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1 Introduction

1.1 Overview

Scientific computing and applied mathematics enable the exploration of and,
sometimes even, the simplification of complex systems through various opti-
mized modeling and simulation methods. These fields create and utilize com-
putational resources to do so. Many problems, however, are still unsolvable
or very difficult to solve with current well-established methods – be it algo-
rithms or computers. Quantum computers were theorized and are now being
realized to extend computational abilities. Though commercially available and
widely researched, quantum computers today are still more proof-of-concept
than ”universally” applicable tools. A major part of the problem is these sys-
tems are riddled with noise, hence the phrase noisy intermediate scale quantum
(NISQ) devices is commonly used to refer to current day devices. There are
many approaches to mitigating the effects of noise in quantum systems from
both hardware and software perspectives. This work focuses on optimizing the
device hardware by combing aspects of two already well-explored systems –
superconducting quantum integrated circuits and topological insulators.

The former are relatively easy to fabricate and have become one of the main
focuses of today’s industry, including competitive involvement from IBM and
Google [1, 2]. The heart of superconducting quantum circuits is found in two
circuit elements: the quantum bit (qubit) and the resonator. The qubit man-
ages quantum information processing. The resonator is a simple inductor and
capacitor (LC) in parallel and is a well understood classical circuit element.
Resonators play a key role in this proposed research. In contrast, topological
quantum systems are incredibly difficult to fabricate, having only recently been
demonstrated for the first time by Microsoft [3]. In theory, however, topological
insulators promise a strong shield against noise across the device [4]. By leverag-
ing the simplicity and ease of simulating classical LC resonators and combining
this with the noise-protection introduced in topological systems, this work will
develop a model supporting how such a hybrid hardware could process and
protect quantum information [5].

The end goal is to understand how a two-dimensional array of resonators
could behave as a qubit when demonstrating the topological property known as
edge modes (see Figure 1) [5]. This will be done by considering how to optimize
these edge modes such that there is enough control of the circuit to run single
qubit gates. Understanding how to control these modes, though, requires a
familiarity with the theory behind quantum integrated circuits, circuit quantum
electrodynamics (CQED), as well as the importance of energy band gaps and
symmetries in topological systems. After an introduction to these topics, an
overview of experimental evidence of edge modes on pendula (the mechanical
equivalent to LC resonators) is presented as motivation for how to demonstrate
edge modes in classical resonator systems [6]. Finally, this project’s goal is
addressed in more detail. Prior to any of the particularities of this proposed
work, though, it is useful to become familiar with some standard notation,
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vocabulary, and visualization methods of quantum computing.

Figure 1: A sketch of the proposed hardware. A two-dimensional array of
resonators, which is designed in such a way as to demonstrate topological edge
modes, is attached to two control qubits. The two edge modes of the array act
as ground and excited states, causing the array to behave like a qubit itself [5].
Image is from Greplová (2021) [5].

1.2 Bra-Ket/Dirac Notation

Quantummechanics is, in its mathematical essence, an elegant discussion around
linear algebra. Quantum states are represented by vectors and operators by ma-
trices. Often times these states and operators are commonly found throughout
many different quantum systems, so rather then re-write the lengthy linear al-
gebraic representation, the bra-ket notation is used. This is also known as Dirac
notation. In this a vector is written as a ket, shown as

0⃗ = |0⟩ =
[
1
0

]
(1)

This state is known as the ground state of a qubit, whereas

|1⟩ =
[
0
1

]
(2)

is the excited state [7]. Note that a qubit only has two energy states of interest
– |0⟩ and |1⟩ – in the same way that its classical counterpart, the bit, only
considers 0 and 1; if more states are accessible then it is no longer a qubit,
e.g. a qutrit actively considers gates on |0⟩, |1⟩, and |2⟩ [7]. When discussing
the superconducting qubit called a transmon, as in section 2.3, however, the |2⟩
state is included in some calculations as the energetic boundary whose condition
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must be considered to understand the two lower energetic states of interest. The
conjugate transpose, or Hermitian conjugate, of a ket is known as a bra, or

0⃗H = 0⃗∗ = 0⃗† = ⟨0| =
[
1 0

]
(3)

A bra and ket put immediately next to each other represent an inner product
[7]. It is easy to see, then, that ⟨x|x⟩ = 1 for any state |x⟩ and that ⟨x|y⟩ = 0 for
any orthogonal states |x⟩ and |y⟩. Though it may seem superfluous to recreate
a notation for already well-established linear algebraic methods, this notation
greatly simplifies equations when considering larger systems beyond a single
qubit. For example, given a two qubit system of qubits a and b, the state of
the whole system could be written as the tensor product of the two respective
states [7].

|a⟩ ⊗ |b⟩ = |a⟩ |b⟩ = |ab⟩ (4)

Operators, of which quantum gates are a subset, are often denoted with a hat
and represent matrices. One example of a quantum gate acting on a single qubit
is the X gate

X̂ = σx =

[
0 1
1 0

]
(5)

which will flip the qubit it acts on from |0⟩ to |1⟩ and vise versa. This is also
known as the Pauli matrix σx and is known in classical computing as the NOT
gate [7]. As quantum gates have common labels (e.g. X, Y, Z, H, CNOT, etc.),
the hat notation highlighting their responsibility as operators is dropped. The
X gate is also defined as a rotation of π about the x-axis of the Bloch sphere,
which is useful tool for visualising the evolution of a single qubit’s state.

1.3 Bloch Sphere and Single Qubit Gates

If one drew a connection between the two possible values of a classical bit, it
would be a line as there are only two possibilities: 0 or 1. Though a qubit can
be 0 or 1 (written in Dirac notation that is |0⟩ or |1⟩), it also can be what is
called a superposition of the two states, or rather some combination of the two

|ψ⟩ = α |0⟩+ β |1⟩ (6)

where α, β ∈ C. The tricky thing with quantum information, however, is that
it cannot be directly observed. If one were to measure |ψ⟩ in Equation 6, one
would get the result |0⟩ with probability of |α|2 or |1⟩ with probability of |β|2
[7]. The probabilities of measurement must sum to 1, |α|2 + |β|2 = 1, implying
that |ψ⟩ is normalized, much like a unit vector [7]. When expressing the state in
terms of spherical coordinates, any global phase is ignored as it has no physical
significance [7].

