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Main Research questions

Which numerical method is best suited for solving the shallow water
equations on a GPU in terms of versatility, robustness and speedup?

Subquestions:
@ Explicit vs implicit methods
® Viability of software package solutions
© Suitability for FORTRAN /Deltares
O Possible use of GPU Tensor cores
® 32 vs 64 bit precision tradeoffs
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Literature Research questions

@ What are the SWE and which form are we going to solve?

® What discretization method exist and which is most suitable?

® Which time integration methods exist and are suitable?

® What linear solvers exist and are suitable for GPU implementation?

® What GPU architecture aspects will need to be taken into
consideration?
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What are the SWE and which form are we going to solve?
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What are the SWE and which form are we going to solve?
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Most terms are non-linear!
Full set is Parabolic, without viscosity term it becomes Hyperbolic.
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What are the SWE and which form are we going to solve?

Linearised system:
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A, B, C: 3N x 3N matrices with diagonal N x N matrices as entries.
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What are the SWE and which form are we going to solve?

Stelling & Duinmeijer:
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What discretization method exist and which is most
suitable?

* Finite differences < easiest
® Finite volumes
® Finite elements
Grid choice:
® Arakawa C-grid < best way to avoid odd-even decoupling

¢ Collocated grid
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Arakawa C-grid
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Which time integration methods exist and are suitable?

Explicit
e Euler forward <« starting point
* Runge-Kutta 4
Implicit:
® Euler backwards
¢ Crank-Nicholson
® Theta method < suggested by Stelling & Duinmeijer
® Alternating direction implicit
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What GPU architecture aspects will need to be taken into
consideration?

Nvidia vs AMD?:
°* AMD: Cheap High-bandwidth memory, cheap double precision
* Nvidia: Industry standard CUDA platform
® OpenCL is an Open Standard and easily portable but less mature
¢ Computations will be done on a single Nvidia 2080 Ti GPU
® FP32 performance: 13.45 Teraflops
* FP64 performance: 420 Gflops (1:32)

® Expensive Scientific Computing cards have better double precision,
error correcting memory and more memory bandwidth.
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What GPU architecture aspects will need to be taken into
consideration?

* An Nvidia GPU consists of Streaming multiprocessors that execute
blocks of 32 parallel threads sequentially
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What GPU architecture aspects will need to be taken into
consideration?

Four main types of memory are available to a GPU program:
® registers: very fast on-chip memory accessible to a single thread

® Shared memory: very fast on-chip memory accessible to all threads
in a block

® Device memory: slower memory accessible to all threads in a
program

® Host memory: very slow memory accessible to GPU and CPU

GPU computations are often memory-bound so memory management is
key.
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What linear solvers exist and are suitable for GPU
implementation?

* Basic iterative methods: (relaxed) Jacobi & Gauss-Seidel

Direct solution methods; LU/Cholesky decomposition

Preconditioned Conjugate gradient
Multigrid
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What linear solvers exist and are suitable for GPU
implementation?

® Conjugate gradient is a clear winner as the Stelling & Duinmeijer
scheme is SPD.

® Main focus is likely to find an effective preconditioner for CG.

® Other methods mentioned are good options for a preconditioner.
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Possible use of Tensor cores

® Tensor cores are extremely efficient at performing dense
low-precision matrix-matrix multiplication.

® Most linear solvers perform sparse matrix-vector multiplication
which is not suitable

* LU/Cholesky factorization can formulated to contain matrix-matrix
multiplications
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Test problems

Two proposed problems:

@ Closed (zero-flux boundary) square domain with a non-uniform
initial water level

@ Closed square domain with linearly increasing bathymetry and a
Dirichlet b.c.
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Conclusion

We have successfully defined the scope of the project:
e Stelling & Duinmeijer scheme
® Finite differences discretization on staggered structured grid
® Program will be built in CUDA and run on a 2080 Ti GPU
* Explicit time integration using Euler forward
® Implicit time integration using theta method
® Solve implicit linear system using Conjugate Gradient
® Find an appropriate preconditioner for Conjugate Gradient
® Test solver packages for comparison
® Test additional methods
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