
Accelerating the Material Point Method
on Emerging Computing Architectures

Literature Study

Accelerating the Material Point Method
on Emerging Computing Architectures

Literature Study

Sagar Dolas
4593065

Dr. Matthias Moeller, Technical University of Delft
Dr. Vahid Galavi, Unit Geo-Engineering,Deltares

Contents

Introduction 1

1 The Material Point Method 3
1.1 Introduction . 3
1.2 MPM Functioning . 3
1.3 Review of MPM algorithm . 4
1.4 Parallelization of the Material Point Method 6
1.5 Parallelization Strategies for MPM on ccNUMA systems 7
1.6 Anura3D- a 3D unstructured Finite element MPM software . . 7

1.6.1 Calculation process with Anura3D 8
1.7 Focus of this research work . 8
1.8 Report Overview . 9
References. 9

2 Emerging Computing Architectures 11
2.1 Single Processor Computing . 11

2.1.1 Modern Processor . 12
2.1.2 Memory Hierarchy . 14
2.1.3 Latency and Bandwidth . 15
2.1.4 Registers . 15
2.1.5 Caches . 15

2.2 Multicore architectures . 18
2.2.1 Node architecture and Sockets. 19
2.2.2 Intel’s HyperThreading/ Simultaneous Multi-threading . 21
2.2.3 Performance Issues in NUMA machines 22
2.2.4 Optimization for NUMA machines 23

References. 24

3 Parallel Computing 25
3.1 Functional Parallelism vs Data Parallelism 25
3.2 Shared memory computing vs Distributed memory computing. 25

3.2.1 Shared Memory Computing. 25
3.2.2 Distributed Memory Computing 27

3.3 Quantifying Parallelism . 27
3.3.1 Speed Up and Efficiency. 27

3.4 Strong and Weak Scalability . 29
3.4.1 Strong Scalability. 29
3.4.2 Weak Scalability . 29

3.5 Roofline : Performance Model for Multi-core Architectures . . . 29
3.5.1 Roofline Model . 30

v

vi Contents

References. 30

4 Cache Aware Computing and Space Filling Curves 31
4.1 Space Filling Curves . 31
4.2 Cache aware computing using the Space Filling Curve 32
4.3 Enhancing SharedMemory Parallelization by Space filling curve

34
4.3.1 Efficient Out of Core Parallelization using SFC 34

4.4 Parallel Generation of SFC for 3D unstructured Finite Ele-
ments. 35
4.4.1 Mesh Layout in ANURA3D 35
4.4.2 Morton Space Filling Curve 36

References. 38

5 Benchmark Problem 41
5.1 Space Filling Curve for Arbitrary Mesh 41
5.2 Oedometer Problem . 42
5.3 Effect of optimization strategies for ccNUMA architecture on

simple kernel . 43

6 Space Filling Curve BlackBox 45
6.1 Space Filling Curve Blackbox . 45
6.2 SFCB Working . 46

7 Results and Discussion 47
7.1 Space Filling Curve Generation 47
7.2 Oedometer Problem . 54
7.3 Effects of Optimization Strategies for NUMA architectures . . . 56

7.3.1 Effects of thread affinity and data locality 56
7.3.2 Impact of Intel’s Hyper-threading Technology 58
7.3.3 Single and Double Precision computations 59

8 Conclusion and Future Work 63
8.1 Motivation . 63
8.2 The Larger Perspective. 63
8.3 Work Completed . 64
8.4 Strategic Diagram . 64
8.5 Future Work. 64

Introduction

Simulating fluids and solids undergoing large deformation remains an im-
portant and challenging problems in computational Geomechanics. The con-
ventional technique such as finite element method is not sufficiently robust
in case of such problems when formulated in the Lagrangian description of
motion.

Thematerial point method is a sophisticated meshfree numerical technique in which
the continuum is represented by Lagrangian points called material points or parti-
cles. Large deformation is modeled by particles moving through underlying Eulerian
fixed mesh in which particles carry all physical properties of the continuum, whereas
the Eulerian mesh and its Gauss points carry no permanent information.

The material point method proves to be an efficient and promising numerical tech-
nique for simulating large deformation problems in Geotechnical Engineering but
poses huge computational challenges for simulations involving a large number of
particles and degrees of freedom. The Clever and efficient use of data structures
and improved data access patterns will help achieve efficient memory management
and overall reduction in computational time, which is the main goal of this research
work.

Deltares (a Independent Dutch research and consulting organization) is working
on simulation techniques for driving of monopiles, steel tubes of diameter up to
11 meters and length of more than 60 meters into the seafloor for construction of
offshore wind farms. The currently implemented MPM code is capable of simulating
complex soil behaviors, but suffers from huge penalties in terms of data access pat-
tern, data alignment and inefficient use of threads / processes in shared memory
computing environments for almost all computational working loops.

This master’s project jointly done with Deltares focuses on accelerating currently im-
plemented two phase explicit 3D unstructured finite element MPM code on emerg-
ing computing architectures. Achieving scalability and parallel efficiency on ccNUMA
machines will be the prime goal of the current work.

1

1
The Material Point Method

This chapter introduces the material point method as a numerical method
to solve problems involving large deformations. Firstly, a brief overview of
the material point method is provided. In the following sections, the basic
algorithmic structure of the material point method is explained in detail after
which each step in MPM is discussed. Finally, this chapter concludes with
challenges encountered in parallelization of the material point method and
overall overview of the literature survey.

1.1. Introduction
Numerical simulations of large deformation problems, such as the impact of subma-
rine landslides on pipelines, driving monopiles into the ground are technically the
challenging problems in computational science. Although widely used traditional fi-
nite element method has been successfully solving majority of problems of scientific
and academic interest, they are not suitable for problems involving large deforma-
tion since the Lagrangian mesh moves and distorts with the material causing mesh
distortions and mesh tangling.

In Eulerian formulations the governing equations are solved on the fixed grids,
and the material moves through the mesh, which helps Eulerian description to deal
with highly distorted motion. There are also some mixed methods which combine
the advantages of these two descriptions and avoid their disadvantages such as
Arbitrary Lagrangian-Eulerian method. The Material Point Method was born as a
simple ALE method but with focus on problems in solid mechanics.

1.2. MPM Functioning
The material point method is used to solve the partial differential equations that
describes deformation process of continuum bodies. A continuum is represented
as a set of material points or particles which store all physical properties of the
material such as mass, velocity and stresses. The solution of the partial differential

3

1

4 1. The Material Point Method

Figure 1.1: Material Points laid over fixed Eulerian Grid

equations is obtained at the material points. The material points move through
the mesh over time, representing the deforming body. On the background grid,
the equations of conservation of momentum is solved in the same way as with the
finite element method. The weak form of the conservation of linear momentum is
derived by multiplication with a test function and integration over the domain. The
solution of this weak form is then approximated by a linear combination of the basis
functions, where each basis function is associated with a degree of freedom. The
Figure 1.1 illustrates the concept of Material points laid over the fixed Eulerian grid
[5].

1.3. Review of MPM algorithm
Each incremental step in the MPM consist of mapping particle attributes to nearby
nodes of the background mesh to allow governing equations to be solved. On the
background grid, the equation of motion is solved in updated Lagrangian frame.
After the Lagrangian calculation, the velocities and accelerations are mapped from
element nodes to the particles, and the particle position and field variables are then
updated for the next step. Because the background mesh is fixed in space, mesh
distortions is avoided. The Figure 1.2 pictorially explains the basic steps of the
Material Point Method.

The standard MPM algorithm is described in [3] briefly as follows. In the follow-
ing equations, subscript 𝑖 denotes the value of the grid node 𝑖, subscript 𝑝 denotes
the value of material point 𝑝, and superscripts 𝑛 and 𝑛 + 1 denote the value at
time step 𝑛 and 𝑛 + 1 , respectively. 𝑆።፩ = 𝑁።(𝑋፩) is the shape function of node
𝑖 evaluated at particle 𝑝, and 𝐺።፩ = ∇𝑁።(𝑋፩) is the gradient of the shape function
of the node 𝑖 evaluated at particle 𝑝. MPM algorithm can be summarized as follows.

1. Map the particle variables to the grid nodes to establish their momentum

1.3. Review of MPM algorithm

1

5

Figure 1.2: Basic steps in MPM Algorithm

equations. The mass of grid node 𝑖 can be obtained by mapping the mass of
those particles located in the cells connected to the grid node 𝑖, namely

𝑚፧። =∑
፩
𝑚፩𝑆፧።፩ (1.1)

The momentum of the grid node 𝑖 can be obtained in a similar fashion as

𝑝፧። =∑
፩
𝑚፩𝑣፧፩ 𝑆፧።፩ (1.2)

The force on grid node 𝑖 can be calculated as

𝑓፧። = (𝑓።፧፭።)፧ + (𝑓፞፱፭።)፧ (1.3)

where 𝑓።፧፭። and 𝑓፞፱፭። can be calculated differently.

2. Update the momentum of grid node 𝑖 using explicit time integration scheme.

𝑝፧ዄኻ። = 𝑝፧። + 𝑓፧። Δ𝑡 (1.4)

both 𝑝፧ዄኻ። and 𝑝፧። are set to zero on the fixed boundary.
3. Map the nodal results back to particle 𝑝 to update its position 𝑥፧ዄኻ፩ and velocity
𝑣፧ዄኻ፩

𝑥፧ዄኻ፩ = 𝑥፧፩ + 𝑣̄፧ዄኻ፩ Δ𝑡 (1.5)

𝑣፧ዄኻ፩ = 𝑣፧፩ + 𝑎፧፩Δ𝑡 (1.6)

where

𝑣̄፧ዄኻ፩ =∑ 𝑝፧ዄኻ።
𝑚፧።

𝑆፤።፩ (1.7)

𝑎፤፩ =∑
𝑓፧።
𝑚፧።

𝑆፧።፩ (1.8)

4. Update the particle stress using a constitutive model.

1

6 1. The Material Point Method

1.4. Parallelization of the Material Point Method
Parallelization of the Material Point Method [2] poses huge computational challenge
for simulations involving millions of degrees of freedom and thousands of elements.
This work takes necessary steps to accelerate MPM on computing architectures.

