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Abstract

Spray drying operations can be used to turn products, like for example milk or yeast extract, into pow-
ders, extending their shelf life. The properties of those powders (e.g. density or particle size) after
spray drying operations depend severely on the dynamics of droplet collisions inside the spray. Cur-
rently, costly and wasteful production-trials are used in the spray drying industry. The use of computer
models can potentially reduce those costs significantly. However, present-day models lack a complete
physical foundation to supersede these trial-and-error tests. This study aims to further develop imple-
mentation of the relevant physical processes in these models by incorporating the combined effect of
rheology and surface tension.

In this thesis, we quantify the effect of Particle Interaction Forces (PIF) on the surface tension and
investigate the possibility to further calibrate the PIF induced surface tension to match the desired
surfac@ffhsion. Important here is that we do not change the PIF induced rhecl We make use
of the numerical method Smoothed Particle Hydrodynamics (SPH) and use the Continuum Surface
Force (CSF) method to further tune the surface tension. WWe demonstrate the tuning properties of CSF
in a static and a dynamic setting. Because the constitutive equation of the PIF induced rheology is
unknown, we are limited in the possible dynamic tests in which we assess the relation between the
rheology and surface tension. The dynamic tests that we could perform in this thesis are characterized
by the surface tension being dominant with respect to th@gscosity and elasticity of the droplet.

In the static case, we found that we can estimate the magnitude of the PIF induced surface tension
and increase the surface tension with CSF to the desired value. Furthermore, for the static case, when
both CSF and PIF are used, the total surface tension is simply the sum of the separate forces, i.e. CSF
and PIF are decoupled forces. Additionally, preliminary results suggest that we can also lower the PIF
induced surface tension to a certain extent, by adding CSF with a negative coefficient. However, the
dynamic test results are not straightforwardly interpreted, probably due to not satisfying the assumption
that the surface tension is the dominant contribution. Therefore, these tests are inconclusive and thus
require further research.
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Abbreviations

Nomenclature

Abbreviation Definition
CFL Courant-Friedrichs-Lewy
CSF Continuum Surface Force
FD Finite Difference
FEM Finite Elements Methods
ISPH Incompressible Smoothed Particle
Hydrodynamics
PIF Particle Interaction Forces
PISMF Particle Interaction Surface
[Elinimization Force
SPH Smoothed Particle Hydrodynamics
WCSPH Weakly Compressible Smoothed Particle
Hydrodynamics
Symbols
Symbol Definition Unit
a Acceleration [m/s?]
e Color function [
co Artificial speed of sound [m/s]
dt Time step [s]
Fint Total particle interaction force vector [N]
F# Viscous force vector [N]
F? Pressure force vector [Nm
Four Surface tension body force [N/m”]
7 Elastic modulus [Pa]
G' Storage modulus [Pa]
el Loss modulus [Pa]
L Correction matrix [-]
Ly ERial particle distance [m]
L, Length of the box in the x-direction [m]
g, Length of the box in the y-direction [m]
] Smoothing length [m]
m Mass [kal
n Numerical density [m—3]
n Normal vector [m]
n Unit normal vector [
n Smoothed normal vector [m]
N 553! number of particles [
N Total number of particles within the kernel [-]
Nparticles Maximum possible number of particles in the x- []
EYlection
Noyall Unit normal vector to the wall boundary [-]
p Pressure [Pa]
Pd Pressure droplet [Pa]




Contents

Vi

Symbol Definition Unit
PPIF Pressure in the droplet due to the PIF. That is the [Pa]
virial pressure and the pressure due to the PIF in-
duced surface tension
P Virial pressure
Qeut Compact radius or cut-off length [m]
R ius [m]
r Position vector [m]
R, The center of mass vector of the whole droplet [m]
Ti Average particle position [m]
R; Ehifting vector [m]
R, The center of mass vector of the upper right quarter [m]
of the droplet
S Shepard value [-]
Soa Interaction strength (Tartakovsky) [N]
S Interaction strength (rheology) [m/s?]
t Time [s]
Tin Interaction stress vector [Pa]
Tn Normal stress component [Pa]
T, Tangent stress component [Pa]
u Velocity vector [m/s]
Umaz Maximum velocity [m/s]
u* Intermediate velocity vector [m/s]
% Volume [m?]
o Shifting magnitude [-]
NCFL Time step coefficient [-]
g Scaling factor [-]
i f f Time step coefficient [
¥ Strain [-]
& Strain rate [s1
Yo Strain amplitude [-]
§ Phase shift [rad]
i Surface delta function [-]
K Curvature [m™1]
K Scaling factor [-]
i Smoothed curvature E)']
I Dynamic viscosity [Pa.s]
Hd Dynamic viscosity droplet [Pa.s]
I Dynamic viscosity surrounding liquid [Pa.s]
p Density [kg/m?]
pd Droplet density [ka/m?]
pi Surrounding fluid density [kg/m?]
oo Initial density [kg/m®]
a Surface tension [N/m?]
TOSF CSF induced surface tension [N/m?]
OPIF PIF induced surface tension [N/m?]
Tay Shear stress [Pa]
w Frequency [Hz]

The units of some symbols are depended on the dimensions of space. We derived the symbol list for 3D. In general, for 2D,
the spatial dimensions are reduced by one.
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Introduction

Spray drying [EEJe widely used technology in industries such as the food, paint and pharmaceutical
industry. The food spray drying equipment market was valued at $1.2 billion in 2016 and is expected to
increase to $1.6 billion by 2021 [24]. In a spray dryer droplets are converted into powders, through hot
air. The droplets will enter at the top of the spray chamber, where the droplets are exposed to a heated
airflow, introduced by air inlets. The resulting powder leaves the spray chamber at the bottom, see
Figure 1.1 (a). During the drying, droplets will start colliding, coalesce, and agglomerate. Furthermore,
droplets in different drying stadiums are involved, which increases the complexity. This will significantly
influence the end-product in terms of consistency and quality; e.g. particle-size and morphology, see
Figure 1.1 (b). The morphology is of great importance since this determines the properties of the end-
product, such as density and solubility, which influences the end-product usability.

(@) (b)

Figure 1.1: (a) A schematic overview of a spray dryer. (b) Dried whole milk particles, which show the large diversity in end
product particle morphology. Pictures courtesy of Tetra Pak (Sweden).

The current way to get the desired powder properties is by trial-and-error. A new product involves
time-consuming and costly production-trials, where in case the end-product is not satisfactory it will
be discarded. A way to avoid such costly production-rials is by introducing computer models that
can simulate a spray drying process. However, current models lack the complexity, that is needed
to properly simulate a drying process. Especigfgphenomena occurring during droplet collisions as
they dry. To be able to provide more realistic simulations, a deeper understanding of the complex
internal processes at the droplet scale level is needed, with the focus on simulating more realistic
droplet collisions. This knowledge can then be used to improve the correlations used for collision
outcomes and particle morphology development in more coarse-grained simulations.

EEZPuring droplet collisions very large deformations occur which are difficult to simulate with traditional
numerical meth§fEJsuch as Finite Elements Methods (FEM) and Finite Difference (FD) [19]. We, there-
choose a Mesh-free method, namely Smoothed Particle Hydrodynamics (SPH). Aside from the
ability to deal with large deformations other advantages of SPH are: the ability to deal with complex




(free) surfaces and multi-phases. A disadvantage, however, is the difficulty in obtaining second-order
global convergence [31]"

An obstacle [ simulating realistic droplet collisions is the implementation of the correct rheological
fluid properties (rheology is the science of deformation and flow). With the traditional numerical methods
the fluid rheology is added through a constitutive equation?. However, finding the right constitutive
equation and solving it, leads to a complex and troublesome task. In SPH we can avoid the usage
of such complex constitutive equations, by using an alternativefethod, namely Particle Interaction
Forces (PIF). The considered PIF generates an attraction force for distant particles and repulsion for
close particles and can be thought of as breakable springs between the particles, such forces offer
resistance to deformation.

In Van der Linde [40] it has been shown that PIF can be used to simulate the fluid rheology and
although in [38, 3, 16] it has been Elfdwn that PIF also influences the surface tension, itis yet unknown
to what extend PIF will affect the surface tension. At the droplet scale level, the surface tension is an
important factor in determining if droplets will coalesce or bounce [42, 13]. Hence, to achieve realistic
simulati}s of colliding droplets, the fluid rheology and surface tension has to be correctly modelled.

The aim of this thesis is to investigate the influence of PIF on the surface tension in order to simulate
realistic fluids; i.e., how can PIF be used to calibrate the fluid rheology while adjusting surface tension
independently?

To be able to answer the main question, we will first briefly explain the concept of rheology (Chapter
2), after which we will give a detailed explanation of SPH and discuss the convergence issue (Chapter 3).
Next, we will investigate the possible calibration methods for the surface tension and derive an analytical
estimate for the PIF induced surface tension (Chapter 4). In Chapter 5, we state the simulation details
and explain the (analytical) methods that will be used to validate the numerical implementation and
to measure the surface tension. Then, in Chapter 6, we will present and discuss the results of the
simulations. Finally, we will finish the thesis by presenting our conclusions and recommendations for
future work (Chapter 7).

10rder of convergence represents how fast the numerical method approaches its limit, i.e. how fast the computed solution
converges to the exact solution. For a numerical method, to keep the computational time reasonable, second-order converge is
needed.

2A constitutive equation approximates the response of a specific material to an external stimulus, i.e. relates stresses in the
material to strains and strain rates.




Rheology

In this chapter, we will first introduce the Navier-Stokes equations for incompressible Newtonian fluids.
Furthermore, the concept of non-Newtonian fluids is briefly explained. Afterwards, we will describe what
viscoelastic fluids are and lastly we will explain what surface tension is and how it forms a balance with
the pressure.

2.1. Navier-Stokes equations
We will omit the derivation of the momentum and continuum equations and just state them. However,
if desired the derivation can be found in Morrison [28]. The equations are given by

Du

Ph = ~Vp—V T+ Fpody. (2.1)

Dp

— = —pV-u, 2.2

D I ; (2.2)

where % is the material derivative, p is the density, p is the pressure, F,.., is the collectidfliaF all

contributing body forces per unit volume (e.g. gravity, surface tension and boundary forces), u is the
velocity vector and 7 is the stress tensor. The stress tensor relff§s the fluid stress to deformation. An
expression that specifies 7 is callefBconstitutive equation. For an incompressible Newtonian fluid
(V - u = 0) the constitutive equation is given by [28]

r=—u [Vu+ (Vu)T]. (2.3)

where p is the dynamic viscosity. Expression (2.3) is also known as the (viscous) Newtonian constitutive
equation and is often written in the form of

T =—pu (2.4)

where 7 is the rate of strain tensor. Now substituting (2.3) into (2.1) and assuming that the only body
force is due to surface tension yields

Du
P = —Vp+ pAu+Foug, (2.5)
Furthermore, the continuum equation for an incompressible fluid reduces to

V.ou=0. (2.6)

3
Equations (2.5) and (2.6) are known as the Navier-Stokes equations for an incompressible Newtonian
fluid. A fluid is called non-Newtonian if it exhibits behavior that is not predicted by the Newtonian
constitutive equation given by expression (2.3) [28].




2.2. Viscoelastic fluids 4

. Viscoelastic fluids

Rheology is the science of deformation and flow of all kinds of material [28]. An important step to
accurately predict the fluid rheoclogy is the formulation of a constitutive equation. Determining a con-
stitutive equation for non-Newtonian fluid is a difficult challenge mainly because non-Newtonian fluids
can behave differently over time when a certain stress or strain rate is applied. For example, when
applying large shear rates, one fluid can exhibit shear-thinning, while the other fluid exhibits shear-
thickening. Shear-thinning is characterized by a decreasing viscosity due to increased shear rates,
while shear-thickening means an increasing viscosity when the shear rates are increased [28]. Vis-
cosity is a measure of a fluid's resistance to flow. Furthermore, rheoclogical properties can be time
and temperature dependenfEfipart from the (viscous) Newtonian constitutive equation, a constitutive
equation for a purely linear elastic material is given by Hooke's law of elasticity [28]:

=-Gr, (2.7)
=
where ( is the elastic modulus and ~ is the strain tensor. In this thesis, we will consider non-Newtonian
fluids that can display both viscous and elastic behaviour, i.e. viscoelastic fluids. Away to measuf@he
viscoelastic behaviour is by applying an oscillatory strain on the liquid and measuring the stress. Fora
purely elastic material, the stress and strain responses are in phase and for a purely viscous material,
the strain will have a 90° phase shift. A viscoelastic material will have a delayed strain response in
between that of 0° phase (purely elastic material) or a 90° phase shift (purely viscous material), see
Figure 2.1. The viscous and elastic phase shifts can easily be deduced by using (2.4) and (2.7). That is,
considering an oscillating stress in the form of a sine function, it then follows from (2.7) that the strain
is proportional to the stress up to a constant for an elastic materfgZ] which explains the zero phase
shift between the responses. However, for a viscous material, the stress and strain are related by the
derivative of the strain. The derivative of a sine function results in a cosine, hence a 90° phase shift.

