
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Deep learning-based
sea ice dynamics
modelling
Master thesis

Brendan Analikwu



Deep learning-based
sea ice dynamics

modelling
Master thesis

by

Brendan Analikwu
Brendan Analikwu 4589076

Daily supervisors: Dr. Alexander Heinlein, and
Dr. Carolin Mehlmann

Committee chair: Dr. Matthias Möller
Committee member: Dr. Bernard Meulenbroek
Project Duration: March 2023 - October 2024
Programme: Master Applied Mathematics, Delft

Cover: Iceberg breaking from Brunt Ice Shelf on January 25 2022 by
NASA under CC BY-NC 2.0 (Modified)



Summary

In this thesis, a deep learning-based surrogate model for predicting sea ice dynamics is developed
that is capable of predicting linear kinematic features in a high-resolution setting. Predicting sea ice
dynamics at high resolutions is critical for understanding climate patterns and enabling safe navigation
in Arctic regions. Traditional continuum models based on the viscous-plastic rheology are computation-
ally intensive when employed at high resolutions to capture linear kinematic features (LKFs), which are
narrow zones of deformation in sea ice.

A supervised learning approach was adopted, focusing on convolutional neural network architec-
tures, specifically the U-Net and a classic bottleneck model. Various loss functions were explored,
including traditional metrics like the MSE and novel domain-specific functions such as the strain rate
error (SRE), which incorporates physical knowledge of sea ice behaviour. The models were trained on
a dataset generated from numerical simulations of sea ice dynamics on a 2 km grid.

The key findings indicate that the U-Net architecture combined with the MSE+SRE loss function
outperforms other models. This architecture’s depth and use of skip connections allow it to capture
complex, multi-scale patterns inherent in sea ice dynamics. The integration of the SRE into the loss
function significantly enhances the model’s ability to predict LKFs, demonstrating the benefit of incor-
porating domain knowledge into machine learning models.

While the surrogate model effectively predicts LKFs for short-term forecasts up to approximately
5.5 hours (10 time steps), errors accumulate over longer periods, leading to significant errors after
about 11 hours (20 time steps). However, the efficiency gain of this surrogate model is striking: the
computation of 10 time steps can be done within a second, compared to the 30 minutes that traditional
numerical methods need. The study also underscores the critical importance of training data selection
and preparation in influencing model performance and generalisation capabilities.

In conclusion, this work demonstrates that a deep learning-based surrogate model, particularly util-
ising the U-Net architecture and the MSE+SRE loss function, can effectively predict sea ice dynamics
at high resolutions with significant computational efficiency. The model generates forecasts within sec-
onds, offering a viable alternative to traditional numerical simulations that require hours of computation.
Future work should focus on mitigating error accumulation to extend the forecasting horizon and ex-
ploring advanced learning methods to further integrate physical insights into the modelling process.

i



Acknowledgements

I would like to expressmy deepest gratitude tomy supervisors, Alexander Heinlein andCarolinMehlmann,
for their guidance and support throughout this thesis. Their insights and constructive feedback during
our meetings were invaluable in shaping the direction and quality of my research.

A heartfelt thank you goes to my parents, whose constant encouragement and support have been
instrumental in my educational journey. Their belief in me has been a source of strength and motivation.
I am also very grateful to my boyfriend Martien for being a great source of support and understanding
during this journey.

Working on this thesis was both exciting and challenging. My strong interest in machine learning
and its application to climate models motivated me throughout. Sea ice modeling with machine learning
is a relatively new field, and much of my work involved exploring uncharted territory through trial and
error. While I recognize the irony in addressing sustainability through AI - an area often criticized for its
energy demands - I hope that this research contributes to more efficient modelling solutions. Balancing
the demands of this individual research project with my responsibilities as a city council member was
demanding at times, and I learned the importance of starting small and being patient with the process.

Brendan Analikwu
Delft, October 2024

ii



Contents

Summary i

Acknowledgements ii

1 Introduction 1
1.1 Sea ice modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scientific machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Sea ice model 8
2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Dimensionless model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical methods 12
3.1 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Time discretisation for the sea ice problem . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Weak formulation of the momentum equation . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Solving of linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Machine learning techniques 17
4.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Neural network training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Optimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Enhancing training convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Data generation 31
5.1 Benchmark problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Network design 37
6.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Hyperparameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Results 43
7.1 Hyperparameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Qualitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Performance on benchmark problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Discussion and conclusions 55
8.1 Discussion of research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 60

iii



Contents iv

Appendices 65

A Examples of training data 66

B Time series results 71



1
Introduction

Sea ice dynamics play an important role in understanding climate patterns, predicting environmental
changes and enabling safe navigation in the Arctic regions. Earth system models (ESMs), used in
climate research to simulate long-term weather patterns, incorporate sea ice to account for its role in
sunlight reflection (albedo) and interactions with the atmosphere [1, 2]. However, the complexity of sea
ice dynamics modelling causes significant computational demands using current numerical methods.
To address these challenges both new model formulations and alternative methods are currently being
investigated [3].

These studies primarily focus on improving the currently used solvers or applying numerical meth-
ods that were previously considered unsuitable for sea ice modelling. However, advancements in high
performance computing, for example, have now made these methods feasible [3, p. 6]. Machine learn-
ing has gained traction as a powerful tool for scientific applications [4], helping them through hybrid
approaches that integrate machine learning with traditional numerical methods [5, 6], or even replacing
numerical methods completely [7, 8, 9]. In this thesis, we explore the potential of deep learning-based
models applied to sea ice modelling, paving the way for improved understanding and prediction of sea
ice behaviour.

1.1. Sea ice modelling
Due to its reflexivity and its role as a boundary layer between the atmosphere and the ocean, sea ice is
an integral part of the Earth’s system. Approximately 9 percent of the Earth’s ocean surface is covered
with ice during at least some part of the year [10]. Due to its reflexivity, changes in sea ice coverage
have significant effects on the absorption rate of sunlight by the Earth, which therefore influence the
planet’s temperature. As sea ice coverage decreases, more heat is absorbed, contributing to global
temperature rise and subsequent sea ice melting. This positive feedback loop is referred to as ice-
albedo feedback and acts as an accelerator of global warming. In the scenario corresponding to 1.5
degrees warming, the disappearance of Arctic sea ice and the retreat of ice sheets across the world
have been computed to be responsible for 29 percent of this increase [11, p. 3]. The importance of sea
ice in the climate system is evident.

As the Arctic sea ice rapidly declines due to global warming, interest in the region as a navigation
route has grown, with shorter shipping routes becoming increasingly accessible [12, p. 1631]. To illus-
trate, the Northwest Passage (which runs through the Canadian Arctic Archipelago) has been nearly
impassible throughout recorded history [13]. Since 2007, however, the Northwest Passage has been
fairly open at some point during the summer months [14] with the exception of 2013. A comparison of
the ice extent in the Northwest Passage on August 9, 2013, and August 9, 2016, is shown in Figure 1.1.

Even though Arctic maritime routes are long desired, navigation through the Arctic does not come
without controversy. On the one hand, these Arctic trade routes could cut greenhouse gas emissions
due to their shorter lengths, but on the other hand, the increased risk of oil spills, for example, could
prove more damaging in the Arctic than in other regions. These developments have also called for the
use of sea ice models in a more ‘weather-like’ setting: predicting the navigability at high resolutions [15].
While these predictions have not been found to be very precise, simply predicting the pattern and

1



1.1. Sea ice modelling 2

(a) (b)

Figure 1.1: Comparison of the ice extent in the Northwest Passage on August 9. Taken from [14]. (a) The ice extent in 2013 as
observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. (b) The image captured by

the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite in 2016.

(a) (b)

Figure 1.2: Example of (a) a lead and (b) a pressure ridge from the MOSAiC expedition. Taken from [18]. The images were
taken by Steven Fons from NASA’s Goddard Space Flight Center.

direction of navigable routes might be enough [16, p. 17]. Ships can navigate through thin ice and
cracks in the ice cover called leads. Phenomena as leads, but also pressure ridges, together referred to
as linear kinematic features (LKFs), are only produced by models at resolution higher than 5 kilometres
[17, p. 673]. This calls for sea ice models that operate at higher resolutions. Examples of a lead and a
pressure ridge from the MOSAiC expedition are shown in Figure 1.2.

Even though ice on land plays an important role in the climate system, its physics differ from that of
sea ice modelling. While both land and sea ice grow and shrink due to interactions with the atmosphere
above, they are set apart by the physics of the interactions with the earth or ocean. Most important
here is the greater mobility of sea ice. To illustrate, glaciers typically move by several metres per day,
with some of the fastest in the world reaching roughly 40 metres per day [19, 20]. On the other hand,
sea ice velocity modelling deals with typical speeds in the order of one metre per second. Their typical
speeds therefore differ three orders of magnitude. As we will demonstrate, the key challenges in ice
modelling emerge at higher rates of deformation, where sea ice exhibits plastic rather than fluid-like
behaviour. Therefore, we focus on sea ice in this work, as land ice does not exhibit these higher rates
of deformation due to the significantly lower speeds.

In sea ice modelling, two processes are captured: thermodynamics and dynamics. In this thesis, how-
ever, we only consider the latter. The study of sea ice dynamics is concerned with the drift of sea ice
forced by, for example, winds and ocean currents. To capture this process, three variables are mod-
elled: sea ice velocity, thickness and concentration. As sea ice dynamics models are traditionally used
on larger scales, they are based on continuum mechanics. In this continuum mechanics approach,



1.2. Scientific machine learning 3

averages over a sufficiently large number of floating pieces of ice, called ice floes, are taken. This
leads to a scale of tens of kilometres, as the typical size of floes ranges from a few metres to several
kilometres in diameter. The sea ice velocity is therefore the average speed of ice floes. Furthermore,
the ice thickness is the average sea ice height in a given volume, corresponding to a measure of the
ice mass in a cell. The ice concentration is then the fraction of the area in the cell covered by thick ice.
The remainder is either open water or thin (or ‘young’) ice. According to Blockley et al. [3], continuum
models are expected to remain in use for the foreseeable future, but their usage will depend on their
performance at high resolutions.

Sea ice dynamics are influenced not only by interactions with wind and ocean currents, but also
by internal stresses within the ice. These stresses are mostly modelled using a viscous-plastic (VP)
rheology introduced by Hibler [21]. Presently, nearly all sea ice models use a formulation based on this
viscous-plastic rheology [3]. The viscous-plastic sea ice model consists of two transport laws and a
nonlinear momentum equation. Explicit time stepping schemes have been shown by Ip et al. [22] to be
stable only for small time steps, negating their efficiency gain compared to implicit time discretisations
with longer time steps. Therefore, Ip et al. [22] conclude implicit schemes to be the better choice.
However, due to the nonlinearity of the momentum equation, iterative solvers must be used to solve
problems with the VP rheology.

To allow for explicit time integration, Hunke and Dukowicz [23] introduced elasticity to the traditional
viscous-plastic rheology. This resulted in the development of the elastic-viscous-plastic (EVP) model,
which offers more computational efficiency compared to the explicit VP model, since it allows for larger
time steps. However, the two models only converge to the same solution if the resolution is low enough
and the subcycle timesteps of the EVP method are sufficiently small [24], resulting in an efficiency-
accuracy trade-off. In conclusion, the VP model solved with an implicit scheme provides the most
accurate results, despite its higher computational demands.

In sea-ice dynamics literature, the two common solution methods to solve the implicit scheme are
Picard iterations, as first applied to sea ice modelling by Zhang and Hibler [25], and the inexact New-
ton method, introduced in this context by Lemieux et al. [26] and subsequently improved by Lemieux
et al. [27]. The first method has been shown to be slow [28], while the second suffers from non-
convergence for fine meshes.

In light of these considerations, several methods have been proposed to improve convergence. For
example, Mehlmann and Richter [29] proposed a modified Newton solver designed for solving the VP
model directly. Their approach involves splitting the Jacobian matrix resulting from the Newton method
into a positive definite and a negative semidefinite part. To enhance convergence, Mehlmann and
Richter implemented a damping mechanism to address situations where the method fails to converge
to a solution with a sufficiently small residual. In those cases, the negative semidefinite part of the
Jacobian is damped. Notably, their method demonstrated successful convergence on a 4km grid and
achieved convergence on a 2km grid for almost all simulated time steps in their test case.

Moreover, in another study by Mehlmann and Richter [30], a multigrid-framework is proposed to
solve the resulting linear system. The use of a multigrid method as a preconditioner to the generalized
minimal risidual method (GMRES) was found to reduce the number of GMRES iterations by 80 percent
compared to the incomplete LU decomposition (ILU) preconditioner on fine meshes ranging from 16km
to 2km in resolution. Additionally, Shih et al. [31] proposed an alternative linearisation of the nonlinear
momentum equation in combination with an algebraic multigrid preconditioner, which was shown to
substantially reduce computational costs. Even with these recent advancements, solving the VP model
remains computationally expensive.

1.2. Scientific machine learning
In recent years, the development and usage of Artificial Intelligence (AI) has been on the rise, with its
applications now extending far beyond traditional statistical inference tasks such as image classification
and recommendation systems. A notable trend in AI is its increasing application in scientific domains,
where machine learning algorithms are combined with scientific computing [32]. This emerging field,
known as Scientific Machine Learning (SciML), stands apart from conventional machine learning (ML)
by integrating knowledge about the problem at hand (domain knowledge) such as physical laws or
known symmetries, or by improving numerical algorithms replacing part of it by a ML technique. The
combination of the two approaches can result in increased accuracy, robustness or efficiency. Fur-



1.2. Scientific machine learning 4

thermore, when domain knowledge is employed, SciML can have the advantage of being more data-
efficient than traditional machine learning algorithms.

To help understand the different modelling options, we explore different ways in which SciML meth-
ods are classified. In the following, we will first detail a classification based on the role and integration
of the Machine Learning method within or alongside the numerical method. Secondly, the traditional
three machine learning paradigms are described, which are based on how methods infer patterns from
data.

SciML classification
Heinlein et al. [33] make the distinction between three classes of scientific machine learning applied
to domain decomposition methods (DDMs), which involve dividing the computational domain into sub-
domains solved in parallel and then synchronised at their interfaces. The different classes are: ML
integrated into the numerical method, ML used as a solver and ML methods aided by knowledge from
the DDM. We will generalise these three paradigms to encompass the broader scope of scientific ma-
chine learning, applying them to various numerical methods beyond DDMs. As is the case with DDMs,
these classes do overlap, and certain approaches can be classified under multiple categories.

The first class involves employing ML techniques within a traditional numerical framework to en-
hance either the convergence properties or the computational efficiency. This typically results in hybrid
models, where a machine learning model replaces some part of a numerical algorithm. For example,
Ray and Hesthaven [5] use an artificial neural network to identify grid cells where the solution obtained
by a numerical integration scheme needs correcting. The correction is computationally expensive and
causes loss in accuracy if applied to the wrong grid cells. Therefore, the correction should be applied
to no more grid cells than necessary. Here, the machine learning technique is implemented to replace
the total variation bounded (TVB) indicator as a troubled cell indicator, enhancing the computational
efficiency.

Another example is given by Margenberg et al. [6]. In this paper, a ML technique is employed to
predict the solution of the Navier-Stokes equation on a fine grid given the simulation result on a coarse
grid. The fine solution is then used to compute the right hand side of the equation which is restricted
back to the coarse grid. In this way, accuracies approaching those on the fine grid are obtained using
only computations on a coarse grid, increasing efficiency. Again, a hybrid model is obtained that uses
a machine learning technique within a numerical framework.

In the case where ML techniques are used to act as solvers of differential equations, we see for example
finite element methods or domain decomposition methods replaced by neural networks. An example
of this category is the class of physics-informed neural networks (PINNs) first introduced by Lagaris et
al. [34] in 1998 and later used in combination with data by Raissi et al. [35, 36] in 2017. Since their
introduction, the use of PINNs has grown exponentially [4, p. 4].When using PINNs, a network is trained
as the solution function, with coordinates as inputs and the function value as an output, using only the
physical equations and the boundary conditions in training.

In [8], a neural network was employed to find the solution to the one-dimensional Schrödinger equa-
tion for both the infinite square well problem and the harmonic oscillator problem. One of the network’s
weights is used in the loss function as the eigenvalue. In this way, not only the eigenfunction, but also
the corresponding eigenvalue is found. By using a ‘driving’ term in the loss function that penalises an
eigenvalue that is too low, the optimisation process yields all eigenvalue-eigenfunction pairs if the bound
is increased during optimisation. This driving term is an adaptation to the classical PINN approach. It
allows finding all eigenfunction-eigenvalue pairs. In [37], E and Yu introduce the Deep Ritz method,
which is similar to the PINN approach, but uses the variational formulation of the partial differential
equation instead.

In their work, Tompson et al. [9] propose a hybrid approach for solving the Navier-Stokes equation.
They combine the use of a neural network, following a PINN-like approach, to solve the pressure
component, while employing conventional numerical methods for the advection step. This example
illustrates an instance of overlap between the first two paradigms discussed, since the ML method is
used in place of a traditional solver, but is also integrated within a larger traditional numerical framework.

In their study, Zang et al. [38] use adversarial neural networks to solve PDEs in their weak formula-
tion. This approach involves the use of two neural networks: a primal network serves as the solution
function, while an adversarial network acts as the test function in the weak formulation. The training



1.2. Scientific machine learning 5

process follows an opposing strategy for the two networks: the primal network aims to minimise the
norm of the weak form operator, while the adversarial network is trained to maximise it. Consequently,
the primal network discovers a solution that satisfies the weak form for all test functions proposed by
the adversarial network.

In the last class of SciML approaches, domain knowledge is often used to speed up the machine learn-
ing algorithm, but the machine learning method is typically still dominant. In the context of domain
decomposition methods, examples of this can be found in distributed learning or collaborative learn-
ing [33].

Another example of this paradigm can be found in the study of Eichinger et al. [39]. Here, a convolu-
tional neural network with a bottleneck structure is employed as a surrogate model for fluid flow around
objects in a channel. The bottleneck structure of the network results in an encoding to reduced order,
which is similar to reduced order models [40], which are known for their reduction in computational
costs and quicker evaluation. This neural network design is inspired by traditional numerical methods,
illustrating the effective use of domain knowledge.

Machine learning paradigms
The various approaches discussed above do not only differ in terms of the role machine learning plays
in relation to numerical methods or domain knowledge but can also be distinguished based on their
data usage. In machine learning, three paradigms are commonly recognised: supervised, unsuper-
vised and reinforcement learning. In supervised learning, algorithms learn patterns from labelled data,
enabling tasks such as regression or classification. On the other hand, unsupervised learning involves
algorithms discovering patterns in unlabelled data (e.g. clustering). While also not relying on labelled
data, reinforcement learning is different from unsupervised learning since it learns what to do (mapping
a state to an action) to maximise a reward signal.

The approaches of Ray and Hesthaven [5], Margenberg et al. [6], and Eichinger et al. [39] are
typical examples of supervised learning: in each example, the algorithm learns a pattern from labelled
data. In [5], for example, grid cells are labelled using the TVB indicator, while the labels in [6] consist of
fine grid solutions and [39] use simulation results. These last two examples constitute regression task,
while the former is a classification task.

On the other hand, the methods of Raissi et al. [35, 36], Jin et al. [8], E and Yu [37], Tompson et
al. [9], and Zang et al. [38] only rely on unlabelled data and a cleverly chosen cost function and are thus
considered unsupervised. As noted by Cuomo et al. [4], PINNs that only use differential equations and
boundary conditions should be considered unsupervised, but when applied to inverse problems or if a
limited amount of experimental data is used, they should be considered supervised or semi-supervised
learning methods, respectively. In contrast, reinforcement learning is not as pronounced in SciML.

The choice between a supervised and an unsupervised method has serious implications for the
data requirements of the resulting algorithm. For instance, the surrogate model of Eichinger et al. [39]
requires data that consist of both the geometry of the object and simulation results. If those simulations
are computationally expensive, as is often the case when a surrogate model is needed, the generation
of such data becomes relatively costly. Consequently, the computational effort shifts from the online
phase to the offline phase: in [39], the training process reportedly spans from several hours to days,
while the evaluation time is significantly reduced to O(0.1) s from O(10) s.

In contrast, unsupervised learning approaches do not require labelled data. Since physics-informed
neural networks, for instance, have no clear separation of the offline and online phase, the computa-
tional burden occurs at the same time as for traditional methods. However, this does not apply univer-
sally to all unsupervised learning or even PINN methods. In the case of Tompson et al. [9], the model is
trained using an unsupervised and offline approach, enabling efficient online evaluation. In their study,
a neural network is employed to predict fluid flow around various geometries using a PINN-like loss
function during training.

Furthermore, the data usage of offline-heavy methods does not always pose significant challenges.
For example, Margenberg et al. [6] employ a relatively small neural network with only 8,634 trainable
parameters due to their patch-wise application of the network. In contrast, Eichinger et al. [39] use
networks with parameter counts ranging from 34 to 87 million due to a global approach. A smaller
network reduces the time required for training since the dataset size should depend on the number of
trainable parameters [41] and thus fewer computations are necessary for optimisation. Additionally, the



1.3. Research aim 6

method of Ray and Hesthaven [5] demonstrates a less data-intensive approach by using the network
to replace the TVB indicator. The approach of Margenberg et al. is considered a local approach, as
the network is only applied to a small region of the domain. Conversely, the approach by Eichinger et
al. is a global approach, since their surrogate model predicts a solution on the entire domain.

SciML applied to sea ice modelling
While the prediction of sea ice thickness, concentration and/or momentum using neural networks is not
new, most studies involve a conventional machine learning approach. In their study, Belchansky et
al. [42] perform a regression analysis to predict the sea ice thickness using four shortwave and long-
wave radiative fluxes, surface air temperature, ice drift velocity, and ice divergenve. Similarly, Herbert
et al. [43] predict the sea ice thickness using altimetry data and brightness temperatures. In another
study, Chi and Kim [44] employ a neural network as a forecasting model for sea ice concentration
based on historic sea ice concentration data. Furthermore, Kim et al. [45] propose a one month sea
ice concentration forecasting model using a convolutional neural network based on the historic sea ice
concentration, sea surface temperature, 2m air temperature, forecast albedo, and wind. While all of
these examples can be considered surrogate models, none of these supervised learning approaches
uses domain knowledge and are therefore not examples of scientific machine learning.