Historically Parker[7] developed a parallel MPM code using MPI. A parallel com-
putation with 16 millions particles was executed by Parker and co-workers in Mas-
sively Parallel Processing (MPP) machines. MPI is an application program inter-
face to design parallel code, which supports distributed memory computing such
as nodes and cluster. In a parallel MPM developed by Parker (2006), the compu-
tational domain was decomposed into many patches.The information about neigh-
boring patched was exchanged via explicit send and receive operations.

In shared memory machines, parallelization for MPM [1] could be achieved us-
ing OpenMP. OpenMP has significant advantage of allowing program to be incre-
mentally parallelized. OpenMP [4] is suitable for shared memory machines such
as multi-core computers, symmetric multiprocessing machines and ccNUMA nodes.
Although shared memory machines can never compete with distributed memory
machines for large scale simulations, the high performance computational environ-
ment can be setup by arranging multiple of these SMPs easily and cheaply. There-
fore in this work, we will be focusing on adopting some techniques which make
MPM code faster and efficient for SMP architecture.

Figure 1.3: Shared memory computing infrastructure

The Figure 1.3 depicts typical shared memory computing environment in which
multiple cores share the same memory.

One of the core computational kernels for MPM code is particle to grid inter-
polation process. The interpolation process requires interpolating nodal data from
particles in unstructured grid and vice-versa. These unstructured grid poses sig-
nificant challenges in terms of computational efficiency due to relative complex
nature of unstructured data. This is because, the particles are distributed randomly
throughout the mesh, and interpolating the nodal data from particles require ran-
dom access to an unstructured grid data structure. This random access poses a

1.5. Parallelization Strategies for MPM on ccNUMA systems

1

7

significant performance challenge due to inefficient use of caches of modern com-
puting architectures. Managing cache is critical to achieving high performance on
cache based machines. A common technique is to partition or block data into pieces
that can fit comfortably in as high a level of the cache as possible and is the main
theme of the current work.

1.5. Parallelization Strategies for MPM on ccNUMA
systems

NUMA or Non-uniform memory access is a shared memory architecture used in
today’s multiprocessing systems. Each CPU is assigned its own local memory and
can access memory from other CPUs in the system. Local memory access provides
a low latency - high bandwidth performance, while memory access owned by other
CPUs has higher latency and lower bandwidth performance.

Like most every other processor architectural feature, ignorance of NUMA can
result in sub-par application memory performance. Fortunately there are steps to
be taken to mitigate any NUMA based performance issues or to even use NUMA
architecture to the advantage of the parallel application. Figure 1.4 shows typical
NUMA computing infrastructure.

Figure 1.4: NUMA architecture

The most significant advantage of NUMA architecture is a hierarchical shared mem-
ory scheme to potentially improve average case access time through introduction
of fast local memory and provide scalable solution for parallel application [6] .

1.6. Anura3D- a 3D unstructured Finite elementMPM
software

Anura3D is a software tool for MPM analysis developed by the MPM research com-
munity. This software is a 3D implementation of the material point method and it
is used for simulating the physics involved in soil-water structure interaction and
large deformation problems.

1

8 1. The Material Point Method

1.6.1. Calculation process with Anura3D
The process to perform a numerical simulation consists of three parts.

1. Creation of input data (pre-processing with GID software).

2. Calculation with Anura3D software.

3. Visualization of the results with Para-View.

The scheme of the procedure is shown in Figure

Figure 1.5: Schematic Diagram of Numerical Simulation with Anura3D

1.7. Focus of this research work
Optimization of MPM code on NUMA architecture involves the implementation of
clever strategies for improved data access. This research work will focus on the
implementation of few of these strategies for the particle to grid interpolation kernel
in MPM code and observe its effect on scalability and parallel efficiency.

In this research work, we will be working with ccNUMA machine comprising two
NUMA nodes each having 8 cores, each computing core having 32KB of L1 cache,
256 KB of L2 cache, 20 MB of shared L3 cache and 32GB of RAM.

This research work will focus on implementing three strategies for accelerating
MPM code in ccNUMA architecture which are described as follows :

1. Implementation of space filling curve for improved data access pattern in
unstructured 3D finite element mesh.

2. Incorporation of hyper-threading and thread affinity policies for improved
management of computing resources.

3. Incorporation of first touch principle for allocating memory local to each pro-
cessing core.

4. Use of special abilities of OpenMP 4.0 for shared memory parallelization in
the computational working loops.

1.8. Report Overview

1

9

In short the main goal of the project work is to make current MPM 3D code scal-
able and efficient on Cache Coherent Non-uniform Memory access machines, so
that large problems can be solved easily making judicious use of computational
resources.

1.8. Report Overview
Chapter 2 describes in depth about trends in modern computing architectures, ex-
plains single and multi-core machines and gives an overview about practicing high
performance computing on these machines in an efficient manner.

Chapter 3 lists the elements of parallel computing, and explains about quantify-
ing parallelism and put little focus on benchmarking and performance modeling of
the modern computing architectures by sketching Roofline Model .

Chapter 4 takes deep dive into cache aware computing according to the space
filling curves and various algorithms for generating it efficiently even for large finite
element meshes.

Chapter 5 explains the benchmark problems and concludes the kind of analysis
to be performed on those problems.

Chapter 6 gives an overview of the Space Filling Curve toolbox developed dur-
ing period of literature survey and explains little bit in depth about it’s working.

chapter 7 Discusses results about different benchmarks problem considered in Chap-
ter 5

This document finishes with conclusion and future work provided in the Chapter
8. Mainly, we discuss here about the work completed and strategic plan to be ex-
ecuted in coming couples of month for accelerating The Material Point Method
for modern computing architectures.

References
[1] A. E et al Candel. A massively parallel particle in cell code for simulation of field

emitter based electron sources. Nuclear Instruments and Methods in Physics
Research, 558:154–158, 2006.

[2] Kevin P. R et al. A comparison of parallelization strategies for the material point
method. World Congress on Computational Mechanics.

[3] P. Huang et al. Shared memory openmp parallelization of explicit mpm and its
applications to hypervelocity impact. CMES, 38(2):119–147, 2008.

[4] Michel Goossens, Frank Mittelbach, and Alexander Samarin. Using OpenMP :
portable shared memory parallel programming. The MIT Press, 2007.

1

10 References

[5] Vinh Phu Nguyen. Material point method : basics and applications. 2014.

[6] D Ott. Optimizing applications for numa. 2011.

[7] S. G Parker. A component based architecture for parallel multi-physics pde
simulation. Future Generation Computer System, 22:204–216, 2006.

2
Emerging Computing

Architectures

High Performance Computing is the use of supercomputers and parallel pro-
cessing techniques for solving complex computational problems. HPC tech-
nologies focus on developing parallel processing algorithms and systems by
incorporating both administration and parallel computational techniques. In
this chapter, we will focus on relevant modern trends in high-performance
computing, architectural aspects and optimization strategies to be employed
for achieving peak performance on these machines.

2.1. Single Processor Computing
In order to write efficient codes, it is very important to understand computer ar-
chitectures. The difference between two codes that compute the same result can
be orders of magnitude depending on how well the algorithm is coded for modern
processor architecture. While computers can differ in a number of details, but they
also have many aspects in common. On a high level of abstraction, they can all be
described as Von Neumann architectures .

In scientific computing much attention is paid to movement of floating point
data between memory and processing core and can be summarized basically in
three instructions.

1. fetch

2. execute

3. store

Modern processing units are more complicated in a sense that, they can execute
various instructions simultaneously. This is basically an idea of superscalar CPU
architecture and is also referred to as Instruction Level Parallelism (ILP). The main

11

2

12 2. Emerging Computing Architectures

statistics for CPUs is their Gigahertz rating implying speed of the processor. While
speed obviously relates to how fast a processor can operate on data and but second
most important issue becomes how fast useful data can be brought to the process-
ing core which is described by memory bandwidth. In modern scientific computing,
one of the biggest challenges is to provide data hungry processing unit with useful
data as fast as possible and this chapter will pay plenty of attention to processes
that move data between processor and memory and it’s efficient ways.

2.1.1. Modern Processor
Modern processor are quite complicated and this section will give short overview of
different parts of modern processor.

Instruction Handling
The von Neumann architecture assumes unrealistically that all instructions are han-
dled sequentially. Over last two decades modern processor have used out of order
instruction handling where instructions can be handled differently than specified by
the program only when reordering the instruction leaves the results of the execution
unchanged.

Figure 2.1: Intel Sandy Bridge micro-architecture

In the figure 2.1, we see various units concerned with instruction handling. This
cost significant amount of energy and large amount of transistors to carry out out
of order instruction handling.

2.1. Single Processor Computing

2

13

Floating Point Unit
In domain of scientific computing, floating point computation is of utmost interest
and for this reason, cores have considerable fragility for treatment of numerical
data. Earlier, the processors used to have single floating point unit, but these days
processors are capable of executing simultaneously multiple instruction per clock
cycle.

