Accelerating the Material Point Method on
Emerging Computing Architectures

Sagar Dolas
Technical University of Delft
Deltares

sagardolas.cosse@gmail.com

March 6, 2017

Today's Agenda

@ Motivation

@ Problem Formulation

© High Performance Computing
@ Glimpse of Results

© Future Work

Motivation

Motivation
oeo

Installation of Monopile - Dutch National Waters

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Motivation
oeo

Installation of Monopile - Dutch National Waters

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Motivation
ooe

Why this simulation so important ?

Motivation
ooe

Why this simulation so important ?

Motivation
ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

Motivation
ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

Motivation
ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

@ Decisive for
optimization of pile
design.

Motivation
ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

@ Decisive for
optimization of pile
design.

© Improved installation
techniques.

Motivation

ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

@ Decisive for
optimization of pile
design.

© Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Motivation

ooe

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

© Prolong useful life of
pile foundation.

@ Decisive for
optimization of pile

design.
© Improved installation Figure: Simulation of monopile
techniques. penetration with the Material Point
Method

Software Tool
Anura3D is software developed at Deltares for such simulations

Problem Formulation

Problem Formulation
0O®0000000000

The Material Point Method

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

MPM Algorithm

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

MPM Algorithm

@ Physical quantities are mapped from material points to
underlying grid.

Problem Formulation
0O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

MPM Algorithm

@ Physical quantities are mapped from material points to
underlying grid.

@ Equation of motion is solved over the background mesh to
find the current acceleration.

Problem Formulation

O®0000000000

The Material Point Method

@ Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

@ Multiphase interaction handled properly.

© Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

@ Avoids extreme mesh distortion as in FEM.

MPM Algorithm

@ Physical quantities are mapped from material points to
underlying grid.

@ Equation of motion is solved over the background mesh to
find the current acceleration.

© Variables of the material points are update via
remapping from background grid.

Problem Formulation
00O®000000000

Particle to Grid Interaction

Problem Formulation
00O®000000000

Particle to Grid Interaction

w1 (100)

v2(200)

v3(50)

Figure: Particles in Grid

Problem Formulation

000e@00000000

Particle to Grid Interaction

v1 (100)

v2(200)

v3(50)

Figure: Blue Particle Starts to Interpolate

Problem Formulation
0000®0000000

Interpolation using Shape functions

Problem Formulation
0000®0000000

Interpolation using Shape functions

v1 (100}

v2(200)

v3(50)

Problem Formulation
00000®000000

Particle to Grid Interaction in Memory

Problem Formulation
00000®000000

Particle to Grid Interaction in Memory

Cache Line Cache Line

Wl DET T T T T T T el T T T[T T Te]

Vertex array

Random Access

RN

Particle Array

HOEEEEEEED NN

Figure: Particles updating the nodes

Problem Formulation
000000800000

Particle Parallel

Problem Formulation
000000800000

Particle Parallel

Atomics

Problem Formulation
[e]eleTololele] Yololele}

Element wise updating

Problem Formulation
[e]eleTololele] Yololele}

Element wise updating

v1 (100)

v2(200)

v3(50)

Figure: Element wise updating

Problem Formulation
00000000e000

Challenges in parallelization over elements

Problem Formulation
00000000e000

Challenges in parallelization over elements

Processor

Element array ﬂ m
Our Focus

E1|E2 |E3 (E4 |(E5 |E6 | E7 | EB
inefficient
1|5 (12|21 |7 |15 |23 |28 Parallelisation