In the field of sea ice modelling, while traditional machine learning approaches have been applied
occasionally, there is a very limited body of research that has explored the application of scientific
machine learning. One notable example is the work conducted by Finn et al. [46], where a hybrid
model is proposed that employs a neural network to address subgrid-scale dynamics. Their approach
bears similarities to the methodology Margenberg et al. [6]. Initially, the study involves conducting
simulations at both 4km and 8km resolutions. Subsequently, the solution on the low-resolution grid is
interpolated to the high-resolution grid, after which a convolutional neural network is applied to predict
features on this grid. These features are then projected back onto the 4km grid and a second part of
the network predicts the difference between the low and high-resolution solutions. The model is trained
on these differences, and the predicted error is added to the low-resolution solution as a correction. In
this approach, a neural network is used to improve classical methods, making it an example of the first
SciML paradigm.

In another recent work by Finn et al. [47], a method is developed for the generation of sea ice velocity,
height and concentration data. In their approach, a latent diffusion model is employed alongside a
variational autoencoder, where the latter is used to learn a mapping from data space to an encoding in
latent space and vice versa. The diffusionmodel then learns to randomly generate new latent encodings
from noise. In this way, new samples of sea ice states can be created randomly by first generating a
new encoding in latent space and transforming that back to data space. Domain knowledge is used in
the training process, making it an example of the third SciML paradigm.

While the aforementioned studies show significant advancements in predicting sea ice dynamics
using machine learning, it remains an open question how domain knowledge, defined above, can be
integrated into machine learning techniques for sea ice dynamics modelling. Addressing this ques-
tion is essential for developing alternative methods that accurately capture the complexities of sea ice
dynamics.

1.3. Research aim
Having established that the integration of domain-specific knowledge into machine learning models
for sea ice dynamics remains underexplored, it is imperative to address this gap to meet the demand
for high-resolution predictions, for example for use in Arctic maritime navigation. Traditional continuum
models, grounded in viscous-plastic rheology, are computationally intensive and often operate at scales
too large to capture linear kinematic features. These features require models with resolutions finer than
5 kilometres, but achieving such detail with conventional methods is impractical for timely predictions.
Therefore, the main research aim of this work is to develop a deep learning-based surrogate model
that can predict linear kinematic features.

Considering the previously discussed SciML and ML paradigms, developing a surrogate model
emerges as a compelling approach for enhancing sea ice dynamics modelling with SciML techniques.
Surrogate models are typical examples of the third SciML paradigm, where machine learning tech-
niques are central and domain knowledge is used to enhance the learning phase. This integration is



1.4. Thesis outline 7

advantageous because it improves data-efficiency during learning while retaining the benefits of rapid
evaluation times typical for classical machine learning techniques.

Additionally, surrogate models can be trained in a supervised manner when labelled data is abun-
dant (e.g. Eichinger et al. [39]), unsupervised with only a physics-informed loss (e.g. Tompson et al. [9])
or even semi-supervised combining both approaches. In this work, a supervised learning approach is
adopted for training the surrogate model. By focusing on a supervised, data-driven method, we aim to
delve into the intricacies of modelling sea ice behaviour with neural networks, particularly at the high
resolutions for linear kinematic feature formation. This approach allows us to lay a solid foundation
for future work that may explore more complex techniques, such as unsupervised or semi-supervised
learning methods.

To address the demand for alternative methods for high-resolution predictions, we develop a deep
learning-based surrogate model, aided by the following supporting research questions:

1. Which neural network architecture is most effective for predicting sea ice dynamics at high reso-
lutions?

2. How do different loss functions, particularly those incorporating domain knowledge, impact the
performance of the model?

3. How does error propagate and accumulate over time?
4. To what extent can the model accurately predict linear kinematic features?
5. Is the choice of training data critical for the surrogate model’s performance?

1.4. Thesis outline
This thesis is structured into the following chapters. Chapter 2 introduces the sea ice dynamics model
based on the viscous-plastic rheology that forms the foundation of this study. Following this, Chapter 3
details the numerical framework used to benchmark the developed deep learning-based surrogate
model against traditional methods. Chapter 4 delves into the relevant machine learning techniques
employed, while Chapter 5 discusses the training data and test cases. The design and architecture of
the surrogate model are covered in Chapter 6. Subsequently, Chapter 7 presents the results, including
a comparison of different neural network architectures and loss functions, an analysis of the network’s
ability to predict linear kinematic features, and an examination of error accumulation in time series pre-
dictions. Finally, Chapter 8 offers conclusions, discussions, and recommendations for future research
based on the findings of this study.



2
Sea ice model

A mathematical description of the sea ice model including the viscous-plastic (VP) rheology is given
in this chapter. The governing equation are presented first, followed by the rheology and finally a
dimensionless version of the model is given. The description of the sea ice model follows Mehlmann
[48], which is also used in [29, 30, 49].

2.1. Model description
The ice velocity v, the ice concentration A and the ice thickness H are the three modelled quantities.
The viscous-plastic sea ice model consists of three equations: the ice momentum equation for the
velocity and two balance equations for the ice height and ice concentration. The system of equations
is as follows:

ρiceH (∂tv + fcez × v) = ∇ · σ(v) + τ (v)− ρiceHg∇H̃g, (2.1)
∂tH +∇ · (Hv) = 0, 0 ≤ H, (2.2)
∂tA+∇ · (Av) = 0, 0 ≤ A ≤ 1, (2.3)

with a no-slip boundary condition on the ice velocity: v = 0 on ∂Ω. Here, ρice is the ice density, σ is
the stress tensor, fc is the Coriolis parameter, ez is the unit vector in the z-direction, τ is the surface
stress, g is the gravitational acceleration, and H̃g is the sea surface height. The forcing is caused by the
surface stress τ , which is the sum of ocean and atmospheric surface stresses, due to ocean current
and wind. The total surface stress is given by

τ (v) = Coceanρocean ‖vocean − v‖2 (vocean − v) + Catmρatm‖vatm‖2vatm, (2.4)

where Cocean is the water drag coefficient, ρocean is the water density, vocean is the ocean current velocity,
Catm is the air drag coefficient, ρatm is the air density and vatm is wind velocity. The values of the physical
constants are listed in Table 2.1.

The last term in (2.1) models the force due to a changing sea surface tilt, with g the gravitational ac-
celeration andHs the sea surface height. Following Tremblay and Mysak [50, p. 2352], we approximate
this term by

g∇H̃g ≈ −fcez × vocean.
The internal stresses in the ice are represented by σ. The stresses are modelled following the viscous-
plastic ice rheology as described in the following section.

2.2. Rheology
The internal stress tensor is related to the strain rate tensor through the nonlinear viscous-plastic rhe-
ology. The strain rate tensor ϵ̇ and the trace free strain rate tensor ϵ̇′ are given by

ϵ̇ =
1

2

(
∇v +∇vT

)
, (2.5)

ϵ̇′ = ϵ̇− 1

2
tr(ϵ̇)I. (2.6)

8



2.3. Dimensionless model 9

Table 2.1: List of physical constants in the sea ice dynamics system of equations taken from [48].

Parameter Definition Value
ρice sea ice density 900 kg/m3

ρatm air density 1.3 kg/m3

ρocean sea water density 1026 kg/m3

Catm air drag coefficient 1.2 · 10−3

Cocean water drag coefficient 5.5 · 10−3

fc Coriolis parameter 1.46 · 10−4 s−1

P ∗ ice strength parameter 27.5 · 103 N/m2

C ice concentration parameter 20
e ellipse ratio 2
∆min 2 · 10−9 s−1

The stress tensor is then as follows:

σ = 2ηϵ̇′ + ζtr(ϵ̇)I − P

2
I. (2.7)

Here, η and ζ are the viscosities and are given by

η = e−2ζ, (2.8)

ζ =
P

2∆(ϵ̇)
, (2.9)

where the compressive ice strength P and the parameter ∆ are given by

P (H,A) = P ∗H exp(−C(1−A)), (2.10)

∆(ϵ̇) =
√
2e−2ϵ̇′ : ϵ̇′ + tr(ϵ̇)2 +∆2

min. (2.11)

The constantsP ∗ andC determine the ice’s strength. Furthermore, for the purpose of numerical stability
and to introduce viscosity in the limiting case where ϵ̇→ 0, the small parameter ∆min is introduced. In
this way, ice behaves like a viscous fluid at very low rates of deformation and as a plastic material at
high rates.

A useful quantity to investigate the formation of linear kinematic features is the shear deformation
ϵ̇II ∈ R+. This strain invariant describes the relative motion between different parts of the sea ice,
which is critical for understanding the forces that lead to the formation of LKFs. Therefore, by studying
shear deformation, we can identify and localise these linear kinematic features. The shear deformation
is given by

ϵ̇II = 2
√
−det(ϵ̇) =

√
(ϵ̇x,x − ϵ̇y,y)

2
+ 4ϵ̇2x,y. (2.12)

2.3. Dimensionless model
To aid the simulation and in line with the analysis by [48], we derive a dimensionless form for the
equations. We do this by rescaling the time t, position x and ice thickness H by characteristic time T ,
characteristic length L and typical ice thickness G:

t̄ =
t

T
, x̄ =

x
L
, H̄ =

H

G
.

Then, the dimensionless velocity and strain rates are

v =
L

T
v̄, ϵ̇ = T−1¯̇ϵ, ϵ̇′ = T−1¯̇ϵ′.

If we rescale the nonlinearity ∆min = T−1∆̄min, we get

∆(ϵ̇) = T−1
√
2e−2¯̇ϵ′ : ¯̇ϵ+ tr(¯̇ϵ)2 + ∆̄2

min = T−1∆̄(¯̇ϵ).



2.3. Dimensionless model 10

Furthermore, the ice strength becomes

P̄ (H̄, A) = P ∗GH̄ exp(−C(1−A))

and so P = GP̄ . The dimensionless viscosities become ζ = GT ζ̄ and η = GTη̄. The internal stress
tensor σ is then rescaled to

σ =
P ∗G

2
σ̄,

with
σ̄ =

1

∆̄(¯̇ϵ)
H̄ exp(−C(1−A))

(
tr(¯̇ϵ)I + 2e−2¯̇ϵ′ − ∆̄(¯̇ϵ)I

)
The total surface stress is transformed to

τ (v) = Coceanρocean ‖vocean − v‖2 (vocean − v) + Catmρatm‖vatm‖2vatm

=
CoceanρoceanL

2

T 2
‖v̄ocean − v̄‖2 (v̄ocean − v̄) + CatmρatmL

2

T 2
‖v̄atm‖2v̄atm

=
CoceanρoceanL

2

T 2
τ̄ ocean(v̄) +

CatmρatmL
2

T 2
τ̄ atm

where vocean = L
T v̄ocean and vatm = L

T v̄atm.
Using the dimensionless quantities and denoting the ∇̄ as the divergence operator with respect to

coordinates x = (x, y), we can rewrite the momentum equation as follows:

ρiceGL

T
H̄∂tv̄ +

ρiceGLfc
T

ez × (v̄− v̄ocean) =
P ∗G

2
∇ · σ̄ +

CoceanρoceanL
2

T 2
τ̄ ocean(v̄) +

CatmρatmL
2

T 2
τ̄ atm,

becomes
ρiceGL

T 2
H̄∂t̄v̄ +

ρiceGLfc
T

ez × (v̄− v̄ocean) =
P ∗G

2L
∇̄ · σ̄ +

CoceanρoceanL
2

T 2
τ̄ ocean(v̄) +

CatmρatmL
2

T 2
τ̄ atm,

which can be simplified to
H̄∂t̄v̄ + TfcH̄ez × (v̄− v̄ocean) = Cr∇̄ · σ̄ + Coceanτ̄ ocean(v̄) + Catmτ̄ atm,

with the dimensionless parameters

Cr =
P ∗T 2

2ρiceL2
, Cocean =

CoceanρoceanL

ρiceG
, Catm =

CatmρatmL

ρiceG
.

Next, we transform the balance equations. The equation for the ice thickness becomes:

0 = G∂tH̄ +
GL

T
∇ · (H̄ v̄)

=
G

T

(
∂t̄H̄ + ∇̄ · (H̄ v̄)

)
= ∂t̄H̄ + ∇̄ · (H̄ v̄)

The conservation law for the ice concentration in dimensionless form is then:

= ∂tA+
L

T
∇ · (Av̄)

=
1

T

(
∂t̄A+ ∇̄ · (Av̄)

)
= ∂t̄A+ ∇̄ · (Av̄)

In the following, we drop the bar and assume that all quantities are dimensionless to ease notation.
The complete dimensionless viscous-plastic sea ice model is summarised in the frame below.



2.3. Dimensionless model 11

Complete dimensionless viscous-plastic sea ice model

On the interior of domain Ω, the sea ice velocity v, height H and concentration A are governed
by

H∂tv + TfcHez × (v− vocean) = Cr∇ · σ + Coceanτ ocean(v) + Catmτ atm, (2.13)
∂tH +∇ · (Hv) = 0, 0 ≤ H (2.14)
∂tA+∇ · (Av) = 0, 0 ≤ A ≤ 1, (2.15)

while we have
v = 0

on the boundary ∂Ω. The scaling parameters are chosen the same as in [48]:

T = 103 s, L = 106 m, H = 1 m.

By using the values listed in Table 2.1, the dimensionless parameters are given by

Cr ≈ 1.52778 · 10−5, Cocean = 6270, Catm ≈ 1.73333,

the surface stresses are given by

τ ocean(v) = ‖vocean − v‖2 (vocean − v), τ atm = ‖vatm‖2vatm

and the internal stress is given by

σ =
1

∆(ϵ̇)
H exp(−C(1−A))

(
tr(ϵ̇)I + 2e−2ϵ̇′ −∆(ϵ̇)I

)
, (2.16)

∆(ϵ̇) =
√

2e−2ϵ̇′ : ϵ̇′ + tr(ϵ̇)2 +∆2
min, ∆min = 2 · 10−6. (2.17)



3
Numerical methods

In this chapter, the numerical framework from [48], or more specifically [49], is detailed. The numerical
methods described in this chapter will form the benchmark to compare our deep learning approach
against. The sea ice model is implemented using the finite element library Gascoigne 3D [51].

The system of equations of the sea ice dynamics model as presented in the previous section is
solved using a partitioned approach. First, the balance equations for sea ice thickness H and concen-
tration A are solved to find their new values Hn and An using the ice velocity vn−1 from the previous
time step. Next, the momentum equation is solved for vn using these new values of Hn and An. For
the balance equations, an upwind finite volume method is used. On the other hand, the momentum
equation is solved using a finite element method. An overview of the steps is given in Algorithm 1. Af-
ter describing the spatial discretisation of choice in Section 3.1, the finite volume method and the time
discretisation are detailed in Section 3.2 and Section 3.3, respectively. Next, the finite element method
is broken up by first describing the weak formulation in Section 3.4, followed by the Newton method
used to solve the resulting nonlinear equation in Section 3.5 and finally the method to solve the system
of equations that follows in Section 3.6.

Algorithm 1 Partitioned solution approach
Initial conditions H0, A0 and v0.
for n = 1, . . . , N do

1. Solve balance equations using finite volumes

Hn−1, An−1, vn−1 7→ Hn, An

2. Solve momentum equation using finite elements

Hn, An, vn−1 7→ vn

3.1. Spatial discretisation
In their work, Mehlmann et al. [49] present the effect of different spatial discretisations on the formation
of linear kinematic features. Even though the CD discretisation yields more linear kinematic features,
the Arakawa B-grid is better suited for use in amachine learning context since the CD-grid would require
interpolation to be transformed to a tensor format. Moreover, the B-grid performed better in terms of
the number of linear kinematic features compared to the third discretisation, the A-grid.

On the Arakawa B-grid, the sea ice velocity nodes are placed of the vertices of the grid cells, and
the sea ice thickness and concentration nodes are placed in the midpoints of the cells. The grid is
visualised in Figure 3.1. In each grid cell, the quantities are approximated using a linear combination of
basis functions. The ice heightH and concentrationA in a grid cell ω in the domain Ω are approximated

12



3.2. Finite volume method 13

with piecewise constant basis functions:

φω(x) =
{
1, if x ∈ ω

0, otherwise

H(x) =
∑
ω∈Ω

Hωφω(x),

A(x) =
∑
ω∈Ω

Aωφω(x).

The sea ice velocity v is approximated using bilinear quadrilateral basis functions φi that are 1 on vertex
i and 0 on all other vertices:

v(x) =
∑
i∈V

(
vx,i
vy,i

)
φi(x), (3.1)

where V is the set of all vertices and vx,i and vy,i are the velocities in the x- and y-directions respectively
at vertex i. Following the numbering of vertices in Figure 3.1, there are four nonzero basis functions:

φ1(x, y) =
1

h2
(1− x)(1− y),

φ2(x, y) =
1

h2
x(1− y),

φ3(x, y) =
1

h2
(1− x)y,

φ4(x, y) =
1

h2
xy,

where x = (x, y) is scaled such that [0, h]2 corresponds to the grid cell and h is the grid spacing on a
constant square grid.

1 2

3 4

h

Figure 3.1: A representation of the Arakawa B-grid. The numbered blue circles are the grid nodes for the sea ice velocity v.
The orange squares are the nodes for the sea ice thickness H and concentration A. The grid spacing h is shown.

3.2. Finite volume method
Having discussed the spatial discretisation, we now describe the discretisation of the balance equations.
Following the approach of Mehlmann et al. [49, p. 18], the balance equations are solved using an
upwind finite volume method [52]. Here, the change in H and A in each grid cell, which is computed
by the total flux over the cell’s edges, is approximated using the discretised velocities, ice height and
ice concentration.

Since we use elements with velocity nodes on the grid vertices, the flux over the cell edges is
computed using the average between the velocities on the vertices of the edge:

vn−1
e =

vn−1
i + vn−1

j

2
. (3.2)

We then compute the flux over the cell edge e = (i, j) and update the quantity in the cell accordingly:

Hn = Hn−1 +

{
Hn−1vn−1

e · n̂ , if vn−1
e · n̂ ≥ 0

Ĥn−1vn−1
e · n̂ , if vn−1

e · n̂ < 0
(3.3)

Here, H is the sea ice thickness in the cell that is updated, Ĥ is the thickness of the cell on the other
side of the edge we consider, vi is the ice velocity at vertex i and n̂ is the normal vector pointing away



3.3. Time discretisation for the sea ice problem 14

from the cell perpendicular to the edge. Therefore, if ve · n̂ ≥ 0, the flow is outward, in which case we
use the ice thickness H from the cell we consider. Conversely, we use the ice thickness Ĥ from the
adjacent cell if the flow is inward. The flux over each edge is therefore computed using the ‘upwind’
value. The ice concentration A is updated analogously.

3.3. Time discretisation for the sea ice problem
The discrete derivative with respect to time is

∂tv ≈
vn − vn−1

k
,

where vn indicates the solution at time t = tn and k is the step size. For the time discretisation, the
implicit Euler method is chosen. In this approach, the unknown value vn is used in the momentum
equation (2.13) where the time derivative has been replaced by the discrete derivative:

Hn vn − vn−1

k
+ TfcH

nez × (vn − vocean) = Cr∇ · σ (vn,Hn, An) + Coceanτ ocean(vn) + Catmτ atm.

Due to the nonlinearity in the stress term with respect to the unknown vn, we need a nonlinear solver
to find vn. In Section 3.5, the Newton method is detailed.

3.4. Weak formulation of the momentum equation
In this section, we derive the weak formulation of the momentum equation. This is done by first multi-
plying the equation by a test functionφ inH1

0 (Ω), which is L2-integrable on Ω, has first weak derivatives
and is zero on the boundary ∂Ω, followed by integrating over the domain Ω. For ease of notation, this
operation is written as the inner product:

(u,φ) =
∫
Ω

u ·φ dΩ. (3.4)

The equation is then written as
A(vn,φ) = F (φ),

where

A(vn,φ) =

(
Hn

k
vn,φ

)
+ (TfcH

nez × (vn − vocean),φ)− (Cr∇ · σn,φ)− (Coceanτ ocean(vn),φ)

and
F (φ) =

(
Hn

k
vn−1,φ

)
+ (Catmτ atm,φ). (3.5)

The stress term σ (vn,Hn, An) was written as σ to ease notation. We now simplify A by integrating by
parts and applying Gauss’ divergence theorem:

(Cr∇ · σn,φ) =

∫
Ω

Cr(∇ · σn) ·φ dΩ

=

∫
Ω

Cr∇ · (σnφ)− Crσ
n : ∇φ1 dΩ, by partial integration

= −
∫
Ω

Crσ
n : ∇φ dΩ+

∫
∂Ω

Cr(σ
nφ) · n̂ dΓ, by Gauss’ divergence theorem

= −
∫
Ω

Crσ
n : ∇φ dΩ, since φ = 0 on ∂Ω

= −(Crσ
n,∇φ),

and obtain

A(vn,φ) =

(
Hn

k
vn,φ

)
+ (TfcH

nez × (vn − vocean),φ) + (Crσ
n,∇φ)− (Coceanτ ocean(vn),φ)



3.5. Newton method 15

As described in Section 3.1, vn is approximated using a linear combination of bilinear quadrilateral
basis functions φi, which is equal to 1 on grid vertex i, but 0 on all other vertices. Each basis function is
then multiplied with a vector of coefficients vn

i ∈ R2. We now see that there are 2m unknowns, with m
the number of nodes in the grid. Therefore, we choose the test functions x̂φi and ŷφi, where x̂ and ŷ
are the unit vectors. This gives a system of 2m equations which we need to solve to find the coefficients
vnx,i and vny,i in (3.1):

A(vn, x̂φi) = F (x̂φi)

A(vn, ŷφi) = F (ŷφi)
i = 1, . . . ,m (3.6)

In the following, we simply write A(vn) = F for this nonlinear system of equations.

3.5. Newton method
Since the left hand side of the system of equations in (3.6) is nonlinear with respect to vn, we require
an iterative method to find the new solution vn. We use Newton’s method for this. Since the objective
is to find a value vn that solves the system, we write

f(vn) = F− A(vn) = 0.

