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Abstract

With breast cancer being the leading cause of death in the Netherlands, while also being expected to
have double the amount of cases in the next ten years, it is vital that treatment is optimised. Over the
last decade, research has been done to incorporate mathematical modelling in this process, espe-
cially in the case of HER2+ breast cancer patients. This aggressive form has poor chances of survival,
but responds well to chemotherapy and is expected to be quite predictable. In previous works of N.
Oudhof and E. Slingerland, a mechanically coupled reaction-diffusion model with an extension of
chemotherapy was implemented in 2D, using three MRI scans to predict tumour response. The
first two scans, taken right before and during treatment, are used to find patient-specific parame-
ters corresponding to proliferation, tumour movement and chemotherapy efficacy. This calibrated
model is then used to predict the third scan, taken at the end of treatment. Calibrating this model
to individual patients takes up to a day, however.

This thesis aims to extend this model to a higher resolution 3D setting, which should also hand
doctors predictions within a working day. To increase speed, the linear-elastic sub-problem of find-
ing shear stress due to tissue types and tumour growth was first optimised. With a novel Laplacian
preconditioner in the Conjugate Gradient method, using FFT’s and a tridiagonal solver, the time
needed was vastly improved. Second, the maximum order of error needed for accurate temporal
integration was confirmed to be quite high. Hence a state-of-the-art Parareal implementation was
made, using Runge-Kutta 4 and Crank Nicholson as the respective fine and course solver, which suc-
ceeded in being both faster and more accurate than simple first-order methods. Then it was found
that the underdeterminedness of the problem is best tackled using Total Variation Regularisation on
the proliferation parameter and Tikhonov Regularisation on the other two parameters. This ensures
that unique solutions can be found in reasonable time, that properly reflect expectations of these
parameters in practical settings. The best set of parameters were found fastest with Powell’s Dog-leg
method, for which a novel way of finding the Jacobian analytically was used.

On simulated data, the error in the amount of tumour cells in the third image went down to
single-digit percentage rate, with a maximal shape correlation coefficient. This prediction can be
made within a few hours, which means that the feasibility of solving this problem in practical set-
tings has been established successfully. On the real data, the calibration succeeded in calibrating the
model on the first two scans, but the predictions still have room of improvement. The most impor-
tant suggestion of this work is that more research must be done in the verification of the suitability
of this model to the available real data, using the techniques presented here. Further improvements
can be made by exploring more possibilities of using parallelisation, and by obtaining more data.
Before obtaining more data, one should investigate the impact of the timing of the scans on the
calibration results.
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1
Introduction

According to the Integraal Kankercentrum Nederland, the amount of cancer cases in the Nether-
lands will almost double in the next ten years [2]. This is on top of the fact that it is already the
leading cause of death here, as well as one of the leading causes of death worldwide [3]. Of all
types, breast cancer is the most commonly diagnosed form of cancer, accounting for almost 700.000
deaths in 2020 [4]. The three standard ways of treating breast cancer are chemotherapy, surgery and
radiotherapy, with most of the time a combination of these being used. Chemotherapy causes the
tumour to shrink, after which it can more easily be removed surgically. However, chemotherapy also
damages the healthy part of the body, which makes it vital to give a patient the right dose. With a
hypothetically optimal dose, the tumour shrinks well enough to be easily removed, while also hav-
ing as little damage to the body as possible.

With mathematical modelling, one can attempt to predict the response of the tumour on the
administered drugs. This is a very complex process, and over the last decade more and more re-
search has been done on this subject. In this work we focus on HER2-positive breast cancer, which
is an aggressive form of breast cancer with relatively poor prognosis of survival. Meanwhile, these
tumours do respond well to treatment focusing on reducing the amount of cancer cells, which facil-
itates tumour removal.

1.1. Project Description
In previous master theses of Nathalie Oudhof [5] and Eva Slingerland [1] a model was implemented
to predict patient-specific tumour response with a data-set of MRI scans of patients of Erasmus MC.
Specifically, this is the Mechanically Coupled Reaction Diffusion model (MCRD), with an extension
called the Drug-Included MCRD (DI-MRCD). Using MRI scans of patients undergoing chemother-
apy, taken right before treatment starts and after a few rounds, we want to predict the outcome of
a third MRI scan a few rounds later. This thesis will continue this research, now focusing on an nu-
merically efficient and accurate implementation. Efficiency is key here, as the models present can
take over a day to get to their final prediction with 2D data. Most of the time is needed to tune the
patient-specific parameters of the model. For usage in hospitals, this needs to be brought down to
a couple of hours, and additionally the complete 3D data should be used. Hence an analysis on the
bottlenecks of this simulation is crucial to realising a tool which can assist doctors in making a good
treatment schedule.

The improvements on the implementation will be done by taking the DI-MCRD model apart,
and identifying what steps are done in what way. Aside from the inverse problem of tuning the
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2 1. Introduction

model to each patient, there is a sub-problem in the form of a linear-elastic equation. Furthermore,
the model needs to be evaluated over time, which can be attained with either implicit or explicit
methods of varying orders of accuracy. With state-of-the-art methods and clever programming, the
goal of substantially reducing the time needed to run this model should be attainable. Research for
this can both be done by investigating medical literature, but also literature in mechanical engineer-
ing, where they solve similar problems.

1.2. Research Questions
We will put the main questions we want answered in words, with first and foremost the formal re-
search question

How can the 3D DI-MCRD model be implemented more efficiently, in order to tune the model in a
few hours and accurately predict tumour response for HER2+ breast cancer patients?

To help us answering this, we have the following sub-questions

• Is CG faster than the direct method for solving the linear-elastic equation at our scale, and do
extensions such as preconditioning an recycling speed it up even more?

• Is it faster to use explicit methods such as FE, RK4 for our temporal evaluations or implicit
methods such as BE, CN, gen-α?

• What order of local truncation error is necessary to obtain accurate predictions on our time-
scale?

• Are (locally) optimal solutions to the inverse problem on simulated data found fastest with
LM, TRF, DL, or AS, and what regularisation technique should be used?

• Can we find (locally) optimal solutions to fitting the model to simulated data in a few hours?

If the answer to this last question is yes, then there is a subsequent last question which deter-
mines the utility of this project as a whole.

• Are the predictions of the fitted model accurate with respect to the real data?

While the terms ‘sufficient accuracy’ and ’accurate’ are not quantitative, we can impose that
our meaning of this is that the relative L2−errors can be 10−5 at most. The fifth sub-question is a
sanity-check to see if solving problems of this size is doable at all, before we continue with real data.

1.3. Structure
This thesis starts by providing some background information on the medical details in Chapter 2,
where also a description of the data is given. The mathematical model is then introduced in Chapter
3, as well as its discretisation in a numerical setting. The first sub-problem concerning the linear-
elastic part of this model is tackled in Chapter 4 with both methodology and results given. Chapter 5
then handles the sub-problem of the evolution of the model over time, also describing methods and
findings. The last sub-problem of finding the right parameters is described and analysed in Chapter
6, followed by Chapter 7 which combines the best found methods thus far and tests them on real
data. The findings of this work are then summarised in Chapter 8, which concludes this thesis along
with some recommendations.



2
Medical Context

In this chapter we elaborate on the necessary concepts and knowledge from medicine to fully un-
derstand this work. In Section 2.1 it is explained what type of cancer is considered, with some of its
properties. After that the current standard treatment is given in Section 2.2, with an explanation of
the pre-processing of MRI data. The data that we will be using is explained in Section 2.3.

2.1. Breast Cancer
We differentiate over 18 different types of breast cancer, which are most commonly located in the
ductal an lobular part of the breast [6, 7]. Ductal carcinomas are formed in the cells lining the
milk ducts, while lobular ones are made in the glands that produce the milk. One can subdivide
the breast cancer types by the receptor status [6], which is either hormone receptor positive (HR+),
HER2 positive (HER2+), or triple negative. A HR+ tumour has receptors for progesterone, estrogen
or both, and may depend on the hormone for growth. The HER2+ tumours on the other hand have
the ‘human epidermal growth factor receptor 2’ protein. This receptor is found on all breast cells,
and it promotes growth. A lack of these three type of receptors means that the tumour is classified
as triple negative. The focus of this work is on HER2+ tumours, which is a rapidly growing [8] and
aggressive type of cancer with relatively high mortality rate [9, 10]. However, they tend to respond
quite favourably to treatment, and they entail about 20-25% of all breast cancer cases.