vertex indices 4 (20132 |8 |25 |16 | 11

Particle array
not sorted
according to domain

|P1 ‘ P2 ‘ P3 | P4 | P5 | P6 | P7 | P8 ‘ P9|P10|PH ‘P12‘P13|P14|P15|P16|

Array of Particles

Figure: Challenge in Element wise parallelization

How can we Solve this 77

Problem Formulation
0000000000 e0

One Solution

Problem Formulation
0000000000 e0

One Solution

$SSTARTELEMCON $$STARTELEMCON h
204 207 1B6 283 206 197 195 202 205 103 123456780918

199 181 203 186 199 191 200 192 182 193 11124121358 14 9

185 171 1B9 186 178 180 187 184 179 188 3154216 17 10 6 18 9

117 99 96 95 188 98 187 106 97 04 19 2 11 4 20 13 21 22 9 14

99 96 95 7B 98 94 97 88 B7 85 23 4 15 2 24 17 25 26 9 18

113 91 95 96 182 93 184 103 92 94 27 28 15 2 29 39 31 32 33 18

91 05 96 73 03 94 02 82 83 84 15 23 2 28 25 26 18 30 34 33 PO

45 42 63 50 44 53 54 52 49 62 19 23 2 4 35 26 20 22 24 9

41 50 36 45 50 47 39 43 52 40 23 36 19 2 37 3B 35 26 39 2@ -
36 41 45 11 30 43 49 27 28 30 36 23 28 2 37 34 49 39 26 33

77 B1 95 73 B0 89 86 74 76 B3 41 36 27 2 42 43 44 45 39 32

77 B1 73 55 B0 76 74 65 67 64 28 36 2 27 4@ 39 33 29 43 32

113 135 131 19 125 134 122 111 121 119 41 36 46 27 42 47 48 44 43 49

60 36 55 50 48 46 57 58 47 56 27 50 28 46 51 52 29 49 53 54

55 60 59 B1 57 58 56 67 78 71 28 36 27 46 4B 43 29 54 47 49

117 114 135 113 115 124 126 116 112 125 50 46 55 28 53 56 57 52 54 58

117 114 113 96 115 112 116 187 105 103 36 28 55 46 48 5B 59 47 54 56

149 153 167 145 151 161 158 146 148 155 ﬂa 55 28 5@ 61 58 62 63 57 52

149 153 145 127 151 148 146 137 139 136 D 4B FS3EEN ofey7 JEeg; mm mm -m
189 185 1B6 203 187 1B4 188 196 194 103 60 55 50 64 61 57 63 68 67 66 b
189 186 207 203 188 197 108 196 193 205 We want this | 69 64 46 55 70 65 71 72 67 56

185 203 1B1 186 194 191 183 184 193 182 60 73 55 64 74 75 61 68 76 67

181 185 186 167 183 184 182 174 176 175 73 60 77 64 74 7B 79 76 68 88

22 11 42 45 16 29 33 35 30 44 69 73 B4 55 81 76 78 72 75 67

113 05 117 96 184 106 116 1083 04 107 68 73 B2 64 81 83 84 70 76 05 o,

132 127 150 153 120 138 141 143 139 152 86 64 B2 73 87 85 88 89 76 83

91 113 109 96 182 111 100 92 103 101 77 73 64 86 79 76 80 99 B9 87 -
171 185 167 186 178 176 169 179 184 175 B6 82 91 73 8B 92 93 89 B3 94

60 78 81 55 69 79 79 57 66 67 81 73 77 86 94 79 95 93 89 9@

100 127 114 135 118 120 110 121 130 124 96 82 73 91 97 B3 08 99 02 o4

168 171 150 163 170 160 150 164 166 156 100 86 82 01 101 B8 102 103 93 02

168 171 163 186 178 166 164 177 179 173 104 91 BE 100 105 53 106 187 183 101

31 11 22 45 19 16 25 37 38 35 96 82 91 10@ 97 92 93 108 182 103

163 145 167 15@ 154 155 165 156 147 157 91 104 109 100 105 110 111 103 107 112

73 78 55 81 75 66 64 76 79 67 91 189 96 180 111 113 99 183 112 108

The Space Filling Curves

Moving Towards
High Performance Computing

High Performance Computing
0®00000000

Thought Process

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

High Performance Computing
0®00000000

Thought Process

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

High Performance Computing
00®0000000

Keeping spatial close entities close in memory

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

High Performance Computing
00®0000000

Keeping spatial close entities close in memory

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

High Performance Computing
©00®000000

What is space filling curve

High Performance Computing
©00®000000

What is space filling curve

@ SFC is mapping from n-dimensional space to 1 dimensional
space.

High Performance Computing
©00®000000

What is space filling curve

@ SFC is mapping from n-dimensional space to 1 dimensional
space.