One of the strategies modern processor use is Fused Multiply Add unit, which can
execute the instruction 𝑥 ← 𝑎𝑥+𝑏 in the same amount of time as separate addition
or multiplication which means nowadays asymptotic speed of several floating point
operations per clock cycle can be achieved easily. For some algorithm division
operations are a limiting factor. Division operators can take upto 10 or 20 clock
cycles, while a modern CPU can have multiple addition or multiplication units that
can asymptotically produce same results per cycle.

Pipelining
The floating point add and multiply units of a processor are pipelined, which has the
effect that a stream of independent operations can be performed at an asymptotic
speed of one result per clock cycle.

Figure 2.2: Schematic depiction of a pipelined operation

A pipelined processor can speed up the operations by a factor of 4 to 6 times as
compared to earlier CPUs, but amount of speed-up one gets from pipelined CPU is
limited.

Peak Performance
In modern CPUs there is simple relation between clock speed and the peak perfor-
mance. Since each FPU can produce one result per cycle asymptotically, the peak
performance is clock times the number of independent FPUs. Mostly these days
floating point performance is measured in gigaflops, multiples of 10ዃ flops.

2

14 2. Emerging Computing Architectures

Superscalar Processor
Superscalar processors analyze several instructions to find data dependencies and
execute instructions in parallel. Some of the key points in superscalar processor
are :=

1. multiple issue : Instructions that are independent of each other can be
executed in parallel.

2. branch prediction and speculative execution : compiler can guess whether
a conditional instruction will evaluate to true and act accordingly.

3. out of order execution: instructions can be reordered if they are not de-
pendent on each other.

4. prefetching : data can requested before any instruction needing is actually
encountered.

2.1.2. Memory Hierarchy
In modern day processor, there are various memory levels between processing
core and the main memory, the registers, the caches are together called memory
hierarchy.

Buses
These wires are mainly responsible for moving data around the computer, from the
memory to the CPU. The most important for us is Front side bus which connects the
processor to memory. This is distinguished by north and south bridge. The figure
2.3 typically shows bus structure of modern processor.

Figure 2.3: Schematic Bus structure of a processor

The bus is typically slower than processor operating with clock frequency of
O(1GHz) which is way slower than CPU clock frequency. This is one of main reason
that memory hierarchy are needed with the fact that, processor can consume many
data items per clock ticks.

2.1. Single Processor Computing

2

15

2.1.3. Latency and Bandwidth
There are two important concept to describe the movement of data : latency and
bandwidth. The idea is requesting a data incurs a initial delay, if this item was first
in stream of data, the remainder of the stream will arrive with no further delay at
regular amount of time.

1. Latency : It is the delay between the processor issuing a request for a mem-
ory item and the item actually arriving. There are various types of latencies
involving transfer from memory to caches, caches to registers and can be
summarized into latency between memory and processor. Latency can be
measured in nano seconds .

2. Bandwidth : Bandwidth is the rate at which memory arrives after the initial
latency. Bandwidth is measured in bytes per seconds. It is typically a product
of bus speed and bus width : the number of bits that can be simultaneously
transferred every clock cycle.

One of the main important issue is to program in such a way that, processor uses
data from cache or register avoiding repeated interaction with the main memory.

2.1.4. Registers
Every processor has small amount of memory that is internal to processor specially
called On Chip, the registers , or together the register file. Registers have low la-
tency and high bandwidth because they are part of the processor. Data movement
between registers and processing core is instantaneous. Typically processor has 16
or 32 floating point registers. Memory transfer between hierarchies is really expen-
sive and therefore simple optimization would be to keep data is register whenever
possible.

There is a limit to how many quantities can be kept in registers, trying to keep
too many quantities in register is called register spill and lowers the performance
of the code. This optimization is typically referred to as compiler optimization.

2.1.5. Caches
The memory where lots of data can reside for longer amount of time are various
level of caches that have lower latency and high bandwidth where data are kept for
an intermediate amount of time.

Data frommemory travels through the caches upto the registers. The advantage
to having cache memory is that if a data is reused shortly after it was first needed,
it will still be in cache, and therefore can be accessed much faster than if it would
have to be brought in again from the main memory.

There is important difference between cache memory and registers, while the
data is moved into registers by explicit assembly instructions, the move from main
memory to cache is entirely done by hardware. Thus cache use and reuse is outside
the programmer control.

2

16 2. Emerging Computing Architectures

Cache levels, speed and size
The caches are called level 1 and level 2 (short for L1 and L2) cache and some
processor also have L3 cache. The L1 and L2 cache are part of the chip whereas
in most recent development L3 is off-chip.The L1 cache is small, typically around
16Kbytes to 32Kbytes but it is much faster. The L2 cache is bigger around hundreds
of Kbytes to few Megabytes, but is slower and L3 is more plentiful and also slower.

Data needed in some operations gets copied into various levels of caches up to
the main processor, if some instructions later, a data item is needed again, it is first
searched in L1 cache, if it is not found there it is searched in L2 cache and if it also
not found there it is searched in L3 cache or the main memory.

Figure 2.4: Memory Hierarchy of Intel Sandy Bridge

The Figure 2.4 illustrates the basic facts of the cache hierarchy, in this case for
Intel Sandy bridge chip.The closer caches to processing core, the faster but also
smaller.

1. Loading data from register is so fast that it does not contribute to time limi-
tation for any numerical algorithm.

2. The L1 cache is small, but sustains a bandwidth of 32 bytes per cycle.

3. Main memory access has a latency of more than 200 cycles and bandwidth of
4.5 Bytes per cycle, which is about 1/7th of the L1 bandwidth.However this is
again shared by multiple core of a processor chip, so effectively the bandwidth
is fraction of this number. Most clusters will also have more than one socket
per node, typically 2 or 4, so some bandwidth is spent of maintaining cache
coherence again reducing bandwidth available for each chip / processor core.

We see that the larger caches are unable to provide enough data to the proces-
sors. For this reason it is necessary to code in such a way that data is kept as much
as possible in the highest cache level for longer period of time.

2.1. Single Processor Computing

2

17

Types of Cache misses
There are three types of cache misses.

1. Compulsory miss : This occurs the first time you give reference to data,
and this is unavoidable.

2. Capacity miss : The next type of cache misses is due to the size of working
set, a capacity cache miss is caused by data having been overwritten because
the cache simply cannot contain all of the data. If we have to avoid this type
of cache miss, we need to partition data into chunks that are small enough
that data can stay in cache for appreciable amount of time,assuming that data
is operated multiple times.

3. Conflict miss : This type of miss occurs when one data gets mapped to
same cache location as another, while both are still needed for computation.

Cache Line
Data movement between memory and cache, or between caches is not done in
single bytes, or even words. Instead, the smallest unit of data moves is called
a cache line, sometimes referred as cache block. A typical cache line size is 64
bytes or 128 bytes which in context of scientific computing implies 8 or 16 double
precision floating point numbers.

It is really very important to understand the importance of cache line, since any
memory access costs the transfer of several words. An efficient program then tries
to use the other items on the cache line, since access to them is effectively free.
This phenomenon is visible in codes that accesses arrays by unit stride.This is also
one of the key-points of the current work.

Figure 2.5: Cache block and unit stride access

Reuse is the Key
The presence of one or more caches is not immediately a guarantee for success in
high performance computing, and this largely depends on memory access pattern
of the code and how well it is able to exploit the cache behavior. The conclusion is
there should be an opportunity for an algorithm to have data reuse, which in many
problems of scientific computing are inherently presents within numerical formu-
lation of mathematical procedures. Therefore these kinds of numerical algorithm
should be coded in such a way to fully and effectively utilize ability of cache for
improved floating point performance.

2

18 2. Emerging Computing Architectures

2.2. Multicore architectures

Figure 2.6: A typical multicore chip

In recent years, performance limits have been reached for traditional processors
because of the following reasons :

1. Clock frequency can not be increased further due to increased energy con-
sumption, increase in current leakage.

2. It is not possible to extract more Instruction Level Parallelism (ILP) from codes
due to compiler limitations.

One of the ways to further increase the utilization of the computing resources is
to move from traditional single core architecture to multiple processing cores which
also introduces idea of task and data parallelism producing overall higher efficiency
because two cores of lower frequency can have the same throughout as a single
processor at a higher frequency: hence reducing energy consumption. A typical
multi-core chip is shown in figure 2.8

With the mix of shared and private caches, the programming model for multi-
core processor is becoming hybrid between shared and distributed memory.

2.2. Multicore architectures

2

19

1. Core : The core can have their own private L1 and L2 cache and different
cores can communicate in distributed computing fashion.

2. Socket : On one socket, L3 cache can be shared by multiple cores.

3. Node : There can be several socket on one node typically 2-4 accessing
shared memory also provided by other sockets.

2.2.1. Node architecture and Sockets

Figure 2.7: Schematic Diagram of Typical Node with 2 sockets

Uniform Memory Access
Uniform memory access is a shared memory architecture used in multicore chips.All
the processor core in UMA model share the physical memory uniformly. In a UMA
architecture, access time to a memory location is independent of which processor
makes the request or which memory chip contains the transferred data.

With UMA systems, the CPUs are connected via system bus to the Northbridge.The
Northbridge contains the memory controller and all communication to and from
memory must pass through Northbridge.The I/O controller, responsible for manag-
ing I/O to all devices, is connected to the Northbridge.Therefore every I/O has to
go through the Northbridge to reach the CPU.