As patients’ breast tissue is composed of adipose, fibroglandular and tumour tissue, all with
different mechanical properties [11–13], growth of the tumour is not straightforward. The stress
and deformation caused by the presence of the tumour impedes it expansion, based on the stiffness
of surrounding tissue; this is called mass effect. It was found that tumour cells seem to proliferate
logistically, rather than exponentially which seems intuitive for doubling cells [14]. This means that
smaller groups of malignant tumour cells grow faster than larger ones, and that one can not talk
about a doubling time in this context.

2.2. Treatment and MRI Scans
Once a diagnosis of cancer has been made, patients are treated with either chemotherapy, radio-
therapy, surgery or a combination of these. If chemotherapy is administrated prior to surgery to
shrink the tumour for facilitated removal, it is called neoadjuvant chemotherapy (NAT). The success
of NAT can prevent the need of a mastectomy, i.e. the removal of the breast entirely, and reduce
the surgery to a less invasive lumpectomy, where just the tumour is removed [11, 15]. Current NAT
treatments at Erasmus MC and other hospitals are not patient-specific but generalised, so no ad-
justments are made for different responses of patients. The complexity of the growth and response,

3



4 2. Medical Context

along with the increased rate of recurrence free-survival of succesfull NAT treatment [16], suggests
that optimisation of the treatment schedule can be very lucrative. Success of NAT can be measured
with pathological complete response (pCR) of the patient, which is the absence of residual tumour
cells in sampled breast tissue; this is called histological analysis.

Knowing if NAT is effective early on is pivotal to the treatment, as a lack of response can then
be tackled by changing treatment strategy or administered substances. One can evaluate this with
radiological scans, such as the ones from MRI or ultrasound. We refer to the lack of evident cancer-
ous cells in these radiological scans as the radiological complete response (rCR) [17]. In the case of
HER2+ patients, rCR seems to correspond quite well to pCR [18]. Newer types of MRI can provide in-
sights earlier in the treatment schedule than the conventional one. For this work diffusion-weighted
MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI) were used. The first of these can
be used to measure the apparent diffusion coefficient (ADC, i.e. the rate of water diffusion in the
tissue), and the second can grant clearer contrast between different tissues after inserting a contrast
agent.

Figure 2.1: Pre-processing pipeline of the MRI data to obtain the tumour densities per voxel and the chemotherapy agent
concentration. MRI scans within this figure are taken from [1].

Full details on the data acquisition and pre-processing for this project can be read in [1, 5], and
a small overview is given here. For a number of given scans of a patient, first the images (of dif-
ferent sessions and techniques) need to be aligned with each other; this is called registration. The
different ways of doing this are rigid registration, which uses translation and rotation, and non-rigid
registration, which uses stretching. This step is done with the ITK-ELASTIX python package [19].
Second, the tumour tissue is identified and segmented from the surrounding tissue. For the pre-
ceding works this was done with help of a radiologist, namely dr A.I.M Obedijn from Erasmus MC.
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After this the remaining tissue is segmented in adipose and fibroglandular tissue, by applying global
histogram equalization. Third, the tumour densities are determined using the ADC values and the
segmentation. The lower the ADC value of a voxel, the more cells it contains most likely. Lastly, the
concentration of the chemotherapy agent is calculated with the DCE-MRI scans and the treatment
schedule. A schematic of this process is given in Figure 2.1. With this one can start the calibration
and evaluation of the mathematical model.

2.3. Input Data
For three patients we have DCE-MRI and DW-MRI scans at times t0, t1, t2, which are pre-processed
as described in the previous Section. The first scan at t0 is made before the treatment, the second at
t1 during the treatment and the last at t2 after the treatment, with slightly varying amounts of weeks
between the scans between the patients. The first two scans will be used to calibrate the model,
while the last is used to evaluate the predictive power. This calibration is done by using the model
dynamics to predict what the tumour looks like at t1, given the information of the tumour at t0 and
some patient-specific parameters. The parameters are then adjusted using information of the error
at t1, until the prediction at t1 is sufficiently good or a set amount of time has passed. After that the
predicted value at t2 is compared to the real value to evaluate the workings of the model. The three
patients have been put forward by dr A. Jager, the involved internist-oncologist from EMC. None of
these three patients achieved complete pCR in their treatment. More details on these scans can be
found in Appendix A.1.

At the start of this project, these three sets of scans weren’t available yet, and hence some sim-
ulated data is used in this work as well. To generate this simulated data we either need a publicly
usable MRI scan of a breast cancer tumour, or we need to generate it. This could be done with e.g. a
simple Gaussian bell shaped tumour in a cube-shaped domain and / or cube-shaped ‘breast’. Using
this starting image which we set to be at t0, we commit ‘the inverse crime’ by running the model for-
ward in time for some known patient-specific parameters to generate the images at t1 and t2. This
eliminates the model error from the equation, but for the sake of testing the speed of the numerical
inversion methods this does not matter. It actually has benefits to use this simulated data, as it gives
insight if the model is even solvable in realistic time for simple simulated problems. If it is, then a
relatively bad accuracy on real data suggests that the computational methods are likely not at fault,
but that the model might not be describing reality as accurate as expected. In this case, modelling
assumptions should be revised for further research.

We need to discretise the temporal and spatial domain in order to evaluate our model numeri-
cally. The temporal discretisation depends on the method; for explicit methods the stability of the
solution depends on the time-step. The spatial discretisation could be done at the resolution of
the MRI, though if this is not feasible it might need to be down-scaled. In the previous two works
this was done with factor 3 for a single slice. The result of the discretisation is that we have all sub-
domains of the breast described by distinct voxels x̄. We continue to the next Chapter with details
on this discretisation and the model itself.





3
Mathematical Model

We introduce the mathematical model in this Chapter, which is to be implemented as efficiently
as possible. Specifically, this model is called the Drug-Included Mechanically Coupled Reaction-
Diffusion model (DI-MCRD). To explain the model fully, we first introduce the regular Mechanically
Coupled Reaction-Diffusion model (MCRD) in Section 3.1. After that the inclusion of interaction
with administered drugs is elaborated on in Section 3.2. We continue with a small note on cali-
bration of this model in Section 3.3, and we finalise this Chapter with a detailed description of the
discretisation of this model in Section 3.4.

3.1. MCRD Model
The current most accurate biomechanical model for predicting breast tumour response is the Me-
chanically Coupled Reaction-Diffusion model (MCRD), as opposed to regular reaction-diffusion mod-
els. This was shown in detail in [11]. The standard MCRD model is described by the following cou-
pled set of partial differential equations:

∂N (x̄, t )

∂t
=∇· (D(x̄, t )∇N (x̄, t )

)+k(x̄)N (x̄, t )
(
1− N (x̄, t )

θ

)
(3.1)

D(x̄, t ) = D0e−γσvm (x̄,t ) (3.2)

∇·G(x̄)∇~u(x̄, t )+∇
( G(x̄)

1−2ν
(∇·~u(x̄, t ))

)
−λ∇N (x̄, t ) = 0 (3.3)

Equation 3.1 here describes the rate of change of the number of tumour cells N (x̄, t ) in a voxel
x̄ within the domain at time t (d). The first term after the equality sign is the diffusion term and
represents the random tumour cell movement, with tumour cell diffusion D(x̄, t ). The second term
describes the logistic growth in the form of a reaction term, with k(x̄) the net tumour proliferation
rate within x̄ and θ the carrying capacity of the cells, i.e. the maximum amount of tumour cells
within a voxel. One can also consider a voxel-dependent carrying capacity by changing θ to θ(x̄),
though this parameter would need additional tuning. The boundary conditions here on N (x̄, t ) are
homogeneous Neumann, which means that there is no diffusive flux of tumour cells on the bound-
ary of the domain, as well as on the boundary of the breast. The initial condition N (x̄,0) corresponds
to the data of the first MRI scan.

