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Abstract

High-dimensional data imputation is a critical challenge in semicon-
ductor metrology, where secondary measurements are often purposely
omitted to optimize throughput. This thesis examines the Missing By
Design (MBD) framework—an industrially motivated scenario in which
data are systematically uncollected to reduce measurement overhead—and
investigates a range of imputation solutions tailored to the particular com-
plexities of wafer reflectivity and overlay. After establishing the physical,
rank-deficient nature of wafer metrology data through singular-value de-
compositions and principal component analyses, we explore several classes
of methods: linear regressions and matrix-completion techniques for base-
line comparisons; deep neural-network regression (MLP) to capture non-
linearities; a contrastive-learning adaptation of CLIP for pairwise match-
ing of primary—secondary measurements; and novel Bridge Models that
refine coarse CLIP estimates with localized residual translations. Ad-
ditionally, we integrate overlay-based domain constraints into CLIP via
domain-guided neural network regularization (DG), ensuring physically
coherent tool-to-tool (T2T) predictions.

Comprehensive experiments on proprietary wafer datasets confirm that
linear approaches, including regressions and matrix completion methods,
despite capturing the low-rank structure of the data, under-perform in
downstream overlay and T2T prediction due to subtle nonlinear relation-
ships. Deep neural networks offer strong reconstruction accuracy, yet
demand extensive hyperparameter tuning and deeper network structures
than contrastive alternatives such as CLIP-like approaches, which yield ar-
chitecturally efficient, instance-based retrievals, but can lack the precision
needed for rigorous overlay alignment. DG regularization, as an extension
of the CLIP framework, considerably enhances T2T consistency and re-
duces raw reconstruction error. Meanwhile, the Bridge Model combines a
CLIP-derived coarse imputation with a smaller learnable residual map be-
tween encoder domains, bridging global pairwise alignment and localized
corrections for improved reconstruction and downstream tasks. Overall,
this thesis presents a flexible suite of tools that advance high-dimensional
MBD imputation in wafer metrology, offering valuable insights and a ro-
bust methodological foundation for future industrial applications.
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1 Introduction



1.1 Motivation

Modern data-driven systems and problems such as semi-conductor machine cal-
ibration frequently contend with incomplete datasets, whether arising from sen-
sor failures, budget constraints, or proprietary restrictions. In such scenarios,
missing values not only reduce the effective sample size available for training
but also risk obscuring essential variability in the data. This absence of infor-
mation can lead to the learning of ungeneralizable patterns, amplify spurious
correlations, and diminish the robustness of predictive models. Many algorithms
additionally require complete data matrices for training, further underscoring
the importance of suitable imputation methods.

In industrial contexts where data acquisition can be costly or time-consuming,
methods that reliably restore missing values can mitigate measurement overhead
while preserving model performance. By learning how to extrapolate or esti-
mate unmeasured features, imputation enables more efficient use of the available
data, helping to avoid significant performance drops due to incomplete obser-
vations. Approaches to data imputation typically fall into either discriminative
or generative paradigms. Discriminative methods, such as mean substitution,
regression imputation, and k-nearest neighbors [1], often depend on observed
similarities among the complete data points. These approaches, however, may
struggle to represent the complexity of high-dimensional data, particularly if
they rely on simplistic assumptions about the underlying distribution. Gener-
ative methods, exemplified by Generative Adversarial Networks (GANs) [2] or
Variational Autoencoders (VAEs) [3], can effectively learn and model the data’s
statistical distributions to generate entirely new data from, but they can be
computationally expensive and less easily interpretable.

A range of advanced statistical and machine learning techniques, including
principal component analysis (PCA) and Bayesian marginalization, also address
missing data. PCA reduces dimensionality by projecting observations onto a
small set of principal components, though it may overlook nonlinear relation-
ships and can be ill-suited to very large datasets. Bayesian marginalization
introduces prior distributions for missing data and integrates over the resulting
uncertainties, although it often requires approximate inference methods due to
intractable integrals. Many standard machine learning approaches likewise en-
counter limitations in few-shot learning scenarios or when the interpretability
of model predictions is a priority.

Recent progress in self-supervised representation learning has shown that
contrastive approaches can capture intricate data patterns without requiring
large amounts of labeled data. Contrastive Language-Image Pre-training (CLIP)
[4] exemplifies such advances by aligning textual and visual embeddings within
a shared representation space. Building on ConVIRT [5], which sought to rem-
edy inefficiencies in medical image labeling, CLIP has proven flexible in domains
such as breast cancer tissue classification [6] and lung nodule analysis [7]. These
applications learn a contrastive space linking domain-specific imagery and text,
thereby reducing reliance on labeled datasets. Nevertheless, there remains lim-
ited exploration of CLIP in data modalities beyond image and text, especially



those involving continuous high-dimensional inputs that may be incomplete.

1.2 Objectives

The work presented here is conducted in collaboration with ASML, a major
semiconductor equipment manufacturer with a line of state-of-the-art metrol-
ogy systems, called YieldStar. These systems measure reflected light around
the wafer and process the high-dimensional reflectivity data with neural net-
works to detect anomalies such as overlay '. These measurements occur as
paired data points (denoted the primary and secondary measurement), which
together are intended to calibrate machine-to-machine and sensor asymmetries.
These pairs should be theoretically identical under certain contextual changes
to the Yieldstar, though differ in practicality as a result of the systematic er-
rors. Eliminating these systematic errors from the Yieldstar data is essential
for accurate overlay prediction, which is further required for wafer alignment
during the manufacturing phase and directly influences the nano-meter scale at
which ASML can assure photolithographic printing accuracy. Being able to in-
fer the systematic error by measuring primary point alone and imputing missing
secondary measurements therefore promises a reduction in measurement over-
head and a more efficient production workflow. This is not a problem unique to
ASML’s Yieldstar, and is a pervasive challenge in photolithography that yields
a significant reward.

There is currently no published investigation or thorough guide of semicon-
ductor metrology imputation that provides the setup necessary to extensively
explore and rigorously compare a mixture of relevant methods. This thesis
therefore aims to establish a comprehensive study on several discriminative im-
putation methods and their effectiveness in imputing missing data signals for
wafer metrology. For each method we explore, the objective is to learn a mean-
ingful mapping from primary to secondary measurements so that, given only the
primary inputs, the model can predict and correct for systematic machine errors.
Ideally, this should work in few-shot scenarios where only a handful of the total
data collected is complete and utilized to impute the incomplete majority. The
methods investigated include regularized regression imputation (Lasso, Ridge,
Elastic Net), matrix-completion approaches such as Singular Value Threshold-
ing (SVT) and PCA, and machine learning techniques like Multi-Layer Percep-
trons (MLPs) as well as adaptations of the CLIP framework for exploring new
contrastive learning approaches.

As a further objective through this comparison, the study seeks to extend
research on the CLIP contrastive learning framework by assessing its ability
to effectively handle the complexities of semiconductor wafer metrology and
produce reliable imputations in high-dimensional, continuous numerical data
settings beyond text-image pairs.

LOverlay is the alignment position of a lithography pattern relative to the underlying
printed layers on a semiconductor wafer, and largely determines the minimum structure size
that may be incorporated into semiconductor device designs [8]



Collectively, we can summarize the aims of our research with the following
overarching research question:

RQ: How effectively do different discriminative imputation methods,
including classical, statistical, and machine learning based methods,
reconstruct missing secondary signals in wafer metrology data to
reduce systematic machine errors and improve overlay prediction
accuracy?

To address this primary question, the following sub-questions guide the scope
and depth of our investigation:

1. SQ1: What is the relative performance of reqularized linear models (Lasso,
Ridge, Elastic Net) and matriz-completion methods (PCA, SVT) in im-
puting missing secondary data, and do they sufficiently capture systematic
error signals?

2. SQ2: How robust are these imputation methods with respect to key metrics
in semiconductor manufacturing, such as systematic error reconstruction,
overlay prediction improvement, and tool-to-tool (T2T) consistency 2 ?

3. SQ3: How can the CLIP framework be adapted to better suit continuous
value tmputation, and to what extent can it account for underlying physical
data relationships between primary and secondary data pairs?

4. SQ4: What lessons can be distilled into practical guidelines for the semi-
conductor industry regarding the choice, design, and deployment of impu-
tation strategies to minimize measurement overhead while preserving wafer
metrology quality?

2Tool-to-tool matching or consistency marks how closely aligned different Yieldstar tools
are in inferring overlay for the same point on a wafer under equivalent machine settings.
Correcting systematic errors should improve this metric.



1.3 Contributions

This paper introduces the first academic, extensive guide on the implementation
and rigorous comparison of several discriminative data imputation techniques
within the scope of semiconductor wafer metrology. Within this scope, this
work proposes an extension of Rubin’s [9] missing data framework, identifying
Missing By Design (MBD) settings that are prevalent in industrial applications,
yvet underrepresented in machine learning literature. We further extend re-
search on contrastive learning as an imputation mechanism in wafer metrology,
specifically extending the CLIP model to new data modalities. It additionally
contributes an adaptation of the CLIP framework that regularizes pairings with
overlay inference error for domain-guided imputations (DGCLIP), extending
CLIP to account for domain constraints characterized by the relationship be-
tween metrology data and overlay. Lastly, the study introduces a novel class of
Bridge models that upgrades the CLIP framework by learning to translate un-
used residual information in pairings from the primary to the secondary domain
for finer-grained 2 imputation. Empirical evaluations are conducted with both
graphical analysis and metrics like residual PCA visualizations, systematic error
reconstruction loss, overlay inference loss, and overlay tool-to-tool matching loss
to gauge performance and reliability, accompanied by practical guidelines that
consider data dimensionality, design and degree of missingness, and available
computational resources.

3At test, CLIP is limited to imputing either an entire secondary point, or a weighted
average of several, from the set of complete data pairs (the training set). Limited to this set
of possible imputations, this constitutes a coarse-grained imputation lying in the interior of
the span of the training set. Good imputations are hard to achieve for points that are not
close-by or within this interior, and will likely require interpolation of several pairings, the
quality of which is highly dependent on the spread of the training set.



2 Background and Literature Review

Herewith, we begin our investigation with a review of relevant work, such as
missing data mechanisms, similarly explored imputation settings, and popular
discriminative imputation methods, to establish the literature gaps that we aim
to address with this thesis.

10



2.1 Classical Missing Data Mechanisms

Before we consider imputation methods for missing data values directly, we
must first understand the mechanisms that lead to them. Rubin (1976) [10]
categorized these mechanisms into three distinct types: Missing Completely at
Random (MCAR), Missing at Random (MAR), and Missing Not at Random
(MNAR). In this section, we outline each of these mechanisms with mathemat-
ical definitions and discussions of their implications on data imputation.

Consider an arbitrary dataset represented by a matrix Y € R"*4, where y; ;
denotes the entry in the i-th row and the j-th column for i € {1,...,n} and j €
{1,...,d}. Let Yops be the set of all observed entries in Y and let Yy,;s be the set
of all missing entries. In other words, Y can be viewed as the combined dataset
in a conceptual sense (encompassing both observed and missing values), whereas
Yobs and Y denote disjoint portions of that data matrix. To formalize the
missingness pattern, define a binary missingness indicator matrix R € {0,1}7*4
with row and column indexes ¢ and j, such that:

R 1, if Y;; is observed,
v 0, ifY;; is missing.

The distribution of R given the full data Y (both observed and unobserved)
characterizes the missing data mechanism. In practice, understanding this
mechanism can guide the choice of imputation or modeling strategies, and it
may influence how reliably different methods can recover the unobserved entries

in Y. The complete-data likelihood function with missingness mechanism R
is given by:

L(97¢ | }/Owa) = P(YObSaR | ev(b)a

where 6 is the imputation models parameters and ¢ is the set of parameters
governing our missingness mechanism. We can further separate the likelihood
function into:

L(0a¢ ‘ YObS7R) = P(Yobs | 9) X P(R | YobSaaaQS)-
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Rubin defines a missingness mechanism as ignorable if it satisfies two condi-
tions:

1. Distinctness: The parameters # and ¢ are distinct, i.e., the parame-
ter space can be partitioned such that inferences about 6 do not provide
information about ¢, and vice versa.

2. Missing at Random: The missingness mechanism at most only depends
on Y and not on Y.

Given the above conditions for a missingness mechanism, the likelihood sim-
plifies and standard estimation procedures can be used without having to model
the mechanism explicitly. The simplified observed-data likelihood would then
be:

L0 | Yobs) = P(Yops | 0).

Consequently, the observed-data likelihood can be factored or integrated over
the missing values without explicitly modeling the missingness process, preserv-
ing the consistency of standard estimators. Under an ignorable mechanism, it
is therefore not necessary to model the details of why certain measurements
are missing; instead, practitioners can focus solely on the relationship between
observed variables to predict the missing samples. In particular, maximum like-
lihood and Bayesian methods applied solely to the observed data yield unbiased
(or more precisely, consistent) parameter estimates, because the act of missing-
ness does not distort the underlying data distribution in a way that depends
on unobserved observations. By contrast, in non-ignorable settings, standard
discriminative methods risk systematically biased or incomplete imputations if
they fail to account for dependence between unobserved data and the missing-
ness pattern.

In the semiconductor context, this distinction could be critical. For example,
if one randomly omits half of the secondary metrology readings to reduce run-
time, the resulting dataset may satisfy the 'missing at random’ condition and
allow straightforward imputation with methods like ridge regression or multi-
layer perceptrons. However, if measurements are missing in a way that corre-
lates with the wafer’s underlying properties (e.g., failed measurements on wafers
prone to high overlay error), additional modeling of the missingness mechanism
becomes essential. Ensuring or confirming the plausibility of an ignorable mech-
anism thus simplifies the imputation procedure and strengthens confidence in
the fidelity of reconstructed wafer measurements. With this in mind, we will now
introduce and analyze each of the classical missingness mechanisms.

12



Missing at Random (MAR) Also the second condition of ignorability,
Rubin classifies a missingness mechanism as Missing at Random if the proba-
bility of an entry missing only depends on the observed data and not on the
missing data itself:

P(-R | YobS7Ymis) = P(R | Yobs)'

Analyses under MAR require methods that model the missingness mecha-
nism as conditioned on the observed data to obtain unbiased estimates. An
example might occur if a preliminary inspection is used to decide whether a
second, more detailed measurement is required. Here, the decision to skip the
additional metrology step might be based on known, observable traits of the
wafer (such as a recorded reflectivity range or known processing route). While
missing data still reflect a pattern, that pattern is explainable by information
in the observed wafer records rather than by unknown or hidden variables.

Given that the missingness mechanism depends directly on the observed
data, imputation methods must utilize the observed data to model a predictive
relationship. For this classification, techniques like multiple imputation or ma-
chine learning approaches would work well where missing values are replaced
with plausible estimates that are inferred by a derived or learned distribution
conditioned on Y.

Missing Completely at Random (MCAR) Rubin further classifies a
missingness mechanism as Missing Completely at Random if the probability of
an entry missing is both independent of the observed data and the missing data
itself:

P(R ‘ YObS; anis) - P(R)

In other words, under MCAR conditions, the 'missingness’ does not depend
on any data values observed. The observed data may consequently be considered
a simple random sample of the complete data, and any analysis performed on
MCAR data is then unbiased . For instance, suppose a measurement station
is intermittently offline due to a random hardware glitch or network outage
that has no correlation with the wafers being processed. In this case, each
missing measurement arises purely at random, leaving no systematic differences
between measured and unmeasured data points. Considering the mechanism is
completely random, straightforward imputation methods like mean imputation
can provide unbiased estimates.

Missing Not at Random (MNAR) Finally, Rubin classifies a missing-
ness mechanism as Missing Not at Random if the probability of an entry missing
depends on the missing data itself, even after conditioning on the observed data:

P(R | Yob&Knis) - P(R | YOb&Knis)-
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Analyzing MNAR data is a challenge because the missingness mechanism
must be explicitly modeled and standard techniques may give biased results. As
like a previous example, in metrology, one could imagine a tool failing specifi-
cally for wafers that have unusually high overlay errors or extreme reflectivity
values that are not captured by the primary measurement. Since those wafers’
secondary readings are systematically absent in a way that depends on the un-
observed (but potentially problematic) measurements, the missingness cannot
be accounted for simply by conditioning on observed attributes. This can in-
troduce biases if the model treats missing data as though they were MCAR or
MAR.

Addressing MNAR requires modeling the missingness mechanism explicitly,
such as incorporating further external data or assumptions about the distribu-
tion of Yiis (e.g., Bayesian priors). However, this has the potential to introduce
bias. Approximation algorithms are necessary to evaluate the integrals as well,
which can be an expensive computational step. However, in MNAR datasets,
the missingness mechanism is non-ignorable according to the outlined condi-
tions. Therefore, we must consider the full likelihood including Yis:

L(0,6 | Yobs, R) = / P(Yopes Y | 6) X P(R | Yobs: Yinies &) d¥inie.

This integral would likely lack a closed-form solution and require advanced
computational methods for approximation, such as the Expectation-Maximization
(EM) algorithm, Markov Chain Monte Carlo (MCMC) simulations, or varia-
tional inference techniques [11].

14



2.2 Missing by Design (MBD)

We have introduced the significance of ignorability and the classical mechanisms
that shape our imputation approaches in semiconductor metrology. However,
each of these classifications only govern missingness as a consequence of an
uncontrolled mechanism, and not by design. On Rubins framework, Graham,
Hofer, and MacKinnon (1996) later noted that the MCAR condition is rarely
satisfied in practice “unless data are missing by design” [12]. The concept of
Missing by Design (MBD) refers to instances where missingness is intentionally
introduced, i.e., purposefully uncollected data, to optimize processes and reduce
resource consumption. This classification is also known as planned missing-
ness or designed missingness and has been extensively explored, with Pokropek
(2011) formalizing it within the social sciences [13]. Essentially, MBD is a
framework for balancing trade-offs between comprehensive data sampling and
practicality. These practical constraints include sampling costs, time limita-
tions, and burdens on participants, which are accounted for in MBD while yet
maintaining the integrity of statistical analyses. To achieve this, procedures
in the MBD framework use deliberately structured missingness according to a
predefined scheme during data collection. This scheme should be designed in a
way that appropriate data completion methods can then accurately account for
the missingness mechanism. Common designs in social sciences include:

e Multiform Design: Where different subsets of variables are collected
from different subsets of participants. This is equivalent to taking entirely
primary or entirely secondary measurements for each sample wafer, or
with each Yieldstar tool.

e Two-Method Measurement Design: This design has a subset of par-
ticipants receive both a comprehensive measurement and a less resource-
intensive one, while the rest receive only the latter. While neither primary
or secondary measurements are less or more resource intensive than the
other, this could be equivalent to taking both primary and secondary mea-
surements for a subset of the measurement points along a wafer, followed
by taking only primary measurements for the remainder. This method
best aligns with the objective of our research, as we aim to predict sec-
ondary measurements for future primary measurements based on data
relationships from a complete paired sample subset.