Multiple buses and memory channels are used to double the available bandwidth
and reduce the bottleneck of the Northbridge.To increase the memory bandwidth
even further some systems connected external memory controllers to the North-

2

20 2. Emerging Computing Architectures

Figure 2.8: Uniform Memory Access Architecture

bridge, however due to internal bandwidth of the Northbridge UMA is considered
to have a limited parallel scalability and efficiency.

Non-Uniform Memory Access
In order to improve parallel scalability and efficiency , there were number of changes
made to shared memory architecture.

1. Non-Uniform memory access organization.

2. Point to Point Interconnect topology.

3. Scalable cache coherence solutions.

NUMA moves away from a centralized pool of memory and introduces topolog-
ical properties. By classifying memory location bases on signal path length of the
processor to the memory, latency and bandwidth bottlenecks can be avoided.

Figure 2.9: Non Uniform Memory Access Architecture

The Figure 2.9 typically explain NUMA organization. Each CPU has its own mem-
ory address space. The memory connected to the memory controller of the CPU1 is

2.2. Multicore architectures

2

21

considered to be local memory. Memory connected to another CPU socket (CPU2)
is considered to be foreign or remote for CPU1. Remote memory access has addi-
tional latency overhead to local memory, as it has to traverse an interconnect and
connect to the remote memory controller.

Scalability of Cache in NUMA
The intel Sandy bridge Architecture has scalable ring on die interconnect for L3
cache. In this way each core has private path to L3 cache and this allowed intel
to partition and distribute L3 cache in equal slices. This provides higher bandwidth
and associativity. The Figure 2.10 shows die configuration of typical intel Xeon CPU.
Each slice is 2.5MB and every other core is allowed to access other slice as well.

i

Figure 2.10: Die Configuration of Intel Xeon CPU of Braodwell Microarchitecture v4

The advantage of the NUMA architecture as a hierarchical shared memory scheme
is its potential to improve average case access time through the introduction of fast,
local memory.

2.2.2. Intel’s HyperThreading/ Simultaneous Multi-threading
Hyper-threading or SMT is a term used by Intel to describe their technology which
makes a single CPU core appear to the operating system as two CPU cores. The

2

22 2. Emerging Computing Architectures

operating system thus treats the core like it would treat any multi-core by sending
it multiple threads simultaneously. Essentially Intel has duplicated highly used por-
tions of the CPU core and allowed these sections to be used by separate threads
simultaneously. These hyper threading capable cores are not exactly the same as
multi-cores; nor just any any thread can be executed simultaneously with another
thread, it has to use a separate part of the core for it’s operation.

Advantages of Hyper-threading
Intel claims that the duplication of the certain sections of the CPU core increase
the size of the core by about 5 percent, while giving a performance boost by 30
percent.

Disadvantages of Hyper-threading
One disadvantage in many application is the high power consumption of hyper-
threaded core and indeed all SMT cores. Furthermore comparing hyper-threaded
CPU core with a non hyper-threaded CPU one sees more effect of cache thrashing
in hyper-threaded core.

2.2.3. Performance Issues in NUMA machines
Cache Coherency
With respect to parallel processing which we will discuss in next chapter, there is
huge potential for conflict if multiple processing core has the same copy of data in
in its cache. The problem of ensuring that all cached data are an accurate copy of
main memory is referred to as cache coherence.

Suppose two cores have a copy of the same data in their private L1 cache, and
one modifies its copy. Now other has cached data which is no longer validated or
has inaccurate copy of the counterpart : the processor will invalidate the copy of
the item, and in fact the whole cacheline.

This process of updating or invalidating cachelines is known as maintaining
cache coherence, and it is done on a very low level of the processor, with no
programmer involvement needed. However, it will slow down the computation,
and it wastes bandwidth that would otherwise be used for loading or storing the
operands.

False sharing
The cache coherence problem can even occur if the core accesses different items,
but they fall on the same cacheline. The most common case of false sharing hap-
pens when processing cores update consecutive location of an array.

While there is no actual data race condition, the code having above characteris-
tics will have low performance since the cacheline continuously will be invalidated.

Remote memory access
What gives NUMA its name is the memory access time varies with the location of
the data to be accessed, if data resides in local memory to the processing core, the
access is fast and if data resides in remote memory the access will be sub-optimal.

2.2. Multicore architectures

2

23

While access to local memory involves only 10 of instruction cycles, remote
memory access involves 100-130 instruction cycles which is way inefficient and
should be avoided for optimal performance.

Remote memory access can also occur, if while allocating memory master thread
allocates on one node and workers threads accessing it from other node creating
lot of penalties.

Thread migration
Today’s complex operating system assigns application threads to processor core
using scheduler. A scheduler will take into account system state and various policy
objectives before assigning applications threads to different physical cores. A given
threads will execute for some period of time before being swapped out of the core
to wait as other threads are given chance to execute.

Thread migration from one core to another poses a problem for NUMA shared
memory architecture because of the way it disassociates a threads from its local
memory allocations causing remote memory access and significant increase in total
computational time.

2.2.4. Optimization for NUMA machines
Like most other architectural features, ignorance of NUMA can result in sub par
application memory performance. Fortunately there are steps which can be taken
to mitigate any NUMA based performance issues.

Data Placement using implicit memory allocation policies
In simple case, many operating systems transparently provide support for NUMA
friendly data placement. When a single threaded application allocates memory, the
processor will simply assign memory pages to the physical memory associated with
the requesting thread’s node(CPU Package).

Some operating system will wait for the first memory access before committing
on memory page assignment. The advantage here is multi-threaded application will
be benefited since memory pages will be effectively placed local to worker threads
that will access the data.Summarizing operating system will observe the first access
request and commit page assignments based on the requester’s node location.

The two policies local to first access and local to first request together depict
the very importance of programmer knowledge of underlying operating system’s
policy.Memory allocation should be done in such a way that, it should be local to
threads accessing it rather than local to master or control thread because multiple
threads accessing the same data are best co-located on same node so as to avoid
sub-optimal remote memory access and allow NUMA system to provide character-
istic performance speed-up.

Processor affinity
Processor affinity is the persistence of associating a thread/process with particular
resource instance, despite availability of other instances. It is the programmer’s
responsibility to decide whether processor affinity solutions are right for particular

2

24 References

applications because restricting scheduler options may significantly harm the sys-
tem performance where better resource management could have been adopted.
Exercising processor affinity ensures memory allocations remain local to the threads
that need them.

The key issue in determining whether NUMA architecture could be realized for
high performance computing is data placement. The more often that data can
be effectively be placed in memory local to the processing core, the more overall
access time will be benefited. Conversely, the more data fails to be local to the node
that will access it, the more memory performance will suffer from the architecture.

Generally in NUMA model, the time required to retrieve data from an adjacent
node within the NUMA model will be significantly higher than that required to ac-
cess local memory. Shortly as the distance from a processor increases, the cost of
accessing memory increases.

References
[1] Victor Eijkhout. Introduction to High Performance Scientific Computing. The

Saylor Foundation, 2016.

3
Parallel Computing

Parallel computing is a type of computing in which several processors exe-
cute or process an application simultaneously. Parallel computing helps in
performing large computations by dividing the workload into several chunks
which can individually be processed by more than one processor. This chap-
ter, we describe elements of parallel computing, its concepts, parallel pro-
gramming paradigm and performance models.

3.1. Functional Parallelism vs Data Parallelism
Data parallelism is applying similar kind of independent operations on many data
elements. This is the common scenario in scientific computing and it stems from
the fact that the data set can be spread over many processors and each working
on its part of the data.

It is also possible to find independence, not based on data elements but based
on the instructions themselves such that independent instructions can be given to
separate floating point unit or reordered for example to optimize register usage.
This is the case of functional parallelism.

3.2. Sharedmemory computing vs Distributedmem-
ory computing

3.2.1. Shared Memory Computing
A shared memory computer has multiple cores that have access to the same physical
memory. If access to the memory locations is equally fast from all cores, the ma-
chine is called symmetric multiprocessor or uniform memory access and if multiple
chips are involved, access is not necessarily uniform, meaning that from perspec-
tive of particular core, some physical memory locations can be accessed with lower
latency than others and this situation is called non-uniform memory access.

25

3

26 3. Parallel Computing

Programs for shared memory computers typically use multiple threads in the
same process. Typically one can use OpenMP directives to parallelize the serial pro-
gram. Figure 7.3 and Figure 7.4 illustrates two kinds of shared memory organization
that is uniform memory access and Non-uniform memory access.

Figure 3.1: Typical Shared Memory machine in NUMA organization

Figure 3.2: Array updating in shared memory environment

Figures 3.1 and 3.2 explains infrastructure and array updating in shared memory
environment.

Shared memory computing is the utilization of threads to split up the work in a
program into several smaller units that can run parallel within a node. These threads
share access to a certain portion of memory- hence the name shared memory
computing.

3.3. Quantifying Parallelism

3

27

3.2.2. Distributed Memory Computing
The idea of physically distributing processes across a computer cluster results in a
new level of complexity when parallelizing problems. Every problem needs to be
split into pieces - the data needs to be split and the corresponding tasks need to be
distributed as well. To this end, data or information required by other processes will
be gathered into chunks that are then exchanged between processes by sending
and receiving messages by message passing protocol.

Figure 3.3: Communication network in distributed memory cluster

Distributed memory computing has many advantages :

1. We can add more compute power, either in form of additional cores , sock-
ets,or nodes in a cluster.

2. With every additional node added to the cluster, more memory is available
and compute arbitrarily large models can be solved.

3. Scalability of distributed memory system is much higher than shared memory
system that is speed-up will saturate at a much larger number of processes
compared to number of threads used.

