Suitability of Shallow-Water solving methods for GPU
acceleration

Floris Buwalda

Delft University of Technology

May 13, 2019

3
TUDelft

Main Research questions

Which numerical method is best suited for solving the shallow water
equations on a GPU in terms of versatility, robustness and speedup?

Subquestions:
@ Explicit vs implicit methods
® Viability of software package solutions
© Suitability for FORTRAN /Deltares
O Possible use of GPU Tensor cores
® 32 vs 64 bit precision tradeoffs

z
TUDelft 2/19

Literature Research questions

@ What are the SWE and which form are we going to solve?

® What discretization method exist and which is most suitable?

® Which time integration methods exist and are suitable?

® What linear solvers exist and are suitable for GPU implementation?

® What GPU architecture aspects will need to be taken into
consideration?

5
TUDelft 3/19

What are the SWE and which form are we going to solve?

OH 0 0

— =—— (Huy) - =—(H

8t 8X(U) 8_)/(uy)

du Ou, u M gulul (P P
ot ax X oy T Eax T ceme ax2 9y
Ouy _ Ouy %u OH guy||ull +V(32uy +a2“y)

ot ox X oy 8%, T e x2 | By?

2
TUDelft 4/19

What are the SWE and which form are we going to solve?

OH
Gt = (Hud = 5 (Hu)

%__%u Oux, JOH gudul (P Pu
ot ox oy ” Eox ~ C2H2 Ox2 Oy?
duy auy 8uy OH guyul| . V(a%y N 82uy)

ot . ox X oy T8, T C2h2 ax2 | ay?

Most terms are non-linear!
Full set is Parabolic, without viscosity term it becomes Hyperbolic.

2
TUDelft 5/19

What are the SWE and which form are we going to solve?

Linearised system:

—=A—+B—+C
ot “ox oy M
Uy U 0 g u 0 0 c 00
u=|fu,| A=[0 U: O B=10 U, g C=10 c O
H Z 0 U o Z U, 0 0O

A, B, C: 3N x 3N matrices with diagonal N x N matrices as entries.

2
TUDelft 6/ 19

What are the SWE and which form are we going to solve?

Stelling & Duinmeijer:

Oupi1 Oupie Oupie
=A B Cu, D
ot ox dy U
wl g
Ux 0 0 g 0 0 O Cf
u=|u,| A=[0 0 O B=|0 0 g C=]| o Cf”"f;;H
H H, 0 0 0 H, 0 0 0o 0
oul n dul
(u)" 3+ (wy)" 55
D€R3NX1= nau

6 n
O(u;)"%;

(us

<3
TUDelft 7/19

What discretization method exist and which is most
suitable?

* Finite differences < easiest
® Finite volumes
® Finite elements
Grid choice:
® Arakawa C-grid < best way to avoid odd-even decoupling

¢ Collocated grid

1
TUDelft 8/ 19

Arakawa C-grid

j+19 e ¢—e—9 o ¢
5 Mass
J+ %o — ¢ o ¢ '
. h,z
J o o g U ®
Momentum-x
—o ¢ s ®
v

Momentum-y

5
TUDelft 9/ 19

Which time integration methods exist and are suitable?

Explicit
e Euler forward <« starting point
* Runge-Kutta 4
Implicit:
® Euler backwards
¢ Crank-Nicholson
® Theta method < suggested by Stelling & Duinmeijer
® Alternating direction implicit

z
TUDelft 10 / 19

What GPU architecture aspects will need to be taken into
consideration?

Nvidia vs AMD?:
°* AMD: Cheap High-bandwidth memory, cheap double precision
* Nvidia: Industry standard CUDA platform
® OpenCL is an Open Standard and easily portable but less mature
¢ Computations will be done on a single Nvidia 2080 Ti GPU
® FP32 performance: 13.45 Teraflops
* FP64 performance: 420 Gflops (1:32)

® Expensive Scientific Computing cards have better double precision,
error correcting memory and more memory bandwidth.

5
TUDelft 11 /19

What GPU architecture aspects will need to be taken into
consideration?

* An Nvidia GPU consists of Streaming multiprocessors that execute
blocks of 32 parallel threads sequentially

5
TUDelft 12 /19

awn

—

awn

TUDelft

3
W

What GPU architecture aspects will need to be taken into
consideration?

Four main types of memory are available to a GPU program:
® registers: very fast on-chip memory accessible to a single thread

® Shared memory: very fast on-chip memory accessible to all threads
in a block

® Device memory: slower memory accessible to all threads in a
program

® Host memory: very slow memory accessible to GPU and CPU

GPU computations are often memory-bound so memory management is
key.

%
TUDelft 14 /19

What linear solvers exist and are suitable for GPU
implementation?

* Basic iterative methods: (relaxed) Jacobi & Gauss-Seidel

Direct solution methods; LU/Cholesky decomposition

Preconditioned Conjugate gradient
Multigrid

<3
TUDelft 15 / 19

What linear solvers exist and are suitable for GPU
implementation?

® Conjugate gradient is a clear winner as the Stelling & Duinmeijer
scheme is SPD.

® Main focus is likely to find an effective preconditioner for CG.

® Other methods mentioned are good options for a preconditioner.

z
TUDelft 16 / 19

Possible use of Tensor cores

® Tensor cores are extremely efficient at performing dense
low-precision matrix-matrix multiplication.

® Most linear solvers perform sparse matrix-vector multiplication
which is not suitable

* LU/Cholesky factorization can formulated to contain matrix-matrix
multiplications

z
TUDelft 17 / 19

Test problems

Two proposed problems:

@ Closed (zero-flux boundary) square domain with a non-uniform
initial water level

@ Closed square domain with linearly increasing bathymetry and a
Dirichlet b.c.

z
TUDelft 18 / 19

Conclusion

We have successfully defined the scope of the project:
e Stelling & Duinmeijer scheme
® Finite differences discretization on staggered structured grid
® Program will be built in CUDA and run on a 2080 Ti GPU
* Explicit time integration using Euler forward
® Implicit time integration using theta method
® Solve implicit linear system using Conjugate Gradient
® Find an appropriate preconditioner for Conjugate Gradient
® Test solver packages for comparison
® Test additional methods

i3
TUDelft 19 / 19