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (7)

θ is the angle from the z-axis and φ is the angle from the x-axis. With this, it is
easy to see that qubit state |ψ⟩ can be anywhere on the Bloch sphere’s surface
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Figure 2: The Bloch sphere helps visualize how the state of a single qubit
evolves. The north pole is the ground state and the south pole is the excited
state. Where a classical bit could only exist on these poles, the qubit’s state,
|ψ⟩, can be anywhere on the the surface of the sphere. Image is from Nielson
and Chuang (2010) [7].

(see Figure 2). This is a very easy way to see how single qubit gates affect a
state. Let’s revisit the example of the X gate in Equation 5 to see this clearly.

When an X gate is applied on a quantum state, the state flips about the
x-axis of the Bloch sphere. For example, if |ψ⟩ = |0⟩ to start and an X gate is
applied, then |ψ⟩ = |1⟩.

X |0⟩ =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩ (8)

Similarly, X |1⟩ = |0⟩ [7]. The Z gate is similar and is defined by it’s Pauli
matrix.

Z = σz =

[
1 0
0 −1

]
(9)

In this case, Z |0⟩ = 0 and Z |1⟩ = −1 [7]. There is also a Y gate, which
behaves in a similar fashion to the X and Z. What is even more interesting, is
the Hadamard gate, H, which is known for generating a superposition state.

H =
1√
2

[
1 1
1 −1

]
(10)

where

H |0⟩ = |0⟩+ |1⟩√
2

H |1⟩ = |0⟩ − |1⟩√
2

(11)
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Figure 3: A Hadamard gate acting on initial state |0⟩+|1⟩√
2

results in final state

|0⟩. The evolution of the state is marked by the black dot in each frame. Image
is from Nielson and Chuang (2010) [7].

These superposition states are on either end of the x-axis of the Bloch sphere.
If a Hadamard gate is run on a qubit that is already in a superposition state

directly along the x-axis, for example |0⟩+|1⟩√
2

, then the gate causes the state

to return to |0⟩, as is demonstrated in Figure 3. In this way, applying two
Hadamard gates to initial state |0⟩ results in an identical final state, i.e. H2 = I

[7]. This is in contrast to the other gates, where XX† = ZZ† = I. This touches
upon the single rule for quantum gates: they must be unitary [7].

While mapping quantum gates on the Bloch sphere is useful, it does not
explain how to actually run gates on quantum hardware. The goal of this
project is to determine a model for how to represent single qubit gates – namely
the X, Z, and H gates – on the new, proposed hardware. As the proposed
hardware is rooted in superconducting qubits, it is useful to understand the
foundational theory behind that field, namely, CQED.
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2 Circuit QED

2.1 Overview

Superconducting quantum circuits have become one of the central quantum
hardwares of today largely for the ease in fabrication and scalability. These
devices are made based on well-established lithography processes. Nonetheless,
it is still difficult to properly model and fabricate these systems, specifically
related to a particular circuit element crucial to creating a qubit: the Josephson
junction (JJ). JJs determine the frequency of a qubit and, thus, if and how
it will interact with its neighbors. This project’s proposed array of resonators
would bypass this problem. Resonators are easier to model and are more robust
against fabrication errors compared to JJs. If the proposed concept of using a
two-dimensional array of resonators as a qubit (rather than the commonly used
transmon, which contains JJs) works well, then it would be easier to simulate
and build more reliable and larger quantum systems. The motivation for how a
block of resonators could behave as a qubit is rooted in work done by Süsstrunk
and Huber (2015) and requires an understanding of topological systems [6]. This
will be addressed in the next chapter. Prior to that, though, it is important
to understand how resonators themselves work, as well as how a special type
of superconducting qubit called a transmon works and how these two elements
and their interaction can be described by the Jaynes-Cummings Hamiltonian.

2.2 Lumped Element Resonators

Figure 4: The LC resonator is comprised of an inductor, L, and capacitor,
C, in parallel. On the left-hand side, the system is expressed in terms of flux
about the inductor, charge across the capacitor, and current, I; whereas on the
right-hand side, the system is explained by a flux, ϕ, at the node north of the
capacitor and a voltage, V , across the capacitor. Both diagrams portray the
same system, but expressed with different degrees of freedom: charge and flux
on the left and right respectively. Image is from Girvin (2014) [8].
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Resonators in circuit QED are often called cavities, a term that was borrowed
from cavity QED. These circuit elements behave as harmonic oscillators and are
traditionally used to read out qubit states without probing and, thus, disturb-
ing the quantum information directly. In this project, however, resonators are
considered for a different purpose: to generate a new kind of qubit more robust
to environmental noise. Resonators can be considered protectors of quantum
information in integrated circuits. Though they typically have been used to
protect quantum information from destruction, we explore how they may also
further protect quantum information from noise.

When it comes to microwave engineering and superconducting quantum cir-
cuits, there are two common types of resonators used: lumped element res-
onators and coplanar waveguides. The former will be the focus of this project,
though exploration into the latter may prove interesting for future work.

A lumped element resonator is comprised of an inductor, L, and a capacitor,
C, in parallel (see Figure 4), forming a simple electrical LC harmonic oscillator.
The name ”lumped element” refers to the fact that the physical size is much
smaller than the associated wavelength and that the voltage and current are
relatively steady across the element [9]. The Lagrangian of such a resonator is

L =
LI2

2
− q2

2C
(12)

where q is the charge of the capacitor and I is the inductor’s current. Recalling
from charge conservation that I = q̇, which means the Lagrangian may be
rewritten as

L =
L

2
q̇2 − 1

2C
q2 (13)

Now this looks remarkably similar to the classical problem of a mass on a string;
here, instead of distance the degree of freedom is charge, rather than mass there
is inductance, and the inverse capacitance replaces the spring constant [8]. This
similarity is not only incredibly helpful for further analysis of resonators, but
will come into play again in section 3.3. Following the Euler-Lagrange equation
of motion ∂L

∂q − d
dt
∂L
∂q̇ = 0 equation 13 becomes

q̈ = − 1

LC
q = −ω2

rq (14)

where ωr = 1√
LC

is the natural frequency of the resonator [8]. ∂L
q̇ defines the

conjugate or generalized momentum [10], which, as seen in equation 13, is Lq̇
or LI, also known as the inductor’s flux, Φ [8]. The resonator’s Hamiltonian is
then expressed as

H = Φq̇ − L =
Φ2

2L
+

1

2C
q2 (15)

If, however, the flux of the node next to the capacitor, ϕ, see Figure 4, is used
as the degree of freedom instead of charge and the negative charge, Q = −q,
becomes the conjugate momentum, then the Hamiltonian may be expressed as

H = Qϕ̇− L =
1

2C
Q2 +

ϕ2

2L
(16)
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In either case, by following the canonical commutation relation, the degree of
freedom and the conjugate momentum may be expressed as operators that are
Fourier transforms of each other

[q̂, Φ̂] = ih̄ = [ϕ̂, Q̂] (17)

Now equation 16 can be expressed in terms of raising and lowering operators
[8].