/%
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Figure 2.1: @ass and strain response for a purely elastic, purely viscous and a viscoelastic material, where 4 is the phase
shift [17].
The phase shift that determines the viscoelastic behaviour can be expressed in terms of the storage
modulus G’ and the loss modulus G by

W

tand = 2

o

’

Furthermore, for a sine changing shear strain?, the stress response can be represented in terms of the
storage and loss modulus:

(2.8)

Tey(t) = 70 [G'(w) sinwt + G (w) coswt] , (2.9)
where w is the frequency and ~ is the strain amplitude. For a full derivation, see Morrison [28].

2.3. Surface tension

In this section, based on Marchand et al. [23], we will explain surface tension from a macroscopic and
a microscopic perspective. From a macroscopic view, surface tension is a restoring force expressed

Note, that we consider the fluids only in its linear regime, i.e in the regime where the stress and strain have a linear relation.
2je. () = yosin{wt).




2.3. Surface tension 5

as the force along an interf@e per unit length. The behaviour of surface tension is often described as
membrane-like. We claim that the surface tension is a tangential force, to illustrate this we consider
an U-shaped wire-frame, on which a sliding wire is attached, see Figure 2.2. The sliding occurs with
negligible friction [23]. Between the frame and slider, there is a thin liquid film. By moving the slider,
such that the filnExtends, we need a force F to keep the slider fixed. This force counteracts the
contraction force due to the surface tefiflon. The force F acts along the width of the thin film &, parallel
to the the interface, which shows that the surface tension is a parallel force.

J
Ir
——

h

1=t ol

2
Figure 2.2: Experiment which shows that the surface tension is a force parallel to the interface [23].

From a microscopic perspective, surface tension occurs because molecules in the vicinity of an
interface experience different forces then in the bulk. Considering a molecule in the bulk, we can see
in Figure 2.3 (a) that the molecule is attracted equally in every direction. However, a molecule in the
vicirfigJof an interface lacks half of the surrounding molecules, leading to an unbalance in the force.
The strength of the surface tension is determined by the strength of the molecular bonds. We see that
by only considering the attractive bonds, we buld expect a net force perpendicular to the interface.
However, from a macroscopic view we argued that the surface tension is a force parallel to the interface.
The explanation why surface tension is a parallel force, consist of three parts: (i) explaining that the
magnitude between the forces is different, (ii) explaining that attraction is anisotropic and repulsion is
isotropic and (jii) discussing the effect of isotropic and anisotropic forces.

v v

o= — = =
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Le = =) e
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(a) (b)
Figure 2.3: (a) Sketch of the attractive forces on molecules in a liquid, which shows the missing bonds at the interface,
resulting in a nonzero net force. (b) A more complete sketch of the acting forces in the bulk and near the interface, where the
gray arrows represent attractive forces and the dashed black arrows are negative forces [23).

(i) Explaining that the magnitude between the forces is different

Figure 2.3 (b) shows both the attractive and repulsive forces acting ofgg) molecule. In the bulk we
still observe a symmetry, which results in a net force of zero. However, near the interface the upward
symmetry is broken. In order to have a vertical balance, the downward attractive force (gray arrow)
should cancel the upward repulsive force (dashed arrow). For the direction, parallel to the interface,
we observe that symmetry will be preserved, even near the interface. Therefore, the repulsive and
attractive forces not necessarily balance each other. In general, the attractive forces are greater than
the repulsive forces.

(ii) Explaining that attraction is anisotropic and repulsion is isotropic

We will now explain that not only the magnitudes differ, but that one force is isotropic and the other is not.
We remark that repulsive forces are short ranged, while attractive forces are long ranged. Because of
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the short range, repulsive forces are almost immune to changes in the surrounding molecule structure.
We can therefore consider repulsive forces as isotropic. Now, since attractive forces are long ranged,
they are highly dependent on the surrounding structure, making them anisotropic [23].

(iii) The effect of isotropic and anisotropic forces

We illustrate the effect of isotropic and anisotropic force through dividing the liquid into two subsystems
with an imaginary gElindary, parallel to the interface, see Figure 2.4. In Figure 2.4 (a) we have that the
dotted subsystem is subjected to attractive (gray arrow) and repulsive (dashed black arrow) forces. We
remark that the subsystem is in equilibrium, i.e. the attractive forces are in balance with the repulsive
forces. Furthermore, the magnitude of the attractive forces incr@ggjes, when moving away from the
interface, due to an increasing density [23]. We will now consider an imaginary surface, perpendicular
to the interface, see Figure 2.4 (b). We will now only consider forces in the direction parallel to the
interface and remember that repulsive forces are isotropic. This means that the magnitude of the
repulsive forces decreases near the interface, in a similar way as in Figure 2.4 (a). However, the
attractive forces are long ranged and will hence remain almost constant, equal to the bulk attraction.
We end up with a net force parallel to the surface, which has the greatedgiagnitude near the surface
and vanishes in the bulk, see Figure 2.4 (c). Hence, resulting in a tangent surface tension force, parallel
to the interface.
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Figure 2.4: Forces acting on the dotted subsystem of the liquid by the not dotted subsystem. (a) We consider subsystems at
different distances from the interface. The subsystems are subjected to a repulsive force (dashed black arrow) and an attractive
force (gray arrow). The subsystems are in equilibrium. (b) We now consider subsystems with a boundary perpendicular to the
interface. Since the attractive forces are anisotropic, they can be considered constant and equal to the bulk value. The negative
forces are isotropic and should have, at equal distance from the interface, the same magnitude as in (a). (c) Resulting in a net
force, parallel to the interface [23].

8

2.4. Balance: surface tengion and pressure
In this section, we briefly explain the balance between the surface tension and the pressure. This
balance will later on be used to determine the surface tension by measuring the pg#ure. For this we
consider a droplet floating in air, where gravity forces are neglected. Furthermore, the fluid is assumed
to be incompressible and the droplet is at rest. When only considering the surface tension, we have at
the interface an imbalance in forces, see the previous section. Therefore, the surface tension wants
to contract the droplet. However, due to incompressibility, a pressure force is created which counters
the @Jtraction. To better illustrate this, we cut the droplet into half, see Figure 2.5. We have that each
half is at equilibrium, i.e. the net force is zero. From Figure 2.5, we see how a perpendicular pressure

balances a tangential surface tension force, due to a curved interface. This balance is expressed

by the Young-Laplace equation [30]

Aap=2 (2.10)

R’

where AP is the pressure difference between inside and outside the droplet, o is the surface tension
and R the radius of the droplet.
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QL&

(a) Waler droplet (b)) Pressure forces (¢) Surface tension

Figure 2.5: (a) The considered droplet, (b) the pressure forces acting on the half of the droplet and (c) the surface tension due
to an imbalance at the interface. Image from https://www.eeeguide .com/surface-tension/




Smoothed Particle Hydrodynamics

In this chapter, based on the articles of Liu [22] and Hirschler et al. [13] we will first explain the basics
behind SPH and discus the methods that are used to simulate an incompressible flow, namely In-
compressible SPHEEEPH) and Weakly Compressible SPH (WCSPH). Furthermore, we will derive the
SPH discretization of the incompressible Newtonian Navier-Stokes equations for both single-phase and
multi-phase simulations. Then, we describe how we deal with the boundary conditions for WCSPH and
ISPH simulations. Afterwards, we analyze the consistency of the numerical method and state the cor-
rection methods that will restore consistency. Finally, we explain the chosen kernel and conclude with
stating the CFL conditions.

5.1. Basics SPH

In SPH the computational domain is represented by a finite set of particlesff#fjere each particle carries
the material properties. The interaction between the particles is controlled by a smoothing function; the
smoothing function defines the mutual influence between particles based on their distanc@flowever,
we will first consider the smoothing function for a continuous field. The smoothing function is based on
the following identity [22]:

fir) = [ F(P)5(r — r)dr’, (3.1)

where r is thesition vector and &(r — r') is the Dirac delta function'. However, the delta function
has only "one pointffipport and hence cannot be used to establish a discrete numerical model [22].
Now, replacing the Delta function with a smoothing function W(r, k), we get the smoothed function
approximation

£ = (F0) = | SO (£ =1 By, (32)

where & is the smoothing length, which is proportional to the radius of the kernel support domain €,
see Figure 3.1 for an illustration of the smoothing function.

"The Dirac delta function is non-zero whenever r = r and everywhere else zero, furthermore [, d(r — r)dr' = 1.
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Figure 3.1: lllustration of a smoothed function/kernel in 2D, where r;, r; and r;; are the particle of interest, neighbour particle
and distance vector between the two particles [11].

For a function to be employed as an SPH smoothing function, the function needs to have the fol-
lowing properties [22]:
3

« Unity: [, W(r—r" h)dr' =1.
+ Com(ffit support: outside of the supported domain the smoothing function should be equal to
zero, that is
W(r—r',h) =0, whenever |r — r'| > kh, (3.3)

where & isa;caling factor. Note: x/ is called the cut-off radius and we define g.,; := xh.

. Positivita W(r—r',h) = 0 for any point in the domain.

. mcay: W(r — r', h) decreases monotonously as |r — r'| increases.

« Delta function approximation: lim;,_,o W(r —r’, h) = §(r — r'), such that < f(r) =— f(r).

+ Symmetric property: smoothing function values for an equal distance size should be of equal
value.

Properties and states such as density and velacity for the (discretized field) particles are calculated by
an approximation of (3.2), that is

i {50

m;
(Flr)) = D0 FEWr — 1, ) AV; = > =L f(e))W(r — 1, h), (3.4)
=i j=1 "

where \ is the total number of particles within the influence area of particle ¢, m, is the corresponding
mass of particle j, p; is the density of particle j and AV is the volume occupied by particle j. In the
last step of expression (3.4) we used that a volume wi t a fixed shape can be written as a mass to

density ratio, thatis AV; = % Note that the gradient of the right hand side of (3.4) can be calculated
exact by a{

(V- f )~ 30 225 () - VW (F = 1y B). (3.5)
j=1 Ps

For convenience, we will later on write W (r; —r;, h) as W;;. In the literature two different expressions for
a particle derivative are used, which can be confusing and leads to wrong application of the expressions.
The first expression is given in equation (3.5) and the second expression is given by

24 N
(V- flr) ~ —Zp—;f(rj)-w-t-zj. (3.6)
=1

Observe that the first expression has a derivative taken with respect to particle i and the second ex-
pression has a derivative with respect to particle j. However, often in literature the notification with
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which respect the derivative is taken is left out. The two expression are, however equivalent. To show
this, first note that the derivatives r@be expressed as

B o alr; —r;) o r—r
VW —r,h) = W(r— rj,h)Tt_f =W'(r; — rj,h)ﬁ, (3.7)
and a 5
r,—r, r,—r
ViW(r—rjh) = W'(r — rj,h,ji'( = i) _ —W'(r; —r; h)——L, (3.8)
or; [ri —rj]
resulting in V,W(r; —r;.h) = —=V,;W(r; — r;, ). Both can be used, however a specific mention, with

respect to which derivative is taken is needed.

3.2. Incompressible flow in SPH
When considering anincompressible flow, the solution methods can be divided into two classes, namely

WCSPH and ISPH, where ISPH has gained increasing popularity in recent years. Two reasons for
choosing ISPH.gver WCSPH are [4]:

+ WCSPH requires a very short time step in order to enforce low compressibility, leading to large
computational times.

+ ISPH leads to a more accurate pressure representation. (2]
24

However, a disadvantage of ISPH is the need for an additional boundary condition. In ISPH, the pres-
sure is computed from a Pressure Poisson Equation (PPE), which requires pressure boundary condi-
tions for some simulations this can lead to undesired problems. Therefore, in this study we perform
both ISPH and WCSPH simulations. Thefhain differences between WCSPH and ISPH is how thEEJ
compute the pressure. WCSPH assumes a weakly-compressible fluid and calculates the pressure by
an equation of state, which relates the density to pressure. We will first go into the details of ISPH, after
which we discuss WCSPH.

3.21. ISPH
For an incompressible flow, we have an equivalent condition for the continuity equation (2.6), namely
[13]

Vou=0 <= dtin' (3.9)
The expressions are often referred to as divergence-free velocity (DV) and density-invariant (DI). In-
tuitively, we expect that to enforce incompressibility the best choice should be [EEJHowever, in Xu,
Stansby, and Laurence [41] it was found that DV has a better accuracy than DI. In this study, we will
only consider DV ISPH. {lif§ ISPH method uses a predictor-corrector scheme in combination with a
first-order Eulerfffithod in order to solve the incompressible DV Navier-Stokes equations. In the pre-
dictor step, the intermediate velocity (u*) is calculated by solving the momentum equation excluding
the pressure force, for a Newtonian fluid this yields [14]

uf =u’+ (pAul +F” }%, (3.10)

sur fi

where u! is the particle velocity at the previous timestep. Note, that the particle position is not changed
in the predictor step. In the corrector step the PPE is solved to enforce incompressiblilty

E - a1y Vouy
\% (p?p )ii VR (3.11)

After the above linear system is (iteratively) solved, the particle velocity and position (r) at the next time
step are calculated by [14, 20, 6]

:‘H =u! — (le“'H) At (3.12)
P i

ntl g ogn
Pl (%) At (3.13)
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The ISPH method is infiJlemented in the SPH software called “SIPER™. In this software, the linear
system given in (3.11) is solved using the algebraic multigrid preconditioner boomerAMG and a Bi-
CGSTAB solver from the PETSc library [14, 13].

