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1 Keypoint Identification
Given a set of images I1, ..., In, which we will assume to be of grayscale 0, ..., 255
intensities, the first step of the pipeline is to identify distinctive locations, i.e.
keypoints. This chapter will be split in two sections, ‘keypoint extraction’ will
focus on identifying keypoint location and sizes, whereas ‘keypoint description’
will illustrate how each keypoint may be supplied with an accurate and discrim-
inative descriptor vector.

1.1 Keypoint Extraction
Blob Detection. Within the computer vision domain, Li et al. (2015) clas-
sified different feature detectors as edge detectors, corner detectors, and blob
detectors. For keypoint extraction purposes usually blob detection algorithms
are used.
Consider two random binary image patches in figure 1. Let the red squares
denote candidate keypoints. The 3× 3 patches to the side of the image patches
denote the extracted candidate keypoints, and variations created by slightly
shifting it to either side. Let (x0, y0) denote the centre of the candidate keypoint.
Now, for all shift vectors (u, v), a good 3× 3 blob keypoint would maximise:∑

i,j∈{−1,0,1}

|I(x0 + i, y0 + j)− I(x0 + i+ u, y0 + j + v)|. (1)

Figure 1: Two random binary image patches (7×7), with candidate keypoints marked
in red. To the side are patches (3 × 3) that denote the keypoint, created by using
different shift vectors (u, v) where u, v ≤ 1.

Considering only sift vectors where u, v ≤ 1, the candidate keypoint on the left
produces absolute differences of {2, 2, 1, 1, 1, 1, 2} in natural reading order. On
the other hand, the second keypoint produces {5, 3, 3, 3, 3, 3, 3, 4}, making it a
better blob keypoint.

Laplacian of Gaussian. In practice it is difficult to explicitly compute the
difference as described in equation 1. A multitude of methods for finding such
locations by different means exist. Li et al. (2015) identify the Laplacian of
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Gaussian (LoG) as a classical method for blob detection. Consider an image
I(x, y), a Gaussian scale-space can first be constructed as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2)

where ∗ denotes the convolution operator, and:

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (3)

Consequently the Laplace operator is applied to the scale space as:

∇2L(x, y, σ) = Lxx(x, y, σ) + Lyy(x, y, σ). (4)

Now, extrema in ∇2L will correspond to blob keypoints in I of radius r =
√

2σ.
Intuitively one may think of it as the difference in equation 1 being large when
the partial derivatives are large at the image location.

Difference of Gaussian. A remaining problem of the LoG keypoint detection
algorithm is the computation of ∇2L in practice. Presumably the most common
approach to overcome this problem is the Difference of Gaussian (DoG), as
first introduced within the popular scale invariant feature transform (SIFT)
framework (Lowe, 2004). Consider again the scale-space of an image I(x, y) as
defined in equation 2. The DoG-space can be defined as:

D(x, y, σ) =
(
G(x, y, kσ)−G(x, y, σ)

)
∗ I(x, y),

= L(x, y, kσ)− L(x, y, σ),
(5)

where k > 1. This DoG-space can be seen as an approximation to ∇2L:

∇2L(x, y, σ) ≈ σ

∆σ

(
L(x, y, σ + ∆σ)− L(x, y, σ)

)
≈ D(x, y, σ). (6)

Thus, extrema in D(x, y, σ) again correspond to keypoints of radius r =
√

2σ in
I. For the explicit relation between the DoG-space and the LoG, see Lindeberg
(2015, p. 31).

Discrete Difference of Gaussian. In order to handle a range of different
σ values, a pyramid approach is normally used (Lowe, 2004). First, the scale-
space L(x, y, σ) is discretely computed as Lo,s, where o denotes the number of
the octave, and s the number of the scale. A configuration used by SIFT is
shown in figure 2.
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Figure 2: Default configuration of the discrete scale-space used by SIFT.