The diffusion of the tumour cells is described by equation 3.2, where we use D0 (mm3/d) to de-
note the diffusion without external stress,σvm (kPa) to denote the von Mises stress andγ (kPa−1) as
a coupling constant for it. Von Mises stress expresses the interaction between the tumour changing
in size and its surroundings; if there is no stress present the diffusion is equal to D0, and if the stress

7
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is non-zero the diffusion is lower. We calculate the non-negative von Mises stress using Equation
3.3, where ~u = (u, v, w) (mm) are the local deformations in the x−, y− and z−direction, respectively.
One can calculate the normal and shear strain on the tissue with this deformation, which for small
displacements is equal to:



εxx

εy y

εzz

εx y

εxz

εy z

=



∂u/∂x
∂v/∂y
∂w/∂z
∂u/∂y
∂u/∂z
∂v/∂z

 (3.4)

The first three terms are the normal strains, and the last three terms the shear strains. With
Hooke’s law for linear isotropic materials we can then find the normal and shear stresses as:



σxx

σy y

σzz

σx y

σxz

σy z

= 2G(x̄)

1−2ν



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν





εxx

εy y

εzz

εx y

εxz

εy z

 (3.5)

Here G(x̄) = E(x̄)
2(1+v) (kPa) is the shear modulus, i.e. an intrinsic mechanical property of the tissue.

The multiplication with the factor before the matrix should be done such that the voxels of G(x̄) and
ε correspond, naturally. This shear modulus is different for the three different types of tissue, and
hence it is spatially dependent. For this we use the Young’s modulus E(x̄) (kPa) and Poisson’s ratio
ν, which will be taken from literature values. The von Mises stress is then calculated at each voxel as
follows:

σvm =
√

1

2

(
(σxx −σy y )2 + (σxx −σzz )2 + (σzz −σy y )2 +6(σ2

x y +σ2
xz +σ2

y z )
)

(3.6)

Equation 3.3 is derived from the mechanical equilibrium ∇ · σvm(x̄, t )−λ∇N (x̄, t ) = 0 after ex-
pressing it in the displacement ~u(x̄, t ). We need to assume here that the breast tissue to be linear
elastic isotropic. The λ used in the equation is a coupling constant for the displacement vector.
Furthermore, there are homogeneous Dirichlet boundary conditions imposed here on ~u(x̄, t ); this
ensures that there is no tissue displacement on the boundaries.

Evaluating the system forward in time from a starting point can be broken down into six steps for
one time-step. Given an initial value N (x̄, t ), we first compute its gradient ∇N (x̄, t ) numerically with
e.g. central differences. Second, we use this gradient in Equation 3.3 to solve it for ~u(x̄, t ) in each
voxel. From this we calculate the von Mises stress σvm(x̄, t ) at each voxel in the third step. Fourth,
we update the value of the tumour cell diffusion D(x̄, t ) in each voxel with Equation 3.2. The fifth
step is to calculate N (x̄, t+∆t ) using Equation 3.1 and the chosen temporal integration method, and
the sixth step is updating the time parameter to t := t +∆t . After this the steps are repeated until a
desired ending time. A schematic of this process is given in Figure 3.1.
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Figure 3.1: The six steps taken when doing a single time-step while evaluating the model.

3.2. Drug Inclusion
After the apparent success of the MCRD model, extensions were made to include chemotherapy
and other administrated substances, leading to Drug-Included MCRD models (DI-MCRD). In the
drug-included model, the reaction diffusion equation 3.1 is changed to include a term reflecting
proliferation due to chemotherapy. This looks as follows:

∂N (x̄, t )

∂t
=∇· (D(x̄, t )∇N (x̄, t )

)+k(x̄)N (x̄, t )
(
1− N (x̄, t )

θ

)
−αC dr ug

ti ssue (x̄, t )N (x̄, t ) (3.7)

The additional parameter α ((µM ·d)−1), called the drug efficacy needs to be tuned here as well.

The drug concentration C dr ug
ti ssue (x̄, t ) (µM) at location x̄ and time t here can be defined in multiple

ways, and it can be calculated from the DCE-MRI scans. The two ways considered in the previous
works are the extended Kety-Tofts model (KT) [16, 20] and the Normalised Blood Volume Map method
(NBVM) [21], which are respectively given by:

C dr ug
ti ssue (x̄, t ) = K tr ans(x̄)

∫ t

0

(
C dr ug

pl asma(s)exp
(
− K tr ans(x̄)

ve (x̄)
(t − s)

))
d s + vp (x̄)C dr ug

pl asma(t ) (3.8)

C dr ug
ti ssue (x̄, t ) =C dr ug

ti ssue (x̄, t∗)e−β(t−t∗) (3.9)

For the KT model it is assumed that the chemotherapy spreads in the same way as the contrast
agent in the DCE-MRI scan. It describes the change in drug concentration between the (breast) tis-
sue and the blood plasma. Hence we have K tr ans(x̄) (d−1) as the volume transfer constant of the
contrast agent from the plasma to the tissue extravascular extracellular space between the tissue
cells and blood vessels. The admitted contrast agent in this context is Gadolinium. Volume frac-
tions of the extravascular extracellular space and the plasma space are respectively given by ve (x̄)
and vp (x̄). Note that the ratio K tr ans (x̄)

ve (x̄) then represents the reflux rate of the contrast agent. Lastly,

C dr ug
pl asma(t ) (µM) is a literature-based function for the considered drug.

The NBVM is also calculated from the DCE-MRI scans, but now it subtracts the average pre-
contrast signal values from the post-contrast signal values. Of this graph the area under the curve
(AUC) is calculated, which we normalise with its maximum found value; this is taken as the starting

concentration at the time of administering it, and is denoted as C dr ug
ti ssue (x̄, t∗). It is then assumed

that the concentration decays exponentially, for which a proper value of the drug decay rate β (d−1)
needs to be found. Optimising this value in combination with α might be difficult due to their
codependency.
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3.3. Calibration
To predict the patient-specific response, we need to calibrate the model to fit the real data as well
as possible. The parameters we that we are surely tuning are the values of the proliferation rate k(x̄)
within our domain, the diffusion parameter D0 and the efficacy of the drug concentration against
the tumour cellsα. This way all three driving factors for growth and shrinkage are tuned. Additional
parameters that might be tuned, depending on the results, are the carrying capacity θ (possibly
varying over the domain), the coupling constant for the von Mises stress γ, the material property ν,
the coupling constant for the displacement vector λ and the parameters from the drug inclusion.
The optimisation parameters are denoted altogether in the remainder as the vector P.

The actual number of tumour cells according to the real or simulated data is denoted as Nd at a(t ),
though this might only be available at select values of t . We denote the prediction from our model of
the amount of tumour cells at time t , given parameters P, as Nmodel (t ;P). This value is dependent
on an initial value Nd at a(t0) at time t0. Using this notation, the optimisation objective of finding the
best parameter combination such that the L2−norm at a certain time t1 is minimised is

P∗ = argmin
P

||Nd at a(t1)−Nmodel (t1;P)||22 (3.10)

The norm of the error considers the whole domain here, which will be discretised in the next
Section. This problem is underdetermined in this formulation, but in Chapter 6 we explore how
we can overcome this challenge, as well as how to solve this inverse problem in general. If there
is ample scans per patient, one can minimise the sum of errors at multiple time-points t1, t2, . . .
instead. There should be at least one scan per patient which is not considered in the calibration of
the model; with this we can validate the predictive performance of the fitted model.