â = i
1√

2Ch̄ωr
Q̂+

1

2Lh̄ωr
ϕ̂

â† = −i 1√
2Ch̄ωr

Q̂+
1

2Lh̄ωr
ϕ̂

[â, â†] = 1

(18)

Now the Hamiltonian of the resonator can be written as [8]

H =
h̄ωr
2

(a†a+ aa†) = h̄ωr(a
†a+

1

2
) (19)

Expressing the resonator Hamiltonian in terms of raising and lowering operators
will come up again when the Jaynes-Cummings Hamiltonian is discussed, which
explains the interactions between qubits and resonators.

LC resonators are often referred to as quantum harmonic oscillators as they
can be expressed by an evenly spaced (harmonic) potential energy well. This
means that the energy levels of a resonator are evenly spaced by h̄ωr. Qubits,
however, should only have two energy levels, the ground and first excited state,
as was discussed in the introduction; therefore, transmons – a commonly used
type of superconducting qubit – are anharmonic quantum oscillators, meaning
they have unevenly space energy levels. This allows access to the first two energy
levels in isolation from the rest (see Figure 5). Next, a deeper understanding of
the transmon is presented.
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Figure 5: The energy potentials for a quantum harmonic oscillator (resonator)
and transmon. The former shows energy levels evenly spaced by h̄ωr, where
ωr is the frequency of the resonator. The transmon energy levels are unevenly
spaced. They depend on the frequency associated with transitioning between
each respective energy level, e.g. the gap between the first two levels is propor-
tional to ω0→1, the frequency of the transmon transitioning from the ground
to the first excited state. Other spacings between energy levels are not propor-
tional to this same frequency, though. Image is from Hoffer (2021) [11].
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2.3 Transmon and Jaynes-Cummings Hamiltonian

Figure 6: The Cooper pair box circuit (left) is the same as the LC resonator,
but with the inductor of the resonator replaced by a Josephson junction, which
is marked by the box with an x in it. The transmon circuit (right) is similar to
the Cooper pair box, but includes a shunt capacitor, Csh, to minimize charge
noise. EJ and CJ refer to the Josepshon energy and capacitance respectively
[11, 12]. Image is from Hoffer (2021) [11].

Superconducting qubits grew out of a simple arrangement referred to as
the Cooper pair box, which looks like the LC resonator already discussed, but
with a JJ replacing the inductor (see Figure 6). “The Josephson junction is
the only known dissipationless non-linear circuit element” [12]. As previously
discussed, if one considers the simple LC resonator, as introduced in section 2.2,
with a Josephson junction replacing the inductor, then the harmonic oscillations
become non-linear, meaning that its associated energy levels are no longer evenly
spaced. Thus, if the Cooper pair box is engineered with specific capacitance and
inductance, then the energy levels can be designed in such a way where the first
two states are within frequency range of experimental interest (gigahertz) and
the higher energy bands are out of range [12]. With the first two non-linear
energy levels – the ground state, |0⟩, and first excited state, |1⟩ – accessible, this
circuit element now behaves as a physical qubit when cooled down to roughly
10mK and manipulated with microwave pulses.1

The transmon is a widely used updated version of the Cooper pair box in
that it is less sensitive to charge noise compared to its predecessor [12]. It is
characterized by the ratio of its Josephson energy, EJ , to its charging energy,
EC . The former relates to when a pair of spin-1/2 particles tunnel across the
JJ. This tunneling generates ”charge difference” between the two capacitors of

1Please note that the word “physical” is consciously included as often times when quantum
computers are discussed in terms of use cases, the size or number of qubits is described in
terms of logical qubits. A single logical qubit is made of several physical qubits along with
some error correcting code to mitigate natural, unavoidable errors that arise in the system. As
this project is considering hardware and not quantum algorithms, when qubits are mentioned
the implication is that they are physical qubits, not logical ones.
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the JJ, thus determining the qubit state [12]. Charging energy, on the other

hand, relates to the total capacitance of the transmon EC = e2

Csh+CJ
[11, 12].

Transmons have a ratio of Josephson energy to charging energy such that EJ

EC
> 4

[12]. Increasing EJ/EC decreases tunneling and the charge noise across the
junction [12]. For this reason, some researchers use EJ

EC
= 50 [11]. The bare

qubit frequency – i.e. the frequency of a single qubit in isolation, not coupled to
any other qubits or resonators – is also dependent on the Josephson and charge
energies, ωq ≈

√
8EJEC [11].

Josephson and charge energy also help describe a transmon’s rate of inter-
action with a resonator, often called the coupling, g [12].

gi,j =
√
2g(

EJ
8EC

)1/4 ⟨i| (b− b†) |j⟩ (20)

b and b† are the raising and lowering operators of the qubit, while |i⟩ and |j⟩
refer to the two qubit states of interest. If these two states are nearest neighbors,
then this expression simplifies to the following [12].

gj,j+1 = g(
√
2(j + 1)(

EJ
8EC

)1/4) (21)

Though it is nice to express the coupling between a qubit and resonator,
what is measured is actually another parameter called the dispersive shift, χ,
which is expressed in terms of the coupling, as well as the difference between
qubit and resonator frequencies, ∆ = ωij − ωr. ωij is the frequency of a qubit
shifting between states |i⟩ and |j⟩. ∆ is often called the detuning. As qubits
cannot be measured directly without destroying their quantumness, they are
attached to resonators. A resonator is then measured and if its frequency has
shifted slightly, it is indication that it is attached to a qubit. This shift marks
not only the presence of a qubit, but also which state the qubit is in and how
strongly coupled the resonator and qubit are. This shift is the dispersive shift.
If the resonator’s frequency decreases by χ then the qubit is in the ground state
whereas if it increases by χ, then the qubit is in the excited state.