Here, the σ-axis denotes the scale, and the δ-axis denotes the inter-pixel dis-
tance. An arrow up or down corresponds to sub-sampling or expansion of the
image using bi-linear interpolation, respectively. Furthermore, an arrow to the
right denotes convolving the image with the Gaussian defined in equation 3,
where σ = 3

√
2. Thus, three sequential arrows to the right double the scale,

since (Lowe, 1999, p. 3):

G(x, y,
3
√

2) ∗

(
G(x, y,

3
√

2) ∗
(
G(x, y,

3
√

2) ∗ I(x, y)
))

= G(x, y, 2) ∗ I(x, y). (7)

Suppose we consider Lo,s that corresponds to some discrete scale σ0. Now,
Lo,s+1 corresponds to the scale 3

√
2σ0. Thus a discrete DoG-space can be com-

puted using equation 5 with k = 3
√

2 as:

Do,s = Lo,s+1 − Lo,s. (8)

The resulting configuration for the discrete DoG-space is depicted in figure 3.

Figure 3: Default configuration of the discrete DoG-space used by SIFT.

Again, one is interested in extrema in the discrete DoG-space, as these corre-
spond to keypoint locations in our image. To find discrete extrema, a pixel in
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Do,s is compared to its 26 neighbours. Note that a pixel has eight neighbours
in Do,s itself, and both nine in Do,s−1 and Do,s+1. Note also that this excludes
the first and last scale from each octave. The discrete spaces eligible for ex-
trema detection are underlined in figure 3. When some pixel (x0, y0) in Do,s

that corresponds to the scale σ0 is such an extrema, (x0, y0, σ0) is considered as
a keypoint.

Keypoint Refinement. The previously described scanning for discrete ex-
trema is sensitive to noise and may produce unstable keypoints (Rey Otero
and Delbracio, 2014). Therefore, the locations of keypoints is usually revised,
and outliers are filtered. First, the position can be refined by locally fitting a
three-dimensional quadratic function to the DoG-space as originally proposed
by Brown and Lowe (2002). This is especially important for keypoints at higher
octaves, as the sub-sampling has created large inter-pixel distances δ here. Next,
low contrast keypoints are discarded based on some threshold:

if |D(x0, y0, σ0)| < CDoG then discard (x0, y0, σ0) as keypoint. (9)

As described before, for keypoint in a photogrammetry context we are interested
in blob features, and not so much in edge features. However, the discrete DoG-
space approach may unintentionally pick up on edge features. As a last step
these are filtered based on the Hessian matrix at the keypoint location:

H(x0,y0,σ0) =

[
Dxx(x0, y0, σ0) Dxy(x0, y0, σ0)
Dyx(x0, y0, σ0) Dyy(x0, y0, σ0).

]
(10)

In practice this matrix can be computed using a finite difference scheme (Rey Otero
and Delbracio, 2014). The eigenvalues of H will be close to equal for a blob
keypoint, while an edge will have a dominant gradient direction and thus a large
ratio between eigenvalues. The last filter is defined as:

if
λmax
λmin

> CEdge then discard (x0, y0, σ0) as keypoint, (11)

where λ denotes the eigenvalues of H(x0,y0,σ0). In practice the eigenvalues of the
Hessian need not actually be computed, as only the ratio is relevant, which can
be derived from the trace and determinant of the Hessian, see Rey Otero and
Delbracio (2014, p. 382).

1.2 Keypoint Description
At this point a set of keypoints and their scale is known, i.e., we have a set of
keypoints as (x0, y0, σ0). The keypoints are assigned a description such that
corresponding keypoints in different images can be matched later. First, a
dominant orientation is assigned, after which a description vector is created.

Keypoint Orientation. For some keypoint (x0, y0, σ0) a histogram of gradient
orientations is created around the keypoint in the image Li,j that is closest to
the scale σ0. Typically this histogram has 36 bins, while each contribution is
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weighted by the gradient magnitude as well as a Gaussian that has its origin in
the keypoint as has a sigma of 1.5σ0. Finally, the histogram can be smoothed,
for example by iteratively applying a three-tap box filter, see Rey Otero and Del-
bracio (2014). Define hi as the value of bin i that corresponds to the orientation
θi. A reference orientation is selected for a keypoint if:

hi > hi− , where i− = (i− 1)mod(36),

hi > hi+ , where i+ = (i+ 1)mod(36),

hi ≥ 0.8 ·maxk(hk).

(12)

Notice that this selects an orientation if it is a local maximum that is at least
larger as 80% of the global maximum. Therefore, multiple orientations may
be selected, in which case the keypoint is ‘split’ in multiple keypoints at the
same location with different orientations. Finally, the keypoint orientation for
(x0, y0, σ0, θ0) is refined as:

θ0 = θi + 10

(
hi− − hi+

hi− − 2hi + hi+

)
, (13)

where θi is the selected maximum in equation 12.

Keypoint Description Vector. For each keypoint (x0, y0, σ0, θ0) a square
patch is extracted that has a size corresponding to the scale σ0, such that the
reference orientation θ0 now points upwards, see figure 4.

Figure 4: Given a keypoint (first image) with reference orientation, a square patch is
extracted (second image) that has a normalised orientation. Next, gradient orientation
in this square patch is described by an array of histograms (third image), which will
be converted to a description vector f (fourth image).

The description vector will be created out of surrounding gradient orientations.
First, an array of four by four histograms is created in the extracted patch,
that represent orientation by eight bins. Every gradient orientation value in
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the extracted patch corresponds bi-linearly to the centres of the four nearest
histograms. Furthermore, a contribution to a histogram is also split linearly
to its two nearest corresponding bins. The array of histograms is then used
to create a 128-dimensional (4 × 4 × 8) feature vector, see figure 4. Once the
feature vector f is constructed for a keypoint, each component is first revised
as fk = min(fk, 0.2 · ‖f‖) as to reduce the impact of illumination changes
(Rey Otero and Delbracio, 2014). After this the vector is normalised such
that ‖f‖2 = 512. Finally, the vector is converted to an 8-bit integer vector as
fk = min(bfkc, 255) in order to lower computational costs.

2 Keypoint Matching
At this point we both our initial set of images I1, ..., In and a set of keypoints
(x0, y0, σ0, θ0) each with some descriptor f for each image. The goal of keypoint
matching is to find images that overlap each other, and identify a set of keypoints
in the first image that corresponds to another set of keypoints in the second
image.

2.1 Two Nearest Neighbours
For a single keypoint (x0, y0, σ0, θ0) with descriptor f we are essentially search-
ing for the nearest neighbour to f in the space of all descriptors (except those
from the same image). For such a match it is useful to evaluate the quality of
the matching, however, using for example the distance between the vectors will
not suffice as the descriptor space is non-linear. Therefore, one often searches
for two nearest neighbours (2-NN) to f instead of one. When:

‖f − fn1
‖2 < Cmatch ‖f − fn2

‖2 , (14)

we accept fn1
as a match to f , where fn1

is the nearest neighbour, fn2
is the

second nearest neighbour, and Cmatch is for example equal to 0.8. This criterion
is effective in assessing the quality of a match, however, it may kill keypoint
matches in repetitive structures (Lowe, 2004).

2.2 Approximate Nearest Neighbours
In a typical application one often extracts in the order of 10.000 keypoints per
image. When the number of images grows large as well, it is desirable to speed-
up the procedure of finding the two nearest neighbours. This may be done
using approximate nearest neighbour (A-NN) searches, or by matching images
beforehand, thus also possibly creating an approximate nearest neighbour result.

Approximate Vector Matching. Using the classical A-NN approach of space
partitioning by the means of building a tree, an approximate match to f can
be found in the complete set of descriptors. Muja and Lowe (2009) identify two
methods for building this tree, either hierarchical k-means trees, or randomised
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k−d trees. They conclude that hierarchical k-means is best suited for a general
purpose, while k−d trees may perform better on certain datasets, therefore, we
will focus on hierarchical k-means trees. Given the set of all keypoints, k-means
clustering is applied, which determines k cluster centres. Using these cluster
centres, the space can be partitioned using Voronoi diagrams. After this, each
partitioned space can be divided into k new partitions again, see figure 5.

Figure 5: Creation of the hierarchical k-means tree using k = 3. A circle represents a
centre of one of the k-means clusters, the diamond represents the top of the tree. The
tree corresponding to the hierarchical clustering at each step is shown to the right.

This process may be carried out for a certain number of layers, or until each
partitioned space contains k or less descriptors. Having constructed this tree
once for the set of all descriptors, A-NN searches may for example be carried
out by starting on the leaf corresponding to f and traversing up the tree for
a fixed number of nodes. Thus one compares only a limited set of candidate
matches to f .