3.4. Discretization
To implement and solve the model we need to discretise the partial differential equations. In this
Section the spatial and temporal discretisations used in the model are given for a equidistant grid, as
commonly used in Finite Differences. The formulae used and some of the notation convention are
taken from [22, 23]. Methods in subsequent chapters which do not use this scheme will be elabo-
rated on as they are introduced later. The schemes are given for 3D systems, though some test might
need to be done on 2D systems; the schemes for those are derived analogously and have analogous
matrix properties such as symmetry and positive definiteness.

3.4.1. Reaction-diffusion
We start with the reaction diffusion equation as given in 3.7. For this x̄ is used to denote a certain
cell-centred voxel of the 3D spatial discretisation, taken from a nx ×ny ×nz MRI image with the
centres of the pixels as the points. The boundary of the domain is hence where the coordinates are
either 0 or ni −1. We define the total number of points as n = nx ·ny ·nz . Using only derivatives to
spatial coordinates and no nabla operators, this equation can be written as

∂N (x̄, t )

∂t
= ∂

∂x

(
D(x̄, t )

∂N (x̄, t )

∂x

)
+ ∂

∂y

(
D(x̄, t )

∂N (x̄, t )

∂y

)
+ ∂

∂z

(
D(x̄, t )

∂N (x̄, t )

∂z

)
+k(x̄)N (x̄, t )

(
1− N (x̄, t )

θ

)
−αC dr ug

ti ssue (x̄, t )

For convenience, we introduce a shorter notation of the spatially and temporally dependent
variables. The voxels are orderly numbered with x̄ := (xi , y j , zk ) and the time is labelled tm := m∆t ,
with step sizes ∆x,∆y,∆z and ∆t respectively. With this we can rewrite N (x̄, tm) =: N m

i , j ,k , as well as
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D(x̄, tm) =: Dm
i , j ,k , k(x̄) =: ki , j ,k and C dr ug

ti ssue (x̄, tm) =: C m
i , j ,k . To avoid confusion, note that subscripts

k always refer to the spatial position on the z−axis and that a regular k refers to tumour prolifera-
tion. The partial spatial derivatives are approximated numerically using central differences, where
midpoints are used inbetween the voxels. For a given variable M m

i , j ,k , the x−derivative is then ap-
proximated by

∂M m
i , j ,k

∂x
=

M m
i+1/2, j ,k −M m

i−1/2, j ,k

∆x
+O (∆x2) (3.11)

The big-O notation is used here to show the order of the error of the approximation, and y− and
z−derivatives are analogous to the x−derivative. Using this approximation for the second order
derivative yields

∂

∂x

(
Dm

i , j ,k

∂N m
i , j ,k

∂x

)
=

Dm
i+1/2, j ,k

∂N m
i+1/2, j ,k

∂x −Dm
i−1/2, j ,k

∂N m
i−1/2, j ,k

∂x

∆x
+O (∆x2)

There is still a differential operator present in this form, as well as two midpoints that need to be
approximated. A midpoint M m

i+1/2, j ,k can be approximated with the two enclosing points, and for its
x−derivative we use central differences again, now using regular grid points. This looks as follows

M m
i+1/2, j ,k ≈

M m
i+1, j ,k +M m

i , j ,k

2

∂M m
i+1/2, j ,k

∂x
=

M m
i+1, j ,k −M m

i , j ,k

∆x
+O (∆x2)

Combining the previous three expressions gives the following approximation of the diffusion
term in the x−direction

∂

∂x

(
Dm

i , j ,k

∂N m
i , j ,k

∂x

)
≈ 1

2∆x2

((
Dm

i−1, j ,k +Dm
i , j ,k

)
N m

i−1, j ,k −
(
Dm

i−1, j ,k +2Dm
i , j ,k +Dm

i+1, j ,k

)
N m

i , j ,k

+ (
Dm

i , j ,k +Dm
i+1, j ,k

)
N m

i+1, j ,k

)
The order of the local truncation error here is also O (∆x2). The full discretisation of the right-

hand side of equation 3.7 is then given by

∂N m
i , j ,k

∂t
≈ 1

2∆x2

((
Dm

i−1, j ,k +Dm
i , j ,k

)
N m

i−1, j ,k −
(
Dm

i−1, j ,k +2Dm
i , j ,k +Dm

i+1, j ,k

)
N m

i , j ,k +
(
Dm

i , j ,k +Dm
i+1, j ,k

)
N m

i+1, j ,k

)
+ 1

2∆y2

((
Dm

i , j−1,k +Dm
i , j ,k

)
N m

i , j−1,k −
(
Dm

i , j−1,k +2Dm
i , j ,k +Dm

i , j+1,k

)
N m

i , j ,k +
(
Dm

i , j ,k +Dm
i , j+1,k

)
N m

i , j+1,k

)
+ 1

2∆z2

((
Dm

i , j ,k−1 +Dm
i , j ,k

)
N m

i , j ,k−1 −
(
Dm

i , j ,k−1 +2Dm
i , j ,k +Dm

i , j ,k+1

)
N m

i , j ,k +
(
Dm

i , j ,k +Dm
i , j ,k+1

)
N m

i , j ,k+1

)
+ki , j ,k N m

i , j ,k

(
1−

N m
i , j ,k

θ

)
−αC m

i , j ,k

(3.12)
Note that this can only hold for interior points of the data, and that we have homogeneous Neu-

mann conditions at the boundary of the breast. One can discretise the system such that the bound-
ary of the breast is also the boundary of the domain. However, a simpler way is to discretise the MRI
data as-is into a bar and put the boundary conditions on ‘inner’ points, which will result in a lot of
zeroes in the matrices and vectors. With central differences, we can then impose the boundaries at
1/2 and nx − 1/2 since we have a cell-centred domain as follows:
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∂N m
1/2, j ,k

∂x
=

N m
1, j ,k −N m

0, j ,k

∆x
+O (∆x2) = 0 =⇒ N m

0, j ,k = N m
1, j ,k +O (∆x3)

∂N m
nx−1/2, j ,k

∂x
=

N m
nx , j ,k −N m

nx−1, j ,k

∆x
+O (∆x2) = 0 =⇒ N m

nx , j ,k = N m
nx−1, j ,k +O (∆x3)

As we have third order error here and we divide by ∆x2 later on, we achieve first order error
on the boundary. The boundary conditions in the y− and z−direction are analogous. We can also
impose that Dm

i , j ,k = 0 for values outside of the domain, as there is no diffusion there. With this the
diffusion terms at the boundaries in the x−direction (and analogously the y− and z−direction) can
be approximated as follows

∂

∂x

(
Dm

0, j ,k

∂N m
0, j ,k

∂x

)
≈ 1

2∆x2

(
− (

Dm
0, j ,k +Dm

1, j ,k

)
N m

0, j ,k +
(
Dm

0, j ,k +Dm
1, j ,k

)
N m

1, j ,k

)
∂

∂x

(
Dm

nx−1, j ,k

∂N m
nx−1, j ,k

∂x

)
≈ 1

2∆x2

((
Dm

nx−2, j ,k +Dm
nx−1, j ,k

)
N m

nx−2, j ,k −
(
Dm

nx−2, j ,k +Dm
nx−1, j ,k

)
N m

nx−1, j ,k

)
If we conglomerate all the individual elements N m

i , j ,k into a vector Nm (ordered lexicographically

first by x, then y , then z), as well as for ki , j ,k and C m
i , j ,k in respectively k and Cm , we can write

equation 3.12 into an elegant matrix-vector product form as follows:

∂Nm

∂t
= ANm + f (Nm) (3.13)

A = 1

2∆x2

(
D¯ (Tnx ⊗ Iny ⊗ Inz )+Dx+¯ (Unx ⊗ Iny ⊗ Inz )+Dx−¯ (Lnx ⊗ Iny ⊗ Inz )

)
+ 1

2∆y2

(
D¯ (Inx ⊗Tny ⊗ Inz )+Dy+¯ (Inx ⊗Uny ⊗ Inz )+Dy−¯ (Inx ⊗Lny ⊗ Inz )