@ Mesh renumbering strategy to preserve spatial locality.

High Performance Computing
©00®000000

What is space filling curve

@ SFC is mapping from n-dimensional space to 1 dimensional
space.

@ Mesh renumbering strategy to preserve spatial locality.

© de facto standard for renumbering unstructured finite element
mesh.

High Performance Computing
©00®000000

What is space filling curve

@ SFC is mapping from n-dimensional space to 1 dimensional
space.

@ Mesh renumbering strategy to preserve spatial locality.

© de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.

@ Compute the bounding box of the computational domain.

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.
@ Compute the bounding box of the computational domain.

© Compute SFC index of each element based on its
centroid

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.
@ Compute the bounding box of the computational domain.

© Compute SFC index of each element based on its
centroid

O Sort the element according to their SFC index.

High Performance Computing
©0000®00000

Space filling curve algorithm for arbitrary unstructured 3D

finite element mesh

© Input the mesh data.

@ Store the element and vertex data into appropriate data
structure

© Find out the centroids of each element.
@ Compute the bounding box of the computational domain.

© Compute SFC index of each element based on its
centroid

O Sort the element according to their SFC index.

@ Place vertexes according to the element order.

High Performance Computing
©00000e0000

Is space filling curve enough for achieving high performance ?

High Performance Computing
©000000e000

Hybrid supercomputer architecture

High Performance Computing
©000000e000

Hybrid supercomputer architecture

chUMﬁ system Distributed Computing
[x i Iy =
H ¥ 5 f

T FTT

[=]
=]
[=]

I | | | I | I ||
T I I)) S) |
—e i e
— L — i l— e 1 =T i 1
| Memory | | Memory | | Memory | | Mermory | | Mermory | | Mermory |

Fast Interconnect Network

High Performance Computing
©0000000e00

Close Look at ccNUMA system

High Performance Computing
©0000000e00

Close Look at ccNUMA system

CPUD CPU1

PO Li|Lz| L3 L3 |Lz|u P4 PO Li|Lz2] L3 L3 |Lzju1 P4
P1 Li|Lz| L3 L3 |L2|L3 P5 P1 Li|L2] L3 L3 |L2|L3 P5
P2 L1z L2 L3 |L2ju P& P2 Li|L2] L3 L3 |L2jL1 P&
P3 Li|Lz| L3 L3 |Lz|u P7 P3 Li|Lz2] L3 L3 |Lzju1 P7
I i
Main Memary E Main Memary

High Performance Computing
000000000

Key Issues in ccNUMA system

High Performance Computing
000000000

Key Issues in ccNUMA system

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

© Ignoring the architectural aspects can significantly harm
performance.

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

© Ignoring the architectural aspects can significantly harm
performance.

© Processor/ thread affinity play major in performance of
compute intensive kernels.

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

© Ignoring the architectural aspects can significantly harm
performance.

© Processor/ thread affinity play major in performance of
compute intensive kernels.

© Implicit memory allocation policies helps to keep data as local
as possible.

High Performance Computing
000000000

Key Issues in ccNUMA system

Q@ ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

@ Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

© Ignoring the architectural aspects can significantly harm
performance.

© Processor/ thread affinity play major in performance of
compute intensive kernels.

© Implicit memory allocation policies helps to keep data as local
as possible.

@ Congestion of memory controllers.

High Performance Computing
©000000000e

Our focus for present study

High Performance Computing
©000000000e

Our focus for present study

@ Thread / Processor affinity.

High Performance Computing
©000000000e

Our focus for present study

@ Thread / Processor affinity.

@ Data placement using first touch principle.

High Performance Computing
©000000000e

Our focus for present study

@ Thread / Processor affinity.
@ Data placement using first touch principle.

© Intel's Hyper-threading.

High Performance Computing
©000000000e

Our focus for present study

@ Thread / Processor affinity.

@ Data placement using first touch principle.
© Intel's Hyper-threading.

@ Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.