Image Matching. Alternatively, one can limit the set of the descriptors that
need to be compared to f by matching the image in which f was found to a
limited set of different images. Image matching may be carried out by creating
a vocabulary tree (Nist and Stew, 2006). This tree is again build by using for
example hierarchical k-means clustering. Once a tree is built for the complete
set of keypoint descriptors, and image descriptor may be defined for each image
by passing the descriptors of all it’s keypoints to the tree. The image descriptor
is defined as the number of keypoint descriptors that end up at a certain node:

qi = ni · wi, (15)

where qi is the i-th position of the image descriptor q, ni is the number of
keypoint descriptors that end up on leaf i of the tree, and optionally, wi may
be some sort of weighing of the leafs. Now, a distance between two images can
be defined as: d(I1, I2) =

∥∥q1/ ‖q1‖ − q2/ ‖q2‖
∥∥.

2.3 Geometric Filtering
Consider two image I1 and I2 that look at the same scenery. Consider some
point in the scenery that is observed in the first image at location p̂1 and in
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the second image at p̂2. All such corresponding points can be related by the
essential matrix E as:

p̂1Ep̂2 = 0. (16)

The essential matrix will be discussed in more detail in the next chapter, but it
can be computed when at least 7 such correspondences are known. This rela-
tionship is commonly used in a random sample consensus (RANSAC) framework
to remove outlier keypoint matches. Consider again two images I1 and I2 with
n keypoint locations p̂0,...,n

1 and p̂0,...,n
2 respectively, such that p̂i1 ↔ p̂i2 is a

matched keypoint, etc. In the RANSAC framework 7 matched keypoints are
randomly selected, and the essential matrix E′ is derived from these supposed
correspondences. Next, the number of inliers for this supposed essential matrix
E′ is determined as:

p̂i1E
′p̂i2 < ε, (17)

for some threshold error ε. The random set of matched keypoints that produces
the largest number of inliers is assumed to be correct. All the inliers for this set,
and thus also the random set itself, is kept, while the other matched keypoints
are now discarded. The parameter ε may be set by a user, or alternatively, one
may determine it a contrario, see Moulon et al. (2012).

3 Structure from Motion
Currently a number of correspondences, i.e. matched keypoints, is known be-
tween the given set of images. These matched keypoints have been filtered such
that the geometric relationship they define is consistent. The next step, Struc-
ture from Motion (SfM), aims to further understand this geometric relationship.
First, key definitions will be given that describe this geometric relationship, such
as the essential matrix. After that the incremental structure from motion algo-
rithm will be described, which allows us to find these geometric relations. Al-
ternatively, different approaches exist such as global SfM (Moulon et al., 2013),
hierarchical SfM (Toldo et al., 2015), or multi-stage SfM (Shah et al., 2015).

3.1 The Essential Matrix
First, the construct of the essential matrix E will be derived in 3-dimensional
space. Next, the relation between 3- and 2-dimensional coordinates, as well as
homogenised coordinates will be explained. Finally, it is shown that the same
essential matrix also relates points in 2-dimensional space.

Three-Dimensional Space. Consider two cameras in three dimensional space,
and their separate 3-dimensional coordinate systems (x1, y1, z1), or x1, and
(x2, y2, z2), or x2, respectively. Consider also a point in space that is seen by
both cameras, see figure 6. Let p1 denote the position of this point with respect
to the coordinate system of the first camera, and p2 the position of this point
with respect to that of the second camera. Furthermore, let t denote the vector
from the origin of the first coordinate system to the second coordinate system.
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Figure 6: Two cameras and their 3-dimensional coordinate systems, x1 and x2, and
a single point in space that is seen by both cameras, p1 and p2.

