the polynomials of Silvester are used:

Ri(p, ξ) =

{
1
i!

∏i−1
k=0(pξ − k), 1 ≤ i ≤ p,

1, i = 0.
(2.3.2)

Using these Silvester polynomials to define the shifted Silvester polynomials results in:

R̂i(p, ξ) = Ri−1

(
p, ξ − 1

p

)
. (2.3.3)

These polynomials are used to effect scalar Lagrangian interpolation on the canonical elements

as follows:

α̂ijkl(ξ) = R̂i(p+ 2, ξ1)R̂j(p+ 2, ξ2)R̂k(p+ 2, ξ3)R̂l(p+ 2, ξ4). (2.3.4)

To define the higher order vector basis functions, the following definitions are made:

• the value `(ijkl)
γβ = |`γβ | at the interpolation point

ξγβ
(ijkl) =

(
i

p+ 2
,

j

p+ 2
,

k

p+ 2
,

l

p+ 2

)
,
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with i+ j + k + l = p+ 2.

• the normalization factor Kγβ
ijkl defined as6:

Kγβ
ijkl =

p+ 2
p+ 2− iγ − iβ

`
(ijkl)
γβ ,

where iγ ∈ {i, j, k, l}, γ ∈ {1, 2, 3, 4} and similarly for iβ.

Using all these preparations the higher order interpolatory vector basis functions are given by:

Nγβ
ijkl(r) = Kγβ

ijkl

(p+ 2)2ξγξβα̂ijkl(ξ)
iγiβ

Nγβ(r) (2.3.5)

Fig. 2.3.2 An example of the discretization of the interior of an S-shaded cavity using tetrahe-

dral elements.

This subsection will be concluded with some remarks about the number of degrees of freedom for

the basis functions of order p on a tetrahedron (= number of basis functions needed). Equation

(2.3.5) provides one basis function for an interpolation node on an edge of the tetrahedron. As a

face has three edges, one face is associated with three basis functions. However, the tangential

field on a face is spanned by two independent basis functions and therefore one of the three basis

functions associated with a face must be discarded. Taking a closer look at an interior interpola-

tion node, results in six basis functions among which there are obviously only three independent

ones. Adding all basis functions results in 1
2(p + 1)(p + 3)(p + 4) basis functions/degrees of

6The ranges of γ and β are such as to include the six zeroth order basis functions in (2.3.1) i.e. γ < β.
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freedom. In the current application p = 2 resulting in 45 basis functions, needed for the second

order tetrahedral element.

A final remark about the elements used in the current application. In the setup proposed by Graglia

et al. (ref. 16), curvilinear elements are considered. In the current application however, rectilin-

ear elements are used, to improve the efficiency of the algorithm.

In the next subsection the formulation of the linear system is considered.

2.3.1 Formulation of the linear system
In this subsection it is explained how to obtain the linear system which must be solved. In ap-

plying the FEM, two things must be realized. First, inside the cavity volume the space is divided

into small elements; in the current application tetrahedral elements are used. The surface field is

discretized using compatible triangular elements. For the second order discretization used here,

this leads to the following expansion of the electric field inside the volume elements (e) and one

on the surface elements (s):

Ee(x) =
45∑
i=1

Ee
i N

e
i (x) = {Ee}T {Ne(x)}, (2.3.6)

ẑ ×Es(x) =
15∑

k=1

Ee
kS

s
k(x) = {Ee}T {Se(x)}, (2.3.7)

where Se
k = ẑ ×Ne

i is a compatible expansion.

Substituting7 these relations in the functional and applying Ritz’s method, results in the follow-

ing functional:

F =
1
2

M∑
e=1

{Ee}T [Ke]{Ee}+
1
2

Ms∑
s=1

Ms∑
t=1

{Es}[P st]{Et} −
Ms∑
s=1

{Es}T {bs}. (2.3.8)

7Note that {.} is used to denote a vector with elements that are a vector itself.
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Here the following is used:

? M = total number of volume elements in the cavity.

? Ms = total number of surface elements on the mantle.

?Matrix [Ke] =
∫∫∫

V e

[
1
µr
{∇ ×Ne} · {∇ ×Ne} − k2

0εr{Ne} · {Ne}

]
dV. (2.3.9)

? {bs} = −2jk0Z0

∫∫
Ss

{Ss ·Hinc}dS. (2.3.10)

?Matrix [P st] is obtained from the boundary integral and is defined as

[P st] = 2
∫∫

Ss

{∇ · Ss}

{∫∫
St

{∇′ · St}TG0dS
′

}
dS−

2k2
0

∫∫
Ss

{Ss} ·

{∫∫
St

{St}TG0dS
′

}
dS. (2.3.11)

The integrals [Ke] and {be} are computed numerically by Gauss’ Quadrature formulas and for

the matrix [P st] Duffy’s method must be used to handle the singularity in the Green’s function.

The next subsection deals with the accuracy of the computed RCS pattern by considering the so

called dispersion error.

2.3.2 Resolution of the field
It can be shown that the accuracy of the computed RCS pattern is dominated by the dispersion

error ε in the electric field on the aperture, given by8:

ψ̃out = ψout + ε.

Here ψout denotes the exact phase difference after reflection through the cavity and ψ̃out the

computed phase difference which differs from the exact one. It is very important to note the pos-

sibility of waves to fortify or to partially cancel each other. In both cases the result is a specific

distribution of maximal and minimal values of the radar cross section. In the case that waves for-

tify each other, the maximal value will be different compared to the case that waves nearly cancel

each other. When the dispersion error is high, the interference will be predicted incorrectly and

hence the accuracy of the computed RCS pattern will be poor.

In the following, the influence of the dispersion error is illustrated schematically in the follow-

ing way (Figure 2.3.3). In the left picture a wave front enters the cavity with incidence angle φ.

Two waves (red and blue) with initial phase difference ψin = λ
4 are followed. After reflection

through the cavity there is an accumulated phase error ε. In the middle picture the exact phase
8For a more detailed analysis of this subject, the reader is referred to Hooghiemstra (ref. 9, Chapter 6).
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difference ψout is depicted and in the right figure the computed phase difference ψ̃out. Also note

the difference in the maximal and minimal values.

Wave front
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Fig. 2.3.3 Left: The wave front enters the cavity with incidence angle φ. Two waves with initial

phase difference ψin = λ
4 are followed. After reflection through the cavity there is an

accumulated phase error ε – Middle: The exact phase difference ψout – Right: The

computed phase difference ψ̃out.

The challenge here is to minimize the dispersion error because in the current application there is

a deep cavity: L � d. In this case the dispersion error accumulates and leads to inaccurate re-

sults. One way to achieve this has already been discussed, namely using higher order elements.

To get an idea of the total number of unknowns needed for a specified dispersion error, the fol-

lowing outline is given.

As already seen in Subsection 2.2.2, the dimensionless wavenumber k0 is very important. When

the scattering object size and the radar frequency f are known, it holds that:

λ =
2dπ
k0

.

Here d denotes the diameter of the geometrical cross section of the cavity. According to Jin et al

(ref. 11), the maximum phase error per wavelength is an important quantity in this analysis. It is

defined as:

δp =

(
λ

h∗

)−2(p+α)

,

where:

• h denotes the mesh size and p the order of the basis functions used,

• h∗ :=
h

p+ 2
denotes the actual spacing of the unknows,

• λ

h∗
is the number of unknowns per wavelength and

• α ∈ [1, 2] is the structuredness of the grid (α ≈ 1 for a structured mesh).

According to Hooghiemstra (ref. 9) the number of elements per wavelength required to achieve a
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accumulated dispersion error ε is:

D(p) =
λ

h
=

(
2L

ελcosφ

) 1
2(p+α) 1

p+ 2
.

Knowing λ and thus D(p) gives h. Using h as input parameter for the mesh generator, results in

the grid which can be used in the problem.

In the final section of this chapter some properties of the linear system are discussed.

2.4 Properties of the linear system
After applying all the operations described in the previous sections, the final discretized system

can be written in the form: Au = f . In this section some properties of the matrix A from the

current application will be listed and discussed:

• Matrix A consists of a sparse part and fully populated part. See Figure 2.4.1.
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# nonzeros = 19189

Sparsity pattern of the discretization matrix A

Fig. 2.4.1 A ∈ CN×N , N = 723, h = 0.25. Dimensions rectangular cavity: 1.5λ × 1.5λ × 0.6λ.

Fully populated block has dimension 99. The total number of nonzeros is 19.189.

The complex valued part of the matrix consists of the unknowns on the aperture

only.

• Matrix A is ‘nearly’ symmetric, but not Hermitian. The sparse part is symmetric as it orig-

inates from the Galerkin FEM inside the cavity: the test function equals the basis function.

The fully populated part however, is not completely symmetric because this part is the re-

sult of the discretization of the boundary integral in equation (2.3.11), in which the outer

and inner integrals are evaluated differently when both are evaluated on the same triangu-

lar element. Although A is a complex valued matrix, it is not Hermitian (or self-adjoint).

This reduces the choice of Krylov subspace methods that can be used.
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• Matrix A is ill conditioned and hence the convergence of iterative methods is negatively

affected. Ill conditioned means a very large condition number κ(A). The condition num-

ber with respect to some norm ||.|| is defined as:

κ(A) = ||A||.||A−1||.

Here A ∈ CN×N and A nonsingular. This definition depends on the choice of the norm.

• A matrix M is called positive (semi)definite if 〈x,Mx〉 > (≥)0 and negative (semi)definite

if 〈x,Mx〉 < (≤)0. The consequence of this definition9 is that for symmetric or Hermitian

matrices M , the real part of the eigenvalues of M are greater than (or equal to) zero or the

real part of the- eigenvalues of M are less than (or equal to) zero.

The matrix A in the current application has eigenvalues with both positive and negative

real part. A matrix with this property is said to be indefinite. The property of indefiniteness

of the matrix limits the choice of and has a negative effect on the convergence of iterative

solution methods that can be used to solve the linear system Au = f .

In the next chapter an iterative solution method for the linear system will be presented.

9〈., .〉 denotes the inner product.
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3 Iterative solution of the discretized vector wave equation

3.1 Introduction
In this chapter iterative solution methods for the linear system

Au = f (3.1.1)

will be considered with A ∈ CN×N a square nonsingular matrix, u, f ∈ CN and N the total

number of unknowns. Here A results from the discretization of the vector wave equation with

global radiation boundary conditions as described in Chapter 2. Section 3.2 starts with an out-

line of the present implementation (see Hooghiemstra, 10). The structure and the solution of the

preconditioner system will be discussed and Section 3.3 deals with the incorporation of algebraic

multigrid in the existing algorithm. This chapter will be concluded with some numerical results

and conclusions based on the performed experiments.

3.2 Present implementation
The starting point for this thesis is the present implementation by Hooghiemstra (ref. 10). The

solver is a nested preconditioned GCR-algorithm. A block upper triangular preconditioner is

constructed from the blocks of the finite element discretization matrix A combined with the

shifted Laplace preconditioner. The GCR method has long recurrences and therefore, an explicit

orthonormal basis for the Krylov subspace has to be constructed in every iteration which can lead

to unacceptable storage requirement, for large dimension N and large number of iterations. In

the next subsection the structure of the preconditioner is considered.

3.2.1 Structure of the preconditioner
This subsection gives an overview of the structure of the preconditioner used by Hooghiemstra

(ref. 10). The structure of the system matrix A is repeated here for convenience (recall Figure

2.4.1):

A =

[
A11 A12

A21 A22

]
, (3.2.1)

with A11 ∈ CM×M , A22 ∈ Cm×m,m�M.

Note that A22 results from the discretization of the boundary conditions. For the prescribed

global radiation conditions, this block is a full matrix. The other matrices stem from the inner

region and are sparsely populated.

The system matrix has complex eigenvalues with both positive and negative real part. These

complex eigenvalues are caused by the global absorbing boundary conditions imposed on the
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boundary. When Dirichlet boundary conditions are imposed on the whole boundary and when

real valued material properties and a pure real shift for the shifted Laplace preconditioner are

considered, the eigenvalues of the system are real valued and may be positive or negative. In this

case, the system matrix becomes indefinite. To get a more favorable spectrum, a (block)preconditioner

matrix M is chosen. Hooghiemstra (ref. 10) used the following preconditioner matrix:

M =

[
M1 A12

0 A22

]
. (3.2.2)

Here M1 results from the finite element discretization of the shifted Laplace operator in vector

form:

W(β1,β2) := −4−k̂2
0, (3.2.3)

where k̂0 is the shifted wavenumber defined as: k̂0 = (β1 + ıβ2)k0, β1, β2 ∈ R and ı2 = −1.

In this thesis another formulation of the shifted Laplace operator in vector form is proposed:

M(β1,β2) := −4−(β1 + ıβ2)k2
0, β1, β2 ∈ R and ı2 = −1. (3.2.4)

The discretization of the latter formulation is denoted by:

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, (3.2.5)

and the newly proposed preconditioner looks like:

Mnew =

[
Ã11 Ã12

0 Ã22

]
. (3.2.6)

Note that the preconditioner in Equation (3.2.2) combines a block upper triangular matrix with

the shifted Laplace preconditioner. The system Ms = r is referred to as the preconditioner

system and is solved in two steps:

• first solve A22s
k
2 = rk−1

2 with a precomputed LU-decomposition of A22. Here s denotes

a search direction and r denotes the residual. This LU-decomposition is cheap to perform

because block A22 is fully populated and very small compared to the other blocks (see

Equation (3.2.1)). Furthermore, this decomposition is computed only once.

• second solve: M1s
k
1 = rk−1

1 −A12s
k
2 .

Note that the matrix M1 is a large sparse matrix and that the preconditioner system to be solved

is a large linear system. Therefore, the next subsection starts with the solution procedure for the

preconditioner system.
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3.2.2 Solution of the preconditioner system
Hooghiemstra (ref. 10) used GCR as solution method for the preconditioner system

M1s
k
1 = rk−1

1 A12s
k
2. (3.2.7)

See the resulting algorithm below:

Algorithm: Preconditioned generalized conjugate residual method

Start GCR-1 for solving Ax = b

Compute initial residual r0 = b−Ax0 for some initial guess x0

for k = 1, 2, . . . , max k do
Solve A22s

k
2 = rk−1

2 using a precomputed LU-decomposition for A22 :

Solve L22w = rk−1
2 (forward substitution)

Solve U22s
k
2 = w (backward substitution)

Start GCR-2 for solving M1s
k
1 = rk−1

1 −A12s
k
2

Compute initial residual r̃0 = rk−1
1 −A12s

k
2 for initial guess s̃0

for j = 1, 2, . . . , max j do
s̃j = r̃j−1

ṽj = A11s̃
j

call orthormalize(j, ṽ1, . . . , ṽj , s̃1, . . . , s̃j)

yj = yj−1 + (ṽj , r̃j−1)s̃j

r̃j = r̃j−1 − (ṽj , r̃j−1)ṽj

end for
sk
1 = yj

sk = (sk
1, s

k
2)

T

vk = Ask

call orthonormalize(k, v1, . . . , vk, s1, . . . , sk)

xk = xk−1 + (vk, rk−1)sk

rk = rk−1 − (vk, rk−1)vk

end for

A more elaborate discussion of the fine tuning of the shift parameters for this nested GCR algo-

rithm, is given in Chapters 4 and 5 from Hooghiemstra (ref. 10). This approach was chosen in

an exploratory study to evaluate the effectiveness of the shifted Laplace preconditioner for the

vector wave equation.

It turns out that using GCR for the preconditioner solve leads to an inefficient solver due to the

storage requirements. It is expected that using an algebraic multigrid method for the precondi-
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tioner solve, in the same way geometric multigrid was included in the robust and efficient algo-

rithm of Erlangga (ref. 6), will significantly improve the efficiency of the existing solver. It is

important to emphasize that in this thesis, algebraic multigrid will be used to approximate the

inverse of the preconditioner using one multigrid cycle. So whenever the terms ‘preconditioner

solve’ are used, one algebraic multigrid approximation of the inverse of the preconditioner ma-

trix is meant. The next subsection considers the solution of the preconditioned system.