χij ≡
g2ij
∆ij

(22)

Using equation 20, then this becomes

χij = 2

√
EJ
8EC

g2| ⟨i| (b− b†) |j⟩ |2

∆ij
(23)

To further simplify things, an effective dispersive shift can be defined as follows
[12].

χeff = χ01 +
χ12 + χ02

2
∝ g2

∆
(24)
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The effective dispersive shift is useful for properly expressing the effective Hamil-
tonian of the single qubit-single resonator system.

Heff =
h̄(ω01 + χ01)

2
+ h̄((ωr − χ01 − χ02) + χeffσz)a

†a (25)

This expresses the state of the qubit in the first term and the resonator in the
second term with a and a† as the lowering and raising operators associated
with the photon or resonator, as was noted in section 2.2. The χeffσz term
represents the interaction between the two elements. This Hamiltonian is com-
monly referred to as the Jaynes-Cummings Hamiltonian and is visulaized using
a ”ladder” as seen in Figure 7 [12].

Superconducting qubit-resonator systems are excited and controlled using
microwave pulses. That is how qubit gates are run and, consequently, how
qubit states are changed. In this project the new proposed qubit is actually
a bunch of resonators and we are considering to excite this array using trans-
mons. In this way microwave pulses may excite the transmon(s) attached to the
resonator array and consequently excite the edge modes of the resonator array.
Modeling this proposed process requires an understanding of edge modes and,
thus, properties often associated with topological insulators.
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Figure 7: Interactions described by the Jaynes-Cummings Hamiltonian of a
single qubit and resonator pair can be represented in a ladder schematic. The
blue lines on the left represent when a qubit with bare frequency ωa is in the
ground state, |g⟩, and the red lines are when it is in the excited state, |e⟩.
The dashed lines represent the uncoupled Hamiltonian’s eigenstates, whereas
the solid lines are the energies when considering coupling. |n⟩ is the photon
number. Note that a true qubit would only consider the first two states, |0⟩ and
|1⟩, but higher order levels are included for completeness. This image considers
the situation known as the dispersive limit, where ωa − ωr = ∆ > g; g is the
coupling between qubit and resonator. In this scenario, the ”effective” resonator
and qubit frequencies shift. The bare qubit and resonator frequencies are shown
by both ωa and ωr marked by the lower most vertical arrows between |0⟩ and
|1⟩ depicting the frequencies in terms of the uncoupled states. The shifted
frequencies associated with the coupled system are noted in terms of coupling

and detuning, g2

∆ . This also refers to the dispersive shift, χ. These shifted
frequencies are marked by the arrows relating the solid lines. When the qubit
is in the ground state, the resonator’s frequency decreases slightly (as is seen in
the shift between the dashed and solid blue lines at |1⟩). In contrast, when the
qubit is in the excited state, the resonator’s frequency increases (as is seen in
the shift between the dashed and solid red lines at |1⟩). Image is from Schuster
(2007) [12].
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3 Topological quantum systems

Although this project focuses on the behavior of quantum circuits, it is mo-
tivated by properties commonly found in topological systems, particularly the
appearance and robustness of edge modes along a lattice. While traditionally
these edge modes appear in quantum systems, they have recently also been
demonstrated on an array of classical mechanical oscillators that displayed two
modes in the clockwise and counter-clockwise directions [6]. As LC resonators
are the electrical equivalent to mechanical oscillators, we believe achieving such
edge states on a two-dimensional array of resonators is also possible. Topologi-
cally non-trivial systems can host edge modes. For a system to be topological,
there must be an energy band gap between what is considered the physical bulk
of the system versus its edges and symmetry projection must be present. If
both of these conditions are upheld, the system will be exceptionally robust to
perturbations, or rather any noise occurring in the environment.

To understand the fundamentals between the edges and bulk and the preser-
vation of symmetry, we first consider a one-dimensional lattice of particles. This
scenario is explained by the Su-Schrieffer-Heeger (SSH) model. Though the pro-
posed work is not in one-dimension and, thus, cannot directly utilize the SSH
model, the SSH model is a simpler, perhaps even more intuitive presentation of
the importance of energy band gap and chiral symmetry. A further analysis of
topological systems continues with a focus on a more directly relevant model:
the quantum spin Hall effect (QSHE) [13]. For this, a quick introduction to
time-reversal symmetry and Kramers pairs is provided. Finally, a review of
Süsstrunk and Hubers’ (2015) work demonstrating chiral edge modes on me-
chanical oscillators is presented [6]. This serves as a guidance for how to set up
the Hamiltonian of our proposed LC resonator system.

3.1 SSH Model

The SSH model describes the topological behavior of a one-dimensional chain
of particles or atoms. A common physical example for which the SSH model
applies is polyacetylene [15]. Polyacetylene is a chain of carbon atoms, each
with one hydrogen atom hanging off. When the chain is broken up into sites –
each with one unique pair of carbon atoms – then two types of general bonds
can be identified: inter- and intra-site bonds, whose strengths are denoted w
and v respectively [14, 16]. These are shown as a single (w) and double (v)
line connecting the carbon atoms in Figure 8. Thus, a single site or unit cell is
comprised of one atom on the bottom connected to one atom on top by a double
line (v). All “bottom” (“top”) particles comprise what is considered a sublattice.
Each sublattice’s particles do not interact with one another. A particle can only
interact with its nearest neighbor, which is of opposite sublattice type (i.e. top
only interacts with its nearest neighbor bottom particles and vise versa). This
sublattice symmetry is the SSH model’s chiral symmetry [14, 16]. It is useful to
note that this scenario considers non-interacting electrons, thus each electron
can be considered a single particle [16]. The Hamiltonian for such a system is

14



Figure 8: A chain of carbon atoms known as polyacetylene is a common physical
example of the SSH model. Atoms are categorized into sub-lattices. This is
demonstrated by the staggering of the lattice showing half the particles on
”top” and half on ”bottom.” One unit cell is comprised of one particle from
each sublattice, i.e. one ”top” and one ”bottom.” The bond of two atoms
within a cell is denoted by a double line and is referred to as v. The intercell
bonds are shown as a single line and called w. v and w are referred to as hopping
amplitudes [14].

given as

H = v

N∑
m=1

|m,B⟩ ⟨m,A|+ |m,A⟩ ⟨m,B|

+ w

N−1∑
m=1

|m+ 1, B⟩ ⟨m,A|+ |m,A⟩ ⟨m+ 1, B|

(26)

where N is the number of sites in the chain and A and B (what was previously
referred to as top and bottom) denote which sublattice, as seen in Figure 8 [16].