Since three points in space are always co-planar, that is, there exists a geometric
plane on which all points lie, we can formulate a coplanarity conditions for p1,
p2, and t, with respect to the first coordinate system as:

p1 · (t× p2) = 0. (18)

However, now p2 is a vector in the first coordinate system x1. In order to allow
for the vector to be in its ‘own’ coordinate system, one needs to incorporate the
rotation between the two coordinate systems. Consequently, there exists a 3×3
rotation matrix R between x1 and x2 such that:

p1 · (t×R p2) = 0, (19)

where now, p1 is a vector in x1, and p2 is a vector in x2. Combining both t
and R, the 3× 3 essential matrix E is defined as E = t×R, such that:

pT1 Ep2 = 0. (20)

Three- and Two-Dimensional Space. Consider one camera and its cor-
responding coordinate system (x, y, z), or x, see figure 7. In this coordinate
system, the z-axis denotes the direction in which the camera is pointed. Con-
sider also the image plane of the camera, which has coordinate system (x̂, ŷ), or
x̂. The image plane is located a focal length, f , behind the camera. However,
note that for geometric reasons it may as well be depicted in front of the camera,
as is done in the figure.
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Figure 7: Relationship between a 3-dimensional coordinate system of a camera and
the 2-dimensional coordinate system of the image plane corresponding to that camera.

A point (u, v, w) in the 3-dimensional coordinate system is related to a pixel
(û, v̂) in the 2-dimensional coordinate system by:[

û
v̂

]
=
f

w

[
u
v

]
, (21)

as w > 0 is in the viewing direction. Usually, cameras are normalised such that
f = 1. In general, one can thus homogenise the two coordinate systems x and
x̂ as: x̂ŷ

1

 =
1

z

xy
z

 ,
x̂ = z−1x.

(22)

Two-Dimensional Space. Consider again two cameras and their separate
coordinate systems x1 and x2. Consider also the corresponding images planes
x̂1 and x̂2. Furthermore, suppose that the coordinate systems have been ho-
mogenised such that equation 22 holds. Now, consider a point that is observed
by both cameras as p1 and p2, respectively. Previously, it was shown that these
points are related by the essential matrix in 3-dimensional space as pT1 Ep2 = 0.
It can be shown that the corresponding pixels in the image planes x̂1 and x̂2

are related by the same essential matrix E:

pT1 Ep2 = 0,

1

pz1p
z
2

pT1 Ep2 = 0,

(pz1)−1pT1 E(pz2)−1p2 = 0,

p̂T1 Ep̂2 = 0,

(23)

where pz1 denotes the z-component of p1. Furthermore, it was used that (pz1)−1p1 =
p̂1, as follows from the homogenised coordinates.
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3.2 Incremental Structure from Motion
In incremental structure from motion, one starts with two cameras, defines
rotation and translation between these cameras, and triangulates keypoints into
space. Now, cameras may iteratively be added, for which we can follow the
same steps. Additionally, when adding cameras bundle adjustment is usually
performs, which optimises error over a larger set of cameras.

Initial Pair of Cameras. First, a connectivity graph G′ is constructed, in
which each camera is a node, and an edge is present between cameras when the
images share a sufficient number of matched keypoints. Let G denote the largest
connected graph within G′. The initial pair of cameras is selected as an edge
in G that has both a large number of matched keypoints, but also a sufficiently
wide baseline, i.e., a sufficiently large t, see figure 6. This is required for reliable
3-dimensional reconstruction.
For this selected pair of cameras, the essential matrix E must be computed.
Consider a matched keypoint p̂1 ↔ p̂2 between the images, equation 23 may be
written as:

[
p̂x1 p̂

x
2 p̂x1 p̂

y
2 p̂x1 p̂y1 p̂

x
2 p̂y1 p̂

y
2 p̂y1 p̂x2 p̂y2 1

]

E11

E12

...
E33

 = 0, (24)

where p̂x1 denotes the location of the keypoint in the first image along the x-axis,
etc. Formulating it such as in equation 24, additional keypoints may be added to
the leftmost matrix as extra rows. Now, we have Ax = 0, where x corresponds
to E. The non-trivial solution can be found as the eigenvector corresponding
to the zero eigenvalue of ATA. Consider the singular value decomposition of A
as A = UΣV T . Now, x is the column of V corresponding to the null eigenvalue
on the diagonal of Σ, thus, the rightmost column of V in ordered single value
decomposition.
Recall that the essential matrix consists of translation and rotation as E = t×R,
see equation 19. Decomposing E again using singular value decomposition as
E = MΣNT , we have that t is either m3 or −m3, where m3 is the last column
of M . Furthermore, R is equal to either MWNT or MWTNT , where:

W =

0 −1 0
1 0 0
0 0 1

 . (25)

Thus, there exist a total of four options for pose once the essential matrix is
found. However, three of these correspond to a scenario in which the scene is
behind the cameras. Thus, the correct pose can be uncovered by triangulating
keypoints and verifying that all z values are positive. This is true since the
z-axis corresponds to the viewing direction, see figure 7.