¢ Three-Form (Matrix Sampling) Design: Variables are divided into
different forms, and each participant completes only a subset of these
forms.

These designs reduce the data collection burden without significantly com-
promising the ability to estimate statistical models accurately [14] [15]. Now,
consider again our arbitrary data matrix Y that can be separated into two dis-
joint sets of observed data Y s and missing data Y,is, where the missing data
then corresponds to an MBD design. The missingness indicator matrix R is
defined as:

15



R 1, if Y;; is observed,
Y00, if Y;; is missing by design.

In MBD, the probability of missingness is a deterministic function of the
study design and does not depend on the data values themselves:

P(Ri; =0]Y,D) = f(D),

where D represents the design parameters, and f is a deterministic function
specifying which data points are missing. As the probability of missingness does
not depend on the data values Y, this mechanism is considered MCAR. How-
ever, unlike traditional MCAR scenarios where missingness is random, MBD
involves deliberate missingness introduced through the design D and poses both
challenges and opportunities for imputation. Specifically, because the missing-
ness mechanism is known and controlled, imputation methods can leverage this
information to create ignorable missingness and produce unbiased estimates.

Despite its established utility in social sciences and psychology, MBD has not
been formally defined in the context of machine learning. Traditional missing
data classifications—MCAR, MAR, and MNAR—focus on unintentional miss-
ingness arising from random or systematic factors. MBD, by contrast, arises
from deliberate design choices aimed at balancing data collection efficiency with
operational constraints.

This study builds upon the foundations of planned missing data designs by
Rubin and Pokropek through expanding MBD for missing data imputation with
machine learning methods in industrial applications. Specifically, in scenarios
like advanced metrology systems, secondary measurements can be purposefully
omitted during deployment to reduce measurement overhead. These omitted
data points are then imputed using predictive models trained on complete data
pairs. The intentionality of the missingness distinguishes MBD from other miss-
ing data mechanisms and aligns it with the principles of planned missingness.
Hence, we define Missing by Design (MBD) as a missing data mechanism where
data is intentionally omitted based on predefined operational or strategic crite-
ria, independent of the data values:

P(Rz]:0|YaD):f(D)a Vlaj

Unlike MCAR, MAR, or MNAR, MBD reflects deliberate decisions made
to balance resource constraints, measurement costs, and analytical needs. This
definition extends the principles of planned missing data designs to data impu-
tation in machine learning contexts, particularly in industrial applications. To
expand on this concept further, consider a high-dimensional continuous dataset
where each data point consists of two components, x; and x3. Due to opera-
tional constraints, we intentionally collect only x; during deployment, resulting
in missing data xo that is Missing by Design. Our goal is to impute x5 using a
model trained on complete data pairs (x1,x2). The experimental design is such
that our mechanism is independent of both the observed and unobserved data,

16



and distinct from any parameters of our imputation model, and therefore, our
missingness mechanism is ignorable. Assuming a joint distribution P(x1,X2),
we can model the conditional distribution P(x2 | x1). Using this conditional
distribution, the expected value of x5 given x; can be computed as:

)A(Q = E[Xg | Xl] = /XQP(XQ | Xl)dXQ,

where, in practice, we estimate P(x3 | x1) using methods like regression analysis,
Bayesian approaches and machine learning models.

Although the MBD framework can be implemented as an ignorable missing-
ness mechanism, certain design choices may violate Rubin’s distinctness assump-
tion if not carefully managed. An immediate example is if both the fraction of
missing data (or another design parameter) and the imputation model’s param-
eters are optimized simultaneously based on performance, then the missingness
mechanism becomes entangled with the data model. In this joint optimization
scenario, the way data are omitted depends on the model’s outcomes, breaching
the independence needed for an ignorable mechanism.

By contrast, if one parameter is held fixed and the other is optimized, the
distinctness condition can be preserved. For instance, one could fiz the fraction
of missing data at 50% and optimize only the imputation model architecture;
or, given a chosen model architecture, vary the fraction of missingness to as-
sess cost-accuracy trade-offs. In both cases, the fraction remains an external
design choice, preventing feedback loops in which the missingness depends on
unobserved data or the model’s predictive success.

Evidently, although the MBD approach can be crafted to maintain an ig-
norable mechanism, certain practical implementations may inadvertently violate
Rubin’s distinctness condition and thus become non-ignorable. Addressing these
scenarios falls under our fourth research question, namely: What lessons can be
distilled into practical guidelines for the semiconductor industry regarding the
choice, design, and deployment of imputation strategies to minimize measure-
ment overhead while preserving wafer metrology quality? Below are imputation
implementation scenarios we’ve evaluated, that might be encountered in semi-
conductor metrology, on how deliberate design choices can tie the missingness
pattern to the data or model parameters in ways that break the required inde-
pendence:

Adaptive Skipping based on Preliminary Results Consider a metrol-
ogy system that initially collects both primary and secondary measurements for
each wafer, yet omits the secondary measurement if a preliminary reflectivity
check indicates the wafer is likely within specifications. Although this setup
appears MAR at first (since the decision depends on observed partial measure-
ments), it can lean towards non-ignorability if those preliminary signals strongly
correlate with the missing secondary values in ways not accounted for by the
model. The fraction of missing data thus becomes a function of the wafer’s un-
derlying properties, entangling the mechanism with unobserved measurements.

17



Online Adjustment of Missingness Fraction In a high-throughput
setting, the metrology tool might dynamically alter the fraction of omitted
secondary measurements based on operational factors such as queue length or
overall resource usage. If these operational factors themselves correlate with
wafer characteristics (e.g., certain lots are processed during peak loads), the
missingness fraction ceases to be purely exogenous. Unobserved wafer traits
can indirectly dictate when secondary data are skipped, thereby rendering the
mechanism partially non-ignorable.

Performance-Driven Omission A scenario arises when the imputation
model is periodically retrained (fine-tuned), and its observed accuracy on vali-
dation data informs whether more or fewer secondary measurements should be
collected. As the missingness fraction is directly linked to the model’s perfor-
mance, the parameters of the data model () and the missingness design (D)
become co-optimized. This feedback loop breaks the distinctness assumption,
since the design choice depends on the model’s success in imputing missing
values.

Cost-Driven Bidding or Pricing In some industrial workflows, wafers
may bid for measurement resources according to an internal cost or priority
function that depends on partially observed data. Wafers with higher priority
gain both measurements, while lower-priority wafers skip the secondary reading.
If the cost function substantially depends on unobserved wafer attributes or
latent features, the missingness becomes correlated with precisely those missing
values.

In each of these examples, the fraction or pattern of missing data is not
set independently of the underlying data or model behavior. Instead, a feedback
mechanism arises wherein the choice to omit certain measurements depends on
observed or potentially unobserved properties of the wafer, or on imputation
model performance. Such feedback invalidates the notion of an ignorable de-
sign, as the missingness mechanism now influences—and is influenced by—the
same parameters the model is attempting to estimate. Consequently, more elab-
orate selection or pattern-mixture modeling would be required to avoid biased
inferences under such non-ignorable MBD regimes.

In summary, Rubin’s classification of missingness mechanisms provides a
fundamental basis for understanding the complexity of data omission and the
modeling required to address it. The MBD framework extends these ideas by
deliberately introducing missingness according to a deterministic pattern that,
when kept independent from model parameters, preserves an ignorable mecha-
nism. This independence allows practitioners—such as semiconductor metrolo-
gists—to maintain unbiased inference, provided that the missingness design and
imputation strategies are carefully separated. Having established the theoret-
ical rationale for MBD and clarified the importance of avoiding certain design
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choices in semiconductor metrology data imputation, we now turn to the core
imputation methods.
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2.3 Data Imputation Techniques

This chapter presents a suite of data imputation approaches, ranging from classi-
cal linear models to more sophisticated methods that incorporate nonlinearities
and regularization. We begin by examining established baseline classical tech-
niques, such as regression-based methods and matrix completion, which often
perform well under simpler assumptions (e.g., low-rank data or linear relation-
ships) and are based on leveraging statistical properties of the observed data
to estimate missing values. They are generally easy to implement and compu-
tationally efficient, making them popular choices for initial data preprocessing.
However, these methods often rely on strong assumptions and may not capture
complex relationships in the data, potentially leading to biased estimates and
underestimation of variability. Subsequently, we move to advanced machine
learning methods, including neural networks and contrastive-learning-based ar-
chitectures, which can handle richer data structures and potentially offer greater
flexibility in capturing complex wafer characteristics.

2.3.1 Regression Imputation

The most historical of the methods, linear regression analysis dates back to
Newton in the 17th century, and has been continually expanded upon through
modern times with as recently as Hoerl and Kennard introducing the ubig-
uitous ridge regression in 1970 [16], and Santosa and Symes’ first use of the
equally-infamous LASSO (L1) regression in 1986 [17]. Regression imputation
is an application of linear regression analysis that explicitly models how miss-
ing values depend on other observed variables. Simply put, this method fits
a regression model to the available data and then uses the fitted relationship
to predict missing outcomes. In the simplest case, one assumes a linear link
between a response variable Y (partially observed) and a set of fully observed
predictors X = {X1,Xs,...,X,}. The fitted regression function then provides
imputations for Yy,s, preserving inter-variable correlations in ways that simpler
approaches, such as mean substitution, cannot.

Despite the appeal of its straightforward application and deployability, re-
gression imputation has limitations that become apparent when dealing with
complex measurement processes like semiconductor wafer metrology. First,
classical regression assumptions of linearity may underrepresent the intricate
relationships in high-dimensional reflectivity or overlay data. Although the
technique can be extended to include interaction terms or non-linear trans-
formations, it still relies on a correctly specified functional form. If the true
relationship is more complex or highly nonlinear, the imputed values may fail
to capture essential patterns. Second, regression imputation underestimates
variability by placing the imputed data directly on a fitted line or surface. This
can inflate correlations between the imputed variable and the predictors, poten-
tially skewing analyses that rely on covariance structures. Stochastic variants
introduce random noise drawn from residuals [9] to better approximate true
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data variability, but these methods add further modeling assumptions.

In the broader missing data literature, regression imputation is typically
discussed under the Missing at Random (MAR) framework, meaning the miss-
ingness depends only on observed data [18]. When these conditions are met and
the model captures enough of the genuine data relationships, regression impu-
tation often provides more accurate estimates than naive approaches like mean
substitution. For example, in wafer metrology, if the missingness in a secondary
measurement is driven by observed wafer properties (e.g., certain reflectivity
ranges), then a well-specified regression linking these properties to the target
measurement could yield meaningful imputations. However, if hidden factors
play a major role in driving both the measurement outcome and the probability
of missingness, any linear or even nonlinear regression model would risk yielding
biased imputations.

Though widely used in social sciences and medical research, regression im-
putation remains relatively underexplored in the semiconductor manufacturing
domain, where high-dimensionality and possible nonlinearity may depart from
classical assumptions. As part of this thesis, we will benchmark the performance
of regression-based approaches against more advanced or specialized methods
to determine whether they can feasibly handle wafer metrology data. In doing
so, we aim to assess both the potential strengths of regression imputation (e.g.,
interpretability, simplicity) and its vulnerabilities, thus identifying where it may
fit in the broader suite of available imputation techniques.

2.3.2 k-Nearest Neighbors Imputation

Fix and Hodges introduced the k-nearest neighbors (k-NN) algorithm in 1951
as a new numerical approach for data interpolation and imputation [1]. In con-
trast to purely parametric approaches, k-Nearest Neighbors (k-NN) imputation
directly exploits local data similarity when filling in missing values [19, 20].
Rather than relying on distributional assumptions or linearity, k-NN identifies
the k most comparable observations in the dataset through numerical itera-
tion—based on a chosen distance metric—and imputes a missing entry by av-
eraging the known values of those nearest neighbors. This method can better
capture complex or nonlinear relationships in data, a characteristic that proves
especially relevant in contexts such as semiconductor metrology, where subtle
differences in wafer reflectivity or overlay might result from localized process
variations not easily approximated by a simple global model.

Despite this flexibility, several practical challenges arise when applying k-
NN to industrial data. First, the choice of k and the distance metric can
heavily influence the quality of imputations, as too few neighbors may skew
results toward outliers, while too many neighbors risk diluting meaningful local
structure. Second, high-dimensional scenarios—as in wafer metrology, where
measurements can span multiple sensors or process steps—exacerbate the curse
of dimensionality, diminishing the effectiveness of distance-based comparisons.
Preprocessing steps such as Principal Component Analysis (PCA) can mitigate
this issue but introduce further complexity and assumptions about data struc-

21



ture. Moreover, computing distances for each missing entry across large wafer
datasets can become computationally expensive, making k-NN less practical for
real-time or large-scale applications.

Like other non-mechanism-specific imputation strategies, k-NN requires as-
sumptions akin to Missing Completely at Random (MCAR) or Missing at Ran-
dom (MAR) for unbiased estimates [18]. Should wafer measurements be sys-
tematically missing due to, for example, machine failures triggered by unusual
reflectivity ranges, straightforward local averaging cannot correct for that se-
lection bias. Though, when missingness is reasonably ignorable and the data
size remains tractable, k-NN might outperform simpler methods by preserving
more of the variable interdependencies. This trait is particularly important to
maintaining correlations that reflect critical physical relationships among wafer
features. However, the literature remains limited on how effectively k-NN han-
dles large-scale, high-dimensional metrology data, suggesting a need for empiri-
cal comparisons against advanced neural or matrix completion techniques. Due
to time constraints, k-NN was not explored as part of this study. Including this
in future research would be valuable as a comparison to the CLIP model, which
employs this simpler method as part of its framework.

2.3.3 Principal Component Analysis (PCA) Imputation

Principal Component Analysis (PCA) was first introduced in 1901 by Karl Pear-
son, and has long since served as a quintessential statistical technique for di-
mensionality reduction, projecting high-dimensional data onto a smaller set of
orthogonal components that capture the majority of variance [21]. In the con-
text of missing data, Troyanskaya et al. (2001) formally extended PCA into
an iterative imputation method by viewing the observed matrix as a low-rank
structure, then estimating the unobserved entries as the best fit to that low-rank
approximation [22]. This iterative process typically involves initializing miss-
ing values, computing a partial PCA decomposition based on available entries,
and repeatedly refining both the imputed values and the principal components
until convergence. By focusing on a reduced number of latent factors, PCA
imputations are often more stable than purely local methods, particularly when
variables exhibit strong correlations.

In principle, semiconductor metrology data can benefit from PCA-based im-
putation, since wafer measurements (e.g., reflectivity readings) frequently reveal
dominant modes of variation that relate to physical properties or systematic ma-
chine effects. If these variations can be captured by a limited set of principal
components, PCA offers a straightforward way to reconstruct missing entries
without discarding partial observations. This characteristic proves attractive
in high-dimensional scenarios, as PCA mitigates the curse of dimensionality
by compressing the original feature space. Moreover, by approximating global
variance structures, PCA may facilitate the alignment of wafer measurements
across multiple sensors or process steps, thus preserving the key relationships
that underpin industrial quality control.

However, several factors may limit PCA’s suitability for metrology data im-
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putation. First, the underlying assumption that wafer measurements lie near a
linear subspace can be restrictive: if nonlinear dependencies are prevalent—per-
haps due to complex wafer-layer interactions—an ordinary PCA model may fail
to capture essential features. Although kernel or probabilistic extensions of
PCA can provide more flexibility [23, 24], these variants raise computational
costs and introduce additional modeling choices. Second, standard PCA meth-
ods typically assume an ignorable missingness mechanism (MCAR or MAR), yet
wafer measurement data can be systematically omitted, for instance, if certain
sensors tend to fail on more challenging samples (an MNAR scenario). In such
cases, the imputed values might still be biased despite the low-rank assumptions.
Lastly, implementing PCA-based algorithms on large-scale industrial data can
be computationally intensive, as each iteration requires a partial Singular Value
Decomposition (SVD) or EM-like updates.

From a research standpoint, while PCA is widely recognized in statistical
literature, its direct application to deliberate or complex missingness in semi-
conductor metrology data remains understudied. It is not entirely clear whether
the potential benefits—such as dimensionality reduction and capturing overall
variance trends—offset the cost of possible mis-specifications when wafer mea-
surements deviate from linear assumptions. A sub-goal of this thesis is therefore
to ascertain whether PCA can effectively preserve the critical variance structure
in wafer data, especially under purposeful or systematically introduced missing-
ness, or whether more specialized methods are necessary to handle the demands
of industrial wafer metrology.

2.3.4 Singular Value Thresholding (SVT) Imputation

A relatively recent development, the matrix completion imputation method Sin-
gular Value Thresholding (SVT) was formulated by Cai et al. (2010), which op-
erates on a principle very similar to Principal Component Analysis (PCA)—namely,
that a data matrix can be approximated by a low-rank representation [25]. How-
ever, instead of explicitly decomposing the data into principal components, SVT
enforces low-rank structure through the nuclear norm (the sum of singular val-
ues) and iterative thresholding. Like PCA-based methods, it benefits from the
observation that many real-world datasets, including those from semiconduc-
tor metrology, often exhibit a limited set of dominant modes or factors. By
iteratively shrinking smaller singular values, SVT aims to recover a coherent,
low-rank matrix from incomplete observations, thereby filling in missing entries.
In a wafer metrology setting, SVT can be appealing where systematic er-
rors and prominent measurement variations align with a small number of latent
factors. This approach, akin to PCA, offers a clean way to capture broad struc-
tural variability with relatively few parameters. Further expanding on their
distinction, SVT frames matrix completion as a direct convex optimization un-
der the nuclear norm, rather than extracting principal axes of variation through
an eigen-decomposition or SVD at each iteration. While this formulation can
be computationally efficient for certain types of sparse data, it still demands
careful tuning of the threshold parameter 7 and convergence criteria. If the
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metrology data deviate strongly from a low-rank profile or exhibit significant
nonlinearity, SVT may omit subtler process variations, potentially biasing the
imputed values.