)
+ 1

2∆z2

(
D¯ (Inx ⊗ Iny ⊗Tnz )+Dz+¯ (Inx ⊗ Iny ⊗Unz )+Dz−¯ (Inx ⊗ Iny ⊗Lnz )

)
Tni = tridiag

(
1,−2,1

) ∈Rni×ni

Uni = tridiag
(
0,−1,1

) ∈Rni×ni

Lni = tridiag
(
1,−1,0

) ∈Rni×ni

Ini = diag
(
1, . . . ,1) ∈Rni

f (Nm) = k ·Nm ·
(
1− Nm

θ

)
−αCm ·Nm +∂A

∂A =



D0, j ,k N m
0, j ,k i = 0

Dnx−1, j ,k N m
nx−1, j ,k i = nx −1

Di ,0,k N m
i ,0,k j = 0

Di ,ny−1,k N m
i ,ny−1,k j = ny −1

Di , j ,0N m
i , j ,0 k = 0

Di , j ,nz−1N m
i , j ,nz−1 k = nz −1

0 otherwise

We use A here as the discretisation matrix of the diffusion part, and f (Nm) as the nonlinear re-
action part, the drug inclusion and an additional term for the homogeneous Neumann boundary
conditions ∂A. The matrix A can be decomposed into a sum of nine kronecker products of three
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terms, splitting the diffusion into the x−, y− and z−direction. The term in the kronecker prod-
ucts corresponding to the direction it operates on consists of a tridiagonal part, a upper triangular
part and a lower triangular part, denoted by T,U ,L respectively. These matrices also represent sec-
ond order central differences, forward differences and (negative) backward differences. Then, Dx±
is the vector D with the x−indices shifted forward / backward by one, and Dy±,Dz± are defined
similarly. In this notation we use X¯Y to indicate that all the rows of the matrix Y are multiplied
with the respective elements of the vector X. This is the same as multiplying Y from the left with
a matrix which has X on the diagonal and zeroes elsewhere. The additional term for the boundary
conditions is needed if A is expressed in this formulation, as otherwise the boundary points are de-
fined in the same way as the regular points. This decomposition could become handy later on for
multiplications with preconditioners, due to the multiplicative properties of kronecker products.
Furthermore, the symmetry of the matrix A immediately follows from this formulation, as well as its
negative definiteness.

3.4.2. Linear-elastic

Next we discretise the linear elastic equation, using central differences again as formulated in equa-
tion 3.11. We want to write equation 3.3 in a usual way for the Lamé equation, for which we rewrite
the differential operators again. The result is the following system of three equations

2−2ν

1−2ν

∂

∂x

(
G(x̄)

∂u(x̄, t )

∂x

)
+ ∂

∂y

(
G(x̄)

∂u(x̄, t )

∂y

)
+ ∂

∂z

(
G(x̄)

∂u(x̄, t )

∂z

)
+ 2ν

1−2ν

∂

∂x

(
G(x̄)

(∂v(x̄, t )

∂y

))
+ ∂

∂y

(
G(x̄)

(∂v(x̄, t )

∂x

))
+ 2ν

1−2ν

∂

∂x

(
G(x̄)

(∂w(x̄, t )

∂z

))
+ ∂

∂z

(
G(x̄)

(∂w(x̄, t )

∂x

))
=λ∂N (x̄, t )

∂x
∂

∂x

(
G(x̄)

∂v(x̄, t )

∂x

)
+ 2−2ν

1−2ν

∂

∂y

(
G(x̄)

∂v(x̄, t )

∂y

)
+ ∂

∂z

(
G(x̄)

∂v(x̄, t )

∂z

)
+ 2ν

1−2ν

∂

∂y

(
G(x̄)

(∂u(x̄, t )

∂x

))
+ ∂

∂x

(
G(x̄)

(∂u(x̄, t )

∂y

))
+ 2ν

1−2ν

∂

∂y

(
G(x̄)

(∂w(x̄, t )

∂z

))
+ ∂

∂z

(
G(x̄)

(∂w(x̄, t )

∂y

))
=λ∂N (x̄, t )

∂y
∂

∂x

(
G(x̄)

∂w(x̄, t )

∂x

)
+ ∂

∂y

(
G(x̄)

∂w(x̄, t )

∂y

)
+ 2−2ν

1−2ν

∂

∂z

(
G(x̄)

∂w(x̄, t )

∂z

)
+ 2ν

1−2ν

∂

∂z

(
G(x̄)

(∂u(x̄, t )

∂x

))
+ ∂

∂x

(
G(x̄)

(∂u(x̄, t )

∂z

))
+ 2ν

1−2ν

∂

∂z

(
G(x̄)

(∂v(x̄, t )

∂y

))
+ ∂

∂y

(
G(x̄)

(∂v(x̄, t )

∂z

))
=λ∂N (x̄, t )

∂z

We split the displacement vector here into its x−, y− and z− components as ~u =: (u, v, w) re-
spectively. The Lamé coefficients of this equation expressed in the original variables areµ(x̄) =G(x̄),
λ(x̄) = 2ν

1−2ν and ρ(x̄) = 2µ(x̄)+λ(x̄) = 2−2ν
1−2ν . As in the reaction-diffusion equation, we look at how we

can discretise the individual terms of the equations. We will use the short notation u(x̄, tm) =: um
i , j ,k ,

G(x̄) =: Gi , j ,k , regular central difference, and central difference as the average of the forward and
backward differences for the derivatives in two directions. For this we use δx and δ̄x as the for-
ward and backward differential operator with respect to x, respectively. This way of determining
the derivative is also second order accurate. Second derivatives in the same direction can be written
in the same way as in the reaction-diffusion equation, namely
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∂

∂x

(
Gi , j ,k

∂um
i , j ,k

∂x

)
≈ 1

2∆x2

((
Gi−1, j ,k +Gi , j ,k

)
um

i−1, j ,k −
(
Gi−1, j ,k +2Gi , j ,k +Gi+1, j ,k

)
um

i , j ,k

+ (
Gi , j ,k +Gi+1, j ,k

)
um

i+1, j ,k

)

When using a second derivative in two directions, we use the average of the forward and back-
ward differences as follows.

∂

∂x

(
Gi , j ,k

∂vm
i , j ,k

∂y

)
= 1

2

(
∂x

(
Gi , j ,k ∂̄y vm

i , j ,k

)+ ∂̄x
(
Gi , j ,k∂y vm

i , j ,k

))
≈ 1

2

(
∂x

(
Gi , j ,k

vm
i , j ,k − vm

i , j−1,k

∆y

)
+ ∂̄x

(
Gi , j ,k

vm
i , j+1,k − vm

i , j ,k

∆y

))
≈ 1

2∆x∆y

(
Gi−1, j ,k

(
vm

i−1, j ,k − vm
i−1, j+1,k

)+Gi , j ,k
(
vm

i , j−1,k −2vm
i , j ,k + vm

i , j+1,k

)
+Gi+1, j ,k

(− vm
i+1, j−1,k + vm

i+1, j ,k

))

Likewise we can write out all the other derivatives in the first equation, as well as in the second
and third equation; for this one simply needs to replace indices, directions and derivatives appro-
priately. This time we impose homogeneous Dirichlet boundary conditions on the boundary of the
breast, which means that there is no tissue displacement there. For a cell-centred grid these condi-
tions are hard to impose, and hence we use a staggered grid. The sub-problem of linear elasticity will
instead be solved on a vertex-centred grid, containing nx −1×ny −1×nz −1 points. The right-hand
side depends on the spatial derivative of N , which for a cell-centred N can be approximated with
central differences on a vertex-centred domain. Furthermore, for notation we use a mask function
∂(·, ·, ·) :N3 7→ {0,1} which indicates if a voxel is on the boundary

um
i , j ,k = vm

i , j ,k = wm
i , j ,k = 0 if ∂(i , j , z) = 1

With these discretisations we can put the system of equations into a form with matrix vector
multiplications again. We put the individual discretised elements of u, v, w,G into vectors u,v,w,G
again, and the resulting notation is as follows.