3.2.3 Solution of the preconditioned system
Recall the linear system Ax = b to be solved and the preconditioner matrix M in Equation

(3.2.2). The preconditioned system is then denoted by:

M−1Ax = M−1b. (3.2.8)

In the present implementation the Krylov solver for this linear system is GCR. As already men-

tioned, GCR is a long recurrence method, hence the complete Krylov basis has to be stored dur-

ing the entire solution process. Note that Hooghiemstra (ref. 10) also tried to combine his algo-

rithm with the truncated and restarted GCR method, but the results are not favorable for these

approaches. As the total number of unknowns in the current application is very large, the stor-

age requirements for the Krylov basis are unacceptably high. Because the preconditioner solve

is also performed by GCR, there is no constant preconditioner. Therefore, a long recurrence

method has to be used to solve the preconditioned system.

When the preconditioner solve is performed by algebraic multigrid, the preconditioner will be

constant. The preconditioned system can then be solved by a short recurrence method. It is ex-

pected that the Bi-CGSTAB method will be a good alternative for the current GCR algorithm.

The incorporation of algebraic multigrid in the existing algorithm is the subject of Section 3.3.

3.3 Incorporation of algebraic multigrid in the existing algorithm
As already mentioned in the previous section, the idea is to incorporate multigrid in the existing

algorithm in the same way as Erlangga (ref. 6) did to obtain his efficient algorithm. As there is

no structured grid available, the classical geometric multigrid methods cannot be used. There-

fore, an algebraic multigrid method (AMG) is chosen for incorporation in the current applica-

tion. More specifically, Sandia’s Multilevel (ML) preconditioning package is chosen. Note that

ML will only be used to perform the preconditioner solve. The next subsection considers the

multilevel-AMG algorithm and Subsection 3.3.2 discusses the limitations due to the application

of this multilevel-AMG algorithm.
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3.3.1 The ML-AMG algorithm
The multilevel AMG (ML-AMG) package is one of Sandia’s laboratories1 main multigrid pre-

conditioning packages. It is possible to generate a so called matlab executable file (mlmex-file)

in order to easily incorporate algebraic multigrid in Matlab for testing purposes. Using this mlmex-file

in the Matlab environment it is possible to test the multigrid performance, the effect of the differ-

ent multigrid parameters and to easily perform the preconditioner solve. More details about ML

are included in Appendix C.

3.3.2 Limitations of application of ML
The current implementation of the ML algorithm can only perform computations in real valued

arithmetic. The current application however, has a complex valued system matrix and a com-

plex valued right-hand side. The complex valued matrix results from the boundary conditions, a

possible imaginary shift in the shifted Laplace preconditioner and the possible complex valued

material properties (permittivity and permeability). The complex valued right-hand side is due to

the boundary conditions.

When only real valued material properties (materials without damping) and a real shift

(β1 ∈ R, β2 = 0) are considered, the only complex valued entries in the system matrix A are due

to the boundary conditions. These complex entries can be reordened such that they are grouped

into block A22. As can be seen in previous section, block A22 is used to form the right-hand side

for the preconditioner solve, which will be performed by ML. Consider the following algorithm:
1http://trilinos.sandia.gov/
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Algorithm: Preconditioned Bi-orthogonal conjugate gradient stabilized method

Start Bi-CGSTAB for solving Ax = b

Compute initial residual r0 = b−Ax0 for some initial guess x0

Choose r̃0 such that 〈r̃0, r0〉 6= 0, e.g. r̃0 = r0

Set ρ0 = α = ω = 1

Set v0 = p0 = 0

for k = 1, 2, . . . , max k do
ρk = 〈r̃0, rk−1〉
β = ρkα

ρk−1ωk−1

pk = rk−1 + β(pk−1 − ωk−1vk−1)

Solve A22s
k
2 = pk

2 using a precomputed LU-decomposition for A22 :

Solve L22w = pk
2 (forward substitution)

Solve U22s
k
2 = w (backward substitution)

Start ML-AMG for solving M1s
k
1 = pk

1 −A12s
k
2

Solve M1s̃
k
r = real(pk

1 −A12s
k
2)

Solve M1s̃
k
i = imag(pk

1 −A12s
k
2)

Set sk
1 = s̃k

r + ιs̃k
i

Set s = [sk
1, s

k
2]

vk = Ay

α = ρk

〈r̃0,vk〉
s = rk−1 − αvk

Solve A22s
k
2 = sk

2 using a precomputed LU-decomposition for A22 :

Solve L22w = sk
2 (forward substitution)

Solve U22s
k
2 = w (backward substitution)

Start ML-AMG for solving M1s
k
1 = sk

2 −A12s
k
2

Solve M1z̃
k
r = real(sk

2 −A12s
k
2)

Solve M1z̃
k
i = imag(sk

2 −A12s
k
2)

Set z = z̃k
r + ιz̃k

i

Set t = z

ωk = 〈t,s〉
〈t,t〉

xk = xk−1 + αy + ωz

rk = s− ωkt

end for
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Conclusion: when the matrix used by the ML solver is real valued and the right-hand side is

complex valued, it is possible to use ML and produce a complex valued result by combining the

real part of the solution with the imaginary part. As the system matrix in the current application

is not real valued for absorbing materials (permittivity and permeability) and a complex shift,

it is only possible to use ML in testcases with a real shift in the shifted Laplace preconditioner.

Section 3.4 contains the numerical results to analyze the incorporation of multigrid in the exist-

ing algorithm.

3.4 Numeric results
This section considers a cavity scattering problem to illustrate the use of the ML-AMG algorithm

for the preconditioner solve. Subsection 3.4.1 describes the model problem and illustrates the

results obtained for the numerical experiments.

3.4.1 A cavity scattering model problem
The cavity used for the experiments performed in this subsection has dimensions 1.5λ × 1.5λ ×
0.6λ (see Figure 3.4.1). The wavenumber k0 is chosen equal to 2π and therefore λ = 1. The

Krylov subspace method used here is the Bi-CGSTAB method and the ML-AMG algorithm is

used to perform the preconditioner solve. Due to the limitations of the ML-AMG algorithm,

only real valued shifts can be used. Therefore, M(−1,0) is chosen as shifted Laplace precondi-

tioner and Mnew is used as preconditioner (see Equation (3.2.6)). Other parameters for the Bi-

CGSTAB method are the maximal number of iterations to perform, equal to 1000 and the spec-

ified tolerance ( ||r
k||2

||b||2 ) ≤ 10−6. For multigrid the following parameters are specified: one full

MGV-cycle is applied2, the Aztec smoother 3 is chosen and no restriction on the number of grid

levels. Note that there is no multigrid solve performed. Multigrid is used to approximate the in-

verse of preconditioner Mnew.

In the experiments performed for this small cavity problem, several parameters are varied. The

order of the basis functions is denoted by p, the mesh size is denoted by h and N denotes the

total number of unknowns. The results obtained for the pure real shift (β1, β2) = (−1, 0) are

compared to results obtained for the shift (β1, β2) = (1,−0.5). For the first shift the precon-

ditioner is approximated by one ML cycle and for the latter shift, an exact preconditioner solve

is performed in Matlab. In Table 2 the results are summarized. Note that in this table, the total

number of matrix vector operations are summarized. Therefore the maximum number of matrix

vector operations is equal to two times the maximal number of iterations, namely 2000.
2See Appendix D for an illustration of a full multigrid V-cycle.
3See the ML-guide (ref. 6) for more information about the Aztec smoother.
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Fig. 3.4.1 Rectangular cavity with dimensions 1.5λ × 1.5λ × 0.6λ. The discretization contains

2610 elements and 2796 degrees of freedom (N) for mesh size h = 0.20 and zeroth

order basis functions.

p h N (β1, β2) = (−1, 0) (β1, β2) = (1,−0.5) ML-solve for (β1, β2) = (−1, 0)

0 0.25 1402 586 490 730

0 0.20 2796 687 968 721

1 0.35 2914 651 1453 660

1 0.30 4344 657 +2000 717

1 0.25 7960 +2000 +2000 1052

2 0.35 5316 +2000 +2000 1253

2 0.30 8730 856 +2000 +2000

Table 2 Total number of matrix vector products for the Bi-CGSTAB–ML-AMG algorithm to

solve a small cavity model problem. In these experiments Mnew is used as precondi-

tioner (see Equation (3.2.6)).
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In Table 3 the CPU-times are summarized for the real shift with an exact solve for the precondi-

tioner system versus the ML-AMG algorithm to perform the preconditioner solve.

p h N exact preconditioner solve ML-AMG for the preconditioner solve

0 0.20 2796 332.58 31.40

0 0.25 1402 70.55 15.23

1 0.25 7960 – 215.98

1 0.30 4344 937.59 98.69

1 0.35 2914 361.23 56.13

2 0.30 8730 2875.50 –

2 0.35 5316 – 436.51

Table 3 CPU-times for the Bi-CGSTAB–ML-AMG algorithm to solve a small cavity model

problem.

From these tables the following can be concluded:

• When the optimal real shift (β1, β2) = (−1, 0) is used, the performance of the proposed

algorithm is unsatisfactory. The total number of matrix vector products is relatively high

compared to the total number of unknowns N . In two cases the Bi-CGSTAB method does

not converges.

• When the optimal complex shift (β1, β2) = (1,−0.5) is used, the Bi-CGSTAB method

does not converge in four cases considered in Table 2.

• For the zeroth order basisfunctions, it seems that the h-independency for the multigrid per-

formance is maintained. Based on the results for the higher order basisfunctions in Table 2,

nothing is this conclusion cannot be made.

• When the CPU-times for the exact preconditioner solve are compared to the CPU-times

of the ML-AMG preconditioner approximation, it can be concluded that the ML-algebraic

multigrid algorithm is a relatively fast solver to perform the preconditioner approximation.

3.5 Conclusions
Based on the experiments performed in this chapter the following conclusions can be made:

• Although the algebraic multigrid method for the preconditioner solve is incorporated in

the same way geometric multigrid was included in the robust and efficient algorithm of Er-

langga (ref. 6), the convergence behaviour of Bi-CGSTAB–ML-AMG algorithm is unsat-

isfactory. Note that for these experiments only the optimal real shift for the shifted Laplace

preconditioner can be used due to the limitations of the ML package.
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• When the optimal complex shift (β1, β2) = (1,−0.5) from Erlangga (ref. 6) is considered,

the performance of the algorithm is worse compared to the results from Erlangga.

• Based on the theoretical analysis in Chapter 4 from Abdoel (ref. 1), the ML-AMG algo-

rithm performs as expected: this algorithm is a relatively fast solver to perform the precon-

ditioner approximation.

It is concluded that the proposed algorithm does not lead to satisfactory results for the vector

wave equation, opposed to the algorithm Erlangga (ref. 6) used for the Helmholtz equation.

Therefore, the Bi-CGSTAB–ML-AMG algorithm will be applied on the Helmholtz model prob-

lem considered by Erlangga to compare the performance of the proposed Bi-CGSTAB–ML-

AMG algorithm to the performance of the algorithm of Erlangga.
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4 Iterative solution of the Helmholtz equation

4.1 Introduction
In the previous chapter it was concluded that the incorporation of multigrid in the existing algo-

rithm, does not significantly improve the convergence of the chosen Krylov method. However,

it is expected that the proposed algorithm should behave in the same way as the algorithm of Er-

langga (ref. 6), which is based on geometric multigrid acceleration. The two main differences

between the current application and the original model problem Erlangga considered are:

• The discretization method: finite difference method versus finite element method.

• The problem type: the Helmholtz equation versus the vector wave equation in the curl-curl

formulation.

• The block structure of the system matrix in current application versus the matrix of the

Helmholtz equation.

To understand where the proposed algorithm differs significantly from the algorithm proposed by

Erlangga (ref. 6), a model problem is studied now where the discretization method is chosen to

be the same as Erlangga used, namely the finite difference method.

The algorithm proposed in this thesis is applied on a problem chosen by Erlangga (ref. 6). This

model problem concerns a scalar wave excited by a pulse. The resulting linear system will be

solved by the algorithm presented in Chapter 3. The corresponding PDE with absorbing bound-

ary conditions is stated below:

Lu = −S, L = −(
∂2u

∂x2
1

+
∂2u

∂x2
2

) + k2
0u, (x1, x2) ∈ Ωh (4.1.1)

∂u

∂n
− ιk0u = 0, (x1, x2) ∈ Γh = ∂Ωh, where

• Ωh = (0, 1)× (0, 1) ⊂ R2,

• Γh = {(0, 0) ∪ (0, 1) ∪ (1, 0) ∪ (1, 1)},
• N ∈ N → h =

1
(N + 1)2

, with N the total number of unknowns in the x1 as well as the

x2 direction,

• c is the P-wave velocity as an implicit function of space,

• ω∗ = 2πf∗ with f∗ the frequency1,

• k0 is the dimensionless wavenumber defined as:
ω

c
,

• S is a source term given by δ(x1 − 0.5, x2 − 0.5),

• ι2 = −1.
1Note that ∗ denotes a dimensionfull variable.

42



NLR-TR-2008-467

• The finite differences approximation of the partial differential operator L is given as

L̃h =
1
h2


−1

−1 4− k2
0h

2 −1

−1

 .
The corresponding linear system obtained from the discretization of equation (4.1.1) is denoted

by:

Ahx =

[
A11 A12

A21 A22

]
x = b. (4.1.2)

Note that Ah is complex valued due to the absorbing (or radiation) boundary conditions. Other

properties of the system matrix are: symmetric but not Hermitian and ill-conditioned. Further-

more, the matrix has a complex spectrum. The consequence of the system matrix being ill-conditioned

and having a complex spectrum can be very important when an iterative method is used to solve

the system. Standard iterative methods will show poor or even no convergence when they are

used to solve this system. Therefore, Erlangga (ref. 6) considered the shifted Laplace precondi-

tioner as special class of preconditioners for the Helmholtz equation. He showed that this shifted

Laplace preconditioner is a very effective preconditioner to improve the convergence of Krylov

subspace methods. This class of preconditioners is the subject of the next section. Section 4.3

considers the differences between a small cavity scattering model and the three dimensional

Helmholtz equation. Finally, some conclusions are listed.

4.2 Application of the shifted Laplace preconditioner for the two dimensional Helmholtz equa-
tion

The shifted Laplace preconditioner can effectively be used to improve the convergence of itera-

tive Krylov subspace methods (see Chapter 4 from Erlangga, ref. 6 and the references included

there). This class of preconditioners is constructed by discretization of the following “shifted

Laplace operator” with appropriate boundary conditions:

M(β1,β2) = −4−(β1 + ιβ2)k2
0, β1, β2 ∈ R, ι2 = −1. (4.2.1)

The goal is to solve the linear system from equation (4.1.2) by using a Krylov subspace method

combined with (block)preconditioning techniques as discussed in Chapter 3. Note that this block-

structure is a main difference with the work of Erlangga (ref. 6).

The discretization method used to obtain system (4.1.2) is based on finite differences with a stan-

dard 5-point stencil. In Figure 4.2.1 a surface plot of the solution is given. Figure 4.2.2 illustrates
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the convergence behaviour of Bi-CGSTAB, using multigrid for the preconditioner solve. The

multigrid method used here is the ML-AMG algorithm discussed in Subsection 3.3.1 and there-

fore, only the optimal real shift (β1, β2) = (−1, 0) can be considered.

