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Abstract

In this interim thesis report we will discuss the building blocks of the ADEF-solver applied to the
Helmholtz problem. The main focus will be on the occurrence of the clustering eigenvalues around zero,
which seem to appear as soon as the wave number k becomes very large. We start by discussing the
literature, summarizing the main results. Moreover, the main findings from pivoting papers will also be
reconstructed in order to gain thorough insights into the behavior of the eigenvalues as this will aid us
in future research purposes as regards the potential scalability of the ADEF-solver.

In Chapter 1 we start by exploring the properties of both the continuous and discrete Helmholtz opera-
tor. Chapter 2 focuses on numerical techniques, suitable for the Helmholtz problem. Chapter 3 involves
around appropriate preconditioning techniques, in particular the CSLP-preconditioner, whereas Chapter
4 and discusses the deflation-based ADEF-preconditioner. Finally, Chapter 5 concludes with a proposal
for future research.
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Chapter 1

The Helmholtz equation

In this chapter we will start by exploring the Helmholtz equation. The Helmholtz equation, named after
its creator, Hermann von Helmholtz, German physician and physicist, is a second order partial differential
equation widely used in engineering practices. It models wave phenomena and is thus suitable for
applications in various areas of physics and mathematics such as electromagnetic radiation, seismology,
acoustics and optics.
After giving a brief introduction into the derivation of the Helmholtz equation, we will proceed by
construing an analytical and exact solution to the defined problem. This exact solution will serve as a
reference for future analysis in the subsequent chapters of this literature study.

Figure 1.1: Herman von Helmholtz

1.1 Derivation

The Helmholtz equation can be derived from the time-dependent wave equation after applying the
method of separation of variables. The resulting equation models harmonic wave propagation through a
homogeneous medium. We can thus start by considering the propagation of time harmonic waves, which
is governed by the following equation

(∇2 − 1

c2
∂2

∂t2
)u(x, t) = 0. (1.1)
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In equation(1.1) the vector x denotes the spatial variable in some subspace Ω of Rn, which represents the
physical domain. The real constant c and the real variable t represent the wave speed and time variable
respectively.
A solution to equation (1.1) can be obtained by separating the variables into a spatial and time compo-
nent, which can be represented as follows

u(x, t) = ϕ(x)T (t). (1.2)

Letting equation (1.2) represent a potential solution to equation(1.1), we substitute the previous equation
into the former to obtain

(∇2 − 1

c2
∂2

∂t2
)(ϕ(x)T (t)) = 0, (1.3)

∂2ϕ

ϕ
=

1

Tc2
∂2T

∂t2
= −k2. (1.4)

Note that in order for the solution to satisfy equation (1.1), we had to equate both sides of equation to a
constant −k2. Rearraging the left hand side of equation (1.1), which now is completely separated from
the time component, leads to the homogeneous Helmholtz equation

(−∇2 − k2)ϕ(x) = 0 (1.5)

Intuitively ϕ(x) can best be interpreted as the wave function, whereas k stands for the wavenumber,
which relates the wavelength λ and the angular frequency. General expressions for the before mentioned
are

k =
2π

λ
(1.6)

Practical applications of the Helmholtz equation often involve the non-homogeneous Helmholtz equation.
In this case the right hand side of (1.5) consist of a source function f(x)

f(x) = δ(x− xs) (1.7)

Additionally, in some applications, such as modeling phenomena through an inhomogeneous medium, a
non-constant wavenumber k(x) is enforced to capture different velocity profiles.

1.2 Boundary Conditions

Solving the Helmholtz equation on a bounded physical domain Ω requires the reinforcement of boundary
conditions. In the absence of such conditions the problem becomes ill-posed; the equation in its current
form models the indefinite propagation of waves. Therefore, the following boundary conditions are
often implemented when solving the Helmholtz equation at the boundary of Ω, which we will denote by
∂Ω:

• Vanishing boundary conditions: vanishing boundary conditions can be modelled by imposing ho-
mogeneous Dirichlet conditions

ϕ(x) = 0,x ∈ ∂Ω. (1.8)

• Reflecting boundary conditions: reflecting boundary conditions can be modelled by imposing ho-
mogeneous Neumann conditions, where n denotes the outward normal unit vector with respect to
the boundary ∂Ω (

∂

∂n

)
ϕ(x) = 0,x ∈ ∂Ω. (1.9)
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• Mixed boundary conditions: mixed boundary conditions can be modelled by imposing both homo-
geneous Dirichlet and Neumann conditions instantaneously. Within the context of the Helmholtz
equation, one important mixed boundary condition is often referred to as rhe Sommerfeld Radiation
condition (also known as an absorbing boundary condition), where i represents the imaginary unit
and ∂n denotes the outward normal unit vector with respect to the boundary ∂Ω and represents
an artificial boundary ∂Ω̃ such that(

∂

∂n
+ ik

)
ϕ(x) = 0,x ∈ ∂Ω. (1.10)

• Perfectly Matched Layer (PML) boundary conditions 1: in the literature this boundary condition
is implemented to prevent the outgoing waves at the boundary to be reflected back into the do-
main. Similarly like Sommerfeld Radiation conditions, an artifical boundary ∂Ω̃ is appended to
the original domain Ω. Consequently, a thin layer around the artificial boundary ∂Ω̃ is modeled.
Inside the layer, the PDE is altered such that 1) waves are damped rapidly and 2) no reflections
are introduced at ∂Ω̃. The alteration to the PDE must be done cautiously in order to prevent
artificial reflections. At the outer end of the layer any boundary condition can be used, for instant
homogeneous Dirichlet.

1.3 Analytical Model

For the sake of theoretical thoroughness, we focus on a simple one-dimensional mathematical model,
allowing for extensive and robust testing. Consequently, for the purpose of this interim research report,
we will proceed with the following simple mathematical model

− d2u

dx2
− k2 u = δ(x− L

2
),

u(0) = 0, u(L) = 0,

x ∈ Ω = [0, L] ⊆ R,
k ∈ N \ {0}. (1.11)

Note that we have placed the harmonic point source at the center of the analytical domain and keep
k constant and integer valued. The stated model problem (Helmholtz boundary value problem) allows
for simplicity while assuring that results obtained from the one-dimensional case can easily be extended
to multi-dimensional problems analogously. Moreover, it has been suggested in Sheikh (2014) that the
homogeneous Dirichlet conditions produce the most adverse spectral properties due to the absence of
damping, staggering the convergence of iterative numerical methods, and thus being particularly suitable
for theoretical research purposes when k becomes very large.

1.3.1 Analytical Solution

We can express the analytical solution to our model problem in terms of the Green’s function G(x, x′).
Let L(x) be the general Sturm-Liouville operator

L(x) =
d

dx

[
p (x)

d

dx

]
+ q(x) (1.12)

Setting p(x) = −1 and q(x) = −k2, we obtain the Sturm-Liouville operator for the Helmholtz boundary
value problem, which we will continue to denote by L(x). Consequently, let G(x, x′) be the Green’s
function satisfying

L(x)G(x, x′) = δ(x− x′)
G(0, x′) = G(L, x′) = 0, x ∈ ∂Ω

x ∈ Ω = [0, L] ⊂ R (1.13)

1This point has been summarized from Runborg (2012), p. 13
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The eigenfunctions and eigenvalues of the Sturm-Liouville problem in equation (1.13) are

φj(x) =

√
2

L
sin(jπx/L)

λj(x) =
j2π2 − k2

L2

j = 1, 2, 3, . . . (1.14)

Due to the eigenfunctions being sines, we can postulate a Fourier series solution using sine functions.
Thus, we define G(x, x′) in terms of the following series representation

G =

∞∑
j=1

αj(x
′) sin(jπx/L)

δ(x− x′) =

∞∑
j=1

2

L
sin(jπx/L) sin(jπx′/L) (1.15)

Equation coefficients of the sin(jπx/L) term will allow us to solve for αj(x
′)(

j2π2

L2
− k2

)
αj(x

′) = sin(jπx′/L)

αj(x
′) =

2

L

(
sin(jπx′/L)

j2π2 − k2/L

)
(1.16)

Substituting these expressions into equation 1.15 and letting x′ = L/2 gives us the solution the model
problem as defined in equation (1.11) 2

G(x, L/2) =
2

L

∞∑
j=1

sin(jπx/L) sin((jπL/2/L))

j2π2 − k2/L

k2 6= j2π2

L
j = 1, 2, 3, . . . (1.17)

In the event that k2 = j2π2

L , the eigenfunction expansion would become defective as this would imply
resonance and unbounded oscillations in the absence of dissipation. Therefore, we explicitly need to war-

rant for the latter case and impose the extra condition k2 6= j2π2

L asserting that our analytical solution
remains valid.

1.3.2 Continuous Spectrum

Equation 1.14 immediately provides us with an expression for the analytical eigenvalues. It is apparent
that within the bounded domain [0, L] there are an infinite number of eigenpairs. We will employ this
expression for the eigenvalues in upcoming sections, where we will compare them with the discrete
eigenvalues for the linear system of equations.

1.3.3 Dimensionless Analytical Model

Equation 1.11 has been defined over an arbitrary domain [0, L]. We can apply a linear transformation
to map the problem onto the unit domain [0, 1]. We introduce the following change of variable

x̂ =
x

L
(1.18)

2We have not used the exponential form of the Green’s function, given that it satisfies the inhomogeneous Helmholtz
equation with equipped with both Dirichlet and Sommerfeld radiation conditions.
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Substituting x̂ into equation 1.11 and noting that

dx̂

dx
=

1

L
(1.19)

Equation 1.11 can be written as

(−∇2 − k̂2)u(x̂) = f̂(x̂)

u(0) = 0, u(1) = 0

x̂ ∈ Ω = [0, 1] ⊂ R

k̂ = Lk

f̂(x) = L2f(x) (1.20)

Equation 1.20 provides a convenient way to extrapolate results from a physical domain onto the unit
domain, without affecting the solution and spectral properties. Undifferentiated transformations can
be applied to higher dimensions in order to map the problem onto the squared and cubed unit domain
respectively.

Unless stated otherwise, we will resort to a coherent notation in the upcoming sections, where k̂ = k and
f̂(x̂) = f(x).

1.4 Numerical Model

Solving the Helmholtz Equation analytically in higher dimensions is unpractical. Especially at high
frequencies, numerical schemes are necessary to provide functional solutions. In principle, both finite
differences and finite elements methods are considered as preferable schemes.
In this study we will focus on the finite difference method and accordingly will elaborate on the dis-
cretization of the Helmholtz equation. 3

1.4.1 Finite Differences

We will discretisize the model problem on the finite domain Ω = [0, 1], using a second-order accurate
central difference scheme. Starting with the one-dimensional case, we can naturally extend the discretiza-
tion to the two-dimensional case.

Discretization of the Geometry

For the discretization of the model problem we let n denote the number of elements on a uniform grid
Gh1D

consisting of n+ 1 nodes, including the boundary ∂Ω. Given the unit domain, we get the following
numerical domain, with step size h = 1

n

Gh1D
= {(xi) |xi = ih, h =

1

n
, 0 ≤ i ≤ n, n ∈ N \ {0}}

In the two-dimensional case, our finite domain becomes the unit square domain Ω = [0, 1] × [0, 1]. We
remain a stepsize of h = 1

n , where now n represents the number of mesh elements, which induces (n+1)2

nodes on an uniform grid Gh2D

Gh2D
= {(xi, yj) |xi = ih, yj = jh, h =

1

n
, 0 ≤ i, j ≤ n, n ∈ N \ {0}}

3Most of this section is a summary of §3.5− 3.7 (Vuik and Lahaye, 2012) applied to the Helmholtz problem.
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Discretization of the Physics

On both Gh1d
and Gh2D

respectively, we introduce spatial grid vectors in order to approximate the source
function f(x) and the wave function u(x). Due to the vanishing boundary conditions, the numerical
wave function u(x) will solely be defined at the internal grid nodes of Gh1d

, which gives

f(x) ≈ f(xi) = fih,

u(x) ≈ u(xi) = uih,

x ∈ Gh1D
.

For the two-dimensional case, we have

f(x, y) ≈ f(xi, yj) = fi,jh

u(x, y) ≈ u(xi, yj) = ui,jh

(x, y) ∈ Gh2D

Linear System Formulation

We arrive at a linear system formulation after approximating the continuous second order derivatives by
central finite difference approximations. For the one-dimensional case we have

−ui−1h + 2uih − ui+1h

h2
− k2uih = fih, 1 ≤ i ≤ n− 1

Working in two dimensions, the discretization results in:

−ui,j−1h − ui−1,jh + 4ui,jh − ui,j+1h − ui+1,jh

h2
− k2ui,jh = fi,jh, 1 ≤ i, j ≤ n− 1

Note that the equations for the nodes corresponding to the homogeneous Dirichlet boundary are redun-
dant. Consequently, the linear system can be formulated exclusively on the basis of the internal grid
points. This approach will be referred to as with elimination of the boundary conditions. In the case that
the boundary conditions are eliminated, we can implement an x-line lexicographic ordering of the internal
nodes, allowing us to assemble the unknown grid values uih and fih into column vectors of dimension
(n− 1) for the one dimensional case. Consequently we can compose a linear system of equations

Ah =
1

h2
tridiag[−1 2− k2 − 1]

=
1

h2


2− k2h2 −1 0 . . . . . . 0
−1 2− k2h2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2− k2h2 −1
0 . . . . . . 0 −1 2− k2h2



uh =



u1h
...
uih

...
unh

 , fh =



f1h
...
fih
...
fnh


1 ≤ i ≤ n− 1
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Regarding the two-dimensional problem, we obtain an equivalent linear system of equations

Ah =
1

h2
tridiag[−1 2− k2 − 1]⊗ 1

h2
tridiag[−1 2− k2 − 1]

=
1

h2



4− k2 −1 0 . . . −1 0 . . . 0
−1 4− k2 −1 0 . . . −1 0 . . .
0 −1 4− k2 −1 0 . . . −1 0
. . . . . . . . . . . . . . . . . . . . . . . .
−1 0 . . . 0 −1 4− k2 −1 0
0 −1 . . . . . . . . . −1 4− k2 −1
. . . . . . −1 0 . . . . . . −1 4− k2



uh =


ui,1h
ui,2h

...
ui,n−1h

 , fh =


fi,1h
fi,2h

...
fi,n−1h


1 ≤ i ≤ n− 1

We have transformed the continuous partial differential Helmholtz equation into a linear system of
equations. Resultantly, solving the Helmholtz boundary value problem now constitutes to solving the
system

Ahuh = fh

Ah ∈ R(n−1)×(n−1)

uh, fh ∈ R(n−1) (1.21)

The upper system formulation comprises the one-dimensional case. For the two-dimensional case, we
obtain

Ahuh = fh

Ah ∈ R(n−1)2×(n−1)2

uh, fh ∈ R(n−1)2 (1.22)

In (Sheikh, 2014) it is mentioned that as a rule of thumb for second order accurate finite differences
discretizations at least 10 grid points per wavelength λ should be efmployed

κ = kh =
2π

10
≈ 0.625

⇒ n = bk
κ
c (1.23)

We therefore use the restriction from equation 1.23 , where κ should be interpreted as the grid refine-
ment and h will be determined accordingly for a given wave number k. Thus, unless stated otherwise we
employ a grid resolution of kh = 0.625.