Complexity and amount of communication in parallelizing an application increases
as the number of nodes, sockets, cores increases and this create additional burden
for optimized parallel programming approach.

3.3. Quantifying Parallelism
There are many reasons to use parallel computers, but the two most important
ones are memory gain and higher performance.

3.3.1. Speed Up and Efficiency
Speed Up
A simple way to define speed-up is to compare the time taken by the same program
on the serial and the parallel computer. With 𝑇፬ denoting the serial time and 𝑇፩
denoting time taken on the parallel computer with 𝑝 processors, the speed-up 𝑆
can be defined as

3

28 3. Parallel Computing

𝑆 = 𝑇፬
𝑇፩

(3.1)

Ideally the speed-up can be 𝑝, but in practice we cannot expect it to attain
because of many issues and one of the very important is communication and the
other one is synchronization which together are heavy source of inefficiencies.

Embarrassingly Parallel
There are many problems which are solved with minimum or no communication
and such programs are very efficient on parallel machines. Such problems, in effect
consist of number of completely independent calculations and it will have close to
perfect parallel speed-up and efficiency.

Super Linear Speed-up

Figure 3.4: Parallel Scalability

It is also possible to achieve super-linear speed in some very specialized cases
where single processor computing involved regular interaction with RAM, but multi-
core computing properly fits all data into highest level of cache improving its cache
behavior and overall scalability.

Parallel Efficiency
An important performance metric for parallel program is parallel efficiency. Parallel
efficiency 𝐸፩ with 𝑃 as number of processor is defined by

𝐸፩ =
𝑇፬

𝑃 ∗ 𝑇፩
(3.2)

where 𝑇፬ and 𝑇፩ are defined above.

3.4. Strong and Weak Scalability

3

29

Amdahl’s Law
One of the main reason for less than perfect speed-up is the presence of inherently
serial fraction which cannot be parallelized at all. Amdahl’s law relate speed-up with
serial and parallel fraction of the code. Let’s suppose that 𝐹፬ be the serial fraction
of the code and 𝐹፩ be the parallel portion of the code such that 𝐹፬ + 𝐹፩ = 1. Then
𝑇፩ parallel time according to Amdahl’s law is

𝑇፩ = 𝑇፬
𝐹፬ + ፅᑡ

ፏ
(3.3)

where P is number of processors.
According to Amdahl’s law as number of processor grows, the 𝑇፩ approaches

𝑇፬𝐹፬. The conclusion is speed-up is limited by 𝑆 ≤ 𝐹፬ and efficiency is decreasing
function of 𝑃 ;𝐸 ≈ ኻ

ፏ
In a way, Amdahl’s law is optimistic way of expressing speed-up. In reality

communication overhead will lower the speed up attained.

Amdahl’s Law and Hybrid Programming
Suppose we have p nodes with c cores each and 𝐹፩ describes the fraction of the
code that uses c-way thread parallelism. Then the Amdahl’s law would describe
parallel time as

𝑇፩ =
𝑇ኻ(1 + 𝐹፬(𝑐 − 1))

𝑝𝑐 (3.4)

3.4. Strong and Weak Scalability
Splitting a problem over more and more number of processors does not provide
any significant benefit since there is just not enough work for each processor.

3.4.1. Strong Scalability
Strong scalability has the same effect as speed-up. Application is scalable if speedup
is perfect or near perfect, that is execution time goes down with increasing number
of processor for fixed problem size.

3.4.2. Weak Scalability
Weak scalability is more vaguely defined term, since as problem size and number
of processor grow in such a way that amount of data per processor stays constant
and execution time also stays constant.

3.5. Roofline : Performance Model for Multi-core Ar-
chitectures

Conventional wisdom in computer architecture produced similar designs, Nearly ev-
ery desktop and server computer uses caches, pipelining, superscalar instructions,
and out of order execution.

3

30 References

3.5.1. Roofline Model
In foreseeable future, off the chip memory bandwidth will be the limiting factor in
floating point performance and the model which relates processor performance to
the off-chip memory traffic for particular machine is called Roofline Model.

Operational Intensity
Operational intensity is the term used to describe operations per byte of DRAM
traffic, defining total bytes as transaction between main memory and the processor
filtering through cache hierarchy. Thus, operational intensity predicts the DRAM
bandwidth needed by particular computational kernel on a specific machine. The
Roofline model ties together floating point performance, operational intensity, and
memory performance in 2D graph.

Figure 3.5: A Roofline Model alogn with optimization strategies

The Roofline sets an upper bound on performance depending of the kernel’s
operational intensity. Assuming operational intensity as column that hits the roof,
it can hit the flat part depicting the kernel is compute bound otherwise it’s memory
bound [2]. The Figure 3.5 shows typical Roofline model along with the optimization
strategies to be adopted individually for compute and memory bound kernels.

References
[1] Victor Eijkhout. Introduction to High Performance Scientific Computing. The

Saylor Foundation, 2016.

[2] Samuel Williams et al. Roofline : An insightful visual performance model for
multicore architectures. Communications of the ACM, 52(4), 2009.

4
Cache Aware Computing and

Space Filling Curves

In order to mitigate the impact of the growing gap between CPU speed and
the main memory performance, today’s computer architectures implement
hierarchical memory structures. The idea behind this is to hide both the low
memory bandwidth and the latency of main memory accesses which is slow
in contrast to the floating point performance. This chapter will focus on some
of the techniques to utilize cache behavior tailored for the unstructured finite
element code using cache aware space filling curves.

4.1. Space Filling Curves
Space filling curves are mappings from a one dimensional interval to a region in an
n-dimensional space. Space filling curves pass through every point in the region in
the n-dimensional space [10] . Since a space filling curve does not intersect itself, an
ordering of the points in the n-dimensional space can be obtained through its use.
Such curves are usually constructed through recursion, but infinite recursive calls
are necessary to construct the ideal curve to find the ordering in an n-dimensional
space. Since in real time scenario, only finite number of points are present, it is
possible to number each and every point according to the space filling curve.

The Space filling curve is a continuous object that roughly speaking, maps a
higher dimensional space for example 𝑅ኼ and 𝑅ኽ onto one dimensional space [10].
Mathematically speaking

𝑐 ∶ (1, ...𝑛)፝ ⇒ (1, ...𝑛፝) (4.1)

These curves strongly enjoy the local properties which makes them suitable for
many applications in computer science and scientific computing.

In the 𝑑 dimension, the SFC provides an ordered enumeration of a virtual Carte-
sian grid of size 2፝፩ where is 𝑝 is depth of the recursion in which our computational

31

4

32 4. Cache Aware Computing and Space Filling Curves

domain is fully embedded. The index is found by the cube in which entity stands.
In the following sections we will briefly outline the calculation of the space filling
curve indexes. Figure 4.1 shows a typical space filling curve.

Figure 4.1: Typical Space filling curve

Meshes plays an important role in the numerical solution of the Material Point
Method in a given geometric domain. Accuracy of the solution strongly depends on
the shape and the size of the meshe. With the advent of modern computing and
multi-core architectures larger meshes can easily ve solved with reasonable amount
of time.

In this research work we use the space filling curves to reorder the elements
and vertexes of underlying finite element mesh to exploit the memory architecture
in shared memory, multi-core machines. Using space filling curves for reordering
can result in improved spatial and temporal locality, therefore improving the data
access pattern and cache behavior.

A mesh may be used several times with different boundary conditions and
renumbering the mesh elements and vertexes is not additional burden on the solver,
since mesh reordering is kind of pre-processing step.

4.2. Cache aware computing using the Space Filling
Curve

Mesh renumbering using space filling curve has a significant impact on the efficiency
of the code and it is even more influential for the numerical methods discretized on
the unstructured meshes.

Cache aware computing for SFC includes several advantages such as :

4.2. Cache aware computing using the Space Filling Curve

4

33

1. Reducing the number of caches misses during indirect addressing loops.

2. Reducing the cache line overwrites and the problems of cache coherency in
the shared memory computing environment specifically for the NUMA nodes.

Cache misses are due to the indirect addressing and they occur when the data
required for a computation do not lie in the cache line. For instance, in particle to
grid interpolation a loop traversing the elements request access to its vertexes will
suffer from constant cache miss due to random numbering of the vertexes. Cache
misses are far more costlier than any other operations in numerical context which
can be seen below.

1. L1 Cache miss ≈15 cycles

2. L2 Cache miss ≈300 cycles

As space filling curves order the points based on their spatial proximity, it is
possible to extract spatial locality in their access pattern by ordering these points
appropriately. Traversing the ordering created by the space filling curve results in
the higher temporal locality specially for finite element meshes.

In this master’s project the space filling curves are used to reorder vertexes in
a way to favour geometric closeness in the original mesh. In this way they also lie
close in memory in such a way that vertexes that are close in the physical domain
also lie very close in memory and hence 90 percent of the cache misses can be
avoided compared to an unordered meshes.

Figure 4.2: Lexicographical Ordering

Figure 4.2 shows naive lexicographical ordering, in which data points which are
close geometrically are far away in memory particularly with the stride of one row,

4

34 4. Cache Aware Computing and Space Filling Curves

Figure 4.3: Z Order Space filling curve

but Z-order space filling curve shown in Figure 4.3 shows geometrical closeness
and closeness in memory of the data points in the computational domain.

4.3. Enhancing SharedMemory Parallelization by Space
filling curve

Using meshes and matrices in scientific computing leads inevitably to complex al-
gorithms where indirect memory accesses are needed.Typically in particle to grid
interpolation in Material Point Methodmultiple threads spread across the number of
elements may want to update the data associated with same vertex and therefore
will leads to conflict based updating which is either done by introducing locks which
decreases degree of parallelism or by phenomenon of reduction.