To obtain the pictures in Figures 4.2.1 and 4.2.2, the Krylov method used here is Matlab’s in-

trinsic Bi-CGSTAB method. The other parameter settings are given in Table 4. The resemblance

of Figure 4.2.1 with the result Erlangga (ref. 6) obtained for his first model problem, verify the

proposed Bi-CGSTAB–ML-AMG algorithm.

parameter value

maximum number of Bi-CGSTAB iterations 300

Krylov tolerance ||rk||2
||b||2 ≤ 10−6

wavenumber k0 20

total number of unknowns N 1012 = 10.201

multigrid cycle type one full MGV-cycle

smoother one Jacobi pre and post smoothing step

number of grid levels no restriction

Table 4 Parameter settings.

Fig. 4.2.1 Surface plot of the real part of the solution u.
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Fig. 4.2.2 Logarithm of the real part of the residual vector against the total number of matrix

vector operations.

Erlangga (ref. 6) also concluded that using multigrid for the shifted Laplace preconditioner solve,

leads to a robust and efficient iterative method to solve the discrete Helmholtz equation in two

and three dimensions at very high wavenumbers. As Erlangga considered a regular, structured

grid, it was possible to use geometric multigrid. Note that this is not the case in the current appli-

cation. Other important conclusions based on this robust and efficient iterative method, are listed

below:

• The convergence is nearly independent of the gridsize for constant wavenumber problems:

h-independancy of multigrid.

• The convergence depends almost linearly on the wavenumber for a fixed total number of

unknowns.

For the current application with ML-AMG functioning as preconditioner solution method, the

conclusions above also hold. This will be illustrated by comparing the following model problem

to each other:

1. The two dimensional Helmholtz equation with the setup from Erlangga (ref. 6) without

block preconditioning techniques.

2. The setup as in Figures 4.2.1 and 4.2.2 using the blockstructure of the system matrix from

current application.

In Table 5 the total number of matrix vector products is illustrated using the blockstructure of

the system matrix. The wavenumber k0 = 30 is fixed while the total number of unknowns N is

varied. Because of the restriction on real valued arithmetic, the shift considered here is the op-

timal real shift: (β1, β2) = (−1, 0). Erlangga (ref. 6) showed that this is the optimal real shift
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for the Helmholtz equation. This experiment illustrates the nearly h-independency of the ML-

AMG algorithm: the total number matrix vector operations of the Bi-CGSTAB method, com-

bined with ML-AMG to perform the preconditioner solve does not show a dramatic increase

when the grid size is varied. Therefore, it can be concluded that the iterative method combining

the Bi-CGSTAB method with ML-AMG as preconditioner solver, leads to a efficient method for

the current application.

N 1012 2012 3012 4012

# MAT-VEC-OPs 322 397 466 477

Table 5 Total number of MAT-VEC-OP for the two dimensional Helmholtz equation: fixed

wavenumber k0 = 30, varying N .

Table 6 considers a fixed N = 1012 and a variable wavenumber k0. From this table it can be

concluded that for increasing wavenumber, the total number of matrix vector products for Bi-

CGSTAB increases linearly.

k0 10 20 30

# MAT-VEC-OPs 93 194 322

Table 6 Total number of MAT-VEC-OP for the two dimensional Helmholtz equation: fixed

N = 1012, varying k0.

Summarizing: From these experiments the same conclusions can be drawn as the conclusions

made by Erlangga (ref. 6) listed above. However, note that for these experiments only the real

shift can be considered. Erlangga (ref. 6) considered the optimal complex valued shift to obtain

his results. Therefore, he obtained a smaller number of matrix vector operations.

As the goal is to solve a cavity scattering model with a similar block structure for the system

matrix in the current application, the three dimensional Helmholtz equation as discussed by Er-

langga (ref. 6) will be compared to a small cavity scattering model in the following section.

4.3 Differences between a small cavity scattering model and the three dimensional Helmholtz
equation

In this section the same cavity problem as discussed in Section 3.4 is compared to one of Er-

langga’s model problems (ref. 6), namely the three dimensional Helmholtz equation.

The discretization matrix for the cavity scattering model is obtained for a three dimensional

rectangular cavity with dimensions 1.5λ × 1.5λ × 0.6λ where λ denotes the wave length (see
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Figure 3.4.1). The wavenumber k0 is equal to 2π. It must be noted that this scattering problem

is not equivalent to the current application because both the depth-to-diameter ratio L
d and the

wavenumber are very small. The purpose of this small scattering model is to analyse the perfor-

mance of the Bi-CGSTAB method.

The model problem from Erlangga is the three dimensional Helmholtz equation with local ab-

sorbing boundary conditions. The following subsections will consider the differences between

the small cavity scattering model and the model problem discussed by Erlangga (ref. 6).

4.3.1 Boundary conditions
In this subsection different types of boundary conditions for the two model problems are dis-

cussed. For the three dimensional Helmholtz equation the so called first order local absorbing

boundary conditions are imposed, opposed to the global absorbing boundary conditions for the

cavity scattering problem.

Furthermore, in the model problem from Erlangga, the absorbing boundary conditions are im-

posed on the whole boundary, while in the cavity scattering model, absorbing boundary condi-

tions are considered on a small part of the boundary. The remaining part (say 90%) has Dirichlet

boundary condition imposed.

4.3.2 Discretization
This subsection will emphasize the difference between the discretization method used for the two

model problems. The three dimensional Helmholtz equation is discretized by the finite difference

method using a 5-point stencil, while for the cavity scattering model a so called edge based finite

element implementation is used.

In Chapter 6 further details about the similarity between a first order node based finite element

implementation with a so called ‘lumped’ mass matrix and a second order finite difference im-

plementation will be discussed.

4.3.3 Shift parameters
As already mentioned in Section 4.2, the shifted Laplace preconditioner can be effectively used

to improve the convergence of the discretized Helmholtz equation. Another important note is

that the scattering problem, described by the vector wave equation is a vector variant from the

Helmholtz equation. Hence it is expected that the shifted Laplace preconditioner will also effec-

tively improve the convergence of the linear system obtained from the discretization of the cavity

scattering problem.
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Erlangga (ref. 6) proved that the combination (β1, β2) = (1,−0.5) is the optimal shift for the

Helmholtz equation. When the goal is to analyse the effect of the ML-AMG algorithm, it is only

possible to analyse a pure real shift. This because ML-AMG cannot perform computations in

complex valued arithmetic. Therefore, the optimal real shift will be considered: M(−1,0).

When the shift parameters are compared to the shift parameters used by Hooghiemstra (ref. 10,

Chapter 5), different values are observed. This is a result of the fact that a different method is

used to solve the preconditioner system. When the preconditioner system is solved by GCR, an

experimentally observed optimal choice for (β1, β2) = (0.5, 3.0).

4.3.4 The block upper triangular preconditioner matrix
As already mentioned in Subsection 3.2.1, using block preconditioning techniques is an impor-

tant difference compared to the work and results obtained by Erlangga (ref. 6). Recall the struc-

ture of the system matrix A:

A =

[
A11 A12

A21 A22

]
. (4.3.1)

In this thesis, the first idea to obtain a preconditioner for this matrix is to introduce the shifted

Laplace preconditioner with appropriate boundary conditions, analogous to Erlangga (ref. 6).

The matrix resulting from the discretization of this operator is denoted by Ã:

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
. (4.3.2)

The preconditioner MH used by Hooghiemstra (ref. 10) is denoted below:

MH =

[
Ã11 A12

0 A22

]
, (4.3.3)

and the second idea for a preconditioner proposed in this thesis is to neglect block Ã21, resulting

in the block upper triangular preconditioner matrix M :

M =

[
Ã11 Ã12

0 Ã22

]
. (4.3.4)

The matrix M will be used as block uppper triangular preconditioner matrix and the effect on

the total number of matrix vector products for Bi-CGSTAB will be compared in the experiments

in this subsection. Note the difference with preconditioner M compared to the preconditioner
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Hooghiemstra (ref. 10) used. In the next chapter, the effect of using Ã versus M will be ana-

lyzed.

Erlangga used (β1, β2) = (1,−0.5) as optimal shift for the Helmholtz equation. Figure 4.3.1

illustrates the spectrum for M−1A when this shift is chosen with preconditioner M . Note that all

eigenvalues have a positive real part for this shift.
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Fig. 4.3.1 Spectrum for M−1A with shift (β1, β2) = (1,−0.5).

When using the ML-AMG algorithm, only real shifts can be chosen and Erlangga (ref. 6) also

proved that the optimal real valued shift for the Helmholtz equation is (β1, β2) = (−1, 0). For

this combination and preconditioner M , the spectrum of the preconditioned system is given in

Figure 4.3.2. When this shift is used, the preconditioned system still has eigenvalues on the left

part of the imaginary axis. Note that these eigenvalues have an imaginary part relatively larger

then their real part.

When performing the experiments with the Helmholtz equation, Erlangga (ref. 6) also noticed

that the convergence of Bi-CGSTAB using the real shift, was poor compared to the case where

he considered shift (β1, β2) = (1,−0.5). He analyzed another technique which performs a rota-

tion of the eigenvalues and is dicussed in the next subsection.

4.3.5 Rotation of the eigenvalues
In this subsection a technique is considered which rotates the eigenvalues of a linear system in

such a way that after the transformation, all eigenvalues are located on the right side of the imag-

inary axis (see Van Gijzen et al., ref. 15).

For the experiments performed in this chapter, the effect of the rotation technique on the perfor-

mance of the preconditioned Bi-CGSTAB method is analyzed. Figure 4.3.2 illustrates the spec-
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Fig. 4.3.2 Spectrum for M−1A with shift (β1, β2) = (−1, 0).

trum for M−1A when shift (β1, β2) = (−1, 0) is used before the rotation is applied. When the

spectrum is rotated around (0, 0) by +1
2π, all eigenvalues will be located on the right side of the

imaginary axis. This situation is shown in Figure 4.3.3.
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Fig. 4.3.3 Spectrum for M−1A with shift (β1, β2) = (−1, 0) after rotation.
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Table 7 summarizes the results for the two dimensional Helmholtz equation analogue to the ex-

periments performed in Section 4.2 for a total number of unknowns equal to N = 1012 and

wavenumber k0 = 20. The other parameter settings are the same as denoted in Table 4.

# MAT-VEC-OPs without rotation # MAT-VEC-OPs with rotation

102 102

Table 7 Total number of matrix vector operations for the preconditioned Bi-CGSTAB method

with and without rotation of the spectrum for M−1A.

From this table it can be concluded that the rotation technique has no effect on the performance

of the preconditioned Bi-CGSTAB method when the pure real shift is used. For more results

about using this rotation technique, the reader is referred to Chapter 4 from Erlangga (ref. 6).

The conclusions based on the experiments performed in this chapter are listed in the next section.

4.4 Conclusion
From the experiments performed in this subsection the following can be concluded:

• Using the block upper triangular preconditioner for the preconditioned Bi-CGSTAB method

with only a real shift, does not lead to a significant improvement of the convergence. From

the spectrum it can be concluded that using M as preconditioner defined in Equation (4.3.4),

does not lead to a system with a favorable spectrum. More specifically, the imaginary part

of the eigenvalues are relatively larger compared to their real part. To understand how the

spectrum can be modified in a favorable way, the effect of different shift combinations on

the spectrum is analyzed in the following chapter.

• Using M with shift (β1, β2) = (1,−0.5), results in a linear sytem with a favorable spec-

trum: all eigenvalues are located on the right side of the imaginary axis resulting in eigen-

values with only positive real part. Hence it is expected that Bi-CGSTAB will converge

when this preconditioner is used.

• When the eigenvalues which are located on the left side of the imaginary axis are rotated

in such a way that all eigenvalues are mapped onto the right side of the imaginary axis, the

convergence of Bi-CGSTAB is not affected. It seems that the convergence of this Krylov

method does not depend on the location in the complex plane, but that the distance of the

eigenvalues to the center point (0, 0) is important (see Chapter 5 for more about this phe-

nomenon).
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5 Short recurrence Krylov methods for linear systems with complex

eigenvalues with an imaginary part relatively larger than their real

part

5.1 Introduction
In the previous section it was shown that using the block upper triangular matrix unfortunately

does not lead to a system with a favorable spectrum for the two dimensional Helmholtz equa-

tion. The convergence of the Bi-CGSTAB method is somewhat improved, but the resulting lin-

ear system has eigenvalues with an imaginary part, relatively larger than the real part. When

Bi-CGSTAB is used to solve these systems, Sleijpen and Fokkema (ref. 17) showed that the so

called one step minimal residual polynomials (MR-polynomials) can cause stagnation or break-

down in the algorithm. This will be shortly discussed in Subsection 5.2.1.

Before the convergence of Bi-CGSTAB is discussed, the following section will illustrate the

spectra of the preconditioner and the preconditioned system for two different preconditioners

and for different values of the shift for the shifted Laplace preconditioner.

5.2 The spectral properties of the preconditioner system and the preconditioned system
The model problem considered in this chapter is the two dimensional Helmholtz equation with

local absorbing boundary conditions, discretized by the finite difference method. This model

problem is chosen in order to compare the results obtained in this thesis to the results from Er-

langga (ref. 6).

In Section 4.3.4 two possible block preconditioners are stated in Equations (4.3.2) and (4.3.4).

The purpose here is to investigate the effect of these two preconditioners on the spectrum for the

linear system. For future experiments in this chapter, the following notation will be used:

M1 = Ã =

[
Ã11 Ã12

Ã21 Ã22

]
and M2 =

[
Ã11 Ã12

0 Ã22

]
. (5.2.1)

When preconditioner M is chosen equal to either M1 or M2, the different effects on the spec-

trum of the preconditioned system M−1A can be illustrated. Note that Ã results from the dis-

cretization of the shifted Laplace preconditioner with appropriate boundary conditions. There-

fore, also the effect of different shift-combinations (β1, β2) on the spectra is illustrated.

Figure 5.2.1 illustrates the spectra of M−1A with M = M1 for different combinations of (β1, β2).

In the upper left picture, the preconditioner M = A for shift (1, 0) and therefore all eigenvalues

for the preconditioned system are equal to one. The upper right picture considers the case when
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the shift is chosen equal to (−1, 0). Note that there is a clustering of a part of the eigenvalues

around (1, 0) in the complex plane. There are also some eigenvalues with a complex part rela-

tively larger than their real part. The lower pictures consider the complex shift (0,−1) in the left

picture. Using this shift still results in eigenvalues with a complex part which is relatively larger

than their real part. Therefore, the convergence of Bi-CGSTAB will still not be optimal. The last

illustration for this preconditioner considers shift (β1, β2) = (1,−0.5). This shift results in a

spectrum with all eigenvalues with positive real part, away from (0, 0) (this is expected from the

analysis performed in Van Gijzen et al., ref. 15). Therefore, it is expected that Bi-CGSTAB will

be able to solve this system showing a satisfying convergence behaviour. Note that these results

are analogue to the results in Chapter 3 from Erlangga (ref. 6).
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Fig. 5.2.1 Different spectra for preconditioner M−1
1 A and different combinations of the shift

(β1, β2).

In Figure 5.2.2 the spectra of M−1A with M = M2 are illustrated for the same shifts as in the

previous experiment. The upper left picture considers shift (1, 0) and it can be seen that most of

the eigenvalues are clustered around zero. Therefore, it is expected that Bi-CGSTAB will show

an unsatisfactory convergence behaviour. For the other three shifts, the same conlusions can be

drawn as for preconditioner M1. Note that removing block M21 in case (β1, β2) = (1,−0.5)

causes the eigenvalues of preconditioned system M−1A to move a little towards the imaginary

axis. Hence it is expected that the convergence behaviour of Bi-CGSTAB will not be signifi-

cantly affected. When these preconditioners are used to test their performance on the discretized
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Helmholtz equation, it can indeed be concluded that the convergence of Bi-CGSTAB is not sig-

nificantly affected when M2 is used instead of M1 (these results are included in Appendix E).

This concludes the discussion for the preconditioned system. Hereafter, the preconditioner sys-

tem is analyzed.
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Fig. 5.2.2 Different spectra for preconditioner M−1
2 A and different combinations of the shift

(β1, β2).