For large values of k, solutions become oscillatory, requiring more refined grids and higher resolutions due
to the wavelength λ decreasing. If the grid resolution is not adapted to reflect these concerns, a pollution
of the numerical solution is reported in various sources (Ihlenburg and Babuska, 1997), (Deraemaeker
et al., 1999), (Gerdes and Ihlenburg, 1999), and (Wang and Wong, 2014). The pollution error will be
discussed in Chapter 2, section 2.6.2.
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1.4.2 Discrete Spectrum

In section 1.3.2 we expressed the analytical eigenvalues to be as in equation 1.14. Given that our numerical
model is exerted on the unit domain, the eigenvalues for the one-dimensional problem become

λj = j2π2 − k2, j = 1, 2, 3, . . . (1.24)

A comparable result holds in the discrete case 4.

λlh =
1

h2
[
2− 2 cos(lπh)− k2h2

]
l = 1, 2, 3, . . . , n− 1 (1.25)

Similarly, the two-dimensional eigenvalues are given by

λl,mh =
1

h2
[
4− 2 cos(lπh)− 2 cos(mπh)− k2h2

]
l,m = 1, 2, 3, . . . , n− 1 (1.26)

Moreover, we obtain the following set of eigenvectors for the one-dimensional model problem

φlh = sin (lπx), 1 ≤ l ≤ n− 1, (1.27)

where x = [xi], 1 ≤ i ≤ n− 1 represents the gridvector on Gh1d
.

Similarly, in the two-dimensional case we obtain

φl,mh = sin (lπx) sin (mπy), 1 ≤ l,m ≤ n− 1, (1.28)

where again x and y represent the grid vectors in x and y direction respectively.

1.4.3 Linear System Properties

The coefficient matrices of the linear systems obtained in section 1.4.1 are real symmetric matrices.
Due to an orthonormal basis of eigenvectors, see equation 1.27 and 1.28, the matrices are also normal.
The one-dimensional coefficient matrix is a tridiagonal matrix, leading to a sparse matrix Ah. The
two-dimensional matrix is a sparse penta-diagonal matrix. However, unlike in the one-dimensional case,
the appearance of non-zero diagonals within the bandwidth of Ah is common. Note that in case of
Sommerfeld Radiation conditions, the coefficient matrix becomes complex non-Hermitian symmetric
with complex eigenvalues.
One can immediately notice from the one-dimensional case that the coeffient matrix Ah is in fact the
discretisized Laplacian including a term involving k2

Ah = ∆h − k2Ih
(1.29)

where Ih represents the (n−1)×(n−1) identity matrix. For large enough k2, the matrix becomes highly
indefinite due to the increasing number of negative eigenvalues.

1.5 Negative Eigenvalues

As the emphasis in this study is on instances where k is very large, we start by exploring the eigenvalues
of the coefficient matrix Ah starting from k = 10 up to k = 1000. For the sake of brevity, we will drop
the notation Ah in this section and resort to denoting the coefficient matrix by A. A similar notation

4These eigenvalues can obtained by using the expression for the Toeplitz matrix, see section 2.2.1 of Vuik and Lahaye
(2012)
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will be adapted for the eigenvalues.

In figure 1.2 the eigenvalues for the discrete and continuous Helmholtz operator are illustrated. Already
for small k, a discrepancy between the analytical and discrete eigenvalues exists. However, this is not
characteristcally inherent to the Helmholtz problem, as the same discrepancy exists when solving the
Poisson problem using finite differences. Interestingly, the smaller the discrete eigenvalues, the better
they approximate the analytical eigenvalues.
As k increases, the number of negative eigenvalues increases as well. However, increasing the number of
grid points per wave length does not administer in resolving this issue as the ratio between the number
of negative eigenvalues and total eigenvalues remains constant for wave numbers k > 100 and fixed κ
(Sheikh, 2014).

Figure 1.2: Eigenvalues of the continuous and discrete Helmholtz operator

Generally, the effect of the eigenvalues on the convergence behavior is anticipated by considering the
condition number of a matrix. However, due to the negative eigenvalues of the discrete Helmholtz
operator, the condition number as a metric for convergence becomes meaningless. Therefore, we solely
look at the behavior of the negative eigenvalues in relation to the total number of eigenvalues. Table 1.1
provides detailed aspects of the various cases of large k. The number of negative eigenvalues reflects the
indefiniteness of the coefficient matrix and seems inherently dependent on k.
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Table 1.1: Number of negative eigenvalues relative to the problem
size. The last column contains the ratio of the negative eigenvalues
to the total number of eigenvalues

k n h No. Neg. Eig. Ratio
100 160 6.211180e-03 32 2.000000e-01
500 800 1.248439e-03 161 2.012500e-01
1000 1600 6.246096e-04 323 2.018750e-01
1500 2400 4.164931e-04 485 2.020833e-01
2000 3200 3.124024e-04 647 2.021875e-01
2500 4000 2.499375e-04 809 2.022500e-01
3000 4800 2.082899e-04 970 2.020833e-01
3500 5600 1.785395e-04 1132 2.021429e-01
4000 6400 1.562256e-04 1294 2.021875e-01
4500 7200 1.388696e-04 1456 2.022222e-01
5000 8000 1.249844e-04 1618 2.022500e-01
7500 12000 8.332639e-05 2427 2.022500e-01
10000 16000 6.249609e-05 3237 2.023125e-01
15000 24000 4.166493e-05 4855 2.022917e-01
20000 32000 3.124902e-05 6474 2.023125e-01

We find that the number of negative eigenvalues increases along with k. As previously mentioned by
Sheikh (2014), the ratio between the number of negative eigenvalues and the total number of eigenvalues
remains constant as the problem size increases.

1.5.1 Near-null Eigenvalues

Equation 1.24 provides us with an expression for the analytical solution. In section 1.3.2, a particular
mentioning had been granted to the case where λj = j2π2 = k2, as this would imply singularity, causing
the system to become severely insolvable. Effectively this means that the eigenvalues of the continuous
Laplacian operator are moving towards k2, causing the eigenvalues of the continuous Helmholtz operator
to move closer to zero.
From Figure 1.2 we can deduce that the close to zero eigenvalues of the matrix A are located at the inter-
section with the origin. In order to locate the intersection point, we use the expressions obtained for the
analytical and discrete eigenvalues respectively. For the continuous counterpart we have obtained

λj = 0⇒ j2π2 = k2π2,

⇒ j = bk
π
c or dk

π
e. (1.30)

Whereas an equivalent condition for the discrete case led to

λl = 0⇒ 1

h2
[2− 2 cos(lπh)] ≈ k2 (1.31)

Letting j = l̂ according to equation 1.30, we let l̂ represent the index where the discrete eigenvalue
should be closest to zero in case the discrete eigenvalue is a satisfactory approximation of the continuous
eigenvalue at that point.

We initially plot the eigenvalues using κ = 0.625 and κ = 0.0625, where we take l̂ = b kπ c for both the
analytical and discrete case. Figure 1.3 (a) immediately affirms a pattern pointing to the conclusion that

the index l̂ does not point to the near-null eigenvalues of the discrete operator when using 10 grid points
per wave length. While the index indeed points to the reference where the negative eigenvalue turns
positive in the continuous case, a similar conclusion can not be extended to the discrete case. Despite
the latter, after resorting to a finer grid in Figure 1.3 (b), both the continuous and discrete eigenvalues
seem to be approaching each other. Thus, while refining the grid leads to a better approximation of
the analytical eigenvalues, it does not prevent the negative eigenvalues of appearing. As a result, the
number of negative eigenvalues seems independent of the number of grid points per wave length, which
determines the step size h.
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Figure 1.3: Absolute distance of the closest eigenvalue to zero. In Figure (a) a grid
resolution of kh = 0.625 was used, while Figure (b) a resolution of k3h2 = 0.625
was used.

In light of the previous, it has been mentioned by Sheikh et al. (2016) that initially it suffices to take

l̂ = b kπ c. However, as k increases, the gap between l̂ and b kπ c increases resulting in the intersection point
moving further away. Consequently, we can use the approximation as mentioned in (Sheikh et al., 2016)
to allocate the index to the point where the eigenvalues of A intersect the origin

l̂ = round[
arccos 1− κ2

πh
] (1.32)

We now plot the eigenvalues of A without restricting l̂ to be equal to b kπ c. We let the index l̂ be
determined by equation 1.32.
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Figure 1.4: Eigenvalues of the continuous and discrete Helmholtz operator. Results
are plotted near the index corresponding to the close to zero eigenvalue.

Figure 1.5 confirms the notion by Sheikh et al. (2016) that the index moves further down the axis as k
increases. We now repeat the same analysis for κ = 0.3125, which is equivalent to using approximately
20 grid points per wave length.
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Figure 1.5: Eigenvalues of the continuous and discrete Helmholtz operator using
20 grid points per wavelength (κ = 0.3125). Results are plotted near the index
corresponding to the close to zero eigenvalue.

Refining the grid in terms of the resolution κ reduces the difference between the indices l̂ = b kπ c and l̂
according to equation 1.32. As a result, the intersection point with the origin is more closely located
near b kπ c, as the two marked indices start to overlap. We therefore expect l̂ −→ b kπ c as the number of
grid points per wave length is increased. This notion is supported by a similar observation using Figure
1.3 (b).

1.6 Concluding Remarks and Summary

In this chapter we discuss the literature and some basic results regarding the Helmholtz boundary value
problem and its spectral properties. We can summarize our findings in the following main points:

• Discretisizing the inhomogeneous Helmholtz equation using Dirichlet boundary conditions, leads to
an indefinite normal but symmetric coefficient matrix with real but partially negative eigenvalues

• The number of negative continuous and discrete eigenvalues increases along with k

• The ratio between the number of negative discrete eigenvalues and the total number of discrete
eigenvalues scales accordingly relative to the problem size and remains constant
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• Refining the grid leads to a better approximation of the analytical eigenvalues, yet has no influence
on the grade of indefiniteness
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Chapter 2

Numerical Solution Methods

In Chapter 1 we saw that the problem size of the system to be solved depends on the wave number k.
As a consequence, large values of k not only cause the indefiniteness of the matrix to develop further
and further, but also result in large linear systems which need to be solved. In general, direct numerical
solution methods are suitable for medium sized problems. Though still workable for the one-dimensional
case, solving large problems with direct numerical solution methods becomes computationally expensive
due to increasing memory requirements, especially in higher dimensions. Despite these drawbacks, direct
numerical solution methods serve as subdomain solvers in domain decomposition methods and multigrid
methods, see section 2.5.

The problem size of the Helmholtz boundary value problem for large k requires the use of iterative
solution methods. Basic iterative methods (BIMs) suffer from slow convergence behavior. As k in-
creases, these methods become more dependent on the grid size and wave number, see Erlangga (2005).
As our study serves the inspection of potential scalability of a deflation based Krylov subspace solver,
we will primarily focus on the literature regarding Krylov subspace methods. Additionally, we will look
into multigrid methods for the Helmholtz problem. Standard multigrid methods are not suitable for the
Helmholtz problem, see Chapter 4, section 4.1.1. Therefore, we will only briefly describe the standard
smoothing properties of BIMs in relation to multigrid methods.

2.1 Krylov Subspace Methods

Consider a general linear system 1

Au = f,

A ∈ Cn×n, u, f ∈ Cn. (2.1)

Definition .1 (Petrov-Galerkin Method) Given a linear system Au = f , let A be a matrix in Cn×n, u, f
vectors in Cn. Then a solution of equation 2.2.1 can be approximated by

y = u0 + s, s ∈ S ⊂ Cn, (2.2)

where u0 is a predefined initial approximation and S is denoted as the search space. Let r ∈ Cn be defined
as the residual vector such that we can define a constraint space C satisfying

r := f −Ay ⊥ C ⊂ Cn. (2.3)

Then a Petrov-Galerkin method is well defined if 〈C,AS〉 is nonsingular for any C and Y , where C, Y ⊆
Cn.

1Most of this section contains summarizing parts from section 2.4, 2.6 and 2.7 of Chapter 2 from (Gaul, 2014). The
theorems, propositions and corollaries in this section have been taken from beforementioned sections of Gaul (2014). A
page-reference to the proofs will be made for each subsequently.
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Here 〈•〉 denotes the standard inner product defined on the complex space. If the latter condition is
satisfied, we can get an approximate solution using the following theorem

Theorem .1 (Petrov-Galerkin Method) Let A be a matrix in Cn×n, u, f vectors in Cn such that the
Petrov-Galerkin method with search space S and constraint space C is well-defined. Then the approximate
solution y and the corresponding residual r that satisfy Definition .1 are given by

y = u0 + S〈C,AS〉−1〈C, r0〉, (2.4)

r = f −Ay = PC⊥,ASr0, (2.5)

where r0 = f −Au0 is the initial residual. Furthermore, the linear system from Definition .1 is solved if
and only if r0 ∈ AS

Proof For a proof of this theorem, see Gaul (2014) corollary 2.26, p. 23.

Using Theorem .1, we now have a practical way to find an approximate solution y ≈ x which solves the
linear system Au ≈ Ay = f . However, we would like to find an approximate solution which is not only
optimal, but also unique. For this purpose, we can use the following theorem

Theorem .2 (Well-definedness and Optimality) Consider a linear system Au = f with A a matrix
in Cn×n, u, f vectors in Cn. Furthermore, let u0 ∈ Cn be the inital guess vector and let S be an
n−dimensional subspace. Then Petrov-Galerkin method with search space S and constraint space C is
well defined and defines a unique approximate solution y+u0 ∈ S if one of the following conditions holds:

1. C = S, S ∪N (A) = {0}, A is self-adjoint and positive semi-definite. Then

‖u− y‖A = inf
z∈u0+S

‖u− z‖A ,

where ‖•‖A is the norm defined by ‖z‖A =
√
〈z,Az〉.

2. C = AS, S ∪N (A) = {0}. Then

‖f −Ay‖ = inf
z∈u0+S

‖f −Az‖ .

Proof For a proof of this theorem, see Gaul (2014) lemma 2.28, p. 23.

Note that either the residual or the difference between the true and approximate solution is minimized,
and thus we obtain an optimality certificate for constructing an approximate solution to the original
linear system 2.2.1.

