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Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

@ Decisive for
optimization of pile

design.
© Improved installation Figure: Simulation of monopile
techniques. penetration with the Material Point
Method

Software Tool
Anura3D is software developed at Deltares for such simulations
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The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

MPM Algorithm

@ Physical quantities are mapped from material points to
underlying grid.

@ Equation of motion is solved over the background mesh to
find the current acceleration.

© Variables of the material points are update via
remapping from background grid.
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Figure: Blue Particle Starts to Interpolate
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Particle to Grid Interaction in Memory
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Figure: Particles updating the nodes
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Element wise updating
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Figure: Element wise updating



Problem Formulation
00000000e000

Challenges in parallelization over elements




Problem Formulation
00000000e000

Challenges in parallelization over elements
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What is space filling curve

@ SFC is mapping from n-dimensional space to 1 dimensional
space.

@ Mesh renumbering strategy to preserve spatial locality.

© de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.
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Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.
@ Compute the bounding box of the computational domain.

© Compute SFC index of each element based on its
centroid

O Sort the element according to their SFC index.

@ Place vertexes according to the element order.
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Hybrid supercomputer architecture
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Close Look at ccNUMA system
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Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

© Ignoring the architectural aspects can significantly harm
performance.

© Processor/ thread affinity play major in performance of
compute intensive kernels.

© Implicit memory allocation policies helps to keep data as local
as possible.

@ Congestion of memory controllers.
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Our focus for present study

@ Thread / Processor affinity.

@ Data placement using first touch principle.
© Intel's Hyper-threading.

@ Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.
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Optimization of SAXPY and DAXPY kernels
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Optimization of SAXPY and DAXPY kernels

Machine specifications

© Architecture : x86_64

CPUs : 0-15

Number of Sockets : 2
Cores per sockets: 8

CPU Max GHz : 3.10 GHz
L1 Cache : 32 KB

L2 Cache : 256 KB

L3 Cache : 40 MB

NUMA Node(0) CPUs : 0-7
NUMA Node(1) CPUs : 7-15
Operating System : Linux

®©®66 00000000
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Time measurement without any optimizations
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Zoom in for out of core memory
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Parallel scalability with thread affinity and data placement
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Effect of hyper-threading
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Floating point balance
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