The Pauli exclusion principle requires that no two fermions, or spin-half
particles, which includes electrons, exist in the same state at the same time in
the same system [17]. Given no potential energy and zero temperature, this
means all eigenstates of the SSH Hamiltonian are limited to single occupancy
as each cite has one particle of each spin; this is also known as half-filling [16].
Expressing the Hamiltonian in terms of internal and external degrees of freedom
will become useful as the system is described in terms of bulk and edges. The
internal degree of freedom indexes the unit cells and the external degree of
freedom identifies the sublattices [16]. These are m and α respectively, such
that |m,α⟩ = |m⟩ ⊗ |α⟩ ∈ Hinternal⊗Hexternal [16]. Now the SSH Hamiltonian
can be written as

H = v

N∑
m=1

|m⟩ ⟨m| ⊗ σ̂x

+ w

N−1∑
m=1

|m+ 1⟩ ⟨m| ⊗ σ̂x + iσ̂y
2

+ |m⟩ ⟨m+ 1| ⊗ iσ̂x − σ̂y
2

(27)
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where σ̂x and σ̂y are the Pauli matrices, with σ̂x defined in Equation 5 and

σ̂y =

[
0 −i
i 0

]
(28)

In this expression, the hopping amplitudes look like operators on their respective
bonds [16].

The Hamiltonian for the bulk should be irrespective of the edges, as the idea
that we can distinguish clearly between these two modes is central to topological
insulators. The bulk is thus given periodic boundary conditions, letting us
effectively treat it as a ring [16]. The bulk Hamiltonian now is

Hbulk =

N∑
m=1

v(|m,B⟩ ⟨m,A|+ |m,A⟩ ⟨m,B|)

+ w(|m mod N + 1, A⟩ ⟨m,B|+ |m,B⟩ ⟨m mod N + 1, A|)

(29)

where

Hbulk |Ψn(k)⟩ = En |Ψn(k)⟩ ,
n ∈ 1, ..., 2N

(30)

with wavenumber or, as is more commonly referred to in condensed matter
theory, crystal momentum k [14, 16]. As the bulk is translationally invariant,
Bloch’s theorem allows expressing the state in terms of a plane wave in the first
Brillouin zone, k ∈ δk, ..., δkN where δk = 2π

N ,

|k⟩ = 1√
N

N∑
m=1

eimk |m⟩ (31)

with Bloch eigenstates |Ψn(k)⟩

|Ψn(k)⟩ = |k⟩ ⊗ |un(k)⟩ (32)

|un(k)⟩ = an(k) |A⟩+ bn(k) |B⟩ ∈ Hint (33)

|un(k)⟩ are the eigenstates of the bulk momentum-space Hamiltonian

H(k) |un(k)⟩ = En(k) |un(k)⟩ (34)

where

H(k) = ⟨k|Hbulk |k⟩

=
∑

α,β∈A,B

⟨k, α|Hbulk |k, β⟩ · |α⟩ ⟨β| (35)

[16].
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The function un,k(x) (where Ψn,k(x) = eikxun,k(x)) demonstrates periodic-
ity in real space, but not in the Brillouin zone; however, the Fourier transform
from real space to Brillouin zone is on the external degree of freedom only, thus
periodicity in the Brillouin zone is maintained [16].

H(k + 2π) = H(k)

|un(k + 2π)⟩ = |un(k)⟩
(36)

The bulk momentum-space Hamiltonian has a zero diagonal. This reflects that
there is no interaction among particles within a given sublattice. Particles in
an SSH chain only interact with their nearest neighbors [16]. This localized
interaction denotes a chiral symmetry in the system. The Hamiltonian can
then be written as

H(k) =

(
0 v + we−ik

v + weik 0

)
(37)

Given Equation 34, H(k)2 = E(k)2Î2,

E(k) = ±|v + weik| = ±
√
v2 + w2 + 2vwcos(k) (38)

This allows us to see beauty of the SSH model, which arises when the hopping
amplitudes v and w are staggered [16]. To fully appreciate when staggered
v and w give rise to a topologically invariant system (as opposed to a trivial
one), though, the Hamiltonian can be rewritten in terms of something called
the d-vector, d(k).

Given |un(k)⟩ ∈ Hinternal provides information on the internal structure,
the bulk momentum-space Hamiltonian for a system with two states per cite
(i.e. two particles per unit cell) can be expressed as

H(k) = d0(k)σ̂0 + dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z

= d0(k)σ̂0 + d(k)σ̂
(39)

where
d0(k) = 0

dx(k) = v + wcosk

dy(k) = wsink

dz(k) = 0

(40)

Thus, the direction of d(k) determines the internal structure of eigenstates and
the magnitude of the vector determines the energy. The radius of the circle is
of size w and the center sits at v. d(k) must be a closed loop and encircle the
origin for the lattice to maintain chiral symmetry and be considered topological
[16]. This becomes clear in Figure 9, in which the top row shows energy plotted
against wavenumber for varying values of v and w and the bottom row plots the
associated d(k) to the image above it. The image to the far right (e) reflects
a system in which there is no intra-cell hopping, i.e. the two particles within
a unit cell are fully disconnected. In this case it is clear how there would be a
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Figure 9: (a) to (e) show the energy as a function of wavenumber for varying
relations between inter- and intra-cell hopping amplitudes, w and v: (a) v =
1, w = 0, (b) v = 1, w = 0.6, (c) v = w = 1, (d) v = 0.6, w = 1, (e) v =
0, w = 1 [16]. The smallest gap between the energy bands is equal to twice the
absolute value of the difference between the hopping amplitudes. Note that (c)
shows a conductor as the energy bands connect allowing electrical flow without
tunneling. In the insulator case, as the gap increases the number of occupied
energy states decreases. (f) to (j) show the circular d(k) path for the bulk
momentum-space Hamiltonian as k crosses through the Brillouin zone from 0
to 2π for each respective situation shown above in (a) to (e) [16]. Image is from
Asbóth, Oroszlány, Pályi (2016) [16].

separation in what is considered the bulk compared to the edges as there is a
physical break in the connections. The next image to the left (d) demonstrates
a system in which the intra-cell hopping has been slightly turned on, but is still
weaker than inter-cell hopping. The particles that were physically separated in
(e) on the edges are now connected again; however, the energy band gap is still
present and d(k) still encircles the origin. As both chiral symmetry and the
energy band gap have been maintained, this still reflects a topological system.
The central image (c), however, shows a system in which v = w and, thus,
there is closure to the energy band gap. This gap closure demonstrates the
topological phase transition between v < w and v > w or rather between the
system behaving topologically or trivially. The following systems (a) and (b)
restore the band gap, but d(k) no longer contains the origin and, therefore, are
considered trivial rather than topological; they no longer display separation in
bulk and edge modes [16]. By mapping the energies for various combinations
of hopping amplitudes and d(k) of the bulk momentum-space Hamiltonian, we
begin to see the significance of bulk versus edge modes.