We now proceed by giving the definition of a general Krylov subspace, using an arbitrary vector v ∈ Cn:

Definition .2 (Krylov Subspace) Given a linear system Au = f , with u, f, v vectors in Cn Then the
m-th Krylov subspace is defined by

Km(A, v) = span{v,Av, ...Am−1v},
K0(A, v) = {0},m ≥ 1. (2.6)

If the vectors from Definition .2, i.e. v,Av, . . . , Am−1v are linearly independent, they form a basis for
the Krylov subspace Km(A, v). Furthermore, it has been shown in Gaul (2014) that there exists a
minimal index d at which the Krylov subspace becomes invariant, i.e., AKd(A, v) ⊆ Kd(A, v). As a
result, applying A to v will not result in an additional vector which can span the Krylov subspace any
further. Using this index d, it has also been shown that a Krylov subspace, for a nonsingular matrix A,
has the following properties:

1. Dimension: dimKm(A, v) = m for m ≤ d ≤ n.

2. Nested sequence of subspaces: Km−1(A, v) ⊆ Km(A, v) for m ≥ 1.

3. The following statements are equivalent :
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• AKd(A, v) = Kd(A, v)

• Kd(A, v) ∩N (A) = {0}

• v ∈ AKd(A, v)

A Krylov subspace method is essentially an iterative implementation of the Petrov-Galerkin method over
the Krylov subpace from Definition .2 using v = r0. If we take the Krylov subspace Km as a basis for
the search space as defined in Definition .1 and apply Theorem .2 up to the point where the subspace
becomes invariant, we arrive at the heart of all Krylov subspace methods.

Corollary 2.1.1 (Krylov Subspace Method) Consider a consistent linear system Au = f with A ∈ Cn×n
and f ∈ Cn. Let u0 ∈ Cn be an initial guess corresponding to the initial residual r0 = f − Au0. Let
d < ∞ be the minimal index at which AKd(A, r0) ⊆ Kd(A, r0) and let Kd(A, r0) ∩ N (A) = {0}. The
sequence of iterates {um}m∈1,..,d that satisfy

um = u0 + sm, sm ∈ S = Km(A, r0),

rm := f −Aum ⊥ Cm,

is well defined and ud is a solution of the linear system Aud = f if one of the following conditions holds:

1. Cm = Km(A, v), A is self-adjoint and positive semidefinite. Then the iterates um satisfy the
optimality property

‖u− um‖A = inf
z∈u0+Km(A,r0)

‖u− z‖A . (2.7)

2. Cm = AKm(A, r0). Then the iterates um satisfy the optimality property

‖f −Aum‖ = inf
z∈u0+Km(A,r0)

‖f −Az‖ . (2.8)

Proof In both cases the well-definedness and optimality of the approximate solutions follow from The-
orem .2. Aud = f follows from Theorem .1 and using the second property of the Krylov subspaces. For
more details, see Gaul (2014) corollary 2.41, p. 31.

Theoretically, for m ≤ d ≤ n, the vectors r0, Ar0, ..A
m−1r0 are linearly independent. They also form

a basis for the Krylov subspace Km(A, r0). However, numerically this basis becomes indistinguishable
from linear independence as the computation of the vector Air0 using the power method usually points
in the direction of the dominant eigenvector as i increases. As a result, if n is large, most of the vec-
tors in Km(A, r0) will point to the same direction, rendering an ill-conditioned basis. Consequently,
a Krylov subspace method is always constructed by implementing an basis orthonormalization process,
such as the Arnoldi or Lanczos method (modified Gram-Schmidt), see Arnoldi (1951) and Lanczos (1952).

As a result of Corollary 2.1.1, different iterative Krylov subspace methods can be obtained by vary-
ing the constraint space C to be equal to either Km or AKm. Indefiniteness of the coefficient matrix
A restricts the applicability of several Krylov subspace methods for the Helmholtz equation, which are
based on equation 2.7 from Corollary 2.1.1. For example, the well known CG-method2 requires the input
of a symmetric and positive-definite coefficient matrix A. Fortunately, the GMRES-method and the
Bi-CGSTAB-method are considered suitable alternatives for this system, and are intrinsically based on
equation 2.9 from Corollary 2.1.1.

2.2 GMRES-Method

The GMRES-method is based on the MINRES-method. The MINRES method was particularly devel-
oped as an extension of the Lanczos method to solve a linear system with a self-adjoint but indefinite

2The Conjugate Gradient method falls into the first category of Corollary 2.1.1, i.e. equation 2.7 and minimizes the
error in terms of the A-norm. Where the GMRES-method uses an Arnoldi procedure for orthonormalizing the Krylov basis
vectors, the CG-method uses the Lanczos method. The CG-method is widely used for large sparse SPD systems due to
its superlinear convergence behavior. For more information, please refer to Vuik and Lahaye (2012) section 7.1.3 and Gaul
(2014) section 2.8.
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coefficient matrix A. The GMRES method was proposed for general matrices, interchanging the Lanczos
method for the Arnoldi method. Both methods are characterized by minimizing the residual norm over
the Krylov subspace. In essence, this translates into the minimization problem from Corollary 2.1.1,
equation 2.9, which we can now reformulate specifically as

Theorem 2.2.1 Consider a consistent linear system Au = f with A ∈ Cn×n and f ∈ Cn. Let u0 ∈ Cn
and r0 = f−Au0 be such that d <∞ and Kd(A, r0)∩N (A) = {0} are fulfilled. Then, for Sm = Km(A, r0)
and Cm = AKm(A, r0), the iterates um = u0 + sm, sm ∈ Km(A, r0) minimize the residual norm, i.e.

‖f −Aum‖ = inf
z∈u0+Km(A,r0)

‖f −Az‖ , (2.9)

and ud is a solution for the linear system .

Proof Applying Theorem .2 and Corollary 2.1.1 leads to the GMRES-method. For more details, please
refer to Gaul (2014), section 2.9.1.

Note that Theorem 2.1.1 only holds for u0 and r0 satisfying d < ∞ and Kd(A, r0) ∩ N (A) = {0}.
However, as long as A is non-singular, these conditions are automatically satisfied and the GMRES-
method is well-defined for any initial choice u0 (Gaul, 2014). Consequently, in upcoming sections we will
present the results assuming that the coefficient matrix A is non-singular.

2.2.1 Arnoldi’s-Method

We have previously mentioned that the application of Krylov subspace methods goes hand in hand with
an orthonormalization procedure in order to obtain a well-conditioned basis for the Krylov subspace. As
the GMRES-method is applicable to general and thus non-symmetric matrices, the Arnoldi procedure is
used to construct a set of orthonormal basis vectors, which in algorithmic form is given below

Algorithm 1 Arnoldi’s Orthonormalization Algorithm

1: Choose v1 with ‖v1‖ = 1
2: for j = 1, 2, ...m do
3: wj := Avj
4: for i = 1, 2, . . . , j do
5: hi,j := 〈Avj , vi〉
6: wj = wj −

∑j
i=1 hi,jvi

7: hj+1,j := ‖wj‖
8: vj+1 :=

wj

hj+1,j

9: end for
10: end for

Each step in the algorithm multiplies vj by A and orthonormalizes the vector wj with respect to all
previous Arnolid vectors vi from i = 1 to j. Using the Arnoldi method, we arrive at two widely used
propositions, see Saad (2011), p. 129.

Proposition 2.2.2 Assume that Arnoldi’s algorithm does not stop before the m−th step. Then the
vectors v1, v2, . . . , vm form an orthonormal basis of the Krylov subspace Km(A, v1).

Proposition 2.2.3 Let Vm be the m × m matrix with column vectors v1, v2, . . . , vm. Let Ĥm be the
((m + 1) × m) Hessenberg matrix whose nonzero entries hi,j are defined by Arnoldi’s method and let

em = {0, 0, . . . , 1}T . If we let Hm be the matrix obtained from Ĥm by deleting its last row, then the
following relation holds

AVm = VmHm + wmem
T , (2.10)

= Vm+1Ĥm, (2.11)

Vm
TAVm = Hm. (2.12)

We can implement Arnoldi’s method into Theorem 2.2.1, by noting that iterate vectors um can be
written as um = u0 + Vmsm, where sm is a vector in Cm and Vm is an orthonormal basis for the Krylov
subspace.
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If we let β = ‖r0‖ and v1 = r0/ ‖r0‖, we can use use equation 2.11 to obtain

‖f −Aum‖ = ‖f −A(u0 + Vmsm)‖ ,
= ‖r0 −AVmsm‖ ,

=
∥∥∥βv1 − Vm+1Ĥmsm

∥∥∥ ,
=
∥∥∥Vm+1(βe1 − Ĥmsm)

∥∥∥ . (2.13)

By definition, the columns of Vm+1 are orthonormal and we can rewrite equation 2.13 as follows∥∥∥Vm+1(βe1 − Ĥmsm)
∥∥∥ =

∥∥∥βe1 − Ĥmsm

∥∥∥ . (2.14)

The optimality property from equation 2.9, Theorem 2.2.1 becomes

‖f −Aum‖ =
∥∥∥βe1 − Ĥmsm

∥∥∥
m
, (2.15)

= min
z∈Cn

∥∥∥βe1 − Ĥmz
∥∥∥ .

As a result, the approximate solution is the unique z vector which minimizes F (z) = minz∈Cn

∥∥∥βe1 − Ĥmz
∥∥∥

over Km(A, r0) which iteratively reduces to finding

sm = arg min
z∈Cn

∥∥∥βe1 − Ĥmz
∥∥∥ .

2.2.2 GMRES-Algorithm

The GMRES-method can be implemented using the following algorithm:

Algorithm 2 GMRES-method Au = f

1: Choose u0 and compute r0 = f −Au0, b0 = ||r0|| and v1 = r0/b0
2: for j = 1, 2, . . . n or until convergence do
3: wj := Avj
4: for i := 1, 2, . . . , j do
5: hi,j := (wj , vi)
6: wj := wj − hi,jvi
7: end for
8: hj+1,j := ‖w‖
9: vj+1 := w

hj+1,j

10: end for

Note that steps 2 to 10 are in fact the Arnoldi orthonormalization algorithm. The GMRES-method is
stable and only breaks down if hj+1,j = 0. However, if hj+1,j = 0 then uj = u and we retrieve the exact
solution Vuik and Lahaye (2012).
The GMRES-method is considered inefficient in case a large number of iterations are needed. Due to
its long recurrences, it requires increasing memory storage and computational force for the orthonor-
malization process. Several remedies have been opted to circumvent this drawback. For example, the
GMRES-method can be restarted, see (Vuik and Lahaye, 2012), section 7.3.4.

In order to accelerate the convergence, preconditioning techniques are available for Krylov subspace
methods. For the GMRES-method in particular, a preconditioned variant can be obtained by applying
the GMRES-method to the following linear system

M−1Au = M−1f ⇔ AMy = f, u = My,

A ∈ Cn×n, u, x, f ∈ Cn,
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where M is an invertible matrix in Cn×n. In general, a matrix M is eligible as a preconditioner if the
eigenvalues of M−1A are clustered around 1 and M−1y can be obtained at low cost. We will treat the
subject of preconditioning to more detail in Chapter 2.

2.2.3 Convergence

In this section we briefly describe the convergence properties of the GMRES-method, which is based on
the following theorem

Theorem 2.2.4 Let Pm be the space of all polynomials of degree less than m and let σ = {λ1, λ2, . . . , λn}
represent the spectrum of A. Moreover, we define

εm = min
p∈Pm,p(0)=1

max
λi∈σ

|p(λi)| .

Suppose that A is diagonalizable so that A = XDX−1 where D is a diagonal matrix containing {λ1, λ2, . . . , λn}.
Then the residual norm of the m−th iterate satisfies

‖rm‖2
‖r0‖2

= min
p∈Pm,p(0)=1

∥∥XP (D)X−1r0
∥∥
2

‖r0‖2
≤ K(X)εm ‖r0‖2 , (2.16)

where K(X) = ‖X‖2
∥∥X−1∥∥

2
.

Proof For a proof see Vuik and Lahaye (2012), Theorem 7.3.1. and Liesen and Tichỳ (2004), section
3.1.

Eiermann and Ernst (2001) state that it would be impossible to predict the convergence behavior of
the GMRES-method solely in terms of the eigenvalues of A. In fact, the author argues that in case
convergence is monitored through the spectrum, additional assumptions on departure from normality are
a necessity. Liesen and Tichỳ (2004) have presented an extensive overview of the convergence properties
of Krylov subspace methods. The problem with non-normality seems to be related to ill-conditioned
eigenvectors resulting in very large K(X) due to

∥∥X−1r0∥∥ > ‖r0‖. As a result, the bound in equation
2.16 may not be sharp and information regarding the convergence may be disconnected from spectral
properties. However, Hannukainen (2015), Liesen and Tichỳ (2004) and Meurant and Tebbens (2015) all
argue that for a large class of matrices, such as general normal and Hermitian matrices, the convergence
results in terms of the spectral distribution properties hold. Liesen and Tichỳ (2004) even emphasize
that theoretically, non-normality of a matrix does not lead to slower convergence, as for each non-normal
matrix A there exist a normal matrix B with the same convergence behavior.
For normal matrices A in general, the eigenvectors form an orthonormal set making X in equation 2.16
well-conditioned. Due to the orthonormality, the eigenvalues have a predominant influence on the rate
of convergence. Consequently, clustering and favorably distributed eigenvalues stimulate convergence,
while eigenvalues close to the origin impede convergence. The resulting slow convergence can often be
alleviated by eliminating these convergence hampering eigenvalues through the application of deflation
techniques. We will treat this extensively in Chapter 4.

2.3 Bi-CGSTAB-Method

We have previously mentioned that the Bi-CGSTAB-method is another Krylov subspace method that
can be applied to general matrices. It can be viewed as a combined version of the Bi-CG-method3 and
the GMRES-method. In essence, the Bi-CGSTAB-method uses two mutually bi-orthogonal bases to
construct the Krylov subspace. The residual is kept bi-orthogonal to both bases by solving minimum
residual polynomials. Despite being a suitable iterative method for general matrices, the convergence
behavior is noted to be irregular for ill-conditioned matrices (Vuik and Lahaye, 2012). For the sake of
completeness yet brevity, we present the algorithm in the next subsection.

3The Bi-Conjugate Gradient method builds on the CG-method, by using a Bi-Lanczos procedure to orthonormalize the
Krylov basis vectors. It is generally used for non-symmetric linear systems. For more information, please refer to Vuik and
Lahaye (2012) section 7.3.3.
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2.3.1 Bi-CGSTAB-Algorithm

By preconditioning M , the linear system Au = f can be solved by implementing the following precondi-
tioned Bi-CGSTAB algorithm:

Algorithm 3 Bi-CGSTAB Method

1: Pick u0 as an initial estimate and compute r0 = f −Au0;
2: Choosing r̄0 as an arbitrary vector such that

(
r̄0, r0

)
6= 0, e.g. for r̄0 = r0;

3: ρ−1 = α−1 = ω−1 = 1;
4: v−1 = p−1 = 0;
5: for j=0, 1,2, . . . do
6: ρi =

(
r̄0, ri

)
;βi−1 = (ρi/ρi−1) (αi−1/ωi−1) ;

7: pi = ri + βi−1
(
pi−1 − ωi−1vi−1

)
;

8: p̂ = M−1pi;
9: vi = Ap̂;

10: αi = ρi/
(
r̄0, vi

)
;

11: s = ri − αivi;
12: if ‖s‖ < On where n > 0 is small, then;
13: ui+1 = ui + αip̂ ;
14: end if
15: z = M−1 s ;
16: t = Az ;
17: ωi = (t, s) / (t, t);
18: ui+1 = ui + αip̂+ ωiz;
19: if ui+1 < On where n > 0 is small, then ;
20: end if
21: ri+1 = s− ωit;
22: end for

2.4 Starting, Monitoring and Stopping

Implementing iterative solution methods requires an initial guess as primary input. Moreover, a process
for monitoring the convergence is needed by choosing a stopping criterion. 4

Starting Guess

Generally, the initial guess is determined by the context of the problem. In some cases the discretized
linear system is solved on a coarser grid and interpolated back to the fine grid to serve as an initial guess.
For the GMRES-method in particular, it has been noted in section 2.2 that the method converges for
any initial guess.