Renumbering according to space filling curves becomes de facto [4] mandatory
when dealing with indirect memory access in such kernels.

4.3.1. Efficient Out of Core Parallelization using SFC
A proper mesh partitioning strategy is one of the crucial task both for shared and
distributed memory computing. The critical issue of minimizing synchronization in
shared memory and communication in distributed memory remains a challenge.
The space filling curve reshapes the mesh into blocks which can either be given
to different cores in shared memory environment or different CPUs in distributed
memory as shown in Figure 4.3.

4.4. Parallel Generation of SFC for 3D unstructured Finite Elements

4

35

The following algorithm can be used for efficient mesh partitioning for multi-core
architectures.
Algorithm 1: Efficient Mesh Partitioning for Multi-core architecture
Data: 3D Input Mesh
Result: Mesh Partition using Space filling curve
1. Get the index of each element/ vertex based on space filling curve.

2. Sort the elements to reorder the mesh.

3. Subdivide the sorted list into p sublist where p can be number of cores in
ccNUMA node or can be the number of distributed memory computing
processor in a cluster.

This algorithm is extremely fast and consumes only little memory. The parti-
tion is equivalent to a 𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑖𝑛𝑔 + 𝑠𝑜𝑟𝑡𝑖𝑛𝑔.This algorithm works very well for
structured and unstructured finite element meshes.

4.4. Parallel Generation of SFC for 3D unstructured
Finite Elements

This section presents simple and efficient algorithm to compute cache friendly lay-
outs of the unstructured 3D finite element mesh. Space filling curves helps to
minimize cache misses and page faults by arranging vertices, triangles or tetrahe-
drons in spatially structured manner. This algorithm provide comparable results to
COML : optimal cache oblivious mesh layout, and is orders of magnitude faster and
is embarrassingly parallel.

4.4.1. Mesh Layout in ANURA3D
The mesh representation used in ANURA3D is the element-vertex format where
each mesh is represented by two separate arrays ; a vertex array 𝑉 holding vertex
geometries (𝑥, 𝑦, 𝑧) location and element array 𝐸 holding vertex indices. Vertex can
be shared among different elements having same index in both the element. The
figure 4.4 graphically shows the 10 noded 3D element used in current work.

Figure 4.4: Typical 10 noded 3D Element

4

36 4. Cache Aware Computing and Space Filling Curves

4.4.2. Morton Space Filling Curve
We have currently implemented Morton order (also known as Z-order) or Bit -
interleaving curve [5] for simplicity and efficiency in implementation and layout
computations. This layout is comparable to more sophisticated Hilbert space fill-
ing curve [5] which is better in locality preserving, is expensive and complicated
for implementation and computation. Z-order curve implementation can easily be
extended for large meshes and has been implemented in current research work.

Figure 4.5: Morton order space filling curve ordering in base 4 digits in 2D

Calculating Space filling curve index for the finite element mesh
The location of tetrahedron element is defined to be its centroid. In order to com-
pute Morton-order space filling curve for centroids, an implicit octree of depth N is
constructed. The root of the tree is mesh’s bounding box and leaf nodes are the
cells in 2ፍ𝑥2ፍ𝑥2ፍ of the regular cartesian grid. The index of centroid is constructed
by concatenating 𝑁 octal digits in the octree, see figure 4.5 for concatenation.

In principle since this is not a recursive implementation, 𝑁 must be large enough
to ensure that each leaf in the octree contains at most one centroid. Since octal
digits require exactly three bits, using 64 bit unsigned integer corresponding to
choosing 𝑁 = 21 which is equivalent to grid resolution of (2𝑥10ዀ)ኽ and accounts
for even the largest mesh used here in this master’s project.

Algorithm 2 describes about parallel space filling curve generation for arbitrary
unstructured 3D finite element mesh. Once, all the elements have their space filling
curve indexes vertexes are renumbered in such a way that, if element A comes
before element B, vertexes of element A are placed before vertexes of element B
[7].

Thus, the parallel space filling curve generation involves one pass over all the
elements allocating them space filling curve indexes which is linear in time com-

4.4. Parallel Generation of SFC for 3D unstructured Finite Elements

4

37

plexity, and using standard sorting algorithm for sorting them in memory and one
pass over vertexes to renumber them again according to the elements.

Algorithm 2: Parallel Space filling Generation
Input : Mesh file
1. Find out the centroids of each element.

2. Find out the bounding box, in which our computational domain can be fully
embedded. The bounding box can preferably cubic.

/* Initialize the number of levels N */
1 in parallel foreach element e in the mesh do

/* Pass the element,bounding box, Number of levels */
2 MortonOrderCurve(e,boundingbox,N) /* O(N) */
end

/* Sort the Elements according to their space filling
index */

3 std::sort(element.begin(),element.end()) /* Quick sort
algorithm takes 𝑂(𝑁𝑙𝑜𝑔𝑁) */

Algorithm 3 describes about Z-order kernel which gives every element its space
filling curve index. This algorithm has significant advantages over the other com-
petitive alternatives. The performance of above the algorithm is comparable to
more complex algorithms like one mentioned above. The Morton Order layout
is extremely easy to compute. Particularly, the finite element datasets that have
highly irregular geometric distribution may be improved using such layout [9].

However there are disadvantages associated space filling curve. Since, the or-
dering is based on the physical coordinates and may give poor results for physical
domains with extreme aspect ratios or that are embedded in a higher dimension
space e.g spherical shells (oceans) [9] .

In general, mesh construction methods are designed to produce correct meshes
rather than meshes with good data locality. Reordering the mesh can improve the
data locality such that data for particular element are close in memory. The first
touchmemory policy is to ensure that memory pages are bound to local memory on
NUMA architectures, however this does not translate into locality of memory access
if the data for physical nodes comprising an element are not located close to each

4

38 References

other in memory.

Algorithm 3: Morton order space filling curve index
Result: Morton Order Index for each element
Input : element, bounding box , number of Levels

1 Function:
2 MortonOrder(Element e,BooundingBox box,uint64 N)

3 𝑖𝑛𝑑𝑒𝑥 ← 0 ;
4 foreach each level upto N do

5 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 << 3 ; /* Concatenation with each level */
/* Set the octant using Morton order */

6 if e.centroidx > box.center.x then
7 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1
8 end

9 if e.centroidy > box.center.y then
10 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 2
11 end

12 if e.centroidz > box.center.z then
13 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 4
14 end

/* Update th bounding box to the appropriate octant */
15 foreach direction x,y,] in bounding box do
16 if e.component > box.center.component then
17 box.min.component = box.center.component
18 else
19 box.max.component = box.center.component
20 end
21 end

References
[1] V. K. Decyk. Adaptable particle in cell algorithms for graphical processing units.

Computer Physics Communications, 182(3):641–648, 2011.

[2] V. K. Decyk. Particle in cell algorithms for emerging computer architectures.
Computer Physics Communications, 185(3):708–719, 2014.

[3] Y. Dong. A gpu parallel computing strategy for the material point method.
Computers and Geotechnics, 66:31–38, 2015.

[4] F. Alauzet et al. On the use of space filling curves for parallel anisotropic mesh
adaptation.

[5] Huy T. Vo et al. Simple and efficient mesh layout with space filling curves.
Journal of Graphics Tools, 16(1):1–15, 2012.

References

4

39

[6] R. G. Joseph et al. Efficient gpu implementation for particle in cell algorithm.
IEEE Computer Society, pages 1530–2075, 2011.

[7] Shankar Sastry et al. Mesh vertex and element reordering techniques for
improved cache utilization in parallel mesh warping algorithms. Engineers
with Computers, 30(4):535–547, 2014.

[8] X Kong et al. Particle in cell simulatiosn with charge conserving current
deposition on graphic processing units. Journal of Computational Physics,
230(4):1676–1685, 2011.

[9] Mark Filipiak. Mesh reordering in fluidity using hilbert space-filling curves.
EPCC, University of Edinburgh, 2013.

[10] Sagan H. Space filling curve. Springer, 1994.

[11] K Madduri. Memory efficient optimization of gyrokinetic particle to grid in-
terpolation for multicore processors. Association for Computing Machinery,
2009.

[12] G. Stantchev. Fast parallel particle to grid interpolation for plasma pic sim-
ulations. Journal of Parallel and Distributed Computing, 68(10):1339–1349,
2008.

5
Benchmark Problem

In this chapter, we will be discussing about the two types of benchmark
problems and observe effects of optimization strategies for ccNUMA system
on simple kernel. The first benchmark problem will explain the successful
working of Space Filling Curve algorithm for arbitrary unstructured finite el-
ement mesh both for regular and adaptive grid. Second benchmark problem
will show successful working of space filling curve for one simple practical
Oedometer problem.

5.1. Space Filling Curve for Arbitrary Mesh
In this benchmark, we will be simply generating space filling curve for arbitrary
unstructured finite element mesh both for regular and adaptive grids. The Figure
5.1 shows the geometry under consideration. The table 5.1 shows normalized
dimension of the problem.

Figure 5.1: Problem Definition for Space Filling Curve

Table 5.1: Problem Dimension for SFC

Length Breath Height
1 1 1

41

5

42 5. Benchmark Problem

5.2. Oedometer Problem
This section explains benchmark problem for simulation of one dimensional problem
using two phase single point MPM formulation. The geometry of the problem is
shown in Figure 5.2.

Figure 5.2: Problem Definition for Oedometer Problem

The dimension of the problem is shown in Table 5.2 and Material properties is
shown in Table 5.3. This benchmark allows to verify the space filling curve imple-
mentation for practical problem.