3.2.2. WCSPH
For WCSPH, the "weakly compressibility” is enforced on the fluid through an equation of state (EOS).
We use the Tait equation, that is [13]

: 7
P p% {(ﬁ) _ 1] _. (3.14)

where p, is the reference density of the fluid and ¢, is the artificial speed of sound. ¢, determines
how much the fluid is allowed to compress. In general, ¢, is chosen such the fluid compressibility
is limited to 1%, correspondfifj) to a Mach number of 0.1 [27]. The Mach number is a dimensionless
quantity that represents the ratio of the fluid velocity to the local speed of sound. In Morris, Fox, and
Yi. [27] the following estimate for the value of ¢, is proposed

9 Y
u U o -'F.su rfL[}

2 i LN A 3.15
P max(a Los 5y ) (3.15)

where

5=22,

Po

Furthermore, L is the initial particle distance, u,,,, is the maximum velocity and Ap represent the
maximum allowed density difference. From (3.14) we observe thate pressure will strongly respond
to small variations in the density. A possible disadvantage is that smallgrrors in the density lead to
large errors in the pressure. However, the Tait equation is still one of the most commonly used EOS in
the literature. In WCSPH, we can determine the density in two ways, namely by a particle summation
or by the continuity equation. The former is done through using (3.4), that is

(3.16)

pi = m; i Wi (3.17)
and the latter involves the SPH discretization of the continuity equation (2.2) given by
dp; - m; W
L by Ev,j VW (3.18)

=1

The advantage of (3.17) is that it conserves mass exactly in contrast to (3.18) [39]. We will therefore
use (3.17). For the time integration, we use a simple first-order explicit scheme, namely forward Euler,
which yields

At
u:l+1 —ur (nAu? + F, h} , (3.19)
3 1.
At?
=+ — (pAu? +F2, ), (3.20)
P £,

where at each time step the pressure is determined by (3.14) and the density by (3.17)

3.3. SPH discretization

The discretization of the pressure term can be rewritten in many different forms, each with its advan-
tages and disadvantages depending on the other discretization terms, the solver and if it is a single-
phase or multi-phase simulation. We will first show why direct discretization is not often done in practice.

2SPER is a program package from the University of Stuttgart. For more details see their website: https://uww.icvt.
uni-stuttgart.de/en/research/siper/.
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Secondly, we will present the discretization terms for single-phase. After which, we will state the dis-
cretization terms for multi-phase. Direct discretization of the pressure term results in

N
(lv;n) ~ LSy v (3.21)
P i i P
;
To simplify the argument, we assume that the only acting force is the pressure force. Furthermore, note
that we can express [ as

_[".

i

Dui 1 .
= (;Vp)“ (3.22)

Now, considering the force of particle i acting on particle j and vice versa, we observe that these forces
are not symmetric, i.e.

= m;a;

iy

and the pressure acceleration as

T D; Y( ”rw # _ i
] Pi

d

VW = ”; VW = —F, (3.23)

dr

where the inequality follows from p; # p;. If we use direct discretization, we will no longer abide by the
law of conservation of momentum. To solve this, the pressure term is first rewritten, after which the
pressure term is discretized.

3.3.1. Single-phase
We will now derive the discretization for the pressure term. For this, we will first rewrite Vp and then
perform discretization. Because of this, we will end up with a symmetric term. Observe that Vp can be
rewritten as
Vp=Vp+pVl, (3.24)
and we note that the SPH discretization of V1 is given by
N -
Vi) VW (3.25)

i—1 Pi

Combining the above observations, we end up with the following symmetric pressure discretization

N
Vp m; .
— E —L (p; + p) Vi Wy, (3.26)
p pip; ! !

=1

Secondly, we need to discretize the viscous term in the momentum equation (2.5), which is given by

N
H dm; (g + py) ( i ow )
ZAu| = —4 a2 = VW ) (u; —uy). 3.27
(P Ji ; Pipi Ir ? ! ! (3-27)

The above discretizating involves complex steps and a correction term. These will be explained through
the PPE discretizations. Due to the PPE, needed for ISPH, we have two additional discretizations terms,
namely [14, 13]

N
1 m; 4 pyf
vo(ovp) =Y Pull gy, 3.28
(P p)( PZL pi Pi+pi [F;l? ! (3.26)
and 173 v
(Vour), = 37 20 () =) Vv, (3.29)
j=1 "

where we introduced the abbreviation r;; = r; — r;. The derivation of the pressure force is based on
the following integral approximant

o (Lep) & [ L ey — pryy S Ve W
v (pr) f[p(r')er(r)}[pm p(r)] e dr'. (3-30)
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Using Taylor series about r, we can verify that the integral approximant is of second order accuracy
[25]°. The integral approximant in SPH form is

v
1 Yom; 1 1] pisti; )
A (*V ) = -1 [777:| ! .J T(H(. 3.31
07, ; pi Lpg o el Ingl? ! (337
where p;; = p; — p;. However, Cleary and Monaghan [7] showed that a correction term is needed,
whenever the flux is discontinuous. The correction term is given by
37
R (3.32)

i P

resulting in the final SPH discretization given in equation (3.28). Lastly, note that the SPH discretization
of the intermediate velocity gradient in (3.29) is a result of rewriting with means of the product rule and
applying basic SPH discretization.

3.3.2. Muj#jphase
We use the multi-phase method presented in Adami, Hu, and Adams [2] suited for simulating density
ratios. To account for the density discontinuities, the density of a particle i is determined by

pi=miy Wy =<t (3.33)
J

].r'('

In contrast to the general density approximation®, (3.33) only affects the particle density i through the
particle volume V;, which permits a discontinuity in the density [2]. When the density is discontinuous,
we have that % is algfijdiscontinuous. To ensure continuity, we have to modify our current single-phase
discretizations [15]. For the pressure gradient, we will use an average between the phases, that is [2]

1 2 2\ pipi +pip
() = (B + 2 o (3.3)
P i ‘T p; ro,u Pi ro_','

Furthermore, the multi-phase PPE is discretized as [15, 14]

i t T il i T J
and .
' Pi m} mf) — o
(V-u), = — + + —5 | ui; VWi, (3.36)
mi g ( P} P ! !
where u;; is the inter-particle average velocity given by
T = ru'i:x. ::;'-'f (3.37)

Expression (3.3.2) ensures continuity of the viscous force in case particle ¢ and particle j belong to
different phases with different viscosities [15].

3.4. Boundary conditigns

Appropriate boundary conditions are needed to solve the Navier-Stokes equation. In this section, we
will discuss solid walls and periodic boundary conditions. Furthermore, we will also address the needed
pressure boundary for the PPE in ISPH. For a solid wall, the most obvious and important property is that
no particles can penetrate through the wall. In literature, the most popular methods to implement solid
walls are either by using ghost particles or mirror particles. The former simulates a solid wall by freezing

3For a more in depth derivation of the integral in multiple dimensions, see [25].
4pi = Z_,«' e Wi
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multiple layers of particles. Depending on the type of wall (e.g. no-slip or free-slip) some properties
of the frozen particles will change over fffhe. For no-slip, the frozen particle velocity is equal to the
inverted fluid particle velocity tangential to the boundary and scaled based on the distance between
the two particles [14].

The latter approach, like the name suggedfvill mirror the real fluid particles to the outside of the
domain and will also m{ their properties. Based on the the type of wall, the velocity of mirrored
particles will be altered. For a no-slip condition, the tangential velocity to the boundary is inverted. For
free-slip, the velocity is equal to the real particle velocity [14]. The main advantage of ghost particles is
the simplicity and stability to deal with curved boundaries. However, we will only make use of straight
walls and in that case mirror particles are computational less expensive. This follows from that mirror
particles are only used when a particle is close to the wall, reducing the run time [14]. Because of the
computational advantage, we will use mirror particles.

We will now briefly discuss periodic boundaries conditions, but more details on the implementa-
tion requirements for periodic boundariegZfill be given in section 5.1. Periodic boundaries are much
simpler than solid walls. Itis often used to simulate an infinite domain. For periodic boundaries, the
domain is repli@ted in the direction of periodic boundaries. That is, two boundaries are linked with
each other and when a particle leaves the domain through a pfEE}Hic boundary, it re-enters the domain
at the corresponding boundary. Furthermore, particles near a periodic boundary are used in the kernel
calculations for particles near the linked boundary [14]°. Periodic boundaries are espEFially suited for
WCSPH, since ISPH still needs a prescribed pressure value. For solid walls, we can set the pressure
value of the mirror particles to zero, which corresponds to a zero Dirichlet pressure condition. However,
for periodic boundaries, we will use a different method. But first, to better understand the need for a
pressure value we note that the PPE has the following form

A.p'tal =, (3.38)

whEB A, p't2* and b are the coefficient matrix, the unknown pressures and the divergences.

In order to have a unique solution, the matrix A should be nonsingular. For matrix A to be non-
singular, it suffices to use Dirichlet boundary conditions or fix the pressure for a single point [6]. We
will make a distinction on how to deal with the singularity between multi-phase and free surface single-
phase simulations.

For a multi-phase simulation, the coefficient matrix has diagonal components

. 2 2 W 1
Ay = -2l (m* ﬂ) VWi . (3.39)

mi \p? ) Ty opitp

and the off-diagonal components

ij

m; rof pf Tij Pi TP

=2b (mf N m—f) YWy 1 (3.40)
To transform the singular matrix A in a nonsingular matrix, we fix the pressure at the corner points of
the fluid®. We prescribe the pressure at the four comer points, in order to keep a symmetric system.
We will enforce a zero pressure at the corner points, this is done by setting the diagonal component
A, to minus one, the off-diagonal components AEEEp zero and the divergence component b, to zero’.

For singlefhase, we will prescribe a pressure in the form of a boundary condition at the free surface.
However, the particles belonging to the free surface need to be first identified. This is done through the

usage of a Shepard-kernel [13]:
N
si=Y Tiw,. (3.41)

=1

5A disadvantage of periodic boundaries is the current minimum requirement of 3 CPUS in the periodic direction, when doing
parallel simulations. For a 2D simulation with only periodic boundaries, this requires at least 9 CPUS and for 3D it leads to at
least 27 CPUS. Note, thatthe CPU demand is code specific. Additionally, when performing parallel simulations, we can not use
periodic boundaries in the z-direction.

8In the SIPER code another way to deal with the singularity is to use the flag “KSP null space” from PETSc.

"The subscript ¢ is the index of the corner points.
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3
Due to a truncated kernel, the particles nearge free surface will have a lower value. Particles with
a value lower than §J§)0.75 are labelled as free surface particles [13]. A natural boundary condition
for free surface is a homogeneous Dirichlet boundary condition, i.e. p = 0. Due to the zero pressure
condition, expression (3.28) yields

Cp 3 m - YT, (3.42)
J

2 2
i) (Xl

where C' is an arbitrary constant. Enforcing a strict zero pressure boundary condition may lead to
particle clustering or particles will start to drift apart [4]. Hence, it is preferable to impose “close” to
zero pressure boundary conditions. This is done by adding (3.28) and (3.42) together, where ' deter-
mines the weighting between satisfying zero pressure at the boundaries (3.42) and the regular PPE.
In Hirschler et al. [13] a value of 2 is chosen for (', hence for a free surface particle, we replace the
diagonal component of the coefficient matrix by

N

Ay = =23 2 X VW (3.43)
o i) gl
and the off-diagonal components by
N .
- 4 YW
A;=%"m, X VW (3.44)
i=1 [P:fp}] H*U”

3.5. Kernel and particle consistggcy

The consistency of the SPH method depends on the kernel approximation and the particle approxima-
tion, where the order of consistency refers to which n'th order the numerical method can reproduce a
polynomial exactly [22]. Using Taylor expansion the requirements for zero and first order consistency
for the kernel approximation are given by [22]®

47
f W(r—r h)dr =1, (3.45)
0

[s: (r—rYW(r—r' h)dr =0. (3.46)

Observe that (3.45) and (3.46) are the unity and the symmetric properties of a smoothing funclg.
Since, these properties are already satisfied, it can be concluded that the kernel approximation has
up to C! consistency in regions without boundaries. For regions truncated with boundaries, the re-
quirements (3.45) and (3.46) are not satisfied ff#iding to lacking even C consistency. In e 3.2,
we observe that, due to boundary truncation, W (r — r’, ) is no longer an even function. As a result
(r—r")W(r—r',h)is no longer an odd function and when taking the integral the positive and negative
parts no longer cancel each other out. Hence, (3.46) is not equal to zero resulting in the consistency
requirements given by the Taylor expansion being violated.

By introducing a alization factor, CV consistency can be restored. Furthermore, witfeEhe usage
of corrective kernels C'* consistency for interior regions can be achieved. A 1D example of a corrective
kernel approximation for a function f(x) at particle i is given by [22]°

v ff(ir”'vf(r)d:r

8Note achieving higher order consistency by solemnly relying on a smoothing function is imfiesiible without violating the
positivity requirement [22]. Asmoothing function, which can be negative is undesirable, since it can result in unphysical solutions,
such as negative density and nve energy.

9By Taylorexpansion of f(x) ata nearby point =; and multiplying both sides with W and integrating over the entire computation
domain, we get

(3.48)

ff(m}u-’.(w}dmz i /.Vr’,-(m}dwrf,;r /(1-— ;) Wi () de+
; : ’ (3.47)
I e e W) de - 215,

£ [ (o= 2 Wila)de + O(20)?)