Starting with an initial guess vn,(0), the equation is linearised around the previous value vn,(l−1) and
solved for w:

f
(

vn,(l−1)
)
= −f ′

(
vn,(l−1)

)
w,

and we then update
vn,(l) = vn,(l−1) + w.

Following Mehlmann et al. [49, p. 18], this process is terminated when the L∞ norm of w is smaller
than 10−13.

The derivative f ′ (vn,(l−1)
)
is the Jacobian of−A around vn,(l−1), which is obtained with the Gâteaux

derivative A′(v)(w, φi) = d
dsA(v + sw, φi)

∣∣
s=0

. Since A′(v)(w, φi) is linear in w, we obtain a linear
system of equations

A
(

vn,(l−1)
)

w = b, (3.7)

where A is the Jacobian and b = F− A(vn,(l−1)).
Since b can be constructed following the previous section, it rests to find A

(
vn,(l−1)

)
, of which the

matrix entries A2i,j and A2i+1,j are equal to A′(vn,(l−1))(êj , x̂φi) and A′(vn,(l−1))(êj , ŷφi), where êj is
the j-th unit vector in R2m and the operator is given by

A′(v)(w,φ) =
d

ds
A(v + sw,φ)

∣∣∣∣
s=0

=
d

ds

((
H

k
(v + sw),φ

)
+ (TfcHez × (v + sw),φ)

− (Crσ(v + sw),∇φ)− (CoceanAτ ocean(v + sw),φ)

)∣∣∣∣
s=0

=

(
H

k
w,φ

)
+ (TfcHez ×w,φ)− (Crσ

′(v)(w),∇φ)− (CoceanAτ ′
ocean(v)(w),φ),

where

σ′(v)(w) =
H exp(−C(1−A))

∆(ϵ̇)

(
tr(ϵ̇(w))I + 2e−2ϵ̇′(w)

)
− H exp(−C(1−A))

∆2(ϵ̇)

(
tr(ϵ̇)I + 2e−2ϵ̇′

) (
2e−2ϵ̇′ : ϵ̇′(w) + tr(ϵ̇)tr(ϵ̇(w))

)
and

τ ′
ocean(v)(w) = −‖vocean − v‖2w +

(vocean − v) ·w
‖vocean − v‖2

(vocean − v).

An overview of the Newtonmethod applied to the sea icemomentum equation is given in Algorithm 2.
In the next section, we describe how the remaining linear system is solved.



3.6. Solving of linear system 16

Algorithm 2 Newton iteration for time step tn

Set vn,(0) = vn−1 and l = 0.
Compute vector F
while ‖F− A(vn,(l))‖∞ ≥ 10−13 do

l = l+1
Compute matrix A

(
vn,(l−1)

)
Compute vector A(vn,(l−1)) and let b = F− A(vn,(l−1))
Solve A

(
vn,(l−1)

)
w = b

Update vn,(l) = vn,(l−1) + w
Let vn = vn,(l)

3.6. Solving of linear system
In the previous sections, we have reduced solving the linear system of equations in (3.6) to solving for
w in (3.7) in each iteration of the Newton method for each time step. Solving this equation is done using
using the GMRES method preconditioned by the multigrid method [30] with an ILU decomposition as
smoothing operator.



4
Machine learning techniques

In this chapter, the machine learning methods are presented. We first describe the concept of artifi-
cial neural networks in Section 4.1, followed by an explanation of the training process in Section 4.2.
Different optimisation algorithms and techniques for further enhancement of the training process are
illustrated in Section 4.3 and Section 4.4, respectively. Lastly, Section 4.5 described a type of neural
network specifically tailored towards image data, so-called convolutional neural networks.

Artificial Intelligence (AI) encompasses a wide range of technologies that aim to create ‘intelligent’
algorithms capable of performing tasks that typically require human intelligence. Within the realm of AI,
Machine Learning (ML) serves as a crucial subclass, defined by Mitchell [53, p. 2] as a program’s ability
to improve its performance on a specific class of tasks through experience, measured by a particular
performance metric. To illustrate this definition, consider a weather prediction algorithm that employs
today’s weather data to forecast tomorrow’s conditions. A dataset consisting of weather data on con-
secutive days acts as the experience from which the algorithm learns, with the accuracy of temperature
predictions assessed using metrics such as the mean squared error. This definition effectively differ-
entiates ML from AI, as AI includes various approaches that may not necessarily involve learning from
data or experience. Such examples can be found in symbolic reasoning, which includes rule based
systems.

Machine Learning algorithms are employed on a diverse array of tasks. Some of the most common
include classification, regression, clustering, generation, and dimension reduction. Furthermore, the
ML techniques employed for these tasks come in many forms. Some of the simpler methods include
linear regression, decision trees, and support vector machines, while more complex approaches can
involve artificial neural networks. In this work, we essentially perform a regression analysis using an ar-
tificial neural network. The surrogate model we aim to develop performs predictions based on statistical
inference, which is in essence a regression task.

4.1. Artificial neural networks
Artificial neural networks are as universal function approximators [54], capable of approximating any
function in a given function space, provided they have sufficiently complexity. This versatility is the
reason for their widespread application across various fields. The concept of artificial neural networks
is inspired by the biological neural networks, from which they derive their name. Like their biological
counterparts, they learn to recognise complex patterns from diverse data sources. In the realm of
biology, neurons communicate through synaptic connections, whereas artificial neural networks use
linear algebra and continuous optimisation techniques to process.

An artificial neural network comprises input nodes, hidden nodes, and output nodes. The input
nodes receive external data and pass it to the hidden nodes. Each hidden node calculates a linear
combination of the inputs it receives and applies an activation function to introduce nonlinearity. The
output nodes then compute weighted linear combinations of the hidden nodes’ outputs to generate the
final predictions. Since we can organise every layer as a vector, a neural network is, in essence, a
series of matrix-vector multiplications and activation functions. The input layer consists of a vector x0

with input data that is multiplied with a matrix W0 with coefficients referred to as weights and results

17



4.1. Artificial neural networks 18

Input layer Hidden layers Output layer

Figure 4.1: Visualisation of a multilayer perceptron (MLP) having two hidden layers.

in the first hidden layer h1. This vector h1 is then again multiplied with another matrix W1 to either
give us the output layer y or the next hidden layer h2, depending on the architecture of the network. By
introducing a nonlinear function ϕ after eachmatrix-vector multiplication, the resulting function becomes
nonlinear. This function ϕ is called the activation function. [55]

Multilayer Perceptron
The most simple neural network is the multilayer perceptron (MLP). It consists of at least three layers
and uses non-linear activations. For example, supposewe have feature vector x0 ∈ R2, weight matrices
W0 ∈ R3×2, W1 ∈ R3×3, and W2 ∈ R1×3, and activation functions ϕ0, ϕ1, and ϕ2, this gives us the
following neural network:

h1 = ϕ0 (W0x0 + b0)

h2 = ϕ1 (W1h1 + b1)

y = ϕ2 (W2h2 + b2) .

(4.1)

Here, we have introduced an offset term b0, b1 ∈ R3 and b2 ∈ R, often referred to as the bias. This
simple network is visualised in Figure 4.1.

Activation functions
An activation function ϕ can be any element-wise function. However, by the universal approximation
theorem by Pinkus [56, p. 153], non-polynomial functions are needed to approximate any arbitrary
function. Typical activation functions include the hyperbolic tangent, sigmoid, and rectified linear unit
(ReLU), which are shown in Figure 4.2. They are given as follows:

tanh(x) = ex − e−x

ex + e−x
,

σ(x) =
1

1− e−x
,

ReLU(x) =

{
0 if x < 0,

x otherwise.

The choice for activation functions can depend on a range of factors. First of all, the image of the
function is important. The activation used in the output layer dictates the image of the network. For
example, if the ReLU function is used, the network’s image is restricted to all positive values, but if the
sigmoid function is used the image is contained in [0, 1]. In some applications it might be desirable to
have no limitations on the networks image, in which cases the identity is often used.

The choice of activation function is not only important for the final layer, but it also effects the training
behaviour of the network itself. As we will see in Section 4.2, neural networks are trained using the
gradient of the output with respect to the network’s weights, so understanding the effects of derivatives
of activation functions is essential for understanding training dynamics. One typical issue relates to
derivatives approaching zero, which will cause slow learning. Suppose that the derivative of an activa-
tion function is close to or equal to zero for a given input, by the chain rule, the updates of the preceding
weight matrix will also be small. This is referred to as the vanishing gradient problem [55, p. 398] and
is caused by gradients in subsequent layers approaching zero, essentially causing slow learning for



4.2. Neural network training 19

−3 −2 −1 1 2 3

−1

1

2

3

x

y

tanh(x)
σ(x)

ReLU(x)

Figure 4.2: Three typical activation functions: hyperbolic tangent, sigmoid, and ReLU.

preceding layers. Since the gradients of the hyperbolic tangent and the sigmoid function are always
smaller than 1, deep networks with these activations are prone to experiencing the vanishing gradient
problem.

On the other hand, networks with a ReLU activation function can suffer from the dead ReLU problem,
where nodes before a ReLU activation become inactive (‘die’) during training if all outputs lie in the
negative domain. In that case, the ReLU function’s gradient is equal to 0 for all inputs and the node’s
preceding weights are never updated again.

The identification of these problems caused a range of other activations to becomemore widespread
adopted. For example, the Leaky ReLU function is given by:

Leaky ReLU(x) =

{
ax if x < 0,

x otherwise,
(4.2)

with 0 < a� 1. With for example a = 0.01, the small gradient allows for an escape from this non-active
state.

4.2. Neural network training
Having established the basic principles of artificial neural networks, this section will detail two funda-
mental components of neural network optimisation: the loss function and backpropagation. In the
context of neural networks, this optimisation is often referred to as training. This involves adjusting the
network’s parameters (weights and biases) to improve the model’s performance.

Loss functions
To score the performance of the network on a specific task, we employ a performance measure. In
the case of a regression task, this can, for example, be the mean squared error (MSE), which is the
L2-norm of the difference between the network’s output and the correct value. The latter is also called
the ground truth or label. The loss function is a measure of how close the network’s predictions are to
the ground truth. The network’s performance is improved through the use of a loss function that, via
backpropagation and optimization algorithms, guides the adjustment of the network’s weights.

Since a surrogate model essentially performs a regression, natural choices for loss functions include
the mean squared error (MSE), mean absolute error (MAE) and the mean relative error (MRE). They



4.2. Neural network training 20

are defined as follows:

MSEB(w) =
1

|B|
∑
i∈B

‖yi − ŷi‖22 , (4.3)

MAEB(w) =
1

|B|
∑
i∈B

‖yi − ŷi‖1 , (4.4)

MREB(w) =
1

|B|
∑
i∈B

‖yi − ŷi‖2
‖ŷi‖2

, (4.5)

where w represents all coefficients in the network, and B is the training dataset, such that for i ∈ B, ŷi

is the i-th label and yi is the i-th prediction by the network.
The choice of loss function influences the performance of the network on different aspects. For

example the mean squared error penalises large outliers more, while the mean absolute error applies
a linear penality which is less sentive to large outliers. Depending on the application, one might be
preferred over the other.

Additionally, in some applications, it might be useful to compute the loss of a derived quantity. In the
case of sea ice dynamics predictions, the error in the strain rate or deformation can be used instead
of the predicted velocity, since strain is what causes linear kinematic features to form. This strain rate
error (SRE) is defined as follows:

SREB(w) =
1

|B|
∑
i∈B

∥∥∥ϵ̇i − ˆ̇ϵi

∥∥∥2
2
=

1

4|B|
∑
i∈B

∥∥∇(yi − ŷi) +∇(yi − ŷi)
T
∥∥2
2
, (4.6)

where ϵ̇ is the strain rate introduced in (2.5). Alternatively, the sea ice concentrations after advection
using the predicted velocity may be compared. The employment of these loss functions is further
discussed in Chapter 6.

Furthermore, less data-driven and more physics-informed loss functions can be considered. To
illustrate, the L2-norm of the error in the differential equation may be taken. In this way, the model is
trained directly on the underlying physics. The possibilities are endless, but more complex loss function
can introduce complex behaviours in training. However, they can serve to focus the network’s training
on interesting features.

Backpropagation
Having previously discussed how loss functions serve as measures of performance of neural networks,
it becomes evident that training these networks involves solving an optimisation problem. For instance,
if a network’s performance is measured by the MSE, the loss function’s minimum is attained if the
network’s predictions coincide with the ground truth. This optimisation, commonly referred to as training,
typically employs gradient based methods.

In the training process, effectively adjusting the network’s parameters is done through calculating
the gradient of the loss function with respect to these parameters, and performing gradient descent,
which is detailed in the next section. This gradient is calculated through a systematic application of the
chain rule across each layer, a method known as backpropagation [57]. Backpropagation provides the
mechanism by which errors detected at the output are used to iteratively adjust the weights throughout
the network, thereby minimising the loss function and improving the model’s predictions.

The mathematical representation of a simple multilayer perceptron with three layers is given in (4.1).
An arbitrary layer can be represented by

y = ϕ (Wx + b) , (4.7)

where y ∈ Rn is the output of the layer, x ∈ Rm is the input, W ∈ Rn×m is the weight matrix, b ∈ Rn

is the bias and ϕ is the activation function. Furthermore, we are given the loss value L on a specific
instance. To update the network’s parameters W and b, we need to compute the partial derivatives
∂L
∂W and ∂L

∂b . Suppose we are given
∂L
∂y , which is a vector in Rn. By the chain rule, the partial derivative



4.2. Neural network training 21

with respect to weight Wi,j is given by

∂L

∂Wi,j
=

∂L

∂yi

∂yi
∂Wi,j

=
∂L

∂yi

dϕ

zi

∂zi
∂Wi,j

=
∂L

∂yi

dϕ

dzi
xj ,

(4.8)

where we’ve have introduced z = Wx + b. Similarly, the derivative of L with respect to bias bj is

∂L

∂bi
=

∂L

∂yi

∂yi
∂bi

=
∂L

∂yi

dϕ

zi

∂zi
∂bi

=
∂L

∂yi

dϕ

dzi
.

(4.9)

For the ReLU function, for example, the derivative is given by

dϕ

dz
=

{
0, if x ≤ 0,

1, otherwise.
(4.10)

It only remains to obtain ∂L
∂y . If y is the output of the final layer, then this derivative is simply the

derivative of the loss function with respect to the prediction. For the mean squared error, we get

∂LMSE

∂y = 2 (y− ŷ)T , (4.11)

where ŷ is the ground truth. If, however, the layer in question is either a hidden layer or the input layer,
the derivative of loss L with respect to the output of the layer is equal to the ∂L

∂x of the next layer, since
the output of the current layer is the input of the next layer. We, therefore, obtain

∂L

∂y =
∂L

∂x+
, (4.12)

where x+ denotes the input of the next layer. For every layer, we therefore also need to calculate the
derivative with respect to the input:

∂L

∂xj
=

(
∂L

∂y

)T
∂y
∂xj

=

(
∂L

∂y

)T
dϕ

dz
∂z
∂xj

=

(
∂L

∂y

)T
dϕ

dz Wj ,

(4.13)

where Wj is the j-column of W , and the Jacobian dϕ
dz is given by

dϕ

dz = Diag
(
dϕ

dz
(z1), . . . ,

dϕ

dz
(zn)

)
. (4.14)

In summary, to obtain the gradients for every coefficient in the neural network, the gradient of the
loss with respect to the output of the network needs to be computed, followed by computations of
∂L
∂W , ∂L

∂b , and
∂L
∂x . This process starts from the last layer and works backwards through the network

layer-by-layer, hence the name backpropagation.



4.3. Optimisers 22

w

L

(a) λ < λ0

w

L

(b) λ > λ0

w

L

(c) λ = λ0

Figure 4.3: Three examples of the effect of different learning rates λ compared to the optimal learning rate λ0. The trajectory is
shown with the starting point marked in black.

4.3. Optimisers
With gradients computed via backpropagation, the next step is optimisation - navigating the loss land-
scape to find a global minimum. The optimisation algorithms, simply called optimisers, play a crucial
role in neural network training: they iteratively adjust parameters to minimise the loss function and im-
prove the model’s performance. The choice of optimiser impacts the efficiency, susceptibility to local
minima, and stability of the optimisation path.

Gradient descent
Gradient descent is an optimisation algorithm that operates by incrementally adjusting parameters in
the direction of the negative gradient of the loss function. The optimisation of an arbitrary network
coefficient w is given by:

wt+1 = wt − λ
∂LB

∂w
(wt), (4.15)

where the subscripts indicate the step number and ∂LB

∂w is the derivative of the loss L on training set B
with respect to the coefficient, as determined by backpropagation [58].

In gradient decent, the loss is computed for the entire training set. This means that the partial
derivatives of individual instances computed through backpropagation are aggregated either through
summation or averaging, depending on the loss function itself.

The step size λ ∈ R+, referred to as the learning rate, controls the magnitude of parameter updates,
thereby determining the speed at which the network learns. Whether the learning rate is too small or
too large depends on factors such as the complexity of the network, characteristics of the training data,
the curvature of the loss landscape, and the specific optimisation algorithm being used. A very small
λ may result in excessively slow convergence, since it prolongs the training duration unnecessarily.
Conversely, an overly large λ can cause the updates to overshoot the optimal value, repeatedly missing
the minimum and potentially even diverging. To illustrate the importance of choosing the right learning
rate, the effect of different learning rates is visualised in Figure 4.3.

Stochastic gradient descent
While gradient descent uses the gradient of the loss for the entire training dataset, stochastic gradient
descent (SGD) updates the model parameters based on the gradient of the loss from a randomly
selected single data point or a small subset of the data at each iteration [55, p. 275]. This latter method is
referred to asminibatch gradient descent, named for the subsets of the dataset, known asminibatches,
used in each iteration. However, it is commonly referred to as SGD.

The main motivations for stochastic gradient descent are the computational expense of calculating
gradients over the entire dataset and the introduction of randomness through minibatches, which has a
regularizing effect on the training process [55, p. 276]. By calculating gradients on randomly sampled
subsets, an unbiased estimate of the gradient on the whole dataset is obtained. This approach intro-
duces a trade-off between computational efficiency and accuracy of the gradient estimates, influenced
by the the chosen size of the minibatches.



4.3. Optimisers 23

w1

w
2

Figure 4.4: Effect of momentum on the trajectory across the loss landscape for two weights w1 and w2. The gradients are
shown with orange arrows, while the path of gradient descent with momentum is shown in blue. Based on [55, Figure 8.5,

p. 293]. Without momentum, the trajectory would follow the gradients marked by orange arrows.

Momentum
Even though stochastic gradient descent has proven effective, its convergence can be hindered by the
instability inherent in gradient approximation. In response, Polyak developed themomentum technique
[59] to provide more stability and increase convergence speed. This is achieved by replacing the partial
derivative in (4.15) with a momentum term mt that combines the current gradient and the previous
momentum term mt−1. Specifically, the update is given by:

mt = βmt−1 − λ
∂LB

∂w
(wt−1) (4.16)

wt = wt−1 +mt, (4.17)

where β is the momentum parameter, tuning the influence of previous gradients on the current update.
By incorporating a portion of the previous gradients, the system gains a ‘memory’ of past updates, which
helps to stabilise the direction of the descent and often leads to faster convergence by smoothing out
the trajectory. This momentum technique is illustrated in Figure 4.4.

Adaptive learning rates
Stochastic gradient descent and momentum form the basis for more complex optimisers. One such
algorithm is Adam, introduced by Kingma and Ba [60], which enhances SGD by integrating momentum
and adaptive learning rates.

Adam extends the concept of momentum, referred to as the first moment, by also computing what
is known as the second moment. This second moment is an exponentially decaying average of the
square of the gradient:

vt = β2vt−1 + (1− β2)g
2
t ,

where the gradient is
gt =

∂LBt

∂w
(wt−1).

It serves as a measure of the magnitude of recent updates a coefficient has received, providing a gauge
for the variability or noise in the gradient information.

The adaptive learning rate in Adam adjusts how each parameter is updated by dividing the first
moment by the square root of the second moment:

wt = wt−1 − λ
mt√
vt + ϵ

,

where ϵ is small parameter for numerical stability. This ensures that parameters with smaller updates
in the recent past are adjusted more sensitively, allowing for finer control over the optimisation process.



4.4. Enhancing training convergence 24

This mechanism particularly aids in rapid convergence when the algorithm encounters convex regions
in the loss landscape.

Furthermore, Adam incorporates a bias correction step to counteract the initial zero-bias in the first
and second moments, ensuring that the moments are more accurate during the initial phase of training:

mt =
mt

1− βt
1

,

vt =
vt

1− βt
2

.

The Adam algorithm is shown in Algorithm 3.

Algorithm 3 Adam algorithm for network NN
Given learning rate λ ∈ R+, momentum parameters β1, β2 ∈ [0, 1), and small ϵ for numerical stabili-
sation (typically ϵ = 10−8).
Initialise mt, v0, t = 0.
while not converged do

t← t+ 1
Sample minibatch Bt from dataset
Compute predictions yi for i ∈ Bt with NN (forward pass)
Compute gradients gt =

∂LBt

∂w (wt−1) for each coefficient w (backpropagation)
Compute first moment mt = β1mt−1 + (1− β1)gt
Compute second moment vt = β2vt−1 + (1− β2)g

2
t

Perform bias correction mt ← mt/(1− βt
1) and vt ← vt/(1− βt

2)
Update coefficients wt = wt−1 − λmt/

(√
vt + ϵ

)
return Network NN

4.4. Enhancing training convergence
Having detailed different optimisation algorithms, this section explores several advanced techniques
designed to optimise convergence of model training. These methods, including gradient clipping, learn-
ing rate scheduling, explicit regularisation, and early stopping, play essential roles in ensuring that the
model reaches optimal performance efficiently.

Central in this is the concept of overfitting, which is the phenomenon where a model learns the
detail and noise in the training data to an extent that it negatively impacts the performance on new data.
Prechelt [61] states that overfitting occurs as the error on the training data decreases, while the error
on the validation dataset starts to increase. A sketch of this process is presented in Figure 4.5. As a
result of overfitting, specifically in our case, a model has not inferred the physical laws governing sea
ice dynamics, but instead simply memorises the training data by directly associating the specific inputs
with their corresponding outputs. This means that the model captures patterns unique to the training
set without understanding the underlying principles, leading to poor generalisation to unseen data.

Preventing overfitting is easier said than done, however, since many factors can cause a model to
overfit. Firstly, the size of the dataset that is used to train the model on is an important factor, since there
must be enough data for the model to actually infer the physical laws. Another typical factor is the size
of the model in terms of the number of trainable parameters. A model with too many parameters relative
to the amount of data can fit noise and spurious correlations that do not represent the true dynamics
of sea ice. To address these challenges, we have implemented various techniques to balance model
complexity and enhance generalisation to unseen data

Conversely, underfitting occurs when a model is too simple to represent the underlying patters in the
data, resulting in poor performance on both training and validation datasets. Underfitting can occur if the
model is not complex enough or if the training process is inadequate, failing to reach the loss function’s
global minimum. The latter can, for example, occur if the learning rate is too high, disallowing the
optimisation algorithm from settling into deeper, more accurate minima of the loss and instead causing
it to overshoot without converging.



4.4. Enhancing training convergence 25

t

epochs

L Training loss
Validation loss

Figure 4.5: Sketch of the idealised training and validation loss. A dashed line marks the epoch t where the model attains the
global minimum of the validation loss. The model is said to be overfit after t, and underfit before t. Based on [61, Figure 2.1,

p. 56].

Learning rate scheduling
The first technique employed for improved model convergence is learning rate scheduling. This method
involves dynamically adjusting the learning rate, rather than keepin it constant throughout the training
proccess. Common examples of learning rate schedules include linear and step-wise schedules. In a
linear schedule, the learning rate decreases uniformly each epoch:

λt = λ0 − δλ · t, (4.18)

where λ0 is the initial learning rate, reduced by δλ at each epoch. Alternatively, a step-wise schedule
reduces the learning rate in discrete intervals, such as halving it every predetermined number of steps.

Furthermore, the learning rate can be adapted based on the progress of the training process. For in-
stance, if there is no significant improvement in the validation loss after several training steps - indicating
that training might have plateaued - the learning rate can be decreased. This more dynamic approach
balances the speed of convergence in early training with the effective convergence to a minimum as
training progresses.

Gradient clipping
Another obstacle to reaching the global minimum is the phenomenon known as exploding gradients.
This occurs when abrupt changes in the loss function produce excessively large gradient values. These
large gradients can lead to disproportionately large updates to the model’s weights, thereby hindering
the optimisation process and preventing the model from settling into the desired global minimum.

These exploding gradients can be mitigated by applying gradient clipping. This method was first
introduced byMikolov [62, p. 37] to combat exploding gradients in recurrent neural networks, but is used
widely to stabilise neural training. In short, gradient clipping restricts the total norm of the gradients. To
illustrate, given the partial derivative of the loss L with respect to an arbitrary network coefficient w, the
the gradients can be restricted by setting

∂L

∂w
(x) = ∂L

∂w
(x)/G if G > 1, (4.19)

where G is the norm of the gradients of all weights w of the network:

G =

√√√√∑
w

(
∂L

∂w
(x)
)2

. (4.20)

Since the gradients are not clipped, but scaled, gradient scaling might be a better suited term.



4.4. Enhancing training convergence 26

Explicit regularisation
While the previous techniques primarily focus on improving convergence towards the global minimum
to mitigate underfitting, explicit regularisation aims to prevent overfitting. Regularisation refers to any
technique that aims to address the ill-posedness of a problem, such as when a model’s excessive
complexity allows for multiple potential solutions. In turn, this can result in overfitting since the model
has the capacity to learn the noise in the data. Examples of regularisation techniques include early
stopping, which is detailed in the following section, and the addition of random noise to the inputs
during training, as is described in Section 5.3. These are referred to as implicit regularisation methods,
which modify the training process to reduce overfitting risks. In contrast, explicit regularisation directly
incorporates a penalty term into the loss function, effectively constraining the model to ensure a unique
and generalised solution.

This regularisation term imposes a penalty on the complexity of the model. It encourages sim-
pler solutions by either reducing the magnitude of the model parameters or eliminating non-essential
parameters, thereby enhancing the model’s ability to generalise to new data. Two common explicit reg-
ularisation techniques are LASSO (Least Absolute Shrinkage and Selection Operator) [63] and Ridge
[64], which respectively impose an L1 and L2 norm on the network’s coefficients:

R1(NN ) =
∑

w∈NN
|w|, (4.21)

R2(NN ) =
∑

w∈NN
(w)2. (4.22)

These two terms differ in how they penalise the coefficients of the network: LASSO typically results
in a sparse model by driving coefficients to zero, whereas Ridge encourages smaller, more uniformly
distributed coefficients [55, p. 232]. Thus, choosing between LASSO and Ridge regularisation depends
largely on the specific characteristics of the dataset.

Early stopping
Another method to improve model performance is the implementation of an early stopping mechanism.
This approach monitors the model’s performance on a validation dataset during training. When the
validation error stops decreasing or begins to increase, it signals a decline in the model’s ability to
generalise, warranting an end to further training.

A stopping criterion is used to decide to terminate training, after which the result of training is the
best network in terms of the validation loss. In the idealised form, the validation loss is smooth and only
has a global minimum (without additional local minima), which case is visualised in Figure 4.5.

However, in practice, the validation loss is often not smooth and hasmany local minima. Terminating
training too soon in a local minimum that is significantly worse than the global minimum, results in an
underfit model. Terminating too late, however, wastes computational power. This trade-off between
performance and efficiency, makes choosing a stopping criterion more art than science.

Prechelt [61] introduces three classes of stopping criteria: those based on the ratio between the
training and validation loss, based on the improvement of the validation loss, and based on the ratio
between the two losses corrected for recent improvements. The simplest of these, the second, is
implemented in this work (see Section 6.3). More specifically, the criterion that is used terminates
training after a predetermined number of epochs where the validation loss has increased.

Batch normalisation
To conclude the description of techniques that enhance model convergence, batch normalisation is dis-
cussed. This method addresses the issue of internal covariate shift, wherein the distribution of inputs of
each layer shifts as the parameters of preceding layers evolve during training. This phenomenon slows
down the training process as it needs to compensate for the shifting distributions. Batch normalisation,
introduced by Ioffe and Szegedy [65], was developed to tackle internal covariate shift by stabilising the
input distributions.

In short, batch normalisation works by standardising the inputs or outputs of activation functions,
collectively referred to as activations. The process involves replacing any given activation xj with:

x̂j =
xj − µj

σj
, (4.23)



4.5. Convolutional neural networks 27

where µj represents the mean and σj the standard deviation of the activations of the j-th feature in a
hidden layer.

Ideally, µj and σj would be computed over the entire dataset, but if a stochastic gradient descent
algorithm is employed, only the activations from the current mini-batch B are available during training.
To account for this limitation, batch normalisation employs a running average of the mean and standard
deviation, updated by:

µj ← (1− γ)µj + γ
1

|B|
∑
i∈B

xi, (4.24)

σj ← (1− γ)σj + γ

√√√√ 1

|B|
∑
i∈B

(
xi −

∑
n∈B

xn

)2

, (4.25)

where γ is the momentum parameter of the running average, typically set to 0.1. This approach helps
stabilise the input distributions to each layer during training by ensuring that the normalisation is based
on consistent, representative statistics. When training has finished, however, only the result of the
running averages is used, such that the statistics are not influenced by new data during validation or
testing.

For multilayer perceptrons, which deal with vector data, the mean and standard deviation are com-
puted separately for each feature. However, in convolutional networks dealing with image data, which
will be introduced in the following section, the statistics are computed for each channel, meaning that
the mean and standard deviation are computed over the entire images. In this way, the standardisation
is invariant under spatial transformations of the image.

In their work, Ioffe and Szegedy [65, p. 3] applied batch normalisation directly before the activation
function of hidden layers. They reason that this is superior since the outputs of activation function are
more non-Gaussian, meaning that they are less suitable for standardisation by a linear transformation.
In other words, the results of the matrix-vector multiplication Wx + b (before the activation function)
is more likely to be symmetric, and is therefore more likely to eliminate covariate shift. Other works,
however, argue for the opposite and place batch normalisation after activation functions [66].

4.5. Convolutional neural networks
When selecting a neural network architecture, computational efficiency is an important consideration.
As we have seen previously, the size of the multilayer perceptrons (in terms of the number of weights)
scales with the size of the input data. In the context of sea ice dynamics, we work with multidimensional
data. For example, Mehlmann et al. [49] work on grids up to 257×257. Traditional MLPs tend to become
inefficient for such tasks. This inefficiency arises because MLPs operate with fully connected layers,
presuming interactions between every input feature, thereby generating very large weight matrices.
For instance, a 257 × 257 image under the MLP architecture would require an impractical number of
weights, scaling up to 66, 049 for each output pixel, making the model computationally slow when the
output size lies in the same order of magnitude as the input dimensions.

Convolutional neural networks (CNNs), introduced by LeCun et al. [67], on the other hand, offer a
more suitable approach for handling spatial data, such as in this work. CNNs exploit three concepts:
sparse local interactions, parameter sharing, and equivariant representations [55, p. 330]. These prin-
ciples facilitate efficient data processing, reducing computational demands while enhancing model per-
formance.

The multilayer perceptron employs dense weight matrices, assuming that each input unit interacts
with every output unit. In contrast, CNNs make use of sparse interactions through the use of smaller,
localised filters (or kernels) that interact only with a portion of the input at a time. This approach limits
interactions to local regions, significantly reducing the dimensionality and computational complexity of
the problem. For instance, rather than mapping every pixel-to-pixel connection separately, a kernel of
size P ×Qmoves across the input image. This not only cuts down on the number of computations, but
also drastically reduces the number of weights required.

Furthermore, besides reducing the dimensionality of the problem, the use of a convolution operation
also has the benefit of parameter sharing. This means that the same set of weights in a kernel is applied
repetitively across the entire input field. This technique is particularly effective because features (e.g.
ridges or leads in sea ice) tend to appear in various locations across the domain. By reusing the same



4.5. Convolutional neural networks 28

parameters regardless of position, CNNs utilise data more efficient and learn effectively by recognising
that the same types of features can appear throughout the input space. This not only streamlines
the learning process, but also significantly enhances the network’s ability to generalise from fewer
examples.

Lastly, as a result of applying kernels across the input image, convolutional networks create feature
maps that capture important information from the data. This process is inherently equivariant, meaning
that if the input data is transformed through, for example, translation, the feature maps adapt corre-
spondingly. This characteristic ensures that CNNs can generalise across the spatial domain, ensuring
that once a feature is learned in one part, the network can recognise it anywhere.

Convolutional layers
Moving from the conceptual framework to the practical implementation of convolutional networks, we
explore the mechanics of convolutional layers. Here, data such as velocity v is represented by a matrix
in R2×M×N . In this case, there are two features - in the context of CNNs called channels - one for
each velocity component and two spatial dimensions of sizes M and N . Transitioning from Ci to Co

channels necessitates Ci · Co kernels of shape P × Q, which results in a matrix in RCi×Co×P×Q with
trainable parameters. Since kernels are typically 3× 3 or 5× 5, this kernel matrix is much smaller than
the weight matrix of a fully-connected layer.

Even though the operation is often called a convolution, widely used libraries actually implement
cross-correlation instead [68, 69] and the two are used interchangeably in the literature [55, p. 329].
Cross-correlation and convolutions are equivalent by flipping the kernel in both direction. The two-
dimensional input x ∈ RN×M cross-correlated with kernel K ∈ RP×Q is given by

yi,j = (x ∗K)i,j =

P−1∑
p=0

Q−1∑
q=0

Kp,qxi+p,j+q, (4.26)

where ∗ denotes the cross-correlation operation and the result is given by y ∈ R(M−P+1)×(N−Q+1). In
the following, this operation will be referred to as convolution. Moreover, in convolutional layers, every
input channel xm is convolved with kernel Km,n, which yields output channel yn:

yn =

Ci∑
m=1

xm ∗Km,n. (4.27)

Stride and padding
Beyond the kernel shape and the number of output channels, hyperparameters such as stride and
padding significantly influence the architecture of convolutional neural networks. The stride, which
specifies the step size with which the kernel is moved across the input, effectively dictates the spatial
dimensions of the output feature map. For instance, employing a stride of 2 approximately reduces
the spatial size by half in each dimension, thus increasing the receptive field of the next layer and
impacting the overall network efficiency by decreasing the computational load. Conversely, padding
involves adding margins of pixels around the input image. Typically, the pixels take on the value of zero,
but other values such as the value of the adjacent pixel can be applied. While padding can be used to
maintain the original input size after convolution, it also ensures that pixels along the edges contribute
fully to the output. If not, pixels at the borders appear only once in the convolution, thus enhancing the
model’s ability to capture features at the image borders. Figure 4.6 shows a visualisation of striding
and padding in a convolutional layer.

Deconvolutional layers
Where convolutions are useful to decrease spatial dimensions and compress information, its inverse
may be used to decompress information into larger spatial dimensions. This operation is called de-
convolution, inverse convolution or transposed convolution. Similar to convolutions, deconvolutional
layers introduced by Zeiler et al. [71] use a kernel to map pixel-to-pixel relations. Here, however, each
input pixel is multiplied by the entire kernel, and the resulting matrix is placed into the output feature
map in a way that spreads the pixel’s influence over a larger area. This operation involves overlaying
the expanded kernel outputs such that they overlap and sum together, allowing the network to learn



4.5. Convolutional neural networks 29

(a) (b)

Figure 4.6: Example of convolution with a 2× 2 kernel, padding of 1, and stride 2. The input image is shown in blue and the
output is shown in orange. The dashed grid shows the padding. The receptive field and the corresponding output pixel are

marked in grey for two iterations. Adapted from [70].

(a) (b)

Figure 4.7: Example of deconvolution again with a 2× 2 kernel, padding of 1, and stride 2. The input is shown in blue and the
output in orange. The dashed grid shows the padding. Adapted from [70].

how to reconstruct higher-resolution representations from lower-resolution inputs. If we write x̂ as the
padded input, then the deconvolution operation denoted by / using kernel K is given by

yi,j = (x/K)i,j =

P−1∑
p=0

Q−1∑
q=0

KP−1−p,Q−1−qx̂i+p,j+q. (4.28)

Furthermore, without any padding, the pixels on the edges are influenced only by one input pixel. To
ensure that border pixels in the output are computed using more than one value in the input, a padding
may be specified. In this context, however, the padding specifies a number of layers of border pixels
to be trimmed from the output. In the equivalent formulation, this parameter specifies how many layers
of border pixels should be trimmed off from the padded input. A visualisation of a deconvolution is
shown in Figure 4.7. Furthermore, a striding may again be specified. This striding determines the step
size of the kernel being overlayed on the output. A stride of two, roughly doubles the output image’s
dimensions.

Deconvolutional layers, however, may lead to artefacts such as chequerboard patterns due to a
fragile learning process [72]. Especially features that lie farther from the average pixel value - linear
kinematic features for example - tend to suffer from these artefacts. To combat this, Odena et al. [72]
propose a combination of upsampling and convolution. In the first step, the input image is resized using
nearest neighbour interpolation or bilinear interpolation, after which a convolutional layer is applied.

Bottleneck networks
Convolutional layers - especially those that apply striding - can be used to decrease the spatial dimen-
sions of the output image significantly. Such layers are called down-convolutions. On the other hand,
deconvolutions - or a combination of upsampling and convolutions - are referred to as up-convolutions



4.5. Convolutional neural networks 30

if they increase the spatial dimensions significantly. In network architectures that are employed to trans-
form image data to again produce images, a combination of down-convolutions and up-convolutions
can be used in a bottleneck structure. Here, a series of down-convolutions is first used to transform the
input image into a vector, the encoding. Next, a series of up-convolutions is applied on this encoding
to produce image data. This is a form of dimensionality reduction if the vector size is (much) smaller
than the input and output sizes.



5
Data generation

Since the goal is to find a surrogate model for the sea ice momentum equation, the data should consist
of the different variables in the equation. These variables are the initial velocity v, the sea ice height H,
sea ice concentration A, wind velocity vatm and finally the ocean velocity vocean.

Since we are pursuing a data-driven method, where we want to predict the velocity field in the next
step from these variables, we also need the velocity of the next step, which will act as the ‘label’ in the
training. Gascoigne simulations will be employed for this data generation, where the physical constants
from Table 2.1 are used. These constants will not be fed explicitly into the neural networks since they
are taken as constants. The code used to implement the problems described in this chapter is made
available on GitHub [73].

5.1. Benchmark problem
Mehlmann et al. [49] compared the performance of various discretisations on a so-called ‘benchmark
problem’. This problem represents sea ice deformations caused by a moving anticyclone on a square
domain Ω that is 512 km by 512 km. The simulation is run to cover a period of approximately 2 days.
The initial conditions on the whole domain are as follows:

H = 0.3, A = 1.0, v = 0. (5.1)

In the benchmark problem, the ocean current velocity vocean is circular around the centre of the
domain (256 km, 256 km). The ocean current is given by

vocean =
vmaxocean
256

(
y − 256
−(x− 256)

)
, (5.2)

where x and y are in kilometres and vmaxocean = 0.01 m/s. The oceanic velocity field on the domain Ω is
visualised in Figure 5.1.

The wind field is given by

vatm(x, y, t) = −vmaxatm s(x, y, t)
(
cos(α) sin(α)
− sin(α) cos(α)

)
, (5.3)

where

s(x, y, t) = 1

r0 exp(−1)

(
x−mx(t)
y −my(t)

)
exp

(
−
√

(x−mx(t))2 + (y −my(t))2

r0

)
. (5.4)

The normalised wind velocity s(x, y, t) reaches its maximum at

r(x, y, t) =
√
(x−mx(t))2 + (y −my(t))2 = r0,

where s(r0) = 1. The cyclone’s midpoint starts in the centre of the domain at time t = 0 and moves
towards the upper right:

mx(t) = my(t) = 256 + 50t, (5.5)

31



5.1. Benchmark problem 32

0

0.25

0.5

0.75

1

1.25

Figure 5.1: Ocean velocity of the benchmark problem. The magnitude of the ocean velocity relative to vmaxocean is visualised by a
contour plot. The direction of the current is shown by quivers.

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Visualisation of a cyclonic wind field centred in
the middle of the domain and with α = 2

5
π. The magnitude

of the velocity is visualised by shading the background in
terms of vmaxa

r0

1

r

|s(r)|

Figure 5.3: Sketch of the magnitude of the normalised wind
velocity s(r) given in (5.4). The maximum velocity is reached

for r = r0, which is marked by a dashed line.

where mx and my are in kilometres and t is in days. In this benchmark problem,1 the maximum wind
velocity is given by

vmaxatm = 11 m/s. (5.6)

Lastly, the cyclonic wind is characterised by the convergence angle α. Perfect circular motion is ob-
tained for α = 1

2π, and thus
1
2π−α is the angle with which the the wind velocity converges with respect

to this circular motion. The wind velocity field on the domain Ω at time t = 0 is shown in Figure 5.2.
Moreover, a plot of the normalised wind velocity magnitude |s| is given in Figure 5.3.

At the boundary of the domain, the a no-slip boundary condition is enforced, meaning that

v = 0 on ∂Ω. (5.7)

This condition mimics a land border, resulting in a square ocean.
To illustrate, the solution of the benchmark problem using the Gascoigne implementation is visu-

alised in Figure 5.4. The sea ice velocities for two different time steps are shown. Furthermore, the
sea ice concentration and shear deformation are shown for the last time step.

1Mehlmann et al. [49] set vmaxa = 15 m/s. Their function s is scaled slightly differently, causing it to reach its maximum of e−1.
In this current work, this function is scaled such that its maximum is equal to 1, and thus vmaxatm must be scaled down to obtain the
same wind velocity field.



5.1. Benchmark problem 33

−1

0

1

·10−4

(a) Sea ice velocity in the x-direction after 10 time steps.

−1

0

1

·10−4

(b) Sea ice velocity in the x-direction after 90 time steps.

0.75

0.8

0.85

0.9

0.95

1

(c) Sea ice concentration after 90 time steps.

10−8

10−6

10−4

(d) Shear deformation after 90 time steps.

Figure 5.4: Solution of the benchmark problem using the B-grid discretisation and the Gascoigne library for the numerical
computations.



5.2. Training data 34

5.2. Training data
In order to train a model that is able to predict the velocity in the benchmark problem, we need training
data from which the model is able to infer the sea ice dynamics needed for this problem. In order to
gauge the performance of the model on the benchmark problem, the training data should be similar,
but not too similar since the model should generalise instead of overfit. The choice is made to vary only
the wind field and the initial sea ice height in the dataset. The initial sea ice velocity and concentration,
as well as the oceanic current is thus the same for all test cases.

The main reason for limiting the number of variations is to simplify the training process, since we can
only generate a limited number of samples. Another factor, however, is that we are most interested in
cases that resemble the benchmark problem. From experience, we see that linear kinematic features
are most clearly formed when the initial concentration is 1.0, and the oceanic current is much less
influential than the wind in forcing the sea ice movements.

Linear kinematic features are typically generated by two types of wind: (anti)cyclonic winds and
winds pushing sea ice against a solid border. Other wind patterns are less interesting because the sea
ice movements they cause are relatively easy to compute. Since the goal is to predict linear kinematic
features, the wind velocity fields in the dataset will consist of cyclonic and anticyclonic winds. The case
where wind pushes the ice against a solid border is given for free when the (anti)cyclone’s centre is
close to the border.

The (anti)cyclonic winds are generated randomly: their maximum wind velocity vmaxa , eyewall ra-
dius r0, initial centre (mx(0),my(0)), centre velocity ∂t(mx(t),my(t)), and convergence angle α are
drawn from random distributions. Moreover, the variable ‘cyclone’ corresponds to whether the wind
field represents a cyclone or anticyclone. If the wind field represents an anticyclone, the wind direction
is reversed by multiplying (5.3) by −1. The distributions are chosen in such a way that the variable’s
value corresponding to the benchmark problem is contained in the distribution. The distributions are
all uniform and their domains are shown in Table 5.1. Moreover, two examples of wind velocity fields
generated with different parameters are shown in Figure 5.5.