Next Best Camera. Having uncovered relative pose for two cameras and tri-
angulated keypoints relative to that, an additional camera is added. Suppose a
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visited edge and its nodes is added to the set V . The next camera is selected as
an edge in the cut set C = {(u, v) ∈ G | u ∈ V, v ∈ G \ V } that has the highest
number of keypoints matched to the set of already triangulated keypoints. Now,
t and R are estimated as before, and additional keypoints may be triangulated.
Note that keypoints are triangulated based on the relative position of two cam-
eras. When iteratively adding more and more cameras, error in pose may ac-
cumulate and cause incorrect triangulation. Therefore, bundle adjustment is
usually performed after adding an additional camera. Bundle adjustment refers
to the large optimisation problem of minimising all projection errors of the key-
points. More formally, consider a total of n keypoints andm cameras. Let vij be
an indicator function that is equal to one when keypoint i is observed by camera
j, and zero otherwise. Let the pose of camera j be denoted by the vector ej .
Furthermore, let the location in 3-dimensional space of the keypoint i be given
by pi. The function P (pi, ej) denotes the 2-dimensional location of the keypoint
i in the image plane of camera j as a result of the chosen projection location pi
and pose ej . On the other hand, let x̂ij denote the location of keypoint i in the
image plane of camera j as previously determined by the keypoint identification
process. Finally, let d(·, ·) denote the 2-dimensional euclidean distance. The
bundle adjustment minimisation problem is given as:

min
ej ,pi

 n∑
i=1

m∑
j=1

vij d
(
P (pi, ej), x̂ij

)2 . (26)

In this minimisation problem, the previously determined t and R serve as ini-
tialisation for ej , while pi is initialised by the triangulation.
Bundle adjustment may be performed after adding a certain number of new
cameras, and may be both global or locally. The latter here refers to optimising
not the complete set of cameras, but for example only recently added cameras
and their neighbours, thus keeping n and m small.

4 Depthmap Estimation
After structure from motion, the relative poses of cameras are known, as well
as the locations of keypoints they share in 3-dimensional space relative to the
cameras. This 3-dimensional point cloud is often too sparse for the purposes
of either meshing or orthographic projections, thus extra points have to be
added. This is achieved by computing depthmaps. First, key definitions for
depthmap computations are given. Next, the algorithmic principles of depthmap
or disparity map computation are given. And finally it is explained how this
relates to a denser point cloud.

4.1 Epipolar Geometry
The principles of depthmap computation are largely based on the concept of
epipolar geometry. The epipolar geometry can be seen as the geometric rela-
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tionship between images that is defined by the essential matrix.

Epipolar Lines. Consider two cameras and their corresponding images I1
and I2 which have homogenised coordinate systems x̂1 and x̂2, respectively.
Consider also a known essential matrix E that relates these images, as previously
defined in equation 23. Suppose we were to fix some point (û1, v̂1) in image I1.
Filling this in: û1v̂1

1

T E
x̂2ŷ2

1

 = 0,

ax̂2 + bŷ2 + c = 0,

(27)

we find that the point (û1, v̂1) must correspond to a pixel on the given line in
image I2. Here, a = û1E11 + v̂1E21 +E31, etc. Intuitively one may think of it as
follows, depending on the depth of the actual point corresponding to (û1, v̂1),
the location where it is observed in I2 varies, see figure 8.

Figure 8: The point (a1, b1) in image I1 corresponds to an epipolar line ax2+by2+c =
0 in image I2. The exact correspondence to the point can be found along the line, and
depends on the actual depth of the structure that is observed.