Moreover, despite strong theoretical guarantees in some settings, the prac-
tical efficacy of SVT on large-scale or deliberately incomplete wafer data is not
widely reported in existing literature. Evaluating SVT in comparison to both
simpler (e.g., linear regression) and more advanced (e.g., neural network) im-
putation methods thus remains a key objective of this thesis, helping to clarify
whether the nuclear norm minimization approach can effectively handle nuanced
wafer-level phenomena and systematically designed missing entries.

2.3.5 Bayesian Marginalization

Bayesian marginalization, as the name suggests, owes itself to the historically
and mathematically significant Bayes Theorem. First developed by Rubin (1976)
in the same seminal paper that introduced missing data mechanisms, Bayesian
marginalization distinguishes itself from other imputation strategies by formally
treating missing entries as latent variables drawn from a prior distribution [10].
Instead of substituting or inferring point estimates for these missing values, this
approach integrates over their full posterior distribution, thereby incorporating
uncertainty into parameter estimation. Under a Bayesian view, both the model
parameters and the missing data are random variables endowed with prior dis-
tributions, and the observed data are used to update these priors via Bayes’ rule.
Mathematically, one combines the likelihood of the complete dataset (observed
as well as missing samples) with the priors to obtain a posterior distribution
over parameters and unobserved values. Integrating out the missing data—often
through Markov Chain Monte Carlo (MCMC) or variational inference—yields
marginal posteriors for the parameters and posterior predictive distributions for
the missing observations [26, 27].

For industrial contexts like semiconductor metrology, this method holds
conceptual appeal: a Bayesian framework can seamlessly incorporate domain-
specific knowledge (via priors) about wafer behavior or reflectivity measure-
ments. Such domain knowledge might reduce reliance on purely data-driven
assumptions, potentially mitigating biases when the observed data alone do not
capture all relevant variability. Moreover, marginalizing over missing entries ex-
plicitly acknowledges that multiple plausible values could exist for the omitted
measurements, an important acknowledgment if the missing data mechanism is
uncertain or has some unmodeled complexity. The result is an imputation that
not only provides point estimates but also quantifies uncertainty, which can be
invaluable for downstream decisions where confidence bounds are necessary.

Nevertheless, Bayesian marginalization can become computationally burden-
some for large or high-dimensional wafer datasets. MCMC-based sampling, in
particular, may converge slowly if the posterior is complex or if many parameters
are involved. Variational inference can reduce these computational demands but
introduces additional approximation steps, and care must be taken to ensure ac-
curate inference in light of potential constraints such as planned missingness. In
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addition, practical application in wafer metrology likely requires careful tuning
of priors and nuanced modeling choices to avoid misspecification. While there
is a substantial body of Bayesian literature on missing data for smaller, lower-
dimensional problems, how best to adapt these methods to high-dimensional,
systematically missing wafer measurements remains an open question. Although
Bayesian Optimization could provide a cornerstone method for metrology impu-
tation, time constraints prevented its implementation in this thesis. By exam-
ining Bayesian marginalization alongside more traditional or machine-learning-
based techniques, future research may seek to establish whether the theoretical
benefits of full posterior integration can be realized in the industrial setting of
semiconductor manufacturing.

2.3.6 Multi-Layer Perceptrons (MLPs) for Imputation

A psychologist by trade, Rosenblatt (1958) first theorized the perceptron model
in pioneering work for machine learning, laying the theoretical foundation for
the framework that has and continues to make waves in modern times, known
as deep learning [28]. As a single layer model, the perceptron could not solve
linearly separable systems; though, Rumelhart, Hinton and Williams (1986) ex-
panded upon this foundational model by introducing the Multi-Layer Perceptron
(MLP) [29]. These models exhibit extraordinary ability to estimate nonlinear
relationships in data, and have attracted notable interest for imputation tasks
because they can, in principle, learn arbitrarily complex mappings from observed
to missing features, provided the training data adequately capture the relevant
relationships [30]. In a typical MLP-based imputation framework, the observed
features (Xops) feed into an input layer, which passes information through one
or more hidden layers. These hidden layers use nonlinear activation functions
(e.g., ReLU, tanh) to detect patterns that may not be apparent through linear
transformations alone. The final output layer generates predictions Xpmis for
the missing entries, and training proceeds by minimizing a loss function—of-
ten the Mean Squared Error (MSE)—with respect to observed ground truth.
Through iterative gradient-based updates (e.g., stochastic gradient descent or
Adam [31]), the network refines its weights to reconstruct missing values more
accurately.

Unlike classical models that assume linearity or rely on fixed bases such as
principal components, MLPs approximate functions through layered composi-
tions of nonlinear transformations, making them well-suited to heterogeneous or
high-dimensional data. Studies comparing MLP-based imputation to classical
techniques (e.g., linear regression, k-Nearest Neighbors, or PCA-based methods)
often report lower reconstruction errors, especially in domains with complex fea-
ture interactions. For instance, [30] evaluated MLP-based imputation on medi-
cal records with high missingness rates and found improved predictive power in
downstream analyses relative to simpler methods. Similarly, [32] demonstrated
that MLPs can capture higher-order interactions across multiple features, effec-
tively reducing imputation bias compared to ordinary least squares regressions.

While MLPs excel in handling tabular data by providing global, end-to-end
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mappings, certain metrology tasks might benefit from convolution-based archi-
tectures (CNNs) if measurement arrays exhibit structured spatial or spectral
patterns [33]. In wafer metrology, spatial correlations or repeated measurement
grids could align with convolutional kernels, potentially leading to superior lo-
cal feature extraction. However, adapting CNNs requires that the data be ar-
ranged in a way that leverages local neighborhoods or hierarchical patterns—an
arrangement not always guaranteed in high-dimensional reflectivity measure-
ments. Given that our specific dataset lacks these qualities, we have chosen not
to pursue further research on the subject.

Despite their versatility, neural-network imputation approaches raise several
practical questions within semiconductor manufacturing. High model complex-
ity could lead to overfitting if data are sparse or systematically missing, neces-
sitating careful initialization and regularization of the network. Additionally,
compared to the classical techniques, the number of model parameters that
have to be tuned is substantial and will require significantly more time and
computational resources to optimize over. At the scale of metrology datasets,
even batch loading the data might not be sufficient to reduce memory usage
during training and inference. Unless high-capacity GPUs are available, like
the Nvidia A100, the dataset would have to be compressed (e.g., with PCA) to
more manageable dimensions, which might bottleneck performance.

Additionally, the black-box nature of MLPs poses interpretability challenges.
Process engineers and customers might seek a clear rationale for any deviation
in wafer measurements—particularly if large financial or safety consequences
hinge on the accuracy of imputed data. Furthermore, from the perspective
of inter-variable relationships, while MLPs can approximate a broader range
of functional forms than purely linear approaches, if correlation structures are
extremely high or if certain wafer measurements in metrology are dominantly
governed by physical constraints, purely data-driven approaches might overlook
domain knowledge that could further refine imputation outcomes.

Lastly, the few-shot nature of some production scenarios can further com-
plicate the use of MLPs. In a Missing by Design (MBD) setting, wafer data
may be partially withheld to reduce measurement overhead, so the training
set might underrepresent the richer variability encountered during actual de-
vice production. If the missingness is extensive and the real wafer space spans
more variations than the training subset, e.g., due to subtle differences in layer
composition, optical properties, or equipment calibration, the observed portion
may not thoroughly span the manifold of wafer measurements. Under such
conditions, the model could overfit to the subset of samples that happen to
be observed, leading to poor generalization when predicting unseen or rarely
encountered wafer configurations. This limitation motivates an examination of
newer machine learning frameworks that rely on instance- or pair-level com-
parisons rather than an all-encompassing regression function. Such methods
can potentially avoid the risk of half-baked global mappings by leveraging lo-
cal similarity structures in the data. In the subsequent sections, this thesis
will compare MLP performance with both classical imputation and emerging
representation learning strategies, namely contrastive learning, evaluating their
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efficacy in large-scale, MBD wafer metrology datasets.

2.3.7 Contrastive Representation Learning with CLIP

Representation learning focuses on discovering meaningful data embeddings or
features directly from raw inputs, reducing the reliance on manual feature en-
gineering [34]. Although deep learning has advanced representation learning
by training neural networks on large labeled datasets, many real-world do-
mains—particularly industrial settings—either lack abundant labeled samples or
encounter systematically missing measurements. These challenges have shifted
attention to self-supervised approaches, which learn robust representations from
unlabeled data through auxiliary pretext tasks [35]. Among these methods, con-
trastive learning has emerged as a powerful technique that aligns positive (sim-
ilar) pairs while separating negative (dissimilar) pairs in an embedding space,
thereby capturing crucial data structure [36].

In contrastive learning, each data instance is projected into a latent space
by an encoder, and a contrastive loss function guides the encoder to construct
the latent space in a way that brings embeddings of related samples closer while
pushing apart unrelated ones [37, 38]. This principle has proved remarkably
effective for large-scale image classification [39, 40], text-based tasks [41], and
cross-modal modeling [4, 42]. By treating pairs of observations—whether they
be two augmented (slightly altered) views of the same image or two different
modalities of the same object—as positives, the model learns latent features that
capture invariances or underlying relationships. Even without explicit labels,
these learned embeddings often transfer well to downstream tasks, improving
performance when labeled data are scarce.

Contrastive learning has proven effective for representation learning in di-
verse domains, often outperforming classical supervised or unsupervised tech-
niques under limited labeling. Early successes in computer vision, such as Sim-
CLR [39] and MoCo [40], illustrated how self-supervised objectives can rival
fully supervised training by contrasting augmented image pairs within large un-
labeled datasets. This paradigm also extends to natural language processing,
where models like SimCSE [41] produce robust sentence embeddings by con-
trasting different noise-augmented versions of the same text. Researchers have
similarly applied contrastive frameworks to multimodal tasks, aligning disparate
data modalities—most notably in image-text pairs—with models like CLIP [4]
and ALIGN [42], enabling zero-shot classification in new domains.In domains
where labeled data are scarce, such as medical imaging, contrastive methods
can align data modalities—e.g., radiology images and textual reports—to learn
embeddings that enhance tasks like disease classification or anomaly detection
[5].

Beyond image and text, contrastive learning techniques have gained trac-
tion in audio processing [37, 43], where the model maximizes agreement be-
tween temporally adjacent audio segments while discriminating unrelated sam-
ples. This approach, often referred to as Contrastive Predictive Coding (CPC),
helps uncover latent features that improve performance on downstream tasks
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like speech recognition. Graph representation learning has likewise benefited
from contrastive objectives [44, 45] by encouraging nodes that share structural
properties to cluster in the embedding space, leading to more informative node
or subgraph embeddings.

Although each of these applications underscores the versatility of contrastive
learning, relatively few studies have investigated whether the same principles
translate effectively to industrial contexts with designed missingness, such as in
semiconductor metrology. The success in other data-rich fields suggests that if
contrastive learning can be adapted to handle paired yet incomplete measure-
ments, it might also mitigate the shortcomings of MLPs in few-shot scenarios.

Extending contrastive principles to data imputation requires leveraging a
model’s ability to align different views or subsets of data into a consistent latent
space. For primary and secondary measurements in semiconductor metrology,
by training on samples where both measurements are present—and treating
them as positive pairs in a contrastive sense—an adapted model learns embed-
dings that reflect the intrinsic relationships between these two measurement
types. When one measurement is missing, the model can then infer its likely
embedding position (and thus the missing values) by comparing against samples
that occupy similar regions in the latent space.

This approach addresses limitations in classical imputation strategies. Tra-
ditional regression-based methods can overfit or fail to capture rich nonlinear
relationships among wafer measurements, while matrix completion often as-
sumes a relatively global low-rank structure that may not hold in every local-
ized region of the wafer data. Moreover, deep learning approaches like MLPs
might lack guiding principles that incorporate prior information in the con-
struction of their latent spaces. Contrastive learning, by contrast, aligns each
observed primary-secondary pair through a specially constructed latent space
without imposing strictly linear or low-rank constraints, thus potentially accom-
modating more fine-grained variation. Moreover, as shown in domains ranging
from image-text alignment radford2021learning to audio oord2018representa-
tion, contrastive models can remain resilient even if some modalities or views
are missing, by focusing on embedding consistency rather than strict functional
mapping.

Despite these potential advantages, the literature offers scant direct evi-
dence on whether contrastive methods specifically improve imputation in de-
signed missingness contexts, such as those encountered in wafer metrology. As
a result, this thesis aims to bridge the gap by adapting a CLIP-like model to
learn aligned embeddings for primary and secondary wafer measurements. If
contrastive training proves robust against deliberate data omissions and non-
linear measurement phenomena, it may yield more accurate and less biased im-
putations than classical regression, matrix-completion frameworks, and MLPs,
especially in few-shot, high-dimensional scenarios where all those may strug-
gle. Through experimental evaluations on semiconductor metrology datasets,
we seek to clarify whether this novel adaptation of contrastive learning can fulfill
the dual goals of preserving local structure in the data and delivering reliable
imputation for downstream tasks like overlay prediction.
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Figure 1: An architectural overview of the CLIP model [4]

Among the contrastive learning frameworks, the Contrastive Language-Image
Pre-training (CLIP) model by Radford et al. (2021) [4] represents a notable leap
forward in multimodal representation learning, originally designed to associate
visual and textual information within a shared embedding space. By training
on massive collections of internet-sourced image-caption pairs, CLIP acquires
a robust alignment between images and their corresponding linguistic descrip-
tions, facilitating zero-shot inference on downstream tasks. Notably, CLIP’s
contrastive loss objective encourages correct (image-text) pairs to cluster to-
gether in latent space, while mismatched pairs are driven apart. This training
regimen yields an embedding space that generalizes to novel tasks without re-
quiring explicit fine-tuning, demonstrating an adaptability that has spurred a
flurry of subsequent research.

Although CLIP’s impact is most visible in image-text alignment, variations
of this framework have shown promise in domains where labeled data is inher-
ently scarce. Researchers have adapted CLIP-like architectures to specialized
settings—e.g., medical imaging—by aligning clinical images with textual reports
[5, 46]. These adaptations illuminate how contrastive learning can address data
limitations common in industry and science, but also underscore the need to
accommodate new data modalities and domain constraints. For instance, while
ConVIRT [5] aligns radiology images with textual findings for improved diag-
nostic support, models such as MammoCLIP [46] tailor the CLIP pipeline to
mammography images by incorporating domain-specific architectures and aug-
mentations. Despite their success, these medical imaging models rely heavily
on semantic textual descriptions—an assumption that may not hold in purely
numeric or sensor-based contexts.

In practice, CLIP’s architecture comprises two encoders: an image encoder
and a text encoder, as seen in the original architectural diagram given by figure
1. The original formulation uses a convolutional or transformer-based network
for images, paired with a transformer-based text encoder. A contrastive loss
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function such as Van Oord’s (2018) InfoNCE loss [37] (or a symmetric variant)
drives the model to match each image with its corresponding text. Applying
this paradigm to wafer metrology would involve substituting images with pri-
mary measurements and text with secondary measurements (or vice versa), then
training the model to align these two data views whenever a wafer is fully ob-
served. Under missing-by-design conditions, the aim is that the encoder learns
associations among distinct wafer measurements even when only partial data
are available at inference time.

Extending CLIP to such numeric pairings introduces at least four challenges.
First, the image and text encoders must be repurposed to handle continu-
ous tabular data rather than pixels and semantic tokens. Second, the model
must preserve the physical or operational relationships among measurements,
which may not be adequately captured by general-purpose data augmentations
or simple similarity metrics in the objective function. Unlike text-based de-
scriptions that often embody rich semantic content, numeric secondary mea-
surements in metrology may offer more subtle cues for alignment, necessitat-
ing carefully tuned similarity metrics or domain-specific augmentations. We
must therefore explore whether and how domain knowledge—such as physical
constraints, allowable ranges, or known wafer-level correlations—might be in-
tegrated into the contrastive loss to enforce physically plausible imputations.
Third, despite initial demonstrations of CLIP’s versatility in multimodal tasks,
there remains limited evidence that it naturally extends to continuous industrial
data. Previous explorations have focused primarily on semantic alignment (e.g.,
image-text captioning) or specialized clinical images with textual reports, leav-
ing open questions about how effectively a contrastive framework can discover
latent correspondences in purely numeric data domains.

Lastly, and possibly most importantly, while CLIP embeddings are powerful
at suggesting which pairs belong together, they do not inherently provide ex-
act numeric predictions. For many engineering or scientific tasks, approximate
proximity in an embedding space may be insufficient if the imputed values must
meet rigorous accuracy or regulatory thresholds. This remains a significant gap
in current literature. Possible research to address this might be combining a
coarse contrastive alignment step with a subsequent fine-tuning or refinement
step that narrows the discrepancy between embedded pairings and actual mea-
surements. Such an approach could treat the CLIP encoder as a prior to ’get
close’ to the target, then deploy a secondary residual to refine the estimate.

Addressing these challenges altogether constitutes our third research sub-
question of this paper, namely: How can the CLIP framework be adapted to
better suit continuous value imputation, and to what extent can it account for un-
derlying physical data relationships between primary and secondary data pairs?

As such, in this thesis, we seek to adapt the core CLIP methodology to handle
deliberately incomplete, continuous-valued wafer data. Building on the foun-
dational principle that contrastive learning can align partial observations in a
shared space, we examine whether a CLIP-based model can more reliably impute
missing measurements than simpler regression or matrix-completion techniques,
particularly when the missingness mechanism is purposeful. Our hypothesis is
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that contrastive representations may better preserve local structure and domain-
specific nuances, reducing the risk of overfitting or linearity constraints. We
further hypothesize that by regularizing CLIP for domain constraints, like the
relationship between measurement pairs and overly, as well as extending CLIP
beyond simple pairing for imputation, we might achieve better performance in
metrology data imputation. By evaluating performance on high-dimensional
metrology datasets with systematically withheld secondary measurements, we
aim to clarify whether CLIP and its adaptations indeed offer a superior alterna-
tive—or at least a viable complement—to standard approaches in semiconductor
manufacturing settings.