Table 5.1: Summary of the parameter settings used to generate the training dataset. For every variable both the domain of the
uniform distributions from which random values are drawn and the corresponding value from the benchmark problem are given.

The benchmark values are taken from [49].

Parameter Domain Benchmark value

H0 [0.1, 0.5] m 0.3 m
mx(0), my(0) [100, 400] m 256 m
∂tmx(t), ∂tmy(t) [−0.8,−0.4] ∪ [0.4, 0.8] m/s 0.579 m/s
vmaxa [6, 15] m/s 11 m
α [π/3, π/2] 2

5π
r0 [60, 150] m 100 m
cyclone {−1, 1} 1

In total, 800 parameter combinations are drawn at random. Each of these parameter combinations is
used to generate a time series of sea ice dynamics. Starting from the initial conditions for ice concen-
tration A and the sea ice velocity, defined in (5.1) respectively, the Gascoigne implementation is used
to simulate the sea ice dynamics with time steps of 2000 s. The forcing terms are given by (5.2), where
vmaxocean = 0.01 m/s is the same as in the benchmark problem, and by (5.3) with its parameters chosen
randomly. Lastly, the initial sea ice height H0 is chosen randomly.

For each test case, 30 time steps are generated. It was found that there is a clear difference in the
performance of models for roughly the first ten time steps compared to the other steps. The first several
steps from these initial conditions are not typically physical, since they do not represent states that are
realistic. In these initial steps, the wind - and to a lesser degree the ocean - forcing is very dominant
and the change in velocity is typically very correlated to the the wind field. In later steps, however,
the forcing terms are counterbalanced to a certain extend by the internal stress. Since we are most
interested in replacing the expensive stress computation, we want to focus the model’s attention to this
last category, where the wind is less dominant. The first 10 time steps of each time series are, therefore,
excluded from the dataset, which results in 20 time steps for each parameter combination.



5.3. Data augmentation 35

0.2

0.4

0.6

0.8

1

(a) m(0) = (100, 350) m, α = 1
3π, r0 = 60 m,

∂tm(t) = (0.4,−0.8) m/s

0.4

0.6

0.8

1

(b) m(0) = (300, 200) m, α = 3
7π, r0 = 130 m,

∂tm(t) = (−0.5,−0.6) m/s

Figure 5.5: Two examples of cyclonic wind fields with different parameters. Both are shown at t = 0 and the cyclone’s velocity
is visualised by an orange arrow from the centre of the cyclone in the direction of its movement.

Some examples of the training data are presented in Appendix A.

5.3. Data augmentation
In order to synthetically add data points to our dataset, we can augment the randomly generated test
cases. Typical data augmentation techniques include cropping, translation, rotation, reflection, intensity
changes, and noise addition. However, since we are training the model to represent a physical process,
the transformations should conserve this. Therefore, only two augmentations are applied: rotation and
reflection. This selection of augmentations allows for straightforward transformations that ensure that
the result satisfies the governing physical laws.

In the simulation of sea ice dynamics, the underlying physical processes are invariant under rotation.
Consequently, anymodel provided with rotated data should produce an outcome that is correspondingly
rotated. Since we are working with a square domain, rotations are restricted to 0◦, 90◦, 180◦, and 270◦.
While the physics remains consistent at any rotational degree, the use of the square grid necessitates a
complex re-mapping of data points back onto the grid for rotations other thanmultiples of 90◦, potentially
introducing errors. Moreover, such rotations require the loss of data points that lie within the domain,
specifically those in the corners. To avoid these complications, our model exclusively employs rotations
by these orthogonal increments. This approach not only maintains the integrity of the grid, but also
serves as an effective data augmentation technique, inflating the dataset size synthetically by a factor
of four.

For rotation of scalar fields, the rotation operation is a mapping between indices. In the case of
vector fields, the rotation operation also entails a multiplication with a rotation matrix. The rotation
operations on an N ×N -grid are given as follows:

R90◦ :

v(i,j) 7→

(
0 −1
1 0

)
v(N−j,i)

H(i,j) 7→ H(N−j,i),

R180◦ :

v(i,j) 7→

(
−1 0

0 −1

)
v(N−i,N−j)

H(i,j) 7→ H(N−i,N−j),

R270◦ :

v(i,j) 7→

(
0 1

−1 0

)
v(j,N−i)

H(i,j) 7→ H(j,N−i).

The other augmentation technique we employ is reflection, which, like rotation does not alter the phys-



5.3. Data augmentation 36

(a) Rotation by 90◦. (b) Reflection over the horizontal axis.

Figure 5.6: Two examples of transformations of the cyclone in Figure 5.5a.

ical process we simulate. Reflections can be applied either horizontally or vertically. However, the
effect of vertical reflection can be reproduced by a horizontal reflection followed by a rotation of 180◦.
Therefore, to prevent redundancy, only horizontal reflection is used as an augmentation technique.
All combinations of reflection and rotation are applied to each test case, thereby synthetically increas-
ing the dataset size eightfold. The resulting dataset consists of 128, 000 unique, but highly correlated
samples.

On an N ×N -grid, the horizontal reflection operation is given as follows:

Fx :

v(i,j) 7→

(
−1 0

0 1

)
v(N−i,j)

H(i,j) 7→ H(N−i,j).

(5.8)

Again, for scalar fields, we only require a mapping between indices, whereas reflection of vector fields
also requires an inversion along the direction of reflection. Two visual examples of these transforma-
tions are given in Figure 5.6

Other options for data augmentation to synthetically enlarge the dataset size either fail to maintain the
integrity of the physical processes governing sea ice dynamics, or are impractical. For instance, while
limited changes in the intensity of image data are permissible in more typical applications of convolu-
tional neural networks, in our context, alterations of a single pixel can influence dynamics across the
entire domain. This is due to the highly non-linear nature of the equations governing sea ice dynamics,
where minor modifications can lead to complex outcomes. Therefore, introducing noise to the inputs
cannot be offset by a simple, predetermined noise pattern on the outputs whilst remaining physically
accurate. However, adding noise to the data has proven to be effective in combatting overfitting [74,
75], especially for small dataset sizes [76]. The addition of noise to the data will be discussed further
in Chapter 6.

Moreover, the idea of cropping the data is central to an alternative approach, in which the neural
network is applied to smaller patches of the domain. This approach is briefly touched upon in the
next chapter, but in short, it was found not to work, and thus cropping the data is not included as an
augmentation technique here.

In summary, the chosen data augmentation techniques of rotation and reflection effectively expand
the dataset - by a factor of eight - while maintaining the integrity of the physical processes governing
sea ice dynamics, enhancing model robustness without additional computational complexity.



6
Network design

In this chapter, we explore our approach to develop a neural network surrogate model that is able
to predict sea ice dynamics. Fundamental to our approach is that the entire domain is predicted at
once by the network. This contrasts the patch-wise approach by Margenberg et al. [6] for solving the
Navier-Stokes equations. A similar patch-wise approach was unsuccessfully tried for this work. While
a patch-wise approach allows for more efficient parameter sharing and thus leads to a smaller network,
a network that is applied to the whole domain offers the advantage of using global information. An
analogy may be made with an implicit method, in which the solution at a certain point ‘knows’ about
the solution at other points in the same time step. In their paper, Ip et al. [22] conclude that implicit
methods are the better choice for sea ice dynamics problems, allowing for larger time steps.

The goal here is to find a neural network design that is able to predict the sea ice velocity field.
The main components of this design are the architecture of the network, as well as the loss function
to train on. The network architecture and its data requirements are detailed in the first section. This is
followed by a description of the experiment setup, which includes details about the loss functions that
are compared and the Bayesian optimisation algorithm used for hyperparameter optimisation.

6.1. Network architecture
In this approach, a bottleneck structure similar to that of Eichinger et al. [39] is chosen. In their pa-
per, from a comparison between a classical bottleneck convolutional neural network (Bottleneck CNN
introduced by [7]) and a U-Net, the latter appeared to be superior. Since we are dealing with a dif-
ferent physical problems and network architectures can be better suited for different problems, both
architectures are tested and compared in this work.

Both architectures are based on the same bottleneck structure, which is described in Section 4.5.4.
The data is first passed through the encoder, which, through applications of down-convolutions, yields
a vector with features that in theory describe the entire domain, the encoding. Next, the encoding is
input into the decoder, which then produces the resulting sea ice velocity field. This bottleneck structure
gives rise to an analogy with reduced order models, with which an approximation of the solution is found
using a reduced order basis. The decoder learns this basis, while the encoder learns a mapping from
the input space to an encoding for this basis. Reduced order models are typically employed because
of their quicker evaluations due to their approximations.

While both approaches force information to be aggregated into a single vector (the bottleneck), the
U-Net employs skip connections which allow local information in the encoder to be passed to their
counterpart in the decoder. The strict analogy with reduced order models is lost, but one can now be
madewith multigrid methods in which a problem is solved on an increasingly coarser grid [77]. Similar to
how multigrid methods address processes on different spatial scales by solving coarse approximations
before refining solutions on finer grids, the skip connections facilitate representation of information at
different resolutions.

37



6.1. Network architecture 38

Data structures
Before delving into the details of the neural network architectures, it is important to note that both
architectures are designed to process the same data structures. The data is given on a 512× 512 km
grid with 2 km grid spacing. Since the B-grid is used, velocities are specified on the vertices of the grid,
while the ice height and ice concentration are given in the cell. This means that the ice, wind and ocean
velocity fields are given on a 257 × 257 grid. In terms of image data, this means 6 × 257 × 257 pixels,
since each velocity field is specified by two components, resulting in 6 channels in total. The ice height
and concentration are given on a 256× 256 grid and can be represented by 2× 256× 256 pixels.

The resulting network acts as the mapping

NN : (v, va, vw), (H,A) 7→ y, (6.1)

where v is the initial sea ice velocity, vatm is the wind velocity, vocean is the ocean velocity, H is the sea
ice height, and A is the sea ice concentration. The network prediction is y ∈ R2×257×257. Since the
change in velocity between time steps typically is two orders of magnitude smaller than the velocity, the
network is trained to predict the change in velocity. This allows the network to focus on modelling the
small variations in velocity more precisely. To this end, the labels are computed by

ŷt = vt − vt−1, (6.2)

where the subscript t indicates the time step.
Moreover, all inputs are scaled between −1 and 1. To ensure that 0 values are mapped to 0, the

new values are computed by
x̄ =

x

maxi,j,k |xk
i,j |

, (6.3)

where i and j iterate over pixels and k over instances in the training set. The labels, however, are
scaled by

ȳ = tanh

(
10

y

maxi,j,k |yki,j |

)
. (6.4)

The labels contain regions in which the spatial derivatives become quite large. Without an additional
transformation, these regions will dominate the dataset. Moreover, beyond a certain magnitude, the
precise velocity is less important for the creation of linear kinematic features (LKFs). Therefore, the
largest outliers are scaled back using the hyperbolic tangent function. Only 0.006% of pixels in the
training dataset have values large enough to be severely affected by this transformation.1 This amounts
to, on average, 4 pixels in each image.

Classic Bottleneck
In their work, Eichinger et al. [39] use the architecture from Guo et al. [7], which employs two consec-
utive down-convolutional layers to reduce the 1 × 256 × 128 image to 512 × 4 × 4, after which a fully
connected layer is used which yields a vector with 1024 elements. Next, four deconvolutional layers
are used as up-convolutions to get back to an image of shape 2× 256× 128. This architecture serves
as the foundation for the bottleneck design in this work.

Due to the different grid sizes of the input data, the input layer of the network is split into two separate
paths: one for the velocities and another for the ice height and concentration. The outputs of these
paths are summed and passed through an activation function, forming a single hidden layer. Since
the output channels of a convolutional layer consists of the sum of convolutions of inputs and kernels,
summing the results of two separate layers yields the behaviour of a single layer, as if the inputs live
on the same grid size. For the remainder of the network, the bottleneck structure from Guo et al. [7] is
followed more closely.

One other alteration is made: an extra down-convolutional layer is added to transform the 512×4×4
result to a 1024×1×1 image, before the fully connected linear layer is applied. Furthermore, except for
the first up-convolution, which is a deconvolutional layer, the other up-convolutions are combinations
of upsampling and convolutions as proposed by Odena et al. [72].

1The main effect of this transformation is that the influence of errors in the largest pixel values are devalued. The use of the
hyperbolic tangent function as the output activation mitigates the loss of precision.



6.1. Network architecture 39

128 16
×
16

128 16
×
16

+

512 4
×
4 1024 1×

1 1024

512 8
×
8

256 64
×
64

32 12
8
×
12
8

2
25
7
×
25
7

Figure 6.1: Architecture of the bottleneck network for sea ice dynamics. Visualisation using [79]. The network has 46 million
trainable parameters.

After each layer, the Gaussian Error Linear Unit (GELU) is used as the activation function in combi-
nation with batch normalisation, which has been found to yield performance improvements for convolu-
tional neural networks [78]. After the final layer, however, the hyperbolic tangent is used as activation to
ensure that the image space of the network is [−1, 1]2×257×257. The full bottleneck network architecture
is presented in Figure 6.1.

U-Net
The other network architecture studied in this work is the U-Net, first introduced by Ronneberger et al.
[80]. The two main differences with the bottleneck architecture of Guo et al. [7] are the use of skip con-
nections and of additional size-conserving convolutional layers following up- and down-convolutional
layers.

The U-Net implementation used in this work follows the design by Eichinger et al. [39] with some
modifications. Again, the input layer is composed of two different paths: one for the velocities and
another for the ice height and concentration. Including the input layer, the encoder of this bottleneck
structure consists of six down-convolutional layers. Between each pair of down-convolutions, except
for the last, two convolutional layers are added that conserve the image size. The last layers yields a
vector with 1024 elements, the encoding.

The second half of the network, the decoder, mirrors the encoder. It consists of six up-convolutional
layers. Again, with the exception of the first, every pair of up-convolutional layers is separated by two
convolutional layers that conserve the image size. Similar to the classical bottleneck architecture, the
first up-convolution in this U-Net design is a deconvolutional layer, while the others consist of upsam-
pling and a convolution as proposed by Odena et al. [72]. In contrast to the encoder, two convolutional
layers are added to the end of the decoder, the first of which conserves the image size, while the second
reduces the number of channels to two.

Additionally, there are four skip connections in the design. The outputs of layers in the encoder
on four different levels are concatenated to the outputs of up-convolutions in the decoder. In this way,
a strict analogy with reduced order models is lost, since not all information is contained in the encod-
ing. However, local information, on the four different levels, is passed through the skip connections,
which allows for strictly global information to be stored in the encoding, while more local processes are
represented on finer grids.

Lastly, the GELU is used as the activation function in combination with batch normalisation. Again,
the hyperbolic tangent function is used as the activation function of the output layer to guarantee an
image space of [−1, 1]2×257×257 A visualisation of the U-Net architecture is given in Figure 6.2.



6.2. Loss functions 40

64 64
×
64

64 64
×
64

+

64 64 64
×
64 128 128 128 32

×
32 256 256 256 16

×
16

512 512 512 8
×
8

1024 4
×
4 1024 4×

4

1024 4
×
4

512 512 512 512 8
×
8

256 256 256 256 16
×
16

128 128 128 128 32
×
32

64 64 64 64 64
×
64

32322
25
7
×
25
7

Figure 6.2: Architecture of the U-Net network for sea ice dynamics. Visualisation using [79]. The network has 67 million
trainable parameters.

6.2. Loss functions
To find an optimal design for the network, not only the two different architectures detailed above are
compared, but also the effect of different loss functions is studied. Since different loss functions empha-
sise different aspects of the data, their effect on the model performance must be studied. Four different
loss functions are used to train the neural networks: the mean squared error (MSE) of the velocities,
the strain rate error (SRE), the weighted sum of the MSE and the mean relative error (MSE+MRE)
and the weighted sum of the MSE and the SRE (MSE+SRE). These loss functions were introduced in
Section 4.2.1:

MSE(yi, ŷi) =
1

N

N∑
i=1

‖yi − ŷi‖22 , (4.3)

MRE(yi, ŷi) =
1

N

N∑
i=1

‖yi − ŷi‖2
‖ŷi‖2

, (4.5)

SRE(yi, ŷi) =
1

4N

N∑
i=1

∥∥∇(yi − ŷi) +∇(yi − ŷi)
T
∥∥2
2

(4.6)

where ŷi is the label corresponding to the instance i and yi is the prediction by the network of instance
i. The strain rate error is based on the strain rate ϵ̇ introduced in (2.5). Since the network’s prediction
is given pixelwise on a grid, the gradient must be approximated using a finite difference method. The
central difference method is applied to obtain the gradient in the cell’s centre using the velocities on the
cell’s vertices.

The performance of these loss functions, however, must be compared using a relatively independent
metric. If, for example, their performance was compared using the mean squared error (MSE), the
model trained using this metric would have an advantage.

Since we are interested in the formation of Linear Kinematic Features (LKFs), the absolute error in
the shear deformation given in (2.12) is used as the main comparative metric. The error in the sea ice
concentration and the MSE of the velocities is also studied, to get a full understanding of the behaviour.

The labels and network outputs remain scaled to the [−1, 1] domain for the computation of the MSE,
SRE and MRE. Specifically for the the SRE and MRE, it was found that using the unscaled labels
and the rescaled network output caused instability in the training process (e.g., exploding gradients),
occasionally resulting in computational errors during training. Most likely, this is caused by the inverse of
the hyperbolic tangent used in the rescaling. For the error in the shear and in the sea ice concentration,
however, the unscaled values are used to conserve their physical meaning.

6.3. Training phase
For a fair evaluation of the performance of the model, a part of the dataset is reserved to ensure an
unbiased evaluation of the model. As described in Section 5.1, the goal of this work is to train a model
that is able to perform well on the benchmark problem used in the comparative work by Mehlmann et al.
[49]. This data pertaining to this benchmark problem is, therefore, used as the test dataset. Moreover,
an additional set of data is needed to allow unbiased evaluation of model performance when comparing
different models. This validation requires a subset of the data that is independent of both the training



6.4. Hyperparameter optimisation 41

Table 6.1: List of hyperparameter ranges and values for hyperparameters that are respectively optimised and fixed.

Hyperparameter Value
b 8
β1 0.67
β2 0.95
α ∈ [10−3, 102]
ν ∈ [10−3,−0.3]
λ ∈ [10−4, 10−1]
wSRE ∈ [10−1, 103]
wMRE ∈ [10−6, 10−2]
εMRE ∈ [10−6, 10−1]

set and the test set. To this end, the training dataset generated as described in Section 5.2 is divided
such that 80% is used for training and 20% is used for validation. Finally, we are left with three datasets:
the training, validation and test datasets.

As described in Section 5.3, noise may be added to the input data to combat overfitting. However,
as mentioned, the addition of noise on the inputs, without any alternations to the outputs, makes the
instance unphysical. Since the strain rates are important for sea ice dynamics modelling, noise on
the inputs interferes significantly with the predictions. To mitigate this slightly, multiplicative noise is
chosen:

x = x · (1 +N (0, ν2)), (6.5)

where ν is the standard deviation of the normal distribution (i.e. noise level) and x represents any input
pixel. In this way, the distortion is relative to the value of the input, which limits the effect of the noise
on the strain rates.

Furthermore, the Adam optimiser is chosen and has momentum parameters β1 and β2. Additionally,
gradient clipping is performed where the gradients are constrained to [−1, 1].

Moreover, a stopping criterion based on the improvement of the validation loss is implemented. The
criterion is met if the validation loss has not improved in the last 100 epochs. To ensure that overfitting
has really occurred, training is only stopped if, additionally, the validation loss is larger than the training
loss. Furthermore, to give the network sufficient time and to ensure that training is not terminated too
soon, the condition that the network has trained for at least 300 epochs is applied as well. To summarise,
the three conditions for early stopping:

1. the validation loss has not improved in the last 100 epochs, and
2. the validation loss is larger than the training loss, and
3. the network has trained for at least 300 epochs.

6.4. Hyperparameter optimisation
An important part of training is the hyperparameter optimisation. These are the parameters that de-
scribe the training process and include the regularisation parameter α, the batch size b, the noise level
added to the data ν, the learning rate λ, and the momentum parameters (β1, β2). Furthermore, when
training using the sum of two loss functions, the weight of the second loss function w is considered a
hyperparameter. Lastly, the MRE has a small value ε in the denominator originally just used to prevent
division by zero, but this parameter can be used to tune the behaviour of the loss function. To reduce
the search space of the hyperparameter optimisation, the batch size and momentum are not included
in the search. The other variables, however, are included in the optimisation. The values and ranges
of the respectively constant and optimised hyperparameters are listed in Table 6.1.

For each combination of architecture and loss function, a Bayesian optimisation is performed to find
the optimal hyperparameters for the pair. The hyperparameter optimisation is performed for each com-
bination separately since each pair might respond differently to the hyperparameter values. Bayesian
optimisation, while more difficult to implement than a grid search, is a more efficient search method. To
illustrate, a grid search with four candidates for each of the five parameters would require a total of 1024
models to be trained, compared to the 20 to 40 candidates we will test through Bayesian optimisation.



6.5. Implementation 42

Bayesian optimisation, however, uses previous training results to find a better hyperparameter set
for the next evaluation. This approach was first introduced by Mockus et al. [81] and is typically used
to find the extremum of a function that is costly to evaluate, which in our case is the mapping of a given
set of hyperparameters to the shear error on the validation dataset, which requires training a neural
network.

In short, the algorithm works by constructing a prior probability distribution of the approximated
function based on a set of data points. Initially, this set can be obtained by randomly selecting points
from the parameter space and training a network for those values. In this work, the prior distribution
is then constructed using a Gaussian process with a radial basis function (RBF) kernel Kγ(·, ·). The
covariance of two sets of hyperparameters h and h′ is then assumed

Kγ(h,h′) = exp
(
−γ‖log10(h)− log10(h′)‖22

)
, (6.6)

where γ is the scaling parameter. Hyperparameters that lie close to each other are, therefore, expected
to give similar results. Conversely, in a region where no known values are found, the uncertainty in the
prior is larger. In this way, a probability distribution is built, and confidence bounds can be constructed
for each point in the hyperparameter space, between which the corresponding validation shear error
value is expected to be found.