Conversely, any point in image I2 that lies on the line ax̂2 + bŷ2 + c = 0,
corresponds to one unique epipolar line in image I1. This is true since the plane
that spans either one of the set of vectors {t,pm} and {t,pn} will intersect
the image plane I1 on the same line. Thus, there exist pairs of epipolar lines in
images I1 and I2, such that any point on one of the lines should exists somewhere
on the other line.

Rectified Epipolar Geometry. Consider two images I1 and I2, their essential
matrix E, and the epipolar lines that this essential matrix E defines. There exist
two transformations H1 and H2, such that for Ĩ1 = H1(I1) and Ĩ2 = H2(I2) we
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have a new essential matrix E∗, where:

E∗ =

0 0 0
0 0 1
0 −1 0

 . (28)

An overview of this step, also referred to as ‘rectification’ of the epipolar geom-
etry, is shown in figure 9.

Figure 9: Images I1 and I2 are related by the essential matrix E. There exist two
transformations H1 and H2, such that Ĩ1 = H1(I1) and Ĩ2 = H2(I2) are related by E∗

as defined in equation 28.

Note that these transformations result in horizontal and aligned epipolar lines,
also called ‘scan-lines’. This is true since in Ĩ1 and Ĩ2 with coordinate systems
x̃1 and x̃2 respectively, we have:x̃1ỹ1

1

T 0 0 0
0 0 1
0 −1 0

x̃2ỹ2
1

 = 0,

x̃1ỹ1
1

T  0
1
−ỹ2

 = 0,

ỹ1 = ỹ2.

The required transformations H1 and H2 for this operation can be defined as
transformations of the images that map the so-called epipole to infinite point
(1, 0, 0)T . Here, the epipole of image I1 is the point on the baseline t where the
epipolar lines of I1 would intersect. This transformation has many degrees of
freedom, but is commonly constructed by requiring it to be a rigid transforma-
tion as far as is possible (Hartley, 1999).

4.2 Disparity Maps
As previously illustrated in figure 8, the location on the epipolar lines is de-
pendent on the depth. Thus, an understanding of depth may be achieved by
finding correspondences along these epipolar lines. Given images with a rectified
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epipolar geometry, one can look along the scan-lines to find disparities. A large
disparity indicates the object is close to the camera, and vice versa.

Matching Costs. Consider a pixel p = (px, py) in an image I1 with intensity
I1(p). Consider also a possible correspondence to this pixel in a second image
I2, q with intensity I2(q). Assume images I1 and I2 share a rectified epipolar
geometry, then, q can be defined as q = (px + d, py), with d as disparity. For
this candidate correspondence q, or alternatively, for this candidate disparity d,
Birchfield and Tomasi (1998) defined a cost function as:

c(p, d) = min
d− 1

2≤d̃≤d−
1
2

∣∣∣I1((px, py)
)
− I2

(
(px + d̃, py)

)∣∣∣ , (29)

where the sub-pixel intensities in image I2 are achieved by linear interpolation.
Instead of the relatively simple Birchfield-Tomasi cost, the matching cost may
be defined differently. For example, Hirschmüller (2005) defined a notable cost
function based on mutual information, which is insensitive to recording and
illumination changes. However, given the context, and for illustrative purposes,
the Birchfield-Tomasi cost will be used here instead.

Disparity Computation. Simply minimising the above-mentioned matching
cost often results in disparity maps that are subject to noise, and additionally,
individual scan-lines are unrelated, thus a streaking effect is likely to occur
(Hirschmüller, 2005). Therefore, additional constraints are often added that
enforce a smoothness of the disparity map. This may be achieved by formulating
a global energy function E for some disparity map D as:

E(D) =
∑
p

c(p, D(p)
)

+
∑
q∈Np

S
(
D(p), D(q)

) , (30)

where c denotes a matching cost function such as equation 29, D(p) denotes
the disparity d assigned to pixel p, Np denotes all the neighbouring pixels of p,
and:

S
(
D(p), D(q)