First look at results

Glimpse of Results
0®000000000

The Space filling curve generation for arbitrary mesh

Glimpse of Results
0®000000000

The Space filling curve generation for arbitrary mesh

Glimpse of Results
00®00000000

The elements in memory

Glimpse of Results
00®00000000

The elements in memory

Glimpse of Results
000®0000000

The elements in memory after space filling curve

numbering

Glimpse of Results
[e1eTe] YoleleleTolote}

The elements in memory after space filling curve
numbering

Glimpse of Results
00008000000

The efficient partition over multi-core architectures

Glimpse of Results
00008000000

w)
()
—
3
-
O
[0}
=
<=
O
—
(]
(D)
—
(@)
r_p
m
=
S
—
(0]
>
(@)
c
.0
=t
=
—
T
o
i)
c
0
.9
e
formy
(]
(D)
“=
_I

Optimization of SAXPY and DAXPY kernels

Glimpse of Results
00000®00000

Optimization of SAXPY and DAXPY kernels

Machine specifications

© Architecture : x86_64

CPUs : 0-15

Number of Sockets : 2
Cores per sockets: 8

CPU Max GHz : 3.10 GHz
L1 Cache : 32 KB

L2 Cache : 256 KB

L3 Cache : 40 MB

NUMA Node(0) CPUs : 0-7
NUMA Node(1) CPUs : 7-15
Operating System : Linux

®©®66 00000000

Glimpse of Results
00000080000

Time measurement without any optimizations

Glimpse of Results
00000080000

Time measurement without any optimizations

Time (seconds)

1.00E+03

1.00E+00

1.00E-03

Serial Code
& OpenMP 16 threads

OpenMP 1 thread

Time taken vs Memory Footprint

OpenMP 4 threads

OpenMP 8 threads

24
Memory FootPrint (0.024MB - 24000

24 24

0
MB)

2400

24000

Glimpse of Results
0000000e000

Zoom in for out of core memory

Glimpse of Results
0000000e000

Zoom in for out of core memory

Serial Code OpenMP 1 thread OpenMP 4 threads
OpenMP 8 threads © OpenMP 16 threads

Zoom in out of core Memory Footprint

Time(seconds)
(3]

1 100 10000
Memory Footprint in MB

Glimpse of Results
00000000800

Parallel scalability with thread affinity and data placement

Glimpse of Results
00000000800

Parallel scalability with thread affinity and data placement

Serial Code OpenMP 1 thread OpenMP 4 threads OpenMP 8 threads
T OpenMP 16 threads ¢ OpenMP 32 threads

Effect of First touch principle and Thread affinity

1.00E+03

1.00E+00

Time (seconds)

1.00E-03 /

1.00E-06 ‘
0.024 0.24 2

4 24 240 2400 24000
Memory Footprint (Mbytes)

Glimpse of Results
00000000080

Effect of hyper-threading

Glimpse of Results
00000000080

Effect of hyper-threading

Non-Hyper-threaded Core Hyper threaded core

Hyper threaded core vs Non-hyperthreaded core

Time in seconds
o
2

8 16
Number of OpenMP threads

Glimpse of Results
0000000000e

Floating point balance

Glimpse of Results
0000000000e

Floating point balance

Single Precision o Double Precision
Single precision vs Double precision

8.00000E-01

7.20000E-01

6.40000E-01

5.60000E-01

4.80000E-01

4.00000E-01

3.20000E-01

Time in Seconds

2.40000E-01
1.60000E-01
8.00000E-02

o
0.00000E+00 BF——F—03 A= ¥
0.024 0.24

2.4 24 240 2400 24000
Memory Footprint in Mbytes

Conclusion and Future Work

Future Work
0®00

Key inference

Key inference

Future Work

0®00

Future Work
fe1eX Yol

Moving forward

Moving forward

L

E2

v

v3

v2

vl

OpenMP 4.0
sims
proc_bind

OpenMP specific

Data Locality
Vectorisation
Processor Affinity
Hyper-threading
Floating point

Machine Specific

Implement on
current MPM
3D code

Future Work
fe1eX Yol

Parallell Scalable
L Paallel
Efficiency
Suitable for MPI
on CCNUMA

i
Achieved by SFCB

Thank you for your patience

	Motivation
	Problem Formulation
	 High Performance Computing
	Glimpse of Results
	Future Work

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:

