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Abstract: We consider optical disks consisting of several stacked layers, one of which is a
recording layer which consists of a dye (for write once disks) or a phase-change
material (for rewritable disks). Due to the illumination by a laser spot the tem-
perature increases locally in the disk. The pulsing laser spot writes marks in
the recording layer that represent the digitally encoded data. To guide the laser
spot, the structure of the disks is grooved. Due to these grooves, the incident
light of the spot is scattered.

With the existing finite element program Cyclop, electromagnetic diffraction
problems in two-dimensional periodic structures can be solved rigorously for
three-dimensional incident fields, such as the laser spot used in optical record-
ing.

A three-dimensional finite element method code exists in Philips Research to
simulate the heat diffusion during the recording. The optical and thermal mod-
els and codes are integrated for a more accurate simulation of the recording
process.

The integration of the models has been tested on a planar geometry. Finally,
thermal simulations are run for stationary and moving predominantly TE- and
TM-polarized spots that are focused on the center groove of a Blu-ray disk.

Conclusions: With the integration of the optical and the thermal model a tool has been de-
veloped with which several phenomena, such as polarization effects and the
influence of changing the geometry an properties of the stack, can be simulated
accurately. The results of such simulations will give insight in the optimiza-
tion of groove geometry, stack design and the effects of for instance optical and
thermal cross-track cross talk.
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Glossary of notation and symbols

Throughout this report, the symbols printed in italic are scalars and symbols in bold are vectors. When a
symbol is printed calligraphic (for exampleU or U ), it is not only a function of the spatial coordinater but
also of the timet.

The following list contains the physical constants that are used in this report.

symbol description value
ε0 electric permittivity of vacuum 8.854× 10−12C2/Nm2

µ0 magnetic permeability of vacuum4π × 10−7Wb/Am

The following list contains the most important symbols that are used in this report.

symbol description unit
δ focal depth m
∆ thickness of recording stack m
∆c distance between successive clustersm

∆kx,∆ky grid distances in reciprocal space m
∆x,∆y grid distances in ordinary space m

ε relative permittivity -
κ heat conductivity W/m/ ◦C
λ wavelength m−1

ρ density kg/m3

ρ charge density C/m3

ρCp heat capacity J/m/ ◦C
χ electric susceptibility -
ω frequency rad/s
Ω unit cell -
Cp specific heat J/kg/ ◦C
D diameter of focused spot m
E electric field (real) V/m
E electric field (complex) V/m
Ei incident electric field V/m
Es scattered electric field V/m
H magnetic field (real) A/m
H magnetic field (complex) A/m
Hi incident magnetic field A/m
Hs scattered magnetic field A/m
I intensity factor -

1
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symbol description unit
J current density (real) A/m2

J current density (complex) A/m2

k wave number -
k wave vector rad/m
K number of grid points used in FFT in periodp -

Ltx, Lty, Ltz dimensions of thermal computational box m
n index of refraction -

NA numerical aperture -
nc cluster index -
Nc total number of clusters -
np period index -
Np total number of periods -

Nx, Ny number of grid points used in FFT inx-, y-direction -
p grating period m
P total power of laser spot W
P electric polarization C/m2

S Poynting vector (real) J/sm2

S Poynting vector (complex) J/sm2

Q heat source V/m3

t time s
T temperature ◦C
v velocity m/s
w total energy density J/m3

we electric energy density J/m3

wm magnetic energy density J/m3

W absorbed energy W/m3

xc, yc, zc Cyclop coordinates of a thermal nodal point -

2 c©Philips Electronics Nederland BV 2002



Chapter 1

Introduction

This report is the result of my graduation project at Philips Research Laboratories, Eindhoven. The gradu-
ation project is part of the curriculum of Technical Mathematics at Delft University of Technology (TUD)
and has been supervised by prof. dr. Urbach (Philips), dr. ir. Meinders (Philips) and ir. Segal (TUD).

1.1 Brief history of optical recording

The use of (digital) optical recording started in 1982 with the introduction of the compact disk system
(CD). This read-only medium, with a storage capacity of 650MB (Megabytes), became widely accepted
and appreciated due to its replicability and durability. Besides as a medium for recorded music the compact
disk can be used to store computer data: the compact disk read-only memory or CD-ROM (introduced in
1985).

The digitally encoded information on a CD or CD-ROM is contained on a disk with a diameter of 12 cm in
the form of a relief structure, consisting of pits and non-pits with varying length, along a spiralling track.
The pits and non-pits can be interpreted as a binary code of zeros and ones. The substrate disk is coated
with a metallic mirror and a protective layer. The metallic mirror layer allows the information to be read
by detecting intensity differences in the reflected light, caused by the diffraction on the relief structure, of a
laser beam that is focused on a track on the surface.

A drawback of the CD(-ROM) was that for consumers it was not possible to record. Therefore the CD-R
was introduced in 1990, which made it possible for consumers to write once. Like the CD(-ROM), the
CD-R has a 650MB storage capacity, enabling people to make back-up copies of their CD(-ROM)s or to
create their own data. In 1997 the limitation of recording once was overcome by the introduction of the
CD-ReWritable (CD-RW). With the CD-RW it was possible to rewrite on the same disk up to 1000 times.

The enormous success of the compact disk format and the forthcoming of high quality MPEG video material
and the introduction of data traffic over the internet caused a growing need for larger storage capacity and
higher data transfer rates (for both reading and recording). This initiated a race between manufacturers
focused on both speed and data capacity, which eventually resulted into the development of the digital
versatile disk (DVD), introduced to the general public in 1997. Its storage capacity of 4.7GB (Gigabytes),
and even 8.5GB for the dual layered version, in combination with a maximum data rate of 11.2 megabit per
second (Mb/s), easily fulfilled this need. The introduction of the DVD proceeded even faster than that of
the CD and its popularity boomed in particular by the movie industry and because of the possibility to play
CD’s with DVD-players.

The most recent commercially available recordable media are the DVD+R (e.g. Philips), for single time
recording, the DVD+RW (e.g. Philips)/DVD-RW (e.g. Pioneer), for multiple writing and the DVD ran-
dom access memory (DVD-RAM, e.g. MEI). Like the (single layered) DVD disk both the DVD+R and
DVD+RW disks have a storage capacity of 4.7GB. For instance see [2], pp. 99-101.

3
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Figure 1.1: An illustration of the stack for the Blu-ray disk, which has an IPIM recording stack.

The latest medium in the race for speed and storage capacity among (re)writable storage media, developed
within the framework of high-definition television (HDTV) by Philips and Sony in 1999, is the Blu-ray
disk (BD) (the former digital video recording disk (DVR) standard). A single layer BD disk has a storage
capacity of 23.5GB or 25GB, whilst the capacity of the double layer version is aimed at a dazzling 47GB
or 50GB. Table1.1gives an overview of some properties of several of the recordable media.

1.2 Dye and Phase-change recording

In contrast to read-only media like the CD(-ROM) and DVD, the tracks of (re-)writable disks are grooved.
These grooves are used to guide the spot during reading or recording. The distance between two adjacent
tracks is called the track pitch (TP). See Table1.1. The write once and rewritable disks all consist of
several stacked layers. The materials, the thickness and the number of layers depends on the type of disk.
In between a pre-grooved substrate of poly-carbonate and another substrate layer, the so calledrecording
stackis situated.

For write once disks (CD-R, DVD+R), the recording stack consists of a metallic mirror layer and a layer of
organic dye. During the recording process, when a focused laser pulse illuminates it, the dye decomposes,
which causes among others the optical properties of the dye to irreversibly change. The written marks have
various lengths representing the digitally encoded data.

For rewritable media like the CD-RW, DVD+RW and BD, use is made of a so called phase-change material.
Such a material has the property that it can be (locally) changed very quickly from a crystalline to an
amorphous state and vice versa by means of heating with a laser. The recording stack of a typical rewritable
disk consists of four layers. This structure is called an IPIM layer stack. On top of the pre-grooved substrate
made of poly-carbonate or glass, is a dielectricInterference layer. On top of this dielectric layer there are
subsequently thePhase-change layer, another dielectricInterference layer, a metallicM irror layer and

Table 1.1: Optical and mechanical specifications of several recordable media. (TP = track pitch)
medium λ TP capacity

[nm] [µm] [GB]

CD(-R/-RW) 780 1.60 0.65
DVD(-R/+RW) 650 0.74 4.7
BD 400 0.32 23.5/25

4 c©Philips Electronics Nederland BV 2002
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Figure 1.2: Strategy for direct overwrite. During reading, modulations in the intensity of the reflected light
can be measured.

finally the protective cover layer. For BD disks a substrate cover layer of just 100µm is used. See Figure
1.1.

The metallic layer of the recording stack acts as a heat sink during recording. During the reading pro-
cess it is used to reflect the incident laser light. The various thicknesses and chemical compositions of
the different layers of the recording stack are optimized to fulfill several optical, thermal and mechanical
requirements. For example, the thickness of the dielectric and metal layers are chosen such that the optical
contrast between the two states of the recording layer is optimized.

The reading of the data is based on the differences in the optical properties of the marks and the surrounding
recording material which cause differences in the intensities of the reflected laser light. These intensity
variations are measured with a detector.

There are several ways of writing the amorphous marks. Depending on the system, ’groove’-recording or
’land and groove’-recording can be used. In case of ’groove’-recording, the marks are only written in the
grooves of the disk. When ’land and groove’-recording is used the marks are written in the lands of the
pre-grooved substrate as well as in the grooves.

The actual writing in done by using ’multi-pulse recording’. With this recording technique each mark
is formed by a train of short high power laser pulses generating overlapping amorphous dots, as shown in
Figure1.2. To avoid the accumulation of heat, the power of the laser is set to a low level, such that the molten
material is cooled to below the crystallization temperature of the phase-change material (quenching). When
marks have to be erased, the laser power is set to a certain level which is just high enough to crystallize
the material and erase any possibly present previously written marks. Because this system allows the direct
overwriting of previous marks, it is generally referred to as Direct Overwrite (DOW). Reading the recorded
data is done at a power level fairly below the erasure power level.

1.3 Motivation for this research project

The rewritable disks have a narrow track pitch to enable a high areal data density. Unfortunately, this causes
optical and thermal cross-track cross talk between adjacent tracks. It has been shown that this optical cross-

c©Philips Electronics Nederland BV 2002 5
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track cross talk can be reduced to an acceptable level by tuning the groove depth [16].

During recording, the thermal cross-track cross talk becomes a serious problem, because previously written
marks in adjacent tracks can be partially or even completely erased. This undesirable side-effect is due to
thermal diffusion from the central track and energy absorption in the adjacent tracks [10].

It has also been observed that on disks with a narrow track pitch the cross-erasure for land recording differs
from the cross-erasure effects for groove recording. Moreover, the shape of the written marks on lands are
different from those on grooves [3].

The above mentioned effects can be studied by means of simulations. This can be done in three steps. The
first step is the creation of an incident field (e.g. a focused spot), which can for instance be done by using
the Diffract program developed by Peng and Mansuripur [24]. The second step is the determination of the
amount of light that is absorbed in the medium. The absorbed energy is converted into heat and acts as a
source term in the heat diffusion equation, from which the temperature distribution in the medium can be
calculated in the third step.

Chubing Peng and M. Mansuripur have performed such simulations to determine the temperature distri-
bution within a phase-change stack under the influence of a focused laser beam. For their simulations the
authors used a Gaussian incident beam. To determine the absorbed electromagnetic energy they used the
finite difference in the time-domain (FDTD) method. They determined the thermal diffusion within the
disk by using the finite difference scheme. Peng and Mansuripur have integrated both these calculations in
a program called Media [26].

At the Philips Research Laboratories (Natlab) two models were developed. The first model is a finite
difference model in which the light absorption is analytically described (Poyning vector) for a layered
geometry. The reflected and transmitted fields are calculated iteratively per layer. This model is based on
papers published by Mansuripur et al. [7], [8]. For the finite difference model an additional mark-formation
model has been developed [10].

The second model is based on the finite element method (FEM) [11]. With this model the temperature
distribution can be calculated within three-dimensional geometries similar to the one shown in Figure1.3.
A drawback of this model is that the absorbed energy can only be provided by means of an analytical
function (e.g. in case of a spot a Gaussian distribution is taken). In the model the movement of the spot
over the geometry is taken into account and the model is thus time dependent, even when the intensity of
the spot is constant. The intensity of the laser can be varied in time.

The analytical Gaussian distribution is too inaccurate when grooved structures are modelled, since the
sloped edges of the grooves are not be taken into account. To obtain more accurate results, vector diffraction
calculations need to be included in the heat diffusion model. By including vector diffraction calculations,
in addition it becomes possible to perform sensitivity studies with respect to the groove geometry etc.

Around 1990 Urbach and Merkx developed a finite element program called Cyclop, with which electromag-
netic diffraction problems on periodic structures in a two-dimensional geometry can be solved rigorously.
Diffraction or scatteringis the phenomenon that the direction of light is changed at interfaces between
optically different materials.

The first version of Cyclop from 1990 was extended around 1998 to enable the simulation of general three-
dimensional incident fields. The coordinate system is chosen such that the geometry is periodic in the
x-direction and translation invariant in they-direction (see Figure1.3). In this extended version of Cyclop
the incident three-dimensional spot is decomposed into a sum of quasi-periodic incident fields. These fields
are quasi-periodic in thex-direction and harmonic with respect to they-coordinate. For a quasi-periodic
incident field, the scattering problem can be shown to be equivalent to a two-dimensional boundary value
problem in a rectangular cell in a planey = constant, whose width in thex-direction is equal to one period
and which is such that all interfaces of the stack are contained in the cell. The fields that are computed in the
cell must then be expanded from the cell to the three-dimensional region as shown in Figure1.3. By adding
all these expanded fields coherently, the total three-dimensional field in the disk region is obtained. This
model is often called2 1

2 -dimensional because the geometry is two-dimensional and the light distribution
is three-dimensional. From this expanded solution the absorbed electromagnetic energy density can be
derived. This data can then quite easily be mapped from the Cyclop mesh onto the mesh of the thermal

6 c©Philips Electronics Nederland BV 2002
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Figure 1.3: A three-dimensional region of an optical disk of which the dimensions are in the order of the
track pitch (TP). The grooved structure is periodic in thex-direction, they-axis is in the direction of track
and thez-axis is parallel to the optical axis of the illumination system. In case no data has been written on
the optical disk, the geometry is translation invariant in they-direction. The cross-section shows a bounded
two-dimensional region of which the width equals the track pitch (TP), called a cell, in which the light
distribution can be calculated using Cyclop.

model as a replacement for the analytically provided heat source.

1.4 Objective of this research project

In the previous section it has been indicated that the Cyclop program can be used to calculate the absorbed
energy that serves as input for the thermal model. This requires several additions to and modifications of
both models.

The main objective of this research project was to realize the integration of both FEM programs in order to
improve the thermal model. To that end roughly the following steps had to be taken:

1. Expansion of Cyclop’s two-dimensional solution vector to a three-dimensional geometry.

2. Extension of the functionality of Cyclop by including the calculation of the absorbed electromagnetic
energy.

3. Integration of expanded results in the heat diffusion model via an interpolation routine.

4. Validation of local absorption values and temperature distribution via experiments and program Me-
dia.

1.5 Ackownledgements

First of all I would like to thank Paul Urbach for being my supervisor. His enthusiasm and knowledge of
mathematical physics have been of great inspirational and supportive value when working on this graduation
project. I also want to thank Guus Segal for his help in solving most Sepran related problems. I like to thank
Erwin Meinders for his support concerning the thermal model. Last but most certainly not least I would
like to express my appreciation to Jurgen Rusch for sharing his knowledge of Fortran programming, Sepran,
Kornshell scripting and various other software related issues with me.
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1.6 About this report

In Chapter 2 the FEM heat diffusion model used by Meinders is discussed. In Chapter 3 we give a general
overview of the optical model. In Chapter 4 Maxwell’s electromagnetic theory of light is summarized.
A formula is derived for the absorbed electromagnetic energy. The incident field is treated in Chapter 5.
Then, in Chapter 6 the model for the scattering of light within an optical disk is described. Chapter 7
gives an overview of the structure of the original Cyclop program. The extensions made to Cyclop such as
the expansion of the two-dimensional solutions are presented in Chapter 8. The visualization of the three-
dimensional field is also treated. In Chapter 9 the integration of the Cyclop output and the heat diffusion
model is described. In Chapter 10 some numerical simulations are discussed. Finally, Chapter 11 contains
conclusions and recommendations.

8 c©Philips Electronics Nederland BV 2002



Chapter 2

The heat diffusion model

In this chapter we shall describe the FEM heat diffusion model as it is presently used. In Section2.3 we
will point out how the optical program Cyclop will be integrated with the heat program.

2.1 Current model

When a spot is focused on an optical disk, part of the incident light is absorbed by the recording layer
(dye/phase-change) and other absorbing layers (metallic mirror). The absorbed electromagnetic energy is
converted into heat. The thus generated heat can be described by a heat sourceQ(x, y, z, t) [W/m3] which
depends on position and time. The time dependence is caused by the rotation of the disk and possibly also
by the time dependent illumination. The temperatureT (x, y, z, t) satisfies the heat diffusion equation:

ρCp
∂T

∂t
−∇ · [κ∇T ] = Q(x, y, z, t), (2.1)

The values of the heat conductivityκ [W/m/ ◦C], the densityρ [kg/m3] and specific heatCp [J/kg/ ◦C]
are in general different for each layer of the optical disk.

Equation (2.1) can be solved in a three-dimensional region as shown in Figure2.1. In the x-direction
(the radial direction) of the chosen cartesian coordinate system (x, y, z), this computational box is at least
several tracks wide, such that the influence of the focused laser beam on adjacent tracks can also be taken
into account. They-direction is parallel to the grooves (axial direction) and thez-direction is parallel to the
optical axis of the illumination system. The configuration is invariant with respect to translations along the
y-direction. Due to the rotation of the disk, the laser spot moves in the positivey-direction with speedv.
At t = t0 the heat source enters the box aty = y0 and leaves it aty = y1 (y0 < y1) at t = t1, whence
y1 − y0 = v(t1 − t0).

At every timet, t0 ≤ t ≤ t1, we assume that the heat source can be written as

Q(x, y, z, t) = f(t)W (x, t, z) (2.2)

wheref(t) is defined by

f(t) =


Ir while reading,

Iw while recording/writing,

Ie while erasing.

(2.3)

The time independent quantityW (x, y, z) represents the absorption in a point(x, y, z) within the region
where the heat diffusion equation is solved. At any timet the intensity levelI of the heat source depends
on which process (reading, recording or erasing) is modelled.

In the presently used model a two-dimensional Gaussian intensity distribution in the axial and radial direc-
tion is assumed for the heat sourceQ in the recording layer. In thez-direction an exponential decrease with

9
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Figure 2.1: Geometry for a grooved recording stack. The incident laser spot causes a more or less Gaussian
energy distribution in thex- andy-direction. The laser spot moves fromy = y0 at t = t0 along a groove
until y = y1 at t = t1 during which the intensity level of the laser can be switched betweenIr (reading),Ie

(erasing) andIw (writing).

a factorα is chosen. At everyt, t0 ≤ t ≤ t1, the heat source satisfies

Q(x, y, z, t) = f(t)e
− (x−x0)2

σ2
x

− (y−y0−vt)2

σ2
y

−αz
, (2.4)

with f(t) as defined in (2.3) and wherex0 andy0 are the(x, y)-coordinates of the point where the center
of the spot enters the computational box.σx andσy determine the spot size.

Since the problem is taken to be adiabatic (i.e. there is no loss or gain of heat across the boundaries) the
boundary conditions for equation (2.1) are

∂T

∂n
= 0, (2.5)

wheren is the outwards pointing normal at any of the boundary surfaces.

2.2 Solving the heat diffusion equation by using Sepran

The above described three-dimensional heat diffusion problem is solved by using the Sepran FEM-package.
Since in Sepran the heat diffusion equation (2.1) is a standard problem, the user has to provide Sepran only
with information concerning the mesh, the boundary conditions and the type of solver to be used.

Each layer in the stack is assigned to a single piped surface group. On each of these piped surfaces a
mesh consisting of triangle elements is created. In Figure2.2a mesh is shown created by the Sepran mesh
generator for a geometry containing two grooves. On each element of the mesh the temperature solution is
interpolated by piecewise linear basis functions.

The finite linear system of equations corresponding to (2.1) is for every time step iteratively solved using
the conjugate gradient (CG) method. For the time-integration the Euler implicit method is used.

10 c©Philips Electronics Nederland BV 2002
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x

zy

Figure 2.2: A three-dimensional representation of a mesh created with the Sepran mesh generator.

2.3 Integration of the thermal model with Cyclop

As has been explained in the Introduction, we want to improve the accuracy of the current heat diffusion
model by replacing the currently assumed Gaussian heat source by a heat source that is calculated rigorously
with Cyclop.

Hence, the time independent absorbed energyW (x, y, z) in equation (2.4) must be provided by Cyclop.
Since the absorption of energy in Cyclop is a priori only known on the nodal points(x̃, ỹ, z̃) of the grid
used by Cyclop that is contained in a two-dimensional cell as described in the previous chapter, a mapping
φ of the Cyclop data to the nodes of the mesh of the thermal model is needed:

W (x̃, ỹ, z̃)
φ−→ W (x, y, z) (2.6)

c©Philips Electronics Nederland BV 2002 11



Chapter 3

Overview of the optical model

In this chapter we will give a general introduction to the optical part of the recording process. First a
description of the optical system that is used to read and write data on an optical disk is given. In Section
3.2 the illumination of the disk is considered. We conclude this chapter with a section about diffraction
gratings.

3.1 Optical reading and writing

The various data storage disks mentioned in the Introduction all have in common that the reading, and if
applicable writing, of data on the disk is done optically. The reading is based on intensity differences of
the reflected light when the spot is above a mark or a non-mark. The writing is based on the absorption of
the light energy in either the dye or the phase-change layer. In Figure3.1 the setup of an optical head for

Laser

Collimator PBS

Quarter
wave
plate

Objective
lens

Optical
disk

Detection system

Figure 3.1: Setup for an optical system.

the reading of data from an optical disk is shown. The optical head contains a laser diode, a collimating
lens, a polarizing beam splitter (PBS), a quarter wave plate, an objective lens and the detection system. The
collimating lens is used to collimate the diverging linearly polarized beam emitted by the laser diode. After
passing through the PBS, the light incident on the quarter wave plate is circularly polarized. Finally, the
objective lens focusses the beam on the optical disk.

The light that is reflected by the metallic layer of the disk is collimated by the objective lens on its way
back through the optical system. The quarter wave plate then converts the dominantly circularly polarized
reflected light into a linear polarized beam such that the polarization is perpendicular to that of the incident
beam. The PBS finally redirects the reflected beam onto the detection system. Based on a priori knowledge
about the differences between the reflected intensities when the spot is focused on a pit or a non pit (for

12
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δD

θ

Figure 3.2: The NA of a lens is given bysin(θ).

prerecorded discs), on a decomposed or intact dye material (for write once media) or on the amorphous
or crystalline state of phase-change material (for rewritable media), the detection system can determine
whether a ’zero’ or a ’one’ is read. See [2], pp. 101-102.

The reading of data from an optical disk is done with the intensity of the laser set to a valueIr. For
recordable media, the intensity of the laser pulses during the recording process is set to a much higher value
Iw. In case of rewritable media, the laser’s intensity can also be set to a levelIe betweenIr andIw to erase
previously written marks.

In order to be able to correctly read from, and write on an optical disk, the focused spot must be kept on the
center of a track. When the optical head moves away from the track’s center, an asymmetry in the reflected
field is induced. Whenever such an asymmetry is detected, the optical head is guided such that the beam is
again focused on the center of a track. This process is called tracking.

3.2 Illumination of the disk

In geometrical optics the assumption is made that a parallel incident beam on a positive lens converges into
a single point. For the optical system considered in this research project, where structures with dimensions
in the order of the wavelength of the light are considered, the geometrical approach of a perfect point spot
is too coarse. Due to diffraction by the finite aperture of the lens, the diameter of a focused spot is given by
[5]:

D ≈ λ

NA
. (3.1)

In formula (3.1), λ is the wavelength of the incident light and NA is the numerical aperture of the objective
lens. The NA is the sine of the angle between the outer ray and the principle axis of the objective lens. The
focal depthδ of a spot is given by (see Figure3.2):

δ ≈ λ

NA2 . (3.2)

Table 3.1: Diameter and focal depth of the incident light for various types of optical storage disks. Average
values for the track pitch (TP) and thickness (∆) of the recording stack are also given. The wavelength is
in air.

medium λ NA D TP δ ∆
[nm] [-] [nm] [nm] [nm] [nm]

CD(-R/-RW) 780 0.50 1560 1500 3120 ≈ 250
DVD(-R/+RW) 650 0.65 1000 740 ≈ 1540 ≈ 250
BD 400 0.85 ≈ 470 320 ≈ 550 ≈ 150

c©Philips Electronics Nederland BV 2002 13
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Figure 3.3: Schematic visualization of the areaΩ in a cross-section of an optical disk.

In Table3.1 the spot diameters for various optical storage media are listed. We remark that the diameter
of the spot is always larger than the track pitch. Consequently, part of the incident light will inevitably fall
onto adjacent tracks. Knowing this makes the occurrence of cross-track cross talk even more conceivable
in case of ’land and groove’ recording.

The focal depth is of special interest during the writing process since it is important to get the highest
energy density within the recording layer. When a spot is incident on a recording stack it is very difficult to
choose the proper focal plane because reflections between layers of the stack have to be taken into account.
However, Table3.1 suggests that when reflections are neglected there is no need to accurately determine
the focus height because the focal depth is at least a factor four larger than the thickness of the recording
stack. It is therefore sufficient to make sure that the recording stack lies approximately at a distance of at
most δ

2 from the spot in air.

3.3 Diffraction gratings

A diffraction grating is a periodic structure which disturbs the amplitude and/or phase of an incoming wave
such that the reflected and/or transmitted energy is diffracted into a finite number of propagating orders.
The propagating orders are the discrete directions in which the diffracted light propagates at large distances
from the grating. The directions of the diffracted orders depend on the relationship between the period of
the grating and the wavelength of the light.

The land and groove structure of an optical disk can be considered to be a diffraction grating. In Figure3.3
a part of the cross-section of Figure1.3 in a planey = constant is shown. The two-dimensional regionΩ
is chosen such that its width inx-direction is equal to one period of the grating and the upper (z = b) and
lower (z = a) boundaries are chosen such that all non-flat surfaces are contained in the domain while the
upper and lower half spaces are as large as possible. For the regionΩ, which we will refer to as a (unit)
cell, a boundary value problem can be derived by using rigorous diffraction theory, based on Maxwell’s
equations.

In the following chapters we will successively discuss the Maxwell equations and general wave optics. In
Chapter 6 we will discuss the boundary value problem onΩ in more detail.

14 c©Philips Electronics Nederland BV 2002



Chapter 4

Maxwell’s equations

Light, as has been discovered by the Scottish physicist James Clerk Maxwell (1831-1879), is an electro-
magnetic phenomenon. It is the transfer of electromagnetic energy and momentum in the visible spectrum.
Light can be described by electric and magnetic fields, which dependent on position and time, and which
are emitted by moving electric particles. Maxwell’s formulation of electricity and magnetism was published
in A Treatise on Electricity and Magnetismin 1873, which included the formulas today known as Maxwell
Equations. In this chapter Maxwell’s equations for free space and inside matter are discussed. In Section
4.2 energy conservation and the Poynting vector are discussed. In the final section of this chapter we will
describe how quantities such as the absorbed energy can be derived from the electromagnetic field. The
theory presented in this chapter can for instance be found in [6].

4.1 Maxwell’s equations in free space

Let the sources that induce a certain electromagnetic field have (free)charge densityρ(r,t) and (free)
current densityJ (r,t). The conservation of charge is expressed by the following equation of continuity:

∇ ·J (r,t) +
∂ρ

∂t
= 0. (4.1)

That is, the outwards flux of the current density through a closed surface equals the decrement of charge
per unit time within the volume bounded by this surface.

Let E andH denote the electric and magnetic field strengths respectively, induced by the sources in free
space and letε0 andµ0 denote theelectric permittivityandmagnetic permeabilityof vacuum, respectively.
Maxwell’s equations are:

∇×H = ε0
∂E
∂t

+ J , (4.2)

∇× E = −µ0
∂H
∂t

, (4.3)

∇ · (µ0H) = 0, (4.4)

∇ · (ε0E) = ρ. (4.5)

To be able to calculate the electromagnetic field components emitted by charges and currents that depend on
time, in general initial conditions are needed. However, when the sources are harmonic with respect to time
with given frequencyω, the emitted electromagnetic fields are also time-harmonic and initial conditions are
not needed.

It is convenient to use complex variables to denote time-harmonic physical quantities. By taking the real
part of the complex quantity, the physical quantity is retrieved. The time dependence of the quantity is taken

15
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to be ase−iωt, so that for an arbitrary time-harmonic real quantityG(r,t) we have

G(r,t) = Re
[
G(r)e−iωt

]
, (4.6)

whereG(r) is the complex amplitude. Note that as a consequence of this choice all time derivatives are
replaced by multiplications by−iω.

We denote the complex charge density and current density byρ(r) andJ(r) and the complex electric and
magnetic fields byE(r) andH(r). Then we have:

ρ(r,t) = Re[ρ(r)e−iωt], (4.7)

J (r,t) = Re[J(r)e−iωt], (4.8)

E(r,t) = Re[E(r)e−iωt], (4.9)

H(r,t) = Re[H(r)e−iωt]. (4.10)

By substituting equations (4.7-4.10) into Maxwell’s equations (4.2-4.5) we find for the complex quantities:

∇×H = −iωε0E + J, (4.11)

∇×E = iωµ0H, (4.12)

∇ ·H = 0, (4.13)

∇ · (ε0E) = ρ. (4.14)

By applying the curl operator to equation (4.12) and by substituting equation (4.11) we obtain the so called
vector Helmholtz equation for the electric fieldE:

ω2ε0µ0E−∇×∇×E = −iωµ0J. (4.15)

By using the operator identity
∇×∇×U = ∇∇ ·U−∆U, (4.16)

(which is valid in cartesian coordinates only) where:

∆U =
∂2U
∂x2

+
∂2U
∂y2

+
∂2U
∂z2

, (4.17)

(4.15) can be written as:

ω2ε0µ0E + ∆E = ∇
(

ρ

ε0

)
− iωµ0J, (4.18)

This shows that every (cartesian) component of the electric field satisfies the scalar Helmholtz equation.
Any solutionE of equation (4.18) of course also has to satisfy equation (4.14). By eliminating the electric
field one finds analogously that the (cartesian) components of the magnetic field satisfy:

ω2ε0µ0H + ∆H = −∇× J. (4.19)

Solutions of equation (4.19) obviously also have to satisfy equation (4.13) as well.

4.2 Energy conservation and the Poynting vector

From Maxwell’s equations a conservation law for the energy can easily be derived. Since energy is quadratic
in the fields we shall first use the real physical quantities. By taking the scalar product of (4.2) with E and
subtracting the scalar product of (4.3) with H we find:

∇ · (E ×H) = −E ·J − ∂

∂t

(ε0
2

E · E +
µ0

2
H ·H

)
, (4.20)
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where we have used the vector equality:

∇ · (U×V) = −U ·∇×V + V ·∇×U. (4.21)

Integration of (4.20) over a volumeV bounded by a surfaceS with outward pointing normaln results in:

−
∫
V

J · E dv =
∂

∂t

∫
V

1
2
[E · (ε0E) + (µ0H) ·H] dv +

∮
S

(E × H) · nda. (4.22)

This integral equality can be interpreted as follows. The left-hand side of equation (4.22) is the power
exerted on the current densityJ within volumeV . The time derivative of the volume integral on the right-
hand side of equation (4.22) represents the change per unit time of the electromagnetic energy contained in
V . The surface integral can be interpreted as the rate of energy flow outwards across the closed surfaceS.

The rate of energy flow per unit time per unit area in the direction of the normal is given by :

S · n = (E ×H) · n, (4.23)

whereS = E ×H is called thePoynting vector.

An instantaneous value of the energy flowS is an impractical quantity to measure because at optical fre-
quencies (ω ≈ O(1015)) S is an extremely rapidly varying function of time. Therefore the average over a
period ofτ = 2π

ω is taken. In the following we will make use of the fact that the fields are time-harmonic
of frequencyω.

Let A = Re
(
Ae−iωt

)
andB = Re

(
Be−iωt

)
be two quantities and let * denote the complex conjugate.

Then:

A · B = Re
(
Ae−iωt

)
· Re

(
Be−iωt

)
=

1
4
(Ae−iωt + A∗eiωt)(Be−iωt + B∗eiωt)

=
1
4
(ABe−2iωt + A∗B∗e2iωt + A∗B + AB∗). (4.24)

The time-average value of the product taken over an interval of time of lengthτ that is large with respect to
the period2π

ω of the light (i.e.τω →∞) is thus:

< A · B > =
1
τ

τ∫
0

A · B dt

=
1
2

Re(AB∗). (4.25)

For the time-average Poynting vectorS we thus find:

< S > = < E ×H >

= < Re(Ee−iωt)× Re(He−iωt) >

=
1
2

Re(E×H∗). (4.26)

We now define the complex Poynting vector by:

S =
1
2
E×H∗, (4.27)

and derive the time-average of the conservation law of electromagnetic energy (4.22). The complex conju-
gate of (4.11) is:

∇×H∗ = iωε0E∗ + J∗. (4.28)

By using this equation together with (4.12) one finds, similarly to the derivation of (4.20):

−∇ · S = −1
2
E · J∗ + iω

(µ0

2
|H|2 − ε0

2
|E|2

)
(4.29)

= −1
2
E · J∗ + 2iω(< wm > − < we >), (4.30)
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where< wm > and< we > represent the time-average magnetic and electric energy density, respectively:

< wm >=
µ0

4
|H|2, < we >=

ε0
4
|E|2. (4.31)

4.3 Maxwell’s equations in matter

Let us consider an isotropic non-magnetic dielectric medium that is, as a whole, electrically neutral. The
medium is said to be polarized when a separation of positive and negative electric charges has been effected.
The sources responsible for the polarization can be divided into primary (external) and secondary (internal)
sources. The primary sources are by definition those sources of which the charge and current densities are
assumed to be known, for example the laser source in optical recording. The electromagnetic field induced
by these sources causes charges within the dielectric medium to oscillate and atoms within the matter to act
like oscillating dipoles. These oscillating charges in turn induce an electromagnetic field themselves also
and are called secondary sources.

Theelectric polarizationP can be expressed in terms of the total macroscopic electric field induced by the
primary sources as well as all secondary sources as follows [4]:

P = ε0χE. (4.32)

The factorχ is called theelectric susceptibility. Therelative electric permittivityε and theindex of refrac-
tion n are now defined by:

ε = 1 + χ, (4.33)

n =
√

ε. (4.34)

In case of a conducting medium such as a metal, the conduction electrons also form a secondary source.
The current density due to the polarization and the conducting electrons are, respectively

Jd = −iωP = −iωε0χE, (4.35)

and
Je = σE, (4.36)

in whichσ is theelectric conductivityof the medium. The charge density due to the polarization is

ρd = −∇ ·P = −ε0∇ · (χE) , (4.37)

while the charge density due to the conduction electrons is given by

ρe = − i

ω
∇ · (σE) . (4.38)

The total charge density is the sum of the densities of the primary (p) and secondary (s) sources. Therefore

ρ = ρp + ρs = ρp + ρd + ρe

= ρp −∇ ·
[
ε0

(
χ + i

σ

ωε0

)
E
]

. (4.39)

Analogously the total current density is given by

J = Jp + Js = Jp + Jd + Je

= Jp − iωε0

(
χ + i

σ

ωε0

)
E. (4.40)
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By substituting equations (4.39) and (4.40) in the (complex) Maxwell equations we get:

∇×H = −iωε0

(
ε + i

σ

ωε0

)
E + Jp, (4.41)

∇×E = iωµ0H, (4.42)

∇ ·H = 0, (4.43)

∇ ·
[
ε0

(
ε + i

σ

ωε0

)
E
]

= ρp. (4.44)

Hence, in presence of dielectric media and/or conductors, the Maxwell equations in matter have the same
form as the Maxwell equations for free space, except thatε0 must be replaced byε0(ε + iσ/ωε0). It
is convenient to writeε = ε′ + iε′′ instead ofε + iσ/ωε0, so that the conductivityσ contributes to the
imaginary partε′′ of the relative dielectric permittivityε. Across interfaces between different media where
ε is discontinuous the tangential field components of both the electric and the magnetic field are continuous.

Provided thatε0 is replaced byε0ε the conservation law of electromagnetic energy for free space is also
valid for electromagnetic fields in matter:

1
2
∇ · (E×H∗) = −1

2
E · J∗p + iω

(µ0

2
|H|2 − ε0ε

2
|E|2

)
, (4.45)

Integration of the real part of (4.45) over a volumeV bounded by a closed surfaceS with outward pointing
normaln gives:

Re
1
2

∫
V

E · J∗p dv = Re
∮
S

(E×H∗) · nda +
ωε0Im(ε)

2

∫
V

|E|2 dv (4.46)

Note that Im(ε) must be positive, otherwise electrical energy would be generated. The sign of Im(ε) depends
on the choice of the sign of the time-dependencee−iωt of the fields. If we had choseneiωt instead, Im(ε)
would be negative. Since the physical fields are given by the real part of the complex quantities, it does not
matter which sign one chooses for the exponent of time-dependence factor, as long as one uses one’s choice
consistently.

In optics it is often justified to assume that the primary sources are at extremely large distances from the
considered media, in comparison to the wavelength of the light. Therefore, the primary currents and charges
are assumed to be at infinite distance. Hence,Jp = 0 andρp = 0 in the region of interest. Furthermore, the
electromagnetic field induced by time-harmonic primary sources are time-harmonic.

The components of the electromagnetic field in a homogeneous isotropic medium, i.e. a medium in which
ε is constant scalar, will then satisfy

∇×E = iωµ0H, (4.47)

∇×H = −iωε0εE, (4.48)

∇ ·H = 0, (4.49)

∇ · (ε0εE) = 0. (4.50)

After a derivation analogous to that of equations (4.18) and (4.19) the electromagnetic field will then satisfy
the scalar Helmholtz equations:

ω2ε0εµ0E + ∆E = 0, (4.51)

ω2ε0εµ0H + ∆H = 0. (4.52)
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4.4 Absorption and time-average energy density

When the primary currents and charges are not contained within the considered volumeV , the conservation
law of electromagnetic energy (4.46) can be written as

−Re
∮
S

(E×H∗) · nda =
ωε0Im(ε)

2

∫
V

|E|2 dv (4.53)

The left-hand side of (4.53) is the amount of energy that flows into volumeV per unit of time. This energy
flux must evidently be equal to the amount of electric energy that is absorbed by matter insideV per unit of
time. Hence

1
2
ωε0Im(ε)|E|2 (4.54)

is the rate of which energy is absorbed per unit of volume. This energy is converted into heat. Therefore,

W (x, y, z) ≡ 1
2
ωε0Im(ε)|E|2 (4.55)

is the rate at which heat is generated per unit of volume, due to the absorption of the light.

In matter the time-average magnetic and electric energy density are given by:

< wm >=
µ0

4
|H|2, < we >=

ε0
4

Re(ε)|E|2. (4.56)

The total time-average energy density< w > is the sum of these quantities:

< w > = < wm > + < we >

=
µ0

4
|H|2 +

ε0
4

Re(ε)|E|2. (4.57)

In simulations this quantity is visualized to study the effects of interferences due to multiple reflections and
scattering of light.
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Chapter 5

The incident field

In this chapter the incident field is discussed. In Sections5.1-5.3plane waves are considered. In Section5.4
we will discuss the focusing of a beam of light by a positive aberration-free lens. In the concluding section,
Section5.5, we will describe how the power of the incident laser light of a spot can be determined by using
the Poynting vector.

5.1 Plane waves and the electromagnetic field

Let k be some real vector in cartesian space. A plane perpendicular tok is given by

k · r = constant. (5.1)

A sinusoidally varying function with frequencyω of time and position,G(r,t), given by

G(r,t) = Aei(k·r∓ωt), (5.2)

with A a (complex) vector independent ofr, is called a (harmonic)plane wave, sinceG(r) is constant
over every plane defined by (5.1). The vectork = (kx, ky, kz)T is called thewave vectorand its length
k = |k| = 2π

λ , with λ the wave length, is called thewave number. The time dependency will henceforth
always be omitted.

In case there arem plane waves propagating in the same isotropic, homogeneous medium, each having
amplitudeAj and (complex) wave vectorkj

Gj = Aje
ikj ·r, 1 ≤ j ≤ m, (5.3)

the resultant field is given by the superposition

G =
m∑

j=1

Aje
ikj ·r (5.4)

The squared amplitude of every component of the resultant fieldG can easily be calculated with the aid of
the equality

|A|2 = (Aeik·r)(Aeik·r)∗. (5.5)

For example, ifm = 2, the squared amplitude of thex-component ofA is

|Ax|2 = (A1xeik1·r + A2xeik2·r)(A1xeik1·r + A2xeik2·r)∗

= |A1x|2 + |A2x|2 + A1xA∗
2xei(k1−k2)·r + A2xA∗

1xei(k2−k1)·r

= |A1x|2 + |A2x|2 + 2|A1x||A2x| cos [(k1 − k2) · r + φ], (5.6)
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where

φ = arg (A1xA∗
2x). (5.7)

From (5.6) one can easily see that the addition of two plane waves travelling in opposite directions yields a
resultant field of which the amplitude varies sinusoidally as a function of position. Such a field is called a
standing wave.

Let us consider a homogeneous isotropic material with (possibly complex) relative permittivityε and re-
fractive indexn. In Section4.3we have shown that for a time-harmonic electromagnetic field the following
equations hold inside the material:

∇×E = iωµ0H, (5.8)

∇×H = −iωε0εE. (5.9)

We have also shown that the components of the electromagnetic field satisfy the scalar Helmholtz equations:

ω2ε0εµ0E + ∆E = 0, (5.10)

ω2ε0εµ0H + ∆H = 0. (5.11)

Consider an electric fieldE of the form

E(r) = Aeik·r. (5.12)

Because of∇ · (ε0εE) = 0, the vectorA must satisfy:

A · k = 0. (5.13)

From (5.8) it follows that

H(r) =
k

ωµ0
×Aeik·r, (5.14)

so that we can conclude that

H · k = E ·H = 0. (5.15)

An electric field of the form (5.12) satisfies (5.10) provided that

k2
x + k2

y + k2
z = ω2ε0εµ0 = k2n2. (5.16)

In an optical system in which the light propagates mainly in thez-direction (thez-axis is then called the
optical axis), plane waves whose wave vector has realx- andy-components are of most interest. The reason
is that, as we will show in Section5.2, any field that propagates mainly in the direction of thez-axis can
be expanded in an integral over such plane waves. In case of an absorbing medium,ε and thusn, will be
complex. As a consequence, it follows from (5.16) that thez-component of the wave vectork must be
complex. But even when the material is non-absorbing, i.e.ε is real,kz can be complex. Indeed, when
k2

x + k2
y > ω2ε0εµ0, it follows from (5.16) that then

kz = ±
√

ω2ε0εµ0 − k2
x − k2

y, (5.17)

will be purely imaginary1. A plane wave of which thez-component of its wave vector is complex is
therefore exponentially damped in thez-direction. Such a wave is calledevanescentin the direction in
which its amplitude decreases exponentially.

1In the following we will always choose the branch of the complex square root
√

z such that the cut is along the negative real axis
and such that for positive realz:

√
z > 0 and

√
−z = +i

√
z
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Figure 5.1: A plane wave with real wave vectork and real amplitudeA.

5.2 Expansion into plane waves

Because in our model thez-axis is chosen as the optical and hence the waves propagate primarily in the
z-direction, we consider an electromagnetic field radiated by sources within a half-spacez < 0. We will
now derive the electromagnetic field in the half-spacez > 0 filled with a homogeneous isotropic medium
with relative (complex) dielectric permittivityε and (complex) index of refractionn, assuming the field in
the planez = 0 to be known. According to (5.10) and (5.11), every componentU of the electromagnetic
field in z > 0 satisfies the scalar Helmholtz equation

k2n2U + ∆U = 0. (5.18)

We will show thatU in z > 0 is given by:

U(x, y, z) =

∞∫∫
−∞

e2πi(xfx+yfy)+iz
√

k2n2−4π2(f2
x+f2

y ) ×F(U)(fx, fy, 0) dfx dfy, (5.19)

whereF(U)(fx, fy, 0) denotes the Fourier transform ofU with respect tox andy in the planez = 0 and
where the so called spatial frequenciesfx, fy can be any real number. From (5.19) it follows that each
component of the electromagnetic field inz > 0 can written as the superposition of plane waves having
various wave vectors. The wave vectors of these plane waves are given by

k =

 kx

ky

kz

 =

 2πfx

2πfy√
k2n2 − 4π2(f2

x + f2
y )

 . (5.20)

Note that in case of an absorbing medium, i.e.n2 is complex, the amplitudes of all plane waves decrease
exponentially in the positivez-direction. When there is no absorption, i.e. whenn2 is real, plane waves for
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which4π2(f2
x + f2

y ) > k2n2 also have exponentially decreasing amplitude, because they are evanescent in
the positivez-direction. But, the contribution of the evanescent waves to the field inz > 0 already becomes
negligible after short distances in the positivez-direction.

Equation (5.19) can be derived from equation (5.18) by first taking the Fourier transform ofU with respect
to x andy:

F(U)(fx, fy, z) =

∞∫∫
−∞

e−2πi(xfx+yfy)U(x, y, z) dxdy. (5.21)

The inverse Fourier transform yields:

U(x, y, z) =

∞∫∫
−∞

e2πi(xfx+yfy)F(U)(fx, fy, z)dfx dfy. (5.22)

After substitution in (5.18) we get for every (fx, fy) the following differential equation forz → F(U)(fx, fy, z):

[k2n2 − 4π2(f2
x + f2

y )]F(U)(fx, fy, z) +
∂2F(U)(fx, fy, z)

∂z2
= 0, (5.23)

whose general solution is:

F(U)(fx, fy, z) = A(fx, fy)eiz
√

k2n2−4π2(f2
x+f2

y ) + B(fx, fy)e−iz
√

k2n2−4π2(f2
x+f2

y ), (5.24)

whereA andB are still to be determined. Because the time dependency is implicitly given bye−iωt, the
first term at the right-hand side of (5.24) represents a wave that propagates or is exponentially decreasing
in the positivez-direction, whereas the second term represents a wave that propagates or is exponentially
decreasing in the negativez-direction. Recalling that we assumed the sources to exist only inz < 0, we
conclude thatB = 0. It now follows thatA can be expressed in the Fourier transform of the (known)
electromagnetic field atz = 0:

A(fx, fy) = F(U)(fx, fy, 0). (5.25)

In combination with (5.22) this yields equation (5.19).

5.3 Polarization and the Fresnel coefficients

Let us now consider two half spacesz < 0 andz > 0, both filled with homogeneous, isotropic materials
with (complex) indices of refractionn1 andn2, respectively. Inz > 0, an electromagnetic plane wave,
with field components given by (5.12) and (5.14), and withk satisfying (5.16), is generated by a source at
z → +∞. This plane wave is incident on the planez = 0.

We will first discuss the polarization of such an electromagnetic plane wave. For convenience assume that
the wave vector only has az-component:k = (0, 0, kz)T with kz = kn1 (this is a complex number if the
material inz > 0 is absorbing, i.e.n1 is complex). (5.15) implies that the vectorA then only hasx- and
y-components:A = (Ax, Ay, 0)T . If we writeAx = |Ax|eiφx andAy = |Ay|eiφy then for the components
of the physical (and thus real) electric field strength holds:

E(r,t) = Re
[
E(r)e−iωt

]
= |Ax| cos(ωt− kzz − φx)ex + |Ay| cos(ωt− kzz − φy)ey. (5.26)

whereex = (1, 0, 0)T andey = (0, 1, 0)T .

From (5.26) it is easy to derive that, whenφx = φy or φx = φy ± π, the electric field vectorE is always
parallel to the vector|Ax|ex + |Ay|ey or |Ax|ex− |Ay|ey, its value oscillating between−

√
|Ax|2 + |Ay|2

and
√
|Ax|2 + |Ay|2. The plane wave is then said to belinearly polarizedalong either vector. When

|Ax| = |Ay| andφx = φy ± π
2 , the tip of the electric vectorE traces a circular path and the plane wave

is calledcircularly polarized. For generalAx andAy the endpoint of the electric field vector describes an
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Figure 5.2: (a) A linearly polarized plane wave. Its amplitude oscillates through zero (b). If the wave is
circularly polarized (c), the tip of the electric vector traces a circular path.
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Figure 5.3: Reflection and refraction of a single plane wave with real wave vectork and real amplitude
normboldA on a straight surface.

ellipse. The general state of polarization of a plane wave is therefore calledelliptical polarization. If for
an observer looking in the direction of where the wave comes from, the electric vector rotates clockwise,
we haveright-hand elliptical polarization, when it rotates counter-clockwise, the polarization is called
left-hand elliptical polarization.

It is clear that an arbitrary elliptically polarized plane wave can always be written as the superposition of
two linearly polarized plane waves with mutually perpendicular directions of polarization:

A =

 Ax

Ay

0

 =

 Ax

0
0

+

 0
Ay

0

 . (5.27)

Moreover, an elliptically polarized plane wave can also be written as the superposition of right-hand and
left-hand circular polarized plane waves:

A =

 Ax

Ay

0

 =
Ax − iAy

2

 1
i
0

+
Ax + iAy

2

 1
−i
0

 . (5.28)

We will now consider a linearly polarized plane wave inz > 0 that is incident on the planez = 0, the
interface. Besides a reflected plane wave inz > 0 there will also be a transmitted electromagnetic plane
wave inz < 0. Let us denote the wave vectors of the the incident, reflected and transmitted electromagnetic
plane waves byk−1 , k+

1 andk−2 respectively. Without loss of generality we assumeky = 0, hence theplane
of incidencecoincides with the planey = 0. If we let

kjz =
√

k2n2
j − k2

x, j = 1, 2, (5.29)

we can write
k±j = (kx, 0,±kjz), j = 1, 2. (5.30)

Let us assume thatE points in the positivey-direction. This situation is calledparallel or simply P-
polarization. If on the other handH points in the positivey-direction, the polarization is calledS-polariza-
tion, becauseE is now perpendicular to the planey = 0 (Senkrechtis the German word for perpendicular).
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We will now first assume the incident electromagnetic plane wave to be S-polarized and having an amplitude
of 1. Then we write

E(r) =

 0
1
0

 eik−1 ·r + r

 0
1
0

 eik+
1 ·r, z > 0,

E(r) = t

 0
1
0

 eik−2 ·r, z < 0,

(5.31)

wherer denotes theamplitude reflection coefficientandt the amplitude transmission coefficient. For the
magnetic field we then have according to (5.14):

H(r) = 1
ωµ0

 k1z

0
kx

 eik−1 ·r + r
ωµ0

 −k1z

0
kx

 eik+
1 ·r, z > 0,

H(r) = t
ωµ0

 k2z

0
kx

 eik−2 ·r, z < 0.

(5.32)

The tangential component of the electric field,Ey, and of the magnetic field,Hx, should be continuous on
the interface. Due to these requirements theFresnel coefficientsr andt in case of S-polarization are found
to be:

r =
k1z − k2z

k1z + k2z
, (5.33)

t = 1 + r =
2k1z

k1z + k2z
. (5.34)

In case the electromagnetic field is P-polarized, the Fresnel coefficients can be found by setting the ampli-
tude ofHy equal to 1:

H(r) =

 0
1
0

 eik−1 ·r + r

 0
1
0

 eik+
1 ·r, z > 0,

H(r) = t

 0
1
0

 eik−2 ·r, z < 0.

(5.35)

For the electric field then holds:

E(r) = − 1
ωn2

j

 k1z

0
kx

 eik−1 ·r − r
ωn2

j

 −k1z

0
kx

 eik+
1 ·r, z > 0,

E(r) = − t
ωn2

j

 k2z

0
kx

 eik−2 ·r, z < 0.

(5.36)

The continuity of the tangential components of the electric and magnetic fields (Hx andEy) now implies
that the Fresnel coefficients in case of P-polarization are given by

r =
k1z

n2
1
− k2z

n2
2

k1z

n2
1

+ k2z

n2
2

, (5.37)

t = 1 + r =
2k1z

n2
1

k1z

n2
1

+ k2z

n2
2

. (5.38)
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Figure 5.4: A beam of light incident on an objective lens with radiusa. The incident field atz = 0 is
assumed to be known. The optical disk lies in the focal plane of the lens atz = f .

5.4 Focusing of a beam by a lens

Let us consider a beam of light that is incident on a positive aberration-free lens with radiusa as shown in
Figure5.4. Consider a field componentsU , e.g. theEx-component, and assume that it is given in a plane
directly in front of the lens. The finite dimensions of the lens can be described by apupil functionPa(x, y)
defined by:

Pa(x, y) =

{
1
√

x2 + y2 ≤ a,

0
√

x2 + y2 > a.
(5.39)

Apart from a constant phase, the field distributionUf at the focal planez = f is then given by [5]:

Uf (u, v) =

∞∫∫
−∞

Ul(x, y)Pa(x, y) exp−2πi(
xu

λf
+

yv

λf
) dx dy. (5.40)

Hence the field distributionUf is (proportional to) the two-dimensional Fourier transform of the part of the
incident field that passes through the lens, evaluated at spatial frequencies given byfx = u

λf andfy = v
λf .

Example 1Suppose that the incident field is a plane wave with amplitude 1:

Ul(x, y) = 1. (5.41)

By using (5.40) it follows that

Uf (r) =

∞∫∫
−∞

1 · Pa(x, y)e−2πi(fxx+fyy) dx dy

=
πa2

iλf

[
2
J1(akr/f)

akr/f

]
, (5.42)

wherer =
√

u2 + v2 andJ1 is the Bessel function (of the first kind) of order one defined by

J1(µ) =
1

2πi

2π∫
0

ei(ν+µ cos ν) dν. (5.43)

The related intensity distributionI can be written as

I(r) =
(

πa2

λf

)2 [
2
J1(akr/f)

akr/f

]2
. (5.44)

This intensity distribution is referred to as theAiry pattern. See Figure5.5(a).
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Figure 5.5: An Airy pattern (left) and a Gaussian distribution (right).

Example 2In this second example we assume the incident field to be a Gaussian distribution:

Ul(x, y) = e
− x2

σ2
x
− y2

σ2
y . (5.45)

When the parametersσ2
x andσ2

y are chosen such that the extent of the incident field is much smaller than
the lens aperture, the factorPa(x, y) in (5.40) may be neglected. Then

Uf (u, v) =

∞∫∫
−∞

Ul(x, y)e−2πi(fxx+fyy) dx dy. (5.46)

By using the following equality withα an arbitrary constant:

∞∫
−∞

e−αx2
e−2πixfx dx =

∞∫
−∞

e−α(x+ πifx
α )2

e−
π2f2

x
α dx

=
1
2
e−

π2f2
x

α

∞∫
−∞

e−αx̂2
dx̂

=
1
2

√
π

a
e−

π2f2
x

α , (5.47)

it can then be seen that in case the field distribution right in front of the lens is given by (5.45), the field
distributionUf in the focal plane will also be a Gaussian distribution.

The Diffract program by Mansuripur et al. [24] can be used to compute the spot focused on the disk.
Diffract is a program for calculating diffraction patterns from various optical components that are large
with respect to the wavelength of the light. It is an interactive program which allows the user to choose the
optical devices and relevant parameters.

By choosing a linearly polarized plane wave (or a Gaussian beam) that is focused by an aberration-free
positive lens an almost (but never perfectly!) linearly polarized spot is obtained. The tangential components
of the electromagnetic field in the focal plane are calculated with Diffract. This calculation is done in ’quasi-
vectorial’ way, which means that the rotation of the electric vector upon diffraction is taken into account.
Diffract returns the values of the tangential components of the electromagnetic field in the focal plane on a
square equidistant grid of points of dimensions defined by the user.

When the field that is incident on the lens is assumed to be linearly polarized, it will at most be pre-
dominantly linearly polarized. The spot is calledpredominantly TE-polarizedif Ei

y is the predominant
component of the incident electric field. IfHi

y is the predominant component of the incident magnetic field
the field is said to bepredominantly TM-polarized

c©Philips Electronics Nederland BV 2002 29



000/99 Company Confidential till 200210

5.5 The power of the laser beam

Let us consider a linearly polarized parallel laser beam with wave vectork = (0, 0,−kz)T in air (ε = 1)
that is incident on an objective lens. From (5.16) it follows that for this beamk = ω2ε0µ0. Using (5.14) we
can express the magnetic field component in terms of the electric field components (∇ = ik):

H =
√

ε0
µ0

 Ey

−Ex

0

 . (5.48)

The time-average energy flow (per unit area) is in thez-direction and is given by:

< S >=
1
2

√
ε0
µ0

(
|Ex|2 + |Ey|2

)
ez, (5.49)

whereez denotes the unit vector in thez-direction. For a Gaussian beam that is polarized along thex-axis:

Ex = Axe−
α(x−x0)2+β(y−y0)2

ω2 , Ey = 0, (5.50)

the time-average energy flow per unit area becomes

< S >=
1
2

√
ε0
µ0
|Ax|2e−2

α(x−x0)2+β(y−y0)2

ω2 ez. (5.51)

This is also called the intensity of the light beam.

Integration of this time-averaged Poynting vector over the area of a cross-section perpendicular to the beams
propagation direction, gives us the total (time-averaged) powerP of the laser beam:

P =
∮
S

< S > da (5.52)
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Chapter 6

Diffraction at periodic gratings

For clarity we will begin this chapter with the description of the model of the scattering of an incident plane
wave. The first 5 sections of this chapter will be dedicated to this fundamental problem. Then, in Section
6.6, we shall explain how the diffraction problem can be generalized to an arbitrary incoming focused spot.
Finally, in Section6.7the numerical sampling of the incident spot will be discussed.

6.1 Derivation of the grating problem in a unit cell

In many diffraction problems, the distance of the primary sources, that emit the incident electromagnetic
field, to the scattering bodies is so that large, that these sources can be considered to be at infinite distance.
By definition, theincident fieldis the field that is emitted by the sources and would be present in the
absence of the scattering bodies. The complex electric and magnetic components of this field will be
denoted byEi andHi and can be considered to be known. The presence of the scattering bodies induces
an additional electromagnetic field, called thescattered field, which will be denoted byEs andHs. The
total electromagnetic field due to the primary sources and the scattering objects is the sum of the incident
and scattered field:

E = Ei + Es, (6.1)

H = Hi + Hs. (6.2)

As has been explained earlier, the scattered field is induced by oscillating atomic dipole moments within
the scattering object. It is a priori unknown.

A periodic grating is an object that periodically disturbs the amplitude and the phase of an incoming field.
We restrict ourselves to calculating the electromagnetic field in points of which the distance to the grating
is sufficiently small so that the grating can be considered to be infinitely wide. With respect to a cartesian
coordinate system(x, y, z) such that thez-axis is the optical axis of the illumination system, the grating
is assumed to bep-periodic in thex-direction and invariant under translations parallel to they-axis. The
grating consists of a medium of which the complex relative electric permittivityε may be a function of (x,z),
but must be independent ofy. We assume that two planesz = a andz = b exist that bound the grating in
such a way that the half spacesz < a andz > b are filled with homogeneous isotropic media with relative
electric permittivityεl andεu respectively. Furthermore,εu is taken to be real, hence the medium inz > b is
assumed to be non-absorbing. Let the two-dimensional unit cellΩ be the region in the planey = constant
defined by

Ω =
{

(x, z)| − p

2
< x <

p

2
, a < z < b

}
. (6.3)

The regionΩ is one period wide anda < b are chosen such thatΩ contains all non-flat boundary interfaces
and all regions where the permittivityε is not homogeneous but is otherwise as small as possible. We call
Ω aunit cellof the periodic grating.
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Figure 6.1: The geometry of ap-periodic cell

Let the incident plane wave have wave vectork = (kx, ky, kz)T . The componentskx andky of the wave
vector are real and

kz = −
√

ω2ε0εuµ0 − k2
x − k2

y. (6.4)

As in Section5.1, (5.12) and (5.14), we will denote the electromagnetic field of the incident plane wave by

Ei(r) = Aieik·r, (6.5)

Hi(r) =
k

ωµ0
×Ei(r), (6.6)

where the amplitudeAi is a complex vector that satisfies

k ·Ai = 0. (6.7)

We will first show that the scattered field and the total field are quasi-periodic (Floquet’s theorem). We
define the piece-wise constant relative permittivityε̃ by

ε̃ =

{
εl z < a+b

2 ,

εu z > a+b
2 .

(6.8)

The true permittivityε only differs from ε̃ within the stripa < z < b. For convenience we now redefine
the incident field as the field that would be present if there were only two half-spaces:z < (a + b)/2 with
permittivity εl andz > (a+b)/2 with permittivity εu. In z > (a+b)/2 the incident field thus consists of the
sum of the incident plane wave (6.5), (6.6) and of the field reflected at the (virtual) surfacez = (a + b)/2.
In z < (a+b)/2 there is only the transmitted field. By definition, the incident field satisfiesfor all positions
r:

∇×Ei(r) = iωµ0Hi(r), (6.9)

∇×Hi(r) = −iωε0ε̃Ei(r). (6.10)

It is easy to determineEi andHi using the Fresnel formulae of Section5.3. Since the total electromagnetic
field satisfies (4.47) and (4.48), the scattered field (Es,Hs) defined by (6.1) and (6.2) satisfies:

∇×Es = iωµ0Hs, (6.11)

∇×Hs = −iωε0εEs + iω(ε̃− ε)Ei. (6.12)

From (6.12) it follows that the scattered field is generated by a dipole distribution concentrated in the strip
a < z < b with magnitudeP = (ε̃ − ε)Ei. Recalling that the relative electric permittivityε = ε(x, z) of
the grating isp-periodic with respect tox and independent ofy it follows that every componentU of P is
quasi-periodicwith respect tox

U(x + p, y, z) = U(x, y, z)eikxp, (6.13)

and harmonic iny
U(x, y, z) = U(x, z)eikyy. (6.14)
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Hence, in particular
∂U

∂y
= ikyU. (6.15)

Since the differential operator on the left-hand side of (6.12) maps quasi-periodic electric fields onto quasi-
periodic dipole distributions, it follows using the uniqueness of the solution of the diffraction problem, that
the scattered field and hence the total field also have these properties.

Substitution of (6.15) in the homogeneous Maxwell equations (4.47) and (4.48) for the partial derivatives
with respect toy of all components of the total field gives:

ikyEz −
∂Ey

∂z
= iωµ0Hx, (6.16)

∂Ez

∂x
− ∂Ex

∂z
= −iωµ0Hy, (6.17)

∂Ey

∂x
− ikyEx = iωµ0Hz, (6.18)

and

ikyHz −
∂Hy

∂z
= −iωε0εEx, (6.19)

∂Hz

∂x
− ∂Hx

∂z
= iωε0εEy, (6.20)

∂Hy

∂x
− ikyHx = −iωε0εEz. (6.21)

Equations (6.16) and (6.20) can be used to express the transverse field componentsEz andHx in the axial
componentsEy andHy. Analogously we can use (6.17) and (6.19) to expressEx andHz in these axial
components. This yields

Ex =
i

ω2ε0εµ0 − k2
y

(
ky

∂Ey

∂x
− ωµ0

∂Hy

∂z

)
, (6.22)

Ez =
i

ω2ε0εµ0 − k2
y

(
ky

∂Ey

∂z
+ ωµ0

∂Hy

∂x

)
, (6.23)

Hx =
i

ω2ε0εµ0 − k2
y

(
ωε0ε

∂Ey

∂z
+ ky

∂Hy

∂x

)
, (6.24)

Hz =
i

ω2ε0εµ0 − k2
y

(
−ωε0ε

∂Ey

∂x
+ ky

∂Hy

∂z

)
. (6.25)

Substitution of (6.22)-(6.25) into (6.17) and (6.20) yields a coupled system of two differential equations for
only Ey andHy:

iωε0εEy −
∂

∂x

[
i

ω2ε0εµ0 − k2
y

(
−ωε0ε

∂Ey

∂x
+ ky

∂Hy

∂z

)]
+

∂

∂z

[
i

ω2ε0εµ0 − k2
y

(
ωε0ε

∂Ey

∂z
+ ky

∂Hy

∂x

)]
= 0, (6.26)

iωµ0Hy +
∂

∂x

[
i

ω2ε0εµ0 − k2
y

(
ky

∂Ey

∂z
+ ωµ0

∂Hy

∂x

)]
− ∂

∂z

[
i

ω2ε0εµ0 − k2
y

(
ky

∂Ey

∂x
− ωµ0

∂Hy

∂z

)]
= 0. (6.27)

Note that this system containsky as a parameter. In the next section we will derive the necessary boundary
conditions for this coupled system of differential equations on the boundaries of the unit cellΩ.
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6.2 Derivation of the boundary conditions for the unit cell

We will start with the derivation of the boundary conditions atx = ±p
2 . Since the components of the total

field that are tangential to a plane should be continuous across that plane,Ey andEz as well asHy and
Hz must be continuous across the planesx = ±p

2 . Recall from the previous section that the total field is
quasi-periodic with respect tox. Using (6.13) we can then conclude that

Ey

(p

2
, y, z

)
= Ey

(
−p

2
, y, z

)
eikxp, (6.28)

Hy

(p

2
, y, z

)
= Hy

(
−p

2
, y, z

)
eikxp, (6.29)

and with (6.23) and (6.25)

1
ω2ε0ε(p

2 , z)µ0 − k2
y

[
ky

∂Ey(p
2 , y, z)
∂z

+ ωµ0

∂Hy(p
2 , y, z)

∂x

]
=

1
ω2ε0ε(−p

2 , z)µ0 − k2
y

(
ky

∂Ey(−p
2 , y, z)

∂z
+ ωµ0

∂Hy(−p
2 , y, z)

∂x

)
eikxp, (6.30)

1
ω2ε0ε(p

2 , z)µ0 − k2
y

[
−ωε0ε(

p

2
, z)

∂Ey(p
2 , y, z)
∂x

+ ky

∂Hy(p
2 , y, z)

∂z

]
=

1
ω2ε0ε(−p

2 , z)µ0 − k2
y

(
−ωε0ε(−

p

2
, z)

∂Ey(−p
2 , y, z)

∂x
+ ky

∂Hy(−p
2 , y, z)

∂z

)
eikxp. (6.31)

It remains to specify the boundary conditions on the upper and lower boundariesz = b andz = a. This
can be achieved by expanding the total field in the half-spacesz < a andz > b in terms of plane waves.
Restricting ourselves temporarily to only they-component of the scattered electric field, we can define a
functionUs

y (x, z) that is periodic inx and independent ofy such that

Es
y(x, y, z) = Us

y (x, z)ei(kxx+kyy). (6.32)

By using the Fourier series representation ofUs
y (x, z) we get

Es
y(x, y, z) =

∞∑
m=−∞

Ûs
y (m, z)e

2πixm
p ei(kxx+kyy), (6.33)

whereÛs
y (m, z) is them-th Fourier coefficient ofx → Us(x, z):

Ûs
y (m, z) =

1
p

p
2∫

− p
2

Use−i(kxx dx. (6.34)

We will now use (5.19) to show that we can write the reflected field inz > b as a superposition of plane
waves. (5.19) can be used because the reflected field is propagating in the positivez-direction. We start by
calculating the Fourier transform of (6.33):

F(Es
y)(fx, fy, b) =

∫∫
e−2πi(xfx+yfy)Es

y(x, y, b) dxdy

=
∞∑

m=−∞
Ûs

y (m, b)
∫∫

e
−2πi

[
x(fx−m

p −
kx
2π )+y

(
fy−

ky
2π

)]
dxdy

=
∞∑

m=−∞
Ûs

y (m, b)δ
(

fx −
m

p
− kx

2π

)
δ

(
fy −

ky

2π

)
. (6.35)
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Substitution in (5.19) with n2 = εu then leads to

Es
y(x, y, z) =

∫∫
e2πi(xfx+yfy)+iz

√
k2εu−4π2(f2

x+f2
y ) ×F(Es

y)(fx, fy, b) dfx dfy

=
∞∑

m=−∞
Ûs

y (m, b)
∫∫

e2πi(xfx+yfy)+iz
√

k2εu−4π2(f2
x+f2

y )×

δ

(
fx −

m

p
− kx

2π

)
δ

(
fy −

ky

2π

)
dfx dfy

=
∞∑

m=−∞
Ûs

y (m, b)e
i

[
x( 2πm

p +kx)+yky+z
√

k2εu−(kx+ 2πm
p )2−k2

y

]

=
∞∑

m=−∞
As

meikm·r, (6.36)

in which

km =

kx +
2πm

p
, ky,+

√
k2εu −

(
kx +

2πm

p

)2

− k2
y

T

, (6.37)

with k the wave number in vacuum. Thekm are called the wave vectors of the reflected field.

We conclude similarly that all electric and magnetic components of the reflected field inz > b can be
written as a sum of plane waves. The following expansion in terms of plane waves thus applies for the total
field in z > b:

E(r) = Ei(r) + Es(r)

= Aieik·r +
∞∑

m=−∞
As

meikm·r, (6.38)

H(r) = Bieik·r +
∞∑

n=−∞
Bs

meikm·r. (6.39)

Note thatk andk0 have oppositez-components.Ai andBi are the known complex amplitudes of the
incident plane wave and theAs

m andBs
m are the (a priori unknown) amplitudes of the reflected field.

Although there are an infinite number of scattered plane waves, only a finite number actually propagates,
namely those for whichm satisfies: (

kx +
2πm

p

)2

+ k2
y < k2εu. (6.40)

The rest of the waves are evanescent in the positivez-direction and propagate parallel to the(x, y)-plane.
Them-th propagating reflected plane wave is called them-th reflected order.

Because of the quasi-periodicity, the componentsEy andHy of the total field withinΩ can be written as
follows in terms of Fourier series:

Ey(x, y, z) =
∞∑

m=−∞
Êy(m, z)ei[(kx+ 2πm

p )x+kyy], (6.41)

Hy(x, y, z) =
∞∑

m=−∞
Ĥy(m, z)ei[(kx+ 2πm

p )x+kyy], (6.42)

whereÊy(m, z) is them-th Fourier coefficient given by

Êy(m, z) =
1
p

∫ p
2

− p
2

Ey(x, y, z)e−i[(kx+ 2πm
p )x+kyy] dx, (6.43)
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with a similar formula forĤy(m, z). Since the componentsEy andHy are tangential to the planez = b
they must be continuous across this plane. Therefore they-components of (6.38) and (6.39) must be equal
to the corresponding equations (6.41) and (6.42) for z = b. This yields a set of equations for the unknown
amplitudesAs

m andBs
m. To be able to eliminate these unknowns, we have to derive two additional equa-

tions. We accomplish this by looking at the other tangential componentsEx andHx. These components
should also be continuous across the planez = b. It is convenient to introduce the following notation to
denote thex- andz-component of the wave vectorkm given by (6.37):

km,x = kx +
2πm

p
, km,z = +

√
k2εu −

(
kx +

2πm

p

)2

− k2
y. (6.44)

By substituting (6.38) and (6.39) into (6.22) and (6.24), respectively, we get for the half spacez > b:

Ex(x, y, z) =
i

ω2µ0ε0εu − k2
y

(
ikxkyAi − iωµ0B

i
)
eik·r

+
i

ω2µ0ε0εu − k2
y

∞∑
m=−∞

(ikm,xkyAs
m − iωµ0km,zB

s
m) eikm·r, (6.45)

and

Hx(x, y, z) =
i

ω2µ0ε0εu − k2
y

(
iωε0εuAi + ikxkyBi

)
eik·r

+
i

ω2µ0ε0εu − k2
y

∞∑
m=−∞

(iωε0εukm,zA
s
m + ikm,xkyBs

m) eikm·r. (6.46)

Within the unit cellΩ we find by substituting (6.41) and (6.42) into (6.22) and (6.24):

Ex(x, y, z) =
i

ω2µ0ε0εu − k2
y

∞∑
m=−∞

(
−ωµ0

∂Ĥy(m, z)
∂z

+ ikm,xkyÊy(m, z)

)
ei(km,xx+kyy), (6.47)

Hx(x, y, z) =
i

ω2µ0ε0εu − k2
y

∞∑
m=−∞

(
ωε0ε

∂Êy(m, z)
∂z

+ ikm,xkyĤy(m, z)

)
ei(km,xx+kyy). (6.48)

By requiring that (6.45) and (6.47) are identical forz = b and similarly that (6.46) and (6.48) are the same
for z = b, we obtain the two required additional equations. We finally obtain the following two coupled
boundary conditions onz = b:

ωε0ε(x, b)
ω2µ0ε0ε(x, b)− k2

y

∂Êy(m, b)
∂z

− ikm,zωε0εu

ω2µ0ε0εu − k2
y

Êy(m, b)− ikm,xky

ω2µ0[ε(x, b)− εu]− k2
y

Hy(m, b)

= − 2ikm,zωε0εu

ω2µ0ε0εu − k2
y

Aie−ikm,zbδm0, ∀m, (6.49)

and

ωµ0

ω2µ0ε0ε(x, b)− k2
y

∂Ĥy(m, b)
∂z

+
ikm,zωµ0

ω2µ0ε0εu − k2
y

Ĥy(m, b) +
ikm,xky

ω2µ0[ε(x, b)− εu]− k2
y

Ey(m, b)

=
2ikm,zωµ0

ω2µ0ε0εu − k2
y

Bie−ikm,zbδm0, ∀m, (6.50)

whereδm0 = 1 if m = 0 andδm0 = 0 if m 6= 0.

Analogously one finds by using the plane wave expansion inz < a that on the planez = a

ωε0ε(x, a)
ω2µ0ε0ε− k2

y

∂Êy(m,a)
∂z

− ikm,zωε0εl

ω2µ0ε0εl − k2
y

Êy(m,a)

+
ikm,xky

ω2µ0[ε(x, a)− εl]− k2
y

Hy(m,a) = 0, ∀m, (6.51)
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and

ωµ0

ω2µ0ε0ε(x, a)− k2
y

∂Ĥy(m,a)
∂z

+
ikm,zωµ0

ω2µ0ε0εl − k2
y

Ĥy(m,a)

− ikm,xky

ω2µ0[ε(x, a)− εl]− k2
y

Ey(m,a) = 0, ∀m, (6.52)

with km,z as defined in (6.44), but with εu replaced byεl. The right-hand side of (6.52) vanishes because
of the assumption that there is no light incident from the lower half space. These conditions on the bound-
ariesz = a andz = b are called radiation conditions. In contrast with for example absorbing boundary
conditions, these radiation boundary conditions are exact and the boundary value problem onΩ therefore is
equivalentwith the scattering problem for Maxwell’s equations.

We now make the following important remark. The scattering of a quasi-periodic incident field can be
computed in a similar way as for a single plane wave. For a quasi-periodic incident field,Ei

y andHi
y are

for some fixed (kx,ky) given by:

Ei
y(r) =

∞∑
m=−∞

Ai
meiki

m·r, (6.53)

Hi
y(r) =

∞∑
m=−∞

Bi
meiki

m·r, (6.54)

where

ki
m =

kx +
2πm

p
, ky,−

√
k2εu −

(
kx +

2πm

p

)2

− k2
y

T

, (6.55)

and theAi
m andBi

m are the amplitudes of the incoming orders. In the right-hand side of boundary condi-
tions (6.49) and (6.50), Ai andBi should then be replaced byAi

m andBi
m respectively andδm0 should be

omitted. Note that often there are no evanescent waves in the incident field so that the sums in (6.53) and
(6.54) are only over the finite number of propagating plane waves.

6.3 TE- and TM-polarization

Whenky = 0 in (6.14), the field components do not depend ony and the diffraction problem is truly two-
dimensional. Then equations (6.26) and (6.27) become two uncoupled scalar Helmholtz equations forEy

andHy:

ω2ε0εµ0Ey +
∂2Ey

∂x2
+

∂2Ey

∂z2
= 0, (6.56)

ω2µ0Hy +
∂

∂x

(
1
ε

∂Hy

∂x

)
+

∂

∂x

(
1
ε

∂Hy

∂z

)
= 0. (6.57)

In case of homogeneous media, this is the same result as we have already derived earlier, where we showed
that for every homogeneous material the electromagnetic field components satisfy scalar Helmholtz equa-
tions (but hereε does not need to be constant). LetS be a surface with normaln across whichε is dis-
continuous. The transmission boundary conditions on this surface are then given by the requirement that
the tangential electric and magnetic field components are continuous onS. Due to our assumption that all
objects are invariant under translations parallel to they-axis, the surfaceS will be parallel to they-axis, and
the normaln will be in the (x,z)-plane:n = (nx, 0, nz)T . It thus follows that

n×E =

 −nzEy

nxEz − nzEx

nxEy

 , (6.58)
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Figure 6.2: A plane geometry in a planey = constant that is translation invariant inx- andy-direction.

and

n×H =

 −nzHy

nxHz − nzHx

nxHy

 , (6.59)

are continuous. By substitution of equations (6.22)-(6.25) with ky = 0, it is seen that this is equivalent with
the continuity of respectively

Ey,
∂Ey

∂n
, (6.60)

and

Hy,
1
ε

∂Hy

∂n
. (6.61)

We can now conclude that when the electromagnetic field is two-dimensional (ky = 0), both the differential
equations as well as the transmission boundary conditions expressed in terms ofEy andHy are uncoupled.
This implies that we can distinguish two polarizations:TE-polarization(transversale electric) andTM-
polarization(transversale magnetic). It follows from (6.22)-(6.25) that in case of TE-polarizationEy, Hx

andHz are in general non-zero while the other components are zero. In case of TM-polarization,Hy, Ex

andEz are in general non-zero whereas the other components vanish. Note that TE-polarization is the same
as S-polarization, whereas TM-polarization is the same as P-polarization as defined in Section5.3.

When the electromagnetic field depends harmonically ony (ky 6= 0), all field components can still be
expressed in terms ofEy andHy, but the problem forEy andHy will then be coupled as is seen from
(6.26), (6.27) and pure TE- and TM-polarizations can no longer be distinguished.

6.4 Uniqueness of the solution of the boundary value problem

It is outside the scope of this manuscript to formulate and prove the conditions under which the diffraction
problem has a unique solution. Instead we refer to [21]. We only remark that as soon as there is some
region (no matter how small) that is absorbing, uniqueness is guaranteed. In fact, when uniqueness does not
hold, there is a solution of the diffraction problem without an incident field. But when there is absorption,
such a solution which is periodic inx and time-harmonic can clearly not exist. We shall now give a simple
example of a case where uniqueness does not hold.

Consider a planar structure as shown in Figure6.2that is translation invariant in thex- andy-direction. We
assume the index of refractionn2 of the material in regionII to be larger than the indices of refractionn1

andn3 in the regionsI andIII, respectively. Under certain conditions a solution of the Maxwell equations
exists that is non-zero in regionII and is exponentially decreasing in regionsI andIII. Such a solution is
called aguided wave.

Consider a TE-polarized wave that is independent ofy and harmonic inx and propagates in the positive
x-direction in regionII. TheEy-component of this wave has the form

Ey(x, z) = u(z)eikxx, (6.62)
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wherekx > 0. According to (5.18), u(z) satisfies

(k2n2
j − k2

x)u +
d2u

dz2
= 0, j =


1 in regionI,

2 in regionII,

3 in regionIII,

(6.63)

wherek is the wave number in vacuum. By using the notation introduced in Section5.3:

kjz =
√

k2n2
j − k2

x, j = 1, 2, 3, (6.64)

we can write the general solution as

u(z) =


Ceik1zz z in regionI,

Aeik2zz + Be−ik2zz z in regionII,

De−ik3zz z in regionIII,

(6.65)

whereC,A,B, D are constants that are to be determined from the jump relations atz = a andz = b. In
casek2

x > k2n2
1 or k2

x > k2n2
3 the field decreases exponentially in the regionsI andIII or equivalently,

the wave is totally reflected at the boundariesz = b andz = a. Total reflection is thus necessary for a
solution that vanishes in the limit of|z| → ∞.

We assume thatk2
x > k2n2

1 or k2
x > k2n2

3 holds. The field componentsEy andHx = (−i/ωµ0)
∂Ey

∂z are
tangential to the interfacesz = a, z = b and therefore have to be continuous there. This is equivalent with
the continuity ofu and du

dz atz = a andz = b. We thus obtain

Aeik2zb + Be−ik2zb − Ceik1zb = 0, (6.66)

k2zAeik2zb − k2zBe−ik2zb − k1zCeik2zb = 0, (6.67)

Aeik2za + Be−ik2za −De−ik3za = 0, (6.68)

k2zAeik2za − k2zBe−ik2za + k3zDe−ik3za = 0. (6.69)

This homogeneous system only has a solution if its determinant is equal to zero. This gives us an equation
for kx in terms ofa, b, n1, n2, n3 andk.

It can then be shown that the following statements hold [9]:

• If the refractive indicesn1 andn3 of the regionsI andIII are equal andn2 > n1 = n3 there exists
at least one realkx such that there is a guided TE-wave.

• If the refractive indices of the regionsI andIII are different, then no guided waves exist for suffi-
ciently small differences betweenn2 andn1, n3.

This implies that a guided TE-wave is a solution of the diffraction problem forkx andky = 0 without a
source at|z| → ∞. For a TM-polarized wave analogous results hold.

6.5 Variational formulation and the FEM

In the previous sections we derived for given (kx,ky) a coupled system of partial differential equations
(6.26), (6.27) on the regionΩ (6.3) in terms ofEy andHy with quasi-periodic boundary conditions (6.28) -
(6.31) and radiation conditions (6.49) - (6.52). We will now derive the variational formulation for this
boundary value problem (BVP).

The set of two coupled partial differential equations (6.26), (6.27) can be written as follows:

L(u) ≡
2∑

i,j=1

Di (SijDju) + iS11u = 0, (6.70)
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where

D1 =
∂

∂x
, D2 =

∂

∂z
, u = (u1, u2)T , u1 = Ey, u2 = Hy, (6.71)

and theSij , 1 ≤ i, j ≤ 2 are (2,2)-matrices defined by

S11 = S22 =
i

ω2ε0εµ0 − k2
y

(
ωε0ε 0

0 ωµ0

)
, (6.72)

S12 = −S21 =
i

ω2ε0εµ0 − k2
y

(
0 −ky

ky 0

)
. (6.73)

We introduce the space

V =
{
v|v ∈ H1(Ω)×H1(Ω),v(x, z)e−ikxx is p-periodic with respect tox

}
, (6.74)

equipped with theH1(Ω)×H1(Ω)-norm||v||V . This means that for the givenkx we have

v(x + p, z) = v(x, z)eikxp. (6.75)

Forv ∈ V we put

v(x, z) =
∞∑

m=−∞
v̂(m, z)ei(kx+ 2πm

p )x. (6.76)

It can then be shown [22] that if the fieldu ∈ H1
loc(R2)×H1

loc(R2) satisfies (6.70), the restriction ofu to
Ω is in V and is a solution of the following variational problem onΩ:

a(u,v) + b(u,v) =
∞∑

m=−∞
F̂in(m) · v̂∗(m, b) ≡ −F in(v), ∀v ∈ V, (6.77)

wherea, b : V × V → C are sesquilinear forms defined by

a(u,v) =
2∑

i,j=1

∫
Ω

SijDju ·Div∗ dΩ + i

∫
Ω

S11u · v∗ dΩ, (6.78)

and

b(u,v) =
∞∑

m=−∞

[
B0(m, εu)û(m, b) · v̂∗(m, b) + B1(m, εu)û(m, b) · v∗(m, b)

+B0(m, εl)û(m,a) · v̂∗(m,a) + B1(m, εl)û(m,a) · v∗(m,a)
]
, (6.79)

with the matricesB0(m, ε̄), B1(m, ε̄),−∞ < m < ∞ defined by

B0(m, ε̄) =
ikm,z

ω2µoε0ε̄− k2
y

(
ωε0ε̄ 0

0 ωµ0

)
, (6.80)

B1(m, ε̄) =
ikm,x

ω2µoε0ε̄− k2
y

(
0 −ky

ky 0

)
, (6.81)

and where the vector̂Fin(m) is determined by the incident field:

F̂in(m) =
2ikm,z

ω2µ0ε0εu − k2
y

e−ikm,zb

(
Ai

mωε0εu

Bi
mωµ0

)
. (6.82)

The weak formulation in the infinite dimensional spaceV is equivalent to the boundary value problem
formulated in the Sobolev spaceH1(Ω)×H1(Ω). In order to apply the FEM, the regionΩ is first discretised
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with triangular elements such that the interfaces on whichε is discontinuous are never intersected by an
element. The basis functions are for example chosen to be piece-wise linear functions on this mesh.

We define a finite dimensional subspaceVN of V as the space of vector fields generated by the basis:

wµ
k (x, z) = φµ(x, z)ek, µ = 1, 2, . . . , N, k = 1, 3, (6.83)

whereφµ, µ = 1, 2, . . . , N are real-valued basis functions such thatφµ(x, z)e−ikxx is p-periodic with
respect tox and wheree1 = (1, 0, 0)T ande3 = (0, 0, 1)T . Hence the spaceVN has dimension2N .

Any v ∈ VN can then be expressed as a linear combination:

v(x, z) =
N∑

µ=1

vµφµ(x, z), (6.84)

with vµ = (vµ
1 , vµ

2 )T ∈ C2, µ = 1, 2, . . . , N .

For fixed (kx,ky) we now pose the following finite dimensional problem:

Findu ∈ VN such that
a(u,v) + b(u,v) = −F in(v), ∀v ∈ VN . (6.85)

This numerical method is called the Galerkin method. We will not work out the variational formulation
(6.85). Instead, the reader is referred to [19]. We will conclude this section with some additional remarks.

The matrix of the finite linear system is sparse, i.e. it has a relatively large number of zeros. This is an
advantage of the FEM compared to other numerical methods, e.g. the method of integral equations.

The existence of a solution of (6.85) has been proven by Urbach [19]. Using the assumption that in all
regions ofΩ one hask2

y < ω2Re(ε)µ0, it has been proved that provided uniqueness holds, the Galerkin
method converges. In this way a constructive existence proof is obtained.

The radiation boundary conditions are not standard conditions. Although they express a relation between
the field components and their normal derivative (∂

∂z ), they are formulated in terms of Fourier coefficients,
which means that these boundary conditions are not local. That is, they are not defined in every point on the
boundary separately. The Fourier series with respect tox of the basis functionsφµ are needed. The Fourier
series of a basis functionφµ(x, z) has the form

φµ(x, z) =
∞∑

m=−∞
φ̂µ(m, z)ei(kx+ 2πm

p )x, (6.86)

whereφ̂µ(m, z) denotes them-th Fourier coefficient:

φ̂µ(m, z) =
1
p

p
2∫

− p
2

φµ(x, z)e−i(kx+ 2πm
p )x dx. (6.87)

The Fourier series can be problematic in case of piece-wise linear basis functions, since the Fourier series
will in general converge slowly because the basis functions are not very smooth.

6.6 Incoming focused spot

Let us now consider an incident focused spot. We assume that the electric field componentEi of the incident
spot is known in a certain planez = zi above the grating. LetF(Ei)(fx, fy, zi) be the Fourier transform
of Ei with respect tox andy in the planez = zi:

F(Ei)(fx, fy, zi) =
∫∫

e−2πi(fxx+fyy)Ei(x, y, zi) dxdy. (6.88)
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The inverse Fourier transform

Ei(x, y, zi) =
∫∫

e2πi(fxx+fyy)F(Ei)(fx, fy, zi) dfx dfy, (6.89)

corresponds with a plane wave expansion of the incident field with wave vectors whose components in thex-
andy-direction are given by2πfx and2πfy, respectively and whose complex amplitude isF(Ei)(fx, fy, zi).

With the Diffract program [24] the incident spot in the planez = zi can be computed. Diffract gives the
Ei

x- andEi
y-components of the incident field in this plane. As has been explained earlier, we only need

they-component of the electric and magnetic incident field (Ei
y, Hi

y). BothEi
x andEi

y can be written as a
superposition of plane waves in the planez = zi by using (6.89):

Ei
x(x, y, zi) =

1
4π2

∫∫
ei(kxx+kyy)F(Ei

x)
(

kx

2π
,
ky

2π
, zi

)
dkx dky, (6.90)

with a similar expression forEi
y. For every (kx, ky), F(Ei

x) andF(Ei
y) are the complex amplitudes of

plane waves with wave vectork given by (6.95). It then follows fromE · k = 0 that:

F(Ei
z) = − 1

kz

(
kxF(Ei

x) + kyF(Ei
y)
)
. (6.91)

The magnetic incident fieldHi is then found by using (6.6).

Let p be the period of the grating. Then (6.89) can be rewritten as follows:

Ei(x, y, zi) =
∞∑

m=−∞

∫ ∞

−∞

∫ m+1
p

m
p

e2πi(fxx+fyy)F(Ei)(fx, fy, zi) dfx dfy

=
∞∑

m=−∞

∫ ∞

−∞

∫ 1
p

0

e2πi(fxx+fyy)e
2πimx

p F(Ei)
(

fx +
m

p
, fy, zi

)
dfx dfy

=
∫ ∞

−∞

∫ 2π
p

0

Ui
kx,ky

(x, zi)ei(kxx+kyy) dkx dky, (6.92)

where

Ui
kx,ky

(x, zi) =
1

4π2

∞∑
m=−∞

F(Ei)
(

kx

2π
+

m

p
,
ky

2π
, zi

)
e

2πimx
p , (6.93)

is p-periodic inx.

By using (5.14) in Section5.1 it follows that

F(Hi)(fx, fy, zi) =
k

ωµ0
×F(Ei)(fx, fy, zi), (6.94)

wherek is given by (5.20):

k =

 kx

ky

kz

 =

 2πfx

2πfy√
k2εu − 4π2(f2

x + f2
y )

 . (6.95)

Hence for the magnetic component of the incident spotHi we can write:

Hi
kx,ky

(x, y, zi) =
∫ ∞

−∞

∫ 2π
p

0

Vi
kx,ky

(x, zi)ei(kxx+kyy) dkx dky (6.96)

where

Vi
kx,ky

(x, zi) =
1

4π2

∞∑
m=−∞

k
ωµ0

×F(Ei)
(

kx

2π
+

m

p
,
ky

2π
, zi

)
e

2πimx
p , (6.97)
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Hence we have written the electric and magnetic components of the incident spot as an integral overkx and
ky of the quasi-periodic fields

Ui
kx,ky

(x, zi)ei(kxx+kyy), Vi
kx,ky

(x, zi)ei(kxx+kyy) (6.98)

When no confusion can arise we will omit the subscript (kx, ky) in the sequel. Actually, only they-
component of the incident electric and magnetic field need to be known, i.e. the quasi-periodic fields

U i
y(x, zi)ei(kxx+kyy), (6.99)

V i
y (x, zi)ei(kxx+kyy), (6.100)

need to be given.

In Section6.1 we have explained that for each of these quasi-periodic incident fields the corresponding
scattered fields are also quasi-periodic. Furthermore, the total field for the electric and magnetic field
components (i.e the sum of the quasi-periodic incident field and the quasi-periodic scattered field) is quasi-
periodic.

By solving the BVP for each of the quasi-periodic incident fields (6.99), (6.100) corresponding to each
(kx, ky) in the ranges0 ≤ kx ≤ 2π

p , −∞ < ky < ∞, we obtain they-components of the total electric
(Utot) and magnetic field (Vtot) for thiskx, ky in the unit cellΩ. By adding these quasi-periodic solutions
we can compute the totaly-components of the electric and magnetic fields due to the entire incident spot:

Etot
y (x, y, z) =

∫ ∞

−∞

∫ 2π
p

0

U tot
y (x, ky, z)ei(kxx+kyy) dkx dky, (6.101)

Htot
y (x, y, z) =

∫ ∞

−∞

∫ 2π
p

0

V tot
y (x, ky, z)ei(kxx+kyy) dkx dky. (6.102)

For each (kx, ky) the other electric and magnetic field components can be immediately obtained from equa-
tions (6.22)-(6.25) and are added accordingly.

For an incident spot the components of the total electric and magnetic field can therefore be written as

Etot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Utot
kx,ky

(x, z)ei(kxx+kyy) dkx dky, (6.103)

Htot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Vtot
kx,ky

(x, z)ei(kxx+kyy) dkx dky. (6.104)

These formulae apply to the total field in anarbitrary point (x, y, z), hence not only to points in the unit
cell Ω.

6.7 Sampling of the incident spot

The focused spot as calculated by the Diffract program is a sampled spot. In order to get accurate results
when an incident spot is simulated, the number of terms that is used in the plane wave expansion of the spot
must be sufficiently large. Let∆x, ∆y be the grid distances in(x, y)-space andNx, Ny the number of grid
points in thex- andy-direction, respectively. We defineK as the number of points of the(x, y)-grid that
are within the periodp:

K =
p

∆x
. (6.105)

Hence we assume that∆x is chosen such thatp is a multiple of∆x.

It remains to specify the number of grid pointsNx andNy in x- andy-direction. We will now discuss the
restrictions for the choice ofNx. Ny is often chosen equal toNx.
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Because we use the Fast Fourier Transform (FFT) to compute the plane wave expansion, the grid in the
(kx, ky)-plane (reciprocal space) is coupled to the grid in the(x, y)-plane (ordinary space):

∆kx =
2π

Nx∆x
, ∆ky =

2π

Ny∆y
. (6.106)

To make sure that for every grid point (kx, ky) the various orders (kx + 2πm
p ), m integer, are also grid points

in reciprocal space, an integerj must exist such that the following holds:

2π

p
= j∆kx =

j

Nx∆x
. (6.107)

By combining (6.105) and (6.107) we then get:

K =
p

∆x
=

Nx

j
. (6.108)

BecauseK andj are both integers it follows thatNx much be a multiple ofK.

Let Lkx
be the length in thekx-direction of the region in reciprocal space where the intensity of the spot

can not be neglected. To avoid aliasing effects, in addition to the previous constraint,Nx should be chosen
such that at least holds:

Nx∆kx ≥ 2Lkx
. (6.109)
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Chapter 7

The Cyclop program

As has been mentioned in the Introduction, the first version of the Cyclop program developed by Urbach and
Merkx is a FEM solver for the two-dimensional grating problem for quasi-periodic incident fields derived
in the previous chapter. The Cyclop program is based on the FEM software package Sepran [25] and is
written in FORTRAN77. In this chapter we will give a description of the 1998 version of Cyclop. We will
successively discuss the preprocessing and the main structure of Cyclop in Sections7.1 and Section7.2.
We end this chapter with some remarks about the analytical computation of the total electromagnetic field
in planar multi-layers.

7.1 The Cyclop preprocessing

To be able to run a simulation with the Cyclop program the geometry must be described and the incident
field must be specified. This preprocessing is done with the program Bicycle. With Bicycle a general input
file for the Cyclop program is generated.

7.1.1 Bicycle and the general Cyclop input file

Bicycle uses an input file calledjobname.dat1, in which the user specifies the geometry and the type of in-
cident field. When the incident field is quasi-periodic, the wave length, amplitudes of the field components,
propagation directions and the mode numbers have to be specified. In case a general three-dimensional
incident spot is to be simulated, no further information about the field has to be specified in the Bicycle
input file. This information is provided to Cyclop by two additional input files which we will discuss later.
By means of an example we will explain how the geometry of the unit cellΩ is to be specified.

Assume that the geometry we want to model is a grooved structure of a material with refractive indexn1,
that is periodic inx-direction and translation invariant in they-direction. For simplicity we assume also
that the material surrounding the structure has an index of refractionn2. We choose the regionΩ such that
it contains one period of the structure and furthermore that the half-spaces above and below the structure
are as large as possible. See Figure7.1(a).

We then subdivide the regionΩ in rectangular and triangular regions. This is done by placing a rectangular
grid over the geometry such that the interfaces inx- andz-direction coincide with interconnection lines of
the grid and such that a sloped interface forms the diagonal of at least one rectangle. See Figure7.1 (b).
In the input file for Bicycle the width of each column from left to right, and the height of each row from
bottom to top have to be specified. For each rectangle and triangle of the subdivision and for the half-space
above and below the regionΩ, the index of refraction is also to be specified. These indices of refraction are
allowed to be complex.

1In practice the name of the problem (job) to be solved, the ’jobname’, can be any arbitrary name.
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n1

n2

n2

x=-0.5p x=0.5p

z=0

z=h

(b)(a)

(c) (d)

Figure 7.1: An example of a periodic structure (a). The thick rectangle is the unit cellΩ. In BicycleΩ is
subdivided into rectangles and triangles (b). The results of the Sepran mesh generator are shown in (c) and
(d).

For all incident fields one additional parameter,nelements, has to be given. This parameter specifies the
number of elements of the Sepran mesh per curve per wavelength in the material to be generated by the
Sepran mesh generator.

From the data in the filejobname.dat the Bicycle program generates a general input file for Cyclop. This
input file, calledjobname.input, consists of three blocks of information. The first two blocks are specific to
Sepran and thus use a predefined syntax. In the first Sepran input block (MESH2D) the geometry of the unit
cell is defined. The coordinates of the vertices of the rectangles and triangles of the subdivision described
above are translated such that for thex-coordinates of all points holds that−0.5p ≤ x ≤ 0.5p. Actually, the
unit length is chosen such thatp = 1, hence the cell corresponds to−0.5 ≤ x ≤ 0.5. The curves connecting
these points are defined as straight lines with linear elements (LINE1). The number of elements on each
curve is calculated by Bicycle using the values of the parameternelements and the refractive indices of
the materials on both sides of the curve. The curves that together form the upper and lower boundary are
combined respectively to a single curve. Both are coupled to a line element (MESHLINE, LELM#). One
’super-element’ is created that contains all points on each of these curves (SHAPE = -1).

The rectangular regions are defined as surfaces using the submesh generator quadrilat with triangular ele-
ments (QUADRILAT3). The triangular regions are defined as surfaces using the submesh generator trian-
gle with triangular elements (TRIANGLE3). Each of these surfaces is coupled to a single surface element
(MESHSURF, SELM#). The curves that form the left boundary (x = −0.5p) are combined to a single
curve. The same is done for the curves that form the right boundary (x = 0.5p). The points on these two
boundary curves are connected (MESHCONNECT, CURVES0).

In the second Sepran block (PROBLEM) a description of the problem in terms of types of element groups
is given. Both the upper and lower boundary curve are coupled to their own element group (ELGRP#)
with user problem definition types 11 and 12, respectively. Each surface element is coupled to a ele-
ment group, with increasing user problem definition types21, 22, . . . . The number of degrees of freedom
(NUMDEGFD) in the nodal points for each of these line and surface element groups is 2, because these are
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Cyclop

Bicycle

Diffract
jobname.spotin.diffr

jobname.input

jobname.dat

jobname.spotdata
jobname.out

jobname.plot###

Figure 7.2: Overview of the input/output structure of the 1998 version of Cyclop for an incident spot.

the (complex) unknowns per nodal point, namelyEy andHy. To store quasi-periodic quantities, Sepran
vectors of special type are defined via VEC1=(2) for vectors with 2 degrees of freedom and VEC2=(1) for
vectors with one degree of freedom. The element defined by MESHCONNECT is coupled to an element
group with type -1 (periodic boundary).

The last block of the filejobname.input contains some additional data about the geometry and the incident
field. The extra information about the geometry consists of the indices of refraction for the various element
groups and the period length of the unit cell in microns (recall that the points of the computational box are
scaled with respect to the period length). For quasi-periodic incident fields the wavelength, amplitude and
phase of the field components and polarization are also defined. This data is omitted in case of an incident
spot, since this information is then specified in additional files that we will discuss in the next section.

The final part of the general Cyclop input file also contains several boolean flags that can be set by the user
to indicated what data should be printed/plotted during postprocessing.

7.1.2 Additional Cyclop input files

When the incident field is a spot, besides the general input file two additional files are needed. The first
file, jobname.inspot.diffr, contains the grid and theEx- andEy- components of the incident field on this
grid. The structure of this data is dictated by an output file generated by the optical package Diffract by
Mansuripur et al.

The second file,jobname.spotdata, contains the specification of the grid in Fourier space used in the
computations of the FFT’s (the sampling) of the incident field. The position of the incident spot with
respect to the grating is also specified. This grid can be specified as desired by the user independent of the
grid in the Diffract file.

An overview of the input/output structure for this Cyclop version is shown in Figure7.2

7.2 The main structure of Cyclop

The structure of the Cyclop program can be divided into three parts: initialization, a loop over all quasi-
periodic fields and the postprocessing. We will now successively discuss each of these parts.

7.2.1 Initialization

After the initialization of Sepran, the mesh is generated by calling subroutine MESH. All input that is read
from the input filejobname.input. The structure of the mesh is stored in the Sepran vector KMESH. For
the definition of the problem the subroutine PROBDF is called. The input is read from filejobname.input.
The information about the problem is stored in the Sepran vector KPROB. Then the structure of the large
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matrix is defined by using subroutine COMMAT. The matrix is not hermitian and it is complex symmetric.
The linear system is solved by using a direct solver.

Now the non-Sepran related data is read from the general input filejobname.input. For quasi-periodic
fields the(kx, ky) can be directly retrieved from this input file. In case of an incident spot the incident
field as calculated by Diffract is read from the filejobname.spotin.diffr. The field is sampled and then
Fourier transformed by using the Fast Fourier Transform (FFT). The specifications about the Fourier grid
needed in the computation of the FFT’s are read from the filejobname.spotdata. When the grid defined
by the parameters injobname.spotdatafor the FFT differs from the grid injobname.spotin.diffr (which
in general it does), the incident field specified injobname.spotin.diffr is interpolated.

Finally, all (Sepran) vectors are created and initialized. Most variables are stored in pairs, such as the field
components (Ey, Hy), in complex vectors with two degrees of freedom.

7.2.2 The main loop

The core of the Cyclop program is the double loop over all relevant pairs(kx, ky). The outer loop is over
all ky, the inner loop over allkx. In pseudo code the double loop can be described as follows:

for all k_y do
for all k_x do

if (flux(k_x, k_y) < threshold) then
goto next k_x

else
solve the BVP for the pair (k_x, k_y)
calculate x- and z-derivatives of the solution
add solution coherently to the sum over previous k_x
do the same for the derivatives

endif
enddo
compute the other field components
add field components to the sum over previous k_y

enddo

At the start of the inner loop it is checked if the pair(kx, ky) satisfies the criterion of minimum incident
flux [?]. If the incident flux of the quasi-periodic field corresponding to a certain pair (kx, ky) is smaller
than a minimum threshold, the BVP is not solved for this pair(kx, ky) and the corresponding solution is
considered to vanish.

If the incident flux is not negligible, the large matrix and the right-hand side vector of the linear system
for the BVP corresponding to the pair(kx, ky) are build by a call to SYSTEM0. All element groups are
used (including the line element groups). The linear system is solved by means of a Gaussian elimination
method (LT −D − L). The solution of the BVP is stored in solution vectorfemehy.

From the solution vector the derivatives inx- andz- direction, which are needed to calculate the other
components of the electromagnetic field, are determined. The derivatives are calculated per element via a
linear interpolation routine (DERIVA). The derivatives with respect tox andz are stored in vectorsdxfemy

anddzfemy, respectively.

The solution vectorsfemehy for all kx are coherently summed and stored in vectorfemehytot. The same
is done for the derivative vectorsdxfemehy anddzfemehy. The summed derivatives are stored in vectors
dxfemehytot anddzfemehytot respectively.

After the loop over allkx the remaining field components are computed. For fixed givenky all field compo-
nents can be expressed in terms of theEy- andHy- component via (6.22)-(6.25). Hence we can use the sum
of the field components over allkx, femehytot and the sums of the derivatives of the field components over
all kx, dxfemehytot anddzfemehytot. Thex- andz-components of the field for this fixed value ofky are
calculated and the results are coherently summed and stored in the vectorsfemehxtot andfemehztot.
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Figure 7.3: Two examples of Sepran plots for the whole computational box. The modulus (left) and phase
(right) of they-component of a TE-polarized plane wave (λ = 400nm) with amplitude 1 in air (n = 1.0)
that is perpendicularly incident on a flat aluminium (n = 0.28 + 4.1i) layer. The air layer is 500nm thick,
the aluminium layer is 200nm thick and the region is 400nm wide.

7.2.3 Postprocessing

The total electric and magnetic field are now known on every point of the mesh of the two-dimensional
unit cell Ω. Recall that these fields are complex valued. To analyze the total fields, real quantities such as
the modulus and phase of the field components are desired. The values of these real quantities can then be
printed to an output filejobname.outor plotted (jobname.plot###). The plots can be made for the whole
unit cell (two-dimensional) or along an arbitrary curve defined by Bicycle. The plots can be viewed by the
Sepran program Sepview. Figure7.3shows two examples of Sepran plots.

7.3 Calculation of an analytical solution

In the special case that the unit cellΩ consists of flat homogeneous regions with interfaces parallel to the
(x, y)-plane it is possible to derive an analytical solution for each pair(kx, ky) of the corresponding BVP.
In the presently used version of Cyclop, the only components of the electromagnetic field that are computed
analytically areEy andHy. As with the numerical solution, the components of the total electromagnetic
field are acquired by coherently summing the solutions for each pair(kx, ky). In Cyclop the derivation of
the analytical solution is also implemented in the main double loop. We have omitted it in the pseudo code
above because in general an analytical solution does not exist. However, for flat geometries this analytical
solution is important since it can be used to verify the numerical results.

c©Philips Electronics Nederland BV 2002 49



Chapter 8

Extension of the Cyclop program

In the previous chapter the 1998 version of the Cyclop program has been discussed with which the to-
tal electromagnetic field can be determined in a two-dimensional unit cellΩ contained in some plane
y = constant. In this chapter we will discuss how the solution on this two-dimensional regionΩ can
be extended inx- andy-direction to a sufficiently large three-dimensional region. We will start this chapter
by discussing the theory behind this extension. In Section8.2we will describe how this extension is imple-
mented in Cyclop. We end this chapter by discussing a modification made to Bicycle and an improvement
of Cyclop regarding the analytical solution.

8.1 Extension from the 2d-unit cell to a 3d-region

The total electric and magnetic field on the unit cellΩ are given by (6.103) and (6.104)

Etot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Utot
kx,ky

(x, z)ei(kxx+kyy) dkx dky, (8.1)

Htot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Vtot
kx,ky

(x, z)ei(kxx+kyy) dkx dky, (8.2)

whereUtot
kx,ky

(x, z), Vtot
kx,ky

(x, z) arep-periodic functions with respect tox and independent ofy which are
obtained from the solutions of the BVP for the (kx, ky)-pair considered. As has been remarked in Section
6.6, formulae (8.1), (8.2) apply to arbitrary points(x, y, z) which need not to be in the planey = constant
of Ω. For all |m| = 1, 2, . . . the total fields in a period−0.5p + mp ≤ x ≤ 0.5p + mp and in a plane
y = y + ∆y are given by

Etot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Utot
kx,ky

(x, z)ei(kxx+kyy)ei(kxmp+ky∆y) dkx dky, (8.3)

Htot(x, y, z) =
∫ ∞

−∞

∫ 2π
p

0

Vtot
kx,ky

(x, z)ei(kxx+kyy)ei(kxmp+ky∆y) dkx dky. (8.4)

We see that the extension of the total field in the unit cell to a arbitrary other period and at arbitrary distance
in y-direction from the unit cell comes down to multiplication of the total field in the unit cell by a factor
ei(kxmp+ky∆y) for each given pair(kx, ky). In the next section we will describe how this extension is added
to the Cyclop program. In Cyclop the unit cellΩ lies in the planey = 0.
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Figure 8.1: The extended geometry.

8.2 The implementation of the extension in Cyclop

We will first start with some definitions and notations. We refer to Figure8.1 for the visualization of the
notations. From this point onwards we will refer to the unit cellΩ as themain cell. For every period in
every planey = constant we have a cell of which the geometry is exactly the same as that of the main cell.
Since we are going to expand the total electromagnetic field to these cells we will refer to them asexpanded
cells. The two-dimensional region formed by several adjacent cells in a planey = constant will be called
acluster. The cluster that contains the main cell is called themain cluster.

The number of expanded cells (and thus periods) in thex-direction will be denoted byNp and the total
number of clusters in they-direction byNc. It is convenient to takeNp andNc odd so that we have an
equal amount of expanded cells to the left and to the right and an equal number of clusters in front and
behind the main cell and the main cluster, respectively. The cells in one cluster are indexed from left to
right. For theperiod indexnp it follows thatnp = −Np−1

2 , ..,
Np−1

2 . The clusters are indexed from front to
back. For thecluster indexnc we havenc = −Nc−1

2 , .., Nc−1
2 . Consequently,np = nc = 0 for the main

cell. The distance between two successive clusters will be denoted by∆c.

We recall from Section7.2that the structure of the Cyclop program can be divided into an initialization part,
a main double loop over all (kx, ky) pairs and a postprocessing part. We will now discuss the extensions
and modifications needed for the extension made to these three parts.

8.2.1 Modification of the initialization

From the description of the main loop over the(kx, ky) it follows that for the extension we will need to
create five Sepran vectors for every expanded cell. Three vectors are needed in the inner loop over allkx

to store the accumulative sums of the BVP solution vector (femehytot) and the two derivative vectors
(dxfemehytot, dzfemehytot), respectively. The two other vectors are used in the outer loop to store the
accumulative sums of the derived field components (femehxtot, femehztot). Thus, for the extension we
need five arrays ofNp ×Nc vectors.

The vectors for the expanded cells are created with the Sepran subroutine CREAVC where the vectors
KMESH and KPROB are used. Consequently, the structure of these solution vectors is equal to that of the
solution vectors for the main cell and are therefore also periodic.

8.2.2 The modified main loop

In pseudo code the modified double loop in Cyclop is as follows:

for all k_y do
for all k_x do
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Figure 8.2: The inner loop for the extension. When the solution of the BVP is computed (a) thex- and
z-derivatives are calculated (b) and these three vectors are expanded to all cells in the main cluster by
multiplying by the appropriate factoreikxnpp (c). The results are then added to the accumulative sums over
previouskx (d).

if (flux(k_x, k_y) < threshold) then
goto next k_x

else
solve the BVP for the pair (k_x, k_y)
calculate x- and z-derivatives of the solution
for all $N_p$ expanded cells in main cluster do

multiply solution and derivatives by exp(i k_x n_p p),
with n_p the period index

add expanded solution coherently to the accumulated
sum over previous k_x

do the same for the expanded derivatives
enddo

endif
enddo
for all N_p expanded cells in main cluster do

for all N_c clusters do
compute the other field components
multiply all field component vectors by

exp(i k_y n_c Delta_c), with n_c the cluster index
add field components coherently to the accumulated

sum over previous k_y
enddo

enddo
enddo

In the inner loop it is first checked whether the pair (kx, ky) satisfies the criterion of minimum incident
flux. When the flux is not negligible, the BVP for the given pair on the main cell is solved and the solution
is stored in the vectorfemehy. Then the derivatives with respect tox andz are computed and stored
in the vectorsdxfemehy anddxfemehy, respectively. For the expanded cells in the main cluster with
period indicesnp = −Np−1

2 , ..,
Np−1

2 the vectorsfemehy, dxfemehy anddxfemehy are multiplied by
the appropriate factoreikxnpp. The resulting expanded vectors are then in every cell of the main cluster
coherently added to the accumulative sum vectorsfemehytot, dxfemehytot and dxfemehytot. See
Figure8.2.
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Figure 8.3: In the outer loop of the extension the field componentsEx,Hx andEz,Hz are computed in
every cell of the main cluster (a). These vectors are then extended in they-direction by multiplying by the
appropriate factoreikxnc∆c. The results are then added to the accumulative sums over previousky (b)

Ncz

Ncx

z=0

z=h

x=-0.5p x=0.5px=-0.5px=0.5p

MAP

Figure 8.4: To visualize real quantities known on the nodal points of the Sepran mesh of each cell we map
these values to a rectangular grid with dimensionsNcx ×Ncz.

After the loop over allkx, for fixed ky the field componentsEx,Hx andEz,Hz are then computed in
every cell of the main cluster using the vectorsfemehytot, dxfemehytot anddxfemehytot. In all Np

vectors in the main cluster this results in the vectorsfemehx andfemehz. Finally we extend the vectors
femehytot, femehx andfemehz for each cell in the main cluster in they-direction by multiplying by
a factoreikync∆c, wherenc is the appropriate cluster index,nc = −Nc−1

2 , .., Nc−1
2 . After the multiplica-

tion, the resulting vectors in every expanded cell are coherently added to the correct accumulative vectors
femehytot, femehxtot andfemehztot. Note that for the cells in the main cluster this comes down to a
multiplication by 1. See Figure8.3.

8.2.3 Modification of the postprocessing

To be able to analyze the total electromagnetic field that we have computed, real quantities such as the
modulus and phase of the various field components can be calculated in every cell of the extended region.
For each cell this data can then be printed to an output file or plotted and viewed with Sepview. But what
we would really like is to visualize these quantities for the expanded region as a whole. This is done by
using the Amira graphics package.

Amira is a 3D visualization and modelling system [23]. The AmiraMesh format, which is Amira’s native
general- purpose file format, allows the storage of field values on a rectangular grid.

Assume we have an array ofNp×Nc vectors in which for each expanded cell we have stored a real quantity
(e.g. the modulus of a field component). We now first create a rectangular grid for the main cell withNcx

points inx-direction−0.5p ≤ x ≤ 0.5p andNcz points inz-direction0 ≤ z ≤ h. We then use the Sepran
interpolation routine INTCOOR to map the quantity values from the points of the Sepran mesh of the main
cell, as stored in vector KMESH, to the points of the rectangular grid. Information about the mapping
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Figure 8.5: For adjacent cells in a cluster we have to omit double points (a). In (b) an impression is given
of the grid for the whole expanded region.

is stored in a vector MAP. By now using the fact that all expanded cells implicitly have the same mesh
structure, we can map the quantity vectors on all expanded cells by using subroutine INTCOOR, with the
same rectangular grid and the vector KMESH. We thereby use the mapping specifications already stored in
the vector MAP in the first call to subroutine INTCOOR to speed up the mapping process.

After the mapping, we have for every expanded cell, including the main cell, the values of the quantity of
interest on the nodes of the rectangular grid. We now create a rectangular grid for the whole extended region.
The grid distances inx- andz-direction for the 3D-grid are taken equal top/(Ncx − 1) andh/(Ncz − 1).
The grid distance iny-direction we choose equal to∆c. We can now write the coordinates of this 3D-grid
and the corresponding mapped quantity values in the expanded cells to the Amira mesh-file. Note that for
two adjacent cells in a cluster the most right column of grid points of the left cell and most left column of
grid points of the right cell actually represent the same points. To avoid double points in the amira mesh-
file, we therefore make sure that we omit the coordinates of the most right columns and their corresponding
quantity values for the firstNp − 1 cells (counted from left to right) in every cluster.

8.3 Additional modifications to Bicycle and Cyclop

For very complicated geometries such as those of a Blu-ray disk stack, the number of surfaces that Bicycle
generates becomes very large. Since Bicycled assigned each surface to a separate element group this be-
comes problematic. This is because in Sepran the total number of user element groups is at maximum 99.
Larger numbers can not be used since they are reserved for the standard element groups of Sepran. There-
fore, Bicycle has been modified in such a way that all surfaces corresponding to rectangles and triangles
of which the refractive index is equal are combined in a single grouped surface by using the SURFACES
keyword.

In the previous chapter we have mentioned that in the special case thatΩ consists of a multi-layer with flat
interfaces, they-components of the total electromagnetic field can be computed analytically. Previously
in Cyclop only theEy andHy components were computed analytically. We have extended Cyclop such
that now also all other field components are calculated onΩ (no extension of the analytic solution to the
three-dimensional region is done however). By calculating thel2-norm of the absolute differences between
the numerical and analytical solutions it is possible to get insight in the precision of the numerical model.

Finally, the absorbed energy (4.55) and the total time-average electromagnetic energy density (4.57) can be
computed in every expanded cell of the enlarged region.
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Chapter 9

Integration of the Cyclop output into
the heat diffusion model

In the previous chapter we have described how the two-dimensional solution on the main cell is extended
to a three-dimensional region. From the extended total electric field the absorbed energyW (x, y, z) on
the whole extended region can be determined. In Chapter 2 we have pointed out that the absorbed energy
known in the nodal points of the Cyclop mesh can be mapped to the three-dimensional mesh used in the
thermal model. In this chapter we will describe the various steps that have been taken to integrate the
absorbed energy data calculated by Cyclop into the thermal model and the problems that were encountered.

The first step was to separate the postprocessing process from the main Cyclop program. We will discuss the
stand alone postprocessing program Cycpost in Section9.1. The mapping has been integrated in the Cycpost
program and is discussed in Section9.2. In Section9.3we discuss how the mapped data is integrated in the
thermal model.

The method used in the preprocessor program Bicycle turned out to be too inaccurate. Therefore an alter-
native has been made, which is described in Section9.4. Several of the various other problems encountered
are discussed in Section9.5.

9.1 Cycpost: the Cyclop postprocessor

When we simulate a spot that is incident on a complex geometry such as that of a Blu-ray disk stack, then
depending on the number of quasi-periodic fields in the main double loop, the Cyclop program can take a
very long time to run (i.e. over 20 hours). With the postprocessing part of the Cyclop program, if one wants
to view a quantity that has not yet been derived and printed/plotted, the whole Cyclop program has to be
run once more. It is therefore convenient to separate the postprocessing part from the Cyclop program.

After the main double loop, the arrays containing the components of the total electromagnetic field for the
whole extended region and (if applicable) the analytical solution vectors for the main cellΩ are written
to Sepran output filejobname.sepcomp. This is done by using the Sepran subroutine OUTSOL. In order
to be able to use this subroutine correctly, several changes have to be made to Cyclop and its general
input file jobname.input. In Cyclop the calls to subroutines START, MESH, PROBDF and COMMAT are
replaced by a single call to subroutine SEPSTM. This subroutine reads information about the large matrix
(MATRIX block) and the number of vectors that is to be written tojobname.sepcomp(OUTPUT block)
from jobname.input, in addition to the information about the mesh (MESH2D block) and the problem
definition (PROBLEM block). Bicycle is therefore modified such that it adds these last two blocks to the
general input file. Some additional parameters that are needed for postprocessing, such as the value of a
boolean flag that indicates whether an analytical solution has been calculated and stored or not, are written
to a file calledjobname.params.
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Figure 9.1: The Cyclop input/output structure when the postprocessing is separated and performed by the
Cycpost program.
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Figure 9.2: Visualization of the Cyclop extended region (’red box’) in the computational box of the thermal
model (’black box’) (at t = 0). The geometries of both models are equal in the ’blue box’.

The Cyclop postprocessing program Cycpost is based on the Sepran postprocessing program Seppost. Cyc-
post reads the solution arrays from thejobname.sepcompfile, the vectors KMESH and KPROB from
the file jobname.meshoutputand finally the extra parameters fromjobname.params. In the input file
jobname.post.input the user can specify by means of boolean flags which quantities are to be computed,
printed and/or plotted. All postprocessing functions that were present in the extended Cyclop program,
including the 3D-visualization with Amira, are also available in Cycpost.

Finally, the mapping which we will discuss next, is implemented in Cycpost.

9.2 Mapping of the extended Cyclop output to the heat diffusion
mesh

We will first describe the computational box used in the thermal model. In the translation invarianty-
direction along the grooves, the box has lengthLty. The height inz-direction isLtz. In thex-direction two
periods of the grooved structure are often chosen. In the current model of the heat problem it is assumed
that the exterior of the computational box consists of a flat multi-layer (i.e. there are no grooves). The total
length of the computational box inx-direction isLtx. Ltx, Lty andLtz are chosen sufficiently large to
make sure that the adiabatic boundary conditions are sufficiently accurate. See Figure9.2.

For the extension in Cyclop we choose to extend to a region three periods wide in thex-direction (Np = 3)
and three periods long in they-direction. The number of clustersNc > 3 can be freely chosen. In the
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Figure 9.3: When the cells have been determined between which the mapped nodal point (xc, yc, zc) (blue
dot) lies, the absorption values in both cells are interpolated (red dots). These interpolated values are once
more interpolated to acquire the absorbed energy in the mapped nodal point.

current extended Cyclop a valueNc = 59 is used.

In Figure9.2 we have drawn the extended region of Cyclop (’red box’) in the thermal computational box.
The coordinate system for the thermal model is chosen such that its axes coincide with those of the Cyclop
model. The optical axis of the incident spot coincides with thez-axis of both models.

Let us now assume that we have calculated the absorbed energy in every cell in the extended Cyclop region.
Remark that in Cyclop we have three grooved periods, while in the thermal model we have only two grooved
periods. For every nodal point of the thermal mesh that lies outside the ’blue box’ shown in Figure9.2we
therefore set the absorbed energy equal to zero.

We generate the mesh for the thermal computational box by using the Sepran program Sepmesh. The
information about the mesh is stored in the file3dmeshoutput.

In pseudo code the mapping as implemented in Cycpost can be described as follows:

read thermal 3d-mesh from file 3dmeshoutput
create user array containing nodal points of the thermal 3d-mesh
for every nodal point of the thermal mesh do

map coordinates of nodal point to Cyclop coordinates
if nodal point lies outside ’blue box’

return absorption = 0
else

determine period index
determine cluster indices of cells immediately in front of

and immediately behind the considered point
translate x-coordinate such that -0.5p < x < 0.5p
interpolate in front cell with INTCOOR (f)
interpolate in back cell with INTCOOR (b)
linear interpolate between (f) and (b)

endif
enddo

We start by reading the vector that stores the information about the 3d-mesh of the thermal model by using
the Sepran subroutine MESHRD and store it in a vector KMESH2 (we already have a vector KMESH with
information about the mesh of the main cell). All coordinates of the nodal points of the 3d-mesh are then
stored in a double precision user array (via KMESH2(23)).

We then loop over all points of the thermal 3d-mesh. First the coordinates are transformed to Cyclop
coordinates. Let us denote these Cyclop coordinates of the point by (xc, yc, zc). If this point lies outside the
’blue box’ in Figure9.2we set the absorption to zero at that point. Otherwise we continue by determining
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Figure 9.4: A visualization of how a source term is obtained at a time stept > 0 from the source term
calculated by Cyclop fort = 0.

between which two expanded cells the mapped point lies, see Figure9.3. The period indexnp and the
cluster indicesnc,f , nc,b of the cells directly in front of and behind the mapped point follow from thex-
and they-coordinate, respectively.

Since in each cluster we have a two-dimensional geometry, we temporarily omit they-coordinate of the
mapped nodal point. Recall that the solution vectors for the expanded cells have the same structure as those
on the main cell. Therefore we first translate thex-coordinate of the mapped nodal point to the main cell
so that−0.5p ≤ xc + npp ≤ 0.5p. We can then compute the interpolated absorbed energy values in the
point (xc + npp, zc) in the expanded cells immediately in front of and behind the mapped nodal point by
using the Sepran interpolation subroutine INTCOOR (with vectors KMESH and KPROB of the main cell).
Finally we linearly interpolate these two interpolated absorption values to obtain the absorbed energy in the
point (xc, yc, zc) (and thus in the corresponding point in the thermal 3d-mesh).

The array of interpolated absorption values is written to the standard Sepran backup storage filesepranback
by using the Sepran subroutine WRITBS.

9.3 Integration of the mapped data in the thermal model

The three-dimensional heat diffusion equation (2.1) is a second order real linear parabolic equation for one
unknown function, namely the temperatureT . Such a differential equation is a standard problem in Sepran.
It can therefore be solved by using the Sepran programs Sepmesh, Sepcomp and Seppost.

In the previous section a description of the three-dimensional computational box used in the thermal model
has been given. With Sepmesh a mesh can be generated for this computational box. Sepmesh requires
an input file calledjobname.mshin which a description of the discretization of the computational box is
given in terms of Sepran keywords. Each layer of the stack to be modelled is assigned to a single volume
element group. Each of these volumes is generated by using the volume generator pipe with tetrahedral
elements (PIPE11). The surfaces are generated with the submesh generators rectangle and pipesurface with
triangular elements (RECTANGLE3 and PIPESURFACE3). The points of the mesh are connected with line
elements with 2 points (LINE1).

When the mesh file has been made, the heat diffusion equation is solved by using the program Sepcomp.
The problem is specified in the input filejobname.prb. All element groups are of type 800 (potential
problem).

To describe a differential equation of a standard form in Sepran, such as the heat diffusion equation con-
sidered, it suffices to specify the coefficients of the differential equation. The coefficients that are assigned
a value are 6, 9 and 11 (the heat conductivityκ in x-, y- andz-direction, respectively), 16 (the sourceQ)
and 17 (the heat capacityρCp). These coefficients are specified for each element group individually. In
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Figure 9.5: An overview of the file communication structure between Cycpost and the thermal model.

the original thermal model, a moving spot is simulated by filling coefficient 16 for every nodal point of the
thermal mesh at any time step by means of a user defined analytical function of position and time (via the
assignmentcoef 16 = (points, iref = -1)and user subroutine FUNC).

We have replaced this analytically defined heat source by a heat source as calculated by Cyclop in the
following way. At t = 0 the double precision array containing the absorbed energyW (x, y, z) in every
nodal point of the thermal mesh is read from the Sepran backup storage filesepranback. This data is then
stored in a Sepran vector calledoutput cyclopof solution type (110). To simulate the movement of the spot,
at every discretized timet the data inoutput cyclopis mapped on a copy of the thermal mesh that has been
shifted in the negativey-direction over a distancev ∗ t, wherev is the velocity at which the spot moves.
This results in a Sepran vectorsourcetermthat contains the heat source at timet.

In Figure9.4 this mapping has been visualized. For the mapping Sepran subroutine INTMSH3D is used.
For nodal points that are mapped into regionI of the shifted mesh, the absorbed energyW is set to zero
at these points. The data at nodal points that are mapped into regionII can be considered to be ’lost’.
Consequently, forv > 0, from a certain time stept > 0 at which nodal points wereW > 0 are mapped into
regionI, the vector containing the source term will become unusable.

The vectorsourceterm is used to fill coefficient 16 for every nodal point of the thermal mesh by the
assignmentcoef 16 = old solution. The intensity of the spot can be changed by multiplying with an intensity
factorI.

The Sepcomp program can be instructed to write the calculated temperature distribution at every time step
t to a file calledsepcomp.out. The Sepran postprocessor Seppost can then be used to interpret the data in
sepcomp.out.

Figure9.5shows the file communication structure in case the thermal simulation is run with a heat source
that has been calculated by Cyclop.

9.4 An alternative for Bicycle

The sloped edges of the grooves of the disk structures that we model are inconvenient when the geometry
is described using the Bicycle program. Due to the complexity of for instance the stack of a Blu-ray disk,
the division of the regionΩ in rectangles and triangles causes that the sloped interfaces are subdivided
and contained in several rectangles. See Figure9.6. Consequently, instead of straight lines, the slopes are
represented by piece-wise linear curves. This results in undesirable inaccuracies. Furthermore, creating the
Sepran part of the general input filejobname.input manually is very time consuming, especially for such
complex geometries and therefore is no alternative to using a preprocessor.
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Figure 9.6: In case of very complex geometries the sloped interfaces are approximated by piece-wise linear
curves.

Hence, a start has been made to develop an alternative for Bicycle. Inxfig1 we draw each layer of the stack
structure that we want to describe as a closed polygon. As a unit of length we use one pixel to represent one
nanometer. When we have drawn the whole unit cell, we save the drawing in the standardxfig format to the
file jobname.fig. Since this file is an ASCII file, we can manually add additional information such as the
refractive indices corresponding to the various layers of the stack we have represented by polygons and the
wavelength of the incident light. By processing the filejobname.figwith anAWK2 script, we generate the
Sepran blocks of the general input filejobname.input. The vertices and edges of the polygons are coupled
to the points and curves of the mesh description. The number of elements per curve is calculated from the
wave length and the refractive indices. The regions formed by the polygons are defined as surfaces using
the submesh generator general with triangular elements (GENERAL3). To complete the input file we use
the non-Sepran part from the input file generated by Bicycle for the same geometry. After some minor
modifications to this non-Sepran part we then have a general input file in which the interfaces of the stack
are exactly described.

9.5 Problems encountered

The performance of numerical programs such as Cyclop and the thermal model not only depend on the
implementation but also on the computer systems on which these programs are run. Depending on the
fineness of the mesh and the sampling rate of the spot, Cyclop jobs require a computer system with a large
memory to store the large matrix and the right-hand side vector of the discretized linear system, the solution
vectors and derived quantity vectors.

The geometries such as that of a BD-disk recording stack are relatively complex and therefore a relative
large memory is requires. At first, the Cyclop program constantly failed to run, even though the computer
to which the job was submitted had enough memory available. This turned out to be caused by the limited
stack size of the computer systems that were used.

The extension of the two-dimensional quasi-periodic fields to a three-dimensional region and the mapping
of the meshes required features that probably where hardly ever (or never) tested before. At various occa-
sions when Sepran errors or warnings occurred, the problem at hand could be solved by contacting Sepra.
Unfortunately, in several cases a lot of time had to be spent on debugging because no apparent reason could
be found for the crashing of the software. As a result of this debugging some bugs and limitations in Sepran
have been discovered.

1A graphical tool for the X Windows System.
2A pattern-directed scanning and processing language.
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Chapter 10

Numerical simulations

When running numerical simulations it is important to validate the results of these simulations and consider
their accuracy. In the first section we will discuss the precision of the numerical solution of Cyclop for a
geometry consisting of homogeneous plane regions by comparing this solution with the analytical solution.
In Section10.2 results of the extension of the two-dimensional Cyclop data on the unit cell to a three-
dimensional region are discussed. The extended absorbed energy will be mapped to the three-dimensional
mesh of the thermal model to replace the previously analytically given heat source. The thermal model
with the integrated Cyclop heat source is validated for a plane geometry by comparing the results of the
simulation with the results of the Media program. In Section10.3the validation of the integrated thermal
model is discussed. In the two concluding sections of this chapter we will successively consider a stationary
and a moving spot for a Blu-ray disk recording stack. In nearly all of the figures in this chapter arbitrary
units are used.

10.1 Accuracy of the Cyclop solution

In Section7.3we remarked that in case the geometry of the unit cell consists of flat homogeneous regions
with interfaces parallel to the (x,y)-plane, an analytical solution of the BVP can be calculated. As has been
remarked in Section8.3all six components of the electromagnetic field can be analytically computed with
Cyclop when such plane geometries are considered.

To gain insight in the precision of the numerical solution, a comparison is made with the analytical solution.
Letu denote a field component of the analytical solution and letû denote the corresponding field component
of the numerical solution. The relative error between the numerical and the analytical solution is measured
by the quantity:

||u− û||2
||u||2

, (10.1)

where||u||2 is thel2-norm defined by:

||u||2 =

√√√√ N∑
i=1

(ui · u∗i )/N, (10.2)

whereN is the number of nodal points andui is the value of the field component in nodal pointi.

Let us consider an unit cell containing a geometry with flat homogeneous regions and interfaces parallel
to the (x,y)-plane with specifications as shown in Table10.1and Figure10.1. The reason for using this
geometry is that it is similar to the Blu-ray disk recording stack which we will consider in the Sections
10.3-10.5. Since the metal layer is 120nm thick, in Cyclop it can be taken to be a half space. In order to
be able to visualize field quantities in the upper part of the metal layer, we chose the thickness of this layer
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Table 10.1: The parameters, their abbreviations and values that are used for the simulations of a planar
structure.

Wavelength in vacuum λ 405nm
Period of the grating p 320nm
Index of refraction of substrate nsubs 1.6
Index of refraction of metal nmet 0.17 + 2.04i
Index of refraction of dielectric material ndie 2.28
Index of refraction of phase-change materialnpha 1.52 + 3.36i

in the unit cell to be equal to the skin depth of 30nm. The half space below the unit cell is filled with the
metal.

First we consider the accuracy of the numerical Cyclop solution for a linearly TE-polarized plane wave of
which the amplitude ofEy is 1V/m. The wavelength of the plane wave is 405nm and it is incident on the
geometry as shown in Figure10.1under an angle of 52 degrees with thez-axis, with the wave vectork in
the (x, z)-plane. In Table10.2an overview is given of the relative errors of the various components of the
total electromagnetic field for three values of the parameternelements. As has been remarked in Section
7.1.1, this parameter is used to specify the fineness of the finite element mesh of the unit cell. The higher
the value ofnelements, the finer the mesh. From Table10.2it becomes clear that the convergence of the
numerical solution to the analytical solution is quadratical innelements.

As an example we visualize the modulus ofHx of which the numerical solution (nelements = 40) is shown
in Figure10.2. In Figure10.3 the numerically and analytically computed modulus ofHx are shown for
nelements = 20 andnelements = 40 along a vertical curve parallel to thez-axis. Fornelements = 40
the graphs of the analytical and the numerical solution coincide.

Next consider a normalized Gaussian right-hand circular polarized spot that is focused on the aforemen-
tioned plane geometry. The NA of the focussing lens is 0.85 and the wave length of the light is 405nm.
This spot will be used in Section10.3for the validation of the integrated thermal model. The spot is created
with Diffract. For the sampling of the spot, the number of points in thex- andy-direction (Nx, Ny) are
both set equal to 384. The number of grid points contained in one periodp of the gratingK = 8. Table
10.2shows the relative norms for the six field components of the electromagnetic field for this spot. For this
simulation a valuenelements = 40 is used. From the table it becomes clear that for all field components
the relative error is in the order of 1%, which is acceptable. From this points onwardsnelements = 40
will be used in the Cyclop simulations.

Table 10.2: Relative errors of the six field components of the electromagnetic field for a single incident plane
wave and for a Gaussian spot as explained in this section. For those field components of the TE-polarized
plane wave that are theoretically equal to zero, no relative error is given since the numerical values of these
field components are of the order ofO(10−20).

plane wave plane wave plane wave Gaussian spot
nelements = 20 nelements = 30 nelements = 40 nelements = 40

Relative error ofEx X X X 0.345× 10−1

Relative error ofHx 0.267× 10−1 0.121× 10−1 0.685× 10−2 0.398× 10−1

Relative error ofEy 0.267× 10−1 0.120× 10−1 0.674× 10−2 0.223× 10−1

Relative error ofHy X X X 0.452× 10−1

Relative error ofEz X X X 0.798× 10−2

Relative error ofHz 0.271× 10−1 0.123× 10−1 0.695× 10−2 0.918× 10−2
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Figure 10.1: An overview of the dimensions of the geometry of the planar structure (i.e. the unit cell)
used in the simulations. On top of the upper dielectric layer we consider the half-space to be filled with a
substrate. The half-space below the unit cell is filled with metal. The geometry is translation invariant in
they-direction.
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Figure 10.2: The numerically computed modulus of theHx component of the TE-polarized plane wave
incident on the planar geometry as described in this section. For the generation of the meshnelements is
set to 40.

10.2 The extension of the Cyclop data

We will now consider the extension of the Cyclop solution from the two-dimensional unit cell (i.e. the
main cell) to a three-dimensional region as discussed in Chapter8. The total number of expanded cells
in the x-directionNp is chosen equal to 3 and the total number of clusters in they-directionNc = 59.
Considering the symmetry of the spots that we will use later on, it is convenient to choose the dimensions
of the extended region inx- andy-direction to be equal. For the distance between two successive clusters
∆c it follows that∆c = 3p/(Nc − 1), wherep is the period length (inx-direction) of the main cell (and
thus of all expanded cells of the extension).