Combining expressions (3.47) and (3.48) the consistency statements about the correction kernel can be derived [22].
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from where we can observe that for an interior region the corrective kernel has ' consistency and
for a boundary region it has C'¥ consistency, due to the normalization factor, which makes sure that
equation (3.45) is satisfied.

® Particle concerned

Boundary O Neighbor Particle

(a) (b)
Figure 3.2: One-dimensional visual representation of the influence of a boundary (a) and particle disorder (b) on the
consistency [22].

For the consistency of the particle approximation, we consider the discrete versions of (3.45) and

(3.46)
N
> W(ri—r AV =1, (3.49)
i=1
N
3 (r— e W(r —r, h)AV) =0. (3.50)
i=1

In general, C" consistency is not achieved, since requirement (3.49) is violated due to particle disorder
or truncation of the support domain by boundaries. A way to restore C" consistency is by renormaliza-
tion [22]. In Di G. Sigalotti et al. [9] the requirement for € consistency is derived'?, that is

<.1.'2> — ()% =0, (3.51)

where () is the kern§lifpproximation. Expression (3.51) is only achieved when N — oo, h — 0, and
N = 0o, with A" the number of particles within the kernel support and N the total number of particles.
A common mistake in SPH to increase the resolution is to keep A fixed while letting N — ccand h — 0.
By doing this a residual error will not vanish. The residual error will only vanish when we abide by the
following scaling [9]

N x NZ. (3.52)

However, the increase in kernel particles, whenever the total number of particles increases, demands

se of a Wendland-type kernel [33]. The reason behind this is that when N attains large values,
standard SPH smoothing kernels become unstable due to particl mping. A Wendland-type kernel
avoids particle clumping for all values of A7 [8]"". Furthermore, an &ffor bound for the SPH estimate of
a function is given in Sigalotti et al. [33]. We refer to Sigalotti et al. [33]fr the expression and derivation
of the error bound. Furthermore Sigalotti et al. [33] concluded that the particle approximation converges
to the kernel approximation independently of /1, when the following scaling is satisfied'?

- =5
Noch™7, (3.53)
where n is the spatial dimension and 3 > n. In 3D, § € [5, 7|, where a low value for 7 means that the
particles are orderly distributedfEjd a high value stands for a random particle distribution. By combining
(3.52) and (3.53), we obtain a family of possible scaling describing the dependence of A" and h on N
[33].

OPravided that " and ' consistency is already satisfied. Furthermore the requirement Is derived in the 1D case, but can
be extended to higher dimensions.

"This fallows from a linear stability analy: rformed by Dehnen and Aly [8]. Dehnen and Aly [8] conclude that smoothing
kemels whose Fourier transform is negative will inevitably trigger pairing instability for large enough A. Wendland kernels have
been constructed with the condition thalt they need to posses a non-negative Fourier transform.

2\When N — oo, we need to have that the particle mass scales with h as m o hﬁ, with & < n. This results in the requirement
that m — 0 as h — 0, which leads to the scaling N oc k" —7[33].
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3.6. Kernel type

An important factor in determining the stability, efficiency and the accuracy of the SPH solution is the
choice of the kernel. In the literature, we can find a lot of different kernels. However, throughout this
thesis, we will use a Wendland C2 kernel, see (3.54) [18]. The main reason for choosing a Wendland-
type kernel is the earlier mentioned immunity to particle clumping. Furthermore, from a comparison with
different kernels (Cubic spline, Gauss and Quintic kernels) it followed that the Wendland-type kernel
has the best “ability” to obtain the highest accuracy [32].

PRy
1_..,.,.“{_}‘;]_):“_'1{ [gl—g) (2 +1) giqs;» __ (3.50)
q

where ¢ = |L}J_| and «,; is a scaling factor to ensure unity for different spatial dimensions. For 1D, 2D
and 3D, the corresponding values for ay are -, &= and 2. We note that we can express the
EFinpact radius q..: as two times the smoothing length .. We have s¢fE) that for discretizing a spatial
derivative of a function the first derivative of the kernel is needed. The first derivative of the considered

kernel is given by

OW (rij. h) _ m{ S9(1-4)" fo<g<<2 (3.55)

“h
or;; 0 2<gq
Figure 3.3 shows the 1D Wendland C2 kernel and its first derivative, where the smoothing lenght is

set to h = 1 m. From Figure 3.3, we observe the earlier mentioned properties of the kernel, such as
symmetry, positivity, decay and compact support.
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Figure 3.3: One dimensional Wendland C2 kernel and its first derivative, where h = 1 .

3.7. Correction methods

In section 3.5, we saw that SPH without corrections can have consistency problems. This is especially
the case for free surface simulations, since there the kernel will be truncated at the free surface. In this
section, we will elaborate on two correction methods that will restore the consistency, namely particle
shifting and the correction method from by Bonet and Lok.

3.7.1. Particle shifting
Particle shifting is used to prevent particle disordering and voids from occurring. The particles are
shifted after a full time-step, where the particle properties such as the velocity will be corrected using a
Taylor expansion. This puts a limit on the maximum shifting distance. The maximum shifting distance
depends on the maximum velocity, timestep and the smoothing length. The particle shift is given by
[13, 41]

dri = CaR,, (3.56)
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where « is the shifting magnitude which is equal to u,,....dt, R; is the shifting vector and C is a constant,
with a value between 0.01 and 0.1, depending on the required stability and accuracy. The shifting
magnitude is given by

N
s
Ri=> —4n; (3.57)
=1 "ij
where n;; is the unit distance vector between particles : and j and 7; is the average particle distance,
given by
169 G
= Jer”. (3.58)
i=1
For more details we refer to Hirschler et al. [13].

3.7.2. Bonet and Lok correction
In the literature, we can find a lot of different corrections. Some will adjust the gradient, whereas others
will modify§e kernel itself. Also, combinations of these methods are proposed. A popular correction
method is the mixed gradient and kernel correction from Bonet and Lok [5]. Like the name suggest,
it is a combination of a gradient and a kernel correction. The kernel correction is chosen such that
the consistency conditions in (3.49) and (3.50) are satisfied. This is done by a weighted average or
equivalently Shepard-kernel. The correction kernel is given by [5]
142 ;
HE L % (3.59)
Y Wy S

As an example, the density at particle i can now be determined by

N
pi=_mWy. (3.60)
i=1

The gradient correction is determined in such a way that it will preserve angular momentum, this is

done by satisfying the following condition [5]

&om, R
S - e Vi, =1, (3.61)

pell

where | is the Identity matrix. YWe will satisfy the above condition by introducing a correction matrix L,
which leads to the following corrected gradient

%,ﬁ"}_-}; = L('V("H"('_-,; s (352)
where L; is obtained by satisfying (3.61), yielding

3

-1
N
L= Y2 r-re viu-';-_j) ‘ (3.63)

i=1

Noteworthy is that we will approximate all gradients with the corrected gradient of the kernel. However,
we will not replace all kernels with the corrected kernels. This is because sometimes the uncorrected
kernel gives better results. For example, it was found that using the uncorrected density in the PPE
yields a better performance [10].

3.8. CFL-cond'ﬂions

We willlhow state the Courant-Friedrichs-Lewy criterion (CFL) which is a necessary condition to guar-
antee a stable simulation. The limited time step for ISPH is given by

At = min (Aty, Atyise, Ata, Aty) (3.64)
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where At,, Atyis., At, and Ato are given by

L
Aty = acrp—
1‘1!“11'
2
Atpise = Qdiff »
maz 365
L, (3.65)
Af“ = nr“” /—
. \} |{1!Jlf11'|

Lip
Atn‘ = nrft'ff%r

with acrp, = 0.05, Ly the initial particle distance, wu,,,,, is magnitude of the maximum velocity, a,, ..
is the magnitude of the maximum acceleration, ay; s = 0.125, v,,,, the maximum kinematic viscosity
[13] and  the surface tension coefficient. For WCSPH, to enforce a limit on the compressibility of the
fluid, the maximum velocity criterion is changed to

I’
Aty = acrr—2, (3.66)

Co

ending on the limiting timestep criterion, WCPSH can have a much smaller time step than ISPH.
Atthe end of ev@[Eime step, a check is performed. Whenever a criterion has been violated, the last
time step will be repeated with a smaller time step.




Rheology and surface tension in SPH

In this section, we will first explain how the rheoclogical properties are implemented. Furthermore, we
will derive an expression that can estimate the effect of the PIF on the surfagfiension and the pres-
sure. Lastly, we will describe two methods that can be used to simulate the surface tension, namely
Continuum Surface Force (CSF) and Particle Interaction Surface Minimization Force (PISMF).

4.1. Tuning of rheological fluid propggties

In Van der Linde [40] it has been shown that PIF can be used to tune rheological profEfiies of the
simulated fluid. The rheological PIF introduces an additional force, that generates an attraction for
distant particles and repulsion for close particles. There are multiple ways to express and implement
PIF. We will im;ﬂment PIF as a force, instead of an acceleration force, which was done in Van der
Linde [40]. The SPH discretization of the momentum equation (2.5) including the PIF is given by [39]

D (m;u;)

G = PR (@.1)

where F? and F!' are the SPH discretizations of the pressure gradient and viscous forces and Fi* is
the total PIF acting on particle i. For the considered rheological PIF from Van der Linde [40], the total
interaction force is given by

N
: r;.
Firt = -3 Ry, (42)
i1 T
where F}; is
S (=g b ), k= 2 wm (bR g <a
Fy = { m== (ri; — k) w), T U (xo — k)7, T < Ty 4.3)
0 Tij > To.

The tunable parameters are the interaction strength (S;), the range of the particle interaction («§2nd
the ratio of repulsive/attractive force (z1). The visual representation of equation 4.3 is given in Figure
(4.1).

20
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Figure 4.1: Visual representation of the particle interaction force (blue) given by equation 4.3, where on the horizontal axis we
have the normalized distance and on the vertical axis we have the nomalized force. Furthermore, the red dashed line
represents the zero line and the first interception between the red and blue line is determined by ;.

We will now state the side effects due to the PIF. The first known side effect is an additional pressure
due to a difference in the amount of repulsive and attractive forces [40, 39]. The additional pressure
will from now on be referred to as the virial pressure. Secondly, the PIF affect the surface tension.

For a 2D simulation, we can measure the viral pressure by the following expression [21]

Puirial = % <Z Z rx',l F(]> ] (44)
i

where (---) denotes the average over time and F;; = i';_,%. However, it would be better if we can
estimate beforehand the virial pressure and effect on the surface tension.

4.2. Analytical estimate surface tension and virial pressure
We will now derive an 2D analytical expression for the PIF induced virial pressure and surface tension.
In the beginning, the derivation procedures for the surface tension and the pressure coincides. At a
certain point we will mention that from there on, the derivations will differ from each other. At that paoint,
we will continue with the derivation for the surface tension after which we will do the final derivation
steps for the virial pressure. We will follow the derivation of Tartakovsky and Panchenko [39], which
was done for multi-phase fluids and we will make the necessary changes needed for a free surface
fluid. 1

The total stress at a point x can be found according to Hardy’s formula as the sum of the convection
stress and the interaction stress [39]. Now, considering a static equilibrium, the total stress reduces to
the interaction stress. The interaction stress due to PIF is given by [39]

1
0

N N
1 =
Tini(x) = 3 E E iy (r; — ri]] Yy (X — s0; — (1 — s)r;) ds, (4.5)
i=1j=1

where f;; is the total force between particle  and particle j and tﬁ,, is a weighting function with compact
support. Note that the force f;; can be written as [39]

. ri
£ = daslri) ==, (4.6)
Tij
where o, 3 indicates the different phases’ and
Gap(ryy) = = [Fos + Foy ] 4.7)

1For free surface, we will only have one phase, namely c.
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We remark that I'*;, depends on the choice of the pressure discretization. We use the following dis-

cretization
Pa +pp . dW(z)

Fh = (2T . (4.8)
o o dz
) Pafgs
Furthermore, v, is given as a product of one-dimensional compact functions v,,; = Lu(x(l)), where

I =1, 2,3 denotes the vector component [39].

We consider a single fluid «, with a flat free surface parallel to the = direction®. Without loss of
generality we set the free surface at y = 0 and fluid o occupies the domainZ = —o0 < © < 00, —00 <
y < 0. The surface tension is then determined by integrating the stress components along the interface,
that is [39] .

a:] [T, (y) — T ()] 4.9)
e

where 7> (y) and 7,,(y) are the tangent and normal stress components. Using (4.5) we write 7’ as

() [
ZZ@ rij) (e ft.?u,(x—(.er(-—(l—er_;nds, (4.10)

“_I JerT Tij 0
where r;;, is the = component of the vector r;;. We assume that the radial distribution function is
equal to one, i.e. the particles are homogeneous distributed. By approximating the sums with integrals

we get
164

——n f] rij) ”“’} U (X — (s + (1 — s)F')) dsde'r”, (@.11)
0
where n is the numerical density, i.e. n = £ We introduce the following notation

V=(ay), r=("y"),
p=r—r"=(p,p2), (4.12)

R=1(F+r")= (R Ry),

which will later on be used to simplify equations. Next, we rewnte (4.11) as?

)= tn ’ ! _w
e

x ] i‘-"? (x — (sr' + (1 — s)0'")) dsdy”dz"dy' d’.