Stopping Criterium

A stopping criterion aims at balancing the quality imposed on the solution relative to the computa-
tional costs. In practice, a solution method is set to iterate until the residual norm ‖rn‖ ≤ ε becomes
smaller than some small number ε, where ε denotes the tolerance level. Three stopping criteria are
available:

1. ‖rn‖ ≤ ε: this stopping criterion is not scaling invariant and is not preferred.

2. ‖rn‖‖r0‖ ≤ ε: this stopping criterion is dependent on the initial guess. As a result, the accuracy

increases with the accuracy of the initial guess.

3. ‖rn‖‖f‖ ≤ ε: this stopping criteria is widely used in practice and preferred.

4This section contains summarizing parts from section 5.6, Vuik and Lahaye (2012).
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Note that in case the residual vector can be constructed using a number of dominant eigenvector com-
ponents, a random initial guess may be more suitable. However, for a right hand side f defined as a
source function, the likelihood of such an event occurring is small. Therefore, in upcoming sections, we
will implement a zero initial guess, unless stated otherwise.
With respect to the stopping criterium, we will employ a tolerance level of ε = 10−7 in upcoming sections,
unless stated otherwise.

2.5 Multigrid Methods

In this section we will describe the basic idea behind multigrid methods using coarse grids, applied to
our one-dimensional model problem, see Chapter 1, section 1.3. We will limit ourselves to describing
the building blocks from multigrid methods which are of importance for the ADEF-preconditioner. As
mentioned in the introductory part of this chapter, standard multigrid methods where a BIM acts as a
smoother, are not suitable for the Helmholtz problem, unless the wave number is small enough relative
to the step size. It has been shown by Ernst and Gander that damped Jacobi relaxation breaks down at
high wave numbers. Therefore, we will only briefly discuss these smoothing properties in section 2.5.2.
Most of this section is contained in section 6.2 of Vuik and Lahaye (2012), section 3.4.2 of Ernst and
Gander (2012) and section 3.2 of Ernst and Gander.

The main idea behind the use of different grid refinement levels in multigrid methods, was the no-
tion that the low frequency modes of the iteration error from solving a linear system using BIMs was
not being reduced sufficiently. These low frequency modes are related to the eigenvectors corresponding
to the small eigenvalues of the linear system. Suppose we would like to solve the linear system obtained
from discretisizing a simple one-dimensional Poisson problem

Au = f,

A ∈ Rn×n, u, f ∈ Rn. (2.17)

The eigenmodes can be divided into low and high frequency modes. The low frequency modes are slowly
varying grid vectors that correspond to the small eigenvalues of A. The eigenvectors of the matrix A
are

vhl =


sinπlh
sinπl2h

...
sinπl(n− 1)h

 ,

1 ≤ l ≤ n− 1. (2.18)

For now we assume n − 1 to be even. Recall from Chapter 1, section 1.4.3 that the eigenvectors are
sine-functions applied to the grid vectors x = [xi] = ih, with i = 1, 2, . . . , n − 1. For increasing l, the
eigenvectors become more oscillatory. The indices l = 1 to n

2 − 1 therefore relate to the low frequency
modes, whereas the remaining eigenmodes represent high frequency modes. By transferring these low
frequency eigenvectors onto a coarse grid, their smooth components become oscillatory and can be
reduced. We will treat this in more detail in the next section, where we apply these ideas to our one-
dimensional model problem from Chapter 1, section 1.3.

2.5.1 Coarse-Grid Correction

The key ingredient of multigrid methods is the use of coarser grids, where smooth components become os-
cillatory. This section contains some excerpts of Ernst and Gander, section 3.4.2, p.17 - 25. It essentially
describes the application of a two-grid multigrid method applied to the discretisized one-dimensional
Helmholtz problem. Recall that the eigenvectors corresponding to the linear system of our model prob-
lems coincide with equation 2.18.
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We start by defining the transfer grid functions uH = [uH1
, . . . , uHn

] from ΩH to the fine grid Ωh
using a standard linear interpolation mapping

IHh : ΩH → Ωh, uH → IHh uH (2.19)

such that {
[uH ]i/2 if i is even,

1
2

(
[uH ](i−1)/2 + [uH ](i−1)/2

)
if i is odd,

i = 1, . . . , n− 1 (2.20)

with matrix representation

IhH =
1

2



1
2
1 1

2
1

. . . 1
2
1


∈ Rn×(n)/2−1 (2.21)

Using the eigenvectors given in equation 2.18, we obtain the following proposition, see Ernst and Gander,
p. 19.

Proposition 2.5.1 The coarse-grid eigenvectors are mapped by the interpolation operator IhH according
to

IhH vHl
= c2l vhl

− s2l vhn−1−l
, l = 1, . . . ,

n

2
− l, (2.22)

where we define

cl := cos
lπh

2
, sl := sin

lπh

2
, l = 1, . . . ,

n

2
− 1. (2.23)

As a result, the coarse-grid modes vHl
are mapped to a linear combination of their fine grid counterparts

vhl
and a complementary mode vhl′ , where l′ := n− 1− l. Moreover, we have

cl′ = sl sl′ = cl, l = 1, . . . ,
n

2
− 1, (2.24)

In order to transfer fine-grid functions to a coarse grid, we define the restriction operator

IhH : Ωh → ΩH , uh → IhH uh (2.25)

by [
IhH uh

]
i

=
1

4

(
[uh]2i−1 + 2 [uh]2i + [uh]2i+1

)
, i = 1, . . . ,

n

2
− 1. (2.26)

The associated matrix representation is given by IhH = 1
2

[
IHh
]T

. Note that the current standard restric-
tion weights form a convex linear combination. Changing the weight coefficients, will result in a different
interpolation and restriction operator respectively. The following proposition can be proven for IhH , see
Ernst and Gander, p. 20.

Proposition 2.5.2 The fine-grid eigenvectors are mapped by the restriction operator IhH according to

IhH vhl
= c2l vHl

, l = 1, . . . ,
n

2
− 1, (2.27)

IhH vhN+1−l
= −s2l vHl

, l = 1, . . . ,
n

2
− 1, (2.28)

IhH vhn+1
= 0. (2.29)

Let uh be an approximate solution to our model problem. Then the coarse-grid correction of uh can be
obtained by solving the error equation Aheh = f −Ahuh = rh on the coarse grid. We start by defining a
coarse-grid representation AH of Ah and solve for A−1H IHh rh, where rh is first restricted to the coarse grid.
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AH is more commonly referred to as the Galerkin Coarsening Matrix. Note that A−1H IHh rh approximates
the error eH = A−1h rh on ΩH . As a last step, eh is interpolated to the fine grid by

uh ← uh + IhHA
−1
H IHh (b−Ahuh) , (2.30)

with the associated error propagation operator

C := I − IhHA−1H IHh Ah. (2.31)

We thus get the following recursive relation for the error

ehl+1 = Chle0 (2.32)

It has been noted that C spans two invariant subspaces corresponding to the index set l = 1, . . . , n2 − 1
and l′ = n− 1− l. Recall that the eigenvalues of the discrete one-dimensional Laplacian operator on Ωh
and ΩH are given by

λhl
=

4

h2
sin2 lπh

2
− k2, l = 1, . . . , n− 1 (2.33)

and

λHl
=

4

H2
sin2 lπH

2
− k2, l = 1, . . . ,

n

2
− 1, (2.34)

Letting span
{
vhl
, vhl′

}
denote an invariant subspace, i.e.

C
[
vhl
, vhl′

]
=
[
vhl
, vhl′

]
Cl, l = 1, . . . ,

n

2
− 1, (2.35)

Cvhn/2
= vhn/2

, (2.36)

we can write C from equation 2.31 as follows

Cl =

[
1 0
0 1

]
−
[
c2l
−s2l

]
1

λHl

[
c2l − s2l

] [λhl
0

0 λhl′

]
=

1− c4l
λhl

λHl
c2l s

2
l

λh
l′

λHl

c2l s
2
l
λhl

λHl
1− s4l

λh
l′

λHl

 . (2.37)

Moreover, the following proposition can be proven, see Ernst and Gander, p. 23.

Proposition 2.5.3 (Spectrum of C) The eigenvalues of the 2×2 blocks from equation 2.37 representing
the coarse grid correction operator are given by

Λ(Cl) =
{

1− c4l λhl+s
4
l λhl′

λHl
, 1
}
, l = 1, . . . ,

n

2
− 1 (2.38)

with eigenvectors

w1
l =

[
c2l
−s2l

]
(2.39)

w2
l =

4

h2

s2l (c2l − hk
2

2
)

c2l

(
s2l − hk

2

2
) . (2.40)

The non-unit eigenvalues reduce to

νl = νl(kh) =
(kh)2

2
(kh)2

(2slcl)
− 1

, l = 1, . . . ,
n

2
− 1, (2.41)

If k is zero, we obtain the discrete one-dimensional Laplacian operator and the expressions from equation
2.33, 2.34 and 2.37 simplify to

λhl

λHl

=
4s2l

(2slcl)
2 =

1

c2l
as well as

λhl′

λHl

=
4c2l

(2slcl)
2 =

1

s2l
, l = 1, . . . ,

n

2
− 1, (2.42)

and therefore

Cl =

[
1− c2l c2l
s2l 1− s2l

]
=

[
s2l c2l
s2l c2l

]
, l = 1, . . . ,

n

2
− 1. (2.43)
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For k = 0, the operator C is an orthogonal projection and has only two eigenvalues 0 and 1. Also, the
eigenvectors corresponding to 0 and 1 respectively are

w1
l =

[
c2l
−s2l

]
(2.44)

(2.45)

w2
l =

[
1
1

]
. (2.46)

For small l, w1
l reduces to approximately [0, 1]T since c2l ≈ 1 and s2l ≈ 0. Thus, as Ernst and Gander put

it, the eigenmode w1
l eliminated by the coarse grid correction is closely aligned with the low-frequency

eigenmode vhl
. This alignment becomes less as l increases.

In case the wave number k is positive, Ernst and Gander (2012) state that for k = 6.3π the unit
eigenvalues of C remain but the zero eigenvalue starts to shift. As a result, low frequency modes corre-
sponding to small eigenvalues of the Helmholtz operator may be partially unaffected.
We will show this by means of an example. Suppose the small eigenvalues of C corresponding to the
eigenvectors in the low frequency range are of order ε, with 0 < ε << 1. The eigenvectors corresponding
to these eigenvalues for small l are the same for the one-dimensional Laplacian operator. Thus, for small
l up to some index d, where l ≤ d ≤ n

2 − 1, we assume that the eigenmodes w1
l corresponding to the zero

eigenvalue of the operator Cl and the low frequency modes vhl
are closely aligned.

From equation 2.32 we know that the error propagates as follows

ehl+1
= Cleh0

. (2.47)

If we decompose the initial error e0 in terms of the eigenvectors of A we obtain

eh0 =

[
γlvhl

γ′lvhl′

]T
l = 1, . . . , d,

where γl corresponds to suitable coefficients for the low frequency range and γl′ represents the coefficients
with respect to the high frequency range. Similarly, for eh

l+1
we can write

ehl+1
=

[
γ̂lvhl

γ̂′lvhl′

]T
,

l = 1, . . . , d.

Applying the coarse-grid error propagation matrix Cl according to equation 2.47 thus gives[
γ̂lvhl

γ̂′lvhl′

]T
= Cl

[
γlvhl

γ′lvhl′

]T
(2.48)

Multiplying by w1
l = [1, 0T ] on both sides gives

ehl+1
w1
l =

[
γ̂lvhl

γ̂′lvhl′

]T [
1
0

]
= γ̂lvhl

.

The left hand side of equation 2.48 becomes

Cj

[
γlvhl

γ′lvhl′

]T [
1
0

]
Using that w1

l = [1, 0]T is an eigenvector of Cl corresponding to l = 1 up to l = d we can rewrite the
expressions into

ehl+1

[
1
0

]
= γ̂lvhl

= Cl

[
γlvhl

γ′lvhl′

]T [
1
0

]
=

[
γlvhl

γ′lvhl′

]T [
ε
0

]
= γlεvhl

Thus, if ε is not equal to zero, the low frequency modes for l = 1 to l = d, do not get removed and
propagate further as the error develops. A similar conclusion can be drawn by looking at Figure 3.1 5.
Ernst and Gander have plotted the spectrum of C for k = 0 and k = 6.3π in Figure 3.1.

5Figure 3.1 has been taken from Ernst and Gander, section 3.2, page 24.
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Figure 2.1: Eigenvalues of C for n = 32. Left k = 0 and right
k = 6.3π.

For k > 0 we indeed see some eigenvalues deviating from zero. On another note, some of these low
frequency modes, instead of being projected onto zero, become amplified and do not partake in the
error smoothing process. An effective remedy to obtain a better coarse-grid correction operator for the
Helmholtz problem is by incorporating the dispersion properties of the discretization scheme, which will
be treated in section 2.6.

2.5.2 Smoothing

In the introductory section of this chapter we briefly mentioned basic iterative methods. While ineffi-
cient for solving large scale Helmholtz problem, they are generally accepted as reducing high frequency
components of the iteration error in a general multigrid setting. In order to reduce the low frequency
components basic iterative methods, such as the damped Jacobi, are implemented as smoothers. By
choosing an optimal smoothing parameter, the high frequency components of the iteration error are
reduced as the damped Jacobi act as a low-pass filter. In section 2.5.1 we described the general two-grid
method for the discrete Helmholtz and Poisson operator. The two-grid method can be combined with
a basic iterative method as a smoother by solving the coarse-grid correction scheme from equation 2.30
using a basic iterative method, such as damped Jacobi or Gauss-Seidel. As a result, the error propagation
matrix acting on the iteration error decomposes into pre and post-smoothing steps, see Vuik and Lahaye
(2012) for more details.