In Figure 5.2.3 the spectrum of block M11 is illustrated for M = M1 (for M = M2 the same

figures are obtained). Note that for both choices of M , the preconditioner system use the same

blockmatrix Ã11 to perform the preconditioner solve. In Chapter 4 of Abdoel (ref. 1) it was

shown that when multigrid is used to solve a linear system, the corresponding matrix must have

eigenvalues with positive real part. From Figure 5.2.3 it follows that this is the case for block

M11. Therefore, the ML-AMG algorithm can be used to perform the preconditioner solve.

Conclusions:
• With the restriction on using the real shift, the matrix of the preconditioned system still

has a complex spectrum for both preconditioners M1 and M2. Therefore, the following

subsection considers the convergence behaviour of Bi-CGSTAB for linear systems with a

complex spectrum.

• The matrix used to perform the preconditioner solve has eigenvalues with positive real

part for all the shift combination considered in this section. Therefore, it is possible to use

multigrid to solve the shifted Laplace preconditioner system.
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Fig. 5.2.3 Spectrum for M11 for M = M1 and different combinations of the shift (β1, β2).

5.2.1 Bi-CGSTAB convergence for linear systems with complex eigenvalues with an imagi-
nary part relatively larger than their real part

This subsection considers the Bi-CGSTAB convergence for linear systems Ax = b with a com-

plex spectrum. This because the system matrix A in the current application also has a complex

spectrum. More specifically, the imaginary part of the eigenvalues are larger than their corre-

sponding real part. When the matrix is a positive definite Hermitian matrix, a complete conver-

gence analysis can be performed for the CG methods. However, when the matrix is not Hermi-

tian or has complex valued eigenvalues, the convergence analysis collapses. For matrices with a

complex spectrum, Sleijpen and Fokkema (ref. 17) considered the performance of the so called

Bi-CGSTAB(l) methods, inspired by the Bi-CGSTAB2 method from Gutknecht (ref. 8).

For l = 1, Bi-CGSTAB(1) coincides with the Bi-CGSTAB method.

The family of the Bi-CG methods consider a so called search correction that depends on the true

residual rk = b − Axk and some “shadow residual” r̃k in each iteration step k. The residuals rk
are made orthogonal to r̃k. These rk can be written as rk = pk(A)r0, where pk is some appropri-

ate polynomial of degree k. The roots of this polynomial are approximations of the eigenvalues.

In the CGS algorithm of Sonneveld (ref. 18) this Bi-CG polynomial is applied twice, resulting

in: rk = pk(A)2r0.

The Bi-CGSTAB algorithm generates residuals using a product of two polynomials:

rk = qk(A)pk(A)r0, where the polynomials qk are appropriate one-step minimal residuals poly-

nomials (MR polynomials): 1−ωkt for some optimal ωk. When ωk becomes close to zero, it may

cause the Bi-CGSTAB algorithm to stagnate or breakdown: starting with residual rj results in a
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new residual that can be written as rj+1 = ωkrj . So for small ωk there is almost no minimization

of the residuals.

Sleijpen et al. (ref. 17) showed that when the system matrix has a complex spectrum, it is likely

that ωk becomes very small. They proposed to use l-degree polynomials to handle the situation

when the ωk become nearly zero. This because e.g. second order polynomials are able to ap-

proximate a complex root. The methods using these l-degree polynomials are denoted by Bi-

CGSTAB(l) methods.

The parameter ωk is likely to become nearly zero when the system matrix A has nonreal eigen-

values with an imaginary part that is large relative to the real part. For the small cavity problem

introduced in Section 3.4.1, Figures 5.2.4 and 5.2.5 illustrate the value of ωk in the complex

plane when preconditioner M1 is used. In this experiment, zeroth order basis functions are used

with mesh size h = 0.15. Figure 5.2.4 considers shift (β1, β2) = (−1, 0) and Figure 5.2.5 con-

siders shift combination (β1, β2) = (1,−0.5). As can be seen, a lot of the ωk are close to the

centre (0, 0) for shift (β1, β2) = (−1, 0). When the ωk are close to zero, the residuals are not

effectively minimized. For (β1, β2) = (1,−0.5), the ωk have strictly positive real part resulting

in an relatively effective decrease of the residuals in each iteration.

These experiments explain why the Bi-CGSTAB method in the proposed algorithm leads to an

unsatisfactory convergence behaviour, with the restriction on using the pure real shift.
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Fig. 5.2.4 ωk in the complex plane for preconditioner M1 and shift (β1, β2) = (−1, 0).
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Fig. 5.2.5 ωk in the complex plane for preconditioner M1 and shift (β1, β2) = (1,−0.5).

5.2.2 IDR convergence for linear systems with complex eigenvalues with an imaginary part
relatively larger than their real part

In this subsection the work of Sonneveld and Van Gijzen (ref. 19) is considered. They analyzed

the so called Induced Dimension Reduction (IDR) methods and made the extension to the IDR(s)

methods as a family of new iterative solution algorithms based on the IDR mechanism. The IDR

mechanism uses short recurrences and is able to produce the exact solution of a linear system

with dimension N , in at most 2N matrix vector operations in exact aritmethic (when IDR(s) is

considered, at most (N + N
s ) matrix vector operations are needed). The parameter s also de-

notes the number of minimization steps of the residuals rk. IDR methods also use an iteration

polynomial, just as the Bi-CG methods do. The iteration polynomial constructed by IDR is the

product of the Bi-CG polynomial with another locally minimizing polynomial. The residuals are

now forced to be in subspaces of decreasing dimension. For a more in depth discussion of these

polynomials and construction of these subspaces, the reader is referred to Sonneveld et al. (ref.

19) and the referrences within.

Sonneveld et al. (ref. 19, Section 6.4) considered the three dimensional Helmholtz equation dis-

cretized on a rectangular grid with a combination of Neumann and local absorbing boundary

conditions imposed on the boundary. The system is discretized by the finite element method us-

ing tetrahedral elements on a grid with gridsize h = 8cm and the wavenumber was chosen equal

to k0 = 100 Hz. Furthermore, they used standard ILU(0) as preconditioner. The size of the dis-
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cretized system is 132.651 and the number of nonzero diagonals in the matrix is 19. The system

matrix for this system is complex valued, symmetric and also has a similar spectrum as the sys-

tem matrix in current application. For the convergence behaviour of IDR(s), the same problem

can occur as in the Bi-CGSTAB case: the parameter ωk can become very small. To overcome

this, analogue to the Bi-CGSTAB(l) algorithm, an improved computation of ωk can be used. Ta-

ble 8 summarizes their results:

Method # MAT-VECs Time [s] # MAT-VECs with improved ωk Time [s]

IDR(1) 1500 3322 678 1483

IDR(2) 598 1329 474 1051

IDR(4) 353 783 323 716

IDR(6) 310 698 267 601

Bi-CGSTAB(1) 1828 3712 640 1300

Bi-CGSTAB(2) 1008 2045 652 1323

Bi-CGSTAB(4) 656 1362 608 1263

Bi-CGSTAB(8) 608 1337 608 1337

Table 8 Number of matrix vector multiplications and elapsed time for the three dimensional

Helmholtz equation with and without improved computation of ωk.

From this table the following conclusions can be drawn:

• When there is no optimization of the parameter ωk, Bi-CGSTAB(l) needs more matrix

vector multiplications compared to IDR(s).

• When the computation of ωk is improved, the total number of matrix vector multipli-

cations of Bi-CGSTAB(l) and IDR(4) is similar. The performance however, is not: Bi-

CGSTAB performs twice the number of matrix vector multiplications compared to IDR(4).

For this reason, IDR(4) is the favorable method.

• The performance of IDR(4) and IDR(6) is almost the same. As the parameter s denotes

the number of minimization steps of the residuals rk, the amount of work of IDR(6) is

relatively more compared to IDR(4). Therefore, IDR(4) will be considered in this thesis.

Sonneveld et al. (ref. 19) also noted a close relationship between the convergence behaviour of

GMRES (as long recurrence method) and the convergence of the short recurrence IDR(s) meth-

ods. It seems that for this problem, the convergence of IDR(s) is bounded from below by the

convergence curve of GMRES. For the convergence analysis for matrices with a complex valued

spectrum, the same can be said as in the case for Bi-CG: the convergence analysis collapses. In

Chapter 6 of Sonneveld et al. (ref. 19), the convergence behaviour of IDR(s), Bi-CGSTAB(l) and
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GMRES are compared to each other. It turns out that for this specific problem, the total number

of matrix vector operations for Bi-CGSTAB(l), for l = 1, 2, 4, 8 is similar to the total number of

matrix vector operations performed by IDR(1). The same conclusion can be made when IDR(4)

is compared to IDR(6).

For GMRES the convergence can be proved under some conditions. The following theorem is

reproduced from Vuik and Oosterlee (ref. 2), and the proof can be found in Saad and Schultz

(ref. 20, page 866). This theorem gives an indication of the bounds on the norm of the residual

for a general eigenvalue distribution of the eigenvalues of a matrix.

Theorem (Saad and Schultz, ref. 20)

Suppose that matrix A has N eigenvectors and is diagonalizable so that A = XDX−1. Here the

columns of X are the eigenvectors and D is a diagonal matrix with on the diagonal the eigen-

values of A. Let Pm be the space of all polynomials of degree less than m and let

σ = {λ1, . . . , λN} represent the spectrum of A.

Define:

ε(m) := min p∈Pm

p(0)=1

maxλi∈σ|p(λi)|

K(X) := ||X||2.||X−1||2

Then the residual norm of the m-th iterate satisfies:

||rm||2 ≤ K(X)ε(m)||r0||2

If furthermore all eigenvalues are enclosed in a circle centered at C ∈ R : C > 0 and having

radius R < C, then

ε(m) ≤
(
R

C

)m

When the optimal complex shift is chosen in the current application, Figures 5.2.1 and 5.2.2 il-

lustrate that the eigenvalues are contained in a circle. This theorem states that full GMRES will

converge and based on the experiments performed by Sonneveld et al. (ref. 19), it is likely that

the IDR(s) methods will also converge for this three dimensional Helmholtz equation. The next

section lists the conclusions based on the analysis performed in this chapter.
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5.3 Conclusions
Based on the experiments performed in this chapter the following conclusions can be drawn:

• With the restriction on the pure real shift, the preconditioned system matrix has a complex

valued spectrum with the imaginary part relatively larger then their real part. Therefore,

the parameter ωk is nearly zero which leads to a stagnation in the minimization step of the

Bi-CGSTAB method.

• Based on the work of Sonneveld et al. (ref. 19), it seems that the Bi-CGSTAB(`) and

IDR(s) methods show better convergence compared to the Bi-CGSTAB method. Further-

more, the amount of work from Bi-CGSTAB(`) is twice the amount of work of IDR(s).

Therefore, IDR(4) is chosen in this thesis.

• It seems that the IDR(4) method is a good alternative for the existing long recurrence GCR

algorithm of Hooghiemstra (ref. 10). Therefore, the second proposed algorithm in this

thesis is: IDR(4) combined with the ML-AMG algorithm to perform the preconditioner

solve.
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6 Iterative solution of the two dimensional vector wave equation

6.1 Introduction
In Chapters 3 and 4, respectively, the three dimensional vector wave equation and the two di-

mensional Helmholtz equation have been discussed. It was expected that the performance of the

proposed Bi-CGSTAB–ML-AMG algorithm in this thesis should be as good as the performance

of the algorithm of Erlangga (ref. 6) for the Helmholtz equation. In Chapter 5 it was explained

why this was not the case and a newly proposed algorithm was stated. To test the performance of

the newly proposed IDR(4)–ML-AMG algorithm, the two dimensional vector wave equation will

be considered in this chapter. It is expected that results obtained for the two dimensional vector

wave equation can be extended to the three dimensional vector wave equation as seen in Chap-

ters 2 and 3. Obviously, in two dimensions the total number of unknowns is relatively small for

cavity scattering model problems of intermediate size compared to the three dimensional case.

This means that larger cavities can be studied for relatively high values of the wavenumber.

The analysis of the iterative solution method will be done using several model problems, start-

ing with a model problem that resembles the two dimensional Helmholtz equation as closely as

possible. In this way, the performance of the solution procedure can be directly compared to the

results obtained in Chapter 3 and the results from Erlangga (ref. 6). The flowchart in Figure 6.1.1

illustrates the main differences (which had been identified in Chapter 4), between the different

solution algorithms presented in this thesis for the finite element discretization of the two dimen-

sional vector wave equation which are considered in this chapter and the original algorithm used

by Hooghiemstra (ref. 10). The aim is not to find an alternative formulation of the equations to

be solved, but to study the behaviour of the iterative method for different formulations of the fi-

nite element discretization and the boundary conditions. The main differences which had been

identified in Chapter 4, are denoted below:

• A node based finite element discretization versus an edge based finite element discretiza-

tion. When in the node based implementation the entries of the element matrices are

‘lumped’1, the resulting stencil is identical to the finite difference stencil of Erlangga (ref.

6) obtained for the Helmholtz equation. In this way the iterative solution method in this

chapter can be directly compared to the results of Erlangga. The edge based implemen-

tation is considered because this discretization method is used in the original application

used by Hooghiemstra (ref. 10). In the original algorithm edge based basis functions are

chosen because of their natural continuity properties and their ability suppress so called

spurious solutions.
1The off diagonal entries in the matrix are added to the main diagonal element.
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• The application of local versus global absorbing boundary conditions. Erlangga (ref. 6)

considered local absorbing boundary conditions for the Helmholtz equation and in the

current application (Hooghiemstra, ref. 10) global absorbing boundary conditions are

imposed. These global boundary conditions are used, because this guarantees the correct

farfield behaviour of the solutions.

It is important to note that when the node based implementation is considered, the Ez-component

is solved from a PDE similar to a two dimensional Helmholtz equation. When the edge based

implementation is considered, the Ex and Ey-components are solved. Hence, the latter case actu-

ally solves the Hz-problem (see Chapter 10 from Jin, ref. 13):

• Write H = (0, 0,Hz)T and E = (Ex, Ey, 0)T .

• It holds that ∇× E = −ιωµH.

⇒ ∇× E = ∇× (Ex, Ey, 0)T =

i j k
∂
∂x

∂
∂y 0

Ex Ey 0

= ιω(0, 0,Hz)T .

The corresponding PDE for the two dimensional vector wave equation is given below for the Ez

problem, using the identities ∇×∇Ez = −4 Ez −∇(∇.Ez) and ∇.Ez = 0:

−4 Ez − k2
0εrEz = 0 (6.1.1)

Here, Ez denotes the electric field, k0 is the dimensionless wavenumber and J denotes the source.

The corresponding PDE for the two dimensional vector wave equation is given below for the Hz

problem:

5×5× E− k2
0εrE = 0 (6.1.2)

Here vector E = (Ex, Ey, 0) denotes the electric field, k0 is the dimensionless wavenumber and

J denotes the source.

The first model problem considers the two dimensional vector wave equation discretized on a

square grid with only local absorbing boundary conditions imposed on the whole boundary. For

this discretization, a node based finite element implementation is used. Furthermore, the ele-

ment matrices are ‘lumped’ to get a discretization stencil identical to a stencil obtained for the

finite differences discretization method used in Chapter 4. Recall that when the node based FEM

implementation is used to numerically solve Equation (6.1.1), Ez is calculated. When the en-

tries in the element matrices are lumped, or when the Newton Cotes numerical integration rule
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vector wave equation

Discretize the two dimensional

Node based finite

element discretization

Edge based finite

element discretization

boundary conditions

Impose global absorbing

boundary conditions

Impose local absorbing

Impose local absorbing

boundary conditions

boundary conditions

Impose global absorbing

Fig. 6.1.1 Flowchart for the two dimensional vector wave equation.
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is used to calculate the integrals in the Ritz formulation, the resulting stencil for this two dimen-

sional vector wave equation is similar to the stencil obtained in Chapter 4 for the two dimen-

sional Helmholtz equation. The results obtained for this model problem resemble the results for

the two dimensional Helmholtz equation. Therefore, these results are not included in this chap-

ter.