Table 5.2: Dimension of the problem

Column Height (m) Column Width (m) Depth (m) Top Height (m)
1.0 0.1 0.1 0.1

Table 5.3: Material Properties

Material Property Value
Material type 2 Phase (Solid + liquid)
Initial Porosity [-] 0.4
Density Solid [Kg/m^3] 2650
Intrinsic Permeability [𝑚ኼ] 1.0214𝑥10ዅዃ
Density liquid [𝐾𝑔/𝑚ኽ] 1000
Bulk Modulus Liquid [kPa] 2.15𝑥10ኾ
Dynamic Viscosity Liquid [kPa/s] 1.002𝑥10ዅዀ
Material model solid Linear Elasticity
Poisson ratio [-] 0.3

5.3. Effect of optimization strategies for ccNUMA architecture on simple
kernel

5

43

5.3. Effect of optimization strategies for ccNUMA ar-
chitecture on simple kernel

This section will explain the simple computational kernel, which will be used to
observe effect of thread / processor affinity and data placement. Since data place-
ment and thread affinity are key to optimize particular kernel on Cache Coherent
Non-uniform Memory Architectures, this example will illustrate these simple ideas
and their influence on the performance. Below is the code snippet in C++ for the
following computational kernel.

// Different variants of thread affinity policies
// will be used to show the effect

// Memory Allocation
double *a = new double[N] ;
double *b = new double[N] ;
double *c = new double[N] ;

// Setting number of OpenMP threads
omp_set_num_threads (16) ;

long int Ntimes = 100;

// First touch Principle
#pragma omp p a r a l l e l for schedule (static)
for (s i z e _ t i = 0; i < N; i ++)
{

a [i] = 1 .0 ;
b [i] = 2 .0 ;
c [i] = 3 .0 ;

}

t ime_po int t1 = h igh_ re so l u t i on_c l o ck : : now () ;
// Parallel Region

#pragma omp p a r a l l e l for schedule (static)
for (s i z e _ t i = 0; i < N; ++i)
{

a [i] = b[i] + 3.0* c [i] ;
}

t ime_po int t2 = h igh_ re so l u t i on_c l o ck : : now () ;
// Time Measurement
time_span = durat ion_cas t <durat ion<double>>(t2 ዅ t1) ;

6
Space Filling Curve BlackBox

This chapter will give brief introduction to Space Filling Curve BlackBox
developed during the period of literature study for generation of space filling
curves for arbitrary unstructured 3D finite element mesh for both adaptive
and non-adaptive grids.

6.1. Space Filling Curve Blackbox
This section explains development of application SFCB which generates space
filling curve for arbitrary three dimensional unstructured mesh. The development
of application is done in C++. The basic working of application in Figure 6.1

Figure 6.1: Basic Working of SFCB toolbox

Figure 6.1 pictorially shows simple working of stand alone application SFCB
which takes arbitrary mesh file, processes it and convert it into new file mesh file
with SFC ordering. This application is being used to convert .GOM files used as
geometry file in Anura3D software to convert them with space filling curves. The
next section explains little bit in depth working of Space Filling Curve toolbox.

45

6

46 6. Space Filling Curve BlackBox

6.2. SFCB Working

Figure 6.2: Detail Working of SFC toolbox

Figure 6.2 explains in little bit detail about how a arbitrary mesh file is converted
into mesh file with space filling curve numbering.

7
Results and Discussion

In this chapter, we will be discussing about the preliminary results from the
space filling curve generation and the effect of optimization strategies for the
ccNUMA machine for a simple computational kernel.

7.1. Space Filling Curve Generation
This section will presents the result of the space filling curve algorithm with exam-
ples to illustrate the concept and will also discuss the various aspects such as, the
time taken by regular and adaptive grid for different element sizes.

Figure 7.1, Figure 7.4, Figure 7.7 pictorially depicts the regular unstructured 3D
finite element mesh with varying mesh density and Figure 7.10 shows the adaptive
3D unstructured finite element mesh. The subsequent figures shows the top view
of the space filling curve. The Figure 7.2, Figure 7.5, Figure 7.8 and Figure 7.11
shows the arrangement of the finite element mesh in memory. The random access
of memory can easily be justifiable from the above said figures.

The Space Filling Curves shown in Figure 7.3, Figure 7.6, Figure 7.9 and Fig-
ure 7.12 not only helps in maintaining data locality but also helps in achieving the
efficient mesh partitioning for the shared memory multi-core architectures. The cc-
NUMA node can easily benefit from this kind of arrangement since parallel efficiency
and scalability in the NUMA system is only attained by data locality and processor
affinity. It is easily seen from the space filling curve that the spatial locality is
maintained hierarchically.

The robustness of the SFC blackbox can be justified by observing its result on
regular and adaptive 3D unstructured finite element mesh. The time taken by SFC
blackbox to generate space filling curve for various sizes of 3D meshes is summa-
rized in Table 7.1.

47

7

48 7. Results and Discussion

Figure 7.1: Regular Unstructured 3D FE mesh with element size = 0.25

Figure 7.2: FE ordering of Figure 7.1 in memory

7.1. Space Filling Curve Generation

7

49

Figure 7.3: FE ordering in memory for Figure 7.1 with space filling curve

Figure 7.4: Regular Unstructured 3D FE mesh with element size = 0.1

7

50 7. Results and Discussion

Figure 7.5: FE ordering of Figure 7.4 in memory

Figure 7.6: FE ordering in memory for Figure 7.4 with space filling curve

7.1. Space Filling Curve Generation

7

51

Figure 7.7: Regular Unstructured 3D FE mesh with element size = 0.05

Figure 7.8: FE ordering for Figure 7.7 in memory

7

52 7. Results and Discussion

Figure 7.9: FE ordering for Figure 7.7 with space filling curve

Figure 7.10: Adaptive Unstructured 3D FE mesh with element size = 0.25

7.1. Space Filling Curve Generation

7

53

Figure 7.11: FE ordering for Figure 7.10 in memory

Figure 7.12: FE ordering for Figure 7.10 with space filling curve

7

54 7. Results and Discussion

Table 7.1: Variation in the time for generating the SFC curve for different mesh sizes

Element Size Number of Elements Number of Nodes Time (seconds) Number of Levels
0.25 235 1188 0.00038478 10
0.1 3400 19764 0.00599 12
0.05 30000 159603 0.05423 20

It can be clearly seen from the above table that the time taken to generate space
filling curve even for large meshes is comparatively small and for those problems
where the mesh has to be repeatedly used, it is good strategy to employ, since one
time space filling curve generation will have many advantages for subsequent runs.

7.2. Oedometer Problem
This section will illustrate the results of the Oedometer problem and validate the
working of space filling curve toolbox for problems of the practical interest.

Figure 7.13: 3D Geometry of Oedometer Problem

The 3D plot in the above diagram are from the Oedometer problem described
in chapter Benchmark Problem.

7.2. Oedometer Problem

7

55

(a) SFC ordering of Oedometer problem in
memory

(b) Original Ordering for Oedometer problem
in memory

Figure 7.14: Comparison of Element data organized in memory with and without Space filling curve for
Oedometer Problem if partitioned over multiple processor

The above figure depicts the element data placement of Figure 7.13. The Figure
7.14 (a) is Space filling curve ordering and 7.14 (b) is without space filling curve
ordering. It is very clear from the above figure that, the unstructured finite element
data organized by th space filling curve is clearly beneficial for the scalability and
the efficiency on NUMA based machines as compared to one on the right where
data is randomly stored and cannot be partitioned efficiently.

The main aim of plotting the above figure is to depict the importance of the space
filling curve in rearranging the data since effective partitioning can be executed

7

56 7. Results and Discussion

without much overlap. The data can be easily be sliced into several parts such
that, each part is executed on one or more processor without much interference or
data sharing between other processor/cores, which makes this mesh renumbering
strategy quite effective for achieving the scalability and efficiency for many problems
in scientific computing.

7.3. Effects of Optimization Strategies for NUMA ar-
chitectures

7.3.1. Effects of thread affinity and data locality
Let’s first try to understand the architectural features of the machine, which is very
important to mention before performing any test on it. Table 7.2 provides the
specifications of the system on which testing will be performed.

Table 7.2: System Specifications

Architecture x86_64
CPU(s) 16
On-line CPU(s) 0-15
Threads_per_core 1
Cores_per_socket 8
NUMA node(s) 2
Model Name Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz
CPU max MHz 3.8GHz
Hyper-threading Possible
L1d Cache 31K
L1i Cache 31K
L2 Cache 256K
L3 Cache 20480K
Main Memory 32 Gigabytes
NUMA node0 CPU(s) 0-7
NUMA node1 CPU(s 8-15

Secondly, we also need to mention the compiler options used for compiling
the code explained before in Chapter Benchmark Problems. Table 7.3 shows the
compiler options used for testing.

Table 7.3: Compiler Options

icpc -std=c++11 -qopenmp -O3

Below, is the little explanation about each compiler option used.

1. icpc : Newest intel compiler for c++

2. -std=c++11 : Enabling c++11 standard

7.3. Effects of Optimization Strategies for NUMA architectures

7

57

3. -qopenmp : Generating parallel code

4. -O3 : Highest level of optimization possible by compiler.

We will study the effects of thread affinity, first touch principle described in
above chapters on a simple computational kernel.