Subsequently, the next set of hyperparameters is determined using an acquisition function, which
is chosen as the lower confidence bound of the prior, since it incorporates both the knowledge of
previously evaluated points, as well as the uncertainty of new points. After training the network with
the new set of hyperparameters, the result is used to update the prior and the acquisition function, after
which a next point can be chosen, and so on.

Since the order of magnitude of the hyperparameters is often the most important, the optimisation is
performed using the logarithm of their values. Moreover, the first 10 points in the hyperparameter space
are drawn randomly, after which the acquisition function is used to find the next set of hyperparameters.
Furthermore, to increase efficiency, at most eight models are trained in parallel, depending on the
availability of the high performance computer on which the models are trained.

This parallelism introduces a problem in the selection of the next hyperparameter combination: with-
out any alternations to the optimisation algorithm, many of the models will be trained with the same set
of hyperparameters. To illustrate, suppose we have a set of hyperparameter combinations h1, . . . ,hn

with corresponding validation shear error values l1, . . . , ln. The optimisation algorithm yields, after com-
puting and minimising the acquisition function, a next combination of hyperparameters h′, which is used
to train a new model. During the training of this model, the computational capacity allows for another
instance of the network to be trained, so the optimisation algorithm is run again, and, since the process
is deterministic, it yields the same h′.

To fully use the efficiency that the parallelism offers, this second Bayesian optimisation should yield
a different set of parameters. Therefore, a new prior is constructed for which h′ and the expected
validation loss according to the previous prior E(h′) have been added to the data. Thus, an updated
acquisition function is used to obtain different candidate hyperparameters.

6.5. Implementation
The neural networks presented in this chapter were implemented in Python [82] using the machine
learning framework Pytorch [83]. The code is made publicly available on Github [84]. DelftBlue super-
computer at Delft High-Performance Computing Center [85], which employs NVIDIA A100 GPUs with
80 GB video RAM each, was used for training the neural networks. As a student, at most eight jobs can
be run simultaneously which can run for at most 24 hours. However, most networks could be trained
within 10 hours before satisfying the early stopping criterion.



7
Results

This chapter presents the results from the development of a neural network surrogate model aimed
at predicting sea ice dynamics. We evaluate the performance of the Bottleneck and U-Net architec-
tures when trained with various loss functions. Initially, the results of the hyperparameter optimisation
are discussed, identifying the most effective model configuration for each architecture-loss pair in Ta-
ble 7.1. This optimal model is then applied to the benchmark problem, for both one-step-ahead predic-
tions and time series generation. Additionally, a qualitative analysis is conducted of to distinguish the
performance nuances between the architectures and loss functions. This chapter concludes with an
investigation of the generalisation behaviour.

7.1. Hyperparameter optimisation
The results of the hyperparameter optimisation are presented in Table 7.1. For each combination of
loss function (MSE, SRE, MSE+SRE, MSE+MRE) and architecture (Bottleneck, U-Net), the hyperpa-
rameter combination resulting in the lowest shear error is shown. Additionally, the shear error, mean
squarred error (MSE), strain rate error (SRE), mean relative error (MRE), mean concentration error
(MCE) are presented in Table 7.2. For comparison, the error values corresponding to a baseline pre-
diction consisting of only zeros is also presented.

To enable a fair comparison of MRE values across all models, we fix the parameter ε used in the
MRE computation (see (4.5)) to 2.3× 10−3. This values corresponds to the optimal ε found during the
Bayesian optimisation for the U-Net architecture trained with the MSE+MRE loss function. For models
not trained with the MRE loss (and therefore without a tuned ε), we use this fixed value in the MRE
calculation. It should be noted that the Bottleneck architecture trained with the MSE+MRE loss has its
own optimal ε, which would yield a different MRE value of 24.9%. However, to maintain consistency in
our comparisons, we report all MRE values using ε = 2.3× 10−3.

Comparing the shear error across the different architecture-loss combinations, we see that the U-Net

Table 7.1: Optimal hyperparameters as found by the hyperparameter optimisation for each combination of architecture
(Bottleneck, U-Net) and loss function (MSE, SRE, MSE+SRE, MSE+MRE).

Architecture Loss function α ν λ w ε

Bottleneck

MSE 5.7× 101 3.0× 10−1 1.6× 10−3 - -
SRE 1.4 2.4× 10−3 1.7× 10−4 - -
MSE+SRE 5.8× 10−3 1.6× 10−2 1.6× 10−3 2.6 -
MSE+MRE 8.6× 10−5 1.3× 10−2 2.2× 10−4 9.2× 10−3 1.2× 10−3

U-Net

MSE 1.4× 10−2 8.0× 10−3 3.7× 10−4 - -
SRE 2.7× 10−3 3.4× 10−3 2.4× 10−4 - -
MSE+SRE 7.0× 10−2 1.2× 10−3 1.0× 10−4 2.5× 100 -
MSE+MRE 2.8× 10−3 1.1× 10−2 4.6× 10−3 8.7× 10−5 2.3× 10−3

43



7.1. Hyperparameter optimisation 44

Table 7.2: Error rates on the validation set for the best hyperparameter combination for each pair of architecture (Bottleneck,
U-Net) and loss function (MSE, SRE, MSE+SRE, MSE+MRE). The shear error, MSE, SRE, MRE and MCE on the validation
dataset are shown. The best error values in each column are marked in bold. The errors corresponding to a baseline prediction

of only zeros are also shown.

Architecture Loss function shear error MSE SRE MRE MCE
×10−8 ×10−4 ×10−4 ×10−8

Baseline 15.3 49.4 46.0 34.1% 33.1

Bottleneck

MSE 15.3 49.2 31.3 45.3% 51.2
SRE 11.7 44.8 14.0 75.8% 27.4
MSE+SRE 15.0 30.0 30.9 39.7% 46.2
MSE+MRE 15.2 26.7 31.0 8.39% 51.5

U-Net

MSE 7.87 14.3 5.44 28.3% 11.1
SRE 7.20 41.2 3.19 94.6% 6.83
MSE+SRE 6.41 3.63 3.32 24.0% 6.32
MSE+MRE 8.77 12.8 6.49 28.7% 13.8

architecture, trained with the MSE+SRE loss function, achieved the lowest shear error, MSE and MCE.
Since this model resulted in the lowest shear error, we choose it for further comparison in Section 7.3.
Notably, the U-Net consistently outperformed the Bottleneck architecture on not only the shear error, but
also the MSE, SRE and MCE. The SRE was lowest for the U-Net only trained with the SRE, while the
Bottleneck architecture trained with the MSE+MRE achieved the lowest relative error on the validation
set. An explanation for this can be found in the fact that the weight of the MRE was much larger for the
best Bottleneck model than for the best U-Net model.

Moreover, not only did the U-Net outperform the Bottleneck architecture, but trained with only the
MSE, the Bottleneck architecture with the lowest shear error was even severely underfit, producing
only values close to zero for all test cases. It must be noted that other hyperparameter combinations
lead to lower MSE values on the validation loss, but these yielded higher errors in the shear and thus
are not shown.

Furthermore, the MSE+SRE loss resulted in the lowest shear loss for both architectures. It appears
that the combination of the two loss functions is the decisive factor. Even though the SRE U-Net model
had the lowest strain rate error, its mean squared error was relatively large. This is also visible in the
visualisations presented and discussen in Section 7.2. Interestingly, the MSE+SRE model even had a
lower mean squared error than the model trained with only the MSE, indicating that the additional SRE
helps capture sea ice dynamics better, regardless of the chosen loss function.

To better understand the optimised hyperparameters, we now examine the Gaussian process model
from the Bayesian optimisation for the MSE+SRE U-Net. To assess the effect of a single hyperparam-
eter, we fix the other three at their optimal values as determined by the optimisation algorithm, and
plot the regression curve for the selected hyperparameter. In addition to the regression curve, we also
show individual hyperparameter candidates and their corresponding shear error in a scatter plot. To
include a sense of closeness in the other three dimensions, we adjust the transparency of the points
based on their proximity to the fixed hyperparameter values. Here, the radial basis function, also used
for the Bayesian optimisation, is employed as a distance measure. Points closer to the fixed values
are displayed with higher opacity, indicating a greater contribution to the regression at that point, while
points further away are rendered more transparently.

Figure 7.1 shows the expected shear error for a U-Net trained with the MSE+SRE loss function
versus the four hyperparameters. From these plots, we see that there is an optimum for α and w, while
ν and λ resemble increasing functions. The optimum in the choice α shows the sensitivity of the network
to overfitting. Some penalisation of the size of weights in the network is needed to prevent overfitting,
while a penalisation that is too large results in underfitting. On the other hand, lower values of ν resulted
in a lower error, suggesting that regularisation through added noise to the inputs is not effective. Since
the noise added to the inputs is multiplicative, even lower noise levels would have minimal impact on
the error, indicating that decreasing ν further would not enhance the model’s performance. This is
supported by the minimal difference between a noise level of 10−2 and 10−3.



7.2. Qualitative comparison 45

10−2 100 102

0.8

1

1.2

1.4
·10−7

α
10−3 10−2 10−1

ν
10−4 10−3 10−2 10−1

λ

100 102

w

Figure 7.1: Plot of the shear error versus the four hyperparameters for the MSE+SRE U-Net (α, ν, λ, w). The Gaussian
process regression from the Bayesian optimisation is shown with one parameter varying and the other hyperparameters fixed
at their optimal values. The scatter plot shows the error for each individual hyperparameter combination, where the opacity

reflects their proximity to the fixed hyperparameters.

Furthermore, the plots of the learning rate λ and SRE weight w also demonstrate notable trends
in the performance. Specifically, models trained with lower learning rates consistently achieved lower
shear errors. This observation, combined with the fact that also the other SRE and MSE+SRE models
were found to be performing best with a low learning rate, indicates that the spatial derivative neces-
sitates smaller steps in the optimisation algorithm. Additionally, the shear error reaches its minimum
when the weights assigned to the MSE and SRE are of the same order of magnitude. Together with
the fact that the MSE+SRE model outperformed the models trained with only one of the loss functions,
we see that the combination of the two is valuable.

Even though the search domain for the explicit regularisation parameter α was initially set to [10−3, 102],
this was expanded down to 10−5 for the MSE+MRE Bottleneck models since the Bayesian optimisation
algorithm consistently yielded candidate hyperparameter combinations on the edge of the interval. This
was the only case where the initial search interval was expanded during the search.

7.2. Qualitative comparison
This section provides a qualitative comparison of the eight optimised models derived from the com-
binations of the two architectures and four loss functions. First, it is investigated how the choice of
loss function influences the model’s output, exploring how different loss functions emphasise various
features in the image data relevant to sea ice dynamics. Second, we examine the differences between
the two architectures, analysing how the structural distinctions between the Bottleneck and U-Net ar-
chitectures affect the models’ ability to capture and represent key characteristics.

For this visual comparison, the models’ outputs are presented in Figure 7.2 for one of the randomly
generated test cases. The velocity’s x-component as computed by each of the optimised networks
as well as the Gascoigne computation is shown. Specifically, we have zoomed in on the bottom right
corner of the results to get a close-up view of the results. The shown area is 128× 128 km, so it is one
sixteenth of the whole domain.

We have chosen this specific region as it contains low, high and very high rates of deformation. At
the bottom boundary of the domain, we see a small region where the velocity changes rapidly, indicating
a region with very high strain rates. More moderate strain rates can be observed in two diagonal linear
across the visualised domain. Linear kinematic features are present along these lines. Lastly, areas
of low strain can be observed in the rest of the image, specifically in the bottom right where the ice
velocity is also close to zero, and more towards the centre where the velocity is relatively constant. We
will examine the influence of the loss functions and architectures on networks’ performance on these
different regions.

The first thing we notice is that while some of the models produce relatively good outputs, others exhibit
significant deficiencies, failing to capture patterns in the data and resulting in poor predictions. For
instance, the Bottleneck model trained with only the MSE loss function fails to capture any patterns
in the data and shows signs of being severely underfit. Not only is the velocity field produced by this
model nearly zero everywhere, but its error metrics on the validation set, presented in Table 7.2, reflect
significant deviations from the true values, highlighting the model’s severe underfitting.



7.2. Qualitative comparison 46

−1

0

1

·10−6

(a) Gascoigne

(b) Bottleneck MSE (c) Bottleneck SRE (d) Bottleneck MSE+SRE (e) Bottleneck MSE+MRE

(f) U-Net MSE (g) U-Net SRE (h) U-Net MSE+SRE (i) U-Net MSE+MRE

Figure 7.2: Bottom right corner of both the Gascoigne simulation result and the predictions by each optimised model of the test
case in Figure A.1. The x-component of the change in velocity is presented.

The models trained exclusively with the strain rate error (SRE) loss function exhibit outputs that do
not resemble the ground truth computed by Gascoigne. Interestingly, however, the strain rate errors
presented in Table 7.2 are comparatively low for these models, with the SRE U-Net even outperforming
all other models on this metric. This is supported by the visualisation of the SRE presented in Figure 7.3.
We see that the models trained with the SRE loss attain good results in the area with large strain rates.
This suggests that the SRE loss function effectively captures the strain rates present in the data by
penalising errors related to the spatial derivatives of the output. However, the mean squared errors
(MSE) of the SRE models are significantly higher than those of the other models, providing additional
evidence for the lack of visual resemblance observed in Figure 7.2. This indicates that while the SRE
loss function emphasises performance on regions with very high strain rates, it neglects the overall
velocity field and areas with a more moderate strain rate, leading to outputs that diverge substantially
from the actual data.

In contrast, the models utilising the mean squared error (MSE) loss function demonstrate good
results, particularly with the U-Net architecture. The two diagonal lines corresponding to the linear
kinematic features are discernible in all three plots, indicating that the MSE loss function effectively
captures the prominent features of the velocity field. This outcome is expected, as the MSE penalises
larger deviations more heavily, encouraging the network to minimise significant errors across the entire
output. The MSE effectively shapes the loss landscape to guide the model towards solutions that
balance performance over both high and low deformation regions.

The addition of the mean relative error (MRE) to the loss function introduces a bias towards regions
with low velocity, as these areas are weighted more heavily due to the denominator in the MRE com-
putation. This effect is visible in the triangular region in the bottom right of the visualisations, where



7.3. Performance on benchmark problem 47

(a) Bottleneck MSE (b) Bottleneck SRE (c) Bottleneck MSE+SRE

0

1

2

·10−2

(d) Bottleneck MSE+MRE

(e) U-Net MSE (f) U-Net SRE (g) U-Net MSE+SRE

0

2

4

6

8

·10−3

(h) U-Net MSE+MRE

Figure 7.3: Strain rate error of the predictions by each optimised model of the test case in Figure A.1, also shown in Figure 7.2.
Note the different colorbar scalings.

the ice velocity is low: models trained with the MSE+MRE loss function perform best here. While this
enhances the model’s accuracy in low-strain areas, it may lead to underestimation of larger velocity
values elsewhere, as the network prioritises minimising errors where velocities are small.

Combining the MSE and SRE loss functions results in the best overall performance for both the
Bottleneck and U-Net architectures, as evidenced by the evaluationmetrics in Table 7.2. The addition of
the SRE term enhances the model’s accuracy in areas with higher strain rates, effectively capturing the
critical features associated with sea ice dynamics. This improvement is achieved while maintaining the
good overall results provided by the MSE loss function. The inclusion of SRE appears to shape the loss
landscape in a way that guides the network toward solutions that better represent the complex patterns
of sea ice deformation, resulting in both the lowest MSE and shear error among all models. Thus,
the MSE+SRE loss function effectively balances the emphasis on overall accuracy and the detailed
representation of high-strain regions, leading to superior predictive performance.

In addition to the variations introduced by different loss functions, distinct visual differences are also
apparent between the outputs of the two network architectures. The U-Net architecture consistently
demonstrates superior capability in representing finer details within the velocity field, owing to its skip
connections which facilitate the preservation and accurate reconstruction of small-scale features. In
contrast, the classic Bottleneck architecture tends to produce smoother results that emphasize global
patterns, thereby neglecting the intricate details necessary for accurately capturing regions with sig-
nificant strain rates. This limitation in representing small-scale features by the Bottleneck architecture
contributes to the higher shear error rates observed, as shear deformation predominantly occurs at the
scale of a few grid cells. Consequently, the U-Net’s architectural design proves more effective in mod-
eling the complex, localized dynamics of sea ice deformation, resulting in more accurate and detailed
predictions.

7.3. Performance on benchmark problem
Previously, the analyses have been made on the validation dataset, which is a randomly sampled
subset of the generated dataset used for training. Since the goal of this work is to find a model that
is able to predict linear kinematic features (LKFs) on the benchmark problem, we now apply the best
performing model according to the shear loss to the benchmark problem. First, a comparison will be
made for the one-step-ahead predictions, after which the network is applied recurrently, feeding its own
outputs back as inputs to generate a time series of predictions. This evaluation enables us to assess



7.3. Performance on benchmark problem 48

the model’s ability to predict linear kinematic features on the benchmark problem and to understand
how errors propagate over time for this model.

(a) Gascoigne t = 25

−4

−2

0

2

4
·10−6

(b) Network prediction t = 25

0

1

2

·10−6

(c) Error t = 25

(d) Gascoigne t = 90

−4

−2

0

2

4
·10−6

(e) Network prediction t = 90

0

1

2

·10−6

(f) Error t = 90

Figure 7.4: Gascoigne simulation result, network prediction and error for two time steps of the benchmark problem. Only the
x-component is shown. The errors are the absolute errors.

To illustrate the model’s performance in velocity prediction, Figure 7.4 presents a comparison be-
tween the Gascoigne computation, which is used as ground truth, the model’s output, and the corre-
sponding error. The model’s one-step-ahead prediction for time steps 25 and 90 are visualised.

From the figures, it is evident that the network’s predictions lack the sharpness observed in the
Gascoigne simulation that is used as ground truth, especially in areas with abrupt changes in velocity.
The error plots reinforce this observation, revealing that the largest errors are concentrated around the
linear kinematic features. This indicated that while the model can capture the general patterns of the
velocity field, it struggles to accurately represent the fine-scale details associated with LKFs.

Furthermore, Figure 7.5 illustrates the shear deformation computed from the velocity fields of both
the Gascoigne ground truth and the network’s predictions for the same two time steps. The plots employ
a logarithmic color scale to highlight variations across several orders of magnitude. Additionally, error
plots showing the absolute difference between the logarithms of the shear deformation are presented.
Consistent with previous findings, these error plots show that the errors are concentrated around the
LKFs, indicating that the model struggles to accurately capture shear deformation in these critical re-
gions. Since the network predicts only the change in velocity between time steps, its influence on the
shear is limited, resulting in shear patterns that closely resemble the ground truth. Therefore, we must
critically assess these images and remain aware that issues in sharpness can accumulate over time.



7.3. Performance on benchmark problem 49

(a) Gascoigne t = 25

10−10

10−8

10−6

10−4

(b) Network prediction t = 25

0

1

2

3

(c) Error in log shear t = 25

(d) Gascoigne t = 90

10−10

10−8

10−6

10−4

(e) Network prediction t = 90

0

1

2

3

(f) Error in log shear t = 90

Figure 7.5: Shear deformation of the Gascoigne simulation result and network prediction for two time steps of the benchmark
problem. The shear is shown using a logarithmic colour scaling. The errors shown are the absolute value of the difference

between the logarithms of the shear deformation.

To asses the long-term predictive capabilities of the model, we apply the MSE+SRE U-Net recurrently,
feeding its own outputs back as inputs to generate a time series of predictions. The sea ice height and
concentrations are obtained by employing the upwind advection scheme detailed in Section 3.2. This
approach enables us to observe how errors propagate over multiple time steps, simulating the model’s
performance in a sequential forecasting context.

1 15 30 45 60 75 90
0

2

4

·10−10

Time steps

Velocity MSE

1 15 30 45 60 75 90

0

1

2

3

·10−3

Time steps

Concentration MSE

Figure 7.6: MSE of the velocity and concentration for a recurrently applied model on the benchmark problem. The dashed
lines show a quadratic and linear for the velocity error and two cubic fits for the concentration error.

Figure 7.6 shows the MSE of the velocity field and sea ice concentration over time. Upon exami-
nation of the velocity MSE, we find that initially the errors increase quadratically, after which a linear
growth of the errors is found. In the final time steps, the errors increase more rapidly, but we cannot
assess the growth behaviour here due to the limited number of time steps. On the other hand, the



7.3. Performance on benchmark problem 50

−5 −4 −3 −2 −1 0 1 2 3 4 5

·10−6

Figure 7.7: Change in velocities since the last time step, for time steps t = 5, 10, 15, 20, 25, 30, 50, 90.

error in the sea ice concentration grows cubicly. For reference, curves corresponding to the growth
behaviour are shown in Figure 7.6.

Additionally, the change in velocity predicted by the network for time steps t = 5, 10, 15, 20, 25, 30, 50, 90
is presented in Figure 7.7, allowing for visual assessment of the accumulation of errors over time. The
velocity, concentration and shear deformation for these time steps are presented in Appendix B. From
these visualisations, we can see that the results initially loose their sharpness, after which the model’s
predictions still resemble the expected outputs. Finally, once the distortions have grown significantly,
the outputs diverge drastically from the Gascoigne simulation. Visually, the velocity field is recognis-
able until t = 30, but to draw conclusions about the time until which the predictions are feasible, we
evaluate the ability to produce LKFs below.

These findings are consistent with earlier findings, where we see that the model is able to capture
the large scale patterns, while finer details are not represented well. This causes the initial quadratic
growth of the errors, after which the large scale features are still represented relatively well, causing
only linear growth of the errors. The different error growth behaviour can be attributed to the different
physical regimes in the viscous-plastic sea ice model. If the errors have accumulated substantially, and
the ice has shifted from the viscous regime to the plastic regime in some places due to these errors, the
model will treat such places accordingly. As a result, we can expect different error growth depending
on the physical regime.

This shift in regime occurs when the strain rate becomes of order ∆min. Strain rates that below this
parameter result in the viscous regime, while significantly larger strain rates cause plastic behaviour.
To investigate when this shift occurs, we have plot the mean strain rate error in Figure 7.8. A horizontal
line marks ∆2

min, which is crossed at t = 27.

Finally, to evaluate the model’s ability to reproduce LKFs, we employ a LKF detection algorithm intro-
duced by Hutter et al. [86], following the adaptations for the idealised experiments by Mehlmann et al.
[49, p. 8]. This algorithm detects the LKFs in both the network predictions’ shear deformation field, as
well as in the Gascoigne simulation. In this way, we can compare the number of LKFs formed.

The number of linear kinematic features formed by the Gascoigne simulation and by the network for
different time steps is presented in Figure 7.9. We see that the U-Net underestimates the number of
LKFs for the first 25 steps, after which the number rapidly increases. This increase is attributed to the
accumulation of errors resulting from the recurrent application of the network. However, it is important
to note that during the initial time steps, the difference in the number of detected LKFs between the



7.3. Performance on benchmark problem 51

1 15 30 45 60 75 90

0

0.2

0.4

0.6

0.8

1

·10−10

Time steps

SRE

Figure 7.8: SRE for a recurrently applied model on the benchmark problem. A horizontal dashed line marks ∆2
min

5 15 30 45 60 75 90
0

20

40

60

80

100

120

Time steps

N
r.
of
LK

Fs

Gascoigne
MSE+SRE U-Net

Figure 7.9: Number of linear kinematic features detected by the algorithm by Hutter et al. [86] both the Gascoigne simulation
and the network’s time series prediction.



7.4. Generalisation 52

network’s predictions and the Gascoigne simulation is not substantial. This suggests that the model is
able to predict LKFs for several time steps, effectively capturing the essential features of the sea ice
dynamics in the short term.

Furthermore, as the model’s predictions are fed back as inputs over multiple time steps, small
inaccuracies in the velocity field compound, leading to the formation of artificial patterns. These false
features are erroneously detected by the algorithm as LKFs, causing the rapid rise in the counted
number of LKFs. This suggests that while the model initially struggles to capture newly generated
LKFs, over time it generates noise that is indistinguishable from linear kinematic features. This can be
seen in Figure 7.10 which shows the detected LKFs in the shear deformation field at t = 15 and t = 30.
The parameters of the detection algorithm could be adjusted to be more sensitive towards finding LKFs,
but this would also increase the number of falsely generated and detected LKFs.

(a) Gascoigne t = 15

10−9

10−8

10−7

10−6

10−5

10−4

(b) Network prediction t = 15

(c) Gascoigne t = 15

10−9

10−8

10−7

10−6

10−5

10−4

(d) Network prediction t = 15

Figure 7.10: Detected LKFs in the shear deformation field at t = 15 and t = 30.

7.4. Generalisation
We investigate the data requirements and generalisation behaviour of our neural network models to
understand how training data size affects performance and overfitting. Two key analyses were con-
ducted: one examining the impact of varying training dataset sizes on shear error and generalisation
loss, and another assessing the model’s performance on initial time steps previously excluded from the
training data.

Firstly, we evaluated the shear error on both the training and validation datasets for different training
dataset sizes of 200, 400, 600, and 800 test cases, as shown in Figure 7.11. The training loss remained
approximately constant across all dataset sizes, while the validation loss decreased as the dataset size
increased. This indicates that the model’s ability to generalise improves with more training data, as it



7.4. Generalisation 53

200 400 600 800

0.6

0.8

1

·10−7

Dataset size

Sh
ea

re
rro

r

0

20

40

60

80

G
eneralisation

loss

Validation error
Training error

Generalisation loss

Figure 7.11: The shear error on both the validation (solid) and training dataset versus the dataset size in blue, and the Prechelt
Generalisation loss versus the dataset size.

becomes better at predicting unseen data without overfitting. This is underscored by the decrease in
Prechelt’s generalisation loss:

Generalisation loss = 100 ·
(

Lval

Ltrain
− 1

)
, (7.1)

where Lval and Ltrain are the loss on the validation and training datasets, respectively [61]. Notably,
there is no plateau observed near 800 samples, suggesting that further increases in training data could
continue to enhance performance. Interestingly, the shear loss at 200 samples is comparable to the
shear error obtained from the U-Net trained with the MSE and MSE+MRE loss function, indicating that
incorporating the strain rate error into the loss function not only improves accuracy but also enhances
data efficiency during training.

Secondly, we examined the model’s performance on the full time series of the benchmark prob-
lem, which includes the initial 10 time steps that were previously excluded from the training dataset
due to their non-physical nature dominated by wind forces, as discussed in Section 5.2. Figure 7.12
shows the mean squared error for single step predictions, contrasting the multi-step approach from the
previous section. The results show an exceptionally high error during the first 10 time steps - initially
approximately four orders of magnitude larger than the errors in subsequent time steps. Within these
initial steps, the error decreases sharply to levels consistent with the rest of the dataset. This significant
discrepancy supports the decision to exclude the initial time steps from the training data, as the model
is unable to generalise to these non-physical conditions.

Furthermore, we see that the error is the lowest for the first 20 time steps after the initially removed
steps, after which the error increases steadily before reaching a plateau. Since the model was trained
on data from time steps 10 to 30, and since the error levels still correspond to the MSE of the model on
the validation set as presented in Table 7.2, we can conclude that the model generalises well to data
from longer simulations.

These results confirm that the model’s performance is seriously impacted by the choice of data and
the size of the dataset. An adequate size of the training dataset enables the model to generalise well
to unseen data and accurately capture the complex dynamics of sea ice.



7.4. Generalisation 54

−10 0 10 20 30 40 50 60 70 80 90

10−4

10−3

10−2

10−1

100

Time step

M
SE

Figure 7.12: Mean squared error (MSE) of the predictions on the full benchmark problem. The first 10 steps were originally
removed as they are considered to represent unphysical states and plotted as t < 10.



8
Discussion and conclusions

In this work, we have developed a deep learning-based surrogate model for sea ice dynamics with the
goal of predicting linear kinematic features. Driven by climate change, there is an increasing demand
for accurate sea ice models for both long term predictions to enhance our understanding of climate
systems, and for short term predictions in a forecasting setting, for example, to support maritime nav-
igation. The most commonly used models, based on continuum mechanics and the viscous-plastic
rheology, encounter significant computational challenges at high resolutions, where linear kinematic
features characterising sea ice fields begin to form. To address these limitations, an alternative ap-
proach leveraging machine learning techniques and the integration of domain knowledge has been
explored. Our surrogate model aims to efficiently predict these LKFs. This chapter will discuss each
research question and give conclusions, followed by recommendations for future research.

8.1. Discussion of research questions
Network architecture
To answer the first research question - ‘Which neural network architectures are most effective for pre-
dicting sea ice dynamics at high resolutions?’ - we have examined the performance of different neural
network architectures. Specifically, we trained and compared two architectures - the U-Net and the
classic bottleneck model - using four different loss functions and assessed their performance using the
absolute error of the shear deformation on an unseen subset of the training dataset.

Our analysis revealed that the U-Net consistently outperformed the classic bottleneck, aligning with
the findings of Eichinger et al. [39] in a fluid dynamics application. However, the performance difference
in our study was more pronounced, indicating a greater advantage of the U-Net in the context of sea
ice dynamics. Both architectures feature a bottleneck structure analogous to reduced order models,
but the U-Net’s increased complexity - with skip connections and 30 layers - contributes to its superior
performance compared to the classic bottleneck’s 11 layers.

The U-Net’s additional layers and skip connections facilitate the representation of processes on
different scales within the model, similar to multigrid methods where various scales are captured at
different levels. In contrast, the classic bottleneck structure requires even small scale processes to
be represented in the latent space at a global level, limiting its ability to accurately capture intricate
features such as linear kinematic features.

To ensure a fair comparison, we employed Bayesian optimisation to identify the optimal hyperpa-
rameters for each architecture-loss combination. This approach efficiently converged with only 25 to
40 candidates needed for each pair, significantly reducing computational costs compared to traditional
grid search methods, for which the number of combination scales with pn, where p is the number of
hyperparameters and n is the number of candidates per hyperparameter. For the MSE+SRE models,
for example, having four candidates for each parameter, would require 256 combinations.

A significant challenge observed in our models is the issue of sharpness of the predictions, already
visible in the single step predictions. When applied recurrently, errors in sharpness accumulate over
time, leading to loss of LKFs. Similar smoothness issues were noted by Finn et al. [47] in their varia-
tional autoencoder, which also employs a bottleneck structure. The U-Net, originally designed for image

55



8.1. Discussion of research questions 56

segmentation, relied on thresholding to generate sharp edges in that setting, but this approach may
not fully address the sharpness requirements for sea ice predictions. Suggestions for improvements
are made in Section 8.3.

In summary, our comparative analysis demonstrates that the U-Net architecture significantly out-
performs the classic bottleneck model in predicting sea ice dynamics. This superior performance is
primarily attributed to the U-Net’s greater complexity, characterised by its deeper layer structure and
incorporation of skip connections. However, despite its advantages, the U-Net still faces challenges re-
lated to sharpness of its predictions. These findings highlight the potential of advanced neural network
architectures in modelling sea ice dynamics while also highlighting key areas for future improvement,
such as improving the sharpness of predictions.

Loss functions
In addressing our research question, ‘How do different loss functions, particularly those incorporating
domain knowledge, impact the performance of the model?’, we trained both the U-Net and classic
bottleneck architectures using four distinct loss functions. These included the standard mean squared
error (MSE), as well as the mean relative error (MRE) and the mean squared error in the strain rate,
referred to as the strain rate error (SRE).

Among the various loss functions tested, the combination of mean squared error and strain rate
error (MSE+SRE) resulted in the best representation of sea ice dynamics, as measured by the lowest
shear error. The MSE loss function produced overall good results across the dataset, while the SRE
specifically enhanced the model’s focus on areas with high strain, improving the capture of critical
features in those regions. Additionally, the combination of MSE with the mean relative error (MRE) led
to better performance in areas with low velocity or low strain rate. TheMSE+SRE combination, however,
not only achieved the lowest shear error but also, interestingly, the best MSE, indicating that integrating
both errors leads to a superior representation of sea ice dynamics regardless of the evaluation metric.

The superior performance of the MSE+SRE combination can be attributed to the intrinsic relation-
ship between shear deformation and strain rate. Since shear deformation is a function of strain rate,
training the model using the SRE directly targets the reduction of shear errors, leading to more accurate
predictions. Furthermore, strain is essential in the formation of LKFs, making the focus on strain rates
particularly relevant for capturing these critical features. This integration of domain knowledge through
SRE exemplifies the principles of scientific machine learning, where incorporating physical insights
enhances model performance beyond standard data-driven approaches.

The successful use of the strain rate into the loss function is a novel insight that has not been
explored in existing literature, as the approaches by Belchansky et al. [42], Herbert et al. [43], Chi and
Kim [44], Kim et al. [45], Finn et al. [46], and Finn et al. [47] all use (variations of) L2 or L1 losses. Our
approach demonstrates the benefits of incorporating domain knowledge into machine learning models.
By leveraging scientific machine learning principles, we have enhanced the model’s ability to accurately
and efficiently represent sea ice dynamics, paving the way for more advanced and reliable surrogate
models in the future.

Error accumulation
To answer the research question ‘How does error propagate and accumulate over time?’, we investi-
gated how errors propagate and accumulate when the network’s outputs are used as inputs for subse-
quent predictions. While our model was trained using single time-step predictions, practical forecasting
applications necessitate accurate predictions over multiple time steps.

From the inspection of single time-step errors, we anticipated that problems would primarily arise
around linear kinematic features (LKFs), which are characterised by areas of high strain. The model
exhibited difficulties in producing sharp results in these regions, leading us to expect that errors would
accumulate over time, limiting accurate representation of LKFs. However, since the network predicts
the change in velocity between time steps rather than the new velocity field itself, the influence of
prediction errors is initially limited. The change in velocity is approximately 40 times smaller than the
velocity itself, meaning that early errors have a reduced impact as long as there have not been many
time steps for errors to accumulate significantly.

Our analysis of the model’s multi-step predictions revealed three distinct phases of error accumu-
lation. In the initial phase, errors remain limited and are predominantly localised around LKFs, as the
overall velocity field is still largely influenced by the initial velocity due to its magnitude. As the errors



8.1. Discussion of research questions 57

in small-scale features accumulate, affected regions of sea ice are erroneously modelled in the plastic
instead of the viscous regime. As a result, different error growth behaviour can be observed: the inter-
nal stress of the ice is approximately independent of the strain rate as long as the ice is in the plastic
regime. This independence causes linear growth of the error, due to a significant but constant error
term. Eventually, the error lies in the same order of magnitude as the velocity field and we see a more
rapid growth of errors.

The change in regime is caused by an error in the strain rate. To illustrate, the regime change
is characterised by the parameter ∆min. Strain rates that below this parameter result in the viscous
regime, while significantly larger strain rates cause plastic behaviour. Therefore, once the error in the
strain rate becomes of order ∆min, the ice is typically modelled as a plastic material. The average error
in the strain rate crosses this boundary around time step t = 27, but it happens earlier locally. Since the
forecasting starts to diverge too much from the ground truth when the error in the strain rate becomes
of order ∆min, reducing the strain rate should be an key focus.

In summary, we have found that the model’s predictive skills degenerates after approximately 20
time steps. Despite the challenges associated with error accumulation, it is noteworthy that a trained
network can generate a forecast of 20 steps within a few seconds. In contrast, the Gascoigne simulation
requires approximately an hour to compute the same number of time steps. This is significant difference
in computational efficiency highlights the potential of the surrogate model for applications where rapid
predictions are essential, provided that issues with long-term accuracy can be addressed.

Prediction of linear kinematic features
To address the fourth research question - ‘To what extent can the model accurately predict linear kine-
matic features?’ - we evaluated the model’s performance in forecasting LKFs. Our findings indicate
that the U-Net model trained with the combined mean squared error and strain rate error loss function
is capable of accurately predicting LKFs for up to 10 time steps, corresponding to approximately 5.5
hours of forecasting time. Beyond this point, the forecast begins to degenerate, and the LKF detection
algorithm by Hutter et al. identifies a divergence in the number of LKFs compared to the benchmark
simulations.

To put these findings into perspective, we compared our model’s performance with the results from
Mehlmann et al. [49]. While our model predicts fewer LKFs than their B-grid model, which we used four
our benchmark, the difference is acceptable. The discrepancy is similar to the differences observed
between their A-grid and B-grid simulations or between simulations at different resolutions, such as 2
km versus 4 km. Specifically, after 10 time steps, our model produced 15 LKFs compared to 18 LKFs
in the B-grid model, indicating a reasonable level of accuracy within this forecasting window.

Furthermore, our analysis demonstrates that the model trained using only the MSE loss function is
unable to adequately predict LKFs, underscoring the necessity of incorporating the SRE into the loss
function. The inclusion of the SRE enables the model to focus on capturing the strain rates critical
for LKF formation, thereby enhancing its predictive capabilities within the initial 10 time steps. These
results highlight the key finding of this study: the U-Net model trained with the MSE+SRE loss function
effectively predicts LKFs for short-term forecasts. Recommendations for mitigating error accumulation
to extend this predictive capacity to longer forecasting times are made below.

Data considerations
We now address the final research question, ‘Is the choice of training data critical for the surrogate
model’s performance?’. To train a model for application to the benchmark problem, we generated 800
sample test cases with 30 time steps each. To enhance the training dataset, several data augmentation
techniques were employed, including reflecting and rotating the data and adding multiplicative noise to
the inputs. Furthermore, we removed the initial ten time steps from simulations due to their unphysical
nature. These methods were implemented either to synthetically increase the size of the dataset or to
improve the network’s ability to learn and generalise from the data, thereby ensuring the model could
robustly capture the complex dynamics of sea ice.

We have found that the dataset size and the selection of training data are important factors determin-
ing the performance of the model. Two primary analyses were conducted to support this claim. From
our analysis of the network’s performance for varying dataset sizes, we determined that an increased
volume of training data improves the model’s accuracy, suggesting that a larger dataset could further
improve the network’s predictions. The second analysis focused on evaluating the network’s perfor-



8.2. Conclusions 58

mance on the initially removed unphysical time steps to assess the model’s ability to generalise to data
that differed significantly from the training set. We found that the model generalised poorly on these
initial time steps, underscoring the importance of training data selection. Furthermore, it was found that
the model generalises reasonably well to data from simulations that extend beyond the length of time
series included in the dataset.

Other findings concerning the dataset design include that the addition of multiplicative noise did not
enhance the performance of the MSE+SRE model, as evidenced by the low noise level of 0.1% found
by the Bayesian optimisation. A larger noise level resulted in an increase in the shear error, which
could be explained by the sensitivity of the strain rate error to noise.

8.2. Conclusions
This study has successfully developed a deep learning-based surrogate model for sea ice dynamics
with the goal of predicting linear kinematic features (LKFs). The model effectively predicts LKFs for
short-term forecasts of up to approximately 5.5 hours. Beyond this period, the forecast begins to dete-
riorate, and after 11 hours, the predictions are no longer reliable. Despite this limitation, the surrogate
model offers significant computational efficiency, generating a forecast of 10 steps within a second
compared to 30 minutes required by traditional numerical simulations.

Key findings of the research include the identification of the U-Net architecture as the most effective
neural network model for predicting sea ice dynamics at high resolutions. Its superior performance is
attributed to its depth in terms of layers and incorporation of skip connections, which enable the capture
of complex patterns inherent in sea ice behaviour at different scales. Additionally, the novel integration
of the strain rate error (SRE) into the loss function significantly enhances the model’s ability to predict
LKFs. This approach outperforms traditional loss functions like the mean squared error (MSE) alone,
demonstrating the benefits of incorporating domain knowledge into machine learning models.

However, the study also found that errors accumulate over multiple time steps, leading to a degrada-
tion of predictive accuracy after approximately 20 time steps. This highlights the importance of address-
ing error propagation for long-term forecasting applications. Furthermore, the choice and preparation
of training data were determined to be critical factors influencing the model’s performance and gener-
alisation capabilities.

In summary, by integrating domain-specific insights and employing advanced neural network archi-
tectures, the surrogate model shows promise for rapid, short-term forecasts of sea ice dynamics. To
extend its reliability over longer forecasting periods, recommendations for improving prediction sharp-
ness and reducing error accumulation are presented in the following section.

8.3. Recommendations
To enhance the performance and extend the forecasting capabilities of our deep learning-based surro-
gate model for sea ice dynamics, several key areas for improvement have been identified. Primarily,
increasing the sharpness of the model’s predictions and ensuring a low error in the strain rates over
longer forecasting periods are essential for accurately capturing linear kinematic features (LKFs). The
following recommendations outline potential strategies to address these challenges.

One promising approach is to explore alternative neural network architectures, such as recurrent
neural networks (RNNs), which are inherently designed for time series predictions. Unlike feedforward
networks, RNNs can retain information from previous time steps by passing the encoding or hidden
states forward in time. This capability allows themodel to capture temporal dependencies andmitigates
the accumulation of errors introduced by sequential passes through the decoder and encoder in multi-
step predictions. By leveraging RNN architectures, the model could achieve improved stability and
accuracy over extended forecasting periods, effectively addressing the issue of error propagation in
long-term predictions.

Another method to enhance the model’s performance is the application of adversarial training tech-
niques. In our study, we found that accurately representing strain rates is crucial for the prediction of
LKFs, which was achieved through explicitly adding an error in the strain rate to the loss function. Ad-
versarial training, however, can implicitly learn important aspects of sea ice dynamics, including strain
rates, by training a second, adversarial network to distinguish between true and generated samples.
Kemna et al. [87] demonstrated this approach by employing an adversarial network that learns visual
differences, resulting in more visually convincing predictions. Although their method yielded less ac-



8.3. Recommendations 59

curate predictions compared to direct training on ground truth data, a hybrid approach that combines
adversarial and conventional training showed promising results. Applying a similar strategy to sea ice
dynamics could enhance the model’s ability to maintain sharpness and accurately predict LKFs over
longer time frames.

Furthermore, adversarial training could help suppress error accumulation by encouraging the model
to produce outputs that are consistent with realistic sea ice dynamics. By implicitly learning which fea-
tures are most important for LKF prediction, the model may better capture complex patterns and reduce
the smoothing effects observed in multi-step predictions. This approach not only offers a structural al-
ternative but also provides an opportunity to modify the loss function to better represent critical aspects
of sea ice behaviour.

In addition to architectural and training method improvements, increasing the quantity and diversity
of training data could significantly enhance the model’s performance. A balance between longer time
series and a greater number of test cases should be sought. Extending the length of training sequences
would allow the model to learn sea ice dynamics characteristics that emerge over extended periods,
improving its ability to generalise to longer forecasting horizons. Simultaneously, incorporating more
test cases would introduce a wider variety of scenarios and conditions, providing the model with richer
information, enhancing its robustness, and preventing overfitting.

Lastly, an approach that integrates the surrogate model into the numerical methods could be inves-
tigated. Such an approach would be a typical example of the first scientific machine learning paradigm
detailed in Section 1.2. For example, the surrogate model could provide an initial guess for the New-
ton solver that is then refined by the traditional numerical methods, potentially reducing the number of
iterations required for convergence.

In summary, to improve the surrogate model’s predictive capabilities and extend its effective fore-
casting period, future work should focus on exploring recurrent neural network architectures, imple-
menting adversarial training techniques, and expanding the training dataset. By addressing the issues
of prediction sharpness and error accumulation through these strategies, the model’s accuracy and
reliability in predicting linear kinematic features over longer time frames can be improved, thereby in-
creasing its practical use in applications such as Arctic navigation.



Bibliography

[1] M. Meredith et al. “Polar Regions”. In: IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate. Ed. by H.-O. Pörtner et al. Cambridge University Press, 2019, pp. 203–320.

[2] JGL Rae et al. “Development of the global sea ice 6.0 CICE configuration for the Met Office global
coupled model”. In: Geoscientific Model Development 8.7 (2015), pp. 2221–2230.

[3] Ed Blockley et al. “The Future of Sea Ice Modeling: Where Do We Go from Here?” In: Bul-
letin of the American Meteorological Society 101.8 (2020), pp. E1304–E1311. ISSN: 00030007,
15200477. URL: https://www.jstor.org/stable/27110602.

[4] Salvatore Cuomo et al. “Scientific machine learning through physics–informed neural networks:
where we are and what’s next”. In: Journal of Scientific Computing 92.3 (2022), p. 88.