)
=


0 if |D(p)−D(q)| = 0,

K1 if |D(p)−D(q)| = 1,

K2 if |D(p)−D(q)| > 1,

(31)

where K1 and K2 are fixed numbers with K2 > K1. Thus, a penalty is in-
troduced to the global energy function E when the disparities of neighbouring
pixels are not equal. When the disparity change is small, at most one pixel,
the penalty introduced by K1 is relatively small. This is particularly helpful
for preserving slanted or curved surfaces where the disparity ought to change
gradually (Hirschmüller, 2005). Now, the problem can be formulated as finding
the disparity map D that minimises E(D). This minimisation problem may
for example be solved in practice by formulating it as a graph cut problem, see
Boykov et al. (2001) and Boykov and Kolmogorov (2004).
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Disparity Refinement. Suppose we compute disparity maps D1 and D2 cor-
responding to a set rectified images I1 and I2, now consistency and occlusions
can be checked. An occlusion can be defined as a region that is seen in one
image, but is occluded, that is, not seen, in the other image. The disparities are
refined as:

D1(p) =

{
D1(p) if |D1(p)−D2(q)| ≤ 1,

occluded otherwise.
(32)

Here, q is the pixel in the second image that corresponds to p = (px, py) and is
defined as:

q =
(
px +D1(p), py

)
. (33)

This consistency check enforces the uniqueness constraint, such that mappings
are one-to-one only (Hirschmüller, 2005). Additionally, steps such as median
filters may be applied at different stages to remove outliers or peaks to further
refine the results.

I1 I2

D1 D2

Figure 10: Example from the vision.middlebury.edu/stereo/ page of two
depthmaps D1 and D2 corresponding to I1 and I2 (Scharstein et al., 2014). Note
that here, the images I1 and I2 share a known rectified epipolar geometry to begin
with. Note also that for example the edge of the couch in I1 cannot be found in I2,
hence, to fill such a part of D1 supplementary images (shifted towards the other side)
were required.

4.3 Dense Clouds
Given the sparse cloud of triangulated keypoints and camera poses as a result of
structure from motion, the depthmaps may be used to add points to the sparse
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cloud, thus creating a dense cloud. Suppose we have a known depthmap D(x̂)
that looks at one of our previously triangulated keypoints u. Note that thus u
and û are known. Now, consider v̂, an arbitrary pixel in our known depthmap
that is not a keypoint. Using the relation between D(v̂) and D(û), as well as
the known keypoint, the location of v can be estimated, see figure 11.

Figure 11: Process of filling in the sparse cloud using depthmaps. The pixel v̂ is used
to generate an extra point v in the point cloud by referencing it to a known keypoint
u using the depthmap D.

Now, depending on the resolution used while creating the depthmaps, up to a
point per pixel may be added to the point cloud, thus creating the dense cloud.
Note how regions that are occluded in one specific depthmap may be filled in
from different depthmaps. Therefore, it is not advisable to use interpolation
when creating depthmaps (Hirschmüller, 2005).

5 Orthographic Projections
In aerial imaging applications, all camera positions form approximately a plane.
Additionally, the orientation of each camera is similar as well. Therefore, it is
possible to position a plane directly below and parallel to the plane that the
cameras span. This plane is split up in cells of the desired resolution, which
should correspond to the ‘resolution’ of the dense cloud. Now, the dense cloud
may be projected onto this plane at an angle of 90 degrees. For each cell, the
height of projected values is selected as a means to eliminate remaining outliers
in the depthmaps (Hirschmüller, 2005). The result of projecting the elevation
values onto this common plane is referred to as a digital elevation model (DEM).
It should be remarked that the resolution of depthmaps need not be equal to
that of the original images, and is often lower. Therefore, when computing the
ortho-image, a mesh need to be constructed first. This be done based on either
-or a combination of- the point cloud and elevation model. Given such a mesh,
all image intensities are projected to the same plane again, see figure 12.
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Figure 12: Side-view of images intensities being projected through the mesh onto
the plane that will become the ortho-image. Notice that this plane is parallel to the
span of camera locations.

The plane is again split up in cells, which may be of a different resolution,
however, as that of the elevation model. For each cell centre, an intensity is
calculated by bi-linearly interpolating the nearby projected colour intensities.
Usually, only the projection of the closest camera is used here, leading to an
interpolation of four values. The result of using this closest camera approach is
referred to as an orthomosaic since it can create so-called ‘seam-lines’ when two
cameras are equally close. Alternatively, one may for also choose to interpolate
a multitude of projected intensities. Or choose to average or fade the result of
the two closest cameras.
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