0

Following the same steps, 1}, is given by

-t [ ][ o e

(4.14)
X f U (X — (st + (1 — 8)r")) dsdy” dz" dy'dz".
0
Since we are considering a square domain, we can factorise our compact function as
@Eu (X) = @':.'u(']:)?f".'u(y)r (415)
where 1 is chosen to be a step-wise function and is normalized in the following way
LS 1 (e w1 fre(-1/21/2),
B lo(B). -} tEECH (4.16)

2To apply for curved free surfaces, the following assumption needs to be satisfied: the radius of the curvature needs to be
much larger than the smoothing length.
3Remember that we consider a square fluid with domain —oc < 2/, 2" < scand —cc < y', 4" < 0.
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and
0 if Ra < ijl - EI?
- T Ly 4+ R+ n) if yn — —r;a <Ry <y + —r;a_.
Uy (g1, Y2, Ra2) :/ ty (y — Ro)dy = 1 ifyy +inp <Ry <z fﬁ, (4.17)
w s(pe—Be+gn)  fp—gn< Rz < ?;’z + 57,
I.’] if Ry = yo + 29‘

Observe that when both points are inside the compact radius ¥,, has the value one, when both points
are outside we have zero and between we have a linear trend.
By using the factorisation, we rewrite the expression inside the last integral of (4.13) as

Uy (X = (51" + (1= s)r")) =y (z = (s2' + (L= s)2")) vy (y — (59 + (1 = s)y")) . (4.18)

and by approximating the integral by the midpoint value we get

1 1
/ Fc= o~ (=) do = [ vt = (s + (L= )2ty = (s’ + (1= )y
ok ok

1
2

(4.19)

l "
~ iy (@ ( ' +(1— )I ) (y ( ¥+ (1= ")

Now inserting the above derived expression into (4 13) and (4.14) and subtracting we have

; / f / (xr _ IH’J2 _ (yr _ yu]z
T, - - _n - ' m
J I =l (4.20)

1 1
x Uy (T ( '+ (1— —j-r )y ( ( Y+ (1— —) "Vdy" dx" dy' dz’.

Changing the variables of integration from »', ' to p, R and taking into account that the Jacobian matrix
is equal to one, we get

) —2R, 2
T, —1 “ﬁx——nf f f f #(1pl) |p|p2a,(.z:—HL]«_-:w,,(y—Rg)dmdmdmdm (4.21)

2R

The integration bounds of p, follow from y' = R, + 3p, < 0, and " = R, — 3p, < 0, i.e. when we first
integrate with respect to p2, we have to take into account that ps is bounded between 2/, and —2K.,
which follows from the considered y-domain (—oc, 0).
In the next step, we observe, that integrating with respect to R; allows us to make use of the
normalization condition of ), i.e.
o
/ Yyl — Ry)dRy = 1. (4.22)
e
To justify switching the order of integration, we use Fubini’s theorem, that is for a chosen ¢ the absolute
value of the quadruple integral should be finite*. Assuming that changing the order of integration is
justified we obtain

—2R2 -
T, 1 “:-::—n/ / f o(lp|) p‘”t (y — Ra) dpadprdRa. (4.23)

2R, |l
Because of the absolute value, we have that ¢(|p|) is a symmetric function. Secondly, we observe the
symmetric integral bounds of p1 and p; and thirdly the integral depends only on another symmetric
function “ " . Using the above observations, we can rewrite (4.23) as

2Ry
T, — T, ~ 20 ] / [ o(lol) ”L| L2, (s~ Fa) dpadpad s (4.24)

44 is assumed to be a continuous function. When an explicit expression for ¢ is chosen, we have to verify if the absolute
value of the quadruple integral is finite.
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We will again perform a change of variables, but now changing g1, p2 to polar coordinates ¢, £. For the
bounds we note that due to the = domain ¢ takes values between zero and infinity. If t € (0, —2R;),

then ¢ takes values between 0 and 5 while, if ¢ € (—2R», 00), £ takes values between 0 and £, where
€ = sin"'(—22)_ Furthermore, taking the extra t into account due to the Jacobian and that

pi—
I

0 —2R, I
-7, =~ 2n2f f [ @(t)t? cos(28)v, (y — Ry) dédtd Ry
[}

] / / t)1? cos(2 Ey (y — Ro) dédtd Ry.
2R J0

From here on out the derivation steps for the surface tension and the pressure will differ. Continuing
with the derivation for the surface tension we first perform the integration with respect to &, that is

= tcos(2€),

we get

(4.25)

T. f / £)t% sin(2E), (y — Ry) didRs. (4.26)
—zﬁ‘g

Substituting the above expression into (4.9) and first performing the integration with respect to y yields

U2 U2 . 0 00 . .
a =/ T —T,.dy:s/ —n?f ] B()t* sin(28)4, (y — Ry) dtdRady
I i —oo Jf —2Ra
0 o0 N
= —n2/ f ()2 sin(2€)dtd R
—oc J —2Ra

For the final step we want to change the order of integration. We observe that we can describe the
integration region

(4.27)

—no < Ha< ) (4.28)
— 2Ry <t < oo, )
for the did R, integral, also by
D<t<oo
1 4.29
- Ef < Ry <0, ( )

which is the description needed for the integration order d?.dt. Now changing the order of integration
and performing the integration we end up with

) 0 o . .
~ —n?/ f @ (£)t? sin(28)dtd Ra,
—2FRq
/ f £)¢2 sin(2€)dRydt (4.30)
0
= ——n f df
3 A o(t)

We will now derive the induced virial pressure in the bulk of the fluid. In the bulk far away from the
free surface the pressure is given by [39]
p=-T, =T, (4.31)

By starting with (4.11) and performing the same steps up to (4.25) we get

—2Ra
= —T, ~2n* f / / t)t? cos? (&), (y — Ry) dEdtd Ry

1] 3
—21?.2[ f f B (t)t2 cos2 (€, (y — Ry) dEdtdR,,.
—ood 2Ry Jo

(4.32)
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1
To simplify the above expression, Ee choose a negative y with large |y| such that the support of +,,(y —
Ry) falls inside the irfJval (—~c, (). Because of this, the estimated virial pressure can only be used {§J
predict the pressure in the bulk of the fluid, i.e. far away from the interface. Using that the range of ¢(t)
is finite, we can move y further from the interface, to ensure that ¢(f) = 0 for all t > —2R,. By doing
this the second triple integral becomes zero and we can extend the integration in t to (0, 0o}, yielding

0 oo =
p= 2”'2[ f fz B(t)12 cos? (€, (y — Ry) dEdtdR,. (4.33)
—oo () ]

We rgBjark that by our assumption the support of v, (y — R,) lies inside the integration interval of R,.
This integral is equal to one because of the normalizeffgh property of «,,. As the last step, we perform
the integration with respect to £, which results in the final expression for the pressure in terms of the
unknown interaction function ¢, that is®

1, %
P =Tn ()t~ dt. (4.34)
2 0
To obtain a clear overview of the previous calculations, we state the final expressions for the PIF
induced surface tension and virial pressure

Oprp /& —%n?f o)t dt,

1 coa (4.35)
Py = —am?f ot t2dt.

2 ]

Two methods are considered for further tuning of the surface tension, namely the Continuum Sur-
face Force (CSF) method and a particle interaction surface minimization force (PISMF) method. Both
methods are based on a force that minimises the surface area. We will first discus the CSF method
after which the PISMF method will be explained.

4.3. Continuum surface force method

Onefthe biggest advantages of CSF is that it does not influence the viscosity or elasticity of the fluid.
The CSF method translate§Efi surface tension into a volumetric force. The force acts as a smoothing
for high curvature regions in order to minimize the surface area. The volumetric force is given by [14,
26]

Fourf = orkNd,, (4.36)
where o is the surface tension coefficient, n [EJthe unit surface normal, « is the curvature and §. is
the surface delta function. We have assumed that the surface tension is constant throughout the fluid,

i.e. V.o =0, where V, is the surfacmradient. In order to distinguish between different phases and
determine the normal and curvature, we introduce a color function ¢ as [2]

. 1, if particle | belongs to £, (4.37)
! 0, else. '

With the color function, we can now obtain the unit normal using [14]

Ve

ﬁ:m,

(4.38)

ﬁere [c] is the colour jump across the interface. Furthermore, using (4.37) the curvature is given by
[14]
k=-V-n (4.39)

For the surface delta function, we will use the same expression as in Hirschler et al. [14]

5, = |nl, (4.40)

5We have changed the order of integration. Like before, when an expression for ¢ is assumed, the absolute value of the triple
integral should be computed and needs to be finite.
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where |n| denotes the length of the normal vector. Before we give the discretization of the unit normal
and the curvature, we wgBpriefly discuss the shortcomings of CSF. To overcome the shortcomings, we
state different solutions found in the literature, each with its §&in advantages and disadvantages.

The drawbacks of the CSF method are that the accuracy depends on the normal vector calculation
and curvature estimation, where the later is prone to errors. To resolve the error prone calculations
of the curvature, many corrections were introduced, each with its own pros and cons. In Adami and
Account [1[Ea comparison of the most popular correction methods is presented. From the comparison,
it followed that the classical method developed by Sirotkin andffoh [34] is the most stable one. They
used a correction matrix to solve the problem of the decreased number of interpolation points near the
free surface for one-fluid phases, resulting in more accurate results. Furthermore, a transition band
(multiple layers of surface particles) for the calculation of the curvature is introduced. Other methods,
such as presented by [2] and [26] tend to underestimat@]the curvature near the surface. However,
stability still remains to be an issue, since it will depend on many other factors such as the pressure
force, order of viscosity force and the density calculation near the free surface.

Despite all the corrections, the methods are still depending on the amount of particles; the methods
become less reliable when handling thin liquid layers with few particles. He et al. [12] developed another
method that is able to handle thin film features. The difference between the methods is thatHe et al. [12]
uses |Vc|? instead of Ve, with the advantage that the normal direction is no longer needed, which
causes high errors in thin film sheets. This turns out to improve robustness against particle sparsity.

For stability reasons, we will base our discretization on the classical method from Sirotkin and
Yoh [34], which is also used in Hirschler et al. [13]. For the discretization of the unit normal and the curva-
ture, we make a distinction between multi-phase and single-phase. For multi-phase, the discretization
terms are

n=>Y —(¢c;— ) VW, (4.41)
pull
and
N . o
ri=y_ —L(h; —A;) VIV, (4.42)
= i :

where V; 1-1-’;_; denotes the usual corrected gradient, see section 3.7.2. However, now only particles with
a normal vector length |n| > % are considered [14]. For single-phase, the normal vector reduces to

n, = ﬂ_'-_"q%izifﬁ. (4.43)
J

Furthermore, for single-phase, we perform a smoothing on the normal and curvature to ensure a smooth
field, i.e. [13, 10]

N .
N H(
ﬁi: Z}‘_J\.l ] J, (4‘44)
Z_-j:l W ij
and v
A S (P
R = Zri} i (4.45)
i=1 W ij
Finally, the surface tension for a multi-phase particle i is given by
F.s'ruf._i = dik; ‘nx |ﬁis (446)
and for single-phase by .
Fourfi = oifi|mi|n;. (4.47)

4.4. Particle interaction surface minimization force

The PISMF method was first introduced as a complementary force to PIF, where the PIF was de-
signed with the purpose to simulate the surface tension. Examples of such PIF are Tartakovsky and
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Panchenko [39] and Akinci, Akinci, and Teschner [3]. The first step of the PISMF method is to compute
the normal vector based on the gradient of the density field [3, 16]

N
n= kY 2LV (I, (4.48)
j=1 "

38
where © is the smoothing length. To give an expression for the minimization force, we use the assump-

tion that the magnitude of n; is proportional to the curvature. The minimization force is then given
by

N

Fi""™ = —ym; Z (ni —n;), (4.49)

j=1
where - is a coefficient to control the strength of the surface tension. It can be easily verified that F{*"
increases, whenever the curvature increases. Furthermore, for flat regions and inside the fluid, the
force is equal to zero. This is exactly what we wanted. The force should only influence the surface
area and must act as a minimization. The particle surface force is then given by
FiUl = K (Fim R (4.50)

i

where
N

- 2p9
Ki=Y" : (4.51)
S PiTP

is a symmetrized correction factor, with p( the initial density of the fluid. The advantages of the PISMF
method are

+ Avoids explicit computation of the surface curvature. Hence, improving sensitivity to particle dis-
order.

+ Avoids normalization of n;.

+ Symmetric force.

However, an important remark of PISMF is that it requires a PIF that is designed to simulate a surface
tension force. The disadvantage of this is that it will affect the rheological properties, which leads to
a coupling between the surface tension and the fluid rheology. The goal of this study is to tune the
surface tension to the desired value, without affect the rheology. Therefore, in this study, we will not
use PISMF and only use CSF.




Problem description

In this section, we will first describe the general SPH simulation setup. Afterwardgffile will state two
ways that will be used to measure the surface tension, where the first one is valid for both Newtonian
and non-Newtonian fluids and the second one is only valid for low viscosities.