This concludes the literature review section of this thesis. Having identi-
fied the literature gaps in current research regarding data imputation in wafer
metrology, we will now construct the necessary methodology to address them.
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3 Methodology

This chapter outlines the methodological framework for addressing the research
questions and sub-questions. We begin by describing the structure and statis-
tical properties of our wafer metrology dataset, including the design of our
planned missingness. Next, we define the metrics and tools used to gauge
overlay accuracy and systematic error reduction, ensuring that each imputa-
tion method—ranging from classical regression to advanced neural-network ap-
proaches—is evaluated under consistent, industry-relevant criteria. We then
detail the data preprocessing steps, the model training procedures, and the
specific measures used to quantify reconstruction fidelity, highlighting adapta-
tions necessary to accommodate high-dimensional metrology data. Finally, we
discuss the statistical tests applied to determine the significance of any perfor-
mance differences. Through these steps, we aim for a transparent and replicable
methodology that provides a solid foundation for interpreting the subsequent
empirical findings. The detailed algorithms for each imputation method can be
found in appendix A.
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3.1 Data Description, Metrics and Experimental Setup

Central to ASML’s lithography machines is the YieldStar metrology tool, which
captures optical measurements of semiconductor wafers for quality control. Each
measurement site on the wafer i € {1,..., N} yields two p-dimensional measure-

. P
ment vectors: a primary measurement XE ) € RP and a secondary measurement

XES) € RP. Under ideal, perfectly symmetric conditions, these two vectors would
match; in practice, systematic differences arise from equipment asymmetries,
environmental fluctuations, or wafer-specific properties.

In our MBD framework, we choose not to measure the secondary point at
certain locations. Let Q C {1,..., N} be the set of indices for which XES) is

observed. For i € ), the measurement pair (xgp),xl(.s)) is available; for ¢ ¢ Q,
only xl(-P) is known. This Missing By Design (MBD) mechanism stems from

practical limitations: acquiring both measurements at every site can be time-
(8)
at

consuming and resource-intensive, motivating the selective omission of x;

certain locations. Thus, our imputation objective is to learn a mapping
(S P
%% = f(x{"),
where f(-) is estimated using the paired subset {(XE—P), xl(-s)) : 4 € Q}, and
subsequently applied to approximate the missing vectors {fcl(-s) ci¢ Q).
In this study, we then partition the data into a paired set,

Xpaired = {(X('P)7X(vs)) RS Q},

K2 K3

and an unpaired set of primary-only readings,

Xﬁil))aircd = {Xl('P) / ¢ Q}
In practice, we specifically employ a randomized 1:1:4 train-validation-test split
of our candidate dataset of complete paired measurements to mimic few-shot
conditions. The training dataset is thus composed of complete primary-secondary
data pairs, with the validation and test sets only containing primary measure-
ments. Our randomized split mimics random sampling of wafer locations for
primary-only measurement on the production line, which is an MAR design
mechanism for our MBD framework and is therefore ignorable. We pick the
best model parameters by evaluating the validation set at each training epoch,
after which we use the trained model to impute secondary measurements for

the test set. Each imputation method—whether a classical regression, a matrix-
(8)

completion algorithm, or a more advanced neural approach—must predict %;
for i ¢ Q based on XEP). We assess the quality of these imputations not only
by direct comparison to ground truth (XES) is known) but also by evaluating
downstream improvements in metrology accuracy, such as overlay inference per-
formance and tool-to-tool overlay differences when training an overlay inference

network to the imputed dataset. Since semiconductor processes are complex
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and typically exhibit nonlinear dependencies, robust performance in both raw
reconstruction and practical error correction serves as a strong indicator of an
imputation technique’s suitability.

Here, the mean squared reconstruction error in imputing the true secondary
measurements is defined as:

Lo (o(8) o(8))?
EMSRE_N21<X1‘ - X, ) . (1)

This error metric is used to train each model, except for the CLIP model
which uses the infoNCE loss and will be discussed in a subsequent section.

As mentioned, to judge the downstream effect of our reconstruction, we
further evaluate the performance of the overlay prediction network trained on
the imputed datasets. The loss function of the overlay prediction network is
the mean squared overlay error between the true overlay targets y; and the
predicted overlays ;:

N

1 N
Lysor = N Z (v — 0:)°, (2)
i=1

where y; is the true overlay target for sample ¢, and §; = q(xgp),ﬁgs);ﬁ) is
the predicted overlay, with ¢(-;0) representing the overlay prediction network
parameterized by 6. The overlay inference model is a fixed model architecture
and trained on each imputation set with Lysog as its training loss. This loss
therefore has two uses: as a training loss for the overlay inference model, and as
a downstream performance (non-training) metric reflecting the overall impact
of the imputed secondary measurements on the accuracy of overlay predictions.
Note: it is not used as a training loss for the imputation models, except for the
domain-guided CLIP model where it reports the overlay regularization loss.

We then define the aforementioned tool-to-tool (T2T) loss that captures the
variance in overlay predictions across different tools. Let T = {t1,t2, ..., t N0 }
denote the set of tools, and let Z; be the indices of samples associated with tool
tr-

The T2T loss LroT is defined as:

1 = =\ 2
Lror = 5— S (e —)", (3)
pairs (k)
where gjk = ﬁ Ziezk 9; is the mean predicted overlay for tool ti, Npairs =

(N ‘g“ls) = M is the total number of unique tool pairs, and the sum-

mation is over all unique pairs (k,!) with k < {. This loss measures the average
squared difference between the mean overlay predictions of all tool pairs, cap-
turing inter-tool variability. A lower Lo indicates better alignment of overlay
predictions across different tools, suggesting that the imputation model effec-
tively mitigates tool-to-tool differences.



Overall, this setup allows us to the research questions with precise, sys-
tematic analysis. Specifically, we will compare the MSRE and MSOE between
imputation models to determine which are best suited to the data and, in gen-
eral, how effectively discriminative imputation methods reconstruct missing sec-
ondary signals in wafer metrology data to reduce systematic machine errors and
improve overlay prediction accuracy.

To further assess how faithfully each imputation approach reproduces the
latent structure of our wafer metrology data, we perform Principal Component
Analysis (PCA) on both the fully observed (target) dataset and each imputed
dataset. Concretely, suppose the target dataset is represented by a matrix

N xd
Xtarget €ER ’

where N is the number of observations (e.g., wafer sites) and d is the number of
features (possibly after dimensionality reduction with PCA). Let Xjp,, € RN *4
denote a corresponding imputed dataset in which missing secondary readings
have been replaced with a model’s estimates.

Step 1: Principal Components. We apply PCA to each dataset by com-
puting its eigendecomposition or singular value decomposition (SVD). Specif-
ically, for Xtarget, we decompose the data-centered covariance matrix to ob-
tain principal components {vy,..., v, } and associated eigenvalues {A1, ..., A},
where r < min(N, d) is the effective rank or number of retained components.
By convention, A\ > Ay > -+ > A\, > 0. A similar procedure is used to de-
rive the principal components {uy,...,u,} and eigenvalues {p1, ..., p.} for the
imputed dataset Xiyp.

Step 2: Explained Variance. For each dataset, we define the ezplained
variance of the j-th component as

E (_target) _ L n E (_imp) _ L

Vi S EY PRy
These ratios quantify how much of the total data variance each principal com-
ponent captures. The cumulative explained variance up to component m is

then . .
SRV o 3 pyOm),
j=1 j=1

Plotting the cumulative difference in explained variance between two datasets
as a function of principal components considered allows us to see whether the
imputed dataset distributes its total variance across principal components in a
manner similar to the target (Figure 14).

Step 3: Cosine Similarity and Similarity Trace. Once we obtain
the principal components, we compare the directions (i.e., eigenvectors) of the
imputed dataset to those of the target. For the j-th component, let v; € R?
(target) and u; € R? (imputed). We define the cosine similarity as
. ( ) VjT llj
R BT T T T

(4)
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Higher values reflect closer alignment between the two principal directions.
Summing or averaging these individual similarities across components yields
a similarity trace, which is often plotted as a function of the component index
(Figure 13). A steep decline in the similarity trace for higher-order components
indicates that the imputed dataset matches the target only in the leading modes
of variation.

Step 4: Cosine Similarity Matrix and Heatmaps. To visualize a finer-
grained comparison across all pairs of components, we form a cosine similarity
matrix S € R™*", where

S;; = cosim(v;, u;).

If components ¢ and j align well, S;; is close to 1; a value near 0 indicates
orthogonality. Figure 15 displays such matrices as heatmaps, revealing how
specific components from the imputed dataset do or do not coincide with those
from the target. A diagonal band of high similarity suggests close alignment
in most principal axes, whereas off-diagonal blocks may indicate that a method
shifts certain modes of variation relative to the target.

Collectively, these steps provide a comprehensive evaluation of structural
fidelity in the imputed data. By inspecting explained variance, cosine sim-
ilarities of corresponding components, and the overall similarity matrix, we
gain insight into whether each imputation technique preserves both dominant
and subtle patterns critical for wafer metrology. This PCA-based methodology
thus complements more direct error metrics by highlighting how effectively a
model replicates the underlying geometry and variance distribution of the tar-
get dataset.Combining all the analyses, we can compare diverse models under
consistent conditions, identifying which strategies excel at capturing subtle in-
teractions between primary and secondary measurements to achieve tangible
gains in manufacturing precision.
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3.2 Dataset Analysis

A crucial step in evaluating how best to impute missing wafer measurements is
to characterize the dominant modes of variation between primary and secondary
signals, as well as any finer-grained structure not captured by simple low-rank
approximations. To this end, we first construct a difference matrix

D = X® _x(®),

where each row of X () (respectively X(S)) contains the primary (respectively
secondary) measurement vector for a given site. Subtracting these vectors iso-
lates the net systematic error incurred by Yieldstar tool asymmetries, calibration
drifts, or other machine-specific factors.

Singular Value Decomposition (SVD). To examine the rank-deficient
nature of D, we perform an SVD:

D=UXVT,

where U € R"*" and V € R™*" have orthonormal columns, and ¥ = diag(oy,. ..

contains the nonzero singular values 07y > 09 > --- > 0, > 0. Here, n and m de-
note the number of wafer sites and total features, respectively, and r = rank(D).
Plotting these singular values in descending order highlights any elbow in the
spectrum, suggesting that most variance is concentrated in the first few modes.

Cumulative Energy. To quantify how quickly these modes capture the
variance of D, we define the cumulative energy function

k
Zj:l 0—3
Z;;l 032‘

A sharp rise in E(k) for small k indicates that a low-rank approximation, con-
structed by retaining only the leading k& singular values and vectors, can explain
most of the large-scale differences between primary and secondary measure-
ments. By contrast, slowly growing E(k) would imply more diffuse variance.

Residual Matrix. We further investigate the presence of localized structure
by examining the residual

E(k) =

R=D — D(Ttrunc),

where D(Ttrunc) = Z;Z‘f‘“ oju; v]T is the rank-r{,une truncated SVD reconstruc-
tion. Subtracting this approximation from the original difference matrix pro-
duces a residual matrix R that ideally contains only random noise if a low-rank
model fully explains the data. When heatmaps of R reveal faint vertical or hor-
izontal banding, however, we infer that unmodeled systematic effects remain.
Block Aggregation. To visualize these patterns more effectively, we par-
tition R into blocks of size 500 x 50. Concretely, each continuous set of 500
rows and 50 columns is aggregated into a smaller matrix block, which is then
displayed as a single tile in the heatmap. By grouping related entries, we can
highlight correlated anomalies or banding that might otherwise be drowned out.
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value

Singular Values of the Difference Matrix

Comparing the block-aggregated residual matrix to a synthetic noise matrix—of
matching dimensions and variance scale—helps distinguish genuine structured
signals from random fluctuations.

Row- and Column-Wise Mean and Variance. To further characterize
these residual anomalies, we compute row- and column-wise statistics. Specifi-
cally, for each row i in R, we record

1 & 1 & 2
mean; = — g R;; and var; = — g (Rij —meani) .
m m
j=1

j=1

Analogously, each column j has its own mean; and var;. Spikes or troughs
in these statistics indicate non-uniform patterns localized to particular subsets
of sites or features, underscoring the possibility that even a robust low-rank
approximation may miss nuanced but physically meaningful variations.
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Figure 2: (a) Magnitude of the singular values of the difference matrix D as
a function of their index, and (b) their cumulative energies. The pronounced
elbow and the rapid saturation point underscore the matrix’s low-rank structure.

By combining the SVD-based low-rank perspective with residual analysis
and block aggregation, we gain a comprehensive view of how closely primary
and secondary measurements align and where systematic errors persist. The
results of the dataset analysis are given by figures 2, 3, 4. As shown in Fig-
ure 2(a), the singular values exhibit a pronounced elbow, indicating that the
leading principal components account for much of the systematic discrepancy
between primary and secondary measurements. In Figure 2(b), the cumulative
energy plot confirms that only a few modes can effectively capture the large-scale
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variance. Although this observation suggests that low-rank approaches, such as
PCA or SVT, might accurately reconstruct the majority of primary—secondary
deviations, subtracting a truncated SVD from the original difference matrix re-
veals additional, finer-grained structures in the residual (see Figure 3). Unlike
purely stochastic noise, the faint horizontal and vertical banding visible in the
residual heatmap implies localized processes—potentially including tool miscali-
brations or region-specific wafer anomalies—that remain unmodeled by a simple
Aggregated Residuals Synthetic Noise

low-rank fit.
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Figure 3: A heatmap of the aggregated blocks of the residual matrix (left)
alongside synthetic random noise (right). The residual matrix shows noticeable
banding patterns, suggesting non-random structure in the unmodeled data.

g
3

Figure 3 gives the heatmap of the aggregated residual matrix blocks of size
500 x 50 a noise heatmap for comparison. The left-hand panel of Figure 3
illustrates clear banding and correlated signals absent from the synthetic noise
matrix in the right panel, underscoring the structured nature of these residuals.
These appear across the entire block, though more strongly in certain areas,
which might suggest particular features or locations around the wafe Finally,
row- and column-wise means and variances plotted in Figure 4 verify that certain
subsets deviate substantially from uniform behavior, reinforcing the conclusion
that a purely low-rank model fails to capture subtle, site-specific phenomena.
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Figure 4: Row and column mean/variance of the aggregated residual matrix
blocks. The spikes in mean and variance confirm non-uniform structural pat-
terns rather than random noise.

From the standpoint of imputation methodology, these findings emphasize
two key messages. First, the dominance of a few principal directions suggests
that matrix-completion methods could potentially address a significant por-
tion of the primary—secondary difference, leveraging the data’s rank-deficient
structure. Second, persistent localized anomalies indicate that more flexible
models—those that extend beyond linear assumptions—may be necessary to
handle site- or machine-specific errors that remain visible in the residual. As
the results section will show, imputation techniques that reconcile both global
rank-deficient signals and smaller-scale systematic patterns have the greatest
potential to preserve overlay accuracy across varying industrial conditions.
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3.3 PCA Pre-Processing

Building on the findings that our wafer data exhibits both rank-deficient struc-
ture and localized anomalies, we next perform a global dimensionality reduction
to filter noise and redundant features. Specifically, we apply Principal Com-
ponent Analysis (PCA) jointly to the primary and secondary measurements,
concatenating them horizontally into a matrix

X e RN*(p)

where each row corresponds to the combined feature vectors for a single wafer
site. By extracting the principal axes from this unified matrix, both primary
and secondary signals are projected onto the same lower-dimensional subspace,
ensuring consistent representations for subsequent learning tasks.

Beyond simplifying the feature space, PCA helps mitigate risks of overfit-
ting, since components dominated by noise or marginal variance are discarded.
To identify an appropriate compression level, we experimentally vary the re-
tained variance threshold from 90% to 99%, then assess the mean squared
reconstruction error of a baseline linear regression model under identical hy-
perparameters. Although a lower threshold (e.g., 90%) reduces dimensionality
more aggressively, it may also discard relevant structure essential for capturing
subtle primary-secondary relationships. Conversely, pushing beyond 99% can
preserve noise. Balancing these considerations, we find that retaining 98% of
the total variance offers an optimal trade-off between computational feasibility
and accurate modeling of critical wafer features. This choice addresses mem-
ory constraints on our available GPUs while preserving the dominant modes of
variability established during the preceding rank and residual analyses.

Throughout the forthcoming sections, all models are trained and validated on
these PCA-reduced data, thereby ensuring consistency in both dimensionality
and variance content. Specific gains from PCA—such as improved training sta-
bility, reduced memory usage, and enhanced reconstruction performance—are
discussed in the results section, where we quantify the impact of PCA on im-
putation accuracy and ability to handle systematically missing measurements.
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3.4 Hyperparameter Optimization

Stochastic gradient search methods were used to streamline the hyperparameter
tuning process and reduce computational burden. Specifically, in this study, we
employed Optuna [47], a framework-agnostic, advanced hyperparameter opti-
mization tool, to efficiently and systematically explore our model’s hyperparam-
eter space for optimal sets. Optuna supports multiple optimization algorithms
and further allows dynamic trial pruning strategies that cease under-performing
runs early.

Optuna optimizes hyperparameters by defining an objective function that
takes a trial as input, with each trial corresponding to a unique set of hyper-
parameters sampled from a user-defined search space. The objective function
evaluates the performance for a given trial by computing and reporting the best
validation loss. based on the feedback from completed trials, Optuna adap-
tively guides the search toward promising regions of the hyperparameter space
using Bayesian search algorithms, for which we used the standard preset ‘Tree-
structured Parzen Estimators‘ (TPE). For each model, the objective function
evaluated the k-fold cross-validation performance for 30 epochs (motivated by
the fact that each model reached 90% convergence by this point), and ran un-
til the parameter optimization either converged, or reached a fixed cap of 150
trials (due to time constraints). In combination with Optuna, we further reg-
ularized against data split sensitivity using K-fold cross-validation with k=5
folds, a standard number for ML studies, for each trial.