2.6 Pollution

In section 2.5.1, we briefly pointed to the pollution effect due to differences between the exact and nu-
merical wave number. The pollution effect was first mentioned by Deraemaeker et al. (1999) for Finite
Element Solutions (FEM) of the Helmholtz equation. The accuracy of the numerical solution deteriorates
due to the wave number for the numerical solution being different from the wave number of the true
solution. These differing wave numbers appear to be responsible for numerical dispersion. Effectively
this means that the numerical solution is traveling at a different wave speed than the exact solution
introducing a phase error. This effect accumulates as k increases and results in non-accurate error esti-
mates.
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2.6.1 Error Bounds

6 To understand how the dispersion error depends on κ = kh, recall from Chapter 1, section 1.3.3 that
the dimensionless wave number k is represented by

k =
2πfl

c
=
ω

c
= ωm,

where ω denotes the angular frequency and c = 1
m is the wave speed 7. Discretisizing the one-dimension

Helmholtz equation based on the grid Gh1D from Chapter ??, section 1.4.1 leads to

uj+1 − 2uj + uj−1
h2

−m2ω2uj = 0. (2.49)

Moreover, a general continuous solution is given by

u (x) = eiωmx. (2.50)

Evaluation of expression 2.50 in the discrete points gives

uj = eiωm̃xj . (2.51)

Here i denotes the imaginary unit and m̃ contains a perturbation such that m̃ = m + O((hω)
2
). The

perturbed wave speed c̃ becomes c̃ = 1/m̃ = c + O((hω)
2
), which leads to an overal perturbed wave

number k = ωm̃. Substituting equation 2.51 into the equation 2.49 results in

uj+1 − 2uj + uj−1 = eiωm̃xj
(
eiωm̃h − 2 + e−iωm̃h

)
= 2 [cos (ωm̃h)− 1] eiωm̃xj . (2.52)

Equation 2.52 holds if m̃ solves

2 cos (ωm̃h)− 1

h2
−m2ω2 = 2(cos (ωm̃h)− 1)−m2ω2h2 = 0.

Applying Taylor’s expansion on the cosine term leads to

− (ωm̃h)
2

+O
(
h4m̃2ω4

)
−m2ω2h2 = −k̃2h2 − k2h2 +O(k̃4h4) = 0, (2.53)

which delivers the following bound on k̃ and k∣∣∣k̃ − k∣∣∣ = O(k2h2), for k̃ ≈ k.

The error due to
∣∣∣k̃ − k∣∣∣ 6= 0 becomes

errorpollution =
∣∣∣eikxj − eik̃xj

∣∣∣ =
∣∣∣1− ei(k̃−k)xj

∣∣∣ ≤ Ck ∣∣∣k̃ − k∣∣∣ ≤ Ck3h2.(2.54)

The factor Ck3h2 can be decomposed as follows. O(k2h2) provides the error in the numerical wave speed
for a wave traveling one period. The extra factor k is called the pollution error and corrects the total
pollution error by scaling the error over one wave length by the total number of wave lengths traveled
over the entire numerical domain.

Deraemaeker et al. (1999) note that the error given in equation 2.54 solely relates to the dispersion
caused by the differing wave numbers. The total error for the discretized one-dimension Helmholtz
operator is given by

errortotal = ‖u−û‖
‖u‖ ≤ C1kh+ C2k

3h2, kh < 1.(2.55)

While applying the rule of thumb κ = kh ≤ 0.625 is sufficient for keeping the first term under control,
it does not harbour properly against the propagation of the pollution error which grows rapidly with k,
even if κ is kept small enough. Thus, it has been advocated to set the grid resolution to k3h2 ≤ ε instead
of κ = kh ≤ 0.625 (Sheikh, 2014). The pollution effect is illustrated in Figure 2.2 for k = 50, where the
real part of the exact and numerical solution is plotted. The numerical solution has been obtained by
preconditioned GMRES-iterations 8

6This section has been adjusted from Runborg (2012), p.9. and contains most results mentioned in the cited section.
7Runborg (2012) refers to m as the constant index of refraction, i.e. the inverse of speed propagation.
8The exact solution has been discussed in section ?? of Chapter ??.

28



Figure 2.2: Exact and numerical solution for k = 50. The point-source has been
placed at x = 0.5.

Figure 2.2 confirms that refining the grid leads to a more accurate numerical solution. When keeping
k3h2 ≤ ε, the numerical dispersion error is indeed minimized. Minimizing the pollution error inevitably
leads to large linear systems and becomes unpractical in higher dimensions.

2.6.2 Pollution and Multigrid

Ernst and Gander state that a more effective coarse-grid correction operator can be obtained by using a
modified wave number kH in order to bring the coarse-grid approximations in phase with the fine-grid
approximations. This can be achieved by taking H instead of h in the following expressions:

kH =
arccos (1− k̃2H2

2 )

H
= k ⇒ k̃ =

√
2(1− cos (kH))

H2
. (2.56)

An alternative would be to equate the discrete coarse-grid modified wave number kH to the fine-grid
discrete wave number k̃, i.e.

k̃H = k̃

(2.57)

arccos (1− k̃2H2

2 )

H
=

arccos (1− k2h2

2 )

h
. (2.58)

Using cos (2x) = 2 cos (x)
2 − 1 and the fact that H/h = 2, equation 2.58 becomes

k̃H = k

√
1− k2h2

4
. (2.59)

Ernst and Gander have studied the effect of implementing the modified wave number k̃ according to
equation 2.56 and 2.58 into the coarse-grid discrete operator Cl from section 2.5.1. Their results are
presented in Figure 2.3 (upper left and right) and compared to the case where C is constructed on the
basis of the one-dimensional Laplacian (lower left) and the unmodified wavenumber k (lower right).
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Figure 2.3: Eigenvalues of C for k = 6.3π and n = 32 using
equation 2.56 left and using equation 2.58 right.

Imposing a modified wave number on the coarse-grid, keeps the modulus of the non-unit eigenvalues
well below 1. Moreover, the amplification of the low frequency mode has been lifted. As a result, there
seems to be a close correlation between the wave speed on the coarse-grid level and the accuracy of the
non-unit eigenvalues of the coarse-grid projection operator C.

2.6.3 Pollution and Eigenvalues

When it comes to the influence of the pollution error on the spectrum of the discretized operator A,
not much literature is available. However, the previous section illustrated that implementing a modified
wave number k̃ or k̃H on the coarse grid ΩH does influence the eigenvalues of the coarse-grid projection
operator C.
In this section, we proceed with a similar analysis from section 2.6.1 and investigate the spectrum of
the coefficient matrix Ã. Figure 2.4 plots the continuous eigenvalues of the one-dimensional Helmholtz
operator against their discrete counterparts using k and k̃ respectively. We see that for the eigenvalues
near zero, the discrete eigenvalues obtained by using k̃ are better approximations of the continuous
eigenvalues. The more we move to the left of the origin, the better the continuous eigenvalues are
approximated by k (blue dots) instead of k̃ (black dots). For both k and k̃, moving further to the right
of the origin, the discrete eigenvalues become worse approximations of their continuous counterparts.
Taking these results into consideration, there seems to exist some support for the preliminary notion
that the accuracy of the near-zero eigenvalues and the accuracy of the overall numerical solution are
potentially related.
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Figure 2.4: Eigenvalues of h2A and h2Ã for k = 100, 200, 500 and 1000 using
κ = 0.625.

2.7 Concluding Remarks and Summary

This chapter deals with the general numerical solution methods available for solving the Helmholtz
problem. We summarize our main findings in the following points

• Krylov subspace methods that based on minimizing the residual are suitable iterative methods for
the Helmhotlz problem.

• The main method used in this interim thesis to solve the ADEF+CSLP-preconditioned system is
the GMRES-method.

• Standard multigrid methods combined with BIMs for smoothing unwanted error components are
not suitable for the Helmholtz problem at high wave numbers.

• A coarse-correction scheme is effective in reducing the unwanted error components by projecting
these components onto zero. This projection operator serves as a basis for the ADEF-deflation
projection operator.

• At high wave numbers, the numerical solution of the Helmholtz equation suffers from pollution; a
phase error between the numerical and exact solution caused by deviating wave numbers.
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Chapter 3

Preconditioning

In general, the performance of numerical iterative methods are commonly assisted by the use of pre-
condtioners. The latter class of matrices are implemented to cluster the spectrum of A into a more
favorable counterpart in order to speed up convergence. Instead of solving Ax = b, one resorts to solving
M−1Au = M−1f , where the matrix M serves as the preconditioner matrix.

3.1 Preconditioning for the Helmholtz Problem

The use of preconditioners for the Helmholtz problem has been studied widely throughout the years. The
suitable Krylov subspace methods generally do not perform well without incorporating a preconditioner.
Several preconditioners have been tailored for the Helmholtz problem.
An important class is mentioned in (Sheikh et al., 2009) and (Erlangga, 2005), where an incomplete
LU factorization of the coefficient matrix Ah serves as a preconditioner. However, ILU preconditioners
are notoriously known to cause fill-in, destroying the original sparsity of the coefficient matrix and can
especially become problematic for large wavenumbers.
An alternative has been opted by Gander and Nataf (2000), M. Gander (2005) and Gander and Nataf
(2001), where an analytical ILU factorization has been proposed. A drawback of the AILU precondi-
tioner is its applicability to constant-wave number problems as it diverges for non-constant wave number
problems.
Finally, a class of preconditioners has been constructed which focuses on the operator in question and
shows promising performance gains for medium sized wave numbers. In (Bayliss et al., 1983) the precon-
ditioner matrix Mh is equal to the discretizized Laplacian operator −∆h. Laird and Giles (2002) have
further developed this class by including a positive real shift.

For large wavenumbers it seems that the most effective and robust results can be achieved by com-
bining a real and complex shift in the Laplacian operator based preconditioner. Erlangga et al. (2006a)
and Erlangga et al. (2006b) have first examined the behavior of the CSLP-preconditioned system for
the Helmholtz equation. Despite achieving a substantial speed-up, the small eigenvalues of the precon-
ditioned system rush to zero for the Helmholtz problem as the wave number increases. The upcoming
sections will be dedicated to the cause and behavior of these eigenvalues.

3.2 CSLP Preconditioner

Let Ah be the resulting coefficient matrix after discretization. Recall that we can write Ah in terms of
the discrete Laplacian operator −∆h and the n× n identity matrix I: as:

Ah := −∆h − k2I, Ah,∈ Cn×n. (3.1)

The CSLP preconditioner is accordingly defined as

Mh := −∆h − (β1 + iβ2)k2Ih, Ah,∈ Cn×n, β1, β2 ∈ [0, 1], (3.2)
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where i denotes the imaginary unit and β1 and β2 represent the real and complex shift respectively.
Initially, the coefficient matrix Ah is an indefinite real symmetric matrix in the absence of Sommerfeld
radiation conditions. Incorporating a complex shift transforms the preconditioned coefficient matrix
M−1h Ah into a normal, complex, symmetric yet non-Hermitian matrix.
We will proceed by dropping the subscript h in the notation for Ah,Mh and proceed with A,M respec-
tively. Moreover, we introduce a notation for the preconditioned linear system Âu = M−1Au = f̂ =
M−1f .

The preconditioned system has a convenient way of relating the eigenvalues of the matrix A to the
eigenvalues of the transformed system Â given that A and M−1 commute, which is shown below

Â = M−1A,

= M−1(M + (β1 + iβ2 − 1)k2I),

= I + (β1 + iβ2 − 1)k2M−1,

= (M + (β1 + iβ2 − 1)k2I)M−1 = AM−1.

(3.3)

As a result, the preconditioned system shares the same orthonormal eigenvectors as the original coefficient
matrix A and we obtain an elegant expression for the eigenvalues of the preconditioned system

λj(Â) = λj(M
−1A),

= λj(M
−1)λj(A),

=
λj(A)

λj(M)
. (3.4)

Using equation 3.4, it is easy to see that the eigenvalues of the continuous operator defining the precon-
ditioner are

λj(Â) =
j2π2 − k2

j2π2 − (β1 + iβ2)k2
, β1, β2 ∈ [0, 1]. (3.5)

The eigenvalues for the discretized Helmholtz operator are given in section 1.4.3, equation 1.25. Using
equation 1.25, we obtain the following expression for the discrete eigenvalues of the preconditioned
system, where ω denotes the eigenvalues of the discretized Laplacian operator

ω =
1

h2
(2− 2 cos(lπh)), l = 1, 2, . . .

⇒ λl(M
−1A) =

ω − k2

ω − (β1 + iβ2)k2
, β1, β2 ∈ [0, 1]. (3.6)

3.2.1 Optimal Shift

Various options for the shift parameters β1 and β2 have been considered, while respecting the condition
that β1, β2 ∈ [0, 1]. In (Erlangga et al.) and (van Gijzen et al., 2007b) the spectral properties of the
CSLP preconditioned system have been inspected. When the real shift parameter β1 is set to 1 the con-
dition number of the preconditioned coefficient matrix Â is minimized (Erlangga et al.). Letting β1 = 1
leads to a tight circular distribution of the eigenvalues, remedying the high indefiniteness of the original
coefficient matrix A and eventually positively affecting rate of convergence iterative Krylov subspace
methods 1.

Thus far, the literature seems to suggest that the most optimal configuration would be to set β1 to
1 and β2 as small as possible. van Gijzen et al. (2007a) have studied the optimal complex shift pa-
rameter β2, affirming that the complex shift parameter can be interpreted as the radius of the circular
eigenvalue distribution when β1 is fixed at 1. However, a word of caution is in place as decreasing the
magnitude of β2 leads to the matrix M resembling the original coefficient matrix A, making the inversion

1Choosing β1 any larger than 1 would lead to a more indefinite preconditioner matrix M than the original matrix A.
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and implementation of the preconditioner computationally expensive. van Gijzen et al. (2007a) postulate
that the optimal shift (β1, β2) is obtained by letting β1 = 1 and β2 = 0.5, causing the real part of the
eigenvalues to be bounded below by 0 and above by 1, while allowing the complex part to vary between
−0.5i and 0.5i. In the figures below, we plot the eigenvalues for various k using the optimal shift in accor-
dance with (van Gijzen et al., 2007a). Unless stated otherwise, we therefore use shifts (β1, β2) = (1, 0.5)
and κ = 0.625.

Figure 3.1: Eigenvalues of the preconditioned system Â

Figure 3.1 is illustrative of the problem at hand. As k increases, we indeed see small eigenvalues gather-
ing around the origin for both the continuous and discrete systems. For k = 250, the clustering already
seems dominantly prominent. When k grows very large, this effect accumulates. Section 1.5, Figure
1.2 was affirmative in demonstrating the discrepancy between the continuous and discrete eigenvalues.
A similar effect echoes through when examining the eigenvalues of the preconditioned system Â, where
increasing the wave number k leads to more deviations between the analytical and discrete eigenvalues.

We repeat the procedure in Figure 3.2 where we plot the same eigenvalues using a finer grid resolu-
tion.
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Figure 3.2: Eigenvalues of the preconditioned system Â using κ = 0.0625

Figure 3.2 reveals that utilizing a more refined grid decreases the error between the analytical and discrete
eigenvalues. Although the discrete eigenvalues approach the analytical eigenvalues as the number of
grid points per wave length is increased, the occurrence of the clustering eigenvalues near the origin
remains undeterred. These results are in coherence with Erlangga et al.. Erlangga et al. reiterate
that the differences in convergence behavior are primarily determined by the magnitude of the smallest
eigenvalue. The authors come to the conclusion that the smallest eigenvalues are independent of the step
size h.