Figure 10 further emphasizes how when the intra-cell hopping amplitude,
v, is turned on and increased, the system still remains topologically invariant
until it equals w [16]. This is visible in Figure 10(a), in which there is a line
around E = 0, which is separate from the rest of the energy spectrum. This line
reflects the energy of the edge mode. It starts at 0 when v = 0 and increases
exponentially as v increases. Recall that when v = 0 the edges of the lattice are
physically separated from the rest of the system, hence zero energy. The delayed
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Figure 10: (a) The energy mapped as a function of intra-cell hopping, v, of
a ten-cell lattice described by the SSH model with inter-cell hopping w = 1.
When v = 0, the cells along the chain are broken apart, thus creating physically
separated edges. As v increases, however, the energy of the edge – denoted by
the seemingly horizontal line at E = 0 – exponentially increases. Until v = 1,
the edge cells – though physically connected again – still maintain their own
distinguishable energy separate from the bulk of the lattice. After v = 1, the
distinct edge modes disappear and the system is no longer topological. (b) -
(c) These plots highlight how a wavefunction associated with the edge mode in
(a) are indeed isolated to the edge cells. (d) When a wavefunction is considered
along the bulk of the system, it is spread amongst all cells and not isolated in
the same way it is for edges as shown in (b) and (c) [16]. Image is from Asbóth,
Oroszlány, Pályi (2016) [16].

union of the edge and bulk modes maintains a gap between the two energies
even as v increases (but is still less than w). This allows the system to remain
topologically nontrivial. Figure 10(b) and (c) highlight how a wavefunction
associated with the zero energy edge modes of the topological system indeed are
isolated to the edges. Whereas Figure 10(d) demonstrates how a wavefunction
associated with the bulk states is spread across the entire bulk and not isolated
to any particular cells in the chain. Once v = w, however, and as it continues
to increase, the system loses its topological classification and becomes trivial;
the edges are indistinguishable energetically from the bulk [16].

After examining this one-dimensional example of the SSH model, it is clear
how edge modes can exist in topological systems. It is also clear how main-
taining an energy band gap and symmetry is crucial to maintaining topological
invariance [16]. Where the SSH model represents these features in terms of
hopping amplitudes that have simple-to-understand physical meaning (e.g. the
bond strength between two carbon atoms in polyacetylene), other symmetries
in higher dimensional systems may not be as obvious at first. One of them,
time-reversal symmetry, is certainly not as intuitive as bond strengths, but is
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critical for demonstrating the QSHE, which describes how spin-up and spin-
down particles can exist in the same system at the same time.

3.2 Time-Reversal Symmetry and Quantum Spin Hall Ef-
fect

Symmetry operators, which are unitary, do not disturb the inner product of two
states

⟨Uψ|Uϕ⟩ = ⟨ψ|U†U |ϕ⟩ = ⟨ψ|ϕ⟩ (41)

and, thus,
U†HU = H (42)

where H is a Hamiltonian with symmetry U [18]. Anti-unitary symmetry op-
erators, Ω, however, do not preserve inner products and instead produce the
complex conjugate [18].

⟨Ωψ|Ωϕ⟩ = ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ (43)

Similarly, where symmetry operators are linear U(α |ϕ⟩ + β |ψ⟩) = αU |ϕ⟩ +
βU |ψ⟩, anti-unitary operators are anti-linear

Ωα |ϕ⟩ = ΩαΩ−1Ω |ϕ⟩ = α∗Ω |ϕ⟩ = α∗ |Ωϕ⟩ (44)

where α ∈ C [18]. Rather, an anti-unitary operator transforms a complex num-
ber into its complex conjugate, which agrees with the same behavior seen in
relation to an inner product. Given this, we can say that Ω = K, where K is the
complex conjugation operator with K2 = I and K = K−1 [18]. To see how this
affects quantum mechanical systems, the simplest thing to do is to consider K
on one-dimensional Schrödinger’s equation, ih̄∂ψ(x,t)∂t = Hψ(x, t)

Kih̄
∂ψ(x, t)

∂t
K = KHK ·Kψ(x, t)K (45)

−ih̄∂ψ
∗(x, t)

∂t
= H∗ψ∗(x, t) (46)

ih̄
∂ψ∗(x, t)

∂ − t
= H∗ψ∗(x, t) (47)

WithH = H∗, then ψ∗(x, t) is the solution to the time-reversed one-dimensional
Schrödinger’s equation [18]. In a system with spin, the Hamiltonian to describe
spin orbit coupling is dependent on the Pauli matrices; however, σy is not K
invariant [18]. Therefore, to maintain time-invariance for spin systems, another
anti-unitary operator, T , is defined [6, 18].

T = iσyK (48)

When considering how T works with eigenstates, T |ψ⟩ = λ |ψ⟩, it becomes
evident that it cannot have any [18]. This is seen by adding an extra time-
reversal operator, T 2 |ψ⟩ = T λ |ψ⟩. By definition, the left-hand side should
equal − |ψ⟩. The right-hand side, however, does not [18].
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T 2 |ψ⟩ = T λ |ψ⟩ = λ∗T |ψ⟩ = |λ|2 |ψ⟩ ≠ − |ψ⟩ (49)

In this way there are two degenerate eigenstates. |ψ⟩ and |ϕ⟩ are referred to as
a Kramers pair [18].