B11u+B12v+B13w = g1(Nm)

B21u+B22v+B23w = g2(Nm)

B31u+B32v+B33w = g3(Nm)

(3.14)
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B11 = 2−2ν

1−2ν

1

2∆x2

(
G¯ (Tnx ⊗ Iny ⊗ Inz )+Gx+¯ (Unx ⊗ Iny ⊗ Inz )+Gx−¯ (Lnx ⊗ Iny ⊗ Inz )

)
+ 1

2∆y2

(
G¯ (Inx ⊗Tny ⊗ Inz )+Gy+¯ (Inx ⊗Uny ⊗ Inz )+Gy−¯ (Inx ⊗Lny ⊗ Inz )

)
+ 1

2∆z2

(
G¯ (Inx ⊗ Iny ⊗Tnz )+Gz+¯ (Inx ⊗ Iny ⊗Unz )+Gz−¯ (Inx ⊗ Iny ⊗Lnz )

)
B22 = 1

2∆x2

(
G¯ (Tnx ⊗ Iny ⊗ Inz )+Gx+¯ (Unx ⊗ Iny ⊗ Inz )+Gx−¯ (Lnx ⊗ Iny ⊗ Inz )

)
+ 2−2ν

1−2ν

1

2∆y2

(
G¯ (Inx ⊗Tny ⊗ Inz )+Gy+¯ (Inx ⊗Uny ⊗ Inz )+Gy−¯ (Inx ⊗Lny ⊗ Inz )

)
+ 1

2∆z2

(
G¯ (Inx ⊗ Iny ⊗Tnz )+Gz+¯ (Inx ⊗ Iny ⊗Unz )+Gz−¯ (Inx ⊗ Iny ⊗Lnz )

)
B33 = 1

2∆x2

(
G¯ (Tnx ⊗ Iny ⊗ Inz )+Gx+¯ (Unx ⊗ Iny ⊗ Inz )+Gx−¯ (Lnx ⊗ Iny ⊗ Inz )

)
+ 1

2∆y2

(
G¯ (Inx ⊗Tny ⊗ Inz )+Gy+¯ (Inx ⊗Uny ⊗ Inz )+Gy−¯ (Inx ⊗Lny ⊗ Inz )

)
+ 2−2ν

1−2ν

1

2∆z2

(
G¯ (Inx ⊗ Iny ⊗Tnz )+Gz+¯ (Inx ⊗ Iny ⊗Unz )+Gz−¯ (Inx ⊗ Iny ⊗Lnz )

)

B12 = 1

2∆x∆y

2

1−2ν

(
G¯ (Inx ⊗Tny ⊗ Inz )−Gx+¯ (Pnx ⊗Lny ⊗ Inz )−Gx−¯ (Mnx ⊗Uny ⊗ Inz )

)
+ 1

2∆x∆y

(
G¯ (Tnx ⊗ Iny ⊗ Inz )−Gy+¯ (Lnx ⊗Pny ⊗ Inz )−Gy−¯ (Unx ⊗Mny ⊗ Inz )

)
B21 = 1

2∆x∆y

2

1−2ν

(
G¯ (Tnx ⊗ Iny ⊗ Inz )−Gy+¯ (Lnx ⊗Pny ⊗ Inz )−Gy−¯ (Unx ⊗Mny ⊗ Inz )

)
+ 1

2∆x∆y

(
G¯ (Inx ⊗Tny ⊗ Inz )−Gx+¯ (Pnx ⊗Lny ⊗ Inz )−Gx−¯ (Mnx ⊗Uny ⊗ Inz )

)

B13 = 1

2∆x∆z

2

1−2ν

(
G¯ (Inx ⊗ Iny ⊗Tnz )−Gx+¯ (Pnx ⊗ Iny ⊗Lnz )−Gx−¯ (Mnx ⊗ Iny ⊗Unz )

)
+ 1

2∆x∆z

(
G¯ (Tnx ⊗ Iny ⊗ Inz )−Gz+¯ (Lnx ⊗ Iny ⊗Pnz )−Gz−¯ (Unx ⊗ Iny ⊗Mnz )

)
B31 = 1

2∆x∆z

2

1−2ν

(
G¯ (Tnx ⊗ Iny ⊗ Inz )−Gz+¯ (Lnx ⊗ Iny ⊗Pnz )−Gz−¯ (Unx ⊗ Iny ⊗Mnz )

)
+ 1

2∆x∆z

(
G¯ (Tnx ⊗ Iny ⊗ Inz )−Gy+¯ (Lnx ⊗Pny ⊗ Inz )−Gy−¯ (Unx ⊗Mny ⊗ Inz )

)

B23 = 1

2∆y∆z

2

1−2ν

(
G¯ (Inx ⊗ Iny ⊗Tnz )−Gy+¯ (Inx ⊗Pny ⊗Lnz )−Gy−¯ (Inx ⊗Mny ⊗Unz )

)
+ 1

2∆y∆z

(
G¯ (Inx ⊗Tny ⊗ Inz )−Gz+¯ (Inx ⊗Lny ⊗Pnz )−Gz−¯ (Inx ⊗Uny ⊗Mnz )

)
B23 = 1

2∆y∆z

2

1−2ν

(
G¯ (Inx ⊗Tny ⊗ Inz )−Gz+¯ (Inx ⊗Lny ⊗Pnz )−Gz−¯ (Inx ⊗Uny ⊗Mnz )

)
+ 1

2∆y∆z

(
G¯ (Inx ⊗ Iny ⊗Tnz )−Gy+¯ (Inx ⊗Pny ⊗Lnz )−Gy−¯ (Inx ⊗Mny ⊗Unz )

)
g1(Nm) =λDx Nm +∂B1

g2(Nm) =λDy Nm +∂B2

g3(Nm) =λDz Nm +∂B3
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Pni = tridiag
(
0,0,1

) ∈Rni−1×ni−1

Mni = tridiag
(
1,0,0

) ∈Rni−1×ni−1

∂B1 =
(
u−λDx Nm +B11u+B12v+B13w

)
· 1{∂(i , j ,z)=1}

∂B2 =
(
v−λDy Nm +B11u+B12v+B13w

)
· 1{∂(i , j ,z)=1}

∂B2 =
(
w−λDz Nm +B11u+B12v+B13w

)
· 1{∂(i , j ,z)=1}

In this notation the subscripts ni actually mean that the matrix has size ni −1 due to the stag-
gered grid, but the −1 is left out for readability. The B−matrices describe the discretisations of the
derivatives, and they can be decomposed into sums of Kronecker products as well, which is also
done for the reason of designing preconditioners. The matrices P and M are used to apply finite
differences in multiple directions, and they represent a forward shift and a backward shift. Note
that T,U ,L,P, M are linear combinations of each other, but by defining them separately the nota-
tions become a bit more readable. The vector-valued g ’s describe the N -term and correct for the
boundary conditions with the terms ∂B. For this we define the operator Di , which differentiates
the vector N in direction i on the vertex-centred grid. This process involves central differences and
taking the average of four surrounding values. We can indeed see that ∂B1 enforces that u is 0 at
the boundaries, as it cancels out all other elements in those respective rows, and the same for ∂B2, v
and ∂B3, w . With the Kronecker product formulation the symmetry and negative definiteness of B
immediately follows; more details of this can be found in [24]. Note that in a numerical implemen-
tation the ‘mask’ should also be applied on the rows, such that the symmetry of B is preserved. If
this is not done, there will be non-zero elements in the columns of B which represent a zero variable,
while their transponed counterparts are zero. Furthermore, we can improve the condition number
of B by multiplying ~u on the boundary rows with the mean of the matrix B11. This prevents the sys-
tem from having eigenvalue −1 for each boundary cell. Finally, we combine the system of equations
3.14 back into one equation which we note down as

B~u = g (Nm) (3.15)

B =
B11 B12 B13

B21 B22 B23

B31 B32 B33

 , g (Nm) =
g1(Nm)

g2(Nm)
g3(Nm)


The calculated displacements are used to obtain the shear strain, for which the displacements

need to be differentiated. As the Von Mises stress needs to be known on the cell-centred grid, and
therefore the shear strain as well, it is logical to use central differences again. This leaves us with
a nx −2×ny −2×nz −2 grid of shear strains, which we extrapolate on all sides to find its value for
all cells. The drop of accuracy on the cell beyond the boundary does not matter too much, as the
diffusion is zero there anyways.