3.2.2 Near-null Eigenvalues

A vital part of this study focuses on the behavior of the near-nullspace eigenvalues of Â. The conclusions
from this section are of paramount importance for the ADEF-preconditioner, as the small eigenvalues
reappear for large k, surpassing the effect of the intended deflation, see Chapter 4. This section focuses
on revealing where the problem with respect to the small clustering eigenvalues originates. Figure 3.1
from the previous section shed light on two important features. Firstly, we indeed observed the small
eigenvalues crowding up around the origin as k increases. Secondly, on a coarse resolution grid, the
discrete eigenvalues appear to be deviating from their analytical counterparts. In section 1.5.1, we dis-
covered that, though the analytical eigenvalues approach zero when the index j of λj is approximately
equal to k

π , the corresponding statement does not apply unequivocally to the discrete eigenvalues. In

fact, as k increases, the smallest discrete eigenvalues λl emerge at some index l > j = b kπ c.

We will proceed with a similar analysis for the CSLP preconditioned matrix Â. Sheikh et al. (2016)

have confirmed that both the real and imaginary part of the discrete eigenvalues of Â are small in mag-
nitude whenever the same holds for the eigenvalues of the original coefficient matrix A. More precisely,
the preconditioner maps the near-nullspace eigenvalues of A to near-nullspace eigenvalues of Â. As a
result, the inscalability of the CSLP-preconditioned solver is due to the eigenvalues of A approaching the
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nullspace as k increases, causing the the eigenvalues of Â to become even smaller. This effect translates
into an increasing number of iterations needed by the Krylov solver to converge.

Apart from some eigenvalues clustering around the origin, the number of small eigenvalues is reported
to increase along with k. In order to predetermine the scope of potential scalability of any solver based
on the CSLP-preconditioner, it would practical to get an estimate to what extent the number of small
eigenvalues are increasing related to k. Moreover, it would be insightful if we could find an one-to-
one translation between the magnitude of the eigenvalues A and to what extend the magnitude of the
eigenvalues of Â drop. We will adapt the approach followed in (Sheikh et al., 2016), by finding an explicit
upperbound for the smallest eigenvalue of A. We take β1 to be 1 and and start by spliting the expressions
for the analytical eigenvalues into their respective real and imaginary part

λj =
j2π2 − k2

j2π2 − k2 − iβ2k2
, j = 1, 2, 3, . . .

=
γ

γ − iβ2k2
, γ = j2π2 − k2

=
γ

γ − iβ2k2
γ + iβ2k

2

γ + iβ2k2

=
γ

γ2 + β2
2k

4
+ i

β2k
2

γ2 + iβ2
2k

4

= <(λj) + =(λj), j = 1, 2, 3, . . .

The factor k4 already gives a glimpse as to why the eigenvalues of Â approach zero as k increases. Note
that if β2 = 0, the factor k4 drops out. On another note, if j = k

π , then γ is zero, leading to <(λj) being
zero. However, due to rounding error, we generally have |γ| > 0 due to the fact that j needs to be integer.

3.2.3 Convergence Behavior

In the previous section we noted that roughly 1 percent of the total eigenvalues is shifting towards the
origin. It is widely acknowledged that a clustered set of eigenvalues around (1, 0) is, without loss of
generality, favorable for the convergence of Krylov subspace methods. Various studies have treated the
departing shift of a set of eigenvalues and its effect on the performance of Krylov subspace methods, as
they start to cluster around the origin.
For the CSLP-preconditioned Helmholtz problem in particular, the effect of such eigenvalues on the
performance of the GMRES-method has been investigated as well. Erlangga et al., Erlangga (2005)
and (van Gijzen et al., 2007a) mention that for the current model problem, the convergence behavior is
independent of the stepsize. Another feature mentioned is the fact that the number of iterations seems
to grow linearly with k and is bounded above in case damping is introduced (van Gijzen et al., 2007a).
A similar observation has been made in Sheikh (2014) and Sheikh et al. (2016).

In this section, we will briefly look at the convergence behavior of the GMRES-method in solving the
system Âu = f̂ , for various k. The results are presented in Table 3.1.
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Table 3.1: Number of iterations and relative residual.
Est. gives the estimated number of small eigenvalues
between [magn( 1

k ), 0.01], while true provides the ac-
tual account of the eigenvalues. Rel. Res. represents
the relative residual.

k Iterations Est. True Rel. Res.
100 28 2 1 3.230682e-08
500 89 8 8 6.074832e-08
1000 159 16 16 4.987300e-08
2000 294 32 33 6.477246e-08
3000 428 50 49 5.734978e-08
4000 561 66 68 6.739762e-08
5000 688 82 85 7.305645e-08
5500 752 90 93 8.011798e-08
5600 769 94 94 6.897173e-08
5700 1493 96 96 3.428289e-03

We can confirm that the number of iterations grows with k. The clustering of the eigenvalues around zero
appears to be responsible for these results. For wave numbers k ≥ 1000 the number of small eigenvalues
seems to be roughly between 10 and 12 percent of the number of iterations. A convenient ballpoint for
the number of iterations can consequently be deduced.
An interesting observation is that the method diverges for k = 5700, as the dependency on k becomes
non-linear. Unfortunately, employing a finer grid resolution would not render any benefits due to the
convergence being independent of the stepsize.

3.3 Concluding Remarks and Summary

In this chapter we looked into the literature and the results related to the CSLP-preconditioned Helmholtz
problem, which we can summarize into the following main points:

• The CSLP-preconditioned Helmholtz problem shifts the eigenvalues of the original coefficient ma-
trix onto the complex plane

• The eigenvalues are circularly distributed, having their real part bounded between 0 and 1

• As the wave number grows, the eigenvalues start to cluster around the origin, impeding the rate
of convergence

• The convergence and shifting of eigenvalues towards the origin is independent of the step size, yet
the discrete eigenvalues approach the analytical ones as the step size is reduced

• Both the discrete and analytical near-null eigenvalues arise synergistically at the index where the
eigenvalues of the original coefficient matrix A intersects the origin

• Approximately 1 percent of the total number of eigenvalues starts shifting to zero as k increases
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Chapter 4

Deflation

4.1 Deflation

The previous chapter revealed that Krylov subspace methods are adversely affected by close to zero
eigenvalues. While the application of the CSLP preconditioner was successful in confining the eigenval-
ues between 0 and 1, the Krylov solver remains defenseless against the hampering convergence behavior
caused by these small eigenvalues for large k. Deflation is a technique, intrinsically designed, to ”deflate”
these unwanted eigenvalue onto zero. By means of projection, it is possible to alleviate the adverse effects
on the Krylov solver by either explicitly modifying the operator of the linear system (Nicolaides (1987b))
or by augmenting the eigenvectors corresponding to the troublesome eigenvalues (Morgan (1995), Mor-
gan (2002)). For large systems, the latter option defeats its purpose as the computation of eigenvectors
is computationally expensive. As a consequence, most applications in the literature are based on approx-
imations of invariant subspaces obtained from Jordan decompositions. Deflation for large scale problems
relies on multiplying the linear system by a projection matrix P and applying the Krylov subspace
method to the projected system PA, rendering the projection matrix P to act as a preconditioner at the
same time 1

PAû = Pf

A ∈ Cn×n, P ∈ Cn×n, û ∈ Cn

m = dim(P ) < n

Consider A ∈ Cn×n. Then its Jordan decomposition is given by

A =
[
U1 U2

] [J1 Ø
Ø J2

] [
U1 U2

]−1
where J1 ∈ Cm×m and J2 ∈ C(n−m)×(n−m) with m ≤ n represent the square Jordan blocks. Letting
P{U1,U2} denote the projection onto U1 ⊆ Rm×m along U2 ⊆ R(n−m)×(n−m), the projected system can
be decomposed as

P{U1,U2}A =A =
[
U1 U2

] [Ø Ø
Ø J2

] [
U1 U2

]−1
The resulting system PA will have a zero eigenvalue with algebraic multiplicity m. The spectrum
contained in the Jordan block J1 appears invisible to the Krylov solver, ameliorating the conditions for
convergence. Analytically, the invariant subspaces are based on (generalized) eigenvectors, creating the
necessity for approximations to these subspaces in order to meet practical purposes. As a result, the
remaining part of the spectrum will typically differ from σ(J2). However, Gaul (2014) argues that small
perturbations to an invariant subspace lead to small perturbations in the remaining spectrum, as long
as the subspaces are well-conditioned.

1Please note that the subsequent interpretation is for theoretical purposes only. In practice, the preconditioner is not
implemented directly. Also note that the projected system PA can be singular in case P is not equal to the identity matrix.
Additionally the application of a deflation preconditioner is accompanied by a correction scheme as the solution û is not
necessarily a solution to the original system, see (Gaul, 2014).
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4.1.1 Deflation Based Preconditioning for GMRES

Consider a general complex valued linear system. The projection matrix P̂ and its complementary
projection P can be defined as

P̂ = AQ where Q = ZE−1ZT and E = ZTAZ

A ∈ Cn×n, Z ∈ Rm×n

P = I −AQ

where Z functions as the deflation matrix whose m < n columns are considered the deflation vectors and
I is the n× n identity matrix. Matrix P is also known as the projection preconditioner. Note that the
explicit requirement of Z being an A-invariant subspace or an approximation of an A-invariant subspace
has been discarded.

In the literature, this type of projection preconditioning is rarely used in combination with the GMRES
method, mainly because it requires the original coefficient matrix A to be self-adjoint and positive-semi-
definite ((Nicolaides, 1987a), (Dostál, 1988)). Gaul (2014) poses that in case the original coefficient

matrix A is self-adjoint and positive-semi-defininte, there exists a well-defined projection P̂ . Violations
of these assumptions could potentially lead to ill-defined projections. At first consideration, such a choice
would seem counterintuitive for the Helmholtz problem. However, Gaul (2014) provides two conditions
in order for the projection matrix P and the deflated GMRES-method to be well-defined.

Theorem 4.1.1 (Deflated GMRES) Let Au = f be a linear system with A non-singular, A ∈ Cn×n, b ∈
Cn and Z a subspace of Cn×n with dimension dim(Z) = m < n. Furthermore, let θ(Z,AZ) < π

2 ,
where θ(Z,AZ) denotes the principal angle between the subspaces Z and AZ. Then the projection matrix

P := Pu = (I−AQ)u = u−AZ〈Z,AZ〉−1〈Z, u〉, u ∈ Cn is well defined. Moreover, for all initial guesses
u0, the GMRES method applied to the deflated system is well-defined.

Proof A proof has been given by Gaul (2014) in section 3.3, theorem 3.9

As a consequence, as long as the original coefficient matrix A is non-singular and the principal angle
between the subspaces is smaller than π

2 , the deflated GMRES can be applied to the projection matrix

P̂ . This result is of paramount importance, as the ADEF-preconditioner is defined on the coarse space
spanned by the grid-interpolation vectors and is implemented using the GMRES method.

One of the preliminary applications of the abovementioned projection preconditioner P in conjunc-
tion with the GMRES-method has been studied by Erlangga and Nabben (2008) and Yeung et al. (2010)
whom used an exact A-invariant subspace Z. Their main findings stipulate that deflated-GMRES con-
verges faster than non-deflated-GMRES in the absence of breakdowns caused by ill-conditioned deflation
subspaces. On the contrary, utilizing general deflation vectors does not seem to lead to satisfactory
results.

4.1.2 Deflation Based Preconditioning for the Helmholtz problem

For linear systems arising from the CSLP-preconditioned Helmholtz equation in particular, it is possible
to take geometrically constructed multigrid vectors as deflation vectors ((Sheikh, 2014), (A. Sheikh,
2011)). The rationale behind this approach exploits the fact that multigrid inter-grid operators project
small frequencies onto coarser levels. The first works to explore the application of domain decomposition
methods to deflation techniques are (Nabben and Vuik, 2008a) and (Nabben and Vuik, 2004). Specifically
for Krylov subspace methods, Nabben and Vuik pointed out similarities between the deflated CG method
and domain decomposition methods. An extension on this perspective was the implementation of a
deflated Krylov subspace method through a standard multigrid method in (Nabben and Vuik, 2008b).
Such a perspective provides a practical way of implementing deflation as a multigrid method.
Generally, standard multigrid methods are not suitable for the Helmholtz problem, unless the wave
number is small enough relative to the step size. Within the hierarchical context of multigrid methods,
this translates into the requirement that the waves according to wave number k must be resolved on
the coarsest level (Ernst and Gander, 2012). When a multilevel deflation operator P is applied to a
preconditioned system M−1A, the deflation operator P acts as a second level preconditioner, allowing
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for the application of multigrid methods to the indefinite Helmholtz equation. Despite enabling the
application of multigrid methods to the indefinite Helmholtz equation, there still remain some difficulties.
First of all, their exists a duality between optimizing the complex shift β2 in order to limit the clustering
of eigenvalues around zero and keeping β2 large enough in order for the multigrid method to perform
robustly (Ernst and Gander, 2012). Furthermore, using multilevel Krylov methods requires the inversion
of the matrices M and E on several coarse levels and is done approximately. Sheikh (2014), Sheikh et al.
(2016) and Erlangga and Nabben (2008) mention that inexact inversion of these matrices disperses the
deflated eigenvalues in the vicinity of the origin. These additionally occurring eigenvalues, which appear
near the origin, should not be confused with the near-zero eigenvalues which are intrinsic to the linear
system itself. As a result, deflating to the largest eigenvalue instead of zero would be able to mitigate
the effect of additional near zero eigenvalues appearing due to the approximate inversion. The latter
implementation is only suitable in combination with a flexible-Krylov method, such as the flexible-
GMRES, GCR or flexible-IDR method. Another alternative would be to use IDR-methods. In this
interim thesis the main focus lies with the near-zero eigenvalues that are not related to the approximate
inversion. Consequently, unless stated otherwise, inversion is done using a direct method and all linear
systems are solved using the GMRES-method.

Variants for the Helmholtz problem

In this section we describe the available choices of deflation vectors tailored for the Helmholtz equation.
Most of this section contains a summary of §4.2 of Sheikh (2014). We define the following general deflated
system

Ph = I −AhQh where Qh = ZhE
−1
2h Z

T
h and E2h = ZThAhZh (4.1)

where Ah and E2h denote the representative notation for the system matrix to which deflation will
be applied and the coarse grid approximation respectively. Various schemes distinguish themselves by
allowing different choices for Ah and E2h, which we will list below

1. Deflation using the CSLP-preconditioned operator (ideal). As the near nullspace eigenvalues arise
after preconditioning by CSLP, deflation is aimed at the preconditioned system. Already in con-
structing E2h, it requires the inversion of the matrix Mh,(β1,β2) making it computationally expen-
sive.