5.1. Simulation details
The desired fluid will be simulated in a box (parf&illy) filled with fluid particles. The particles will be
initialized on a grid, where the particle placement is defined in terms of the (initial) particle diameter L.
The particle diameter is defined by

Ly
Ly= 57—, (5.1)
J\pru'!it'h'ﬁ
where L, is the length of the box in the x-direction (meters) and N, ¢iccs IS the maximum possible

number of particlesfEjthe x-direction’, see Figure 5.1. The particles can now be placed on the grid
by expressing §BE) coordinates x,y and z in terms of L,. Important to note is that when L, = L, and
the maximum number of particles in the y-direction is larger than in the x-direction, the particles will
cram/merge together.

For periodic boundaries of the box, the box is extended in every direction through attaching a copy
of the whole box at every border, see Figure 5.2. Due to the periodic box, conditions should be met to
prevent computational errors. These conditions are:

+ ghhe kernel cut-off distance should be smaller than the dimensions of the box divided by two.

+ When a particle leaves the box at a certain boundary, the particle should enter the box at the
opposite boundary.

The first restriction follows from the fact that due to the periodic box, particles can interact not only with
other particles in the central box, but also with the “copied” particles. To avoid errors, a particle should
only be allowed to interact with one instance of any other particle; either being it in the same box or a
periodic image of it. This results in the restriction on the cut-off distance, see Figure 5.2.

1LU is solemnly based on the x-direction.
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Figure 5.2: Example of a 2D periodic box, where the

Figure 5.1: Visualisation of initial particle placement in dashed line indicates the cut-off radius of the red particle
2D. When we take L. = 2 mn, we have that Ly = % m, and the yellow box represents the central box. Observe,
since the maximum number of particles is equal to 4. that if the cut-off distance is increased, the red particle

will interact with multiple blue particles [30].

5.2. Numerical meth to measure the surface tension

The first method to measure the surface tension involves the deformation of an initially square droplet.
The surface tension acts as a minimizgjon of the droplet surface, which transforms the square droplet
into a circular droplet, see Figure 5.3. When the droplet reaches a stationary state, the surface tension
is in equilibrium with the pressure difference at the interface of the droplet. Using the Young-Laplace
equation, this balance is expressed as [21]

a
R

B — P = (5'2)
where K is the equilibrium radius of the droplet and £, and F,,; are the pressure inside and outside
the droplet. We will validate the numerical method by computing the difference between the calculated
and the expected surface tension. Additionally, this method is used to detemine the PIF influence on

the surface tension.

(@) (b)

Figure 5.3: Visualization of the particle positions at the initial time (a) and at t!we end of the simulation (b). The red particles
represent the inner fluid and the blue particles represent the outer fluid.

For the second method, we will measure the surface tension in a dynamic setting. The second
method simulates an oscillating droplet with small-amplitudes and low viscosity. We will describe two
methods that will be used to initialize the oscillation. For the first method, we start with a circular droplet




5.2. Numerical methods to measure the surface tension 30

with a prescribed divergence-free initial velocity field [37]

Uy =‘if.[)£ ( —L) erp (—i) I (5.3)

o Tor

y z? ) ( r
wy = —up— |1 — — |exp| —— |, 5.4
Y [}f‘u ( T ! (54)

where v, determines the strength of the velocity field, r, = 0.25R and he distance from the position
(x,y) to the droplet center. For positive 1, the droplet will stretch out in the x-axis and compress in the
y-axis. The second method starts with an initial droplet in the shape of an ellipse.

Because of the surface tension, the droplet wants to return to its original circular form. This is done
in an oscillating way. The theoretical period is given by [21]

| R(pg+

—_— [ B(pa+p1)

T = QTTII).V — 6 (5.5)
where p; anE), are the droplets density and the surrounding density. To determine the period, we use
the position of the center of mass of the droplet’s upper right quarter. The center of mass of the whole
droplet is given by

2ien, Mil:

Zszrf my

where (; represent particles belonging to the inner fluid. In a similar way, the upper right center of
mass is given by

R, = (5.8)

. m;r;
R., = EZL (5.7)
o, Mi

where (1, represent particles belonging to the upper right quarter of the inner fluid.




Results and discussion

In this chapter, we will first validate the CSF method for free surfaces. Secondly, we do the same for
multi-phase simulations. Then, we will verify the estimates for the PIF. Lastly, we will state the main
findings of this thesis, namely the results when CSF and PIF are combined.

6.1. Free surface simulations

In order to validate the numerical method, we will simulate a (free surface) square droplet, which will

transform into a circular state due to surface tension, see section 5.2 for more details. The surface

tension is implemented with the CSF method. We only consider an ISPH solver in combination with

periodic boundaries and prescribing “close” to zero pressure boundary conditions, see section 3.4.

Furthermore, we use the correction methods described in section 3.7. The numerical parameters are
. ] =1.0 ﬂ

m

* Number of particles = 61 x 61.
cnu=02"Pa-s.

cog=1 %
+ Dimensions box = 0.6 x 0.6 m.
* Gt =42 L[l'

Figure 6.1 shows that the droplet reaches a circular state. However, what cannot be seen in Figure 6.1
is that the droplet starts to develop linear momentum, i.e. the droplet will start to move trough the box.
This behaviour is also observed by Fiirstenau, Weiltenfels, and Wriggers [10]. Furthermore, during
the simulations numerical instabilities are observed, see Figure 6.2. In Firstenau, Weiftenfels, and
Wriggers [10] a possible explanation for the observed linear momentum and the instabilities is because
of the absence of strict Dirichlet boundary conditions, which makes the problem ill posed, see section
3.4. We remark that by increasing the viscosity, the instabilities can be delayed. Another way to solve
the instabilities is by introducing an outer fluid. The outer fluid will act as a stabilizer. By introducing
a second layer the computational time will drastically increase. However, since our goal is to combine
CSF with PIF and this combination can result in additional unforeseen instabilities, we choose stability
over efficiency. Hence, we switch to multi-phase simulations.
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(a) ®) ©

Figure 6.1: (a) Initial square droplet at rest, (b) the evolved droplet due to surface tension att = 0.4 s and (c) the circular state
att=1s.

Figure 6.2: Representation of the instability which occurs when p is changed from 0.2 Pas to 0.02 Pas.

6.2. Multi-phase simulations

This section will first present the results for the deformation benchmark test. After which, the results for
the oscillating droplet will be presented and discussed.

6.2.1. Droplet deformation: benchmark

The first method to verify the implementation is by considering an initially square droplet, which deforms
due to the surface tension. We will use the same parameters as in [2, 15, 28] ifjorder to make a
comparison between the results. The inside droplet has an initial size of 0.6 x 0.6 m and is placed
inside the center of the outer fluid, with length and width of 1 x 1 m. The parameters of both fluids
Effsetto (p =1 %,,u. = 0.2 Pa-s,0 = 1 &), which corresporfefyto [2, 15, 28]. Furthermore, the
total number of particles IV is 100 x 100 and the cut-off length ¢...: is set to four times the initial particle
distance. Additionally, the particle shifting method and the correction kernels and gradients are used,
see section 3.7.

Figure 6.3 (a) shows the pressure distribution at final time t = 5 s. We observe a constant pressure
profile inside and outside the droplet and spikes at interface between the two fluids. These spikes also
ocdgjred in the results of Szewe, Pozorski, and Minier [36] and Adami, Hu, and Adams [2].

To calculate the average surface tension, based on Laplace law, only particles with a Shepard value
greater than 0.99 are considered. The mean surface tension over time is shown in Figure 6.3 (b), with
a maximum relative error of 2.1 %.
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Figure 6.3: Pressure profile of the inside and outside fluid at final time ¢ = 5 s (a) and the numerical surface tension plotted
against time (b).

6.2.2. Oscillating droplet: benchmark

the oscillating droplet we consider two problems. The first problem is an oscillating droplet, where
the density and the viscosity between the outer and inner fluid are equal, i.e. pa = o1 = 1.0 fT‘r
and p4g = py = 0.05 Pa - s. The second problem involves an oscillating droplet with a density ratio
% = 0.001 and a viscosity ratio £t = 0.01. A realistic example of a density ratio of 0.001 is a water
droplet suspended in the air. For the first problem, we will make a comparison between our results and
the results of Adami, Hu, and Adams [2]. The second problem mimics the oscillation of a free droplet.
For free surface droplefg] we know the analytical period (expression (5.5)). We will validate the code by
computing the relative error between the numerical and the analytical period. We again only consider
the ISPH solver.

In Figure 6.4, we Eualize the particle positions at four different time instances and Figure 6.5 (a)
shows the oscillation of the centre of mass of the droplet’s upper right quarter, with no density/viscosity
ratio. By a visual comparison with Adami, Hu, and Adams [2] we observe a relative good agreement
between our results and their higher resolution results (N = 14400). It is worth mentioning here that the
results of Adami, Hu, and Adams [2] show a larger difference between calculated periods for different
resolutions. Additionally, our results contain fewer fluctuations. Possible reasons are different solvers!
andfGijfferent discretizations terms for the normal and curvature calculations.

Figure 6.5 (b) shows a comparison between the numerical and the analytical period, with the pre-
viously specified density and viscosity rati§f&JThe simulation parameters are: N %0 x 60, an initial
equal particle distance, ¢ = 1 N/m and an initial radius of 0.2 m. VVe observe a good agreement
between the numerical and analytical period, with a maximum relative error of 1.9 %, see Table 6.1.
The periods are based on the intersections, where we ignore the starting points.

1Their simulations were performed with a WCSPH solver and our simulations are performed with an ISPH solver.
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(a) (b)
(c) (d)

Figure 6.4: Droplet oscillation at different time instances, namely t=0.0, 0.1, 0,3 and 0.5 s.
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oosp  Theoretical period Measured period Relative error

0.4 0.3625 0.357 0.016
0.6 0.2962 0.294 0.0089
0.8 0.2565 0.254 0.0090
1.0 0.2294 0.225 0.019
Table 6.1: The calculated values for the measured and estimate Period, with ::_: = 0.001 and :‘—‘ =0.01.

6.3. Verification of analytical estimation

In this section we first validate the analytical estimation with the deformation test (single-phase). Sec-
ondly, repeat the same test but now for multi-phase. After which we perform the oscillating droplet
test.

6.3.1. Droplet deformation: analytical estimation
To validate the code and the analytical estimate (4.35) we will use the pairwise forces of Tartakovsky
et al. [38] which is given by
N 10

it oy J —Saacos (3fq) g<2

‘Inn (1‘"(_])— { 0 q>2! (61)
where ¢ = "—ji—' and S, is the interaction strength of the PIF2. These pairwise forces are specifically
designed to simulate the surface tension and are found to be in agreement with (4.35) [38, 29]. With the
chosen pressure discretization and the EOS, we have that the surface tension due to F? (expression

(4.8)) is negligibly small compared to F**! and for ISPH simulations ¥ is zero [38]. Substituting (6.1)
and (4.7) into (4.35) yields

2850a ”-Q@fn: [a.-3
opip & =gt =2 (o — 247 — 16], (6.2)
and S n2ed
_V_"tmn Deut T 2 _
po~ =gt [om 8], (6.3)

where o p;p and p, are the PIF induced surface tension and virial pressure. We consider an initial
circular free surface droplet and verify the correctness of the above expressions according to Young-
Laplace law. Based on Young-Laplace the measured pressure inside the droplet should equal

. TPIF (6.4)

d =~ -

R Pus

where R is the radius of the droplet. To avoid unknown consequences of the needed correction terms
and prescriiiig a pressure value for ISPH?, we will perform the free surface simulations with WCSPH.
The initial radius of the droplet is set to R = 0.125 m, the density to p = 1 fT’T the number den-
sity to n = 25600 and the viscosity to © = 0.1 Pas. For the cut-off radius, we use the following set
Geut = {6Ly, TLo,8Lo} and lastly S.. is set to 0.01. The estimated and measured pressures are given
in Table 6.2 and the pressure profile at ¢t = 1 s is shown in Figure 6.6 a. From Figure 6.6 a, we observe
pressure fluctuations near the free surface. For the mean pressure calculation we only consider parti-
cles away from the free surface, i.e. the normalized distance from the center should be smaller than
0.5. Furthermore, the fluctuating region increases for an increasing ¢..... This is expected, because for
a greater compact radius, a particle : will interact with more surrounding particles and hence will sooner
be affected by the free surface. Just like in Tartakovsky et al. [38] the SPH pressure is within 5% of
the predicted values by (6.4). Lastly, because we use a basic WCSPH solver with no corrections, we
observe a somewhat large spread in pressure values.

2\We assumed that the pairwise forces have the same compact support as the kernel. Note that due to the Wendland kernel
we have the relation q.., = 2h, which explains ¢ < 2.
3Remember that the PPE needs an additional BC condition in the form of a prescribed pressure, see subsection 3.4,
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Geut  —Po ZEE oy Measured p,; relative error
6 104.82 4.96 109.78 1.10x10? 0.0020
7 166.46 9.19 175.65 1.76x10? 0.0020

8 24848 1558 264.06 2.68x10° 0.015

Table 6.2: The calculated values for the virial and measured pressure with a varying geu:-
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Figure 6.6: Pressure profile of the inside droplet at time ¢ = (1.5 s with Tartakovsky PIF (F%') (a) and the pressure profile for
theolagy PIF (F7') (b).