We used the Median pruner preset for Optuna’s dynamic pruning, which
actively evaluates the reported running validation losses for ongoing trials and
compares them against the median performance of completed trials at simi-
lar evaluation steps. A trial is then pruned if its performance falls below this
median threshold, thereby preserving computational resources. The pruning
presets n__startup__ trials and n_ warmup__steps were set to 5 trials for a
sufficiently representative sample size and 10 epochs for an adequate number of
steps before a pruning decision is made, respectively. Because the Optuna prun-
ing engine cannot distinguish between folds within a trial, only the parameters
of the first fold for each trial are reported for pruning consideration.

For SVT and PCA matrix completion methods, pruning was directly handled
by the library (scikit-learn) used to implement these and not by Optuna. The
following tables summarizes the hyperparameter search space for the models,
organized into general and model-specific parameters.
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Table 1: General ML Model Hyperparameters

Hyperparameter Description
Number of Hidden Layers | Varied between 1
and 6.

Sampled from [128, 512] neurons
per layer (increments of 64).

A choice to include layer
normalization after a linear

Layer Dimensions

Layer Normalization

transformation.

Activation Functions ReLU, LeakyReLU, SELU,
SiLU, Tanh.

Learning Rate Logarithmic scale between
10~* and 1076,

Defines the dimensionality
of the final layer output.

Output Dimension

Table 2: Model-Specific Hyperparameters

Model Hyperparameter | Description

CLIP Encoder Optimization Cross-entropy loss scaling

parameter (0.01 to 1).

Temperature (7'

k Number of CLIP pairings
averaged by cosine similarity.

DGCLIP Adaptation D Overlay loss scale
(additional to CLIP) parameter.
Matrix Completion Rank PCA matrix completion
rank.
T SVT soft-thresholding
parameter.

3.5 Procedure Overview for Imputation and Overlay Pre-
diction

This subsection details the specifics of model training and inference at each

stage, from imputation to downstream overlay prediction. Two Nvidia Tesla T4

GPUs with 16 GB memory each were used in parallel for this study. Following

our PCA-based dimensionality reduction, we define two key data subsets for the
imputation and overlay tasks. First, recall that

Qc{l,..,N}

denotes the set of wafer site indices for which both primary and secondary
measurements are available. For ease, we further define the remaining indices
Q¢ ={1,...,N}\ Q comprise those sites missing secondary measurements. Let
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us further define:
Deomplete = {(XEP), XES)) ‘ 1€ Q} and  Dprimary = {X§-P> |j S QC}.

Here, each XEP) and x§S> is assumed to already lie in the PCA-reduced subspace.
Imputation Stage To impute missing secondary readings, we train a
model—statistical or machine learning-based—on Dgomplete- Statistical meth-
ods (e.g., matrix completion) directly map xl(-P) — 5(55), while machine learning
approaches (e.g., neural networks) learn a parameterized function
f: xl(.P) — xl(.s).
For specific algorithmic procedures of each method, see appendix 7. Each models
best parameters are chosen by taking the parameters at the epoch (training
iteration) which gives the best MSRE on the validation set. Once trained, the
model is applied to each xg-P) in Dprimary to produce imputed complements fcgs).
For test pairs in €2, we can estimate the MSRE using equation (1). We then
form a tool-corrected dataset by combining each primary measurement with its
newly imputed complement:
s (P) 4(8)
X; = P(xj ) X5 ),
where P is the necessary post-processing or alignment function. Collecting these
results for all j € Q° yields Dyain = {X; : j € Q°}. Following this, we analyze
the reconstructed data against the target data using PCA as described in section
3.2.

Overlay Prediction Stage Using ﬁtrain, we train an overlay network

where y; is the overlay measurement at site j. A validation set Dya1 guides the
hyperparameter tuning of ¢, minimizing

1
| ﬁval |

Z ’yj_f‘)ja where g; = q(ij;¢)_

j €val

Eoverlay =

We further evaluate the consistency of these overlay predictions across different
YieldStar tools by measuring an auxiliary loss

1 ~ ~ 2
Laux = N § (yk_yl) ’
pairs
(te,t1)

where 7, denotes the mean predicted overlay over all sites measured by tool t,

and (N‘g‘“s) = Npairs counts distinct pairs of tools. A low L,,x indicates less
inter-tool mismatch—an important objective in wafer metrology.
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By combining these two metrics, we capture both the raw accuracy of each
imputation method (via Lysrg) and its practical impact on overlay predictions
and tool-to-tool consistency. This dual perspective clarifies whether reconstruct-
ing the missing secondary signals truly improves downstream metrology tasks.

Having analyzed the dataset and techniques we employ to characterize each
imputation method, we will now outline how each method is applied and ex-
panded in the context of our study.
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3.6 Regularized Regression Imputation
()

In a regularized regression framework, each missing secondary vector x;”’ is

approximated by a linear mapping from its primary measurement xz(-P). Specif-
ically, we posit

%% = <",

where 3 € RP represents a matrix of regression coefficients in the p-dimensional
PCA-reduced space. To avoid overfitting, we impose a penalty on the size of
B3 using a regularization term R(3). Common choices include ridge (L2), lasso
(L1), or a convex blend of the two (Elastic Net), leading to an objective of the
form
1SN s P) 4l
£@) = %2 [=7-x" | + ar(8).
i=1
where A > 0 determines the strength of regularization. In the ridge case,
R(B) = ||B||3 permits a closed-form solution, whereas lasso (||3||1) and Elastic
Net (a||B]]1 + (1 — «)||B||3) typically require iterative solvers such as coordinate
descent. Feature normalization is helpful to ensure that each dimension is pe-
nalized uniformly, and cross-validation on a subset of primary—secondary pairs
guides the choice of A (and « for Elastic Net).
(P)

Once B is learned, any unpaired primary vector x; ’ can be mapped to

J
&;S). This technique often serves as a strong linear baseline and should exploit

global correlations with relatively low computational overhead. Its effectiveness
in high dimensions, however, may hinge on how accurately linear assumptions
capture the wafer-specific relationships—an aspect we evaluate by comparing
reconstruction errors and subsequent overlay improvements with those achieved
by more advanced approaches.

The regularized regression imputation algorithm is given by algorithm ? of
appendix ?
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3.7 Singular Value Thresholding (SVT) Imputation

In the SVT approach, we treat the combined primary—secondary data matrix
as partially observed and seek a low-rank approximation consistent with these
observations. Let

XP) ¢ pN*P and X ¢ RNxp

denote the primary and secondary measurements for the N fully observed (paired)
sites, and let

P)

( Mxp
Xunpaired €R

represent the M primary-only rows. Form a matrix

Xcomplctc S R(N+M) x(2p)

by horizontally concatenating [X(P ), X(8 )} for the paired rows and [Xfﬁ;aired, O]
for the unpaired rows, where zeros fill in the missing secondary portion, filling
the last M rows. Formally, we aim to minimize the nuclear norm ||X]||. subject
to the constraint that X match all known entries in X¢omplete- This encourages

a low-rank solution:

min X[ such that Po(X) = Po(Xcomplete),

where [|X|[, = >°,0r (the sum of singular values o}), © indexes observed
entries, and Pq enforces consistency on those entries.

The SVT algorithm iteratively performs a singular value decomposition of
the current estimate Xy, applies a soft-threshold 7 to the singular values, and
overwrites the known entries with their original values. Convergence occurs
when successive iterates differ by less than a predefined tolerance e. Larger 7
results in heavier shrinkage of singular values and thus a lower-rank solution.
Once converged, we extract the imputed secondary portion from the rows and
columns corresponding to unpaired data.

While SVT can effectively recover major low-rank structure with modest
computational overhead, it may be less suited to highly nonlinear scenarios
where wafer measurements deviate from a strictly low-rank model. Nonetheless,
by constraining the solution to align with observed primary—secondary pairs,
SVT provides a baseline matrix-completion perspective on imputation in this
industrial context.
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3.8 Principal Component Analysis (PCA) Imputation

PCA imputation enforces a low-rank representation on the combined primary—sec-
ondary data matrix by repeatedly projecting onto a principal-component sub-
space and overwriting known entries after each reconstruction. Assume the
same setup as with SVT. Though very similar in method, at each iteration, we
instead approximate X} via its principal components up to some rank r, then
replace all known entries in the reconstructed matrix with their observed values.
We terminate once successive estimates differ by less than a chosen tolerance e,
at which point the last reconstructed rows corresponding to the unpaired subset
yield the imputed X (),

Because PCA captures dominant variance directions, this method can re-
construct large-scale correlations between primary and secondary measurements
with relative ease. However, as with other low-rank approaches, PCA imputa-
tion may omit finer or nonlinear patterns if the data deviate substantially from
a strict low-rank assumption. Nonetheless, it provides an effective baseline
for matrix-completion-style solutions and clarifies whether purely linear feature
compression suffices to recover missing secondary signals in wafer metrology.

48



3.9 Neural Network Regression (MLP)
(5)

In a neural network setting, we treat missing secondary measurements X

unpaired
as the regression target for each unpaired primary vector Xfﬁ;aire q- Let {X;Zi)re Q X;ii)re at

denote the training set of fully observed primary-secondary pairs. A Multi-
Layer Perceptron (MLP) is then trained to learn a nonlinear mapping

. x (P) (S)

f9 . Xpaired = Xpaired’

where 6 encompasses the MLP’s weights, biases, and activation parameters (for
a detailed equation and representation of the forward and backward algorithms,
refer to appendix A). During inference, the trained model imputes each missing
Xiﬁ;aired = fg(Xﬁig)aired) An MLP consists of an input layer that receives X (P,
multiple hidden layers applying affine transformations plus nonlinear activations
(e.g., ReLU or tanh), and an output layer that returns continuous estimates of
X(5). We optimize the model by minimizing mean squared error (MSE) on the
training set:
2

)
2

N
1
L= NZHXZ(':?))aired - fe(XE:;ZLired)’
=1

updating the network parameters 6 via backpropagation and gradient descent.

Once trained, the MLP imputes X&i;aired for all unpaired primary samples,
thereby providing a flexible, nonlinear solution that can surpass linear regression
when wafer measurements exhibit complex dependencies. However, achieving
good performance requires careful hyperparameter tuning and adequate repre-

sentation of diverse primary—secondary patterns in the training data.
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3.10 CLIP

To extend Contrastive Language-Image Pre-training (CLIP) from its original
image—text paradigm to wafer metrology, we replace the standard encoders with
dual MLP networks designed for numeric primary and secondary measurements.
Let

fo:RP - R* and g,:RP — R?
respectively embed primary and secondary vectors into a shared d-dimensional

latent space. During training, we form batches of IV paired observations {(XEP), XES)) N,

computing embeddings z = fo(x (P)) and Z( ) = = go(x; x5 )) A contrastive loss
(we employ InfoNCE [37] for this study) encourages p051tlve primary—secondary
pairs to rank higher in similarity than any mismatched negative pairs:

ex Slm ( ) Z(S)
Lop = _72 ( p( i i )/t)

> = 1exp(sun EP), )/t))

where sim(-,-) is the cosine similarity, and ¢ > 0 (temperature) governs the

distribution’s sharpness. We also apply a symmetrical loss for Z(S) o 7P
matching to ensure both encoders learn reciprocal embeddings. In thlb InfoNCE

. P . .
framework, each primary vector Xg ) and its corresponding secondary vector

X,ES) form a positive pair, while (XEP), X§-S)) for j # i are considered negatives.
When minimizing this loss function, by exponentiating the cosine similarity in
the numerator for the correct pair and summing exponentiated similarities of all
pairs in the denominator, the model optimizes by assigning a higher probability

to (zgp),zgs)) being matched than to (zEP), ES)) with j # i. Maximizing
the log probability of the true pair thus compels the encoders oders fy and
ge to construct a shared shared d-dimensional latent space that pulls positive
embeddings closer and pushes mismatched embeddings farther apart.

Critical design choices include (1) the embedding dimension d, which too
large can impede generalization and too small may underfit; (2) the temperature
7, whose lower values force more confident separation of true and false pairs;
and (3) the batch size, since the InfoNCE loss constructs an N x N similarity
matrix for each update and can become memory-intensive.

Once trained, we embed any unpaired primary vector X(P) into zZ(-P) =
fo (XEP)). To recover fcl(-s) we retrieve secondary embeddings z( ) close to ZZ(-P)

in the latent space. A common strategy is to search among the known secondary
embeddings for the nearest neighbor(s), then project back to the original mea-
surement domain:

%9

= ZjeNi pj X;S),

where N; indexes the top k neighbors by cosine similarity (equation 4), and the
weights p; form a softmax over these similarities. This reconstruction lever-
ages CLIP’s contrastive embedding directly, offering an alternative to purely
parametric regressions. However, it entails a query-time cost that scales with
the size of the training secondary set and may be computationally intensive.
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For large-scale production data, smaller embedding sizes are needed to manage
memory and time constraints, which we addressed with PCA as discussed in
earlier sections. Moreover, because of the computational intensity of the model,
we further use mini-batching to reduce GPU workload.

Although CLIP harnesses robust nonlinear alignment, its success here de-
pends on achieving sufficient coverage of the primary—secondary space in train-
ing. If certain wafer conditions or machine variations appear rarely in the paired
data, the learned embeddings may fail to generalize. Moreover, the InfoNCE
objective can struggle if 7 or the batch size are not well tuned, leading to sub-
optimal separation of pairs.

o1



3.11 DGCLIP: Integrating Domain Knowledge for Overlay-
Aware CLIP

Adapting CLIP for wafer metrology can be further refined by incorporating
overlay-related constraints to ensure that the model’s imputed measurements
remain consistent with physical conditions. Instead of relying solely on con-
trastive alignment, the idea is to guide the training process with an additional
overlay prediction term that penalizes spurious or physically implausible pair-
ings.

Let fys and g4 be the encoders producing embeddings for primary and sec-
ondary measurements, respectively, and recall P as the known function that

calibrates these measurements into the corrected measurement. After encoding
the primary measurement xz(-P) to ZEP) and the imputed complement XES) to
zl(.s), we form a processed vector X; = P(XEP), f{ES)). A small projection head gy,
then predicts an overlay signal y; = ¢, (X;). By comparing §; to the observed
overlay y; where it is available, we regularize the imputation toward physically
meaningful solutions. Specifically, we augment the contrastive loss Lcontrastive

with an overlay error term Lgyerlay and scale factor p:
‘Ctotal = ACcontrastive + pﬁoverlay7 where

2

N
1 -
Eoverlay == N ZH yi — ql/) (’P(xz(‘P)7 XZ(S)))HQ
i=1

A suitable balance for p ensures that embeddings still obey the contrastive
principle while imputations honor the physical relationship with overlay.

To determine whether such domain knowledge is necessary, we examine how
naive (purely contrastive) imputations compare to the true data. For instance,
if PCA analyses reveal significant discrepancies—e.g., the low-rank structure of
the imputed complements diverges from that of the real measurements—then
overlay-based guidance can curb these artifacts. Conversely, if purely contrastive
training already yields consistent patterns, adding a domain term might provide
only marginal gains or even over-regularize the model.

When domain knowledge proves beneficial, a further strategy is to pretrain
gy on a subset of fully observed pairs (with known overlay), then fix or par-
tially fine-tune it while CLIP learns the embedding. This reduces the risk of
overshadowing the contrastive objective. However, the computation overhead
increases because each forward pass now includes an overlay prediction and an
additional term in the loss. Moreover, setting p too high can degrade embedding
quality by forcing the model to overemphasize overlay alignment at the expense
of learning robust pairwise similarities.
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3.12 Bridge Models

Here, we introduce the Bridge Model, which addresses two key challenges that
arise with high-dimensional data under the MBD framework. First, purely
global mappings (such as MLPs) can struggle to capture nuanced, localized re-
lationships when data are scarce or strongly nonlinear. Second, while a CLIP-
based framework can align primary and secondary measurements at a coarse
level, that alignment alone may fall short of the precision requirements of wafer
metrology. The Bridge Model attempts to meet these needs by splitting impu-
tation into two steps: an initial coarse retrieval via CLIP, followed by a localized
refinement that translates the discrepancy between the primary inputs into a

refined correction for the secondary estimates.
(P)

When an unpaired primary measurement x; ’ is observed, CLIP retrieves

a bridge anchor ng) from training data, yielding an initial guess %) This

i
coarse guess likely lacks small-scale accuracy for wafer data. To improve it, the

(P) (P)

Bridge Model considers how the primary measurement x,” ° deviates from x j

By learning a function
hg : (AXEP), ul-) — AXES),
the model refines the imputation to 9 = )A(ES) + AXZ(-S). Here, AxP) =

i,bridge 7
XEP) - )“(Z(.P) and AXES) = xgs) - kgs). The term u; encodes auxiliary context
(S)

(e.g., a PCA reduction of Xx;”’), preventing ambiguities when two identical pri-
mary deltas map to different secondary deltas, such as concatenating location
data. Though, we have found for our dataset that this term is redundant, likely
because the feature space is rich enough that deltas are highly distinguishable
and very unlikely to repeat.

Assume our initial CLIP imputation is not exact, i.e. fcl(-s) #* XES). Un-

der the assumption that the residual translation is unbiased, we can prove
that we expect the new refined imputation &Eili dge
2 (95)

E [xi,bridge

to indeed be exact, i.e.

| = xl(-S). Given the initial CLIP imputation XES), we have that

E[%5iape) = %7+ B [Ax7] = 27 + Axi¥ =27 + (¥ - £7) = x(”
where the first equality is given by substituting the refinement equation and

removing the given CLIP imputation term from the expectation, and the second
equality is given by the unbiasedness assumption on our residual translation.
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Bridge Model Flow Chart

CLIP Retrieval

ng}?;y Residual
Anchor Primary Calculation Translator MLP

Measurement
Refined
Secondary
Calculation

Anchor
Secondary
Measurement

Figure 5: Diagram explaining the bridge model inference pipeline

Figure 5 gives a schematic of the inference pipeline, which is further sum-
marized by the following process description:

Two-Step Framework.