The second problem considers the two dimensional cavity discretized using a node based finite

element implementation with local absorbing boundary conditions imposed on the aperture. The

third model problem has the same setup with the local absorbing boundary conditions replaced

by global boundary conditions. These global boundary conditions imposed on the aperture are

identical to the boundary conditions imposed in the current application, but the discretization

method is not: this model problem is discretized by a node based FEM implementation while

in the current appllication, an edge based FEM implementation is used. Therefore, the last two

model problems consider an edge based finite element implementation. See Table 9 below.

Model problem Discretization type Absorbing boundary condition type

#1 node based + lumping local

#2 node based local

#3 node based global

#4 edge based local

#5 edge based global

Table 9 Overview of the model problems with the discretization type used and the absorbing

boundary conditions imposed.

In Figure 6.1.2 an example of a two dimensional cavity with dimensions L × d is given. In this

chapter L = 8 and d = 1. The green dotted line denotes the aperture.

L

d

Fig. 6.1.2 Two dimensional cavity with dimensions L× d.
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Discretization of the PDE mentioned above together with the absorbing or integral boundary

conditions, leads to a linear system:

Au = f, with A ∈ CN×N and u, f ∈ CN (6.1.3)

Here N denotes the total number of unknowns and it is important to note that A is complex val-

ued because of the inclusion of the absorbing boundary conditions. These boundary conditions

lead to complex valued entries similar to the local absorbing boundary conditions considered in

the two dimensional Helmholtz problem. Global boundary conditions lead to complex valued

entries because of the complex valued Green’s function (see Subsection 2.3.1).

Other important properties (block structure and ill-conditionedness) of the system matrix A are

discussed in Chapter 2. To get a system matrix with a similar block structure as the block struc-

ture of the system matrix in the current application, a reordering procedure is performed to ar-

range all the complex valued entries, due to the boundary conditions, in the lower right block of

the matrix.

In Figure 6.1.3 the contour plot is illustrated for the two dimensional cavity. Here the wavenum-

ber k0 = 2π and the mesh size h = 1
32 . For this figure the node based implementation is used

and therefore, the Ez field is reproduced. It can be seen how the wave travels through the inlet

and is reflected on the bottom.

Fig. 6.1.3 Contour plot of Ez.

Figure 6.1.4 illustrates the vector plot of Ex and Ey for the two dimensional cavity. In Figure

6.1.5 the contour plot is illustrated for the two dimensional cavity obtained with the edge based
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implementation. Therefore, the Hz is reproduced in this figure. The wavenumber k0 = 2π and

the mesh size h = 1
32 .

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
−0.4
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

x−axis

y−
ax

is

Vector plot of E
x
 and E

y

Fig. 6.1.4 Vector plot of Ex, Ey.

Fig. 6.1.5 Contour plot of Hz.

Section 6.2 considers the discretization method used in this chapter and discusses the node based

versus the edge based finite element implementation. This chapter is ended with the conclusions

based on the performed experiments.

6.2 Discretization
Equation (6.1.1) is discretized by the finite element method (FEM). The first and perhaps, the

most important step in the FEM is the manner in which the domain is discretized, because this

choice may affect the computer storage requirements, the computation time and the accuracy of

the numerical results. In this thesis, the FEM is discretized using a so called node based imple-

mentation (Subsection 6.2.1) and an edge based implementation (Subsection 6.2.2). In Figure

66



NLR-TR-2008-467

6.2.1 the discretization of the two dimensional cavity with dimensions 8×1 and mesh size h = 1
8

is illustrated.

−8 −7 −6 −5 −4 −3 −2 −1 0

−1

−0.5

0
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1

1.5

2

x−axis

y−
ax

is

Fig. 6.2.1 The discretized two dimensional cavity with mesh size h = 1
8 .

6.2.1 Node based finite element discretization
When the node based FEM implementation is considered for the two dimensional vector wave

equation, the domain, say Ω, is divided into a number of two dimensional triangular elements

with no overlap nor gaps between elements. Each element and the nodes per element can then be

labeled with separate sets of integers for identification. In this case, each triangular elements has

three nodes and a so called connectivity array is needed to relate the three nodes to their corre-

sponding triangle. For more about these basics of the FEM implementation, several textbooks in

Numerical Methods are available. See for example Van Kan, Segal and Vermolen (ref. 12) or Jin

(ref. 13).

When the domain is discretized, the unknown function must be approximated within each ele-

ment. Let φ denote the unknown function and let e denote the element number. The approxima-

tion is denoted by:

φe(x1, x2) = ae + bex1 + cex2. (6.2.1)

The constants ae, be and ce in Equation (6.2.1) can be determined using the coordinates (xe
1, x

e
2)

of the three nodes for each element2. When these constants are calculated, they can be used to
2For each node i, these constants are written as ae

i , b
e
i and ae

i , for i = 1, 2, 3.
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calculate the area ∆e of an element after which the element matrix can be calculated. For Equa-

tion (6.1.1), the discretization matrix A can be written as a sum of the stiffness part and the mass

part:

A = Amass +Astiff. (6.2.2)

For each element e, Ae
mass and Ae

stiff are given by:

Ae
mass =


Am

11 Am
12 Am

13

Am
21 Am

22 Am
23

Am
31 Am

32 Am
33

 and Ae
stiff =


As

11 As
12 As

13

As
21 As

22 As
23

As
31 As

32 As
33

 , (6.2.3)

where:

Ae
mass,(ij) =

1
24


2 1 1

1 2 1

1 1 2

 and Ae
stiff,(ij) = ∆e(bi1b

j
1 + ci1c

j
1), for i, j = 1, 2, 3. (6.2.4)

To obtain the elements from Ae
mass,(ij), the general integration rule is used (see Van Kan et al.,

ref. 12, p. 111). Finally, the system matrix A for the inner elements, can be obtained by assem-

bling the element matrices. For a more elaborate discussion about the assembling procedure for

the node based as well as the edge based implementation, the reader is referred to Jin (ref. 13).

The discretization of the different boundary conditions is treated in the corresponding sections.

The next subsection briefly discusses the discretization matrix for the inner elements when the

edge based implementation is considered.

6.2.2 Edge based finite element discretization
When the edge based FEM discretization is considered for two dimensional triangular elements,

the system matrix can also be decomposed similar to the decomposition in Equation (6.2.2). For

the stiffness part, the following element matrices are stated for an element e:

Ae
stiff,(ij) =

`ei `
e
j

∆e
, for i, j = 1, 2, 3. (6.2.5)
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For the mass part, the elements of the symmetric (3× 3) element matrix are stated below:

Ae
mass,(11) =

(`e1)
2

24∆e
(f22 − f12 + f11),

Ae
mass,(12) =

`e1`
e
2

48∆e
(f23 − f22 − 2f13 + f12),

Ae
mass,(13) =

`e1`
e
3

48∆e
(f21 − 2f23 − f11 + f13),

Ae
mass,(22) =

(`e2)
2

24∆e
(f33 − f23 + f22),

Ae
mass,(23) =

`e2`
e
3

48∆e
(f31 − f33 − 2f21 + f23),

Ae
mass,(33) =

(`e3)
2

24∆e
(f11 − f13 + f33),

where fij = bei b
e
j + cei c

e
j , `ei denotes the length of edge i.

After the calculation of the element matrices, the assembling procedure can be performed to ob-

tain the system matrix for the inner elements.

To obtain a well posed problem, non trivial boundary conditions have to be imposed on the bound-

ary of the cavity in Figure 6.1.2. For the two dimensional cavity in this chapter, Dirichlet bound-

ary conditions are imposed on the whole boundary, except on the aperture. On the aperture, ab-

sorbing boundary conditions are imposed. In this thesis, two types of absorbing boundary con-

ditions are analyzed, namely the local absorbing boundary conditions and the global absorbing

boundary conditions.

6.2.3 Node based FEM discretization with local absorbing boundary conditions imposed on
the aperture

In this subsection, the two dimensional cavity with dimensions 8 × 1 is considered illustrated

in Figure 6.1.2. To obtain a well posed problem, non trivial boundary conditions have to be im-

posed on the boundary of the cavity. On the aperture local absorbing boundary conditions are im-

posed. A node based FEM implementation is used to solve the system. The discretization matrix

A for this model problem is forced to have the same block structure as the discretization matrix

for the current application by arranging the complex valued entries due to the boundary condi-

tions into the lower right block A22. The main difference between the global absorbing boundary

conditions in Chapter 3 and the local absorbing boundary conditions in this application, is the

fully versus the sparsely populated block A22.

The local absorbing boundary conditions imposed on the aperture of the two dimensional cavity,

are stated below:
∂Ez

∂n
+ ιk0Ez = 0, ι2 = −1. (6.2.6)
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To simplify the expressions for the elements of the boundary element matrix, consider the fol-

lowing setup:

• Write the boundary condition as:
∂Ez

∂n
+ γEz = 0.

• Define γ = γ1 + γ2
∂2

∂s2
, with

γ1 = ιk0 and γ2 =
ι

2k0
. (6.2.7)

When γ2 = 0, the first order local absorbing boundary condition is considered. With γ2 6= 0, the

second order local absorbing boundary conditions are imposed.

Note that on the aperture, the unknown surface elements s are computed using a line integral and

therefore the resulting boundary element matrix is a (2× 2)-matrix with the following elements:

Ks
11 = Ks

22 = γs
1

`s

3
− γs

2

`s
, (6.2.8)

Ks
12 = Ks

21 = γs
1

`s

6
+
γs

2

`s
, (6.2.9)

where γs
1 and γs

2 denote the average value of γ1 and γ2 within the s-th segment and `s denotes

the length of the s-th segment.

For the boundary elements on the aperture is it assumed that the incoming incident wave has the

following form:

Einc(x1, x2) = eιk0(x1cos(ϕinc)+x2sin(ϕinc)). (6.2.10)

Here ϕinc denotes the angle of incidence. For i = 1, 2, the elements fs
i of the (2 × 1)-element

vector are then given by:

fs
1 = fs

2 = `s(ιk0cos(ϕinc)eιk0(xc
1cos(ϕinc)+xc

2sin(ϕinc)) + ιk0e
ιk0(xc

1cos(ϕinc)+xc
2sin(ϕinc))),

(6.2.11)

where xc
1 and xc

2 denote the centers of the edges considered.

The following aspects of the solution algorithm will be analyzed:

• The grid size dependence.

• The influence of the wavenumber.

• The influence of using either preconditioner M1 =

[
Ã11 Ã12

Ã21 Ã22

]
or M2 =

[
Ã11 Ã12

0 Ã22

]
.

In Table 10 the performance of the IDR(4) method is analyzed where an exact solve is performed

for the preconditioner solve. The specified maximal number of iterations to perform is equal to
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1000 and the tolerance is equal to 10−6. The shift for the shifted Laplace preconditioner is cho-

sen equal to (β1, β2) = (1,−0.5). Note that for these experiments, the performance of the ML-

AMG algorithm is not included. This is postponed to the next chapter.

k0 N 2π 3π 6π

h = 1
32 7937 62 123 361

h = 1
64 32,257 61 128 432

Table 10 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M1. A node based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have local

absorbing boundary conditions imposed on the aperture.

k0 N 2π 3π 6π

h = 1
32 7937 70 131 363

h = 1
64 32,257 79 145 440

Table 11 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M2. A node based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have local

absorbing boundary conditions imposed on the aperture.

From Tables 10 and 11 the following conclusions can be made:

• The linear solver is nearly h-independent.

• The total number of matrix vector products increases nearly linear with the wavenumber

k0.

• There is no significant effect on the total number of matrix vector products when precondi-

tioner M1 is replaced by its reduced form M2.

6.2.4 Node based FEM discretization with global absorbing boundary conditions imposed on
the aperture

In this subsection the same model problem as in the previous subsection is discussed with the lo-

cal absorbing boundary conditions replaced by global absorbing boundary conditions. The global

boundary conditions imposed on the two dimensional aperture of the cavity, are identical to the

global boundary conditions discussed in Chapter 2. Therefore, only the elements of the (2 × 2)

pseudo-boundary element matrix will be given. The pseudo-element matrix is computed for each

combination of two elements and added to the system matrix. The pseudo-boundary element ma-
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trix has four identical elements. However, the evaluation of the singularity of the Green’s func-

tion must be handled with care (see Jin, ref. 13, p.416). The four elements of this matrix can be

approximated by either:

P ss =
ι

8
(k0`

s)2
[
1− 2ι

π
ln(0.1638k0`

s)
]
− ι

4
k0`

sH
(2)
1 (0.5k0`

s) (6.2.12)

or

P st =
ι

8
k2

0`
s`tH

(2)
0 (k0|xs − xt|) +

ι

8
k0`

s[±H(2)
1 (k0|xs − xt − 0.5`t|)

∓H
(2)
1 (k0|xs − xt + 0.5`t|)], xs ≷ xt, s 6= t. (6.2.13)

Here `s denotes the length of the s-th segment with xs being its midpoint. Furthermore, for

i ∈ {0, 1}, H(2)
i , denotes the i-th order Hankel function of the second kind.

The results obtained in this subsection are summarized in Table 12 with preconditioner M1 and

Table 13 with preconditioner M2. From these tables the same conclusion can be drawn as in

from Tables 10 and 11 in the previous subsection:

• The linear solver is nearly h-independent.

• The total number of matrix vector products increases nearly linear with the wavenumber

k0.

• There is no significant effect on the total number of matrix vector products when precondi-

tioner M1 is replaced by its reduced form M2.

Hence, there is no significant difference in the behaviour of the algorithm when it is applied to

the vector wave equation using local or global absorbing boundary conditions.

k0 N 2π 3π 6π

h = 1
32 7937 62 124 275

h = 1
64 32,257 62 128 350

Table 12 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M1. A node based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have global

absorbing boundary conditions imposed.

6.2.5 Use a preconditioner based on local absorbing boundary conditions for the original sys-
tem with global absorbing boundary conditions imposed

In this subsection the goal is to analyze the effect of using a preconditioner with different bound-

ary conditions compared to the boundary conditons in the original system. The model problem
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k0 N 2π 3π 6π

h = 1
32 7937 70 135 298

h = 1
64 32,257 75 146 427

Table 13 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M2. A node based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have global

absorbing boundary conditions imposed on the aperture.

used to perform these experiments is the same as in previous section and the same setup is used.

The system matrix A with local absorbing boundary conditions is denoted by Aloc. When global

absorbing boundary conditions are imposed, the matrix is denoted by Agl. This is idem for the

preconditioner M chosen equal to M1 or M2.

The big advantage of using Mloc is that it can be solved more efficiently (e.g. using complex

AMG) because of its sparse structure, as opposed to the partly fully and partly sparsely popu-

lated matrix which is obtained for Mgl.