In [24] it is proven that this matrix B is symmetric in 2D; the symmetry in 3D follows from the
formulation above, but no formal proof is given for this work. They also show that this matrix is
spectrally equivalent to the Laplacian operator, with bounds provided by the extrema of G. One can
already see that if G = 1

1−2ν = 1 the diagonal blocks of B are identical to the Laplacian operator. In
the next Chapter, we delve into the methods we can use to solve the linear-elastic equation to solve
it as quickly as possible.



4
Linear-Elastic Equation

In this Chapter we tackle the linear-elastic sub-problem, which needs to be solved in each time-step
of the model. For this we first introduce all the methods we want to test in detail in Section 4.1. After
that we analyse the speed of convergence in Section 4.2, on which we will base a conclusion of what
method should be used in further analyses.

4.1. Methods
The equation we want to solve is Equation 3.15, i.e. B~um = g (Nm), with the sparse symmetric nega-
tive definite matrix B of size 3n ×3n, where n = (nx −1) · (ny −1) · (nz −1).

4.1.1. Direct Method

The first and most trivial way of solving is the Direct method. This method was used in the previous
works, and uses Gaussian elimination on the LU -decomposition of the matrix B .

B = LU

Here L is a lower diagonal matrix and U an upper diagonal matrix. As B is SPD, the matrices
always exist, and we even have U = LT for some L. We can find these matrices with more Gaus-
sian elimination, which can be done efficiently with e.g. SCIPY. In this symmetric case we call it the
Cholesky decomposition instead. After decomposing the matrix, we can perform Gaussian elimi-
nation twice to find the solution ~u to the problem. For non-sparse B , the complexity of this method
is O (n3), so its simplicity does come with general high computational costs. For sparse B , the cost
is reduced but likely still rather high.

4.1.2. Conjugate Gradients

Instead of this direct method, we can use the Conjugate Gradient (CG) method, which is a Krylov
method that makes use of conjugate directions. The method, denoted as in [25], can be written in
an algorithmic way as follows

17
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Algorithm 1 Conjugate Gradient Method

1: ~u0 := 0, r0 := g (Nm)−B~u0

2: p0 := r0

3: k := 0
4: While stopping criterion not met do

5: αk = r>k rk

p>
k (Bpk )

6: ~uk+1 =~uk +αk pk

7: rk+1 = rk −αk Bpk

8: βk = r>k+1rk+1

r>k rk

9: pk+1 = rk+1 +βk pk

10: k := k +1
11: end While
12: Return ~uk

The vectors pk and rk represent the search direction and the residual, respectively. In each iter-
ation the vector ~uk lies in the Krylov subspace Km(B ,r0) = span{r0,Br0, . . . ,B m−1r0}, which means
that the method converges in a maximum of n iterations. As a stopping criterion it is usual to im-
pose that ||rk || ≤ ε||r0|| for a certain norm and a certain threshold ε. We will take the most standard
L2-norm and a threshold of ε = 10−5 in this work. One can also see that the starting residual for
~u0 = 0 is r0 = g (Nm), but the notation in line 1 of the algorithm is more general. The reason that Bpk

is written between brackets in line 5 is that it should be computed separately, as it is also used in
line 7.

The CG method can be sped up by preconditioning the system with a preconditioner M which
is also SPD. This is called the Preconditioned Conjugate Gradient (PCG) method. The convergence
of the CG method depends on the condition number of B ; if the condition number of P−1BP−> for
M = PP> is lower, the convergence for solving the modified system is faster. The resulting algorithm
can be written in a way where only one system needs to be solved per iteration

Algorithm 2 Preconditioned Conjugate Gradient Method

~u0 := 0, r0 := g (Nm)−B~u0

2: z0 = M−1r0

p0 := r0

4: k := 0
While stopping criterion not met do

6: αk = r>k zk

p>
k (Bpk )

~uk+1 =~uk +αk pk

8: rk+1 = rk −αk Bpk

zk+1 = M−1rk+1

10: βk = r>k+1zk+1

r>k zk

pk+1 = zk+1 +βk pk

12: k := k +1
end While

14: Return ~uk
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Solving the system in line 9 does not need to be difficult, if the preconditioner is chosen with
care. The more M resembles B , the faster the convergence of PCG is per iteration, but the more
time it might take to solve the system in each iteration. By taking M to be the diagonal of B , the
inverse of M is straightforward, and there is also immediately an improvement to the condition
number. This method will be denoted as CG(d).

4.1.3. Laplacian Preconditioning
In Section 3.4 we saw that if we take G to be one everywhere, the diagonal blocks of B are equal to
the Laplacian operator ∆; this is the idea presented in [24]. They present an efficient way of solving
this system with M = diag(∆,∆) in 2D, and we extend it in this work to 3D. First, we write the system
to be solved as ∆ 0 0

0 ∆ 0
0 0 ∆

w(1)

w(2)

w(3)

=
z(1)

z(2)

z(3)


∆= 1

h2

(
Tnx ⊗ Iny ⊗ Inz + Inx ⊗Tny ⊗ Inz + Inx ⊗ Iny ⊗Tnz

)
We simplify here by assuming that we have ∆x = ∆y = ∆z = h, which makes the notation more

readable. This method also works for non-equal grid step sizes, however, which we will most likely
have in practice. We multiply this system from the left with the following matrix

Z2 =

Znx ⊗Zny ⊗ Inz 0 0
0 Znx ⊗Zny ⊗ Inz 0
0 0 Znx ⊗Zny ⊗ Inz

 (4.1)

Znk =
√

2

ni −1

[
sin

( i jπ

nk −1

)]nk−2

i , j=0

We have that Zni is actually the discrete sine-transform (DST) matrix, with Z 2
ni

= Ini and Zni Tni Zni =
Λni . This matrixΛ is diagonal as such

Λni = diag

(
− 4

h2 sin2
( jπ

2(ni −1)

))ni−2

j=0

This property follows from the sine being an eigenfunction of the Laplacian operator. The result
of this multiplication from the left is that we are left with a new system, which looks complicated
but actually simplifies solving it T 0 0

0 T 0
0 0 T

w̃(1)

w̃(2)

w̃(3)

=
z̃(1)

z̃(2)

z̃(3)

 (4.2)

T =Λnx ⊗ Iny ⊗ Inz + Inx ⊗Λny ⊗ Inz +
1

h2 Inx ⊗ Iny ⊗Tnz

w̃(i ) = (
Znx ⊗Zny ⊗ Inz

)
w(i ), z̃(i ) = (

Znx ⊗Zny ⊗ Inz

)
z(i ), i = 1,2,3 (4.3)

The system in 4.2 can be split into 3(nx − 1)(ny − 1) independent tridiagonal systems of order
nz −1. These tridiagonal systems can all be solved in O (nz ) time, after which we need to return to
the original variables using

w(i ) = (
Znx ⊗Zny ⊗ Inz

)
w̃(i ), z(i ) = (

Znx ⊗Zny ⊗ Inz

)
z̃(i ), i = 1,2,3 (4.4)
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The multiplications in equations 4.3 and 4.4 can be done efficiently using the Fast Fourier Trans-
form (FFT) due to the nature of the matrices Zni . We need to apply the FFT twice, once in the x−
and once in the y− direction, both of which take O

(
(ni −1)2 log(ni −1)

)
time. This is only because

the double Zni transformations are separable, as Znx ⊗Zny ⊗ Inz = (Znx ⊗ Iny ⊗ Inz )(Inx ⊗Zny ⊗ Inz ).