1. Coarse Imputation via CLIP. We embed XEP) into the contrastive space
and identify a top-k neighbor among the secondary embeddings. The
selected or averaged match becomes XES), a quick, instance-level approx-

imation that does not require a direct functional mapping from primary

to complement.

2. Refinement via Residual Translation. The Bridge Model learns a network
he that takes sz(-P) and outputs AXES). Minimizing an MSE loss of the
form

N 5 P
o IAx = hy(Ax{?) w)|P

gives the model explicit guidance to bridge the gap between coarse an-
chors and precise secondary values. Finally, we refine the initial CLIP
imputation by adding the translated secondary residual:

iz(',sba"idge = )A(ES) + AXES)'

It should be noted that If AXEP) consistently predicts AXES), then the expected
refined imputation )‘(E’Sb)ridge converges to the true XES). In practice, it is cru-
cial that the model sees nontrivial residuals, ensuring that hy gains relevant
correction signals. Otherwise, if the coarse imputation is perfect on training
pairs, residuals become zero, offering no gradient for learning. During training
on paired data, we artificially enforce nonzero training residuals by taking the

softmax weighted average of the k-best CLIP pairings with k > 2.
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3.13 Conclusion of the Methodology

In this chapter, we introduced a comprehensive methodological framework for
imputation in wafer metrology under Missing By Design conditions. We be-
gan by analyzing the structure of primary—secondary measurements, highlight-
ing both low-rank patterns and localized anomalies through SVD- and PCA-
based investigations. Following these insights, several candidate imputation
strategies were presented: regularized regression and matrix-completion meth-
ods for handling moderate complexities, neural-network regression for capturing
nonlinearities, and adapted contrastive-learning approaches (CLIP) for leverag-
ing instance-level retrieval in high-dimensional data. Finally, we proposed two
refinements that enhance these methods further: domain-aware overlay con-
straints to inject physical knowledge, and Bridge Models that refine coarse CLIP
imputations via local residual translation.

By balancing global and local perspectives, linear versus nonlinear modeling,
and purely mathematical versus domain-guided constraints, this methodology
accommodates diverse scenarios in industrial wafer metrology. In the next sec-
tion, we evaluate these methods empirically, examining whether each approach
faithfully reconstructs missing secondary measurements, improves overlay pre-
diction accuracy, and remains robust to the complexities of real semiconductor
manufacturing processes.
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4 Results and Discussion

This chapter presents the empirical evaluation of the proposed methods for
metrology data imputation in MBD contexts. We begin with the optimization
results of the models, followed by comparing their reconstruction performances,
which are characterized by the Lysor , similarity trace and explained difference
graphs, and finally analyzing the downstream Lysog and Lror performances.
Note: the optimization results of the matrix completion techniques are omitted
for customer confidentiality, as they give exact rank information on the customer
dataset.

96



4.1 Results
4.1.1 Optimization Studies

InfoNCE Loss 0.233
Learning Rate («) 0.000500
Temperature (t) 0.704

Output Dimension (d 256

Number of Layers 1 (input layer)
Layer dimensions [416]

Layer norms [True]
Activations [Tanh]

Table 3: CLIP Summary of the best trial parameters (shared between encoders)

Objective 0

Trial

Figure 6: CLIP Objective losses (InfoNCE) of each successive trial. The study
was automatically stopped at trial 78 after convergence.

CLIP Table 3 and Figures 6 and 7 summarize the hyperparameter opti-
mization outcomes for the CLIP imputation model. Interestingly, the model
favored (1) a shallow architecture (one hidden layer of dimension 416), and (2)
a higher temperature (= 0.70), in contrast to the typical ~ 0.07 used in large
vision-language datasets [48]. A larger temperature broadens confidence across
multiple pairings, while a smaller temperature intensifies confidence in fewer
pairings. This elevated temperature may indicate a relatively homogeneous
dataset that is easier to learn or, conversely, the presence of challenging neg-
ative pairs that benefit from less severe penalization. The results also suggest
that the relation between the primary and secondary datasets does not require
deep feature extraction, aligning with the preference for fewer layers. Addition-
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Figure 7: Optuna hyperparameter hierarchy results for CLIP parameter search.
Each number represents the percentage of variation in model performance at-
tributed to the hyperparameter.

ally, taking the soft-max weighted average of the best k = 5 imputation pairs
yielded the best reconstruction performance for CLIP.



Metric Value

InfoNCE loss 0.207
Learning rate («) 0.000292
Temperature (¢ 0.316
DGCLIP scale (p) 225

Output Dimension (d) 256

Number of Layers 1 (input layer)
Layer dimensions [448]

Layer norms [True]
Activations [ReLU]

Table 4: DGCLIP summary of the best trial parameters (shared between en-
coders)

Objective O

0 20 40 60 80 100 120
Trial

Figure 8: DGCLIP Objective losses (cross entropy) of each trial. The study was
automatically stopped at trial 120 after convergence.

DGCLIP Table 4 and Figures 8 and 9 detail results from adding domain-
guided regularization to CLIP. The optimal architecture, similar to the primary
CLIP, again consisted of a single hidden layer (448 units), but the optimal
temperature was notably lower (=~ 0.316).

Figure 10 illustrates the interplay between the DGCLIP scale p and temper-
ature t. As p increases, the best-performing temperature region decreases, until
over-regularization forces the model back to higher temperatures. This suggests
that stronger physics-based constraints help the model better discriminate be-
tween correct and incorrect pairings, particularly those that have high cosine
similarity yet large physical overlay discrepancies. Notably, at p = 1 (unscaled),
the DGCLIP overlay loss added only 0.0017 to the objective, signifying modest
yet influential domain regularization.
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Figure 10: DGCLIP model’s Optuna study contour map of objective loss for
varying temperature (¢) and DGCLIP scale (p)

MLP Table 5 and Figures 11 and 12 show that a moderately deep Mul-
tilayer Perceptron (five hidden layers: [320, 512, 448, 64, 256], with mixed
activation functions) achieved the best mean-squared error (MSE) scores. The
unusual mixture of activation functions is notable as shared activations were
also trialed in the optimization runs, and negatively impacts interpretation of
the model. Network depth was the most sensitive hyperparameter, reflecting
the data’s need for multiple layers of feature transformation.
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Parameter Value

Objective Loss (MSE)  0.0000360

Learning rate («) 0.000350

Number of Layers 5

Layer Dimensions [320,512,448,64,256]

Layer norms [False,False,False,False,False]
Activations [SiLU, ReLU, SiLU, LeakyReLU, SiLU]

Table 5: MLP summary of best trial parameters

0.001

T T ]

Objective O

100u

0 20 40 60 80 100
Trial

Figure 11: MLP Objective losses (cross entropy) of each trial. The study was
automatically stopped at trial 106 after convergence.

num_layers 0.65

0.24

Hyperparameter

layer_o_dim 0.06

activation_0 .04
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Figure 12: Hyperparameter hierarchy results for MLP parameter search

Bridge For the Bridge imputation model, best-performing parameters for
the residual translator MLP (given by table 6) closely mirrored those of the CLIP
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Metric Value

Learning Rate 0.0000954
Number of Layers 1 (input layer)
Output dim =Input dim
Layer norms [False]
Activations [Tanh]

Table 6: Bridge model summary of the best trial parameters

encoders, except it omitted layer normalization. Like CLIP, it also benefited
from aggregating k¥ = 5 pairs. This small network therefore adds minimal
computational overhead to the CLIP model. While still technically an MLP,
its lack of need for additional layers, in stark contrast to the MLP imputation
model, suggests the CLIP model is providing adequately close anchors to ’bridge’
easily toward the target imputations. Moreover, this may also imply the residual

domain is considerably less complex to map than learning a global function like
the MLP does.
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4.1.2 Reconstruction Error

Method Rel. MSE | Train Time (min) | Convergence Epoch
(baseline) 1.00 - -
Ridge 40.4 <1 -
Lasso 30.9 <1 -
ElasticNet 30.9 <1 -
SVT matrix completion 0.524 11 48
PCA matrix completion 0.519 4 15
MLP 0.433 1 41
CLIP 0.814 3 87
DGCLIP 0.710 3 93
bridge 0.473 1 (for translator) 31

Table 7: Reconstruction errors (MSE) for each method, as a ratio of the error
between the primary dataset and target secondary datasets.

Using the optimal hyperparameters for each model, we trained each model and
evaluated them on a test set. Table 7 presents the relative MSE (i.e., the ratio
of imputed MSE to the baseline MSE between primary and target secondary
points, since primary and secondary points should be theoretically identical but
are perturbed by systematic errors).

An immediate observation from Table 7 is the stark difference between linear
methods and the rest: Ridge, Lasso, and ElasticNet show relative mean-squared
errors (MSE) surpassing 30—more than 30 times worse than simply leaving the
dataset uncorrected (baseline). This reaffirms that wafer measurement rela-
tionships are too nonlinear or complex for global linear mappings to capture.
By contrast, even the simplest matrix-completion techniques (PCA and SVT)
reduce the baseline error by nearly half, down to around 0.52, indicating that
enforcing a low-rank constraint helps recover much of the secondary structure.

Among the more advanced models, the MLP yields the lowest relative MSE,
at 0.433, within just one minute of training time and converging at 41 epochs.
This suggests that a sufficiently deep, well-tuned neural network can approx-
imate primary-secondary mappings more effectively than either matrix com-
pletion or contrastive alignment approaches. The Bridge model also converges
quickly (31 epochs) and achieves a 0.473 MSE, a substantial improvement over
CLIP alone (0.814). By refining the coarse pair retrieval from CLIP, Bridge
provides a middle ground between purely global neural learning (MLP) and
one-step contrastive matching (CLIP).

Meanwhile, DGCLIP improves upon CLIP’s 0.814 MSE to 0.710, which,
although not as low as the MLP or Bridge results, still indicates that adding
overlay-based domain constraints yields more faithful reconstructions. Both
CLIP and DGCLIP, however, demand more training epochs (87 and 93, respec-
tively), with training times around three minutes each, reflecting the cost of
repeated mini-batch contrastive learning.
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Interestingly, PCA matrix completion attains 0.519 MSE with only four min-
utes of total run time, a modest overhead for large-scale wafer data if the primary
objective is halving the baseline error. SVT, despite its iterative nuclear-norm
thresholding, converges in about 11 minutes to a similar 0.524 MSE—decent
performance but slower than simpler MLP-based methods in this setting.

Overall, the table highlights that the MLP achieves the best pure reconstruc-
tion error in a short training window, though is only marginally better than the
bridge model and matrix completion methods. Bridge offers a significantly bet-
ter reconstruction by a practical refinement of CLIP’s coarse pairing without
building a heavy global mapping from scratch. DGCLIP further provides an im-
provement by domain-physics alignment and raw reconstruction fidelity, while
the linear techniques lag far behind for such complex, nonlinear wafer data.

4.1.3 PCA Analysis of Imputations
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Figure 13: Plot of the cumulative cosine similarity trace between the principal
components of the imputed datasets and the target dataset, as a function of the
number of components considered.

Figure 13 plots the cumulative similarity trace between the principal compo-
nents of each imputed dataset and those of the fully observed (target) dataset, as
a function of the number of principal components (PCs). Interpreting this curve
begins by recognizing that each principal component captures a progressively
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smaller fraction of the variance in the target data. A high similarity trace at a
given number of components thus indicates that the imputed dataset’s modes
of variation align closely with the target’s, not only for the largest variance
directions but also for subtler, higher-order modes.

The baseline curve (in blue), which is the the similarity trace between the
raw primary and target dataset, often shows decent alignment for the largest
modes—base measurements are not wholly dissimilar from secondary signals at
a broad scale—but drops significantly for deeper modes, indicating that uncor-
rected systematic errors degrade the representation of smaller-scale structure.

A broad takeaway from the left region of the graph is that most methods
achieve relatively high alignment on the first five to ten PCs. These primary
components often represent the dominant rank-deficient structure of wafer mea-
surements, where broad discrepancies between primary and secondary readings
are more straightforward to capture. Notably, linear approaches (Ridge, Lasso,
ElasticNet) perform similarly to the best nonlinear methods in these early com-
ponents, reinforcing the idea that large-scale variance can be approximated even
by simpler methods.

As the number of components grows beyond approximately 10, more sub-
stantial differences emerge among the methods. The linear regression curves
(layered on top of each other with ridge in yellow visible) begin to drop off
before even the baseline curve, revealing that they actually worsen the error
between the primary and target data. This is consistent with the reconstruc-
tion error performances we saw in table 7, where all linear regression methods
increased the reconstruction error at least 30 times over baseline. In contrast,
the matrix completion and nonlinear methods maintain higher similarity traces,
suggesting they capture additional layers of local or fine-grained variation that
improve the baseline. This disparity is again consistent with the reconstruc-
tion error performances, which is likely due to the heightened capacity of these
models to handle high-dimensionality.

CLIP (in red) improves upon the baseline curve for the first 40 compo-
nents, then perturbs the primary dataset’s structure such that it dips below the
baseline for the remaining components. Therefore, we can infer that CLIP’s
improvement in raw reconstruction error is likely due to this improvement in
the initial components, and is staggered by failing to capture the higher-order
components. Comparing Bridge (green) and CLIP curves highlights how a mod-
est residual correction can bring an otherwise purely contrastive approach much
closer to the target across many principal components. Beyond 20 PCs, Bridge
systematically and significantly outperforms CLIP and the baseline curve, im-
plying that local residual translations consistently reduce the mismatch that
coarse CLIP pairings leave uncorrected.

The MLP (pink/magenta) line generally remains the top curve. Its deeper
architecture appears well-suited to capturing high-dimensional wafer complex-
ities, though small fluctuations at mid to high PCs might reflect sensitivity to
minor modes or numerical instabilities in the SVD computations that underlie
the PCA-based similarity measure. These fluctuations seem shared with the
matrix completion methods and bridge model at regular intervals, supporting
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this idea.

Matrix completion methods (SVT in grey, PCA in purple) present remark-
ably respectable performances in all orders of components, only slightly falling
behind the MLP when more principal components are considered. Interest-
ingly, PCA and SVT methods behave considerably different. SVT manages the
longest initial run of capturing the first components from any method, though
the PCA curve follows closely behind and intersects many times.

Observing DGCLIP (violet) clarifies another dimension of the analysis. Al-
though not always matching the MLLP or matrix completion methods in raw sim-
ilarity values, DGCLIP surpasses the basic CLIP approach for all components.
Even more, DGCLIP improved CLIP’s similarity trace in the first 30 compo-
nents to the point it surpassed all methods except SVT. This confirms that
domain guidance has, by some degree, quantifiably informed and constrained
the network to avoid unphysical pairings.

Taken together, the figure underscores that while nearly all methods cap-
ture dominant large-scale trends (i.e., the initial PCs), the real test emerges
once the target dataset’s subtler variance directions come into play. Linear re-
gression methods suffer a pronounced drop, whereas matrix completion sustain
high similarity, though not as well as deep learning approaches like the MLP.
This pattern confirms that, while the wafer data’s complexity might be low
rank enough for matrix completion methods to capture significant structure,
subtle nonlinearities may necessitate deep learning approaches like the MLP
(the degree depending on how much they affect downstream overlay predic-
tion). Additionally, the bridge model and DGCLIP, in particular, highlight two
strategies—residual translation or domain constraints—for addressing CLIP’s
mid- and high-component shortcomings without necessitating the deep, com-
prehensive transformation that an MLP requires.

Expanding onthe jaggedness of the curves in more depth, although each
curve in Figure 13 begins relatively smooth for the first few principal compo-
nents—where most data variance resides—several lines grow jagged or oscilla-
tory once they move into higher-order modes. These fluctuations highlight how
each model’s reconstruction aligns (or fails to align) with increasingly subtle or
low-variance directions in the target dataset, often in non-monotonic ways. A
few key factors might contribute to this phenomenon.

First, by the time the analysis has advanced beyond roughly 20 or 30 prin-
cipal components, each component explains only a small fraction of the data’s
total variance. Consequently, small discrepancies between the imputed datasets
and the target can trigger disproportionately large changes in similarity. Nu-
merical noise or micro-scale deviations in wafer data, for instance, can cause
abrupt surges or dips in the cosine similarity from one principal component to
the next, creating a sawtooth-like shape in the cumulative trace.

Second, certain models are inherently more sensitive to local aspects of the
wafer data. Neural networks such as the MLP, Bridge, and DGCLIP may
overfit to particular mid-tier components—achieving a momentarily high align-
ment—only to underrepresent the next few components. This localized success
or failure manifests as brief peaks followed by sharp declines in the cosine similar-
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ity. In contrast, linear and matrix-completion approaches often yield smoother
curves initially, but once they can no longer capture the finer structures, they
can display sudden collapses in alignment for entire ranges of components.

Moreover, numerical instabilities in SVD computations become more pro-
nounced when eigenvalues or singular values are small. If several singular val-
ues are nearly degenerate, their ordering can vary slightly depending on data
splits, floating-point precision, or iterative solver conditions. Such variations can
translate to apparent jumps or dips in the cosine similarity measure from one
principal component to the next. Even minor arithmetic differences in floating-
point operations may reorder these low-energy components, thus fluctuating
how cumulative similarity accumulates.

In addition, the wafer data may itself be segmented by partially disjoint
modes—e.g., certain wafer layers, distinct tool calibrations, or localized anoma-
lies. If a model captures one of these modes well but only partially addresses a
second mode, it might sustain a relatively smooth trace until a principal com-
ponent suddenly emphasizes features from the underrepresented mode. The
similarity trace then dives, only to rebound if subsequent components refocus
on a domain the model handles better.

In practical terms, such oscillations do not necessarily invalidate a model’s
overall success; rather, they signal that a precise, uniform reconstruction of
lower-variance features can remain challenging. Modest deviations in those mi-
nor modes might be acceptable, so long as the model accurately recovers the
major principal components dictating wafer yield and overlay alignment. How-
ever, if those finer components correspond to critical but spatially limited wafer
features, abrupt dips in similarity may signal a need for more targeted refine-
ment, such as further domain-based constraints. Understanding these reasons
behind the jagged pattern helps clarify where further methodological improve-
ments, data expansions, or domain knowledge could shore up the reconstruction
of subtle wafer behaviors.
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Figure 14: Cumulative difference in explained variance between processed im-
puted datasets and the target dataset, as a function of the number of compo-
nents considered.

In graph 14, each curve traces the cumulative difference in explained variance
between the imputed dataset and the target dataset as we consider more prin-
cipal components, so lower curves indicate better alignment with the target’s
overall variance distribution. Viewed in that light, several patterns emerge.
The base curve, which indicates the baseline difference in explained variance
between the raw primary and target dataset, sits highest across nearly all com-
ponents. This means the uncorrected wafer data diverge significantly from the
target’s variance profile, as it retains the largest net discrepancy since none of
the systematic offsets are removed. By contrast, methods whose curves remain
lower across more principal components are capturing the target’s global vari-
ance structure more effectively, introducing fewer distortions or imposing less
smoothing.

Specifically, SVT consistently places near the bottom of the graph, particu-
larly after about 10-20 components, which is closely followed and then slightly
overtaken by the MLP, suggesting they both preserve a broad swath of the tar-
get’s variance distribution with minimal excess or deficit. Likewise, DGCLIP
remains relatively low compared to CLIP, reflecting that its domain constraints
help it align with the target’s smaller-scale components beyond the initial ma-
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jor modes. Meanwhile, the Bridge model, though not quite as good as MLP or
SVT in absolute terms, still outperforms both DGCLIP and CLIP in matching
the target variance. This improvement underscores the value of refining coarse
pairings through a residual translator rather than relying on CLIP’s one-step
coarse imputation.

Like with the similarity trace plots, although both SVT and PCA are matrix-
completion methods aimed at leveraging the data’s low-rank structure, their
curves in this variance-difference plot deviate considerably. Notably, SVT’s line
hovers near the MLP curve over a substantial range of components, indicating
that SVT recovers much of the same variance distribution as a deep neural
model, despite relying on a more classical iterative shrinkage of singular values.
By contrast, PCA’s curve stands markedly higher—often more than twice that of
SVT—signifying that its strictly linear projection leaves significant unexplained
variance relative to the target for most components.

This disparity underscores the difference in how each method imposes low-
rank constraints. PCA restricts the entire matrix to a small number of principal
directions preselected by global variance, which can discard local or high-order
details if they lie outside those major axes. SVT also iteratively shrinks singular
values but retains flexibility in how many singular modes survive the threshold-
ing process, enabling it to adapt better to moderate- or mid-range components
that still contain meaningful wafer variability. Consequently, SVT manages to
align more closely with the target across the whole principal-component spec-
trum in both the similarity trace and explained variance plots, resulting in a
curve that nearly tracks a deeper neural approach like MLP, even if it lacks the
same expressive power or local modeling capacity. Meanwhile, PCA imposes
a rigid cutoff that captures coarse structure but misses a broader set of sub-
tle modes, causing its variance-difference line to remain comparatively higher
throughout.
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Figure 15: Combined heatmaps of the cosine similarity matrix between each
processed imputed set and target set

From these nine heatmaps in 15, each displaying the cosine similarity be-
tween the imputed dataset’s principal components (horizontal axis) and the
target dataset’s principal components (vertical axis), one can gauge how well
each method’s extracted modes correspond (or fail to correspond) to the tar-
get’s. A dominant, bright diagonal typically indicates a strong one-to-one match
of components. By contrast, faint or scattered off-diagonal structures suggest
that the method’s principal components diverge from the target’s ordering or
shape.

Looking at the base’ dataset (top-left), the similarity matrix mostly exhibits
diffuse, low-level color, punctuated by only mild diagonal banding. This con-
firms that the raw primary measurements have only a modest overlap with the
target’s component structure: they do not align well beyond the leading modes,
and the diagonal is faint overall. Each of the linear regressions (middle-center,
middle-right, bottom-left) and CLIP (top-right) show no improvement in align-
ing the principal components over the raw primary (base) set.

When we shift to Bridge (top-center), we observe a significantly more pro-
nounced diagonal streak than CLIP: its diagonal band is considerably more co-
herent, reflecting that localized residual refinements reduce mismatches in the
mid-range modes. To a slightly greater extent than bridge, the MLP heatmap
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(middle-left) shows one of the most distinctive diagonal lines, indicating that
this deeper neural approach reproduces the target’s component directions more
consistently across the entire rank spectrum. Some faint cross-structures exist
in both bridge and the MLP, but they are overshadowed by the comparatively
bright main diagonal, implying the their reconstructions systematically match
or align each principal component with the target.
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Figure 16: Cosine similarity matrix heatmap for DGCLIP compared to CLIP
(right)

Figure 16 gives the heatmap of DGCLIP side by side with CLIP for more
fine comparison. As mentioned, we see that CLIP (right) features a faint, dis-
continuous diagonal mirroring the base heatmap, indicating it struggles to align
many of its higher-order principal components with those of the target. By con-
trast, DGCLIP (left) exhibits a more pronounced diagonal band, suggesting a
more robust one-to-one correspondence in both early and moderate-ranked prin-
cipal components. Though still not nearly as sharp as in some advanced neural
architectures, DGCLIP’s improvement over CLIP is visible in the diminished
expanses of purely blue cells and a more continuous diagonal gradient, reflect-
ing how domain guided overlay constraints steer the model away from purely
data-driven mismatches. Effectively, DGCLIP preserves better alignment with
the wafer dataset’s deeper modes, slightly reducing the random or unphysical
alignments that CLIP alone might produce after capturing the main variance
directions.

For matrix completion, both give a strong diagonal band indicating good
alignment, though SVT (bottom-center) shows a clearer band than PCA (bottom-
right). SVT’s diagonal remains fairly consistent, indicating an impressive align-
ment with the target’s principal components across much of the rank, echoing
the earlier observation that it can adapt to mid-range modes better than PCA.
By contrast, PCA’s diagonal is present yet notably softer and more disrupted by
off-diagonal speckling, suggesting the global directions it extracts diverge more
from the target’s.

Altogether, these heatmaps clarify how each method’s principal components
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match (or mismatch) the target’s. Neural (barring CLIP) or refined matrix-
completion methods typically present a stronger, more continuous diagonal,
reflecting more faithful reconstructions. Simpler linear regressions exhibit faint
or inconsistent diagonals with no improvement upon the baseline, confirming
they do not approximate the target’s underlying structure beyond the leading
few directions.

Summary of Principal-Component Analyses Results The base curve,
high in cumulative difference for both principal-component measures, reaffirms
how simply ignoring secondary adjustments leaves the wafer data significantly
off-target in deeper variance directions. Bringing together the observations
from both the cosine similarity traces (Figure 13) and the explained-variance
differences (Figure 14), we see that each imputation method exhibits distinct
strengths and weaknesses depending on the scope of variance considered. In the
early principal components—where the wafer data’s largest-scale differences re-
side—mnearly all methods perform decently, indicating that the dominant, rank-
deficient structure is not overly challenging. Linear approaches match this lead-
ing variance about as well as more complex models, reflecting that low-frequency
or coarse-level discrepancies can be approximated with simple global regressions.

However, as we look beyond approximately 10 to 20 principal components,
several methods separate themselves by continuing to capture the target dataset’s
mid- and higher-order modes. The MLP consistently retains alignment with
subtle wafer features, as suggested by its high cosine similarity in the tail-end
of Figure 13 and correspondingly low difference in explained variance in Fig-
ure 14. Bridge and DGCLIP also fare better in these mid-tier modes than base-
line CLIP, underscoring that local residual corrections (Bridge) or physically
informed overlay constraints (DGCLIP) can significantly reduce the mismatch
left unaddressed by contrastive alignment alone. By contrast, the base CLIP
approach tends to diverge more strongly in higher components, illustrating that
coarse pair retrieval alone can undershoot the finer nuances of wafer data.

Matrix completion methods provide an interesting comparison. SVT sur-
prisingly tracks near the MLP in terms of preserving overall variance for a wide
range of components, suggesting iterative singular-value thresholding can adapt
well to moderate or mid-level complexities. PCA completion, however, stands
out for lagging behind: while it may handle the main low-rank structure, its
rigid choice of principal axes can omit numerous localized or higher-order sig-
nals, leaving a noticeably larger unexplained variance gap relative to the target.

Notably, many models’ traces become more jagged in the higher components,
an effect amplified by small singular values and the inherent noise or partial cov-
erage in the wafer data. Minor overfitting to specific local patterns may yield
momentary peaks in cosine similarity, only for subsequent principal components
to reveal unmodeled variability. Although these dips do not invalidate the mod-
els’ overall gains, they indicate areas where refined domain knowledge, improved
regularization, or more specialized model architectures might be needed.

Taken together, these observations clarify two overarching themes. First,
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virtually all methods handle the largest principal components of wafer reflec-
tivity data with relative ease; it is the secondary or tertiary modes that truly
distinguish advanced methods from simplistic ones. Second, simply aligning
primary-secondary pairings (as in unrefined CLIP) can leave considerable mid-
range structure unmodeled, while bridging or domain-constrained approaches
pick up much of this slack. However, the upshot for practical metrology is that
while purely linear regressions entirely risk missing precisely those subtleties that
can matter for fine overlay alignment, matrix-completion methods with linear
low-rank assumptions, while not quite as good as the MLP, appear to adapt flex-
ibly to the wafer’s underlying complexity—and might be more suitable if deep
learning approaches introduce too much training overhead or hyperparameter
tuning needs.
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4.1.4 Overlay and T2T Inference Error

Dataset MSE Loss | T2T Loss
primary 1.00 1.00
error corrected 0.908 0.734
CLIP 0.919 1.15
DGCLIP 0.990 0.924
Bridge 0.913 1.06
MLP 0.990 0.924
SVT 0.996 1.08
PCA 1.00 1.11
Lasso 1.03 1.09
Ridge 1.04 1.12
ElasticNet 1.02 1.40

Table 8: Comparison of overlay MSE loss and overlay T2T Loss from training
and testing the overlay inference network on the primary dataset, error corrected
dataset, and each methods imputed dataset, relative to the model performance
on the primary input dataset.

Table 8 gives the overlay and T2T prediction performances for the overlay net-
work trained on each methods imputed dataset. The primary dataset, repre-
senting uncorrected primary measurements, sets both loss benchmarks at 1.00.
By comparison, training on the actual error-corrected dataset (primary data
corrected by the observed target secondary data) yields MSE = 0.908 and T2T
~ 0.734, giving the best-case scenario for training on our imputation sets, i.e.
a 9.2% and 26.6% improvement respectively. A quick scan of the table shows
that no single model simultaneously minimizes both overlay mean-squared error
(MSE) loss and tool-to-tool (T2T) loss significantly.

Among the novel methods, CLIP and bridge reduce the MSE to 0.919 and
0.913 but raise T2T to 1.15 and 1.06 respectively, indicating that while it par-
tially corrects primary—secondary mismatches, it fails to maintain consistent
overlay estimates across different tools and might suggest overfitting to over-
represented tools in the dataset. By contrast, DGCLIP (0.990 MSE, 0.924
T2T) focuses more on preserving overlay coherence, so although its raw MSE
is not as impressive, it yields significantly better T2T performance relative to
CLIP. Bridge (0.913 MSE, 1.06 T2T) simultaneously improves MSE over CLIP
while tempering T2T error somewhat (though not below the primary dataset’s
baseline). The MLP, interestingly, hits 0.990 in MSE, the same as DGCLIP,
and matches DGCLIP’s 0.924 T2T, suggesting that a sufficiently tuned global
neural-network regression can also deliver overlay-friendly imputation.

Linear baselines provide mixed outcomes, though generally underperform,
with the linear regression methods negatively impacting both overlay and T2T
inference. Both matrix completion methods (0.996 MSE, 1.08 T2T for SVT)
(1.00 MSE, 1.11 T2T for PCA) similarly prove unhelpful, though to much a
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lesser degree in T2T.

The final upshot is that though matrix completion methods succeeded in
good reconstruction error and principal component reconstruction, subtle non-
linear variations likely carry on to downstream tasks like overlay prediction,
necessitating nonlinear models. Moreover, different use cases may favor differ-
ent trade-offs. Specifically, DGCLIP and the MLP stand out if T2T matching is
paramount. CLIP-based or Bridge methods yield a better MSE than DGCLIP
but may fall short in T2T consistency—unless additional domain constraints are
introduced. Furthermore, CLIP-based models maintain the simplest network
architecture and are among the lowest training times of the advanced meth-
ods. Compared to the MLP, both DGCLIP and bridge utilize one entire layer
less, with uniform use of the tanh activation, which altogether is a significant
portion of reduced complexity. The MLP hits a middle ground, retaining phys-
ically plausible overlay error while reducing MSE effectively, though at a cost
to complexity. Ultimately, each approach strikes its own balance between com-
plexity, pure numerical fidelity, and physically coherent tool-to-tool predictions,
reinforcing that overlay-cognizant regularization is essential if wafer metrology
requires more than just raw reconstruction accuracy. Overall, however, earlier
successes in reconstruction do not seem to carry on as strongly downstream, as
these methods appear to largely fall short in capturing a considerable enough
portion of the tool asymmetries to reduce T2T errors significantly.
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4.2 Limitations and Challenges of the Study

Although this research presents promising approaches for imputing high-dimensional
wafer metrology data under Missing By Design conditions, several limitations
and challenges remain. These issues reflect constraints in data availability, mod-
eling assumptions, computational resources, and domain-specific considerations,

all of which can shape future extensions and refinements of our methods.

A central limitation arises from the restricted scope and characteristics of
the dataset itself. While the experiments leveraged a large number of wafer
measurements, the overall diversity and representativeness of these samples may
not fully reflect the breadth of possible manufacturing conditions. Notably, our
data primarily focus on a single process flow with limited variation in wafer
types and tool settings. In industrial practice, wafer data can evolve over time
or may exhibit seasonal machine drifts, necessitating repeated retraining or more
adaptive models. Hence, the techniques proposed might see their performance
degrade if encountered with wafer conditions that lie significantly outside the
training distribution, especially for neural or contrastive approaches without
explicit outlier detection or adaptation modules.

Additionally, the assumption of rank-deficiency and moderately smooth error
landscapes—e.g., as exploited by low-rank or matrix-completion methods—may
not hold universally across all operational contexts. Although principal compo-
nent analyses indicate that broad-scale wafer differences lie in a few principal
directions, localized or nonlinear anomalies can still challenge simpler matrix-
completion techniques. At the same time, purely data-driven neural networks
(MLP or CLIP-based) must rely on sufficient paired data to learn these intricate
patterns. Under real production constraints, data may be significantly omitted,
leading to partial coverage of important operating regimes. Models with high
capacity (e.g., deeper MLPs) risk overfitting when unpaired data far outstrips
the fully observed pairs, while CLIP-based retrieval, though a much more con-
servative approach that could fair better than MLPs, might still be misled if
only a narrow portion of the secondary space is well-sampled. Consequently,
the approach’s generalizability hinges on obtaining a sufficiently large, well-
distributed training set to capture the full variability of wafer measurements,
tool calibrations, and process conditions.

The Bridge Model—while elegantly splitting imputation into coarse retrieval
and local refinement—also depends strongly on the quality of initial anchors.
If the underlying CLIP retrieval is systematically flawed for certain wafer cate-
gories or fails under certain machine conditions, the Bridge approach can inherit
these defects.

Moreover, integrating domain knowledge—such as overlay constraints through
DGCLIP-style regularization—brought observable benefits in preserving physi-
cally coherent tool-to-tool alignment, but this approach adds further complexity
to training and tuning. Determining the exact balance between numerical fi-
delity (e.g., in MSE or cross-entropy losses) and physical plausibility (in T2T
overlay consistency) remains nontrivial, subject to trial-and-error in picking
scale parameters for overlay or other physical constraints. Overly aggressive
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domain regularization might overshadow the model’s ability to capture sub-
tle data-driven correlations, whereas insufficient regularization fails to enforce
domain imperatives effectively.

A further limitation lies in the computational overhead for certain meth-
ods. MLP training can be expensive to tune thoroughly, given a wide hy-
perparameter space that includes layer depth, activation choice, and learning
rates. Contrastive methods (CLIP or Bridge) also require large-batch com-
putations of similarity matrices, which can exceed memory limits for extremely
high-dimensional data or large wafer-lot sizes. In production contexts, real-time
or near-real-time constraint may be crucial, limiting the feasibility of approaches
with heavy retrieval or repeated forward passes.

Lastly, interpretability and explainability remain ongoing concerns, espe-
cially for deeper neural or contrastive approaches. The bridging step and
DGCLIP-based domain constraints do help clarify how certain physics-based
or anchor-based corrections arise, but a full industrial deployment might de-
mand a more formal interpretability framework. For instance, engineers might
require direct tracing of which wafer features contributed most to an imputation
or an overlay correction. Methods like post-hoc saliency or attention analysis
can shed light on these decisions, but this thesis primarily focused on predictive
performance rather than thorough interpretability workflows.