Ah = M−1h,(β1,β2)Ah and E2h = ZThAZh

2. Deflation using the CSLP-preconditioned operator (practical). This is in fact the first variant, where
the exact inversion of Mh,(β1,β2) has been replaced by an approximation M2h,(β1,β2). Θ = ZTh Zh is
an approximation term as well.

E2h = XT
h AhXh, Xh ∈ Rn×n

= XT
h (M−1h,(β1,β2)Ah)Xh

= XT
hXh(X−1h M−1h,(β1,β2)(X

T
h )−1XT

h Ah)Xh

= XT
hXh(X−1h M−1h,(β1,β2)(X

T
h )−1)(XT

h AhXh)

= ΘM−12h,(β1,β2)
A2h

E2h = ZThAhZh ≈ ΘM−12h,(β1,β2)
A2h

3. Deflation using the Helmholtz operator. Here the deflation preconditioner is directly applied to the
Helmholtz operator. A first level preconditioning by the CSLP-preconditioner may precede the
deflation preconditioner.

Ah = Ah and E2h = ZThAhZh.
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4. Deflation using the CSLP-preconditioned Helmholtz operator. Here deflation is applied solely to
the CSLP operator.

Ah := ∆h − (β̂1 − iβ̂2)k2I and E2h = ZThAhZh

5. Rediscretization Here the coefficient matrix is rediscretisized on the coarse grid with step size 2h.

E2h = re-discretization(Ah).

4.2 ADEF-Preconditioner

The two-level ADEF-preconditioner can be categorized into the third variant. Officially, the ADEF-
preconditioner is defined by including a shift term γ to counteract the effect of the approximate inversion
of E−12h , i.e.

Ph = I −AhQh + γQh. (4.2)

For the CSLP-preconditioned system Â, the largest eigenvalue is 1. Deflating onto the largest eigenvalue
of Â instead of zero (i.e. maxj=1,2,..n−1 λj(Â) = µ = 1) leads to the two-level ADEF1-preconditioner.
We will follow the same approach as Sheikh (2014) and disregard the shift by taking µ = 0, i.e. we are
deflating all unwanted eigenvalues onto the origin instead of one. Note that in this case, the operator
Ph is officially known as the deflation preconditioner. However, for the sake of convenience and in order
to keep the notation in line with Sheikh (2014), we will refer to Ph as the ADEF-preconditioner, while
keeping the shift term zero.
Based on theory above, the ADEF-preconditioner is defined by taking the coarse correction operator
I2hh from a multigrid setting as the deflation subspace Z in equation 4.1. I2hh can be interpreted as
interpolating from grid Ω2h to grid Ωh. As a result, the ADEF-preconditioner is commonly referred to
as a two-level method and we obtain

P̂h = AhQh where Qh = ZhE
−1
h ZTh and Eh = ZTh AhZh (4.3)

Ph = Ih −AhQh where Qh = I2hh A−12h I
h
2h and A2h = I2hh AhI

h
2h

(4.4)

For spectral improvement, the ADEF-preconditioner is applied to the CSLP preconditioned system,
which leads to solving the following linear systems (Sheikh, 2014)

M−1(β1,β2)
Ahuh = M−1(β1,β2)

bh

M−1(β1,β2)
PhAhuh = M−1(β1,β2)

Phbh

PTh M
−1
(β1,β2)

Ahuh = PTh M
−1
(β1,β2)

bh (4.5)

As a result of equation 4.5, the spectrum of both systems are equivalent

σ(M−1(β1,β2)
PhAh) = σ(PTh M

−1
(β1,β2)

Ah)

Due to the equivalent spectra, the order of implementation should not lead to mutually differentiating
results.

4.2.1 Spectral Analysis

Sheikh (2014) and Yeung et al. (2010) have provided analytical expressions for the eigenvalues of the
ADEF-preconditioner using rigorous Fourier analysis. The following section contains an excerpt of
Sheikh’s paragraph §4.2 and §5.2 from (Sheikh, 2014) covering the one-dimensional two-grid spectral
analysis of the ADEF-preconditioner. We start by using a second order accurate stencil, writing the
coefficient matrix Ah as follows[

Ah
]

=
1

h2

[
− 1 2− κ2 − 1

]
where κ = kh,
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Recall that the basic eigenfunctions are sines, and thus we can define the following eigenvectors

φlh = sin(lπx) for 1 ≤ l ≤ n− 1 (4.6)

which correspond to the eigenvalues

λl(Ah) =
1

h2
(2− 2cl − κ2), cl = cos(lπh)

The eigenvectors form an orthonormal set and provide a basis for block diagonalization. Defining the
following blocks

Bl
h,2h,(β1,β2)

= (PTh,2h)l(Sh)l

Sl
h = (Mh

−1
(β1,β2)

Ah)l

we can represent the spectrum in terms of these block matrices. Each index l defines a block up to n/2
and we obtain a representation of the spectrum in terms of these blocks

σ(B2,2h,(β1,β2)) = σ
([
Bl

2,2h,(β1,β2)

]
1≤n/2

)
We now reorder the eigenvectors into a basis Vh, which will provide the basis for bringing the coefficient
matrix and the preconditioner matrices into block diagonal form

Vh =
[
θ1h, θ

n−1
h , θ2h, θ

n−2
h , ..., θ

n/2−1
h , θ

n/2
h

]
.

Ah =
[
Al
h

]
1≤n/2

,

Al
h =

(
1
h2 (2− 2cl − κ2) 0

0 1
h2 (2− 2cl − κ2)

)

A
n/2
h =

2

h2
− k2

We have shown in Chapter 3 section 3.2 that the eigenvectors from equation 4.6 coincide with the
eigenvectors of the CSLP-preconditioned coefficient matrix given that Mh,(β1,β2) and Ah commute. Thus,
we can use Vh as a basis for diagonalization of Mh,(β1,β2) and Sh,(β1,β2). Given the eigenvalues of the
respective matrices

λl(Mh,(β1,β2)) =
1

h2

(
2− 2cl − κ2(β1 − iβ2)

)
,

λl(Sh,(β1,β2)) =
2− 2cl − κ2

2− 2cl − κ2(β1 − iβ2)

we can block diagonalize them using the following blocks

M l
h,(β1,β2)

=
1

h2

(
1
h2 (2− 2cl − κ2(β1 − iβ2)) 0

0 1
h2 (2− 2cl − κ2(β1 − iβ2))

)
,

Sl
h,(β1,β2)

=
1

h2

(
2−2cl−κ2

2−2cl−κ2(β1−iβ2)
0

0 2+2cl−κ2

2+2cl−κ2(β1−iβ2)

)
.

M
n/2
h =

2

h2
− (β1 − iβ2)k2
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S
n/2
h =

2− k2

2− (β1 − iβ2)k2

The basis Vh further diagonalizes the linear interpolation operator I2hh into blocks

(I2hh )l =
[1

2
(1 + cl) − 1

2
(1− cl)

]
,

As a result, the block diagonal form of the diagonal Galerkin coarse grid operator A2h and M2h are equal
to

Al
2h = (I2hh )lAl

h(Ih2h)l =
2(1− c2l )− κ2(1 + c2l )

2h2

M l
2h = (I2hh )lM l

h(Ih2h)l =
2(1− c2l )− (β1 − iβ2)κ2(1 + c2l )

2h2

Subsequently the 1× 1 block for M−12h A2h will be

(M−12h A2h)l =
2(1− c2l )− κ2(1 + c2l )

2(1− c2l )− (β1 − iβ2)κ2(1 + c2l )

for 1 ≤ l ≤ n/2− 1 and (M−12h A2h)n/2 = 2−κ2

2−κ2(β1−iβ2)
. Also the 1× 1 block for the approximation term

Bh = I2hh Ih2h can be simplified as

Bl
h = (I2hh Ih2h)l = (1 + c2l ), 1 ≤ l ≤ n/2

Finally, we consider the deflation preconditioner PTh,2h which can be written in a block diagonal form,
using the blocks

P l
h,2h = I − (Ih2h)l(Al

2h)−1(I2hh )lAl
h, 1 ≤ l ≤ n/2

A standard computation gives the 2× 1 blocks of bilinear interpolation where for 1 ≤ l ≤ n/2− 1

(Ih2h)l =
1

2

(
(1 + cl)
−(1− cl)

)
,

and where

(Ih2h)n/2 = 0.

The Galerkin coarsening then results in the 1× 1 blocks where for 1 ≤ l ≤ n/2− 1

Al
2h = (I2hh )lAl

h(Ih2h)l =
1

2h2
[
2(1− c2l )− κ2(1 + c2l )

]
A straightforward computation subsequently allows to obtain for 1 ≤ l ≤ n/2 − 1 the following 2 × 2
blocks of (P l

h,2h)T

(P l
h,2h)T =

1

C

(
−(cl + 1)(c2l − 1) + 1

2κ
2(c2l2 − 1) 1

2 (c2l − 1)(2 + 2cl − κ2)
1
2 (c2l − 1)(−2 + 2cl + κ2) (c2l − 1)(3 + cl) + 1

2κ
2(c2l + 3)

)
where c = 1

2(1−c2l )+κ2(c2l +1)
and 1× 1 block

(P
n/2
h,2h)T = 1

The basis Vh can therefore be used to block diagonalize the deflated preconditioner operator, i.e., we can
write

Bh,2h,(β1,β2) =
[
Bl
h,2h,(β1,β2)

]
1≤l≤n/2
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where for 1 ≤ l ≤ n/2− 1 , Bl
h,2h,(β1,β2)

is the 2× 2 matrix

Bl
h,2h,(β1,β2)

= (P l
h,2h)Tdiag

(
λl(Sh,(β1,β2))
λn−l(Sh,(β1,β2))

)
and where

B
n/2
h,2h,(β1,β2)

= λn/2(Sh,(β1,β2)) =
2− κ2

2− κ2(β1 − iβ2)
(4.7)

This block diagonal form renders an analytical computation of the eigenvalues of Bh,2h,(β1,β2) feasible
and results in the conclusion that Bh,2h,(β1,β2) has a zero eigenvalue of multiplicity n/2−1, the eigenvalue
4.7 and n/2− 1 eigenvalues of the form

λl(Bh,2h,(β1,β2)) =
al + ibl
cl + idl

for 1 ≤ l ≤ n/2− 1

where al , bl , cl and dl are third order polynomials in κ2 and given by

al =(−1− c2l )β1κ
6 + (4β1 + 2− 2c2l + 4c2l β1)κ4

+ (8c2l − 4β1 − 8 + 4c4l β1)κ2 + (8− 16c2l + 84l ) (4.8)

bl =(1 + c2l )β2κ
6 + (−4c2l β2 − 4β2)κ4 + (4β2 − 4c4l β2)κ2

cl =(β2
2 − β2

1 + c2l β
2
2 − c2l β2

1)κ6 (4.9)

+ (4β1 − 2c2l β
2
1 + 2c2l β

2
2 + 2β2

1 − 2β2
2 + 4c2l β1)κ4

+ (8β1c
2
l − 8β1 − 4 + 4c4l )κ2 + 8c4l + 8− 16c2l

dl =(2β1β2 + 2c2l β1β2)κ6 + (4c2l β1β2− 4β1β2 − 4β2 − 4c2l β2)κ4

+ (8β2 − 8c2l β2)κ2 (4.10)

Additionally, we obtain the following expression for the eigenvalues of P l
h,2h)TAh

λl(PTh,2hAh) = − (c2l + 1)κ4 + (−4c2l − 4)κ2 − 4(c4l − 1)

((c2l + 1)κ2 + 2(c2l − 1))h2
(4.11)

4.2.2 Near-null Eigenvalues

Using the expressions above, we can investigate the behavior of the eigenvalues. So far we are famil-
iar with the occurrence of small eigenvalues for the CSLP preconditioned system. However, for large
wave numbers k these small eigenvalues reappear and seem to ponder as to what causes the ADEF-
preconditioned solver to remain non-scalable for large wavenumbers. In order to gain insight into this
phenomena, we will compare the real part of the spectrum of the ADEF-preconditioner applied to the
coefficient matrix Ah and CSLP-preconditioned matrix Â = Mh,(β1,β2)Ah. For ease of notation, we now
denote the matrices by A, M and P respectively. We will use the expressions obtained in equation 4.10
and 4.11.

Previously we noted that the index at which the smallest eigenvalues appear in the discrete case are
different compared to the index for the analytical case, which always centers around k

π . In the previous

case, we discovered that the difference between the analytical index j = b kπ c and the discrete index l
at which these eigenvalues occur increases linearly. In order to locate where the problem originates, we
therefore proceed with a similar analysis, starting by investigating where the smallest eigenvalues appear
for the deflated, ADEF-preconditioned and CSLP-preconditioned systems respectively.

We mark the index l at either the least negative or smallest positive real part of the eigenvalues of
PTM−1A. Here we explicitly compute the real part of spectrum and take the minimum over the total
set. We also mark the approximated index l̂ obtained in section 3.2.2 by

l̂ = round(
arccos(1− h2(k2)

2 )

πh
), l̂ ∈ N \ {0}. (4.12)
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We will use equation 4.12 in order to investigate to what extent the location of the troubling eigenvalues
of Â and PTM−1A coincide. Equation 4.12 provides an alternative to locating these eigenvalues without
computing them, compared to using the arccos function in conjunction with equation 4.10. The latter
option would be cumbersome due to the complexity of the expressions.
Figure 4.1 contains a plot of the difference between |b kπ c− l| and resembles the departure of index l̂ from

b kπ c as k increases.

Figure 4.1: Difference between l and b kπ c as a function of k

using κ = 0.3125.. l̂ has been calculated using equation 4.12.

The results are comparable to the ones obtained for the CSLP-preconditioned system Â in section
3.2.2. For increasing k, the difference between the index at which the smallest eigenvalue occurs and
b kπ c increases linearly. Furthermore, equation 4.12 appears to locate the index at which the smallest
eigenvalue of PTM−1A occurs quite adequately, supporting the preliminary conclusion that the troubling
eigenvalues of Â and PTM−1A seem to originate from the same source.
Based on the results from Figure 4.1, we now let l̂ be in accordance with equation 4.12 and use this index
to plot the eigenvalues of PA, A, PTM−1A and M−1A. We investigate the behavior for k = 100, 1000
and 10000 complementary to Sheikh (2014), keeping κ fixed at 0.3125, unless stated otherwise. Note
that all the eigenvalues of the deflated coefficient matrix PA are real. From Chapter 3, section 3.2.2
we know that the troubling eigenvalues for the CSLP-preconditioned system Â are located at the same
index where the eigenvalues of A are closest to zero. In order to assess whether a similar conclusion can
be drawn for the system PA, we include the eigenvalues of A in the plot as a benchmark. In order to
simplify the analysis, we have scaled the eigenvalues of PA and A by h2. The blue marker represents
the eigenvalue corresponding to the index l̂, which has been calculated using equation 4.12
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Figure 4.2: Eigenvalues of h2PA, <(PTM−1A) and M−1A resp. for k = 100. The

marker indicates the eigenvalue corresponding the index l̂, which has been calculated
using equation 4.12.