Next, we will investigate if (4.35) is still valid for the rheology pairwise forces given by *

Sij 2 T — .y 2 .
F;‘;: _ { =t (— (ri; — k)" + ")') k= Ty W= (T — k)=, Tij S To = (eut (6.5)
’ 0, Tij = To = (eut-
ij cu

The surface tension and virial pressure due to the rheology pairwise forces are®
oprr ~ —0.000261n*mS; gt .. (6.6)

and
Py = 0.31T0°m S, (6.7)

We observe a positive virial pressure and a negative surface tension. This means that our interaction
force, for positive S;;, will have a reducing affect on the surface tension. We will now perform the same
simulations as for the Tartakovsky pairwise forces. However, since we consider the actugfJPIF of inter-
est, we will perform more simulations and also vary the interaction strength. The results are shown in
Table 6.3 and the pressure profile is shown in Figure 6.6 b. We again observe a 5% maximum difference
between the measured and predicted pressures. However, due to the negative surface tension, the
droplet cannot maintain the circular state and will deform in time. Furthermore, the simulation becomes
unstable. In Tartakovsky and Panchenko [39] it was found that in order to ensure a stable simulation
the virial pressure should be negative . The pressure calculations are performed before the circular
state is broken. However, the effect of the negative surface tension and positive virial pressure can still
be observed in the pressure profile shown in Figure 6.6 b

4Important to note is that we have multiplied with the mass of particle mgj. Originally the pairwise rheology forces were
introduced as an acceleration. Hence to abide by the estimate we needed to convert the acceleration to a force.

5ln the SPH simulations the mass is kept constant, that is m; = m;.

8A possible explanation for this is that a negative virial prevents, to a certain extend, negative pressure values from occurring.
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Geut  Sij  —Pu e Pd Measured p;  relative error
4 10 -1.27 -21e-4 -127 -1.22 0.041
5 10 -2.48 -5.1e-4 -248 -2.46 0.008
6 10 -428 -1.1e-3 -428 -4.10 0.042
7 10 -6.8 -2.0e-3 -6.8 -6.48 0.047
4 5 -0.63 -1.0e-4 -0.63 -0.61 0.032
5 5 -1.24 -25e4 -124 -1.23 0.008
6 5 -2.14 -53e-4 -214 -2.04 0.047
7 5 -340 -10e-3 -340 -3.23 0.050

Table 6.3: The calculated values for the virial and the measured pressure with varying g..; and 5;;

In section 6.1, we saw that free surface simulations involving CSF suffers from instabilities. A way
to solve this is to introduce an outer fluid, which will act as a stabilizer. To be able to combine CSF
and PIF we have to verify if expressions (6.5) and (6§Egare applicable in the case that PIF will only
be applied to the inner fluid (droplet). For multi-phase simulations, it is important to note that the initial
form is not stable and that the droplet will expand over time. When an outer fluid is introduced, we
have to be careful that the expansion does not result in a mixed layer. For WCSPH, the artificial speed
of sound limits the threshold of compressibility to usually 1%. However, for ISPH the compressibilitity
over time is unbounded [35]. To prevent mixing, we will perform simulations involving low values for
S;;. Furthermore, we start with an initial grid where a slight gap between the outer and inner fluid is
introduced, see Figure 6.7 (a). We will perform both ISPH and WCSPH simulations. For WCSPH, we
use periodic boundaries, but for ISPH we apply free-slip zero Dirichlet wall boundary conditions, see
section 3.4. The pressure profiles are given in Figure 6.8. In accordance with the estimate, we observe
a negative pressure inside the droplet. Even with the taken precautions, we could not prevent phase
mixing and the simulations display instabilities over time, see Figure 6.7 (b). Plausible explanations
are the negative surface tension and negative virial pressure. The negative pressures will attract the
outer particles and the negative surface tension will deform the droplet. By changing the ratio of =:; and
x5 in (6.5) we can enforce a positive surface tension. We change z; from z; = 0.6671z, to x; = 0.5z,
which results in the following estimates

oprr = 0.0444n*m Sy gt (6.8)

and
Py = —0.209n°mS;;q3 . (6.9)

Figure 6.9 shows the pressure profiles for the new =, value. We first remark that during the simula-
tion no mixing occurred and the initial circular form is preserved. Furthermore, we qifigrve in Figure 6.9
that the ISPH pressure profile has a lower standard deviation than the WCSPH. This is likely related
to the fact that we are using one of the most basic versions of WCSPH’, which makes a comparison
between WCSPH and ISPH unfair. For the ISPH pressure profiles we notice that for particles close
to the wall, the influence of the prescribed zero pressure condition. That is, we observe a somewhat
larger spread in pressure values. The spread occurs due to that for, particles with the same distance
from the droplet center, some are affected by the wall boundary conditions, while others are not. The
pressure differences for ISPH and WCPSH are 1.67 Pa and 1.85 Pa, with a predicted difference of
1.75 Pa®. What is interesting in Figure 6.9 is the difference in pressure in the outer fluid. For ISPH,
we enforce a zero pressure condition at the wall boundaries, resulting in an outer mean pressure of
almost zero, namely 0.04 Pa. However, for WCSPH the mean value is —0.27 Pa. A possible reasonis
that the size of the outer fluid is not sufficiently large. The particles at the periodic boundaries are still
affected by the inner fluid. Therefore, the estimated pressure by (6.3) is divided between the inner en
outer fluid.

"The code we are working with is specially designed for ISPH and only a basic version of WCSPH is implemented.
“-‘Imporlanl to note is that the initial radius is 0.19 m instead of 0.15 m.
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(a) (b)

Figure 6.7: Visualisation of the initial grid with the gap (a) and visualisation of the mixed layer, the instability and the
deformation from the initial circular form.
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Figure 6.8: Pressure for a two fluid simulation with rheology PIF (WCSPH) (a) and the pressure profile for ISPH (b). We used
the following parameters: S;; = 1 and gews = 5Lg.
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Figure 6.9: Pressure for a two fluid simulation with rheology PIF (WCSPH) (a) and the pressure profile for ISPH (b). We used
the following parameters: g..; = 5Lp and 5;; = 5.

By performing a long-time simulation with an ISPH solver, we observe an increasing gap between
the fluids, which eventually leads to the termination of the simulation, see Figure 6.10 (a). The gap
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seems to arise because the outer fluid is being compressed. The gap did not occur, when a WCSPH
solver was used. However, by decreasing the artificial speed of sound, which allows for larger density
EFfluations, we also detect the gap. A possible explanation for this might be that the compressibility
in WCSPH is limited by the artificial speed of sound, which prevents the fluids from compressing. For
ISPH, this is not the case, instead the density error can accumulate over time [35]. In Appendix A, we
verify the accumulation of the density errors. We propose two solutions for the ISPH solver. The first
solution involves a variant of the ISPH solver, namely the ISPH solver from Hu and Adams [15]. Instead
of only using the DV condition, an intermediate time-step is introduced which is used to enforce the DI
constrain described in section 3.2.1, resultingZ] a threshold on the density fluctuations. The second
solution is using the particle shifting method explained in section 3.7.1. In this study. we chodfEEhe
latter, which results in a stable simulation over time, with a final particle distribution as shown in Figure
6.10 (b).

Figure 6.10: Visualization of the gap between the inner and outer fluid (a) and the particle distribution at the final time, when
particle shifting is applied (b).

6.3.2. Oscillating droplet: analytical estimation

We will repeat the droplet oscillations, but now with the PIF. We will choose the value of S;; in such a
way that it corresponds to the surface tension values used in Figure 6.5 (b). The computational details
are presented in Table 6.4. Important to note, is that instead of an initial divergence-free velocity field,
we start with an ellipse. The reason for this is that the PIF increases the viscosity, which dampens the
initial amplitude.

Parameter Value
initial particle distance M
initial fluid density (droplet) 1%;#
initial fluid density (outer)  p,  0.001%%
dynamic viscosity (droplet) p;  0.05%

dynamic viscosity (outer) pa  0.000522L

aq
s

S

initial radius R 0.163 m
number of particles N 60 x 60
Major axis length - 24Ly
Minor axis length - 16Lg

Table 6.4: Computational details for the free droplet oscillations, where PIF are used instead of the CSF method.

The first simulation was performed with a cut-off radius ¢, of 6L,. However, we observed that
the droplet did not attain the expected circular equilibrium form. Furthermore, the droplet reached an
equilibrium state within the first oscillation. When increasing .., the droplet did perform as expected.
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(3% dependence on q... is also observed in Nair and Péschel [29]. They argue that for smaller g..., the
particles tend to “crystalize” to lower energy configurations, which leads to the observed overdamping
[29]. We will therefore perform the simulations with a higher cut-off radius, namely q..: = 7.5Ly. The
droplet oscillations for S;; values correspending to a surface tension of 0.6, 0.§EEH 1.0 IV /m are shown
in Figure 6.11. Additionally, the estimated and measured period are given in Table 6.5. It can be seen
from the data in Table §PfE}that there is a substantial difference between the measured and estimated
surface tension. This may be explained by that the surface tension is not dominating the viscosity,
which is required for (5.5) to be applicable. The used PIF is designed to simulate the fluid rheology
and not the surface tension. Unfortunately, it is yet unknown what the contribution of the PIF is to the
viscosity and elasticity of the fluid. To be able to predict the oscillations of a viscoelastic droplet we
need to have a constitutive equation. However, the constitutive equation describing the PIF rheclogy
is also unknown. Important to note is that for PIF designed specifically to simulate the surface tension
the above method is valid [29]. We argue that their PIF induced viscosity and elasticity is much smaller,
resulting in the required dominating surface tension.

\’ - T T T T T
0.0 0.1 02 03 04 s
time [s]

Figure 6.11: The position oa the center of mass of the droplet shown over time. The corresponding surface tension values are
0.6, 0.8 and 1.0 N /m

Sy Estimated op;r Period Measured period relative error Measured op;p
15.36 0.6 0.219 0.259 0.183 0.428
2049 08 0.190 0.231 0.216 0.535
2566 1.0 0.169 0.210 0.242 0.647

Table 6.5: The calculated values for the measured and estimate Period. Additionally, based on the measured period, we
determine the corresponding “measured” surface tension.

6.4. Pairwise interactions combined with continuum surface force
We have verified the implementation of the CSF and the PIF methods. For the separate case, we were
able to predict the surface tension accurately in a static test. For the dynamic surface tension, we found
that the PIF induced surface tension is being underestimated. To our knowledge, there has been no
cases where CSF and PIF are combined. In this section, we will repeat the previous experiments, but
now with CSF and PIF combined. We start with the square deformation benchmark test. Furthermore,
in the previous section, we observed that the pressure profile with a WCSPH solver contains larger
fluctuations. Therefore, we will only perform simulations with an ISPH solver. We will first perform a
small scale simulation, in order to investigate if CSF and PIF can be combined. The simulation is per-
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formed with the corrections methods described in section 3.7. Additionally, we use periodic boundaries.
Important here to note is that from here on out, we do not prescribe a pressure value, but instead make
use of the built-in flag called “ksp constant null space” from the PETSc library. Figure 6.12 shows the
droplet at different time instances and we observe that the simulation reaches an equilibrium.

() (d)

Figure 6.12: Droplet deformation ﬂiﬁ‘er@nt time instances, namely t=0.0, 0.1, 0,3 and 0.5 s.

By assuming that we can just add the pressure contribution from CSF to the PIF pressure, we can
express the droplet pressure in the following way

., JCsF | OPIF
pan 2L IHE g (6.10)

To verify if (6fIEZ) holds, we simulate the square droplet deformation with different CSF and PIF coef-
ficients. The simulation parameters are given in Table 6.6. Furthermore, the individual contribution of
the virial pressure and the PIF surface tension are given in Table 6.7. From Table 6.7, we observe that
the main contribution to the pressure is due to the virial pressure. Figure 6.13 shows the pressure differ-
ence versus the CSF surface tension with different PIF coefficients and Figure 6.14 displays a zoomed
in version to the more realistic surface tension values. Furthermore, Figure 6.15 shows the pressure
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profile for a single simulation. From Figure 6.13, we note that the pressure estimated by (6.10) is in
good agreement with the measured pressure differences, see also Appendix B for the relative error
table 2. This is a remarkable outcome since this speaks in favour of that the CSF and PIF contributions
are decoupled forces. A note of caution is due here since the main contribution is du§p® the virial pres-
sure. However, since the virial pressure works under the same principle as the PIF surface tension, it
is likely that the PIF surface ten§iin follows the same trend as the virial pressure. Another important
remark is that the cut-off length plays an important role in the final eqEfilbrium state. When the cut-off
length is too small, the droplet does not attain a circular state. This is likely due to the same reason as
for the PIF oscillating droplet test.

Parameter Value
initial particle distance Lg LI0EE
cutoff radius Geut 6.0Lg
initial fluid density (droplet) pd 1000%
initial fluid density (outer) o 1000 k9
dynamic viscosity (droplet) JT%) 0.052%
dynamic viscosity (outer) L 0.05-2
initial size (droplet) LygxLyg 16Lyx16Lg
number of particles N 144 x 144

Table 6.6: Computational details for the square deformation droplet test, where PIF and the CSF method are simultaneously
used.

Sij Pv FELE PPRIF
1000 -5.65x10° 4.50x10" 6.10x10°
10000 -5.65x10% 4.50x10° 6.10x10%

Table 6.7: The calculated values for the virial pressure and surface tension due to PIF, where pp; 5 is the pressure due to the
PIF induced surface tension minus the virial pressure.
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Figure 6.13: The pressure difference versus the CSF surface tension with two different interaction strengths. The dashed line
is the total predicted pressure difference due to CSF and PIF.