From the extended total electromagnetic field various real quantities can be derived such as the modulus
and phase of a field component and the absorbed energy. These quantities are visualized with the Amira
program. The dimensions of the rectangular grid on which each expanded cell is mapped are taken as
Ncx = 50 andNcz = 75. Since the grid distance of the Amira mesh iny-direction is chosen to be equal to
∆c, the three-dimensional Amira mesh will contain148× 59× 75 grid points. In all Amira visualizations
the period widthp will be normalized.

Let us now consider the Cyclop extension for the incident plane wave from the previous section to give
a first impression of a visualization in Amira. Once again we choose the (numerical) modulus of theHx
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Figure 10.3: Plots of the modulus ofHx along a vertical curve parallel to thez-axis. The left graph shows
for nelements = 20 the analytical (dashed line) and numerical values. The right graph shows these values
for nelements = 40 (white dashed line represents the analytical solution).

component of the total electromagnetic field as our quantity of interest. In Figure10.4the extension of this
quantity is shown. Unfortunately the color scheme used in the Amira plots can not be chosen equal to the
one used in the plots made with Sepran. Figure10.5shows the phase ofHx for the same geometry. Both
figures give a good indication of the continuity of the extended data.

Now let us once again consider the Gaussian spot that is focused on the planar geometry from the previous
section. For the extension we choose to visualize the modulus and phase of theEy component of the total
electromagnetic field. A two-dimensional plot of the modulus ofEy in the main cell is shown in Figure
10.6. It can be seen that only part of the spot is present in the main cell. In Figure10.7intersections parallel
to the planesx = constant andy = constant are shown of the modulus of the extension ofEy. The left
intersection parallel to they-axis shows the layers of the geometry. The intersections are positioned such
that the region bounded by these intersections corresponds to the main cell (compare with Figure10.6).

Figure10.8shows an intersection parallel to a planez = constant through the lower maximum visible in
Figure10.7. The figure clearly shows the continuity of the extended field. In Figure10.9an intersection
through the upper maximum visible in Figure10.7is shown. The field values have been scaled such that the
highest elevation level corresponds to the highest value of the field. The shape of the graph has the distinct
form of a Gaussian distribution. In Figures10.7-10.9the darkest blue corresponds to approximately 0V/m
and the darkest red to the maximum field value. The phase of the extendedEy is shown in Figure10.1. A
phase jump can be seen from−π (white) toπ (yellow) in the upper dielectric layer.

Figures10.11and 10.12show the total electromagnetic energy densityw and the absorbed energyW ,
respectively. The only layer in which absorption can clearly be seen is the phase-change layer. The absorbed
energy is Gaussian distributed. There is also a small amount of energy absorption at the top of the metal
layer, which is t+oo less to be visible in the figure.
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Figure 10.4: The modulus ofHx of the TE-polarized plane wave that is incident on a planar geometry as
described in the previous section. TE-polarized means that the magnetic field is parallel to the x-axis. The
wave vectork lies in the (x, z)-plane and makes an angle of 52 degrees with thez-axis. The plane aty = 1.5
shows the layers of the geometry (see Figure10.1). The darkest blue corresponds to approximately 0A/m
and the darkest red corresponds to the maximum field value.

Figure 10.5: The phase ofHx of the TE-polarized plane wave that is incident on a planar geometry as
described in the previous section. The wave vectork lies in the (x, z)-plane and makes an angle of 52
degrees with thez-axis. The plane aty = 1.5 shows the layers of the geometry (see Figure10.1). White
corresponds to−π and yellow toπ.
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Figure 10.6: The modulus ofEy in the main cell for the right-hand circular Gaussian spot that is focused
on center of the planar geometry, as described in the previous section.

Figure 10.7: The modulus ofEy for the right-hand circular Gaussian spot that is focused on the center of the
planar geometry, as described in the previous section. This geometry is visualized by the plane atx = 0.5.
The darkest blue corresponds to approximately 0V/m and the darkest red to the maximum field value.
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Figure 10.8: The modulus ofEy for the Gaussian spot in a planez = constant through the bottom
maximum as visible in Figures10.6and10.7. The darkest blue corresponds to approximately 0V/m and
the darkest red to maximum field value.
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Figure 10.9: The modulus ofEy for the Gaussian spot a planez = constant through the top maximum
as visible in Figures10.6and10.7. The field values have been scaled such that the highest elevation level
corresponds to the highest value of the field. The darkest blue corresponds to approximately 0V/m and the
darkest red to the maximum field value.

Figure 10.10: The phase ofEy for the Gaussian spot that is focused on the planar geometry, as described
in the previous section. The plane aty = 1.5 shows the layers of the geometry (see Figure10.1). White
corresponds to−π and yellow corresponds toπ.
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Figure 10.11: The total electromagnetic energy density for the Gaussian spot. The plane aty = 1.5 shows
the layers of the geometry (see Figure10.1). The darkest blue represents an energy level of approximately
0 J/m3 and the darkest red represents the maximum energy level.

Figure 10.12: The absorbed energy for the Gaussian spot that is focused on the planar geometry, as de-
scribed in the previous section. The plane aty = 1.5 shows the layers of the geometry (see Figure10.1).
The darkest blue represents an energy level of approximately 0J/m3 and the darkest red represents the
maximum energy level.
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Figure 10.13: The planar geometry used to validate the integrated thermal model. The bounded box shows
the position of the main cell (see Figure10.1). The geometry is translation invariant in they-direction.

10.3 Validation of the integrated thermal model

The heat source that is obtained rigorously by Cyclop has been integrated in the thermal model as explained
in Section9.3. In this section we will validate this integrated thermal model by comparing the values of the
temperature distribution att = 1 ns and att = 10 ns with values computed by Media for a planar geometry.
The geometry that is used for the validation is shown in Figure10.13. The geometry is translation invariant
in they-direction. The dimensions of the thermal computational box areLtx = 2 µm, Lty = 1.8 µm and
Ltz = 1.315 µm. For the creation of the thermal mesh, the number of nodal point inx-, y- andz-direction
are chosen to be as 50, 40 and 38, respectively. The numerical values of the thermal and optical parameters
are listed in Table10.3.

For the validation the normalized right-hand circular polarized Gaussian spot as specified in Section10.1is
used. The spot is focused on the center of the geometry (the optical axis coincides with thez-axis) and is
stationary (i.e.v = 0). It is switched on for a time of 100ns at constant level. Subsequently, in all thermal
simulations the initial temperature is set to 0 in the whole computational box.

In Figures10.14and10.15the extended absorbed energy is shown (see also Figure10.12) integrated into
the thermal mesh (i.e. att = 0). Next, we calculate the temperature distribution betweent = 0 ns
when the spot is turned on and att = 100 ns when the spot is turned off. In Figures10.16- 10.18the
temperature distribution att = 1 ns, t = 10 ns, t = 50 ns andt = 99 ns is shown in intersections in a
planez = constant halfway in the phase-change layer, the planex = 0 and the planey = 0, respectively.
The highest temperatures (yellow) and gradients can be seen in the metal in the center of the spot.

In Figure 10.19shows cross sections of the temperatureT (x, 0, zhalf ), T (0, y, zhalf ) andT (0, 0, z) at
t = 1 ns andt = 10 ns, wherez = zhalf is the plane through the center of the phase-change layer. Notice
the symmetry of the Figures10.19(a)-10.19(d).

Table 10.3: The numerical values of the indices of refractionn, heat conductivityκ and the specific heat
Cp of the materials that are used in the simulations. The wave lengthλ in air is405 nm.

Index of refractionn κ [W/m/ ◦C] Cp [J/kg/ ◦C]
Substrate 1.6 0.22 1.5
Metal (aluminium) 0.17 + 2.04i 100 2.45
Dielectric material 2.28 0.7 2.05
Phase-change material 1.52 + 3.36i 0.5 1.3
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In order to validate the results of the integrated thermal model we compare the output with corresponding
Media results. The normalized temperatureT (x, 0, zhalf ) for 0 ≤ x ≤ 1000 nm for t = 1 ns and
t = 10 ns as computed by the integrated thermal model and Media are plotted in Figure10.20. The
temperature distribution att = 1 ns as computed by the thermal model and by Media match. After10 ns
the graph for the integrated thermal model lies clearly higher than that for the Media program. So far, no
explanation has been found for this difference.
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Figure 10.14: The absorbed energy att = 0 integrated into the thermal mesh for the circular polarized
Gaussian spot that is focused on the center of the planar geometry as described in this section. The upper
figure shows a contour plot of the absorbed energy in the planey = 0 and the spot is incident from the left.
The bottom figure shows a contour plot of the absorbed energy in the planex = 0. Here the spot is incident
from below.
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Figure 10.15: A contour plot of the absorbed energy in a planez = constant halfway in the phase-change
layer immediately after the beginning of the illumination.
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Figure 10.16: Contour plots of the temperature distribution in a planez = constant halfway in the phase-
change layer att = 1 ns (a), t = 10 ns (b), t = 50 ns (c) andt = 99 ns (d).
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Figure 10.17: Contour plots of the temperature distribution in the planex = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is incident from the left.
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Figure 10.18: Contour plots of the temperature distribution in the planey = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is incident from below.
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Figure 10.19: Cross sections of the temperatureT (x, 0, zhalf ), T (0, y, zhalf ) andT (0, 0, z) at t = 1 ns,
(a, c, e) and att = 10 ns, (b, d, f). The planez = zhalf is the plane halfway in the phase-change layer.
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Figure 10.20: The normalized temperature distribution for0 ≤ x ≤ 1 µm, y = 0 andz = zhalf at t = 1 ns
and att = 10 ns as computed by Media and the integrated thermal model.
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Figure 10.21: One period of the grooved geometry for a BD-disk recording stack. The geometry is transla-
tion invariant in they-direction and the period widthp is 320 nm.
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10.4 Stationary spots for a BD-disk recording stack

In this section will consider a normalized predominantly TE-polarized spot and a normalized predominantly
TM-polarized spot that are focused on the center of thermal computational box on a groove of a BD-disk
recording stack. The optical axis coincides with thez-axis. Both spots are created with Diffract. For
the sampling of the spots, the number of points inx- andy-direction (Nx, Ny) are both set equal to 384.
The number of grid points contained in one periodp of the gratingK = 8. The spots are stationary, i.e.
v = 0 m/s.

One period of the geometry of the grooved BD-disk recording stack is shown in Figure10.21. The optical
and thermal properties of the materials are the same as for the planar geometry from the previous sections
and are listed in Table10.3. For the creation of the thermal mesh, the number of nodal point inx-, y- and
z-direction are chosen to be as 60, 40 and 38, respectively.

The groove depth of 40nm has purposely been chosen larger than the actual groove depth of the BD-disk
format (≈ 23 nm) in order to make the differences between the two polarizations more distinct. The same
argument applies to the slope angle (≈ 63 degrees with thez-axis instead of≈ 30 degrees for a BD-disk)
and the thermal properties that are also not equal to the values of the BD-disk standard.
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Figure 10.22: Absorbed energy for a normalized predominantly TE-polarized (top figure) and a normalized
predominantly TM-polarized spot (bottom figure), focused on the center of the geometry on a groove. See
also Figure10.23. The plane aty = 1.5 shows the grooved geometry. In both figures the darkest blue
corresponds to approximately 0W/m3. The darkest red corresponds to the maximum energy level.

80 c©Philips Electronics Nederland BV 2002



Company Confidential till 200210 000/99

Figure 10.23: Absorbed energy for a normalized predominantly TE-polarized (top figure) and a normalized
predominantly TM-polarized spot (bottom figure), focused on the center of the geometry on a groove. The
plane aty = 1.5 shows the grooved geometry. In both figures the darkest blue corresponds to approximately
0 W/m3. The darkest red corresponds to the maximum energy level.
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Figure 10.24: Total electromagnetic energy density for a normalized predominantly TE-polarized (top fig-
ure) and a normalized predominantly TM-polarized spot (bottom figure), focused on the center of the ge-
ometry on a groove. The plane aty = 1.5 shows the grooved geometry. In both figures the darkest blue
corresponds to approximately 0J/m3. The darkest red corresponds to the maximum energy level.
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Figure 10.25: Contour plots of the temperature distribution in a planez = constant halfway in the phase-
change layer in the groove att = 1 ns (a), t = 10 ns (b), t = 50 ns (c) andt = 99 ns (d). The spot is
predominantly TM-polarized.
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Figure 10.26: Contour plots of the temperature distribution in the planex = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TM-polarized.

84 c©Philips Electronics Nederland BV 2002



Company Confidential till 200210 000/99

scalex:      7.500

scaley:      7.500

time t:      0.001

LEVELS

 0.000E+00

 3.833E-07

 7.667E-07

 1.150E-06

 1.533E-06

 1.917E-06

 2.300E-06

 2.683E-06

 3.067E-06

 3.450E-06

 3.833E-06

 4.217E-06

 4.600E-06

 4.983E-06

 5.367E-06

 5.750E-06

 6.133E-06

 6.517E-06

 6.900E-06

Contour levels of temperature_z0                

scalex:      7.500

scaley:      7.500

time t:      0.010

LEVELS

 0.000E+00

 3.833E-07

 7.667E-07

 1.150E-06

 1.533E-06

 1.917E-06

 2.300E-06

 2.683E-06

 3.067E-06

 3.450E-06

 3.833E-06

 4.217E-06

 4.600E-06

 4.983E-06

 5.367E-06

 5.750E-06

 6.133E-06

 6.517E-06

 6.900E-06

Contour levels of temperature_z0                

(a) (b)

scalex:      7.500

scaley:      7.500

time t:      0.050

LEVELS

 0.000E+00

 3.833E-07

 7.667E-07

 1.150E-06

 1.533E-06

 1.917E-06

 2.300E-06

 2.683E-06

 3.067E-06

 3.450E-06

 3.833E-06

 4.217E-06

 4.600E-06

 4.983E-06

 5.367E-06

 5.750E-06

 6.133E-06

 6.517E-06

 6.900E-06

Contour levels of temperature_z0                

scalex:      7.500

scaley:      7.500

time t:      0.099

LEVELS

 0.000E+00

 3.833E-07

 7.667E-07

 1.150E-06

 1.533E-06

 1.917E-06

 2.300E-06

 2.683E-06

 3.067E-06

 3.450E-06

 3.833E-06

 4.217E-06

 4.600E-06

 4.983E-06

 5.367E-06

 5.750E-06

 6.133E-06

 6.517E-06

 6.900E-06

Contour levels of temperature_z0                

(c) (d)

Figure 10.27: Contour plots of the temperature distribution in the planey = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TM-polarized.
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Figure 10.28: Contour plots of the temperature distribution in a planez = constant halfway in the phase-
change layer in the groove att = 1 ns (a), t = 10 ns (b), t = 50 ns (c) andt = 99 ns (d). The spot is
predominantly TE-polarized.
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Figure 10.29: Contour plots of the temperature distribution in the planex = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TE-polarized.
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Figure 10.30: Contour plots of the temperature distribution in the planey = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TE-polarized.
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10.5 Moving spots for a BD-stack

Let us now once again consider the predominantly TE- and TM-polarized spots from the previous section
that are focused on the BD recording stack. Att = 0 the extended Cyclop absorption data is mapped to
the thermal mesh such that the front cluster of the Cyclop extension (Nc = −29) coincides with the plane
y = ymin of the thermal mesh. The origin of the thermal computational box is placed in the center of the
spot att = 0. The spots move at a speedv = 9.48 m/s along the center groove of the geometry.

In Figures10.31- 10.33contour plots of the temperature distribution are shown for the predominantly
TM-polarized spot and in Figures10.34- 10.36for the predominantly TE-polarized spot.
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Figure 10.31: Contour plots of the temperature distribution in a planez = constant through the center of
the phase-change layer in the groove att = 1 ns (a), t = 10 ns (b), t = 50 ns (c) andt = 99 ns (d). The
spot is predominantly TM-polarized and moves at a speed of 9.48m/s.
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Figure 10.32: Contour plots of the temperature distribution in the planex = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TM-polarized and moves at a speed of 9.48
m/s.
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Figure 10.33: Contour plots of the temperature distribution in a planey = constant through the middle of
the computational box att = 1 ns (a), t = 10 ns (b), t = 20 ns (c), t = 50 ns (d), t = 80 ns (e) and
t = 99 ns (f). The spot is predominantly TM-polarized and moves at a speed of 9.48m/s.
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Figure 10.34: Contour plots of the temperature distribution in a planez = constant through the center of
the phase-change layer in the groove att = 1 ns (a), t = 10 ns (b), t = 50 ns (c) andt = 99 ns (d). The
spot is predominantly TE-polarized and moves at a speed of 9.48m/s.
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Figure 10.35: Contour plots of the temperature distribution in the planex = 0 at t = 1 ns (a), t = 10 ns
(b), t = 50 ns (c) andt = 99 ns (d). The spot is predominantly TE-polarized and moves at a speed of 9.48
m/s.
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Figure 10.36: Contour plots of the temperature distribution in a planey = constant through the middle of
the computational box att = 1 ns (a), t = 10 ns (b), t = 20 ns (c), t = 50 ns (d), t = 80 ns (e) and
t = 99 ns (f). The spot is predominantly TE-polarized and moves at a speed of 9.48m/s.
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Chapter 11

Conclusions and recommendations

As a result of the study that has been described in the previous chapters, we can draw the following conclu-
sions.

About the Cyclop program:

• In case the geometry in the unit cell consists of flat homogeneous regions with interfaces parallel
to the (x,y)-plane, an analytical solution of the BVP can be calculated. In Cyclop the parame-
ter nelements in the input file determines the fineness of the finite element mesh of the unit cell.
The convergence of the numerical solution to the analytical solution is quadratical in the parameter
nelements.

• The extension of the Cyclop solution from the two-dimensional unit cell to a larger three-dimensional
region that is of interest for the thermal model has been successfully implemented. These extended
field quantities are visualized in Amira.

About the integration of Cyclop and the thermal model:

• The mapping of the extended absorbed energy as computed by Cyclop to the three-dimensional ther-
mal mesh is completed.

• The integrated thermal model has been validated for a normalized right-hand circular polarized spot
that was focused on the center of the thermal computational box containing a planar geometry, by
comparing the values of the temperature distribution att = 1 ns and att = 10 ns with values
computed by Media. Att = 1 ns the results of both models matched. The results att = 10 ns turned
out to be slightly different, for which no explanation has been found so far.

• The integrated codes can be used as a tool to accurately simulate and research the following phenom-
ena:

– The effects of the polarization of the laser spot.

– The effects of the spot size and the spot shape.

– The differences between land-recording and groove-recording.

– The effects of variation of the track pitch, the groove depth, the groove angle and the groove
geometry.

– The effects of varying the thermal and optical properties of the materials.

The results of such simulations will give insight in the optimization of groove geometry, stack design
and the effects of for instance optical and thermal cross-track cross talk.

Recommendations for further research:
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• In order to find an explanation for the differences in the temperature distribution att > 1 ns between
the integrated thermal model and the Media program, further tests are needed.

• The geometries that were used for testing the Cyclop extension and the integrated thermal model are
similar but in fact not identical to existing recording stacks. It will proof useful to run simulations for
existing geometries such that the numerical results can be compared with measured values.

• The modified Cyclop program, the integrated thermal model and the newly developed Cyclop post-
processor Cycpost need to be made more robust. Furthermore, a user friendly interface should be
developed. The alternative preprocessor should be further improved and will probably make the
current Bicycle obsolete.
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