T |ϕ⟩ = − |ψ⟩
T |ψ⟩ = |ϕ⟩

(50)

These states are orthogonal as

⟨ψ|T ψ⟩ =
〈
T 2ψ

∣∣T ψ〉 = −⟨ψ|T ψ⟩ (51)

Additionally, the time-reversal symmetry operator does not have a Hermitian
conjugate [18].

⟨ψ|T ϕ⟩ ≠
〈
T †ψ

∣∣ϕ〉 (52)

This equation would require that the left and right hand sides demonstrate
anti-linear and linear relationships, respectively [18].

Applying time-reversal symmetry to a Hamiltonian describing a system with
spin demonstrates the existence of a Kramers pair; one eigenstate may be spin up
with the other is spin down and while they exist at the same energy, they do not
interact. This phenomenon is known as the quantum spin Hall effect [13]. QSHE
demonstrates topological systems through time-reversal symmetry. Projecting
this concept onto a system of LC resonators, there are two chiral edge modes
– clockwise and counter-clockwise – that exist at the same frequency but do
not cancel each other out. This application of QSHE in classical oscillators was
first demonstrated on a lattice of mechanical pendula by Süsstrunk and Huber
(2015) [6]. To understand what the Hamiltonian looks like for a two-dimensional
array of LC resonators mimicking the QSHE, it is useful to understand the
Hamiltonian for such a mechanical system.

3.3 Quantum Spin Hall Effect in the Classical Realm

The motivation behind finding topological edge modes in LC resonators came
from results showing such behavior in a two-dimensional array of pendula cou-
pled by springs [6]. Neither of these systems are ruled by the laws of quantum
mechanics, yet given that the electrical oscillators behave in a similar manner
to the mechanical ones (see section 2.2), it is believed that such methods can
be extended to electrical oscillators. The overview of how such mechanical sys-
tems are compared to quantum-associated topological insulators is as follows:
QSHE reflects a separation between edge and bulk modes in a system with two
degrees of freedom reflecting two spin modes. Classical oscillators naturally
only describe systems with one degree of freedom. To remedy this, consider the
Hamiltonian describing the classical oscillator system, Hϕ; when the complex
conjugate of the original Hamiltonian, H∗

ϕ, is also included, then requirements
for comparing to QSHE are met as there are now two degrees of freedom con-
tained in the whole system’s Hamiltonian, H [6, 16, 19]. This is illustrated in
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Figure 11: Four deformations of a two-dimensional lattice of pendula are shown.
Each deformation of the physical edge is considered a perturbation to the sys-
tem. The system, however, is undisturbed by such environmental changes as it
is topologically protected. The red and blue coloring around the edges denote
the two circular edge modes observable after exciting the site furthest to the
bottom right. Image is from Süsstrunk and Huber (2015) [6].

equation 53. Hϕ is taken from Hofstadter’s model (see equation 54), which is
used in condensed matter theory to describe flux under a very strong magnetic
field. Though there is no exceptional magnetic field in the case of mechanical or
LC oscillators, there is still a flux acquired from the phase in both systems that
can be described the same way as in Hofstadter’s model [6, 20]. As the system
is mimicking the QSHE on spin-1/2 particles, the associated flux is ϕ = 2π

3 [6].

H =

(
Hϕ 0
0 H∗

ϕ

)
(53)

Hα,ϕ = f0
∑
r,s,α

|r, s, α⟩ ⟨r, s± 1, α|+ |r, s, α⟩ ⟨r ± 1, s, α| e±iαϕs (54)

where α represents what is commonly refered to as the spin of the electron, but
here differentiates between Hϕ and H∗

ϕ. (r, s) designate the location of the cell
of interest in the lattice (as is noted in figure 12), f0 is the hopping amplitude,
and ϕs = ϕs [6]. In this convoluted way, condensed matter theory is used to
describe a classical system that exhibits behavior previously expected only of
quantum systems.

Now H describes the whole system with two degrees of freedom and it should
be possible to see how edge modes arise. The problem, however, is that H
is complex, but mechanical oscillators are described by Newton’s equation of
motion, ẍi = Dijxj , with x the coordinate of the pendula. This expresses a real,
not complex system. The Hamiltonian expressing the couplings, D, within the
mechanical oscillator array must be real, symmetric, and positive semi-definite.
By applying a unitary transformation, U , on H, the classical system is finally
described fully as both real and with two degrees of freedom [6]. Equations
55 and 56 demonstrate how this transformation maps the quantum, complex
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description of the system (i.e. in terms of Hamiltonian H with ψ+
r,s and ψ

−
r,s as

the wavefunctions at lattice site (r, s) with spin + or −) to the real domain of
D (with xr,s and yr,s representing each pendulum at lattice site (r, s)) [6].

U =
1√
2

(
1 −i
1 i

)
(55)

(
xr,s
yr,s

)
=

1√
2

(
1 1
i −i

)(
ψ+
r,s

ψ−
r,s

)
(56)

where now

U†HU =

(
ReHϕ ImHϕ

−ImHϕ ReHϕ

)
≡ D (57)

The diagonal elements of the coupling matrix, D, represent coupling between
two pendula, either xx or yy, or in terms of the language discussed in the SSH
model, two atoms on the same sublattice type in neighboring unit cells [6].
Please remember that as we are no longer ruled by the SSH model, this type

Figure 12: Two mechanical oscillators attached by a series of pairs of springs.
The two oscillators create one site or cell in the same way that two carbons
create a unit cell in polyacetylene chain. Image is from Süsstrunk and Huber
(2015) [6].

of coupling is not forbidden; where the SSH model’s chiral symmetry related
to sublattice isolation, the QSHE relates to preserving pseudo-spin [6, 16]. The
off-diagonal, or imaginary parts, correspond to xy coupling [SH]. Suppose (r,s)
is a lattice site. xr,s and yr,s are 1D oscillators in one unit cell at location (r,s);
therefore, one cell is a two-dimensional oscillator [6]. U allows us to see how
the array’s eigenmodes are associated with clockwise and counter-clockwise po-
larized motion, defined as α = ± [6]. These chiral modes are to this classical
oscillator problem as pseudo-spin up and down are to the quantum problem
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presented in the QSHE. What QSHE would consider spin up (down), this prob-
lem considers right (left) polarized edge mode [6]. It is D that will demonstrate
QSHE properties through time reversal symmetry and the two chiral edge modes
[6, 19].