Tables 14, 15, 16 and 17 summarize the results and the conclusions are listed afterward.

k0 2π 4π 6π

(Aloc,Mloc) 60 180 342

(Agl,Mloc) 75 190 283

(Agl,Mgl) 60 178 263

Table 14 Total number of matrix vector products for the IDR(4) algorithm to solve a two di-

mensional cavity model problem. M1 is chosen as preconditioner in this experiment

with shift (β1, β2) = (1,−0.5) and an exact solve for the preconditioner system. The

mesh size h = 1
32 and the total number of unknowns N = 7937.

k0 2π 4π 6π

(Aloc,Mloc) 70 178 347

(Agl,Mloc) 70 200 290

(Agl,Mgl) 70 200 288

Table 15 Total number of matrix vector products for the IDR(4) algorithm to solve a two di-

mensional cavity model problem. M2 is chosen as preconditioner in this experiment

with shift (β1, β2) = (1,−0.5) and an exact solve for the preconditioner system. The

mesh size h = 1
32 and the total number of unknowns N = 7937.
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k0 2π 4π 6π

(Aloc,Mloc) 60 199 432

(Agl,Mloc) 79 235 412

(Agl,Mgl) 62 215 350

Table 16 Total number of matrix vector products for the IDR(4) algorithm to solve a two di-

mensional cavity model problem. M1 is chosen as preconditioner in this experiment

with shift (β1, β2) = (1,−0.5) and an exact solve for the preconditioner system. The

mesh size h = 1
64 and the total number of unknowns N = 32, 257.

k0 2π 4π 6π

(Aloc,Mloc) 83 225 440

(Agl,Mloc) 79 247 379

(Agl,Mgl) 75 239 427

Table 17 Total number of matrix vector products for the IDR(4) algorithm to solve a two di-

mensional cavity model problem. M2 is chosen as preconditioner in this experiment

with shift (β1, β2) = (1,−0.5) and an exact solve for the preconditioner system. The

mesh size h = 1
64 and the total number of unknowns N = 32, 257.
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From these tables, the following conclusions are drawn:

• For preconditioner M1 and variable mesh size h, there is no significant difference in the

total number of matrix vector operations. For preconditioner M2 there is relatively more

influence when h is changed.

• When the mesh size is fixed and the performance with preconditioners M1 or M2 is com-

pared, it can be concluded that the total number of matrix vector products is not signifi-

cantly affected.

• The performance of the linear solver is almost the same when Agl is preconditioned by

Mloc with Mloc either M1 or M2 with local absorbing boundary conditions imposed. This

experiment shows that indeed Mloc can be used to precondition Agl. It is recommended

to evaluate this algorithm in the three dimensional formulation which is considered in the

original algorithm used by Hooghiemstra (ref. 10).

6.2.6 Edge based FEM discretization
In this subsection the same model problem as in the previous subsections is considered. The

main difference is that in this subsection the edge based implementation is considered opposed

to the node based implementation. For the discretization using edge based basisfunctions, an ab-

sorbing boundary condition can be formulated in the following way:

∫∫
S

{
(∇×E) · (∇×E) + k2

0E ·E
}
dS + 2ιk0

∫
∂S

(n̂×E) · (n̂×E) d∂S = (6.2.14)

−2
∫

∂S
E ·Uincd∂S,

Uinc = ιk0n̂× (n̂×Einc) + n̂× (∇×Einc).

The basisfunctions which span the tangential electric field on the boundary ∂S are those associ-

ated with edges located on the boundary. For the zeroth order boundary functions, the basisfunc-

tions for the magnetic current are given by:

n̂×Wi|r∈∂S = n̂× li (Li∇Lj − Lj∇Li) = li (∇Li ×∇Lj) , (6.2.15)

where li denotes the length of edge i.

Therefore, the following will hold:

• Because in each boundary element of ∂S there is only a single degree of freedom with

support. The boundary element matrix is therefore of order 1.
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• For the regular triangulation used in this two dimensional study, the boundary elements all

have the same orientation and the same length, with respect to the boundary.

It is straightforward to show that the boundary element matrix is given by:

Ki = 2ιk0

∫
∂S

(n̂×Wi) · (n̂×Wi) d∂S = 4ιk0li. (6.2.16)

The excitation with a vertically polarized plane wave travelling along a direction with angle φ

with the boresight direction of the cavity, is given as:

Einc = E0e
ιk0(x cos φ+y sin φ), (6.2.17)

and the element vector is now given as

fi = −ιk0(E0)yli. (6.2.18)

In Tables 18 and 19 the results for the IDR(4) method are summarized.

k0 N 2π 3π 6π

h = 1
32 24.321 93 213 –

h = 1
64 97.793 95 230 793

Table 18 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M1. An edge based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have local

absorbing boundary conditions imposed on the aperture.

k0 N 2π 3π 6π

h = 1
32 24.321 108 262 –

h = 1
64 97.793 114 285 939

Table 19 Total number of matrix vector products for the IDR(4)-method to solve a two dimen-

sional cavity model problem with preconditioner M2. An edge based FEM implemen-

tation is considered and the system matrix as well as the preconditioner have local

absorbing boundary conditions imposed on the aperture.

From these tables the same conclusions can be made as the node based FEM implementation

with identical boundary conditions.
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6.2.7 Edge based FEM implementation with global absorbing boundary conditions imposed
on the aperture

In the previous sections it was concluded that the change of local absorbing boundary conditions

to global boundary conditions showed no significant difference in the performance of the lin-

ear solver. Therefore, it is expected that this is also the case in the edge based implementation.

Therefore, this model problem is not investigated in this thesis.

6.3 Conclusions
Based on the experiments performed in this chapter, the following conclusions are listed for the

iterative solution method for the two dimensional vector wave equation:

• There is no significant impact on the performance of the linear solver when preconditioner

M1 is compared to preconditioner M2.

• The total number of matrix vector operations is not significantly affected when the local

absorbing boundary conditions are compared to the global boundary conditions.

• When the original system with global absorbing boundary conditions is preconditioned

using a preconditioner based on local absorbing boundary conditions, there is almost no

effect on the performance of the linear solver. Therefore, it is recommended to analyze if

this is also the case in the original three dimensional algorithm used by Hooghiemstra (ref.

10). Additionally, implementing a preconditioner based on local absorbing boundary con-

ditions is relatively easy to realize in the current three dimensional solver: the evaluation

of the matrix [P st] in Chapter 2 has to be performed using the result in Equation (6.2.15).

Chapter 7 will analyze the second proposed algorithm in this thesis: the IDR(4)−ML-AMG al-

gorithm. The performance of this algorithm will be compared to the first proposed Bi-CGSTAB–

ML-AMG algorithm for the same model problems seen in Chapter 3 and to the nested GCR al-

gorithm of Hooghiemstra (ref. 10) to assess the improvement the new method offers over the

existing algorithm.
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7 Progress evaluation

7.1 Model problems
In this chapter the performance of the newly proposed IDR(4)−ML-AMG algorithm is analyzed

for several model problems. In the first subsection this algorithm is tested on the model problems

seen in Subsection 3.4.1. The second subsection considers a three dimensional small cavity scat-

tering problem and compares the performance of this algorithm to the algorithm of Hooghiem-

stra (ref. 10) to assess the progress made in this project. For these model problems the precon-

ditioners share the same boundary conditions as the system matrix, namely the global absorbing

boundary conditions.

7.1.1 Small cavity scattering model problem
In this subsection the same model problem is considered which was introduced in Subsection

3.4.1. The cavity for this small cavity scattering problem has dimensions 0.6λ × 1.5λ × 1.5λ.

The wavenumber k0 is chosen equal to 2π and therefore λ = 1. The Krylov subspace method

used here is the IDR(4) method and the ML-AMG algorithm is used to solve the shifted Laplace

preconditioner system with optimal real shift. The maximal number of iterations to perform is

equal to 1000 and the specified tolerance is ( ||r
k||2

||b||2 ) ≤ 10−6. For multigrid the following pa-

rameters are specified: one full MGV cycle is applied, the Aztec smoother 1 is chosen and no

restriction on the number of grid levels.

Untill now only zeroth order basis functions were considered in Chapter 6. In this subsection the

behaviour of the solution method will also be investigated for higher order basis functions used

in the three dimensional cavity scattering model problems seen in Chapter 3.

In the experiments performed in this chapter, several parameters are varied. The order p of the

basisfunctions is varied for a fixed mesh size h and vice versa. The results obtained for the opti-

mal real shift (β1, β2) = (−1, 0) are compared to results obtained for the optimal complex shift

(β1, β2) = (1,−0.5). For the latter shift, an exact preconditioner solve is performed. For the

optimal real shift, the exact solve for the preconditioner is compared to the ML-approximation of

the inverse of the preconditioner.

In Table 20 the results are summarized when preconditioner M1 is used. Note that in this table,

the total number of matrix vector operations are summarized. For the IDR(s) methods, this num-

ber is equal to the total number of iterations. In Table 21, the same setting is used as in Table 20

except that now M2 is used as preconditioner.

1See the ML-guide (ref. 6) for more information about the Aztec smoother.
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p h N (β1, β2) = (−1, 0) (β1, β2) = (1,−0.5) ML-solve for (β1, β2) = (−1, 0)

0 0.25 1402 285 58 305

0 0.20 2796 369 54 353

1 0.35 2914 436 45 407

1 0.30 4344 610 47 433

1 0.25 7960 907 45 538

2 0.40 5316 925 40 539

2 0.35 8730 1371 40 862

Table 20 Total number of matrix vector products for the IDR(4)–ML-AMG algorithm to solve

a small cavity model problem. M1 is chosen as preconditioner in this experiment.

p h N (β1, β2) = (−1, 0) (β1, β2) = (1,−0.5) ML-solve for (β1, β2) = (−1, 0)

0 0.25 1402 245 150 308

0 0.20 2796 301 226 374

1 0.35 2914 343 270 394

1 0.30 4344 342 427 417

1 0.25 7960 413 459 530

2 0.35 5316 390 477 546

2 0.30 8730 473 494 833

Table 21 Total number of matrix vector products for the IDR(4)–ML-AMG algorithm to solve

a small cavity model problem. M2 is chosen as preconditioner in this experiment.
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When Tables 20 and 21 are compared, the following conclusions can be drawn:

• The performance for M1 and M2 is almost similar for the optimal real shift and for the

zeroth order basis functions.

• When the optimal complex shift is used, the total number of matrix vector products is

nearly constant for preconditioner M1 for all the type of basis functions considered here.

• When the optimal complex shift is used, the block upper triangular preconditioner M2

leads to a higher number of matrix vector operations for the IDR(4)–ML-AMG algorithm,

compared to preconditioner M1. Furthermore, it seems that for increasing order of the ba-

sis functions, the performance deteriorates.

• For the multigrid performance it can be concluded that for the zeroth and first order basis-

function, the h-independency is maintained.

• For the zeroth order basis functions a similar performance is noted when the exact solve

for both preconditioners is compared to the ML solve. For the higher order basis functions

considered here, the total number of matrix vector multiplications with the ML solve is

smaller compared to the case when an exact solve is performed.

When the results from Table 21 are compared with the performance of the Bi-CGSTAB method

in Table 2, the following can be concluded:

• With the restriction on the pure real shift and for first order basis functions, Bi-CGSTAB

did not converge within the specified maximum number of iterations (1000). However,

IDR(4) converges for this optimal real shift within the specified number of iterations.

• When the optimal complex shift is used, the IDR(4)–ML-AMG algorithm performs less

matrix vector products compared to the Bi-CGSTAB–ML-AMG algorithm in Chapter 3.

To assess the progress made in this project, the next subsection analyzes the performance of

the IDR(4)–ML-AMG algorithm compared to the performance of the nested GCR algorithm

of Hooghiemstra (ref. 10) using a cavity scattering model problem of intermediate size.

7.1.2 Cavity scattering model probem of intermediate size
In this subsection a cavity scattering model problem is considered where the dimensions of the

cavity are given as 4λ × 1.5λ × 1.5λ. The wavenumber k0 is equal to 2π and hence λ = 1.

For this experiment, zeroth order basis functions are used. For higher order basis functions, the

model problem could not be loaded in Matlab. The discretization contains 71,479 elements and

79,428 degrees of freedom N for mesh size h = 0.10. The goal here is to compare the total

number of matrix vector products which are performed and not the CPU times needed.

The performance of the nested GCR algorithm of Hooghiemstra (ref. 10) is tested on a nearly

identical model problem as considered in this subsection. This algorithm uses GCR for both
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the preconditioner and the preconditioned system. The average number of inner GCR itera-

tions is denoted by Itin and the outer GCR iterations are denoted by Itout. The inner itera-

tions are needed to perform the preconditioner solve with specified tolerance ε = 10−3. The

maximum number of iterations to perform, is equal to 1000 and the outer tolerance is given by
||rk||2
||b||2 < 10−4. For this model problem the total number of unknowns N is equal to 79,266. This

nested GCR algorithm performed optimal for shift (β1, β2) = (0.5, 3.0) with the following re-

sults2:

• Itout = 896. For the outer GCR iterations, the total number of vector updates is approxi-

mated by 9002 = 810, 000. When it is assumed that 30 vector updates correspond with 1

matrix vector operation, this results in about 810,000
30 = 27, 000 matrix vector operations for

the outer GCR iteration.

• Itin = 97.18. For the inner GCR iterations, the total number of vector updates is approx-

imated by 1002 = 10, 000, which results in about 10,000
30 ≈ 340 matrix vector opera-

tions. As this number of matrix vector operations is performed for each outer iteration, the

total number of performed matrix vector products due to inner iterations is estimated by

900 ∗ 340 = 306, 000.

• Conclusion: a rough estimate of the total number of matrix vector operations for the nested

GCR algorithm is equal 900 ∗ 100 + 306, 000 + 27, 000 = 90, 000 + 306, 000 + 27, 000 =

423, 000.

To analyze the performance of the IDR(4)−ML-AMG algorithm, the optimal real shift is used

and the preconditioner solve is performed by ML. For this experiment, the specified tolerance is

chosen equal to the tolerance Hooghiemstra (ref. 10) used for his outer GCR iterations, namely
||rk||2
||b||2 < 10−4. With this setup, the following results are obtained for the new algorithm:

• Total number iterations for IDR(4) = 513. For each iteration, IDR(4) performs 10 vector

updates. Therefore, the total number of matrix vector operations for this algorithm is ap-

proximated by 513.10
30 = 171.

• One full multigrid V-cycle roughly estimated by 10 matrix vector operations.

• Conclusion: a rough estimate of the total number of matrix vector operations for the IDR(4)–

ML-AMG algorithm with optimal real shift is approximately 513 ∗ 10 + 171 = 5307. This

corresponds with a gain in the total number of matrix vector multiplications with a factor

approximately equal to 423,000
5307 ≈ 80.

2In obtaining these results, the matrix vector products necessary for the evaluation of the inner products during

the solution process are neglected. Furthermore, note that this optimal shift is used because of the different method

used.
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7.1.3 Expected performance of the IDR(4)–ML-AMG algorithm with complex AMG
In this subsection some extra experiments are performed to analyze the performance of the IDR(4)–

ML-AMG algorithm for the three dimensional cavity used in the previous subsection with the

optimal complex shift. In Table 22 these results are summarized using the same setup used in

previous subsection with the exception that now ||rk||2
||b||2 < 10−6.

preconditioner ML solve (β1, β2) = (−1, 0) (β1, β2) = (1,−0.5)

M1 – 85

M2 782 1142

Table 22 Total number of matrix vector products for the IDR(4)–ML-AMG algorithm for a

cavity model problem of intermediate size. The model problem has dimensions 4λ ×
1.5λ× 1.5λ and N = 79, 428.

Based on this experiment it is expected that a complex AMG solver will improve the results ob-

tained in the previous subsection. From earlier experiments it was concluded that there was no

significant difference in the total number of matrix vector operations when an exact precondi-

tioner solve was compared to the ML preconditioner solve. Therefore, it is expected that a com-

plex AMG solver will result in approximately the same number of matrix vector operations as is

obtained for the exact solve, namely 85. The gain obtained for the optimal complex shift com-

pared to the results in previous subsection for the optimal real shift, is expected to be:

• Total number iterations for IDR(4) = 85. Therefore, the total number of matrix vector op-

erations for this algorithm is approximated by 85.10
30 ≈ 30.

• One full multigrid V-cycle is roughly estimated by 10 matrix vector operations.

• Conclusion: a rough estimate of the total number of matrix vector operations for the IDR(4)–

ML-AMG algorithm with optimal complex shift is approximately 513 ∗ 10 + 30 = 543.

This corresponds with a gain in the total number of matrix vector multiplications with a

factor approximately equal to 423,000
543 ≈ 800.