Figure 7.15: Time comparison between serial and OpenMP threads

It can be easily seen from Figure 7.15 that for the memory footprint of less than
24 MB which is the size of L3 cache, OpenMP threads create additional overhead and
the serial code is way faster than the parallel one. The parallel code only shows
speedup for problem size larger than 20MB. The memory footprint ranges from
24KB (size of L1 cache) to 24 GB (main memory) and to clearly see the difference
between speedup, we zoom in the above figure for memory footprint of (240MB-
24000MB).

It is very clear from Figure 7.16 that for larger problem sizes serial code is slower
and OpenMP threads show some speedup, but we cannot see enough speedup
between 4, 8 and 16 OpenMP threads.

We can explain this effect with the schematic diagram. Figure 7.17 conceptual-
izes the thread migration in the NUMA systems and its adverse effect on the perfor-
mance if not taken care or given special attention. We have seen the performance
penalty due to thread migration in Figure 7.15. Thread migration disassociates a
thread from the processing core and its allocated local memory and schedules it on

7

58 7. Results and Discussion

Figure 7.16: Zoom in for out of core Memory Footprint

another processing core. If thread migrates to the different NUMA node as shown
in Figure 7.17, then huge penalty has to be faced due to the remote memory access
which is clearly visible in Figure 7.15 and Figure 7.16.

Figure 7.18 explains the concept of thread affinity and first touch principle. When
thread affinity control is used in the NUMA system, then the remote memory access
is avoided to a full extent as thread cannot migrate from one processing core to
another. Since the operating system scheduling policy is altered, it might also have
adverse effects.

Figure 7.19 shows performance improvement when thread affinity and first
touch principle is used. The environment variable KMP_AFFINITY binds OpenMP
thread to a particular physical core or the set of physical cores. It is very clear from
the Figure 7.19 that the thread affinity and data placement if ignored can lead to
serious penalties and performance degradation in the computational loops.

Figure 7.20 shows comparison of performance of optimized and non-optimized
version of the code for 16 OpenMP threads. It is clearly evident from the Figure
7.20 that optimized version is 2x times faster, scalable and parallely efficient than
it’s counterpart where thread affinity and first touch principle are not used.

7.3.2. Impact of Intel’s Hyper-threading Technology
It is clear from Figure 7.21 that a non-hyper-threaded core performs better as com-
pared to a hyper-threaded core. It is very interesting to know that, the 32 OpenMP
threads in a hyper-threading enabled system behaves similar to the 16 OpenMP

7.3. Effects of Optimization Strategies for NUMA architectures

7

59

Figure 7.17: Thread Migration in NUMA system explained

threads in a hyper-threaded disabled system. Even though the hyper-threading is
expected to give better performance by duplication of the floating point units, it
is observed in this case that it is not contributing significantly to the performance
improvement of the kernel.

It depends on the application , whether the hyper-threading should be enabled
or disabled because it does not increase the physical core counts, but only gives a
false impression to the operating system about double the number of the process-
ing cores. It is also noted in the literature that the use of a hyper-threaded core
increases the energy consumption as compared to a non-hyper-threaded one.

7.3.3. Single and Double Precision computations
Some of the widely used processors for the high performance computing today
demonstrate much higher performance for 32 bit floating point arithmetic than for
64 bit floating point arithmetic. These modern architectures demonstrate approxi-
mately twice the performance for single precision execution when compared to the
double precision.

The overall approach should be to use single precision whenever possible, es-
pecially for the most compute intensive parts of the code and then fall back to
double precision whenever required. The Figure 7.22 shows the single and double
precision computing. It is clearly visible from the Figure 7.22 that single precision
computing takes half as time as double precision computing. It will be interesting
to note the performance gain in the current MPM code by introduction of single
precision arithmetic.

7

60 7. Results and Discussion

Figure 7.18: Thread affinity control in NUMA system explained

Figure 7.19: Performance Improvement with First touch principle and thread affinity

7.3. Effects of Optimization Strategies for NUMA architectures

7

61

Figure 7.20: Comparison of Optimized and Non-optimized code for 16 OpenMP threads

Figure 7.21: Comparison of Optimized and Non-optimized code for 16 OpenMP threads

7

62 7. Results and Discussion

Figure 7.22: Comparison of Single and Double Precision Data

8
Conclusion and Future Work

In this chapter, we will be concluding about the research work carried out in
the period of literature survey and make inference for the discussion about
the future work to be done in context of improving parallel scalability and
efficiency of the Material Point Method on Cache Coherent Non-uniform
Memory Access architectures, which will be a milestone for the current
MPM 3D code to be efficient on large clusters and eventually supercomputers.

8.1. Motivation
Deltares is currently involved in development of a 3D dynamic meshfree numeri-
cal method, the Material Point Method for advanced simulation of large deformation
problems in the Geotechnical Engineering. Such simulations involve interaction be-
tween the structure and soil. A challenging research project is being executed at
Deltares together with the industry partners to investigate installation of the off-
shore large diameter monopiles through hammering and vibration for the offshore
wind farm construction. Figure 8.2 explains pictorially the variation of soil density
upon driving monopile into the ground solved by The Material Point Method.

8.2. The Larger Perspective
Computational geo-mechanics in the near future is aiming at solving larger prob-
lems of industrial and academic interests. In order to solve problems which are
outside the academic shell and typically have larger human interest need signifi-
cant amount of computing resources. The Large amount of computing resources
does not guarantee acceleration for solving bigger and complex problems, but ef-
ficient and judicious use of available computing resources is a key to reduce com-
putational time, achieve high floating point performance and decrease amount of
energy consumption.

In short we need to have efficient numerical algorithms and clever program-
ming strategies for achieving above said goals. This master’s project focuses on

63

8

64 8. Conclusion and Future Work

the implementation of such methods and applications of the various techniques to
accelerate the Material Point Method on the emerging computing architec-
tures.

8.3. Work Completed
In order to realize the parallel scalability and efficiency for the Material Point
Method on large clusters and eventually supercomputers, it is essential for it to
become scalable and efficient on the ccNUMA node. Effective data placement and
optimized use of computational resources is the key to achieve the high performance
on these kind of machines.

Implementation of the Space Filling Curves for reordering finite element data
is the first step to achieve that milestone in near future. We also have demon-
strated that use of thread / processor affinity , Intel’s hyper-threading technology,
use of memory page placement policy and floating point balance are the key hard-
ware issues which are to be given special attention for optimization of particular
computational kernel.

8.4. Strategic Diagram
The Figure 8.1 explains in detail about the approach for the future work. In short,
we have implemented the space filling renumbering for arbitrary mesh and have also
tested optimization concept on NUMA machines for simple computational kernel.
We plan to merge these two ideas for the Material Point Method in this master’s
project and parallelize the current 3D MPM code with OpenMP 4.0 specifications.

8.5. Future Work
This master thesis will focus on bridging the two main pillars of the high performance
computing i.e data locality and judicious use of computational resources for The
Material Point Method . We want to observe the full scalability for the current
MPM 3D code on the NUMA machine which is currently deployed at Deltares with
capabilities and special features of OpenMP 4.0 such as vectorization, processor
affinity control. We want the current MPM 3D code to become efficient on parallel
machines, so that eventually bigger and more realistic problems can be solved with
reduced computational time.

The Space Filling Curve implementation will be carried forward for the pure
serial MPM 3D code provided by Deltares. OpenMP 4.0 will be used to parallelize
all computational kernels in the code and towards the end, scalability and parallel
efficiency will be observed for a large scale simulation.

8.5. Future Work

8

65

Figure 8.1: Strategic Diagram for Future Work

Figure 8.2: Variation of Soil Density upon driving monopile into the ground

	Introduction
	The Material Point Method
	Introduction
	MPM Functioning
	Review of MPM algorithm
	Parallelization of the Material Point Method
	Parallelization Strategies for MPM on ccNUMA systems
	Anura3D- a 3D unstructured Finite element MPM software
	Calculation process with Anura3D

	Focus of this research work
	Report Overview
	titleReferences

	Emerging Computing Architectures
	Single Processor Computing
	Modern Processor
	Memory Hierarchy
	Latency and Bandwidth
	Registers
	Caches

	Multicore architectures
	Node architecture and Sockets
	Intel's HyperThreading/ Simultaneous Multi-threading
	Performance Issues in NUMA machines
	Optimization for NUMA machines

	titleReferences

	 Parallel Computing
	Functional Parallelism vs Data Parallelism
	Shared memory computing vs Distributed memory computing
	Shared Memory Computing
	Distributed Memory Computing

	Quantifying Parallelism
	Speed Up and Efficiency

	Strong and Weak Scalability
	Strong Scalability
	Weak Scalability

	Roofline : Performance Model for Multi-core Architectures
	Roofline Model

	titleReferences

	Cache Aware Computing and Space Filling Curves
	Space Filling Curves
	Cache aware computing using the Space Filling Curve
	Enhancing Shared Memory Parallelization by Space filling curve
	Efficient Out of Core Parallelization using SFC

	Parallel Generation of SFC for 3D unstructured Finite Elements
	Mesh Layout in ANURA3D
	Morton Space Filling Curve

	titleReferences

	Benchmark Problem
	Space Filling Curve for Arbitrary Mesh
	Oedometer Problem
	Effect of optimization strategies for ccNUMA architecture on simple kernel

	Space Filling Curve BlackBox
	Space Filling Curve Blackbox
	SFCB Working

	Results and Discussion
	Space Filling Curve Generation
	Oedometer Problem
	Effects of Optimization Strategies for NUMA architectures
	Effects of thread affinity and data locality
	Impact of Intel's Hyper-threading Technology
	Single and Double Precision computations

	Conclusion and Future Work
	Motivation
	The Larger Perspective
	Work Completed
	Strategic Diagram
	Future Work

