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1. INTRODUCTION
Multiphase  flows are  one  of  the most  widely occurring flows in nature.  Such
flows either have two or more immiscible fluids separated by an interface or one
or more fluids, again separated by an interface, which are in different phases. Such
flows  normally  occur  in  atmosphere  (for  example  bubbly  flows),  chemical
reactors, turbo-machines, fuel injectors, pipe flows, etc. Multiphase flows are also
of particular interest to the petroleum industry where such flows often occur in
wells and pipelines during oil and gas production.

In multiphase flows, since the interface also gets advected with the flow, accurate
calculation of  the interface location is necessary for  accurate  prediction of  the
flow field. In order to calculate the interface at each time step one can use either
the  Level  Set  (LS)  or  the  Volume of  Fluids  (VOF)  method.  The LS method,
though computationally cheap, is rather inaccurate, while the VOF method though
more  accurate,  is  computationally  very  expensive.  In  [1]  van  der  Pijl  studied
bubbly flows, and to calculate the interface an approach based on the combination
of the level set and volume of fluid methods (MCLS) was adopted. This approach
gave  more  accurate  results  (as  compared  to  the  Level  set  method)  without
incurring prohibitively large computational costs.

A similar project titled “CFD to study instabilities in 3d flows” is currently being
carried out at TU Delft jointly with TNO Netherlands, Shell, and Deltares. The
aim of the project is to study multiphase flows in pipes, where those are initially
filled with oil and water is pumped to flush the oil out or vice-versa. A somewhat
similar approach as [1] is employed here to predict the interface and a working
code  is  available.  The  code  extensively  uses  the  Krylov  subspace  methods  to
iteratively solve the obtained linear system of equations. The aim of this thesis is
to improve the speedup of the available code.

In multiphase flows, there is a jump in viscosity and density across the interface
due to the difference in properties of the two fluids. This jump slows down the
convergence of the iterative solvers. The present code as well is plagued by the
slow convergence and hence proper preconditioners to improve the convergence
are analyzed in this endeavor. Also, we consider how to improve the performance
of the given code by changing its structure, and by using less computation and
memory intensive solvers. 

As  size  of  the  system  grows,  even  the  best  solvers  with  the  most  suitable
preconditioners  take  a  prohibitively  large  amount  of  time  to  generate  the
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numerical  results  on  a  single  processor.  The  way-out  is  to  use  parallel
programming and to split  the whole big system into smaller more manageable
pieces, and distribute them amongst the available processors. But parallelization is
far from straightforward, as explained later, if the number of processors increase
the  convergence  behavior  of  the  preconditioner  deteriorates.  Hence  techniques
like deflation have to be used to restore the performance of the preconditioner.
Therefore we study the feasibility of parallelization with the deflation technique.
To suppress the communication cost, communication overlapping solvers are also
studied.

Furthermore, we acknowledge that the decoupled time integration method used in
the available code is not kinetic energy conserving, which might be of interest in
turbulent flow cases. To preserve the kinetic energy, one has to integrate the flow
field  in  a  coupled  manner.  The  coupled  system  suffers  from  a  very  poor
convergence,  therefore  we  also  study  a  few  preconditioners  to  improve  the
convergence of the coupled solvers.

In  this  report,  section  (2)  explores  in  detail  the  physics  of  incompressible
multiphase flows and in section (3) the structure of the code is discussed. Further,
sections (4) and (5) deal with suitable solvers and preconditioners, while section
(6) covers the parallelization study for the current system. Later in section (7),
some already obtained speed-up results are presented.

 

2. GOVERNING EQUATIONS & SOLVING TECHNIQUES

In the present study we deal with a multiphase flow between the two fluids which
are  separated  by  a  sharp  interface.  The  flow is  characterized  by  the  velocity
v (x , y , z ,t ) and the pressure p (x , y , z ,t ) (where bold indicates a vector). Due to the

assumption  of  incompressibility,  the  fluids  on  either  side  have  different  but
constant densities and viscosities, also we assume the flow to be isothermal and
Newtonian. 

In this section we present a very brief overview of the governing equations based
on [1], for a more detailed discussion one is referred to [1, 2]. The physics of our
problem is split into two distinct parts, the flow and the interface. In our approach
they are treated separately, hence we present them one after the other. First we
shall discuss the flow part.
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2.1. FLOW

The  flow  is  governed  by  the  3-d  unsteady  incompressible  Navier-Stokes
equations. In this study we are not interested in the thermal energy, and since
in incompressible flows the energy equation is decoupled from the momentum
and continuity equations we do not solve it.  Also, since we are essentially
dealing  with  pipe  flows,  the  cylindrical  coordinates  system  is  an  obvious
choice for  the coordinate system in which the Navier-Stokes equations are
solved. The N-S equations in cylindrical coordinates are,

Continuity equation,

1
r

∂ rur

∂ r
+

1
r
∂uθ

∂θ +
∂uz

∂ z
=0
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∂(ur uθ)

∂ uθ

+
∂(ur uz)

∂ z
+
(ur ur−uθuθ)

r
= − 1

ρ
∂ p
∂r

+ρgr+μ[∂ τr r

∂ r
+

1
r
∂ τθr

∂θ +
∂ τz r

∂ z
+
(τr r− τθθ)

r ]+ f r

Angular momentum equation,

∂uθ

∂ t
+
∂(uθur)

∂r
+

1
r
∂(uθuθ)
∂θ +2

ur uθ

r
+
∂(uθuz)

∂ z
=− 1

ρ r
∂ p
∂θ +ρgθ+[∂ τrθ

∂r
+

1
r
∂ τθθ

∂θ +2
τrθ

r
+
∂ τzθ

∂ z ]+ f θ

Axial momentum equation,
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where ρ is  the  density, p is  the  pressure, g is  the  gravitational  constant,

r ,θ , z are  the  space  variables, ur , uθ ,uz are  the  velocity  components  and

f r , f θ , f z are the external force components in respective r ,θ , z directions. If

we mark the two fluids as 0 and 1, then to separate the two fluid regimes, we
introduce a so-called color function χ defined as

χ(x)={ 0, x∈fluid 0
1, x∈fluid 1

, where x is the position vector

then the density and viscosity can be expressed as

ρ= ρ0+ (ρ1− ρ0)Ψ , μ=μ0+ (μ1− μ0)χ ,

where subscripts 0 and 1 indicate the respective fluids,  and Ψ is  the VOF
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function (discussed in  the next  subsection).  To get  a  smooth  pressure  and
gradient of velocity across the interface we regularize the color function, i.e.,
smear it out over a small but finite distance.

2.2. INTERFACE

For the interface convection we follow the Eulerian approach and only look at
a fixed space with a fixed grid. For numerical treatment of the interface we
use the Volume Tracking methods. In these methods we assign a color to each
of the fluid regimes and the region where the color function changes implicitly
define the interface. The benefit of such a method is that the changes in the
interface topology and coalescence are automatically taken care of.

The volume tracking methods can be sub-categorized into two subcategories
viz. the Level Set (LS) method and the Volume of Fluid (VOF) method. In
both LS and VOF methods the fluid interface is identified by some coloring
function and the function is advected in an Eulerian way as,

∂Φ
∂ t

+u . ∇(Φ)=0 .

We further discuss each of the above two techniques in some detail.

2.2.1. LEVEL SET METHOD

In the Level Set method the interface is defined by the marker function Φ .
The marker function is defined to be positive in one fluid and negative in the
second fluid. Hence, the locations where the marker function is zero marks the
location of the interface, i.e.,

Interface = {x ∣Φ(x , t)=0} .

The  signed  distance  function d (x , t) is  a  well  suited  marker  function.  The

level set function is advected according to 

∂Φ
∂ t

+u .∇(Φ)=0 .

The level set function Φ is a smooth function that, unlike VOF, allows for a
straightforward calculation of the interface curvature. The main disadvantage
is  that  if  the  interface  is  advected  using  this  approach  the  mass  is  not
preserved due to the viscous and convective smoothing. Another disadvantage
of LS is that when it is advected through a non-uniform flow it may no longer
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correspond to a distance function. To remedy this one has to reinitialize the
level set function after, some or every numerical integration step depending on
some criterion. 

2.2.2. VOLUME OF FLUID METHOD

In  the  VOF method,  we  use  the  volume of  fluid  function Ψ to  implicitly
define  the  location  of  the  interface.  This  function  measures  the  fractional
volume  of  a  certain  fluid  in  a  computational  cell. Ψ can  be  0  or  1  or
somewhere in between if the computational cell is filled with both the fluids,
i.e., it contains an interface. The cells which contain the interface are called
mixed cells. We mathematically define Ψ for each cell as

Ψ(xk)=
1
Ωk
∫
Ωk

χdΩ ,

where χ  is the color function (defined for each cell) which is 0 in one fluid

and 1 in  the second fluid,  xk  is  the node and  Ωk  is  the volume of the

corresponding computational cell k . The interface is advected using

∂χ
∂ t

+u .∇(χ)=0 .

The advantage of the VOF technique is that it is mass conserving, unlike the
LS method.  The  main  disadvantage  is  that  the  evaluation  of  normals  and
curvatures,  and  the  interface  reconstruction  are  much  more  tedious  and
computationally expensive.

Because of the advantages and disadvantages of both the methods, there is no
clear choice amongst them. In the given code a hybrid of both is used which,
while being mass conserving, is relatively easy to evaluate. The details of this
hybrid  model  are  not  discussed  here  and  one  is  referred  to  [1]  for  more
information. 

2.3. DISCRETIZATION AND LINEARIZATION

In the present study we use the Finite Difference Method (FDM) to discretise
the continuous Navier-Stokes equations, and since the collocated storage of
variables  give  rise  to  an  odd-even  decoupling,  which  introduces  spurious
oscillations into the solution called the Checkerboard modes, the variables are
stored in the  Arakawa C grid [3], also known as the staggered grid.  In the
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Arakawa C grid, the pressure is stored at the center while various velocity
components are stored at the respective cell  faces. Illustration 1 shows the
locations where the variables are defined for each cell in a 2d domain.

 

In such a description we solve the continuity equation at the center of each
cell, while the momentum equation is solved at the cell boundaries.

The methodology for the space discretization is similar to the one used by
Morinishi  et  al.  [2].  For the viscous terms discretization is done using the
standard  second  order  scheme  employing  a  three  point  stencil  (in  1-d),
similarly for the convective terms a second order central scheme is employed.
If  we  require  variables  at  locations  where  they  are  not  defined,  we
approximate  them by  averaging  the  variables  at  the  known locations,  for

example, if we require ui , j we approximate it as

ui , j =

u
i− 1

2,
j
+ u

i+
1
2,

j

2
.

For  the  time  integration  of  the  momentum equation,  a  2nd order  midpoint
implicit method is used, while for the interface advection a 1st order explicit
method is employed. One important aspect of the implicit time integration is
the  linearization  of  the  convective  terms.  In  the  present  scheme  Newton
linearization [4] is used, which can be described as follows.

Let u and v be any two variables which are function of some variable t (not
necessarily time). Then by Tailor series

(uv)n+1
=(uv)n+(∂uv

∂ t )
n

Δ t+O(Δ t 2
) = (uv)n+(u ∂ v

∂ t
+v

∂u
∂ t )

n

Δ t+O(Δ t 2
) ,
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which can be further expressed as

(uv)n+1= (uv)n+(vn (u
n+1−un

)

Δ t
+un (v

n+1− vn
)

Δ t )Δ t+O(Δ t2) .

Neglecting O(Δ t 2
) terms gives the Newton linearization

(uv)n+1
= −(uv )n+vn un+1

+un vn+1 .

After the space-time discretization we get a system of nonlinear equations i.e.,
the discrete continuity and momentum equations which are defined as follows:

Discrete continuity equation 

Bun+1
=g ,

where g contains the discrete velocity boundary conditions and B is defined
as

B=[Br Bθ Bz ] ,

where B r , Bθ , B z are  the  discrete  divergence  operators  corresponding to  the

discrete velocities in the radial, angular and axial directions.

Discrete momentum equation

un+1−un

Δt
+
¯̂
F (un+1 )=− 1

ρ
n+ 1

2

G p
n+1

2+
1
ρ
f s

n+ 1
2+h

n+1
2                (2.1)

where ¯̂
F (un+1) contains only the diffusion and nonlinear convection terms.

 After linearization we get

un+1 −un

Δt
+ F̂un+1=−

1

ρ
n+

1
2

G p
n+1

2+τ n+
1
ρ
f s

n+ 1
2+h

n+ 1
2 .                 (2.2)

The matrix F̂ is of the form

F̂=[
F̂ r 0 0

0 F̂θ 0

0 0 F̂ z
] ,

where  F̂ r ,  F̂θ ,  F̂ z are  derived  from  the  linearized  implicit  time

discretization  of  the  radial,  angular  and  axial  momentum  equations
respectively  and contain  only the  convective  and diffusive  terms. G is  the
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discrete gradient operator of the form

G=[
Gr

G θ

Gz
] .

As  above  Gr , Gθ , G z are  the  discrete  gradient  operators  obtained  from the

discretization  of  the  radial,  angular  and  axial  momentum  equations

respectively.  Finally, ρ
n+ 1

2 , f s
n+ 1

2 , h
n+ 1

2  in  (2.1)  and  (2.2)  are  the  discrete

density, surface tension, and body force respectively calculated based on the

known location of the interface at n+
1
2

time level, and τ
n in (2.2) contains all

the terms which appear due to linearization. Moreover p
n+ 1

2=pn+1 , the reason

for writing pressure at n+
1
2

will be clear in the following subsection. Further,

it is to be noted that for our discretization the discrete gradient operator G is
equal to the transpose of the discrete divergence operator B , hence we can
replace G by BT in the above equations.

Clubbing  the  above mentioned  linearized  discrete  momentum and discrete
continuity equations together we get

A x=[F BT

B 0 ][up]=[ fg ]=b ,                                     (2.3)

where F contains  the  contributions  from F̂ and
1
Δt

I .  We  must  solve  the

above system (2.3) at each time step to obtain a time dependent solution.

2.4. TIME INTEGRATION METHODOLOGY

We now discuss the methodology for the time integration which until now we
assumed to be given. The time integration is split into two decoupled parts, the
flow integration  and  the  interface  advection.  The calculations  of  flow and
interface are staggered in time, i.e., we first calculate the flow field at the new
time step based on the current interface position and then calculate the new
position  of  the  interface  based  on  the  current  flow field;  the  next  section
discusses this in detail. 

What is to be stressed at this junction is the time integration technique for the

8



flow field used in the available code. Although an algorithm is presented later,
perhaps it is prudent to present the mathematical motivation, disadvantages
and remedies of the used integration methodology here. As discussed above,
the interface is assumed to be given for the flow field time integration. To
obtain the velocity and pressure at the new time step one has to solve the
discrete system (2.3). The system can be solved either in a decoupled manner
(solve for the velocity and pressure separately) or in a coupled fashion. We
further  discuss  the  decoupled  (pressure-correction/projection)  scheme
implemented in the available code.

In the decoupled solver we have to solve for velocity from (2.2)

un+1 −un

Δt
+ F̂un+1=−

1

ρ
n+

1
2

BT p
n+ 1

2+τ n+
1
ρ
f s

n+1
2+h

n+ 1
2 .   

We can not solve the above system directly since p
n+1

2 is not known. Hence
the following scheme is adopted:

Solve 

û−un

Δt
+ F̂ û=−

1

ρ
n−

1
2

BT p
n− 1

2+τn
+(1

ρ
f s)

n− 1
2+h

n− 1
2 .               (2.4)

Since the above equation is solved with pressure at previous time step û is
not  solenoidal.  But  we  want un+1 to  be  divergence-free,  hence  we  subtract
(2.2) from equation (2.4) to get

un+1 −û
Δt

=(−
1

ρ
n+

1
2

BT p
n+

1
2+(1

ρ
f s)n+ 1

2+
1

ρ
n−

1
2

BT p
n−

1
2 −(1

ρ
f s)n− 1

2) .      (2.5)

It  can  be  shown  [5]  that  if  a  2nd order  time  integration  method  is  used,

neglecting F̂un+1 − F̂ û in  the  above  equation  will  still  give  a  2nd order
approximation if we use a good enough approximation of pressure in equation
(2.4). 

Now, all  that  remains  is  to  find the  pressure which will  give a  solenoidal
velocity.  From  the  continuity  equation  we  have Bun+1

=g ,  hence  we  can
derive  an  equation  for  the  pressure  by  taking  the  discrete  divergence  of
equation (2.5):
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− B
1

ρ
n+

1
2

BT p
n+

1
2=B(−

1
Δt
û−(1

ρ
f s)

n+1 /2

−
1

ρ
n −

1
2

BT p
n −

1
2+(1

ρ
f s)

n− 1
2+

1
Δ t
g) .   (2.6)

The equations (2.4), (2.6) and (2.5) are known as the predictor, Poisson and
corrector  equations respectively.  From the above discussion we get  a  time
integration technique, i.e., first predict the velocity based on the pressure at
the previous time step, then solve the Poisson equation to find the pressure at
the  current  time step  which will  give  a  divergence-free  velocity,  and then
finally  update  the  velocity  at  the  current  time step  by using  the  corrector

equation.  The  reason  for  writing p
n+1

2 is  simply  because  the  pressure  is

calculated  in between  the velocity updates at nth and (n+1)th time step.  This
integration  technique  is  known  as  the  projection  scheme  or  the  pressure
correction  scheme,  the  algorithm used  in  the  current  code  is  presented  in
section 3.

The current procedure of solving, though is robust, computationally cheap and
widely used, does not preserve kinetic energy of the fluid. Conservation of
kinetic energy of the fluid becomes a topic of interest in the turbulent flows
where energy is transferred between different eddies. In the turbulent case if
the kinetic energy is not conserved, the size of eddies will not be accurately
predicted giving an overall inaccurate flow. 

To preserve the kinetic energy one has to solve the nonlinear system (2.1) in a
coupled manner, i.e., simultaneously solve for both the velocity and pressure.
Solving such a nonlinear system is very expensive, and hence in this endeavor
we solve the linearized system ((2.3)/(2.2)) in a coupled manner. This, though
not kinetic energy conserving, is a step towards it  and should give a more
accurate result. System (2.3) gives rise to a saddle point problem being solved:

A x=[F BT

B 0 ][up]=[ fg ]=b .                                           

The matrix A has a zero block on the diagonal and hence is a saddle point
matrix. Solving such a coupled system is much more expensive than solving
the  pressure  correction  scheme.  Therefore  in  the  last  century,  the
computational  power severely limited the applications for  which a coupled
system could be solved. The present day computers however are much faster,
making the solution of the coupled systems more practical to obtain.
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To solve a coupled system we can either use the direct solvers or the iterative
solvers. The direct solvers are very expensive for large systems and hence will
not be discussed any further. The iterative solvers can be further classified into
the segregated (not to be confused with the earlier discussed decoupled solver)
and the coupled methods. In the segregated methods, velocity and pressure are
solved separately one after the other, the order in which they are solved differs
amongst different solvers. The idea is to solve two smaller problems one for
each velocity and pressure. Coupled methods, on the other hand, solve the
complete system simultaneously. 

Iterative methods to  solve the saddle  point  problem, especially the Krylov
subspace  methods,  without  a  suitable  preconditioner  suffer  from a  terribly
slow convergence due to the presence of a zero diagonal block in matrix A

which makes it highly indefinite. Thus proper preconditioning must be used to
get a higher efficiency from such solvers. The preconditioners for a saddle
point problem tend to blur the distinction between the segregated and coupled
methods since the preconditioners for the coupled methods are often based on
the segregated methods. We shall discuss the appropriate preconditioners in
the later sections.  

3. DESCRIPTION OF CODE
The FDM scheme is used in this approach with variables stored in the Arakawa C
grid as discussed in the previous section. Second order accurate schemes are used
for the space discretization, and a second order implicit time integration method
with Newton's linearization is used in the predictor step. The code is written in
Fortran 90, and uses various LAPACK subroutines. 

3.1. OVERALL ALGORITHM

In the present code, as pointed out in the previous section, the calculation of
flow and interface variables are fully decoupled. The flow at new time step

(n+1) is calculated based on the interface position at the previous time step

(n+1/2) , and then the interface is advected based on the just calculated flow

variables. The values of density and viscosity only depend on the interface and
hence are fixed for a given interface position. The overall flow of algorithm is
shown in Illustration 2. 
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3.2. FLOW SOLVER

The  flow solver  part  is  broadly  divided  into  three  steps,  as  mentioned  in
section 2, viz. the predictor step for a first approximation of velocity based on
the pressure value at the previous time step, the Poisson step to update the
pressure  based  on  the  velocity  calculated  in  the  predictor  step,  and  the
corrector step to obtain a divergence-free velocity. Restarted GMRES is used
to solve the implicit  predictor equation, while for the Poisson equation the
Preconditioned Conjugate Gradient method (PCG) is used. A brief flowchart
of flow algorithm is given in Illustration 3.

12
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3.3. INTERFACE SOLVER

The interface is advected as described in Section 2. For a stable advection of
the interface the Courant number should be less than a half. It may so happen
that  the  Courant  number  in  flow calculation  gets  higher  than one  half,  in
which case the time step for the interface advection is reduced (so as to have a
Courant number which is less than a half) and multiple time step integrations
are performed to increase the overall time step by the same amount as that in
the flow calculation. How many steps need to be performed is calculated in
Subcycling module.

Illustration 4 gives a brief flowchart of Interface advection algorithm.
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4. SOLVERS 
The choice of  the solver plays a  vital  role  in  achieving the desired speed up.
Improving the performance of the code is not just about parallel programming but
also about using smart solvers that are more suitable for the problem in hand, i.e.,
a solver which converges quickly with relatively small computational and storage
complexities. To solve a problem of the form A x=b , a whole plethora of solvers
is available ranging from direct to iterative. Direct solvers generally decompose
the matrix A into product of matrices which are easier to invert, for example, the
Gaussian Elimination [6] method splits the matrix A into a product of lower ( L )
and upper ( U ) triangular matrices. These matrices are relatively easy to invert
using the forward and backward substitution. The main drawback however is in
the  time  complexity  involved  in  forming  these  lower  and  upper  triangular

matrices, a matrix of size N×N requires O(N3
) floating point operations (flops).

Although  there  exists  solvers  which  work  more  efficiently  than  Gaussian
Elimination, they still are too expensive for large N . 

An alternative to the direct methods are the so-called iterative methods. In these
methods, unlike the direct methods, one does not compute the solution exactly,
rather the solution is updated iteratively and if the current solution satisfies the
convergence criterion the iterations are stopped [6]. The definiteness of a matrix,
plays a vital role in the performance of the iterative methods [6]. For the systems
having  highly  indefinite  matrices  the  convergence  of  an  iterative  method
deteriorates drastically. We can improve the convergence by preconditioning the
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matrix [7], which will be discussed later.

Krylov subspace methods [6]  are  probably the most  used subclass of  iterative
solvers.  In  these  methods  we  look  for  the  solution  of  A x=b  in  the  Krylov

subspace K i(A ,v ) which is

 K i(A ,v )= span {v , A v , A2 v ,... , A (i− 1) v} ,

where v∈ℝn is a suitably chosen vector. A vector v is said to be of grade d with

respect to A if d is the smallest integer for which the set {v , A v , A2 v , ..., Ad v } is

linearly dependent. Since d≤ n the Krylov subspace methods converge in at-most
n iterations [6], but practically these methods converge much before n iterations.

Further we discuss some of the solvers which are either used in the available code,
or can be used to increase its performance.

4.1. RESTARTED GMRES

GMRES [6] is a Krylov subspace method which is widely used to iteratively
solve A x=b where A is a non hermitian matrix. In this section we discuss the
GMRES method in detail.

In the GMRES method, like in all the Krylov subspace methods, the solution

x is approximated by xi which lives in the Krylov subspace K i(A , r0) where

r 0 is the residue of initial guess ( ri = b− A x i ). The GMRES method reduces

to finding xi in each iteration such that it minimizes the residue ri . This gives

xi=x0 + y , y∈K i(A , r 0) , where K i(A , r0)=span {r0 , A r0 ,.... A( i−1 )r0} .

Choosing the Krylov subspace defined as above does not  generally give a
stable  algorithm,  therefore  we  form  Gram-Schmidt  type  vectors  as  the

orthogonal basis of K i(A , r0) . We form the orthogonal basis vectors using

the Arnoldi decomposition:

v̂ i+1=A v i−∑
j=1

i

(A v i ,v j)v j , v i+1= v̂ i+1 /‖ v̂ i+1‖ , h ji=(A v i ,v j), v1 = r0 .

This gives,

A [v 1 v2 … v i]=[v1 v2 … v i v i+1][
h11 h12 ⋯

‖ v̂2‖ h22 ⋯

0 ‖v̂ 3‖ ⋯

0 0 ⋱

0 0 0 ‖ v̂ i+1‖
] .
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In matrix form we get A V i=V i+ 1 H i+1, i , where

H i+1, i=[
h11 h12 ⋯

‖ v̂2‖ h22 ⋯

0 ‖ v̂3‖ ⋯

0 0 ⋱

0 0 0 ‖ v̂ i+1‖
]

 H i+1, i∈ℝ
(i+1) × i is the unreduced upper Hessenberg matrix. If r 0 is of grade d

with respect to A  we get A V d = V d Hdd , where H dd∈ℝ
d x d is given by

Hd , d=[
h11 h12 ⋯

‖ v̂2‖ h22 ⋯

0 ‖v̂ 3‖ ⋱

0 0 ⋱ ⋱

0 0 0 ‖ v̂d‖ hd

]
GMRES finds a  z ∈ x0+K i(A , r0) in each iteration i such that the residual

at that iteration is minimized, i.e., find z  such that ‖r i‖2= min
z∈x0+K i(A ,r 0)

‖b−A z‖2 .

The above equation leads to finding a vector t i∈ℝ
i such that it  minimizes

‖V i+1(‖r0‖2e1−H i+1, i t )‖2 . If we form the QR decomposition of the Hessenberg

matrix  as  H k+1, k=QR ,  where  Q∈ℝ
(i+1)×(i+1)  is  an  orthogonal  matrix  and

R∈ℝ
(i+1)×i is an upper diagonal matrix, we get the GMRES method as

min
t i∈ℝ

i

‖ QH e1‖r0‖2−[Ri

0 ]t i ‖2

.

Choosing ti=‖r0‖2 R i
−1[

q1

q2

⋮
q i
] gives us the solution to the above problem, with

the minimum residual equal to |q i+1| ‖r0‖ 2 for each iteration.

Now  that  we  have  discussed  the  GMRES  method,  it  shall  be  prudent  to
discuss its  convergence properties.  By analyzing the GMRES method as a
polynomial problem one can derive a bound on the residue at each iteration:

‖r i‖2

‖b‖2

≤ inf
pi∈P i

κ(X ) max
λ∈σ(A )

‖p i(λ)‖2

where  Pi  are the polynomials of degree  i  having  Pi(0)=1 and  κ(X )  is
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the conditioning number of X where X is obtained from diagonalization of
A .  The above bound shows that the reduction in residual  per iteration is

large if 

1. Conditioning number κ(X ) is small, i.e., A is nearly normal.

2. Eigenvalues of A are clustered far away from the origin. 

One drawback of GMRES is that all the Arnoldi vectors need to be stored for
computation of the solution vector.  If the dimension of the system is large,
this results in an excessive computational and storage overhead. To avoid this,
the  Restarted  GMRES  method  can  be  employed  in  which,  after  some
predefined iterations, all the Arnoldi vectors are deleted and the iterations are
restarted with the available solution as the initial guess. In the present code the
GMRES method is used to solve the implicit predictor step, and the iterations
are restarted after every 50 internal iterations.  

4.2. CONJUGATE GRADIENT (CG)

The Conjugate Gradient (CG) method [6] is another class of Krylov subspace
methods, and is the most preferred solver for the systems having Symmetric
Positive  Definite  (SPD)  matrices.  In  the  CG  method,  as  in  the  GMRES
method,  we  express  the  approximate  solution  as  a  member  of  the  Krylov
subspace and form the Krylov subspace by spanning the space generated by
the orthogonal Gram-Schmidt style vectors. But because of SPDness of the
matrix, Gram-Schmidt style vectors reduces to Lanczos vectors and we get a
SPD Hessenberg matrix giving a short recursion formula, hence we need not
store  all  the Lanczos vectors.  A similar  analysis  as  GMRES can be easily
performed for the CG method and an elegant algorithm can be easily derived,
for brevity the (serial) CG algorithm is not presented in this report. 

We  further  discuss  the  convergence  properties  of  the  CG  method.  Useful
bounds on the error for the CG method can be derived by approximating it as
a polynomial problem. We get

‖xi−x‖A
2

‖x‖A
2
≤2(√ κ−1

√ κ+1)
i

,

where  κ=κ(A) is the conditioning number of matrix A, and x is the actual

solution. This convergence bound tells us that the CG method will converge
much faster if the matrix is well conditioned. More details about CG can be
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found in [6]. 

4.3. IDR(s)

IDR(s)  is  another  method to  solve A x = b ,  where A is  a  general  matrix,
which has certain advantages over GMRES. As discussed above, the GMRES
method  has  an  ever  increasing  depth  of  recursion  with  the  number  of
iterations, i.e., the amount of computational work increase as the number of
iterations increase, also the memory requirements scale with the number of
iterations. Though restarting of GMRES helps to partially alleviate these two
problems it also slows down the convergence of the GMRES method, thus
increasing the total computational work. 

The IDR(s) method due to Sonneveld, P. & van Gijzen, M.B. [8] has the same
number of matrix vector products per iteration as GMRES but has a fixed

depth of recursion (s ) which is smaller than GMRES, hence the overhead of

IDR(s)  is  lower  [8].  Also  since  we  do  not  delete  all  the  preconstructed
Arnoldi vectors, the convergence property of IDR(s) may be better than that
of the restarted GMRES method (depending on the restarting frequency of
GMRES). Below we discuss the IDR(s) algorithm.

IDR(s) Theorem (4.1):  Consider any matrix A∈ℝ
N×N and non zero vector

v 0∈ℝ
N , and let G0∈K N (A ,v0) . Let S be a proper subspace of ℝ

N , such that

S and G0 does  not  share  a  nontrivial  invariant  subspace  of A ,  and  for

nonzero ω j ' s define  sequence  G j =( I−ω j A)(G j−1∩ S) , j = 1,2,3,4.... .  Then

the following holds,

1. G j⊂G j−1 ∀ j>0.

2. G j = {0} for some j≤N .

The proof of this theorem can be found in [8]. The above theorem can be

applied by generating residuals r k which are forced to live in the subspace

G j , here j is non-decreasing with k . This implies that the system will be

solved in at-most N iterations. The residual r k belongs to G j+1 if

r k+1 = (I − w j+1 A) vk where vk∈G j∩ S .

Now if we choose,

v k = rk − ∑
i=1

l̂

γiΔ r k− i we get

r k+1 = rk − ω j+1 A vk − ∑
i=1

l̂

γ iΔ rk− i = v k−ω j+1 A vk
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This is similar to the residual in the general Krylov subspace methods [8].
Let us assume S to be in the left nullspace of some N×s matrix T . Now,

since v k ∈ G j∩ S ∈ S we  have T H vk=0 .  It  follows  that  we  get  a  linear

system  of  size s× l̂ for l̂ coefficients  γi ,  and  the  system  is  uniquely

solvable if l̂=s . Hence, the first vector in G j requires s+1 vectors in G j−1

and r k lies in G j only if k≥ j(s+1) . Defining

Δ Rk = (Δ r k− 1, Δ rk− 2 ,..... , Δ rk− s) and

Δ X k = (Δ xk− 1 , Δ xk− 2 , ..... , Δ xk− s) then

r k+1∈G j+1 can be computed by, calculate γ∈ℝ
s from

(T H
Δ Rk ) γ = T H rk then compute

v=r k−Δ Rk γ giving

r k+1=v−ω j+1 A v .

Since G j+1⊂G j , the new residuals r k+2 , rk +3, .... , r k+s+1⊂G j+1 can be produced

by  performing  the  above  calculations  repeatedly.  The  next  residual,

however,  will  belong  to G j+2 .  Also  to  be  noted  is  the  fact  that  for

calculation of the first residual in G j we can use any value for ω j but this

value  must  be  same  for  calculation  of  the  remaining  residuals  in G j .

Further the algorithm for IDR(s) is presented.

Algorithm 4.1 : IDR(s) Solver (to solve A x=b )

Required: A , x0, b , T  

Initialize r 0 = b− A x0 , calculate first s residuals by

v=A r k ; ω=
vH rk

vH v
and Δ xk =ω rk ; Δ r k =−ω v

r k+1 = rk+Δ rk ; xk +1 = xk+Δ xk where k∈[0, s−1] and form

Δ Rk +1 = (Δ rk , Δ r k−1, ..... , Δ r0) and Δ X k+1 = (Δxk , Δ xk , ..... , Δ x0)

//Building G j spaces for j=1,2,3,. ...

n=s

//loop over G j spaces
while ‖r k‖ > Tol ∧ k <Max iter do

//loop inside G j space-time
for k = 0, s do

Solve for γ by T HΔ Rk γ=T H rk
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v = rk − Δ Rk γ

if k = 0 then

//First vector in G j+1

t = A v

ω =( tH v )/(t H t )

Δ rk =−ΔR k γ−ω t

Δ xk =−Δ Xk γ−ω v

else

//Subsequent vectors in G j+1

Δ xk =−Δ Xk γ−ω v

Δ rk =− A Δxk

end if
r k+1 = rk + Δ r k

xk +1 = xk + Δ xk

k = k+1

Δ Rk = (Δ r k− 1, Δ rk− 2 ,..... , Δ rk− s)

Δ X k = (Δ xk−1 , Δ xk−2 , ..... , Δ xk−s)

end for
end while

As proven by Theorem 4.1, the IDR(s) method converges in at-most N outer
steps, with each outer step having s+1 inner steps. Hence we have at-most

N×(s+1) matrix vector multiplications.  It  can be proven however, that the

rate at which the dimension of G j reduces is “almost always” equal to s [8],

hence the total number of outer iterations reduces to N
s

.

4.4. GCR METHOD

The GCR method is yet another method to solve A x = b where A is a general
matrix.  For  a  constant  preconditioner,  the  GCR  method  and  the  GMRES
method are mathematically the same. The GCR method, although may not be
the  fastest  algorithm,  is  very  simple  to  implement,  minimizes  the  residual
norm and has a very important property that it does not require a constant
preconditioner. The usefulness of the last property will be shown in the later
sections, here we just discuss the basic formulation.

Let {v1 v2… v k} be  the  orthonormal  basis  of K k (A , r0) ,  we  construct r k

orthonormal to K k (A , r 0) . Then we have
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r k = r0−∑
1

m

α j v j where α j = (r0 ,v j)= (r0 − ∑
m=1

j−1

(r0 ,vm)vm , v j)= (r j−1 ,v j)

implying

r k = rk− 1 − (r k−1, vk)v k . Which gives

xk=xk− 1 + (r k−1 , v k) sk , v k = A sk .

Now all  that  remains is to find {v1 , v2 … v k} and {s1 , s2 … sk } .  This can be

done by using the Gram-Schmidt type orthogonalization processes. The GCR
method with preconditioning is presented later.

Evidently the computational overhead of the GCR method is more than that of

the GMRES method (nearly twice), since both {v1 , v2 … v k} and {s1 , s2 … sk }

must  be  stored  and  computed.  But  an  advantage  of  GCR  is  that  we  can
truncate  it  easily,  unlike  the GMRES method,  because  of  which the  GCR
method may converge faster than GMRES. 

5. PRECONDITIONERS
This  section  is  divided  into  two  parts,  the  first  section  discusses  the  general
preconditioners used to improve the convergence of Krylov subspace methods.
These preconditioners, though effective for most type of matrices, are inadequate
for saddle point problems because of the presence of a zero diagonal block. Thus
special kind of preconditioners are required for saddle type problems which are
the topic of discussion of section 5.2. 

5.1. GENERAL PRECONDITIONERS

The  above  discussion  of  convergence  for  the  GMRES  and  CG  methods
motivates the use of preconditioning, i.e., improve the spectral properties of

A to solve A x=b efficiently. The main idea is to premultiply matrix A with
another  easily  invertible  matrix P−1 ,  which  is  close  to A ,  such  that  the
iterative solver for the system having P−1 A as the system matrix converges
faster than the iterative solver for the system having system matrix A . That is
instead of solving A x=b we solve the system

 P−1 A x=P−1b .

Another way of forming a preconditioned system is by right preconditioning.
That  is,  we  solve AP−1 Px=b .  In  this  system  we  first  solve  for y in

AP−1 y=b and then extract solution by solving P x= y . Which way to model
a preconditioned system is a topic open for debate with no conclusive answers
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yet. However, for this study both left and right preconditioning is considered.

As  described  above,  in  choosing  a  preconditioner  we  are  faced  with  two
requirements [7]

1. The  preconditioner  must  be  easily  invertible,  i.e.,  Px= y  is  easily
solvable.   

2. It must improve the convergence of the iterative method.

If we look at the first condition the Identity matrix is a perfect choice, but it
does not help us at all with the second requirement. While, if we look at the
second condition A−1 is the perfect choice, but it does not help us at all with
the first  condition.  Therefore,  choosing a preconditioner is  an optimization
problem between the above two requirements. Further, we discuss some of the
preconditioners used in this code.

5.1.1. JACOBI PRECONDITIONER

Jacobi is an easy to implement preconditioner, which and can improve the
convergence  in  the cases  having jumps in  the  diffusion coefficient  [7]
(which  is  also  the  case  in  this  endeavor  due  to  the  presence  of  the
interface). Jacobi preconditioning is also easy to parallelize. It is basically
scaling the equation with the diagonal of  system matrix,  presenting us
with very little extra calculations. Here,

A=[
a11 a12 ⋯ a1n

a21 ⋯ a2n

⋮ ⋮
an1 an 2 ⋯ ann

]  & P=[
a11 0 ⋯ 0
0 a22 0 0
⋮ ⋱ ⋮
0 ⋯ ann

]  

with P−1 simply

P−1
=[

1/a11 0 ⋯ 0
0 1 /a22 0 0
⋮ ⋱ ⋮
0 ⋯ 1/ann

] .

5.1.2. INCOMPLETE CHOLESKY

For  methods  like  CG,  which  are  applicable  for  a  Symmetric  Positive
Definite  (SPD),  we  would  like  to  have  a  preconditioner  such  that  the
resulting system is also SPD. Let L LT be the Cholesky decomposition of
system matrix A ,  then P=L LT preserves the the SPD properties of the
system  if  used  as  a  dual-sided  preconditioner.  The  problem  with  this
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preconditioner is that it is not sparse, hence the resulting system may also
not  be  sparse  requiring  more  memory  space  and  incurring  more
construction  cost.  To  preserve  the  sparsity  we  can  use  an  Incomplete
Cholesky factorization [9] which is in some sense close to the Cholesky
factorization.  The  Incomplete  Cholesky  factorization  is  constructed  by
setting the non-zero elements of L which are zero in A to zero. 

Below, we describe the algorithm of the factorization used in the present
code. For a 2-d case, we know that we get a five diagonal matrix from the
Poisson equation (for which CG method is used) which requires storage of
only  3  diagonal  (due  to  symmetry).  We  form  the  preconditioner  as

P=L D− 1 LT where,  lower  triangular  matrix L and  diagonal  matrix D

satisfies

1. Li j=0 if A i j=0, i> j

2. Lii = Dii

3. (LD− 1 LT
)i j = ai j for (i , j) where A i j≠ 0 i≥ j

Therefore, if A and L are

A=[
a1 b1 0 c1

b1 a2 b2 ⋱ c2 0

⋮ ⋱ ⋱ ⋱ ⋱

c1 bm am+1 bm+1 0 cm+1

0 ⋱ 0 ⋱ ⋱ ⋱ 0 ⋱

]
L=[

d1
1

b1
1 d2

1

⋮ ⋱ ⋱ 0

c1
1 bm

1 dm+1
1

0 ⋱ 0 ⋱ ⋱

] , then
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d i
1
=ai −

b i−1
2

d i−1

−
ci−m

2

d i−m

bi
1
=bi

c i
1
=c i

}i=1,.... , n .

Very easily this method can be extended for a 3d case in which case we will
get a seven diagonal matrix from the Poisson equation. More details about this
method can be found in [9].

5.2. SADDLE POINT PRECONDITIONERS

For  the  saddle  point  problems  broadly  two  types  of  preconditioners  are
available;  the block preconditioners  and the ILU type preconditioners.  The
ILU type  preconditioners  are  better  for  finite  element  solvers  where  both
matrix builder and solver must be adapted, since the splitting of velocity and
pressure unknowns is required [10]. In this study we intend to use the block
type preconditioners, hence the ILU type is not discussed any further.

Block  preconditioners  are  based  on  the  block  LDU decomposition  of  the
coefficient matrix A in equation (2.3). We write

A=LDU=[F BT

B 0 ]=[ I 0
BF− 1 I ][F 0

0 S ][I F−1 BT

0 I ] , 

where  S=−BF−1BT  is  the  Schur  complement  matrix.  Almost  all  the
preconditioners  are  some  form  of  combination  of  these  blocks  with  an
appropriate Schur complement matrix approximation.

If we choose a preconditioner ( P ) based on the product of only the diagonal
matrix D and the upper diagonal matrix U, i.e.,

P = [F BT

0 S ] ,

then it is easy to show that the eigenvalues of the preconditioned system are
all  1,  hence  GMRES  converges  in  2  iterations  in  exact  arithmetic  [11].
Computing the inverse of S and F is naturally not practical, hence a cheap
approximation  of S is  used  and  the  system Fu=f is  solved  approximately
using iterative methods. Application of such a preconditioner requires solving

P z=r where z=[ z1; z2 ] and r=[r 1;r 2 ] .  Now all  that  remains  is  to  form an

approximation of the Schur complement. As it turns out, there is a plethora of
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ways we can approximate the Schur complement. The way we do it leads to
various block preconditioners. In the following subsections we discuss a few
of these preconditioners. 

5.2.1. PRESSURE CONVECTION-DIFFUSION PRECONDITIONER

Based on [12], let the Convection Diffusion (C-D) operator L be defined on

the velocity space. Also let wh be the approximate discrete velocity computed

in the most recent Piccard iteration. Then L is given by

L =− ∇ .(ν∇)+wh.∇ .

Let  the commutator  of L be ϵ=L∇−∇ Lp ,  where Lp is  analogous to L but

does not carry any physical meaning. If wh is constant, the commutator is zero

in  the  interior  of  domain  and  is  small  for  smooth w ,  hence  the  discrete
commutator (in terms of matrices) defined as,

 ϵh=(Q v
−1 F)(Q v

−1 BT )−(Q v
−1 BT)(Qp

− 1 F p)

will also be small. Here, Qv is the velocity mass matrix, Q p is the pressure

mass matrix and Fp is discrete C-D operator on the pressure space. Assuming

the  commutator  is  indeed  small  then  left  multiplication  of  the  discrete

commutator  by  BF−1Q v  and  right  multiplication  by  Fp
−1 Qp  gives  an

approximation to the Schur complement 

−BF−1 BT≈−BQv
−1 B−1 F p

−1Q p .                                 (5.1) 

Since BQ v
−1 BT is  expensive  to  compute,  we  replace  it  with  its  spectral

equivalent matrix A p known as pressure Laplacian matrix, thus giving

S=− BF−1 BT=Ap F p
− 1Q p .

This preconditioner gives a very good convergence if used with the Krylov
subspace methods for enclosed flows (if the convective terms are linearized by
the Piccard linearization). But for other problems this preconditioner may not

be ideal as A p is defined only for the enclosed flow problems [10].