In Figure 7.1.1 the CPU time is illustrated as a function of the number of degrees of freedom on

the aperture for the nested GCR algorithm used by Hooghiemstra (ref. 10) and the frontal solver

for a similar model problem. For this model problem the total number of degrees of freedom

on the aperture is approximately 650. When the performance of the nested GCR algorithm is

compared to the performance of the frontal solver for this number, it can be concluded that the

frontal solver outperforms the nested GCR algorithm.

Based on the before mentioned improvement ratios of the IDR(4)–ML-AMG algorithm with re-

spect to the original algorithm of Hooghiemstra (ref. 10), it is expected that when the optimal
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real shift is used, the performance of the IDR(4)–ML-AMG algorithm is similar to the perfor-

mance of the frontal solver. When the optimal complex shift is considered, it is expected that the

IDR(4)–ML-AMG algorithm will show a relatively better performance compared to the frontal

solver.
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Fig. 7.1.1 The CPU time as a function of the number of degrees of freedom on the aperture for

the preconditioned GCR method andddd the frontal solver for a model problem with

dimensions 4λ× 1.5λ× 1.5λ and N = 79, 266.

The last remark made here considers the gain in memory. For this estimate only the outer loop is

considered. The memory needed to perform the preconditioner solve is neglected as well as the

memory needed to store the system matrix (the system matrix has to be stored for both methods).

When the nested GCR algorithm is used, 900 outer iterations are necessary. This corresponds

with storing about 900.2 = 1800 vectors.

When the IDR(4) method is used, about 4.2 = 8 vectors are required. This results in a approxi-

mated gain in memory of about 1800
8 = 225.

7.2 Conclusions
Based on these results the following can be concluded when the nested GCR algorithm of Hooghiem-

stra (ref. 10) is compared to the IDR(4)–ML-AMG algorithm:

• With the restriction to real valued arithmetic, the IDR(4)–ML-AMG algorithm leads to a

reduction in the total number of matrix vector multiplications by factor 80.

• Using algebraic multigrid to solve the shifted Laplace preconditioner system leads to a

constant preconditioner system. Therefore, the long recurrence GCR method is replaced

by the short recurrence IDR(4) method. Using this short recurrence method, there is no

need to store the complete Krylov basis during the entire solution process for the orthogo-
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nalization procedure. This leads to a dramatically improvement of the storage requirement

and the CPU time.

• When the optimal complex shift is used with preconditioner M1, the total number of ma-

trix vector products is relatively small: 85 to solve a system with N = 79, 428. When M2

is used, the performance of the linear solve is worse. It seems that using the upper trian-

gular preconditioner M2 leads to no improvement in the spectrum of the preconditioned

system.

• In Chapter 6 it was concluded that the original system with global absorbing boundary

conditions can be preconditioned using a preconditioner based on local absorbing bound-

ary conditions. When this is combined with the fact that using M1 with the optimal com-

plex shift, results in 85 matrix vector operations, it is expected that a complex algebraic

multigrid solver will significantly improve the performance of the IDR(4)–ML-AMG al-

gorithm. Compared to the nested GCR algorithm of Hooghiemstra (ref. 10), the total num-

ber of matrix vector multiplications will be reduced by factor 800.

• When the GCR algorithm is compared to the IDR(4) method, the expected gain in mem-

ory is approximately 225.
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8 Conclusions

In this thesis an algebraic multigrid solution method is considered in order to accelerate the so-

lution of the discretized vector wave equation. This equation is discretized by the finite element

discretization method, using tetrahedral elements and higher order vector based basis functions.

This results in a linear system, where the system matrix has a very unfavorable spectrum, is

‘nearly’ symmetric but not Hermitian, partly sparse and partly fully populated. From the ana-

lysis of the model problems studied, the following conclusions can be drawn:

• Use the ML-AMG algorithm.

Algebraic multigrid can be used effectively to accelerate the solution of the linear system

stemming from the discretization of the Maxwell vector wave equation, by indirect appli-

cation for the solution of the shifted Laplace preconditioner system.

• Do not use the optimal real shift.

The optimal real valued shift will improve the spectrum of the preconditioned system, but

not to the same degree as the optimal complex valued shift. In the latter case, the conver-

gence of the linear solver is optimal. There is a significant decrease in the performance of

the linear solver when the optimal real valued shift is used compared to the case when the

optimal complex shift is used.

• Do not use the block upper preconditioner.

To understand the effect of different preconditioners on the convergence of the linear solver,

the two dimensional vector wave equation is analyzed. For this two dimensional case two

preconditioners are analyzed. The first preconditioner is analogous to the preconditioner

Erlangga (ref. 6) used. The second preconditioner is a block upper preconditioner. For this

model problem it can be concluded that the total number of matrix vector operations is

similar for both preconditioners. However, in the three dimensional case, using the block

upper triangular matrix results in a significant difference in the total number of matrix vec-

tor operations performed. The performance of the linear solver deteriorates in this case.
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• Use IDR.

In this thesis two Krylov subspace methods are analyzed: the Bi-CGSTAB method and the

IDR(4) method. For these linear solvers the following can be conluded:

1. The Bi-CGSTAB method locally minimizes the residuals and this process is stag-

nated when the pure real shift is used. This stagnation occurs because in this case the

eigenvalues of the preconditioned system are still complex valued. More specifically:

the eigenvalues have a imaginary part which is relatively large compared to the real

part.

2. The IDR(4) method also minimizes the residuals locally, but with an improvement in

the minimization procedure. The result is that for the model problems considered in

this thesis, no stagnation of the IDR(4) method occured.

• Use a preconditioner based on local absorbing boundary conditions.

For the two dimensional vector wave equation it was analyzed how the total number of

matrix vector operations was affected when the boundary conditions of the preconditioner

are changed. The original system has global boundary conditions imposed and for the pre-

conditioner local absorbing boundary conditions were prescribed. In this case it can be

concluded that there is no significant impact on the performance of the linear solver.

When the IDR method is used combined with an complex algebraic multigrid package for the

preconditioner solve, the total number of matrix vector products will be decreased with a factor

1000. The expected gain in memory is approximately 225.
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9 Future research

In this thesis a start has been made to investigate the effect of algebraic multigrid to accelerate

the solution of the linear system stemming from the discretization of the Maxwell vector wave

equation, by indirect application for the solution of the shifted Laplace preconditioner system.

To further improve the efficiency of the existing algorithm, the following recommendations for

future research are made:

• Inclusion of an algebraic multigrid solver which is able to perform calculations in
complex valued arithmetic.

Based on the performance of the IDR(4)−ML-AMG algorithm it was concluded that

when the pure real shift is used for the shifted Laplace preconditioner, the ML perfor-

mance is as expected. The total number of iterations is relatively constant compared to

an exact solve for the preconditioner solve. However, the CPU times for the ML solve are

smaller compared to the CPU times needed to perform the exact solve. As the pure real

shift is not the optimal choice for the vector wave equation, it is expected that when the op-

timal complex shift is used, a great gain in the CPU time and in the total number of matrix

vector multiplications can be obtained compared to the optimal real valued shift.

• Fortran compatible version of the IDR(s)-algorithm.

In this thesis it is concluded that using IDR(4) as Krylov subspace method results in a sig-

nificant improvement of the performance, compared to the Bi-CGSTAB method in two

as well as three dimensional problems. Therefore, it is advisable to implement a Fortran

version of the IDR(s)-method in the existing cavity scattering solver.

• Use a preconditioner based on local absorbing boundary conditions.

For the two dimensional vector wave equation it was concluded that when the original

system with global absorbing boundary conditions is preconditioned by a preconditioner

based on local absorbing boundary conditions, the total number of matrix vector oper-

ations was not significantly affected. The solution of the preconditioner based on local

absorbing boundary conditions can be performed much more efficiently then is the case

when global absorbing boundary conditions are used: there is no blockstructure and the

preconditioner is sparsely populated. Therefore, it is advisable to implement local absorb-

ing boundary conditions in the preconditioner system for the vector wave equation. This is

relatively easy to accomplish (see Appendix H).
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• Reduce the bandwidth of the system matrix.

If it is no option to use a preconditioner based on local absorbing boundary conditions, it is

recommended to use the upper triangular block preconditioner with a reduced bandwidth

of the system matrix. When the bandwidth is minimized, less information is left out when

the lower left block of the preconditioner is neglected. In this case, it seems that the con-

vergence behaviour of the Krylov solver is not dramatically affected compared to the case

when the lower left block is included in the preconditioner solve.
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Appendix A Electromagnetic quantities

In this appendix the basic SI (International System of Units) are discussed. In Table 23 the quan-

tities used in Chapter 2 are given with their units and corresponding SI units.

In Chapter 2 also the vacuum values ε0 and µ0 were introduced. Their values are given by:

µ0 = 4π ∗ 10−7 F

m
and ε0 =

1
c2µ0

= 8.8542 ∗ 10−12Wb

Am
,

where c is the speed of light with value c = 2.9979 ∗ 108m

s

Quantity Name Units SI units

ε permittivity
[

farads
m

]
[kg−1m−3A2s4]

µ permeability
[

henry
m

]
[kgms−2A−2]

σ conductivity
[

siemens
m

]
[kg−1m−3s3A2]

Table 23 List of quantities with their units and SI units.
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Appendix B Useful definitions and fundamental relations

In this appendix some useful definitions and important relations are recalled.

(Vector) Inner product
An inner product on a (complex) vector space X is any mapping s from X× X into C,

x, y ∈ X → s(x, y) ∈ C,

that satisfies the following conditions:

1. s(x, y) is linear with respect to x:

s(λ1x1 + λ2x2, y) = λ1s(x1, y) + λ2s(x2, y) ∀x1, x2 ∈ X,∀λ1, λ2 ∈ C

2. s(x, y) is Hermitian:

s(y, x) = s(x, y) ∀x, y ∈ X

3. s(x, x) is positive definite:

s(x, x) ≥ 0 and s(x, x) = 0 iff x = 0

An inner product will be denoted by: (., .)

Vector norm
A vector norm on a vector space X is a real-valued function x → ||x|| on X that satisfies the

following three conditions:

1. ||x|| ≥ 0 ∀x ∈ X and ||x|| = 0 iff x = 0

2. α||x|| = |α|||x|| ∀x ∈ X ∀α ∈ C
3. ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (triangle inequality)

Hölder p-norms
The most commonly used vector norms in numerical linear algebra are special cases of the Hölder

norms:

||x||p =

(
n∑

i=1

|x|p
) 1

p

These special cases are p = 1, 2 or p = ∞:

||x||1 = |x1|+ |x2|+ . . .+ |xn|

||x||2 = [|x1|2 + |x2|2 + . . .+ |xn|2]
1
2

||x||∞ = max
i=1,...,n

|xi|

92



NLR-TR-2008-467

Matrix norms
For a general matrix A ∈ Cn×m the following is defined:

||A||pq = sup
x∈Cm,x 6=0

||Ax||p
||x||q

Subspaces
A subspace of Cn is a subset of Cn that is also a complex vector space. The set of all linear com-

binations of a set of vectors G of Cn is a vector subspace called the linear span of G.

Two important subspaces that are associated with a matrix A ∈ Cn×n are its:

• Ran(A) = {Ax|x ∈ Cm}
• Ker(A) = {x ∈ Cm|Ax = 0}

Remark The range of A is equal to the linear span of its columns.

Fundamental relation I

Cn = Ran(A)⊕ Ker(AT ) (FR I)

Projector A projector P is any linear mapping from Cn to itself that is idempotent:

P 2 = P

Fundamental relation II
If P is a projector, then so is (I − P ) and the following relation holds:

Ker(P ) = Ran(I − P ) (FR II)

and the following two important properties:

• the two subspace Ker(P ) and Ran(P ) intersect only at the element zero

• Cn = Ker(P )⊕ Ran(P )

Ah-orthogonal
Ah-orthogonality is denoted by (., .)Ah

and is defined as

(x, y)Ah
:= (Ahx, y) for x, y ∈ Cn
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Energy norm
When a matrix B is symmetric and positive definite, the mapping

x, y → (x, y)B := (Bx, y)

from Cn × Cn to C is a proper inner product on Cn.

The associated norm is referred to as the energy norm or B-norm:

||.||B :=
√

(x, y)B

Rayleigh quotient
An eigenvalue λ of any matrix A satisfies the relation

λ =
(Au, u)
(u, u)

(B.0.1)

where u is an associated eigenvector.

Define the (complex) scalars µ(x) as

µ(x) =
(Ax, x)
(x, x)

(B.0.2)

for any nonzero vector x ∈ Cn.

The ratios in (B.0.1) and (B.0.2) are called Rayleigh quotients.

A small Rayleigh quotient implies that a vector v is a linear combination of the eigenvectors of A

with smallest eigenvalues.

The set of all possible Rayleigh quotients is bounded by the 2-norm of A:

|µ(x)| ≤ ||A||2,∀x ∈ Cn

and is called the field of values of A.
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Appendix C Sandia’s multilevel preconditioning package

C.1 General application of ML
In this appendix some properties of Sandia‘s main multigrid preconditioning package, ML, are

discussed. For more details, the reader is referred to the ML-guide (ref. 7).

ML is designed to solve large sparse linear systems of equations arising primarily from elliptic

PDE discretizations. ML is used to define and build multigrid solvers and preconditioners, and

it contains black-box classes to construct highly-scalable smoothed aggregation preconditioners.

ML preconditioners have been used on thousands of processors for a variety of problems, e.g.

the incompressible Navier-Stokes equations with heat and mass transfer, linear and nonlinear

elasticity equations, the Maxwell equations and semiconductor equations.

ML can also be used as a framework to generate new multigrid methods. Using ML’s internal

aggregation routines and Galerkin products, it is possible to focus on new types of inter-grid

transfer operators without having to address the cumbersome aspects of generating an entirely

new parallel algebraic multigrid code. This flexibility can be used to produce special multilevel

methods using coarse grid finite element functions to serve as inter-grid transfers.

The primary goal of the developers at Sandia has been to provide state-of-the-art iterative meth-

ods that perform well on parallel computers (applications on over 3000 processors have been

run) and that at the same time are easy to use for application engineers. In addition to providing

algebraic multilevel methods to engineers, the ML library is also used in ongoing research on

preconditioners.

C.2 ML in the current application
In the current application the system matrix used for computational issues, is complex valued

due to the boundary conditions, complex valued material properties (when absorbing coating is

considered) or a complex valued shift in the shifted Laplace preconditioner. Therefore, some-

thing must be said about using ML for complex valued arithmetic. In Subsection 3.3.2 it is ex-

plained how ML is used in the algorithm presented in this thesis.

Another way of how ML could be used is by using the so called equivalent real formulation of a

complex valued system. For more about this formulation, the reader is referred to Chapter 4 from

Abdoel (ref. 1) and the ML-guide (ref. 7).
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Appendix D Multigrid appendix

In this appendix the V and W cycles are illustrated together with the coarse grid correction scheme,

the two-grid cycle and the multigrid cycle. For a detailed discussion about these schemes, the

reader is referred to Chapter 4 from Abdoel (ref. 1).

D.1 Coarse grid correction scheme, two-grid and multigrid cycle

Coarse grid correction scheme um
h → um+1

h

- Compute the defect dm
h = fh − Lhu

m
h

- Restrict the defect (fine-to-coarse transfer) dm
H = IH

h d
m
h

- Solve on ΩH LH v̂
m
H = dm

H

- Interpolate the correction (coarse-to-fine transfer) v̂m
h = Ih

H v̂
m
H

- Compute a new approximation um+1
h = um

h + v̂m
h

Two-grid cycle um+1
h = TGCYCLE(um

h , Lh, fh, ν1, ν2)

1. Presmoothing

- Compute ūm
h by applying ν1 ≥ 0 steps of a given smoothing procedure (e.g.