To understand how time reversal and pseudo-spin symmetries observed in
the QSHE for a spin-1/2 quantum state are understood in the case of classical
mechanical oscillators, a latitude and longitude are mapped on the Bloch sphere.
These are φ = [−π2 ,

π
2 ] and θ = [0, 2π) respectively [6]. Such a state can be

written as

|ψ⟩ = sin(
φ+ π

2

2
) |↑⟩+ eiθcos(

φ+ π
2

2
) |↓⟩ (58)

Time reversal moves a point on the Bloch sphere to its anti-nodal point, or a
flip along both the latitude and longitude of the sphere T : (φ, θ) → (−φ, θ +
π), whereas pseudo-spin symmetry only causes a flip along the longitude σz :
(φ, θ) → (φ, θ + π) [6]. In this way, the mapping of time reversal symmetry in
QSHE to symmetries in an array of mechanical oscillators is

T → s ◦ T (59)

where s represents the symmetry found in local modes of a unit cell, such that
s : (x, y) → (y,−x) [6].

The assumption Süsstrunk and Huber make is that both s and T are inde-
pendently true, or rather that there is no coupling between the left and right
circular modes. They do briefly mention the possibility that this is not true.
In such an instance s ◦ T is still a symmetry of the system, but s and T are
not symmetries on their own [6]. Süsstrunk and Hubers’ consensus is that this
latter symmetry scenario is not applicable to pendula [6]. Whether or not it is
applicable to LC resonators is something to be determined. What is definitely
applicable, though, is the general symmetry analysis comparing classical oscil-
lators to the QSHE, as well as how the coupling matrix or Hamiltonian of the
system is generated. The remaining questions regarding precisely how an array
of LC resonators behaves in a similar set up will be outlined in the next section.
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4 Research Questions and Project Scope

4.1 Research Questions

Goal
Find a model explaining how a two-dimensional array of LC resonators can act

as a qubit.

Broader Questions

How could single qubit gates be run on this proposed system?

What does it mean for the system to be in superposition?

Narrower Questions

What is the lifetime of the edge modes and is that sufficient to enact a single
qubit gate?

How is dissipation of the edge modes handled? Every system has its own sources
of decay. Though this proposed hardware should be more robust to external
noise, it very well may still have its own yet undiagnosed sources of decay. How
can these effects be minimized through system control? What type of microwave
pulses are required to maintain strong edge modes?

Similarly, what type of pulses are required to perform single qubit gates?

Which optimization methods best suit this problem of finding the best pulse
for each scenario?

4.2 Project Plan

The following is an initial outline of the intended research plan. It is drafted
to accommodate the dynamical nature of research and also with the knowledge
that thoroughly defining a robust model for controlling the proposed hardware
within a few months is a challenging task.

1) Verify already existing notebooks showing edge modes on 2D array is truly
topologically invariant by removing sites along the physical edge of the array
and still seeing edge modes present. This step has already begun.

2) Quantify lifetime of the edge modes and compare to necessary lifetime re-
quired to run a single qubit gate (particularly the X gate). If modes are suffi-
ciently ”strong”, proceed to step 4. In all likelihood, will proceed to step 3.

3) Explore pulse optimization for exciting long lasting edge modes

4) Explore pulse optimization for manipulating edge modes to demonstrate a
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single qubit gate. The first gate to explore will likely be the X, followed by the
Z. If time allows, then the more complicated, yet interesting H gate will also be
considered.

We will consider attaching two transmons to the array to excite and con-
trol the edge modes as shown in Figure 1 [5]. This would require integrating
the Jaynes-Cummings Hamiltonian as presented in section 2.3. As previously
mentioned, ultimately microwave pulses will be required to control the array.
Pulse optimization will require exploration into various computational methods
including, possibly, gradient ascent [21, 22, 23] and reinforcement learning [11].

There is also the option to make this system more realistic by incorporating
representations of experimentally observed noise into the model. This does not
seem to be an immediate priority, but as the project develops and the research
needs adapt accordingly, this may be considered.

It should be noted that there is the possibility that steps 3 and 4 could be
merged. Perhaps the pulse optimization in step 4 would also directly solve the
problem step 3 is designed to address. This may become clearer after step 2 is
completed.

The intention is to maintain clear notes throughout the whole process. This
will aid in writing the final thesis, as well as assist other researchers in continuing
this work more easily afterwards.

4.3 Predicting Challenges

While this report has laid out the theoretical argument for how this hardware
should be able to apply topological edge modes to the classical circuit element
that is the LC resonator, theory and experiment do not always precisely agree.
Süsstrunk and Huber (2015) provided experimental agreement for demonstrat-
ing the QSHE on pendula and while pendula and LC resonators are similar, that
does not guarantee with absolute certainty that LC resonators will demonstrate
as clean results [6]. With that said, there has been evidence of the SSH model
observed on a one-dimensional lattice of LC resonators. When transmons were
paired with the resonators such that each resonator had one transmon attached
to it, the qubits were able to be controlled by the edge states [24]. This evi-
dence that topological symmetries were observed on a one-dimensional array of
LC resonators and that this system was able to successfully manipulate qubits
is another encouraging argument in support of this work.

With regards to particular aspects of the project plan, it is possible that
step 3 will take the majority of the time. It may even be the bulk of this project
if it is found crucial for understanding how to prepare and run gates (i.e. if the
edge modes’ lifetimes are not long enough to run gates as-is without assistance
from extra pulses). If that is the case, the understanding that will have been
gained in the process of solving step 3 will serve as very solid foundation for
future work into pulse optimization for gates.

With that said, it is also possible that the optimal pulses for establishing
long-lived edge modes and the optimal pulses for running gates do not neces-
sarily agree once put together. Or rather, it is entirely possible that as these
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two problems are being solved in a step-wise manner, there may exist an entire
other pulse method that is not simply the combination of the two. This, how-
ever, will be reserved for future work. Quantum control can always be optimized
in the eyes of today’s researchers. The goal of this project is to build a good
foundation for modeling the proposed hardware.

4.4 Timeline

April 2022
Literature review.
Step 1 of project plan.
Continue researching pulse optimization methods.

May - August 2022
Test pulse optimization methods.
Strengthen edge modes and determine X gate.
May 23-25, 2022: Present at COSSE workshop.
Continue with subsequent gates if time allows.
Write thesis.
August 2022: Thesis defense and final presentation.
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[5] E. Greplová. Engineered topological quantum networks, March 2021.
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