9The maximum relative error is 0.0224.
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Figure 6.14: The pressure difference versus the CSF surface tension with two different interaction strengths. However, now
the relevant surface tension values are shown. The dashed line is the total predicted pressure difference due to CSF and PIF.
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Figure 6.15: Pressure profile for oo gp = 0.1 N /mand Si; = 1000m/s%. For visual purposes we only took particles with a
certain distance from the center, namely three times the radius.

We will now investigate if the same decoupled relation holds, when considering an oscillating droplet.
However, since, most likely, we are not in a surface tension dominating regime, we will also use the
measured surface tension values from Table 6.5. We use the same numerical parameters as given
in Table 6.4. Figure 6.16 shows the measured period versus the CSF surface tension combined with
different interaction strengths. From Figure 6.16, we observe that the period is best predicted by the
CSF surface tension plus the measured o p; ¢ (green dashed line). Furthermore, Figure 6.16 appears
to support the assumption that the CSF and PIF surface tensions can be seen as decoupled forces.
However, in order to substantiate the claim, we go to a higher resolution. That is, we increase the total
number of particles from 60 x G0 to 72 x 72, increase the initial radius from 0.1633  to 0.248452 m and
increase the cut-off radius from 7.5L to 8Ly. We set S;; equal to 17.086 m/s*, corresponding to an
estimated surface tension of 0.6 N /m. Figure 6.17 shows the higher resolution results. We observe
in Figure 6.17, contrary to the previous results, that the measured periods are now in between the
theoretical periods. This is also what we expected in the previous results, since the additional CSF
should increase the dominance of the surface tension. Therefore, inclining to the theoretical period
based on the estimated surface tension. A possible explanation why this did not occur for the lower
resolution simulations is that the accuracy is not sufficient. To be more specific, too few particles were
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used to create the inner droplet. However, to be able to make hard claims about the relation between
CSF and PIF further research should be performed. An important remark is that we do not know how
the PIF induced viscosity and elasticity scales with the compact radius ¢..:. For o prr we know that it is
proportional to ¢! ,. When the rheology does not follow the same scaling, it will cause problems when
changing q..,, which is needed to increase the resolution.
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Figure 6.16: The period due to the combined CSF and PIF surface tension. The green dashed line represent the theoretical
period based on the CSF and the measured PIF surface tension. The solid line uses the predicted PIF surface tension values.
These values are (1.6, 0.8 and 1.0 N /m corresponding to S;; = 15.36, 20.46 and 25.6 m/s%.
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Figure 6.17: The period due to the combined CSF and PIF surface tension. The green dashed line represent the theoretical
period based on the CSF and the measured PIF surface tension. The solid line uses the predicted PIF surface tension values.

Up to this point, we used CSF to increase the PIF induced surface tension. We will now investigate
if we can reduce the surface tension, by using a negative CSF coefficient. We start with the static
test. The computational details are EEEjn in Table 6.8. We choose the interaction strength such that it
corresponds to a surface tension of 1.0 N /m. The pressure contributions of the virial pressure and PIF
surface tension are

Py = —5.03 x 10° Pa,
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and
TPIF

R

Figure 6.18 shows the measured pressures differences versus the negative CSF coefficients. From
Figure 6.18 we observe that we can indeed lower the PIF induced surface tension. Noteworthy is
that the droplet, for ocgp = —1.0 N/m, reached a quasi circular form. In theory the surface tension
should be equal to zero. However, a possible explanation for the quasi circular form is that the PIF
induced surface tension works on the entire droplet surface, whereas CSF only acts in regions with
high curvatures. For larger negative CSF coefficients, the droplet gets torn apart, resulting in the early
termination of the simulation.

= 4.43 x 10* Pa.

Parameter Value
initial particle distance Ly L m
cutoff radius Geut T.5Ly
initial fluid density (droplet) Pd lnﬂﬂ%
initial fluid density (outer) o 1000 4
dynamic viscosity (droplet) L nn,ﬁ
dynamic viscosity (outer) 7%y nn,h
initial size (droplet) LyaxLya 16Lyx 16Lg
number of particles N 80 x 80
PIF interaction strength Sy 45511.11 %

Table 6.8: Computational details for the square deformation droplet, where PIF are combined with a negative CSF.
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Figure 6.18: The pressure difference versus the negative CSF surface tension. The interaction strength corresponds to a
surface tension of 1 N/m. The chosen CSF coefficient are —1.0, —0.5 and —0.1 N /.

We will now consider an oscillating droplet. We use the same parameters as given in Table 6.4.
Additionally, we use a cut-off length ¢..: of 8L, and an interaction strength S;; of 19.775 m/s%, corre-
sponding to an estimated surface tension of 1.0 N /m. Figure 6.19 presents the obtained periods. We
first note that all periods are between the theoretical periods. Secondly, we observe an decreasing
trend in the period length along the CSF coefficient. Unfortunately, substantial claims cannot be made
based on Figure 6.19'0.

10We suggest repeating the same dynamic test, but now with the PIF from Tartakovsky and perform a convergence study.
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Figure 6.19: The period versus the combined negative CSF and PIF surface tension.The green dashed line represent the
theoretical period based on the CSF and the measured PIF surface tension. The solid line uses the predicted PIF surface
tension value. The interaction strength corresponds to an estimated surface tension of 1 N /m.
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Conclusion and Recommendations

In this study, we quantify the effect of Particle Interaction Forces (PIF) on the surface tension and
investigated the possibility to further calffirate the PIF induced surface tension to match the desired
surface tension. To further calibrate the surface tension, we use the Continuum Surface Force (CSF)
method.

In an earlier study, PIF were used to change the rheological fluid properties. However, it was found
that PIF also influences the surface tension and introduces an additional pressure, namely the “virial”
pressure. By following the derivation of Tartakovsky and Panchenko [39], we derived an expression
to estimate the PIF induced surface tension and virial pressure. These estimates are validated in a
static and dynamic setting. A limitation of this study is that we do not know what kind of rheological
behaviour the PIF produces, which greatly limits the possible dynamic tests to measure the surface
tenfbn. The static test involves a circular droplet inside a second fluid, acting as a stabilizer. Based
on Young-Laplace law we can determine the surface tensionfgly measuring the pressure difference.
The dynamic test simulates an oscillating droplet, where the surface tension can be determined by
determining the oscillation period of the droplet. It is important to mention that the dynamic test is only
valid when the surface tension is the dominating force.

We observed that to prevent instabilities from occurring, a positive virial pressure is needed. Fur-
thermore, for both the static and dynamic tests a relatively large compact radius is required to prevent
overdamping from happening and for the droplet to reach the circular form in equilibrium.

For the static test, we can predict the PIF induced surface tension and virial pressure. Furthermore,
results suggest that when CSF and PIF are combined, the resulting tot§filurface tension is just the
sum of the separate ffiiles, i.e. CSF and PIF are decoupled forces. Important to note is that the
virial pressure is one order of magnitude larger than the PIF surface tension pressure. However, its
contribution is still significant. Another noteworthy finding is that correction methods, such as particle
shifting or animproved version of ISPH, are needed when an ISPH solver is used. Most likely this is due
to the fact thatthese corrections prevent large density fluctuations from occurring, which is in agreement
with that for a WCSPH solver no corrections are needed. In WCSPH, the density fluctuations are limited
by the artificial speed of sound, preventing the gap from occurring between different phases.

For the dynamic tests, we observed an underestimated surface tension due to the PIF. A plausible
reason is that the PIF surface tension is not a dominant force over the viscoelastic properties which
are also induced by PIF. Contrary to the static case, when we combine CSF and PIF, we cannot make
substantial claims about the total surface tension.

Preliminary results show that we can also lower the PIF induced surface tension to a certain extent,
with a negative CSF coefficient. A note of caution is at place here since due to limited time, not an
extensive study was performed.

7.1. Recommendations for further research

This study shows promising results to enable us to further tune the PIF induced surface tension. How-
ever, further research is needed. We suggest the following recommendations
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Recommendations for further research 48

A study to find the constitutive equation describing the PIF induced fluid rheology. With the con-
stitutive equation, we can then investigate the CSF and PIF relation in a non-dominating surface
tension regime.

Research to determine to what extent we can lower the PIF induced surface tension with CSF.
Additionally, performing a stability analysis in case a negative surface tension coefficient is used.
Investigating if the found relations for the combination of CSF and PIF are still valid for a free
surface droplet.

Performing a convergence study, in the case that CSF and PIF are combined. Additionally, quan-
tifying the minimum needed compact radius, in different resolutions, for the PIF method.
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Relative error density

In contrary t@fiyhat the name suggest the ISPH method does not result in a constant density. To
estimate the density errors, we will determine two quantities: the mean density off the droplet 5(t) and
the root mean square of the density fluctuations p,.,,,. (t). To compute these quantities we use the same
expressions as in Szewc, Pozorski, and Minier [35]. The mean density p(t) is given by

_ 1 ,
plt) = szi > ow, (A1)
i i
and the density fluctuation p,.,..(t) is given by
| 2
1 . _
Prms(t) = \ ¥ m;» Wiy —plt) (A-2)
i J

Figure A.1 shows the density mean value and the r.m.s over time for a surface tension driven deforma-
tion. In Figure A.1, we observe for the ISPH simulation an accumulation of errors during the simulation,
which is in agreement with the results from Szewc, Pozorski, and Minier [35]. Secondly, for the WC-
SPH solver we observe a stagnated mean density and a r.m.s. which remains less than 2% of the initial
density.
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Figure A.1: The density mean value and the r.m.s obtained for a surface tension driven deformation.
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Relative error pressure: CSF and PIF

We present in table B.1 the relative error due to the combined effect of CSF and PIF. Furthermore, we
also present the separate contribution to the pressure, namely CSF and PIF.

Sij DEIF TegF  POSF Total pressure  Measured pressure relative error
1000 6.10<107 0.1 5.00x107 1.10x<10° 1.09x 107 0.0091
1000  6.10<102 015 7.50x10? 1.36x10° 1.34x10? 0.012
1000  6.10x10° 0.2 1.00:x10%  1.61x10° 1.60x10* 0.0063
1000  6.10x10% 025 1.25x10° 1.86x10° 1.86x10? 0.0
1000 6.10x10% 0.3 1.50<10°  2.11x10° 2.12x10° 0.0047
1000 6.10x10° 035 1.75x107 2.36x10° 238107 0.0085
1000 6.10x10% 04 2.00:10%  2.61x10% 2.63x10? 0.0077
1000 6.10x10° 045 2.25x10° 2.86x10° 2.90:10% 0.014
1000 6.10x10° 0.5 2.50=10%  3.11x10° 3.14x10% 0.0097
1000 6.10x102 055 2.75x10%  3.36x10° 3.40:10% 0.012
1000 6.10<10° 06 3.00x10% 3.61<10° 3.66x10° 0.0028
1000 6.10x<10° 065 3.25x10° 3.86x10° 3.91x10° 0.013
- - 0.7 - - -

1000 6.10x10* 075 3.75x10* 4.36x10° 4.44x10* 0.018
1000 6.10x10° 08 4.00x10%  4.61x10° 4.70x10% 0.020
1000 6.10x102 0.85 4.25x10% 4.86x10° 4.95x 10% 0.019
1000 6.10x10° 0.9 450107 5.11x10% 5.22x10% 0.022
1000 6.10x10° 095 4.75x10% 5.36x10° 5.48x10% 0.022
1000  6.10x102 1.0 5.00:10% 5.61x10° 5.73x10% 0.021
10000 6.10x10* 0.1 5.00x10% 6.60x10* 6.54x10% 0.0091
10000 6.10<10* 015 7.50x<10° 6.85x10° 6.7710% 0.012
10000 6.10x10%* 0.2 1.00:<10%  7.10x10% 7.01x10% 0.013
10000 6.10<10° 025 1.25x10* 7.35x10° 7.25x10° 0.014
10000 6.10x<10* 0.3 1.50x10%  7.60x10° 7.49:10% 0.015
10000 6.10<10* 035 1.75x10° 7.85x10° 7.73x10% 0.015
10000 6.10x10° 04 2.00x107  8.10x10? 7.98x10% 0.015
10000 6.10x10° 045 2.25x10% 8.350x10% 8.22: 103 0.016
10000 6.10x10° 05 250 10%  B.B0x 107 8.48:103 0.014
10000 6.10x10* 055 2.75x10% 8.85x10° 8.73x10°% 0.014
10000 6.10x10° 06 3.00:10%  9.10x10° 8.97:10% 0.014
10000 6.10<10* 065 3.25x107 9.35x10° 9.22:10% 0.014
10000 6.10<10° 0.7 3.50x10%  9.60x10° 9.46x10° 0.015
10000 6.10<10* 075 3.75x10% 9.85x10° 9.71x10% 0.014
10000 6.10<10° 0.8 4.00x10°  1.01x10* 9.94:10% 0.016
10000 6.10<10° 0.85 4.25x<10* 1.04x10° 1.02x10* 0.019
10000 6.10x10° 0.9 4.50x10°  1.06x10% 1.04x 104 0.019
10000 6.10x10% 095 4.75x107 1.09x10? 1.07x 101 0.018
- - 1.0 - -

Table B.1: The relative eror when CSF and PIF are combined.
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