[5] Deep Ray and Jan S Hesthaven. “An artificial neural network as a troubled-cell indicator”. In:
Journal of computational physics 367 (2018), pp. 166–191.

[6] Nils Margenberg et al. “A neural network multigrid solver for the Navier-Stokes equations”. In:
Journal of Computational Physics 460 (2022), p. 110983.

[7] Xiaoxiao Guo, Wei Li, and Francesco Iorio. “Convolutional neural networks for steady flow ap-
proximation”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 2016, pp. 481–490.

[8] Henry Jin, Marios Mattheakis, and Pavlos Protopapas. “Unsupervised neural networks for quan-
tum eigenvalue problems”. In: arXiv preprint arXiv:2010.05075 (2020).

[9] Jonathan Tompson et al. “Accelerating Eulerian Fluid Simulation With Convolutional Networks”.
In: Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup
and YeeWhye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 3424–
3433. URL: https://proceedings.mlr.press/v70/tompson17a.html.

[10] Michon Scott and Kathryn Hansen. Sea ice. NASA Earth Observatory, 2016. URL: https://
earthobservatory.nasa.gov/features/SeaIce (visited on 05/23/2023).

[11] Nico Wunderling et al. “Global warming due to loss of large ice masses and Arctic summer sea
ice”. In: Nature Communications 11.1 (2020), p. 5177.

[12] Thomas Jung et al. “Advancing polar prediction capabilities on daily to seasonal time scales”. In:
Bulletin of the American Meteorological Society 97.9 (2016), pp. 1631–1647.

[13] Mike Carlowicz. Partial Opening of the Northwest Passage. NASA Earth Observatory. Sept. 13,
2015. URL: https://earthobservatory.nasa.gov/images/86589/partial-opening-of-the-
northwest-passage (visited on 06/08/2023).

[14] Kathryn Hansen. A nearly ice-free Northwest Passage. NASA Earth Observatory. Aug. 20, 2016.
URL: https://earthobservatory.nasa.gov/images/88597/a-nearly-ice-free-northwest-
passage (visited on 06/08/2023).

[15] Mahdi Mohammadi-Aragh et al. “Predictability of Arctic sea ice on weather time scales”. In: Sci-
entific reports 8.1 (2018), p. 6514.

[16] R Kwok et al. “Variability of sea ice simulations assessed with RGPS kinematics”. In: Journal of
Geophysical Research: Oceans 113.C11 (2008).

[17] Nils Hutter, Martin Losch, and Dimitris Menemenlis. “Scaling properties of arctic sea ice deforma-
tion in a high-resolution viscous-plastic sea ice model and in satellite observations”. In: Journal
of Geophysical Research: Oceans 123.1 (2018), pp. 672–687.

[18] Kathryn Hansen. Drifting With Broken Sea Ice. NASA Earth Observatory. Mar. 31, 2020. URL:
https://earthobservatory.nasa.gov/images/146508/drifting- with- broken- sea- ice
(visited on 06/08/2023).

60

https://www.jstor.org/stable/27110602
https://proceedings.mlr.press/v70/tompson17a.html
https://earthobservatory.nasa.gov/features/SeaIce
https://earthobservatory.nasa.gov/features/SeaIce
https://earthobservatory.nasa.gov/images/86589/partial-opening-of-the-northwest-passage
https://earthobservatory.nasa.gov/images/86589/partial-opening-of-the-northwest-passage
https://earthobservatory.nasa.gov/images/88597/a-nearly-ice-free-northwest-passage
https://earthobservatory.nasa.gov/images/88597/a-nearly-ice-free-northwest-passage
https://earthobservatory.nasa.gov/images/146508/drifting-with-broken-sea-ice


Bibliography 61

[19] Ian Joughin et al. “Brief communication: Further summer speedup of Jakobshavn Isbræ”. In: The
Cryosphere 8.1 (2014), pp. 209–214.

[20] Magdalena Łukosz, Ryszard Hejmanowski, and Wojciech T Witkowski. “Analysis of the velocity
changes of the Jakobshavn Glacier based on SAR imagery”. In:Quaestiones Geographicae 41.1
(2022), pp. 93–105.

[21] W D III Hibler. “A dynamic thermodynamic sea ice model”. In: Journal of physical oceanography
9.4 (1979), pp. 815–846.

[22] Chi F Ip, William D Hibler, and Gregory M Flato. “On the effect of rheology on seasonal sea-ice
simulations”. In: Annals of Glaciology 15 (1991), pp. 17–25.

[23] Elizabeth C Hunke and John K Dukowicz. “An elastic–viscous–plastic model for sea ice dynam-
ics”. In: Journal of Physical Oceanography 27.9 (1997), pp. 1849–1867.

[24] Madlen Kimmritz, Sergey Danilov, andMartin Losch. “On the convergence of themodified elastic–
viscous–plastic method for solving the sea ice momentum equation”. In: Journal of Computational
Physics 296 (2015), pp. 90–100.

[25] Jinlun Zhang andWDHibler III. “On an efficient numerical method for modeling sea ice dynamics”.
In: Journal of Geophysical Research: Oceans 102.C4 (1997), pp. 8691–8702.

[26] Jean-François Lemieux et al. “Improving the numerical convergence of viscous-plastic sea ice
models with the Jacobian-free Newton–Krylov method”. In: Journal of Computational Physics
229.8 (2010), pp. 2840–2852.

[27] Jean-François Lemieux et al. “A second-order accurate in time IMplicit–EXplicit (IMEX) integra-
tion scheme for sea ice dynamics”. In: Journal of Computational Physics 263 (2014), pp. 375–
392.

[28] Jean-François Lemieux and Bruno Tremblay. “Numerical convergence of viscous-plastic sea ice
models”. In: Journal of Geophysical Research: Oceans 114.C5 (2009).

[29] C Mehlmann and T Richter. “A modified global Newton solver for viscous-plastic sea ice models”.
In: Ocean Modelling 116 (2017), pp. 96–107.

[30] Carolin Mehlmann and Thomas Richter. “A finite element multigrid-framework to solve the sea
ice momentum equation”. In: Journal of Computational Physics 348 (2017), pp. 847–861.

[31] Yu-hsuan Shih et al. “Robust and efficient primal-dual Newton-Krylov solvers for viscous-plastic
sea-ice models”. In: Journal of Computational Physics 474 (2023), p. 111802. ISSN: 0021-9991.
DOI: https://doi.org/10.1016/j.jcp.2022.111802. URL: https://www.sciencedirect.
com/science/article/pii/S0021999122008658.

[32] Rick Stevens et al. AI for Science: Report on the Department of Energy (DOE) Town Halls on
Artificial Intelligence (AI) for Science. Tech. rep. Department of Energy, Feb. 2020. DOI: 10.2172/
1604756. URL: https://www.osti.gov/biblio/1604756.

[33] Alexander Heinlein et al. “Combining machine learning and domain decomposition methods
for the solution of partial differential equations—A review”. In: GAMM-Mitteilungen 44.1 (2021),
e202100001.

[34] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. “Artificial neural networks for solving
ordinary and partial differential equations”. In: IEEE transactions on neural networks 9.5 (1998),
pp. 987–1000.

[35] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations”. In: arXiv preprint
arXiv:1711.10561 (2017).

[36] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations”. In: arXiv preprint
arXiv:1711.10561 (2017).

[37] Weinan E and Bing Yu. “The deep Ritz method: a deep learning-based numerical algorithm
for solving variational problems”. In: Communications in Mathematics and Statistics 6.1 (2018),
pp. 1–12.

https://doi.org/https://doi.org/10.1016/j.jcp.2022.111802
https://www.sciencedirect.com/science/article/pii/S0021999122008658
https://www.sciencedirect.com/science/article/pii/S0021999122008658
https://doi.org/10.2172/1604756
https://doi.org/10.2172/1604756
https://www.osti.gov/biblio/1604756


Bibliography 62

[38] Yaohua Zang et al. “Weak adversarial networks for high-dimensional partial differential equations”.
In: Journal of Computational Physics 411 (2020), p. 109409.

[39] Matthias Eichinger, Alexander Heinlein, and Axel Klawonn. “Surrogate convolutional neural net-
work models for steady computational fluid dynamics simulations”. In: (2020).

[40] Mario Ohlberger and Stephan Rave. “Reduced basis methods: Success, limitations and future
challenges”. In: arXiv preprint arXiv:1511.02021 (2015).

[41] Chiyuan Zhang et al. “Understanding deep learning (still) requires rethinking generalization”. In:
Communications of the ACM 64.3 (2021), pp. 107–115.

[42] GI Belchansky, David C Douglas, and Nikita G Platonov. “Fluctuating Arctic sea ice thickness
changes estimated by an in situ learned and empirically forced neural network model”. In: Journal
of Climate 21.4 (2008), pp. 716–729.

[43] Christoph Herbert et al. “Sea ice thickness estimation based on regression neural networks using
L-band microwave radiometry data from the FSSCat mission”. In: Remote Sensing 13.7 (2021),
p. 1366.

[44] Junhwa Chi and Hyun-choel Kim. “Prediction of arctic sea ice concentration using a fully data
driven deep neural network”. In: Remote Sensing 9.12 (2017), p. 1305.

[45] Young Jun Kim et al. “Prediction of monthly Arctic sea ice concentrations using satellite and re-
analysis data based on convolutional neural networks”. In: TheCryosphere 14.3 (2020), pp. 1083–
1104.

[46] T. S. Finn et al. “Deep learning of subgrid-scale parametrisations for short-term forecasting of
sea-ice dynamics with a Maxwell-Elasto-Brittle rheology”. In: EGUsphere 2023 (2023), pp. 1–39.
DOI: 10.5194/egusphere-2022-1342. URL: https://egusphere.copernicus.org/preprints/
2023/egusphere-2022-1342/.

[47] Tobias Sebastian Finn et al. “Towards diffusion models for large-scale sea-ice modelling”. In:
arXiv preprint arXiv:2406.18417 (2024).

[48] Carolin Mehlmann. “Efficient numerical methods to solve the viscous-plastic sea icemodel at high
spatial resolutions”. PhD thesis. Dissertation, Magdeburg, Otto-von-Guericke-Universität Magde-
burg, 2019, 2019.

[49] Carolin Mehlmann et al. “Simulating linear kinematic features in viscous-plastic sea ice models
on quadrilateral and triangular grids with different variable staggering”. In: Journal of Advances
in Modeling Earth Systems 13.11 (2021), e2021MS002523.

[50] L Bruno Tremblay and LAMysak. “Modeling sea ice as a granular material, including the dilatancy
effect”. In: Journal of Physical Oceanography 27.11 (1997), pp. 2342–2360.

[51] Roland Becker et al.Gascoigne 3D. URL: https://gascoigne.math.uni-magdeburg.de/index.
php.

[52] Randall J. LeVeque. Finite VolumeMethods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2002.

[53] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[54] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are uni-

versal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.
[55] IanGoodfellow, Yoshua Bengio, and AaronCourville.Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016.
[56] Allan Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta Numerica 8

(1999), pp. 143–195. DOI: 10.1017/S0962492900002919.
[57] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by

back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.
[58] Léon Bottou. “Stochastic Gradient Descent Tricks”. In: Neural Networks: Tricks of the Trade: Sec-

ond Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 421–436. ISBN: 978-3-642-35289-8. DOI: 10 .
1007/978-3-642-35289-8_25. URL: https://doi.org/10.1007/978-3-642-35289-8_25.

https://doi.org/10.5194/egusphere-2022-1342
https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1342/
https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1342/
https://gascoigne.math.uni-magdeburg.de/index.php
https://gascoigne.math.uni-magdeburg.de/index.php
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25


Bibliography 63

[59] B.T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In: USSR
Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17. ISSN: 0041-5553.
DOI: https://doi.org/10.1016/0041-5553(64)90137-5. URL: https://www.sciencedirect.
com/science/article/pii/0041555364901375.

[60] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: International
Conference on Learning Representations (ICLR). San Diega, CA, USA, 2015.

[61] Lutz Prechelt. “Early Stopping - But When?” In: Neural Networks: Tricks of the Trade. Ed. by
Genevieve B. Orr and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 55–69. ISBN: 978-3-540-49430-0. DOI: 10.1007/3-540-49430-8_3. URL: https://doi.
org/10.1007/3-540-49430-8_3.

[62] Tomáš Mikolov. “Statistical Language Models Based on Neural Networks”. PhD thesis. Brno Uni-
versity of Technology, Faculty of Information Technology, 2012.

[63] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the Royal
Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.

[64] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation for nonorthogonal
problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[65] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[66] Moein Hasani and Hassan Khotanlou. “An Empirical Study on Position of the Batch Normalization
Layer in Convolutional Neural Networks”. In: 2019 5th Iranian Conference on Signal Processing
and Intelligent Systems (ICSPIS). 2019, pp. 1–4. DOI: 10.1109/ICSPIS48872.2019.9066113.

[67] Y. Le Cun et al. “Handwritten Digit Recognition: Applications of Neural Network Chips and Auto-
matic Learning”. English (US). In: IEEE Communications Magazine 27.11 (Nov. 1989), pp. 41–46.
ISSN: 0163-6804. DOI: 10.1109/35.41400.

[68] PyTorch. torch.nn.Conv2d — PyTorch 2.3 documentation. 2023. URL: https://pytorch.org/
docs/stable/generated/torch.nn.Conv2d.html (visited on 07/16/2024).

[69] TensorFlow. tf.nn.convolution — TensorFlow Core v2.16.1 documentation. 2023. URL: https:
//www.tensorflow.org/api_docs/python/tf/nn/convolution (visited on 07/16/2024).

[70] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep learning”. In:
ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[71] Matthew D. Zeiler et al. “Deconvolutional networks”. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2010, pp. 2528–2535. DOI: 10.1109/CVPR.2010.
5539957.

[72] Augustus Odena, Vincent Dumoulin, and Chris Olah. “Deconvolution and Checkerboard Arti-
facts”. In: Distill (2016). DOI: 10.23915/distill.00003. URL: http://distill.pub/2016/
deconv-checkerboard.

[73] Brendan Analikwu. Data generation for deep learning based sea ice dynamics. URL: https :
//github.com/BrendanAnalikwu/MasterThesisGascoigne.

[74] M Eren Akbiyik. “Data augmentation in training CNNs: injecting noise to images”. In: arXiv preprint
arXiv:2307.06855 (2023).

[75] Peng Zhang et al. Advancing Gamma-Ray Burst Identification through Transfer Learning with
Convolutional Neural Networks. 2024. arXiv: 2408.13598.

[76] Kartik Audhkhasi, Osonde Osoba, and Bart Kosko. “Noise-enhanced convolutional neural net-
works”. In: Neural Networks 78 (2016), pp. 15–23.

[77] Pieter Wesseling. Introduction to multigrid methods. John Wiley & Sons Ltd., 1992.
[78] DanHendrycks and KevinGimpel. “Gaussian error linear units (GELUs)”. In: arXiv preprint arXiv:1606.08415

(2016).
[79] HarisIqbal88. PlotNeuralNet GitHub repository. URL: https : / / github . com / HarisIqbal88 /

PlotNeuralNet/ (visited on 08/12/2024).

https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1109/ICSPIS48872.2019.9066113
https://doi.org/10.1109/35.41400
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://www.tensorflow.org/api_docs/python/tf/nn/convolution
https://www.tensorflow.org/api_docs/python/tf/nn/convolution
1603.07285
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://github.com/BrendanAnalikwu/MasterThesisGascoigne
https://github.com/BrendanAnalikwu/MasterThesisGascoigne
https://arxiv.org/abs/2408.13598
https://github.com/HarisIqbal88/PlotNeuralNet/
https://github.com/HarisIqbal88/PlotNeuralNet/


Bibliography 64

[80] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015. Ed. by Nassir Navab et al. Cham: Springer International Publishing, 2015, pp. 234–
241. ISBN: 978-3-319-24574-4.

[81] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. “The Application of Bayesian Methods
for Seeking the Extremum”. In: Towards Global Optimization 2.117-129 (1978), p. 2.

[82] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateS-
pace, 2009. ISBN: 1441412697.

[83] Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation”. In: 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM,
Apr. 2024. DOI: 10.1145/3620665.3640366. URL: https://pytorch.org/assets/pytorch2-
2.pdf.

[84] Brendan Analikwu.Deep learning based sea ice dynamics. URL: https://github.com/BrendanAnalikwu/
MasterThesis.

[85] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[86] N. Hutter, L. Zampieri, and M. Losch. “Leads and ridges in Arctic sea ice from RGPS data and
a new tracking algorithm”. In: The Cryosphere 13.2 (2019), pp. 627–645. DOI: 10.5194/tc-13-
627-2019. URL: https://tc.copernicus.org/articles/13/627/2019/.

[87] Mirko Kemna, Alexander Heinlein, and Cornelis Vuik. “Reduced order fluid modeling with gen-
erative adversarial networks”. In: Proc. Appl. Math. Mech. Vol. 23. 1. 2023, e202200241. DOI:
10.1002/pamm.202200241. URL: https://onlinelibrary.wiley.com/doi/10.1002/pamm.
202200241.

https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/BrendanAnalikwu/MasterThesis
https://github.com/BrendanAnalikwu/MasterThesis
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.5194/tc-13-627-2019
https://tc.copernicus.org/articles/13/627/2019/
https://doi.org/10.1002/pamm.202200241
https://onlinelibrary.wiley.com/doi/10.1002/pamm.202200241
https://onlinelibrary.wiley.com/doi/10.1002/pamm.202200241


Appendices

65



A
Examples of training data

Here, we show some examples of randomly generated test cases that are used as training or validation
data. The sea ice velocity in both the x- and y-direction is presented, as well as the wind velocity field,
sea ice concentration and the shear deformation. The visualisations are made for t = 20 for all test
cases.

66



67

−1

0

1

·10−4

(a) Sea ice velocity in the x-direction after 20 time steps.

−1

0

1

·10−4

(b) Sea ice velocity in the y-direction after 20 time steps.

0.2

0.4

0.6

0.8

1

(c) Sketch of the Wind velocity field in terms of vmaxa .

0.75

0.8

0.85

0.9

0.95

1

(d) Sea ice concentration after 20 time steps.

10−10

10−8

10−6

10−4

(e) Shear deformation after 20 time steps.

Figure A.1: Gascoigne solution from the training dataset. H0 = 0.414 m and vmaxa = 10.0 m/s.



68

−2

0

2

·10−4

(a) Sea ice velocity in the x-direction after 20 time steps.

−2

0

2

·10−4

(b) Sea ice velocity in the y-direction after 20 time steps.

0.2

0.4

0.6

0.8

1

(c) Sketch of the Wind velocity field in terms of vmaxa .

0.75

0.8

0.85

0.9

0.95

1

(d) Sea ice concentration after 20 time steps.

10−10

10−8

10−6

10−4

(e) Shear deformation after 20 time steps.

Figure A.2: Gascoigne solution from the training dataset. H0 = 0.174 m and vmaxa = 17.4 m/s.



69

−2

−1

0

1

2

·10−4

(a) Sea ice velocity in the x-direction after 20 time steps.

−2

−1

0

1

2

·10−4

(b) Sea ice velocity in the y-direction after 20 time steps.

0.2

0.4

0.6

0.8

1

(c) Sketch of the Wind velocity field in terms of vmaxa .

0.75

0.8

0.85

0.9

0.95

1

(d) Sea ice concentration after 20 time steps.

10−9

10−8

10−7

10−6

10−5

10−4

(e) Shear deformation after 20 time steps.

Figure A.3: Gascoigne solution from the training dataset. H0 = 0.226 m and vmaxa = 14.5 m/s.



70

−2

−1

0

1

2

·10−4

(a) Sea ice velocity in the x-direction after 20 time steps.

−2

−1

0

1

2

·10−4

(b) Sea ice velocity in the y-direction after 20 time steps.

0.2

0.4

0.6

0.8

1

(c) Sketch of the Wind velocity field in terms of vmaxa .

0.75

0.8

0.85

0.9

0.95

1

(d) Sea ice concentration after 20 time steps.

10−9

10−8

10−7

10−6

10−5

10−4

(e) Shear deformation after 20 time steps.

Figure A.4: Gascoigne solution from the training dataset. H0 = 0.399 m and vmaxa = 10.8 m/s.



B
Time series results

The results of the recurrent application of the optimised MSE+SRE U-Net. The figures show the re-
sults for time steps t = 5, 10, 15, 20, 25, 30, 50, 90. Figure B.1 shows the x-component of the velocities,
Figure B.2 shows the change in velocity in the current time step, Figure B.3 shows the concentrations,
and Figure B.4 shows the shear deformations.

71



72

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·10−4

Figure B.1: x-component of the velocity for time steps t = 5, 10, 15, 20, 25, 30, 50, 90.

−5 −4 −3 −2 −1 0 1 2 3 4 5

·10−6

Figure B.2: Change in velocities since the last time step, for time steps t = 5, 10, 15, 20, 25, 30, 50, 90.



73

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Figure B.3: Sea ice concentrations for time steps t = 5, 10, 15, 20, 25, 30, 50, 90.

−9 −8.5 −8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4

Figure B.4: Shear deformation for time steps t = 5, 10, 15, 20, 25, 30, 50, 90, plot using logarithmic color scales.


	Summary
	Acknowledgements
	Introduction
	Sea ice modelling
	Scientific machine learning
	Research aim
	Thesis outline

	Sea ice model
	Model description
	Rheology
	Dimensionless model

	Numerical methods
	Spatial discretisation
	Finite volume method
	Time discretisation for the sea ice problem
	Weak formulation of the momentum equation
	Newton method
	Solving of linear system

	Machine learning techniques
	Artificial neural networks
	Neural network training
	Optimisers
	Enhancing training convergence
	Convolutional neural networks

	Data generation
	Benchmark problem
	Training data
	Data augmentation

	Network design
	Network architecture
	Loss functions
	Training phase
	Hyperparameter optimisation
	Implementation

	Results
	Hyperparameter optimisation
	Qualitative comparison
	Performance on benchmark problem
	Generalisation

	Discussion and conclusions
	Discussion of research questions
	Conclusions
	Recommendations

	Bibliography
	Appendices
	Examples of training data
	Time series results