In summary, the study’s constraints reflect the realities of a single dataset,
limited exploration of potential out-of-distribution regimes, the inherent com-
plexities in model tuning and domain integration, and the computational and
interpretability challenges of scaling high-capacity models. Addressing these
gaps—through larger, more diverse data, more adaptive or incremental learn-
ing, more robust domain constraints, and refined interpretability tools—con-
stitutes natural directions for future research. By tackling these limitations,
subsequent work can bolster the practical viability of the presented imputation
models, paving the way for more reliable, efficient, and explanatory solutions in
the evolving landscape of semiconductor wafer metrology.
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4.3 Applications and Further Research

The imputation strategies explored in this thesis provide a versatile foundation
for addressing Missing By Design scenarios in semiconductor metrology while
also offering pathways for extension into other high-dimensional, systematically
missing data contexts. In metrology specifically, the central application lies in
the ongoing drive to minimize measurement overhead while preserving high-
accuracy overlay predictions. By substituting costly or time-consuming sec-
ondary measurements with imputed values through neural-based methods—fabs
can reduce wafer processing times and more flexibly allocate measurement re-
sources. The contrastive approach (such as CLIP or a DGCLIP-augmented
CLIP) can also facilitate new procedures in metrology by matching newly cap-
tured primary measurements to historical secondary points, creating a kind of
multisensor memory that captures long-term variability across different produc-
tion runs or tool calibrations. Furthermore, overlay correction tasks can be
strengthened by embedding domain knowledge (e.g., DGCLIP regularization)
that pushes the model to produce physically coherent solutions, thus mitigating
the risk of large systematic offsets that degrade yield or tool-to-tool consistency.
Beyond semiconductor fabrication, many industrial domains could adopt
these methods when data collection is deliberately sparse or unevenly distributed.
For instance, aerospace maintenance might omit selected sensor channels to re-
duce instrumentation load, while healthcare applications (in the scope of tab-
ular data) often forego certain expensive or invasive tests. Neural contrastive
approaches like CLIP can handle a variety of numerical data modalities by first
building a shared embedding space that readily identifies matching or similar in-
stances, as we’ve shown in this study. In such settings, an additional Bridge-style
residual correction can further handle local divergences arising from patient-
specific or part-specific anomalies that are not reflected in coarse or historical
matches. Likewise, if domain physics or safety constraints exist, DGCLIP-like
regularizations can force imputed values to obey known laws of motion, fluid
flow, or mechanical stress, complementing purely data-driven alignment.
Looking ahead, an important area for further research involves building more
adaptive frameworks and missingness designs that dynamically select which
measurement sites or features to collect. By integrating active learning or
Bayesian optimization techniques, one could direct the metrology system to
measure only those wafer sites whose secondary signals are most critical or least
predictable from prior data. In doing so, the model’s uncertainty estimates be-
come a deciding factor in measurement scheduling, requiring careful attention
to the MBD mechanism. Another avenue is refining the overlay-based regular-
ization to account for more complex physical relationships—perhaps modeling
wafer warpage or thermal effects through PDE-based constraints, considering
wafer stack parameters other than overlay, or by introducing more structured
domain embeddings. This would better capture the reality that errors often
cluster by wafer region, layer, or processing batch. Along similar lines, a deeper
synergy between CLIP embeddings and physically motivated priors could be
explored. Rather than simple scalar weighting in the DGCLIP approach, one
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might incorporate physically interpretable latent variables that encode, for ex-
ample, known wafer geometry.

In the realm of neural architectures, the methods presented—MLPs, Bridge,
and contrastive encoders—do not exhaust the spectrum of possible deep learning
designs. Convolutional or attention-based layers could prove more robust when
measurement locations follow a spatial arrangement or when certain channels
of the primary—secondary data correlate in structured patterns. Graph-based
models might also be relevant if wafer sites are connected in some topological or
process-driven network. For instance, a graph neural network might encode ad-
jacency relations between different wafer regions, helping the imputation process
maintain smooth transitions or detect abrupt layer boundaries. Each of these
architectures could also be explored as both direct applications or as the en-
coders of the CLIP model, instead of MLPs. Meanwhile, the Bridge approach
could be extended into multi-bridge systems, where different residual transla-
tors operate over various subdomains or sensor types, eventually merging local
refinements into a unified final imputation.

Moreover, given its success with CLIP, another next step is to apply domain-
guided constraints to the other models, particularly to the bridge model (as it is
partially composed by CLIP). Likewise, varying the degree of missingness would
allow more thorough analyses of few-shot capabilities for the tested methods.
This was not included in the scope of the thesis due to time constraints, as it
would necessitate optimizing each model for each tested degree of missingness
to preserve ignorability conditions.

Returning to the literature review, the Bayesian marginalization and k-NN
frameworks introduced were not applied in the scope of this study due to time
constraints. Exploring k-NN would be valuable to evaluate the effectiveness
of contrastive learning with CLIP versus classical approaches, considering that
CLIP directly employs the £ method in its imputation mechanism and can be
viewed as a contrastive, deep learning extension of it. Bayesian marginalization
was found to be highly complex when scaling to both the size and dimension
of the metrology dataset, and proved difficult when managing computational
resources and deciding on priors. Though this method was abandoned in lieu
of time, it is indeed possible and certainly an area of research that should be
undertaken for future study in metrology data imputation.

An additional line of inquiry involves uncertainty quantification. While the
present models yield point estimates of missing complements, future solutions
might include Bayesian layers or Monte Carlo dropout to provide confidence in-
tervals for each imputed measurement. Such uncertainties could guide process
engineers in deciding whether to trust an imputation or instead perform a physi-
cal measurement. Tying these uncertainties back into an adaptive measurement
system closes the loop, so that the model actively requests real secondary data
whenever its imputation variance crosses a reliability threshold. This can be
especially valuable in high-stakes metrology, where critical yield decisions hinge
upon measurement precision. The question of maintaining interpretability re-
mains salient: domain experts need to diagnose why an imputation might fail
for a given wafer region, an explanation that can emerge only if each modeling
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stage (coarse retrieval, residual translation, domain constraints) is sufficiently
transparent and traceable.

Finally, the capacity to transfer or generalize these approaches beyond the
single dataset used in this thesis stands as a test of scalability. Given that wafer
reflectivity and overlay errors often share certain rank-deficient or repetitive fea-
tures, the studied methods might carry over smoothly to other layers or wafer
designs with minimal re-calibration. Yet transferring them to a domain with
drastically different measurement physics may require rethinking the underly-
ing assumptions or adjusting how domain knowledge is embedded in the model.
Comprehensive multi-site or multi-tool experiments would verify whether the
same bridge concept—coarse instance matching plus localized residual trans-
lation—persists as a robust pattern across varied industrial lines. This is an
important next step for research in further realizing the potential of contrastive
frameworks in industrial data imputation, particularly for CLIP (and by exten-
sion bridge), as it is a conservative model explicitly designed for few-shot data
settings.

Thus, while the thesis introduces a rich suite of techniques for MBD im-
putation in semiconductor metrology, it likewise opens numerous avenues for
enhancements. These include broadening data coverage, deepening the inte-
gration of physical laws, refining the bridging approach for more dynamic or
multi-constraint contexts, varying degrees of missingness, adding uncertainty
estimates, and improving computational efficiency for real-time requirements.

Beyond the scope of metrology, bridge might also present opportunities in
the original language-image data setting where CLIP is derived. A potential ex-
tension is to simultaneously train a decoder network for the language encoder,
which would project latent bridged imputations into new textual captions out-
side our bag of known labels. This would constitute translating the pixel differ-
ences between a new image and a similar known image (paired by CLIP) into
semantic differences that adjust the caption of the similar known image.
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5 Conclusion

This thesis investigated how multiple classes of discriminative imputation meth-
ods—spanning regularized linear regressions, matrix-completion frameworks,
and advanced machine-learning approaches—can reconstruct omitted secondary
signals in wafer metrology to reduce systematic machine errors and improve
overlay accuracy. By grounding our inquiry in a Missing By Design context,
we highlighted the practical and industrially driven rationale for deliberately
skipping measurements in high-dimensional data settings. Here, we reflect on
the primary research question and its associated sub-questions, synthesizing
the empirical results and methodological lessons in light of the goals of wafer
metrology data imputation.

Primary Research Question: How effectively do different discriminative
imputation methods, including classical, statistical, and machine learning based
methods, reconstruct missing secondary signals in wafer metrology data to reduce
systematic machine errors and improve overlay prediction accuracy?

Our results confirm that, although straightforward linear regressions (Ridge,
Lasso, ElasticNet) are computationally lightweight, they struggle to capture
the strongly nonlinear relationships between primary and complementary sig-
nals. By contrast, matrix completion (PCA, SVT) improved upon these linear
baselines by enforcing low-rank constraints, halving reconstruction errors and
aligning principal components better than baseline, yet could not resolve local
or higher-order wafer features.

Neural approaches outperformed simpler methods in both raw imputation
error and principal component alignment—namely the MLP, which excelled in
reconstructing subtle wafer variations, and the CLIP-based models augmented
by domain constraints or localized residuals. The overlay inference experiments
clarified that introducing domain knowledge (e.g., via an overlay-focused regu-
larization as in DGCLIP) allows the model to reduce tool-to-tool (T2T) errors,
thus promoting physically consistent corrections. This domain guided approach
echoes a broader industrial tension: purely minimizing numeric reconstruction
error does not necessarily yield the best overlay alignment across multiple tools,
underscoring the importance of embedding operational objectives within the
learning pipeline.

SQ1: What is the relative performance of regularized linear models (Lasso,
Ridge, Elastic Net) and matriz-completion methods (PCA, SVT) in imputing
missing secondary data, and do they sufficiently capture systematic error signals?

We found that regularized linear regressions notably lagged behind matrix
completion methods, significantly exceeding the baseline errors considered. De-
spite their simplicity and negligible training time, linear regression proved en-
tirely inadequate to capture wafer reflectivity’s rank-deficient structure fully.
Although this did not carry to overlay tasks, matrix completion methods suc-
cessfully addressed global, rank-dominant behaviors in the data, capturing sig-
nificant variations in the principal components. This could suggest that nonlin-
ear adaptations of matrix completion methods like kernelized SVT would allow
better performance downstream.
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SQ2: How robust are these imputation methods with respect to key metrics in
semiconductor manufacturing, such as systematic error reconstruction, overlay
prediction improvement, and tool-to-tool (T2T) consistency?

While nearly all methods captured some fraction of the wafer’s dominant
low-rank structure, their performance varied widely in overlay and T2T tests.
Matrix completion methods, even if they cut reconstruction error, produced
higher T2T error for the overlay prediction network than leaving the dataset
uncorrected, implying poor cross-tool consistency. Some purely data-driven neu-
ral methods (bridge and CLIP) lowered reconstruction and overlay prediction
errors, but did not always achieve strong T2T performance without additional
constraint and sacrificing moderate overlay accuracy. DGCLIP, by contrast, em-
bedded a physics-informed overlay constraint that improved T2T consistency,
albeit at a minor cost to absolute MSE compared to CLIP. The MLP performed
consistently the best at reconstruction metrics, though was equal to DGCLIP ul-
timately at downstream overlay tasks. These differences illustrate the trade-off
between numerical fidelity and physically coherent transformations: in produc-
tion settings, an imputation method that preserves overlay alignment across
multiple machines can be more valuable than one that merely minimizes raw
error. Lastly, the difference in complexity, namely the MLPs comparatively
larger architecture to DGCLIP, necessitates further testing for generalization to
other datasets and production lines to draw any concrete conclusions.

SQ3: How can the CLIP framework be adapted to better suit continuous
value imputation, and to what extent can it account for underlying physical data
relationships between primary and secondary data pairs?

We addressed CLIP’s coarse, uninformed imputations by two main adapta-
tions. First, the Bridge approach introduced a residual translator that refines
CLIP’s retrieved secondary measurements, capturing local deviations otherwise
missed by a single step of contrastive alignment. This improved the alignment
to finer wafer modes while keeping training overhead modest. Second, DGCLIP
wove domain knowledge directly into CLIP’s loss function, ensuring physically
valid overlay consistency. Although neither adaptation fully overtook the MLP’s
raw reconstruction accuracy, each overcame some of CLIP’s mid-range and over-
lay shortcomings. In principle, the results suggest that marrying bridge mod-
els with multi-constraint domain-guided modules could further steer the model
away from unphysical pairings, indicating ample room for future research.

SQ4: What lessons can be distilled into practical guidelines for the semi-
conductor industry regarding the choice, design, and deployment of imputation
strategies to minimize measurement overhead while preserving wafer metrology
quality?

Several practical guidelines emerged. First, the design of missingness in the
operational flow directly influences the methods available for imputation, and
must be carefully chosen to maintain ignorable conditions. Second, linear meth-
ods including regressions and matrix completion are inadequate to capture the
necessary subtleties of metrology data for accurate overlay prediction and T2T
alignment, strongly implying nonlinearities in the data that necessitate more
advanced methods. Third, deeper neural regressions can capture these complex
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nonlinear structures but demand greater attention to hyperparameter tuning
and remain yet to be tested for generalization on multi-line, multi-tool datasets.
Fourth, contrastive-learning frameworks might not work without follow-up re-
finement or domain constraint, which provided quantifiable improvements to
tool asymmetry correction.

Overall, these findings highlight the importance of adapting to the wafer
data’s strong rank deficiency, nonlinearity, local variations, and domain con-
straints when designing MBD imputation solutions in semiconductor metrology.
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Disclaimer

The contents of this report were written with the help of LLMs for spelling,
grammar, and paraphrasing.
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A Imputation Method Algorithms

Algorithm 1 Linear Regression

Require: Observed primary measurements X () ¢ RN*P,

1: Observed secondary measurements X (%) ¢ RN*»,

(P) RApr

2: Unpaired primary measurements Xunpaired €

3: Regularization parameter A > 0 R
Ensure: Predicted secondary measurements X (%)

Compute A = XPTXP) £ AL

4:

5. Compute b = xX(PTx(s)

6: Solve S =A"'b

7: Predict secondary measurements: X(5) = Xfli;aire q B
8: return X(5)
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Algorithm 2 Principal Component Analysis (PCA) Algorithm

Require: Paired primary measurements X() € RN*P
1: Paired secondary measurements X(5) ¢ RN*»,
2: Unpaired primary measurements ng;aired € RMxp,
3: Tolerance € > 0 g
Ensure: Imputed secondary measurements Xfmi)aired
4: Concatenate paired primary and secondary measurements:

Xpaired = [X(P) X(S)] .

5. Concatenate unpaired primary measurements with zeros for missing sec-
ondary measurements:

Xunpaired = [X(P) O} S RMXQP.

unpaired

6: Initialize combined dataset:

XO _ Xpaired
Xunpaired

7: Set iteration counter k = 0
8: repeat
9: Perform PCA on X;, to compute:

Xy ~ UAVT
10: Reconstruct the dataset:
X1 = UAVT
11: Enforce consistency with observed data:

(Xit1)ij = (Xo)ij, V(i,7) € Q,

where Q represents the observed entries in X, i.e., X(F) X9, Xl(f;)mired.
12: Update iteration counter: k < k + 1
13: until Convergence criterion met:

1 Xkt1 — Xillr <e
14: Extract imputed secondary measurements:
L (5) -
Xunpaircd - (Xk+1)N+1IN+JVI,p+1:2p'

15: return X(S)

unpaired
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Algorithm 3 Singular Value Thresholding (SVT) imputation

Require: Observed primary measurements X(©) ¢ RN*P,

1: Observed secondary measurements X (%) ¢ RN*»,

2: Unpaired primary measurements ng;aired € RMxp,

3: Threshold 7 > 0, tolerance € > 0
Ensure: Predicted secondary measurements for unpaired primary measure-

XS
ments Xunpaired

4: Concatenate paired primary and secondary measurements:

Xpaired = [X(P) X(S)] S RNX2P.

5. Concatenate unpaired primary measurements with zeros for missing sec-
ondary measurements:

Xunpaired = [X(P) O} S RMXQP.

unpaired

6: Combine paired and unpaired data:
XO _ Xpaircd c R(N+M)><2p
unpaired

7: Set iteration counter k = 0
8: repeat
9: Compute SVD of Xj:
X, =UxVT,

where U € RINFTM)xr 53 ¢ Rrxr Y ¢ R2PXT
10: Apply soft-thresholding to singular values:

¥ = max(X — 7,0)

11: Reconstruct Xy q:
Xy =UX'VT

12: Enforce consistency with observed data:
(Xk+1)ij = (Xo)ij, V(i,7) € Q,

(P)

where ) represents the observed entries in X, i.e., X(©), X(5), X inpaired:

13: Update iteration counter: k <k +1
14: until Convergence criterion met:

[ Xpq1 — Xillr <€
15: Extract imputed secondary measurements:
(S) _
Xunpaired - (Xk+1)N+1IN+JW,p+1:2p'

. < (S)
16: return Xunpaired

[eX



Algorithm 4 MLP Training and Imputation

Require: Paired primary and secondary measurements X;Zi)red € RN*p,
(9) N x
Xpaired €R p’

1: Unpaired primary measurements ng;aired € RMxp,
2: Learning rate n > 0, number of epochs T’

Ensure: Imputed secondary measurements x5

unpaired
3: Normalize Xél;)red and Xiﬁ;aired for feature scaling
4: for each epocht =1,...,7T do
5: Forward Pass:

e Compute activations for each hidden layer:
hl' :G(Wihi_1+bi), for ¢ = 1,...,L,

where hy = x4

paired”

o Compute output:
x5

paired

= WLhL + bL~
6: Compute Loss:
1 . )
L= N Z Xsecondary,ipaircd - Xsccondary,ipaircd )
i=1

7 Backward Pass:

e Compute gradients of the loss with respect to each parameter using
backpropagation.

e Update parameters:
8: end for
9: Use the trained MLP to predict secondary measurements for unpaired pri-
mary measurements:
5 (5) _ (P)
Xunpaired - fMLP (Xunpaired)'

10: return X(S)

unpaired
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Algorithm 5 Adapted CLIP Model

Require: Training data Di;ai,, learning rate n > 0, temperature ¢ > 0, number
of epochs T'
Ensure: Trained encoder networks fs and g4
1: for epoch t =1,...,T do

2: Sample mini-batch {(XEP), ><§S))}f\’:1 from Dirain
3 Compute embeddings:
zgp) = f@(xl(-P))7 zl(-s) = g¢(xgs)), Vie{l,...,N}
4: Compute similarity matrix:
A
Slj:w’ Vl,]é{l,,N}
Iz [z
5: Compute contrastive loss:
N
1 Sii/t
L= —log __oxpBa/t)
-1 > j—1exp(8i;/t)
6: Update parameters:
0—0—nVeLl, ¢+ d—nVeLl
7: end for
8: return fy, g¢
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Algorithm 6 Bridge Model

Require: Training set Dipain = {(X;

1:

Ensure: Refined secondary measurements x

(P) X(S))}

Pre-trained CLIP model, bridge model hg, PCA transformation
(8)

,~ for unseen primary measure-

ments

2: Training Procedure:

3: for each (XEP),XES)) € Dirain do

4 Generate initial imputation &ES) using the CLIP model

5: Compute AXEP) = xz(-P) — )EEP)

6 Compute sz(-s) = XES) - )EES)

7 Minimize the loss:

Nirain
1 (%) (P2
L= 5 Ax!® — hy(Ax! )H2
8: end for .
9: return 5{55) = % + Axgs)
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