Jacobi or Gauss-Seidel) to um
h :

ūm
h = SMOOTHν1(um

h , Lh, fh)

2. Coarse grid correction

- Compute the defect d̄m
h = fh − Lhū

m
h

- Restrict the defect (fine-to-coarse transfer) d̄m
H = IH

h d̄
m
h

- Solve on ΩH LH v̂
m
H = d̄m

H

- Interpolate the correction (coarse-to-fine transfer) v̂m
h = Ih

H v̂
m
H

- Compute the corrected approximation um,after CGC
h = ūm

h + v̂m
h

3. Postsmoothing

- Compute um+1
h by applying ν2 ≥ 0 steps of the given smoothing procedure to

um,after CGC
h :

um+1
h = SMOOTHν2(um,after CGC

h , Lh, fh)
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Multigrid cycle um+1
k = MGCYCLE(k, γ, um

k , Lk, fk, ν1, ν2)

1. Presmoothing

- Compute ūm
k by applying ν1 ≥ 0 smoothing steps to um

k :

ūm
k = SMOOTHν1(um

k , Lk, fk)

2. Coarse grid correction

- Compute the defect d̄m
k = fk − Lkū

m
k

- Restrict the defect (fine-to-coarse transfer) d̄m
k−1 = Ik−1

k d̄m
k

- Compute an approximate solution v̂m
k−1 of the defect equation on Ωk−1:

Lk−1v̂
m
k−1 = d̄m

k−1, using the following (D.1.1)

I If k = 1, use a direct or fast iterative solver for (D.1.1)

I If k > 1, solve (D.1.1) approximately by performing γ(≥ 1) k−grid

cycles using the zero grid function as a first approximation:

v̂m
k−1 = MGCYCLEγ(k − 1, γ, 0, Lk−1, d̂

m
k−1, ν1, ν2) (D.1.2)

- Interpolate the correction (coarse-to-fine transfer) v̂m
k−1 = Ik

k−1v̂
m
k−1

- Compute the corrected approximation on Ωk um,after CGC
k = ūm

k + v̂m
k

3. Postsmoothing

- Compute um+1
k by applying ν2 ≥ 0 smoothing steps to um,after CGC

k :

um+1
k = SMOOTHν2(um,after CGC

k , Lk, fk)

D.2 V and W cycles
In (D.1.2) in the multigrid cycle, the parameter γ appears twice. As argument of the MGCYCLE

it indicates which cycle type must be used and the appearance as a power, indicates the number

of cycles to be performed on the current coarse grid level. The case γ = 1 is referred to as a V-

cycle and the case γ = 2 as a W-cycle. See Figures D.2.1 and D.2.2.
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coarse grid level:  1coarse grid level:  1coarse grid level:  1

coarse grid level:  2

coarse grid level:  3

Fig. D.2.1 V-cycles for different coarse grid levels and γ = 1.

coarse grid level:  1coarse grid level:  1coarse grid level:  1

coarse grid level:  2

Fig. D.2.2 W-cycles for different coarse grid levels and γ = 2.

Fig. D.2.3 Full multigrid V-cycle.
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Appendix E Model problems

E.1 The two dimensional Poisson equation with Dirichlet boundary conditions
In this section the two dimensional Poisson equation wih Dirichlet boundary conditions is con-

sidered and defined below:

Lu = f, with Lu = −(
∂2u

∂x2
+
∂2u

∂y2
), (x, y) ∈ Ω (E.1.1)

u(x, y) = 0, (x, y) ∈ Γ = ∂Ω, where

• Ω = (0, 1)× (0, 1) ⊂ R2,

• Γ = {(0, 0) ∪ (0, 1) ∪ (1, 0) ∪ (1, 1)},
• N ∈ N → h =

1
(N + 1)2

with N the total number of unknowns in the x as well as the y

direction,

• finite differences approximation of the partial differential operator L:

L̃h =
1
h2


−1

−1 4 −1

−1

 .
In the several experiments performed in this section several multigrid parameters are varied to

illustrate the effect on the total work.

In the first experiment the chosen Krylov method is Matlab’s intrinsic Bi-CGSTAB method and

the total number of unknowns is equal to N . The maximum number of Krylov iterations is taken

equal to 200 and the specified tolerance is
||rk||2
||r0||2

≤ 10−6.

In Table 24 below, N is varied and the total number of matrix vector operations is summarized.

The preconditioner is chosen equal to the system matrix, say A, itself and multigrid (here ML) is

used to approximate A−1.

Note that when A−1 is computed exactly, one Krylov iteration is necessary to solve the system

Ax = b and when no preconditioner is chosen, the total number of iterations for N = 2002 is

equal to 350, for the same specified tolerance.

For the multigrid solution phase one W-cycle is performed and one pre and one post smoothing

step are performed using Jacobi as the smoothing method. In all experiments the specified toler-

ance was reached.

In Table 24 it can be seen that the total number of matrix vector operations remains constant

from N = 20 on. Therefore it can be conluded that multigrid is indeed h-independent for this

model problem. Also note the difference in the number of matrix vector operations without a pre-

conditioner, 350 for N = 2002 against 13 when a preconditioner is used.
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N 102 202 502 1002 2002 4002

# MAT-VEC-OPs 1 12 11 13 13 13

Table 24 Two dimensional Poisson equation: varying N .

In Table 25, the same setup from Table 24 is used with N = 4002. It is illustrated that the total

number of matrix vector operations decreases when the number of multigrid W-cycles increases,

as expected. It also seems that there is some sort of balance for the CPU time between the in-

creasing number of multigrid cycles versus the decreasing number of iterations.

#W -cycles 1 2 3 4 5 10

# MAT-VEC-OPs 13 9 8 7 6 4

CPU time 4.90 4.72 4.80 4.79 4.71 5.02

Table 25 Two dimensional Poisson equation: varying the number of multigrid W-cycles.

In Table 26 below the multigrid cycle type is varied. Once again N = 4002, one cycle is per-

formed and one pre and post smoothing step are performed using Jacobi as smoother. MGV

stands for a multigrid V-cycle, MGW for multigrid W-cycle. It seems that using a full-MGV cy-

cle1, leads to the smallest CPU time.

cycle type MGV MGW full-MGV

# MAT-VEC-OPs 15 13 7

CPU time 5.36 5.23 2.94

Table 26 Two dimensional Poisson equation: varying the cycle type.

In Table 27 the number of pre and post smoothing steps is varied. N = 4002 and full-MGV is

chosen. From this table it can be concluded that for this two dimensional Poisson equation, the

total number of iterations does not strongly depends on the number of pre and post smoothing

steps. This may be explained because of the fact that the Poisson solutions are relatively ‘nice’

and smooth. Therefore the error might become relatively smooth after one smoothing step (when

there are no smoothing steps performed, multigrid does not converge, as expected).

It is, however, remarkable that the CPU time does not increases with the number of smoothing

steps. This is what one would expect because the smoothing procedure is one of the main pro-

cesses in a multigrid cycle.
1See Appendix D for an illustration of the different multigrid cycles
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# steps 1 2 3 4 5

# MAT-VEC-OPs 7 9 6 8 6

CPU time 3.44 4.65 3.47 4.70 3.95

Table 27 Two dimensional Poisson equation: varying the number of pre and post smoothing

steps.

This concludes the experiments for the two dimensional Poisson equation. In the next section,

the two dimensional Helmholtz equation will be discussed.

E.2 The two dimensional Helmholtz equation with local absorbing boundary conditions
In this section the two dimensional Helmholtz equation with local absorbing boundary condi-

tions is considered and defined below:

Lu = −S, with Lu = −(
∂2u

∂x2
+
∂2u

∂y2
) + k2

0u, (x, y) ∈ Ω (E.2.1)

∂u

∂n
− ιk0u = 0, (x, y) ∈ Γ = ∂Ω, where

• Ω = (0, 1)× (0, 1) ⊂ R2

• Γ = {(0, 0) ∪ (0, 1) ∪ (1, 0) ∪ (1, 1)}
• N ∈ N → h =

1
(N + 1)2

with N the total number of unknowns in the x as well as the y

direction

• c is the P-wave velocity as an implicit function of space

• ω∗ = 2πf∗ with f∗ the frequency2

• k0 is the dimensionless wavenumber defined as:
ω2

c2
• S is a source term

• ι2 = −1

• finite differences approximation of the partial differential operator L:

L̃h =
1
h2


−1

−1 4− k2
0h

2 −1

−1


This model problem is used to illustrate the performance of the IDR(4) method using two dif-

ferent preconditioners M1 and its reduced form M2. See Chapter 5 for the definitions of these

preconditioners.

2Note that ‘∗′ denotes a dimensionfull variable
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k0 10 20 30

# MAT-VEC-OPs 15 33 65

Table 28 Two dimensional Helmholtz equation: varying wavenumber, constant total number of

unknowns N = 1012 and using M1 with optimal real shift (β1, β2) = (−1, 0).

N 1012 2012 3012

# MAT-VEC-OPs 65 65 67

Table 29 Two dimensional Helmholtz equation: constant wavenumber k0 = 30 and varying N ,

using M1 with optimal real shift (β1, β2) = (−1, 0).

k0 10 20 30

# MAT-VEC-OPs 23 49 83

Table 30 Two dimensional Helmholtz equation: varying wavenumber, constant total number of

unknowns N = 1012 and using M2 with optimal real shift (β1, β2) = (−1, 0).

N 1012 2012 3012

# MAT-VEC-OPs 83 90 97

Table 31 Two dimensional Helmholtz equation: constant wavenumber k0 = 30 and varying N ,

using M2 with optimal real shift (β1, β2) = (−1, 0).
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When the preconditioners are used with the optimal real shift, the following conclusions can be

drawn for the total number of matrix vector operations:

• A linear increase with the wavenumber k0.

• Nearly constant for fixed wavenumber and increasing N .

• There is no significant difference when M1 is replaced by its reduced form M2.

k0 10 20 30

# MAT-VEC-OPs 10 19 27

Table 32 Two dimensional Helmholtz equation: varying wavenumber, constant total number of

unknowns N = 1012 and using M1 with optimal complex shift (β1, β2) = (1,−0.5).

N 1012 2012 3012

# MAT-VEC-OPs 27 27 24

Table 33 Two dimensional Helmholtz equation: constant wavenumber k0 = 30 and varying N ,

using M1 with optimal complex shift (β1, β2) = (1,−0.5).

k0 10 20 30

# MAT-VEC-OPs 17 27 42

Table 34 Two dimensional Helmholtz equation: varying wavenumber, constant total number of

unknowns N = 1012 and using M2 with optimal complex shift (β1, β2) = (1,−0.5).

When the preconditioners are used with the optimal complex shift, the following conclusions can

be drawn for the total number of matrix vector operations:

• A linear increase with the wavenumber k0.

• Nearly constant for fixed wavenumber and increasing N .

• There is no significant difference when M1 is replaced by its reduced form M2.
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N 1012 2012 3012

# MAT-VEC-OPs 42 45 45

Table 35 Two dimensional Helmholtz equation: constant wavenumber k0 = 30 and varying N ,

using M2 with optimal complex shift (β1, β2) = (1,−0.5).
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Appendix F Comparison between two dimensional Maxwell solver and

COMSOL

In this appendix the solution of the two dimensional Maxwell solver is compared to the surface

plots obtained using COMSOL1 rendering thanks to Dr. D.J.P. Lahaye. The figures obtained by

the two dimensional Maxwell solver are mirrored compared to the output of COMSOL. Fur-

thermore, the node based implementation is used to reproduce these figures. For the edge based

implementation, similar results were obtained.

Fig. F.0.1 COMSOL surface plot for two dimensional cavity with height 1 and depth 8.

1See http://www.comsol.nl/products/reaction/ for more information about COMSOL.
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Fig. F.0.2 Two dimensional Maxwell solver: surface plot for two dimensional cavity with height 1

and depth 8.

Fig. F.0.3 COMSOL surface plot for two dimensional cavity with height 2 and depth 8.
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Fig. F.0.4 Two dimensional Maxwell solver: surface plot for two dimensional cavity with height 2

and depth 8.

Fig. F.0.5 COMSOL surface plot for two dimensional cavity with height 4 and depth 8.
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Fig. F.0.6 Two dimensional Maxwell solver: surface plot for two dimensional cavity with height 4

and depth 8.
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Appendix G Sparsity patterns of the different preconditioners

G.1 The two dimensional vector wave equation
In this section the different sparsity patterns are included obtained using the two dimensional

vector wave discretization. In each figure it is specified which preconditioner is chosen, which

FEM implementation type is considered and which type of absorbing boundary conditions are

imposed on the boundary. In all these cases,

7450 7500 7550 7600 7650 7700 7750 7800 7850 7900

7450

7500

7550

7600

7650

7700

7750

7800

7850

7900

nz = 223494

Fig. G.1.1 Two dimensional vector wave equation, node based FEM implementation: sparsity

pattern for preconditioner M1 and local absorbing boundary conditions.
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3.21

3.215

3.22

3.225

x 10
4

nz = 223369

Fig. G.1.2 Two dimensional vector wave equation, node based FEM implementation: sparsity

pattern for preconditioner M2 and local absorbing boundary conditions.
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7850

7900

nz = 55276

Fig. G.1.3 Two dimensional vector wave equation, node based FEM implementation: sparsity

pattern for preconditioner M1 and global absorbing boundary conditions.
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Fig. G.1.4 Two dimensional vector wave equation, node based FEM implementation: sparsity

pattern for preconditioner M2 and global absorbing boundary conditions.

110



NLR-TR-2008-467

2.36 2.37 2.38 2.39 2.4 2.41 2.42 2.43

x 10
4

2.36

2.37

2.38

2.39

2.4

2.41

2.42

2.43

x 10
4

nz = 120450

Fig. G.1.5 Two dimensional vector wave equation, edge based FEM implementation: sparsity

pattern for preconditioner M1 and local absorbing boundary conditions.
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Fig. G.1.6 Two dimensional vector wave equation, edge based FEM implementation: sparsity

pattern for preconditioner M2 and local absorbing boundary conditions.
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G.2 The three dimensional vector wave equation
In this section the different sparsity patterns are included obtained using the three dimensional

vector wave discretization. In each figure it is specified which preconditioner is chosen. In this

case global boundary conditions are considered.

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

nz = 168848

Fig. G.2.1 Three dimensional sparsity pattern for preconditioner M1 and global absorbing

boundary conditions. Zeroth order basis functions are used here and the mesh size

h = 0.15 for the cavity with dimensions 1.5λ× 1.5λ× 0.6λ.
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Fig. G.2.2 Three dimensional sparsity pattern for preconditioner M2 and global absorbing

boundary conditions. Zeroth order basis functions are used here and the mesh size

h = 0.15 for the cavity with dimensions 1.5λ× 1.5λ× 0.6λ.

113



NLR-TR-2008-467

Appendix H UsingMloc instead ofMgl

For the two dimensional vector wave equation it was concluded that when the original system

with global absorbing boundary conditions is preconditioned by a preconditioner based on lo-

cal absorbing boundary conditions, the total number of matrix vector operations was not signifi-

cantly affected. The solution of the preconditioner based on local absorbing boundary conditions

can be performed much more efficiently then is the case when global absorbing boundary condi-

tions are used: there is no blockstructure and the preconditioner is sparsely populated. Therefore,

it is advisable to implement local absorbing boundary conditions in the preconditioner system for

the vector wave equation. This is relatively easy to accomplish.

Recall the fully populated matrix [Pst] from Chapter 2:

[P st] = 2
∫∫

Ss

{∇ · Ss}

{∫∫
St

{∇′ · St}TG0dS
′

}
dS−

2k2
0

∫∫
Ss

{Ss} ·

{∫∫
St

{St}TG0dS
′

}
dS. (H.0.1)

This matrix is obtained from the boundary integral. In this case the global absorbing boundary

conditions are imposed. When local absorbing boundary conditions are imposed, the boundary

element matrix Ki becomes:

Ki = 2ιk0

∫
∂S

(n̂×Wi) · (n̂×Wi) d∂S = 4ιk0li. (H.0.2)

The latter equation leads to a sparsely populated boundary integral matrix.
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