For k = 100, we observe that the real part of the spectrum of PTM−1A exhibits a similar pattern
relative to the spectrum of h2PA. The index corresponding to the eigenvalue of h2A approaching zero
coincides with the index of the eigenvalue of <(PTM−1A) approaching zero, which supports the notion
from Figure 4.1. Consequently, as the eigenvalues of h2PA approach the eigenvalues of h2A near zero, so
do the eigenvalues of <(PTM−1A). As a result, there seems to be a one-to-one correspondence between
the zero-approaching eigenvalues. Compared to the smallest eigenvalue of M−1A, the magnitude of the
smallest eigenvalue of h2PA and h2A is considerably larger. Also, more small eigenvalues appear to
be clustering around zero for the CSLP-preconditioned system compared to the ADEF-preconditioned
system. We now proceed by repeating the previous experiments for k = 1000 and k = 10000.

Figure 4.3: Eigenvalues of h2PA, <(PTM−1A) and M−1A resp. for k = 1000. The

marker indicates the eigenvalue corresponding the index l̂, which has been calculated
using equation 4.12.
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Figure 4.4: Eigenvalues of h2PA, <(PTM−1A) and M−1A resp. for k = 10000.

The marker indicates the eigenvalue corresponding the index l̂, which has been cal-
culated using equation 4.12.

Figure 4.3 and Figure 4.4 are illustrative of the fact that as k is increased, the eigenvalues of the ADEF-
preconditioned system are starting to cluster around zero. Interestingly, the magnitude of the eigenvalues
does not necessarily drop. This effect, on the contrary, was reported for the CSLP-preconditioned system.
For example, for both k = 100 and k = 1000, the real part of the smallest eigenvalue of PTM−1A is
0.0879. For k = 10000 we get a value of 0.005. Despite the smallest eigenvalue becoming even smaller
for k = 10000 relatively, this does not necessarily imply that the order of magnitude drops solely as
k increases. As we can see from Figure 4.5, already for k = 1233 we obtain an eigenvalue of similar
magnitude compared to the case where k = 10000, which indicates that the magnitude of the smallest
eigenvalue in relation to increasing wave number k is not necessarily monotone.

Figure 4.5: Eigenvalues of <(PTM−1A) for k = 1200, 1220, 1233, 1250. The marker

indicates the eigenvalue corresponding the index l̂, which has been calculated using
equation 4.12.

Figure 4.6 plots the eigenvalues of the <(PTM−1A) for k = 10000, while increasing the number of
grid points per wavelength. The eigenvalues of M−1A were reported to be independent of the grid and
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step size, whereas the eigenvalues of <(PTM−1A) appear to be dependent on these spatial parameters.
Increasing the grid resolution by letting h go to zero dissolving the cluster of small eiegenvalues near zero.
However, this comes at a price as increasing the number of grid points per wavelength also increases
the problem size. As a result, more and more eigenvalues get deflated as the dimension of the deflation
subspace increases along the problem size. Next to dissolving the clustering small eigenvalues, increasing
the number of grid points per wavelength additionally enforces the smallest eigenvalue to be located at
the index b kπ c (black marker). The discrete eigenvalues become better approximations of their continuous
counterpart. A similar effect was also reported for the eigenvalues of M−1A, see section 3.2.1.

Figure 4.6: Eigenvalues of <(PTM−1A) for k = 10000 and number of grid points
per wavelength 20, 40, 80, 100. The blue marker indicates the index calculated using
equation 4.12. The black marker indicates the index b kπ c.

4.2.3 Convergence Behavior

In this section we will explore the convergence behavior of the ADEF-preconditioned system versus the
CSLP-preconditioned system. One of the reported findings in both the literature and our results thus far
indicate that the ADEF-preconditioner suffers from clustering near nullspace eigenvalues for high wave
numbers. In order to see the effect of these eigenvalues on the convergence behavior, Table 4.1 contains
the results after implementing the two-level deflation preconditioner ADEF on our model problem. We
have inverted all matrices exactly using a direct solver.
Recall that we only implemented Dirichlet boundary conditions, resulting in a system which does not
introduce any damping and should be considered a spectrally worst case scenario (Sheikh, 2014). We
also compare the performance to the CSLP preconditioner.

Table 4.1: Number of full GMRES iterations using the ADEF and CSLP precondi-
tioner. Iter. gives the number of GMRES iterations and Rel. Res. represents the
relative residual.

κ = 0.625 κ = 0.3125

k ADEF CSLP ADEF CSLP

Iter. Rel. Res. Iter. Rel. Res. Iter. Rel. Res. Iter. Rel. Res.
100 16 1.6650e-08 44 7.6988e-08 10 2.2809e-08 44 7.4631e-08
500 41 4.1160e-08 160 9.6237e-08 19 6.2831e-08 155 6.1181e-08
1000 67 5.1416e-08 296 4.7705e-08 27 7.0026e-08 283 8.5375e-08
5000 251 8.6474e-08 1200 3.3587e-02 81 5.9620e-08 1200 6.9000e-03
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These preliminary findings support the notion obtained from observing the spectrum of PTM−1A and
Â; the convergence behavior of the ADEF preconditioner seems to be highly dependent on the grid reso-
lution κ and as a result the step size h. For κ = 0.625, the convergence behavior appears to be sublinear.
Lowering κ by increasing the number of grid points per wave length reduces the iterations needed by the
ADEF-solver to reach convergence. These findings do not apply analogously to the CSLP-solver, which
was already reported to be independent of the step size, see section 3.2.2. Moreover, the CSLP-solver
diverges for k = 5000, see section 3.2.3.
The effect of the deflated eigenvalues is perceptible at both levels of κ. Removing most of the bad
eigenvalues and dissolving the cluster near zero immediately results in a substantial reduction in the
number of iterations. Note that in case Sommerfeld radiation conditions are implemented as boundary
conditions, the original coefficient matrix A will contain a damping term and we expect the number of
iterations to drop even further (Sheikh, 2014).

Finally, we investigate to what extent the convergence behavior of the ADEF-solver is impacted by
allowing the complex shift β2 to vary. In section 3.2.1 we noted that the convergence behavior of the
CSLP-solver is positively impacted by lowering β2 as this reduces the amount of near nullspace eigenval-
ues. However, implementing a smaller complex shift leads to the preconditioner resembling the original
coefficient matrix, making the inversion more difficult.
Table 4.2 presents the result of implementing the ADEF-preconditioner using different complex shifts
and shows that the ADEF-preconditioner is less sensitive to varying β2, especially for κ = 0.3125. A
similar conclusion has been rendered in Sheikh (2014) for the two-dimensional constant wave number
problem.

Table 4.2: Number of GMRES iterations for κ = 0.625 and κ =
0.3125 using the ADEF-preconditioner with shifts (β1, β2) = (1, 0.25)
and (1, 1).

κ = 0.625 κ = 0.3125

k ADEF(1,0.25) ADEF(1,1) ADEF(1,0.25) ADEF(1,1)

Iter. Iter. Iter. Iter.
100 14 17 10 10
200 22 25 11 12
300 27 29 15 16
400 32 35 17 17
500 38 42 19 19
600 43 46 20 21
700 48 51 21 21
800 53 57 24 24

4.3 Concluding Remarks and Summary

This chapter evolved around the literature and main results as regards the application of geometric de-
flation techniques to the Helmholtz equation. Before we summarize our principal findings, we would like
to remark that so far we have been comparing the clustering eigenvalues of the CSLP-preconditioned
systems to the ADEF-preconditioned system. For the latter, we also recorded clustering eigenvalues for
large k. Given that the range of both spectra is not equivalent, the conclusion as regards the clustering
eigenvalues should be perhaps be adjusted to reflect this notion. For example, suppose for the CSLP-
preconditioned system a cluster of 10 eigenvalues reside between 0 and 0.01, which accounts for 1 percent
of the range. Despite, the ADEF-preconditioned system having less eigenvalues between 0 and 0.01, the
clustering of eigenvalues with larger magnitude around zero seem to be responsible for the increase in
the number of iterations. Thus, for the ADEF-preconditioned system, 10 eigenvalues between 0.01 and
0.5 may cause more harm, see Figure 4.3 and Table 4.1.

We conclude this chapter by summarizing our main findings into the following points
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• Deflation based preconditioning applied to the CSLP-preconditioned Helmholtz equation leads to
the ADEF-preconditioner, where multigrid interpolation vectors are chosen as basis vectors

• The ADEF+CSLP-preconditioned system has n/2 eigenvalues deflated towards zero

• The ADEF+CSLP-preconditioner outperforms the CSLP-preconditioner

• As k increases clustering eigenvalues near zero reappear. Their magnitude, however, is not neces-
sarily monotone as k increases.

• The center of the problem for both the CSLP-preconditioned and ADEF-preconditioned systems
originates from the same point; the index of the smallest absolute eigenvalue of the original coeffi-
cient matrix A.

• The eigenvalues of the ADEF-preconditioned and ADEF+CSLP-preconditioned system are grid
dependent, unlike the eigenvalues of the CSLP-preconditioned system. Increasing the number of
grid points per wave length reduces the clustering eigenvalues around zero

• The ADEF+CSLP-preconditioned system is insensitive to changing β2
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Chapter 5

Research Proposal

5.1 Preliminary Findings and Conclusions

5.2 Test Problems

For the sake of theoretical thoroughness, most of the analysis and cited literature in this interim thesis
was based on our simple one-dimensional model problem from Chapter 1, section 1.3. In this subsection,
we will define some more complicated models next to our original model problem in order to serve our
future research purposes and to test the robustness and validity of the results that will be obtained.
These model problems coincide with the test problems used by Sheikh (2014).

5.2.1 One-Dimensional Test Problems

Next to our original model problem as defined in Chapter 1 section 1.3, we will additionally include
another one-dimensional test problem where we implement Sommerfeld radiation conditions along with
Dirichlet boundary conditions. Similar to our original model problem, we place the source at the center
of the numerical domain.

Constant Wave Number

On the standard unit domain Ω = [0, 1] with constant wave number k we consider

−∆u(x)− k2u(x) = δ(x− 1

2
), x ∈ Ω \ ∂Ω,

u(x) = 0, x ∈ ∂Ω,(
∂

∂n
− ik

)
u(x) = 0, x ∈ ∂Ω,

where n denotes the outward normal unit vector in the x-direction.

5.2.2 Two-Dimensional Test Problems

Here we describe the possible two-dimensional test problems, which can be used for future research
purposes.
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Constant Wave Number

On the standard two-dimensional square unit domain Ω = [0, 1]× [0, 1] with constant wave number k we
consider

−∆u(x, y)− k2u(x, y) = δ(x− 1

2
, y − 1

2
), (x, y) ∈ Ω \ ∂Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω(
∂

∂n
− ik

)
u(x, y) = 0, (x, y) ∈ ∂Ω,

where n denotes the outward normal unit vector in the x- and y-direction respectively. Sheikh (2014)
uses this test problem as the main model to conduct numerical experiments for large k.

Wedge Problem

This model problem accounts for various sources of heterogeneity, which is common in physical problems
arising in geophysical seismic imaging. We consider an inhomogeneous medium, where the domain is
subdivided into three layers with different velocities and consequently different wave numbers. We define
the domain Ω = [0, 600]× [0, 1000]. For a visual representation of the domain for the wedge problem, see
Figure 5.1 a. To model wave diffraction, a point source is placed at (x, y) = (300, 0), which leads to the
pattern as depicted in Figure 5.1 b. On Ω, we define

−∆u(x, y)− k(x, y)2u(x, y) = δ(x− 300, y), (x, y) ∈ Ω \ ∂Ω,(
∂

∂n
− ik

)
u(x, y) = 0, (x, y) ∈ ∂Ω,

where n denotes the outward normal unit vector in the x- and y-direction respectively. Moreover,
k(x, y) = 2πfreq

c(x,y) is given in terms of the velocity profile as shown in Figure 5.1 a. Sheikh (2014) uses a

set of four different frequencies 10, 20, 40 and 80 Hz for numerical testing.

Figure 5.1: (a) Domain of the wedge problem with velocity dis-
tribution over 3 layers. (b) Pattern of wave diffraction through
layers of different velocity.

52



Marmousi Problem

The final test problem is a representation of an industrial problem and is widely referred to as the
Marmousi Problem. The original Marmoussi problem is defined on a rectangular domain Ω = [0, 9200]×
0, 3000]. Unlike the wedge-problem which consist of three layers, there are now 158 layers with velocities
ranging from 1500 m/s to 5500 m/s. Sheikh (2014) considers a slightly adapted version of the original
Marmousi problem. The original domain has been truncated to Ω = [0, 8192] × [0, 2048] in order to
allow for efficient geometric coarsening of the discrete velocity profiles given that the domain remains in
powers of 2. The original velocity c(x, y) is also adapted by considering 2587.5 ≤ c ≤ 3325.
On the adjusted domain Ω, we define

−∆u(x, y)− k(x, y)2u(x, y) = δ(x− 4000, y), (x, y) ∈ Ω \ ∂Ω,(
∂

∂n
− ik

)
u(x, y) = 0, (x, y) ∈ ∂Ω,

where n denotes the outward normal unit vector in the x- and y-direction respectively. Similar to the
wedge problem, we have a non-constant wave number k(x, y) = 2πfreq

c(x,y) , where in this particular case

c(x, y) ranges between 2587.5 and 3325. For this adjusted version of the Marmousi problem, numerical
experiments have been conducted by Sheikh (2014) using the frequencies 1, 10, 20 and 40 Hz, where the
grid has been resolved in such a way that the maximum wave number k at freq = 1 has a grid resolution
of kh ≤ 0.039. For the remaining frequencies, a grid resolution of kh ≤ 0.39 is utilized.
A visual representation of the domain of the original Marmousi problem and the results obtained using
a frequency of 20 Hz. are illustrated in Figure 5.2 a and b.

Figure 5.2: (a) Domain of the Marmousi problem with velocity
distribution over 158 layers. (b) Pattern of wave diffraction
through layers of different velocity for freq = 20.

5.3 Research Questions

Using the findings from both the analysis and literature survey in this interim thesis, we will conduct
future research regarding the scalability of an iterative Helmholtz solver. In order to determine whether
we can obtain a scalable iterative Helmholtz solver, we will answer the following main questions:

1. To what extent is the ADEF-solver scalable?
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(a) What causes the current solver to remain inscalable?

(b) What parameters can be identified to influence the solver scalability?

• Which parameters can be defined on the operator level?

• Which parameters can be defined on the geometric level?

2. Is there a relation between the pollution error and the cause for inscalability? (i.e. the close to
zero eigenvalues). If affirmative, will reducing the pollution error lead to better scalability of the
solver?

• How does the spectrum of PTM−1A alter after introducing a perturbed wave number k to
model numerical pollution?

• What is the effect of the perturbation on the coarse resp. fine grid?

3. What alternatives are available to obtain a scalable iterative Helmholtz solver?

If time permits, we will additionally briefly look into the effects of implementing different discretization
schemes on the propagation of the numerical pollution error.
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