5.2.2. LEAST SQUARES COMMUTATOR PRECONDITIONER 

The Least Square Commutator (LSC) preconditioner was given by Elman et
al.  [13],  and  is  based  on  the  same  principle  as  the  PCD  preconditioner

25



discussed above. We approximate Fp in a way which gives us a small discrete

commutator. Therefore we solve the following least squares problem

min‖[Qv
−1 F Qv

−1 BT
] j−Qv

−1 BT Qp
−1
[F p ] j‖Qv

,

where the j-th column of matrix Fp is represented by [F p] j , the j-th column

of matrix Qv
−1 F Q v

−1 is [Q v
−1 F Qv

− 1
]j , and ‖.‖QV

is the energy norm with respect

to Qv . The associated normal equations are

Qp
−1 B Qv

−1 BT Q p
−1
[F p] j=[Q p

−1 B Qv
−1 F Qv

−1 BT
] j ,

which gives the following equation for Fp :

F p=Q p(BQv
−1 BT

)
−1
(B Qv

−1 F Qv
−1 BT

) .                              (5.2)

Equation 5.1 and 5.2 gives the Schur complement approximation

B F− 1 BT≈ (B Q v
−1 BT)(B Qv

−1 F Qv
− 1 BT )− 1(BQ v

−1 BT ) ,                     (5.3)

where QV is approximated by its diagonal elements to reduce the complexity

of inverting it. This gives rise to the following algorithm:

Algorithm 5.1 : LSC preconditioner

First compute ru=f and r p=− BK− 1 f+g then,

1. Solve S p z p=r p ,where S p=B D v
−1 BT , Dv=diag(QV )

2. Updater p=BDV
−1 FD v

−1 BT z p

3. Solve S p z p=− r p

4. Updateru=ru− BT z p

5. Solve F zu=ru

5.2.3. SIMPLE PRECONDITIONER

SIMPLE method was first introduced by Patankar & Spalding as a method to
solve the coupled system iteratively. The following steps outline the method
proposed by Patankar and Spalding

➢ Initialize pressure and velocity with the pressure velocity from previous
step.

➢ Then we solve for velocity using the momentum equation, and pressure
from the poisson equation obtained while imposing the solenoidicity  of
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velocity.

➢ We continue this procedure until desired convergence is reached.

The  SIMPLE  method,  though  very  easy  to  implement,  shows  poor
convergence  properties  for  most  of  the  problems.  Although  if  used  as  a
preconditioner  [10],  the spectral  properties  of  Krylov subspace  methods is
much improved. It can be proven that some of the eigenvalues are clustered
near  1,  while  the others  are  dependent  on the approximation of  the Schur
complement. Further, we discuss the formulation of such a preconditioner.

Let the system we have to solve be A x=b  where,

A=[
F r 0 0 G r

0 Fθ 0 Gθ

0 0 F z G z

Gr
T Gθ

T G z
T 0

]= [F BT

B 0 ] , x=[
ur

uθ
uz

p
] and b=[

br

bθ

bz

bp
]=[fg ] .

Then we base the SIMPLE preconditioner on the approximation of LU where
L & U are lower and upper diagonal of matrix A . Thus

[F BT

B 0 ]≈ [F 0
B Sa][

I D−1 BT

0 I ] , 

where Sa is an approximate Schur complement constructed by approximating

F by its diagonals  in the definition of S ,  i.e., S=− B F− 1 BT≈− BD−1 BT=Sa .

Thus one iteration of SIMPLE is to solve

[F 0
B Sa][

I D− 1 BT

0 I ][δuδ p ]=[fg ]− [F BT

B 0 ][u
(k )

p(k)]=[ru

r p
] ,

where δϕ=ϕ
k+1− ϕ

k . The above equation can be solved in two steps:

     [F 0
B Sa][

δ û
δ p̂]=[ ru

r p
]

and

       [ I D− 1 BT

0 I ][δuδ p]=[δ ûδ p̂] .

Then we update the velocity and pressure based on

[u
(k+1)

p(k+1)]=[u
(k )

p(k)]+[δuδ p] .                             
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Here, one of the above iterations is used as the preconditioner. The SIMPLE

algorithm has some problems; firstly, the SIMPLE preconditioner may return
poor results for convection dominated flows due to the approximation of F by
its diagonal in construction of the Schur complement, which does not capture
the convection operator accurately. Moreover, the method suffers a lot if the
Reynolds number increases or the mesh size decreases.

Another  point  to  note  is  that  many  of  the  Krylov  subspace  methods,  for
instance  CG  and  GMRES,  require  a  constant  preconditioner,  or  more
specifically,  a constant  inverse of  the preconditioner.  If  a preconditioner is
changing due to the requirement of the problem to be solved, or if we invert
the preconditioner iteratively (i.e., we solve Px= y iteratively where P is the
preconditioner) this requirement of the Krylov subspace methods can not be
fulfilled. The SIMPLE preconditioner is one of the above iterations, which
itself is solved iteratively, hence the preconditioner changes in each iteration
[10]. Therefore we use the GCR solver which, though a bit expensive, can
handle variable preconditioners. 

Algorithm 5.2 : SIMPLE preconditioner

1. u(k) and p(k) are known from previous iterations.

2. Set ru=f− Fu( k)−BT p(k ) , r p=g− Bu(k)

3. SolveF δ û=ru

4. Solve Saδ p̂=r p−Bδ û

5. Updateδ p=δ p̂

6. Updateδu=δ û−D−1BT
δ p

7. Updateu(k+1)
=u(k )+δu , p(k+1)

= p(k)+δ p

5.2.4. SIMPLER PRECONDITIONER

There are many variants of the SIMPLE preconditioner available, one such
preconditioner is SIMPLER [10]. In SIMPLER we first solve for the pressure

p̂ instead of assuming it to be the same as the previous iteration's pressure

p(k) , and then we apply the SIMPLE algorithm with p̂ instead of p(k) . The
algorithm is given below
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Solve Sa p̂=g− Bu(k )−B D−1
(f− Fu(k)) , then

[F 0
B Sa][

I D−1 BT

0 I ][ uδ p ]=[fg ]− [F BT

B 0 ][ 0
p(k)]=[ru

r p
]

which can be solved in two steps

[F 0
B Sa][

û
δ p̂]=[ ru

r p
]

and

[ I D− 1 BT

0 I ][ uδ p]=[ ûδ p̂] .

Then we update the velocity and pressure.

Algorithm 5.3 : SIMPLER preconditioner without pressure update damping

1. Solve Sa p̂=g−Bu(k)−B D−1
( f−Fu(k))

2. Set ru=f− BT p̂ , r p=g

3. Solve F û=ru

4. Solve Saδ p̂=r p− B û

5. Updateδ p=δ p̂

6. Update u= r̂−D−1 BT
δ p

7. Update p= p̂+δ p

The SIMPLER preconditioner is supposed to have convergence independent
of the Reynolds number. Unfortunately, in practice, not much improvement is
seen when graduating from SIMPLE to SIMPLER preconditioners, for many
test  cases SIMPLER performs even worse than SIMPLE [10].  Hence,  this
preconditioner is not further discussed, however we discuss an another variant
of  SIMPLER,  the so called MSIMPLER which is  supposed to  give better
results than SIMPLER.

5.2.5. MSIMPLER PRECONDITIONER

The  MSIMPLER  preconditioner  is  an  improved  SIMPLER  precondtioner
presented by Segal et al.  in [10].  It  is  inspired by the similarities between
SIMPLE and commutator preconditioners presented by Elman et al. [13]. As
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presented in equations (5.2) and (5.3) for the commutator preconditioners, the
more general form of Schur decomposition is given by

B F−1 BT ≈ (BM1
−1BT

)F p
−1 with,

Fp=(B M 2
−1 BT

)
−1
(B M 2

−1 F M1
−1 BT

) .  

In the equations (5.2) and (5.3) we took M 1=M 2=diag(Q v) . Now, if we were

to create a new block factorization preconditioner in which Schur complement
is built on SIMPLE's approximate block factorization while being based on a
commutator approximation, we get                               

P=LU [I 0
0 F p

−1] .                                       (5.4)

If S=− B F− 1 BT≈− BD−1 BT=Sa , M 1=D and Fp is  identity  then  equation  (5.4)

corresponds to the SIMPLE preconditioner. Similarly, if the pressure update

step (step 4) in the SIMPLE algorithm is solved with Sa=− (BM 1
− 1 BT )Fp

−1 , then

equation (5.4) is equivalent to the SIMPLE preconditioner.

In our case we deal with the time dependent multiphase flows. Hence, while
discretizing the time dependent Navier-Stokes equations, we get a 1/ timestep

term on the diagonal of matrix F (which is obtained from the implicit time
discretization  of  the  momentum equation).  The presence  of  this 1/ timestep

term on the diagonal makes the diagonal entries larger than the off diagonal

entries,  hence FD− 1 is  “close  to” identity.  This  also  implies  that Fp is  also

close to  identity.  For  the time dependent  problems,  D is  also  close  to  the
diagonal  of  the  velocity  mass  matrix.  Hence,  if  we  choose  again

M 1=M 2=diag(Q v)=Q vd we get

Fp=(B Qvd
− 1 BT)− 1(BQ vd

−1 F Qvd
−1 BT) .

From the above definition it is easy to see that if FQvd
−1 is close to unity then

Fp is also “close to” identity, hence the Schur complement becomes

B F− 1 BT≈ BQvd
− 1 BT .

Therefore, if we replace D with the diagonal of the mass matrix of velocity

Qvd in the SIMPLE/ SIMPLER method we get the MSIMPLER method. The

algorithm is presented later. 
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For time dependent Navier-Stokes problems, the MSIMPLER preconditioner
is  better  than  SIMPLER  because  in  SIMPLER  we  must  form  the  Schur
complement after every iteration (as it is based on diagonal elements of F

which  needs  to  be  updated  after  each  iteration),  while  the  MSIMPLER
preconditioner  has  the  velocity  mass  matrix  in  its  definition  of  the  Schur
complement  which  does  not  change  per  iteration,  hence  we  save  time  in
building the Schur complement. 

Algorithm 5.4 : MSIMPLER preconditioner without pressure update damping

1. Solve Sa p̂=g− Bu(k )−B Q vd
−1
(f−Fu(k))

2. Set ru=f− BT p̂ , r p=g

3. Solve F û=ru

4. Solve Saδ p=r p− B û

5. Updateδ p=δ p̂

6. Update u=û−Qvd
−1 BT

δ p

7. Update p= p̂+δ p

Below  we  present  the  GCR  algorithm  with  SIMPLE/SIMPLER  type
preconditioners, for more details about the algorithm one is referred to [14].
We choose GCR because it is stable, minimizes the residual norm, and allows
for variable preconditioning which is typical of SIMPLE type precondtioners
as discussed above. 

Algorithm 5.5 : GCR - MSIMPLER preconditioner to solve A x=b

r 0=b− A x0

for k=0,1.... , ngcr

sk +1 = P−1 r k

v k+1 = A sk+ 1

for i=0,1,. ...., k

v k+1=vk +1−(vk +1 , v i)v i

sk +1=sk+1− (v k+1 ,vi)si
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end for

v k+1=vk+1/‖v k+ 1‖2

sk +1=sk+1/‖sk+1‖2

xk +1 = xk + (rk ,v k+1)sk+1

r k+1 = rk − (rk ,v k+1) vk+1

end for

Where matrix P depends on the type of SIMPLE/SIMPLER preconditioner
used, for MSIMPLER it is

 P=H r M r
− 1−H r M r

− 1 A M l
−1 H l + M l

− 1 H l where

H r=[
I 0 0 −Q vr d

−1 Gr

0 I 0 −Qv θ d
− 1 Gθ

0 0 I −Qvz d
−1 Gz

0 0 0 I
] , M r=[

Fr 0 0 0
0 Fθ 0 0
0 0 F z 0

Gr
T Gθ

T G z
T Sa

]
H l=[

I 0 0 0
0 I 0 0
0 0 I 0

−Gr Qvr d
−1 −GθQv θ d

−1 −G z Qvz d
−1 I

] , M r=[
F r 0 0 Gr

0 Fθ 0 Gθ

0 0 F z Gz

0 0 0 Sa
]

and W is the block diagonal of M l+M r− A .

5.3. DEFLATION PRECONDITONER

As discussed  above the  aim of  preconditioning  is  to  improve  the  spectral
properties  of  matrix A so  that  the  Krylov subspace  methods  solve A x=b

efficiently.  Presence of  the small  eigenvalues is one such spectral  property
which deteriorates the performance of the solver considerably. Therefore, it
makes sense to have a preconditioner which deflates the small eigenvalues of
A. This is the main motivation behind the deflation preconditioners [15, 16,
17, 18].

As will be discussed below, the deflation preconditioner requires construction
of  the  deflation  matrix  which  points  to  the  eigenvalues  that  need  to  be
deflated. Naturally, the construction of an  efficient deflation matrix is quite
important  as  bad choice of  deflation  matrix  may deflate  good  eigenvalues
rather than bad ones. One obvious way to construct the deflation matrix is to
run the Arnoldi iterations to find the smallest eigenvalues, this however is a
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very expensive task and would definitely mitigate the speed-up achieved by
deflation to a great extent, if not completely.

Another way is to find the eigenvalues based on the physics of the problem,
for example, if an interface is present in the domain, the interface location
points to the small eigenvalues and this information could be used to construct
the deflation matrix. The third way, which pertains more to this research, is to
construct  the  deflation  matrix  using  the  algebraic  deflation  vectors,  for
example in the case of domain decomposition. We shall discuss this more in
detail  later,  for  now it  suffices  to  say  that  since  in  this  research  deflation
preconditioners  are  only  used  to  improve  the  performance  of  domain
decomposition, from now on we will not consider the first two methods of
constructing deflation matrix. Further, we discuss the deflation algorithm.   

Suppose  we  have  to  solve A x=b where A∈ℝ
n x n .  We  consider  a  matrix

Z∈ℝn x m , where m<n and rank of Z is m , i.e., columns of Z are all linearly

independent.  The  columns  of Z are  called  the  deflation  vectors  and Z is
called the  deflation matrix. The columns of Z are spanned by the deflation
subspace in which the  bad (small) eigenvalues of A reside (which are to be
projected out of the residual). For this we define two projectors

Π=I− AZE− 1 ZT and Q=I− ZE−1 ZT A , with 

Π2=Π , Q2
=Q and E=ZT AZ ,

where E∈ℝ
m x m  and I is identity matrix of appropriate size. To solve for x

we write

x=(I−Q)x+Q x=ZE−1 ZT b+Q x .                                (5.5)

Here ZE−1 ZT b is  easily  computed,  hence we turn our  attention towards the

remaining expression Q x . Since Π A=AQ we compute Q x=xa by

Π A xa=Π AQ x=Π2 A x=Π A x=Πb , i.e., we solve

Π A xa=Π b .

Then if  we multiply  xa  by  Q  we get  Q xa=Q2 x=Q x  hence we replace

Q x=Q xa in equation (5.5) to solve for x . For further discussion on deflation

[15, 16, 17, 18] are recommended. In the above method, E is presumed to be
easily invertible. It can be shown that the deflation method works correctly if

E−1 is computed with high accuracy. Also, we do not explicitly compute E−1
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rather solve the system Eq=t with high accuracy using some direct method.

Now, we discuss the way to formulate the deflation matrix for the domain
decomposition technique. The need for deflation for domain decomposition is
discussed later (in the section where we discuss domain decomposition), here
we only present how to formulate the deflation vectors. We base our deflation
vectors on the decomposition of domain Ω , i.e., if we decompose the domain

into d non-overlapping sub-domains we define the deflation vector z i as

(z i) j={ 0 if x i∉Ω j

1 if xi∈Ω j
} 1≤i≤d .

That is, the total number of deflation vectors is the number of non-overlapping
sub-domains, and each vector has a non homogeneous entry only when that
index  belongs  to  the  domain  to  which  the  corresponding  deflation  vector
belongs. The exact deflation vector in our case will be presented in the domain
decomposition sub-section. Further, we present the algorithms of a few Krylov
subspace methods with deflation technique.

Algorithm  5.6:  Deflated  Preconditioned  CG  for  solving A x=b with
preconditioner P and deflation matrix Z .

Select x0 . Compute r0=(b− A x0) , set r 0
1=Π r0

Solve P x0=r0
1 and set p0= y0

for j=0,1,. ..until convergence do

w j
1
= Π A p j

α =
(r j

1 , y j)

(w j
1, p j)

x j+1
1

= x j
1
+α j p j

r j+1
1

= r j
1−α jw j

1

Solve P y j+1 = r j+1
1

β =
(r j+1

1 , y j+1)

(r j
1 , y j)

p j+1 = y j+1+β j p j

end for

x = ZE−1 ZT b + Q x j+1
1

Similarly the deflation technique can be used for non-symmetric systems as
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well. In this case instead of solving A x=b ( A non-symmetric), we use the

above  described  method  and  solve Π A xa=Πb using  Krylov  subspace

methods like GMRES/IDR(s).  Then we multiply xa by Q and put it  in the

equation (5.5) to solve for  x .  The first part ( ZE−1 ZT b ) is computed like
before. 

If the non-symmetric system is left preconditioned with preconditioner P then

we instead solve P− 1Π A xa=P− 1Π b and form Q xa to solve for x . While if the

system  is  right  preconditioned  we  solve Π AP−1xa=Πb and  form QP−1 xa to

solve for x .

6. PARALLELIZATION
The  first  step  of  parallelization  involves  making  a  choice  regarding  the
architecture for which the parallelization of the code will be done. One has to
choose between the shared memory systems and the distributed memory systems.
We discuss both the systems in brief below.

6.1. SHARED MEMORY SYSTEM

In the shared memory systems, all the processors are directly connected to all the
available memories via an Interconnect. Illustration 5 shows a conceptual design
of  such  a  machine.  Shared  memory  systems  can  be  further  sub-categorized
between the Uniform Memory Architecture (UMA) and Non-Uniform Memory
Architecture (NUMA) architectures. The UMA, systems have all the processors at
equal distance from all the memories. The more practical architecture is NUMA,
where different processors have different distances from the different memories.

Parallelization for a shared memory systems has the following attributes,

• Memory access time for all the processors is same (for UMA systems only).

• Every processor accesses the same address space.

• Communication between the processors is done through shared variables. 

• Every processor maintains a local view of the memory and this view must
be updated if some updated variable is to be used by the processor, which
gives rise to synchronization problems.
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For  shared  memory  parallelization  one  can  employ  OpenMP (for  CPU's)  and
OpenCL/CUDA (for GPU's).  Parallelization for GPU's is a relatively new area
with huge potential due to massive numbers of processors/workers available in a
GPU processor.

The disadvantage of parallelizing for a shared memory architecture is that such
systems  have  scalability  limit  on  both  the  memory  and  the  processors.
Furthermore, programming for GPU's is a highly involved and complex task for
systems like  the  one  we  have  in  hand.  Additionally,  it  is  heavily  plagued  by
synchronization problems. Further, we discuss the distributed system.

6.2. DISTRIBUTED SYSTEMS

The  distributed  systems are  those  in  which  all  the  processors  have  their  own
memories and do not have a direct access to each others memory. A distributed
system  has  all  the  nodes/processors  connected  via  an  interconnect  and
theoretically has no requirement of close proximity of all the participating nodes.
In  practice  many  of  the  clusters  and  supercomputers  have  participating  nodes
which are several hundred miles away. Illustration 6 shows a conceptual design of

such a system.
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Parallelization for the distributed memory systems has the following attributes,

• Access time depends on distance to data, i.e., distance between processors.

• Every processor has its own local address space.

• Non local data can be accessed through a request to the owning processor.

• Communication through message passing. 

• Data distribution is important and expensive.

• OpenMPI  can  be  used  to  parallelize  a  software  on  distributed  memory
architectures.

In the distributed memory systems synchronization problems are much less of an
issue since the communication is through explicit messages and no processor has
direct access to other processor's memory. Another very important advantage of
distributed systems is that they are theoretically infinitely scalable, hence we can
run our parallel application over a much large numbers of processors as compared
to the shared memory systems. Although the parallelization using OpenMPI is
harder than Openmp, due to high scalability of distributed architectures we shall
use OpenMPI to parallelize the available code.

6.3. DOMAIN DECOMPOSITION

After we have decided to choose distributed architectures, we must then focus our
attention towards the parallelization methodology. Since fine grain parallelization
is  not  very  suitable  for  the  distributed  architectures  we  choose  domain
decomposition as a valid and efficient parallelization technique. 

Now all that remains is to choose what type of domain decomposition we shall
choose, i.e., shall we do column/row wise domain decomposition or 2d/3d block
domain decomposition. The number of elements to be communicated is minimum
in the case of 3d block domain decomposition, leading to substantial savings on
the communication time, hence we choose a 3d block domain decomposition for
the present study.
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Computing  the  solution  in  parallel  on  a  decomposed  domain  reduces  the
computational time per iteration of a Krylov iterative solver. On the other hand
however, it increases the total number of iterations to be performed [15, 16, 17,
18], thus reducing the total efficiency of the parallelized system. As reasoned in
[18] though it is simple to implement a non-overlapping preconditioner in parallel,
the convergence behavior of the preconditioner deteriorates considerably when the
domain is split into a high number of sub-domains. The loss of convergence is
attributed to the small eigenvalues arising from the domain decomposition. This
motivates the use of deflation for improving the convergence of the incomplete
Cholesky  preconditioned  CG  method  (used  to  solve  the  Poisson  equation).
Deflation  technique  can  also  be  used  as  a  preconditioner  for  the  coarse  grid
correction [15],  for  this  reason we shall  use deflation in combination with the
diagonal scaling as a preconditioner for the predictor equation.

As previously discussed, for applying the deflation technique we must construct
the deflation matrix whose construction is also discussed above. Here we present
the deflation matrix for our case. Let us subdivide our domain into d sub-domains
and  let  us  have  total  n  number  of  unknowns  in  the  total  domain  and

mri ,mθi ,mzi ,mpi be the number of velocity and pressure unknowns in the ith sub-

domain 1≤ i≤ d . Further let {ri,θ i , zi , pi } be the index set (of velocity and pressure

unknowns in the ith sub-domain) giving the location of corresponding unknowns

in n×1 vector, then deflation vectors zi can be given by two ways;

z(r /θ/ z / p)i(k ) = { 1 if k∈{ri/θ i/ zi/ pi}
0 otherwise

or z i(k ) = { 1 if k∈{ri ,θ i , zi , pi }
0 otherwise

Example: the deflation vectors for a 2-d square, having a square domain divided
into 4 sub-domains (as shown in Illustration 7), can be constructed in two ways as
indicated below:
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1  st   way

z x1=[
1
0
0
0

0
0
0
0

0
0
0
0

] , z y 1=[
0
0
0
0

1
0
0
0

0
0
0
0

] , z p 1=[
0
0
0
0

0
0
0
0

1
0
0
0

] , Z x2=[
0
1
0
0

0
0
0
0

0
0
0
0

] , z y 2=[
0
0
0
0

0
1
0
0

0
0
0
0

] , z p 2=[
0
0
0
0

0
0
0
0

0
1
0
0

] , z x3=[
0
0
1
0

0
0
0
0

0
0
0
0

] , z y 3=[
0
0
0
0

0
0
1
0

0
0
0
0

] , z p 3=[
0
0
0
0

0
0
0
0

0
0
1
0

]
, z x4=[

0
0
0
1

0
0
0
0

0
0
0
0

] , z y 4=[
0
0
0
0

0
0
0
1

0
0
0
0

] , z p 4=[
0
0
0
0

0
0
0
0

0
0
0
1

] z i=[
u1

u2

u3

u4

v1

v2

v3

v4

p1

p2

p3

p4

] and

Z=[ z x1 z y 1 z p1 z x 2 z y 2 z p2 zx 3 z y3 z p3 z x 4 z y 4 z p4]

2  nd   Way
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z1=[
1
0
0
0

1
0
0
0

1
0
0
0

] , z2=[
0
1
0
0

0
1
0
0

0
1
0
0

] , z3=[
0
0
1
0

0
0
1
0

0
0
1
0

] , z4=[
0
0
0
1

0
0
0
1

0
0
0
1

] z i=[
u1

u2

u3

u4

v1

v2

v3

v4

p1

p2

p3

p4

] and Z=[ z1 z2 z3 z 4] .

Where  bold  numerals  denote  the  vectors  of  the  size mxi ,m yi ,m pi in  each  sub-

domain i .  It  is  not  clear  which  of  the  above  two  ways  of  constructing  the
deflation vectors will give a better performance. In this research however we plan
to use the 1st way as it seems to be more suitable for mechanical problems having
discontinuous coefficients [19].

6.4. COMMUNICATION OVERLAPPING CG

Since we aim to parallelize the present code in this endeavor, perhaps it is also
prudent to analyze the computational bottlenecks of the parallel CG method. CG
requires three global dot products, which corresponds to high communication cost
on a parallel architecture if number of processors is fairly large. To suppress the
global  communication  cost  we  might  think of  overlapping the  communication
with computation [20]. If we write preconditioner as P = L LT , then Algorithm 6.1
gives a communication overlapping CG (CoCG).

Algorithm 6.1: Communication overlapping CG (CoCG)

x−1 = x0 = intial guess; r0 = b − A x0

p− 1=0 ; α−1=0

s= L−1 r0

ρ−1 = 1

for i = 0, 1, 2, … do

(1) ρi=(s , s)
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wi=L−T s

βi−1 = ρi /ρi−1

pi = w i + βi−1 pi−1

q i = A p i

(2) γ =( p i , qi)

xi = xi−1 + α i−1 pi−1

αi = ρi /γ

r i+1 = r i − αi q i

(3) compute‖r‖

s= L− 1 ri+1

If accurateenough then
x i+1 = xi + αi p i

quit

end

Algorithm 6.1 only reschedules some operations and is numerically just as stable
as the normal CG. In the above algorithm the communication of the inner products
(1), (2), (3) can be overlapped by the computation which follows in the subsequent
lines. The total run-time of parallel CG is c+a where a is the total computational
time of one iteration and c is the communication time. If for 0≤β≤1, βa give the

overlapping computation time, then the run-time of CoCG is (1−β)a + max(βa , c) .

As  number  of  processors  increase a decreases  while c increases,  hence  if  the
value  of β is  high  we  can  hide  higher  communication  time  behind  the

computational time. Although for a rather high number of processors it would not
be possible to completely overlap communication and computation, but we will
still save on some communication time. For more details one can refer to [20]. 

6.5. COMMUNICATION REDUCING IDR(s)

The IDR(s) method also involves global communication which, like in CG, will
affect  the  parallelization  efficiency.  An algorithm can be  found in  [21]  which
reduces  the  number  of  global  communications  per  iteration  of  IDR(s).  This
algorithm is different from the Algorithm (4.1) presented earlier, in the sense that

41



this algorithm exploits the bi-orthogonality property of the residual and change in
the residual at each step [21]. We present the algorithm below. For a more rigorous
derivation, the interested readers can refer to [21].  

Algorithm 6.2: Minsync IDR(s) to solve A x=b

Required: A∈ℝN×N , x0, b∈ℝ
N , T∈ℝN×s  

Initialize r 0 = b− A x0 ,

Δ R =Δ X =0 ℝN×s ; M l = I∈ℝs×s ; M t = M c = 0 ; ω = 1

ϕ = PH r , ϕ = (ϕ1,… ,ϕs)
T

//Loop over nested G j spaces, j = 0,1,…
while ‖r‖ >Tol and k < Max iter do

//Compute s linearly independent vectors Δ rk in G j

for k = 1, s do
Solve for γ by M l γ(k : s)=ϕ (k : s )

v = r − ∑
i=k

s

Δ r iγi

Δ x̂k=∑
i=k

s

γiΔ x i + ωv //Intermediate vector Δ x̂k .

Δ r̂ k = A δ x̂k //Intermediate vector Δ r̂ k .

ψ = PH
Δ r̂k // s inner products (combined)

Solve M tα(1: k− 1) = ψ(1: k− 1)

//Make Δ r̂k orthogonal to p1,… , pk update Δ x̂k accordingly  

Δ rk = Δ r̂ k − ∑
i=1

k−1

αiΔ r i  and Δ xk = Δ x̂k − ∑
i=1

k−1

αiΔ x i

//Update column k of M l

μi , k
l
= ψi − ∑

j=i

k− 1

α jμi , j
c for i = k ,… , s

//Make r orthogonal to p1,… , pk update x accordingly  

β= ϕk /μk , k
l

r = r − βΔ r k

//Update ϕ = PH r
if k+1 ≤ s then

ϕi = 0 for i=1,… , k

ϕi = ϕi − βμ i ,k
l for i = k+1,… , s

endif
end for

42



//Entering G j+1 . Note : r⊥P

v = r
t = A v

ω =( tH v )/(t H t ) ; ϕ =− PH t //s+2 inner products (combined)
r = r − ω t
x = x + ωv
ϕ = ωϕ

end while

From the above algorithm it is clear that each iteration requires synchronizations
only  once  [21].  This  reduces  the  global  communication  time  since  the
communication  overhead (latency),  which is  incurred  anytime communication
happens,  is  reduced.  Moreover,  this  formulation  is  more  stable  than  the  one
presented in Algorithm 4.1 which is also an added benefit.

7. PROFILING & IMPROVING THE PRESENT CODE
To increase the speed of a code it is important to identify the parts which take the
longest time per iteration. It is not very wise to improve the efficiency of those
parts of the program which take little time in comparison to others, because it does
not  help in  improving the overall  speed by much.  Hence,  the profiling of  the
available code was done to identify the components  which take the maximum
time. The profiling results of the original  code for various density to viscosity
ratios  (which  correspond  to  Reynolds  number)  are  presented  in  Table  1,  with
percentage denoting the percentage of total time taken by a particular module.

Table 1: Profiling results of original code for 5 time steps on a 14x45x45 grid. 

Density to
viscosity

ratio
(Fluid 1 &

Fluid 2)

Flow Time(s) - percentage Interface Time(s) - percentage

Predictor
Time(s) /

percentage

Poisson
Time(s) /

percentage

Corrector
Time(s) /

percentage

Advect
VOF & LS
Time(s) /

percentage

LS_reinit
Time(s) /

percentage

Coupling
Time(s) /

percentage

1e3 & 1e5 14.36 (s) – 89.7% 1.36 (s) – 8%

14.46 (s)
84.5%

1.004 (s)
5.8%

0.05 (s)
0.1%

0.05 (s)
0.1%

0.93 (s)
5.4%

0.35 (s)
2.2%
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1e2 & 1e4 54.87 (s) – 96.3% 1.53 (s) – 2.7%

54.0 (s)
94.8%

0.97 (s)
1.9%

0.05 (s)
0.1%

0.05 (s)
0.1%

1.09 (s)
1.9%

0.35 (s)
0.6%

1e2 & 1e3 57.13 (s) – 96.4% 1.52 (s) – 2.6%

56.25 (s)
94.9%

1.0 (s)
1.7%

0.04 (s)
0.1%

0.05 (s)
0.1%

1.09 (s)
1.8%

0.34 (s)
0.6%

As evident from the above profiling results, the predictor part takes the longest
time followed by the interface calculation part. The Poisson solver, contrary to our
expectations, took much less time. 

In the current code, restarted GMRES is used to solve the predictor part. To speed
it  up,  various  modifications  are  performed  on  the  original  code.  The  first
improvement  is  motivated  by  the  knowledge  that  Krylov  subspace  solvers
converge faster with preconditioning. Hence, the Jacobi preconditioner was used
to speed up the predictor module. This preconditioner was chosen because it is
easy to implement, delivers considerable speedups for our case [7], and also lends
itself well to parallel programming which is a highly desirable property for the
present endeavor. Table 2 shows the results obtained by performing the Jacobi
scaling.  As  is  evident  from  the  results,  the  Jacobi  preconditioned  GMRES
performs better than the unconditioned GMRES, and for low Reynolds number a
speedup of 2 is obtained.  

Table  2:  Comparison  of  Jacobi  preconditioned  GMRES  (used  to  solve  the
predictor step) with non preconditioned GMRES (50 time steps on a 14x45x45
grid). 

Case Density to viscosity
ratio

GMRES

Not Preconditioned Preconditioned

# Iter. Time # Iter. Time

1 1e4 & 1e6 30 24 (s) 22 19 (s)

2 1e3 & 1e5 100 87 (s) 60 52 (s)

3 1e2 & 1e4 387 320 (s) 182 157.5 (s)

4 1e2 & 1e3 390 337.5 (s) 191 162.5 (s)

The second major improvement was motivated by the fact that the calculations of
matrix entries are performed in each iteration of GMRES unnecessarily. Hence, if
we  could  save  the  matrix  in  some  diagonal form  it  would  decrease  the
computational  time.  This  modification,  though  quite  complex  and  involved  to
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perform, was rather fruitful, as it gave an overall speedup of more than factor 2
irrespective of the Reynolds number. Table 3 presents the results obtained after the
2nd improvement.

Table 3: Comparison of GMRES with storing the matrix and without storing the
matrix (50 time steps on a 15x45x45 grid). 

Case Density to
viscosity ratio

GMRES

Without matrix storing With matrix storing

# Iter. Time # Iter. Time

1 1e4 & 1e6 22 19 (s) 22 7.32 (s)

2 1e3 & 1e5 60 52 (s) 60 20.7 (s)

3 1e2 & 1e4 182 157.5 (s) 182 61.05 (s)

4 1e2 & 1e3 191 162.5 (s) 191 64.02 (s)

The  above  modifications  improve  the  performance  of  the  serial  version
substantially. For the low Reynolds number cases, which are typical of the target
applications,  a  speed  up  of  approximately  5  is  obtained,  for  example,  case  4
initially took 337.5 (s)  but  after  the two improvements it  took only 64.02 (s).
Similarly, for the high Reynolds number cases a speed up of approximately 3-4
can be expected as a result of the above improvements.

8. TEST CASE 
To validate the accuracy and speedup given by the modified code (parallelized
version with improved solvers and preconditioners) we plan to apply it to two test
cases. The first test case is an academic problem used to validate the modified
code, while the second test case is more practical, and is typical of the problems
for which the code is developed.

8.1. DAM BREAK / BENJAMIN BUBBLE PROBLEM

In the dam break problem we consider two fluids with different densities in a
closed pipe, initially at rest. The fluids are separated by a vertical dam as shown in
Illustration 8. At t=0 the dam breaks, and the fluids start to move so as to attain an
equilibrium where the heavier fluid is below the lighter one. 
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We impose a slip boundary condition at the walls, with the two fluids initially at
rest. The properties of the oil and water are indicated in Table 4. To check the
accuracy, we shall compare the interface velocities obtained by the modified and
serial codes. There also exist analytical solutions to such problems which can be
used to check the accuracy gain given by the coupled solver. Finally, we shall
present  the speedup obtained and scaling behavior  of  the  parallel  solver  for  a
medium sized grid.

8.2. PIPE FLOW

As  mentioned  in  the  introduction,  TNO-Netherlands,  Shell  and  Deltares  are
interested in multiphase flow happening in pipes. In such cases, pipes are initially
filled with oil,  and water is pumped to flush the oil  out.  Many experiments to
visualize the shape and propagation velocity of the liquid-liquid interface during
the flushing process have been performed in the past. We shall simulate one such
test case provided by TNO to check the speed-up given by the parallelism, faster
solvers,  and  better  preconditioners.  We  also  aim  to  check  the  accuracy
improvement  given  by  the  coupled  solver.  Below,  we  provide  details  of  the
simulated test case.

We simulate the flow field inside a pipe, configured as indicated in Illustration 9.
Initially the pipe is assumed to be filled with stagnant oil, and at t=0, water is
provided at the inlet to flush the oil out. After some time the water reaches the
bend, and instead of rising further, it creeps horizontally, displacing the oil. The
resulting  interface  is  tricky  to  capture  numerically.  It  is  seen  in  previous
simulations done at TNO, that a no-slip boundary condition gives an unphysical
interface shape [22] (where an oil film is formed between water and the wall),
while a slip boundary condition over-predicts the speed of the interface. Hence a
Navier-slip boundary condition is implemented in the present code, in which the
shear stress near the contact point of the interface and wall is reduced, i.e., we
have a degree of freedom with which we can specify the slip near the interface-
wall contact point.  For more details one could refer to [22]. Table 4 gives the
relative properties of oil and water used in the test. 
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Table 4: Properties of the oil and water used in the test case.

Fluid Relative density (to water) @150 C Kinematic viscosity @400 C

Water 1 0.658 mm2/s

Nexbase 3080 0.84 48 mm2/s

The  volumetric  water  flow at  the  inlet  is  0.0003023  m3/s,  and  its  superficial
velocity is 0.1069 m/s. Due to the complexity of the analysis we cannot, at this
stage, provide the suitable boundary conditions and length of the pipe that will be
simulated. They will be experimentally derived at a later stage.

To check the accuracy of the modified code we plan to compare the velocity and
pressure profiles obtained by the serial and parallel codes, and contrast it against
the  experimentally  available  results.  We  shall  then  present  the  speed-up  and
scalability obtained by the parallelism. 

9. RESEARCH QUESTIONS & METHODOLOGY
Based on the current study we are posed with several research questions:

➢ By  how  much  can  we  speed-up  the  code  using  better  solvers  and
parallelism?

➢ How much is the accuracy improved by solving the coupled system?

➢ Which is the most efficient preconditioner to solve the coupled system?

➢ By how much does the deflation preconditioner (for coarse grid correction)
improve  the  convergence  of  the  non-symmetric  convection-diffusion
equation?

➢ As discussed above, for our problem we can choose the deflation vector in 2
different ways, which of these two ways gives a better performance?
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➢ How  does  the  IDR(s)  method  perform  in  comparison  to  the  GMRES
method to solve the non-symmetric convection-diffusion equation?

To address of these questions the following track can be taken:

➢ Implement parallelization in the code.

➢ Improve the performance of the resulting system by adding deflation to it.

➢ Extend the system to a coupled system.

➢ Implement the IDR(s)  solver and compare the performance with already
available GMRES.

➢ Run the test case to access the speed up given by the parallelization, IDR(s)
and deflation. Further we check the scaling behavior of the parallelization.
The accuracy improvement by solving the coupled system is also accessed.

10. REFERENCES
 1. S. van der Pijl. “Computation of bubbly flows with a Mass-Conserving Level-Set

Method.” PhD Thesis, TU-Deflt (2005) .

 2. Y. Morinishi, O.V. Vasilyev, Takeshi Ogi.  “Fully Conservative finite difference
scheme in cylindrical coordinates for incompressible flow simulations”. Journal of
Computational Physics 197, (2004) pp. 686-710.

 3. A. Arakawa, V.R. Lamb. "Computational design of the basic dynamical processes
of the UCLA general circulation model".  Methods of Computational Physics 17,
(1977) pp. 173–265.

 4. T.W.H Sheu,  R.K.  Lin.  “Newton  linearization  of  the  incompressible  Navier–
Stokes equations”. Int. J. Numer. Meth. Fluids 44, (2004) pp. 297-312.

 5. J. van Kan. “A Second-Order Accurate Pressure-Correction Scheme For Viscous
Incompressible Flow.” SIAM J. Sci. Stat. Comput. 7(3), (1986) pp. 870-891.

 6. L.N. Trefethen, D. Bau.“Numerical Linear Algebra.” Philadelphia, SIAM (1997).

 7. A. J. Wathen. “Preconditioning”. Acta Numerica, 24, (2015) pp. 329-376. 

 8. P. Sonneveld, M.B. van Gijzen. “IDR(s): A Family of Simple and Fast Algorithms
for  Solving  Large  Nonsymmetric  Stsrems  of  Linear  Equations.”  SIAM J.  Sci.
Comput.,  31 (2), (2008) pp. 1035-1062.  

 9. J.A.  Meijerink,  H.A.  van  der  Vorst.  “An iterative  solution  method  for  linear
systems of which the coefficient matrix is a symmetric M-matrix.”  Math. Comp.,
31, (1977) pp. 148–162.

 10. A. Segal, M. ur Rehman, C. Vuik. “Preconditioners for Incompressible Navier-

48



Stokes Solvers”. Numer. Math. Theor. Meth. Appl. 3(3), (2010) pp 245-275.

 11. M. F.  Murphy,  G.  H.  Golub,  A.  J.  Wathen.  “A Note  on  Preconditioning for
Indefinite Linear Systems”. SIAM J. Sci. Comput., 21(6), (2000) pp. 1969–1972.

 12. D. Kay, D. Loghin, A. J. Wathen. “A preconditioner for the steady-state Navier–
Stokes equations.” SIAM J. Sci. Comput., 24, (2002) pp. 237–256.

 13. H.C.  Elman,  V.E.  Howle,  J.  Shadid,  R.  Shutterworth,  R.  Tumirano.  “Block
Preconditioner Based on Approximate Commutators.” SIAM J. Sci. Comput., 27
(5) , (2006) pp. 1651-1668.

 14. C. Vuik, A. Saghir, G.P. Boerstoel. “The Krylov Accelerated SIMPLE(R) Method
for Flow Problems in Industrial Furnaces”. Int. J. Numer. Meth. Fluids 33, (2000)
pp. 1027-1040.

 15. R.  Nabben,  C.  Vuik.  “Domain  Decomposition  Methods  and  Deflated  Krylov
Subspace Iterations.” ECCOMAS CFD (2006).

 16. J.  Verkaik,  C.  Vuik,  B.D.  Paarhuis,  A.  Twerda.  “The  Deflation  Accelerated
Schwarz Method for CFD.” ICCS, (2005) pp 868-875.

 17. J.  Frank,  C.  Vuik,  A.  Segal.  “On  The  Construction  of  Deflation-Based
Preconditioners.” SIAM J. Sci. Comput., 23 (2), (2001) pp. 442-462.

 18. C.  Vuik,  J.  Frank. “Coarse  Grid  Acceleration  of  a  Parallel  Block
Preconditioner.” Future Generation Computer Systems. 17 (2001), pp. 933-940.

 19. T.B. Jonsthovel, M.B. van Gijzen, C. Vuik, A. Scarpas.  “On The Use Of Rigid
Body Modes In The Deflated Preconditioned Conjugate Gradient Method.” SIAM
J. Sci. Comput.,  35 (1), (2012)  pp. B207-B225.

 20. E.  de  Sturler,  H.A.  van  der  Vorst. “Reducing  the  effect  of  the  global
communication  in  GMRES(m)  and  CG  on  the  parallel  distributed  memory
computers.” Appl. Numerical Mathematics 18, (1995) pp. 441-459.

 21. T.  P.  Collignon,  M.B  van  Gijzen. “Minimizing  Synchronization  in  IDR(s).”
Numer. Liner Algebra Appl. 18,  (2011)pp. 805-825.

 22. B.  de  Jong.  “Contact  Line  Dynamics  in  Oil  Water  Simulations.”  Internship
Report, TNO (2015).

49


	Faculty of Electrical Engineering, Mathematics and Computer Science
	Delft Institute of Applied Mathematics
	Parallelization of An Experimental Multiphase Flow Algorithm
	Master Thesis Literature Review
	submitted to the
	Delft Institute of Applied Mathematics
	in partial fulfillment of the requirements
	for the degree
	MASTER OF SCIENCE
	in
	APPLIED MATHEMATICS
	by
	ANKIT MITTAL
	Delft, the Netherlands
	March 2016
	1. INTRODUCTION
	2. GOVERNING EQUATIONS & SOLVING TECHNIQUES
	2.1. FLOW
	2.2. INTERFACE
	2.3. DISCRETIZATION AND LINEARIZATION
	2.4. TIME INTEGRATION METHODOLOGY

	3. DESCRIPTION OF CODE
	3.1. OVERALL ALGORITHM
	3.2. FLOW SOLVER
	3.3. INTERFACE SOLVER

	4. SOLVERS
	4.1. RESTARTED GMRES
	4.2. CONJUGATE GRADIENT (CG)
	4.3. IDR(s)
	4.4. GCR METHOD

	5. PRECONDITIONERS
	5.1. GENERAL PRECONDITIONERS
	5.2. SADDLE POINT PRECONDITIONERS

	Where matrixdepends on the type of SIMPLE/SIMPLER preconditioner used, for MSIMPLER it is
	where
	,
	,
	andis the block diagonal of.
	5.3. DEFLATION PRECONDITONER

	6. PARALLELIZATION
	6.1. SHARED MEMORY SYSTEM
	6.2. DISTRIBUTED SYSTEMS
	6.3. DOMAIN DECOMPOSITION
	6.4. COMMUNICATION OVERLAPPING CG
	6.5. COMMUNICATION REDUCING IDR(s)

	7. PROFILING & IMPROVING THE PRESENT CODE
	8. TEST CASE
	8.1. DAM BREAK / BENJAMIN BUBBLE PROBLEM
	8.2. PIPE FLOW

	9. RESEARCH QUESTIONS & METHODOLOGY
	10. REFERENCES