Similarly, we can change the premultiplication factor in 4.1 to have the FFT also act upon the
z−direction. We do this by changing the diagonal elements to Znx ⊗Zny ⊗Znz , and denote this ma-
trix as Z3. Instead of having to solve tridiagonal systems, we have a fully diagonal matrix multiplied
with w̃ withΛnx ⊗ Iny ⊗ Inz + Inx ⊗Λny ⊗ Inz + Inx ⊗ Iny ⊗Λnz on its diagonal, so the inversion is trivial.
These methods will be denoted as CG(Lap2) and CG(Lap3) respectively. While they solve the same
system, the numerical cost of these implementations are different, and it remains to see which is
faster.

Another way of abusing the diagonal similarity to the Laplacian operator is by constructing a
LDLT preconditioner, which entails the decomposition of B into a lower triangular matrix, a diago-
nal matrix and an upper triangular matrix. We define the matrices as follows:

B ≈ ML M−1
D MU =

M11 0 0
M21 M22 0
M31 M32 M33

M11 0 0
0 M22 0
0 0 M33

−1 M11 M12 M13

0 M22 M23

0 0 M33


Here we will use M11 = M22 = M33 =∆, and the off-diagonal blocks represent the blocks of B with

constant coefficients and no boundary conditions. Solving a system of the form ML M−1
D MU w = z

is done in steps, starting by multiplying the equation from the right with Z3. We also note that
Z3Z3 = I3n . This leads to the following simple equations to solve sequentially

Z3ML M−1
D MU w =Z3MLZ3Z3M−1

D Z3Z3MU Z3w =Z3z

=⇒ Z3MLZ3ẇ =Z3z

Z3M−1
D Z3ŵ = ẇ

Z3MU Z3w̃ = ŵ

Z3w = w̃

The first and third of these sequential steps should not be solved by multiplying the matrices ex-
plicitly, as that is a computationally expensive task. Instead, one should take advantage of the FFT
transform, the triangular structure and the fact that Zni Tni Zni = Ini . With this these can be solved
with 5 FFT’s in 3 directions each. The second step in this process is even easier, by noticing that
(Z3M−1

D Z3)−1 is a diagonal matrix matrix. Solving the full LDLT system can thus be done in a total
of 14 3D FFT’s. This CG(LDLT) method needs more than double the amount of work per iteration
than CG(Lap2) and CG(Lap3), but it should need fewer iterations.

A slight numerical improvement to the LDLT method can be made using the Eisenstat trick [26].
For this we need the off-diagonal blocks of ML and MU to be exactly equal to those of B . The premise
of the method is that the computational cost of solving a LDLT system scales with twice the number
of non-zero elements of B , but by writing it in a different way and using other search directions p
and residuals r the cost scales only once with that number. We will denote this method as CG(Eis),
but note that the true off-diagonal blocks can also be used in the LDLT method. It is also important
to note that working with a different residual term makes the stopping criterion behave differently.
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4.1.4. Recycling
We should acknowledge that this linear-elastic sub-problem is solved many times in a row, while
only the right-hand side changes and the matrix B is constant. This is where the idea of recycling
comes in, as explained nicely in [27]. When the first system B~u = g (N0) is solved, we can use its Ritz
vectors as the starting vectors to every following (P)CG solve. These Ritz vectors can be obtained
using a Krylov basis

BR̂m = R̂m+1H̄m

Here R̂m is a Krylov subspace and H̄m a Hessenberg matrix, which is banded. Using the Ritz
vector corresponding to the smallest eigenvalue b0 as the starting value of CG, convergence should
be established earlier than with a zero starting vector. One can use a smart way (viz Algorithm 3
from [27]) to obtain the Ritz vectors with these matrices, or by using the Power method. They also
show that recycling using the last found solution vector uk−1 of the previous time-step as the starting
vector is a simple yet effective way of speeding up convergence.

4.1.5. Multigrid
Lastly there are multigrid methods [25] to solve our problem, which have a very good theoretical
convergence rate. The idea is to iteratively solve the equation with a recursive scheme on different
discretisations of the domain. First we apply smoothing to reduce high frequency errors using one
to three Gauss-Seidel iterations on the grid. After this we calculate the residual error, which is then
restricted to a coarser grid. The residual on the coarse grid is then used in a recursive call to this
same code, unless the pre-specified lowest level is reached; in this case we use a direct solver to
solve for the residual. Once you go “up”, i.e. you exit the recursive call, we smoothen the solution
summed with the interpolated output of the recursion to find a better approximation. The amount
of times this so-called “V-cycle” should be done to reach a relative error tolerance does not depend
on the grid size, but the work per cycle scales with O (n). An algorithmic formulation of this method
is shown below.

Algorithm 3 Geometric Multigrid method

1: ~u0 := 0, ∆x =∆y =∆z = h
2: def V_cycle(u, f ,h):
3: u =smooth(u, f , h)
4: rh = fh −Bhu
5: r2h =Restrict(rh)
6: If not smallest grid size:
7: du2h =V_cycle(0,r2h ,2h)
8: Else:
9: du2h = B−1

2h r2h

10: duh =Interpolate(du2h)
11: u =smooth(u +du, f ,h)
12: Return u
13: While stopping criterion not met do
14: u =V_cycle(u, g ,h)
15: end While
16: Return ~u

The lines of this algorithmic formulation correspond to the text above. Restriction is done with
the full weighting restriction operator, as explained in [25]. This uses a stencil with weights for
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neighbouring points. Given that the current grid has ni points in a certain direction, the restricted
grid will have ni /2 points given that ni −1 is odd. In 1d the restriction matrix will look as follows:

R2h
h = [ri j ] ∈Rni /2×(ni−1), ri j =


1/2 j = 2i
1/4 j = 2i ±1

0 otherwise

To extend this restriction to 3D we can simply take the Kronecker product of the terms, R2h
h =

R2h
h ⊗R2h

h ⊗R2h
h . We want to apply this transformation to each component of ~u separately, so the re-

striction matrix we will actually be working with is the block diagonal matrixR2h
h = diag(R2h

h ,R2h
h ,R2h

h ).

The interpolation matrix Ih
2h is the transpose of this matrix multiplied with 8, as this makes sure the

rows add up to one and the terms do not ’shrink‘ upon interpolation (i.e. the total number of cells
remains constant). This does not necessarily hold on the boundary, but as we have zero Dirichlet
conditions there we do not care. The system matrix B at every grid level also needs to be trans-
formed properly, which is done as B2h =R2h

h BhI
h
2h .

What we just described here is the Geometric Multigrid method (GMG), but there also is the
Algebraic Multigrid method (AMG). This method uses more abstract elements based on the non-
zero elements of the matrix B . There is a nice implementation of this method in python with the
PYAMG package [28].

4.2. Convergence Analysis

To determine the best method to use, we check the speed of the methods in various settings. In all
experiments the relative tolerance needed to break the iterative processes is 10−5 with respect to the
norm of the right-hand side.

4.2.1. Simulated data assumptions

The setting we are experimenting on is a 200× 200× 200 mm grid, with literature values ν = 0.45
and λ= 2.5e −3. The cell carrying capacity is determined by assuming spherical tumour cells with
a packing density of 0.7405 and a cell radius of 10µm. This gives a tumour cell volume of 4189µm3,
and if we divide the cell volume by this number we find the carrying capacity θ [11, 12, 20]. The
value of the spatially dependent shear modulus G(x̄) is taken to 2kPa everywhere, except for inside
a bubbly domain defined by the mask

{
sin7πx)+ sin(7πy)+ sin(8π(z + 3/16)) > 1

}
where its value is

4kPa, and 20kPa where the tumour is initially defined. The first two values represent fibroglandular
and adipose tissue respectively, and these values are from [1, 5].

The tumour inside this domain is centred and round, with the number of tumour cells per
voxel depending on a scaled radius r = 3

√
(x − 1/2)2 + (y − 1/2)2 + (z − 1/2)2. The actual value is equal to

N (r ) = θexp
(−3r 6

) ·(1+δ) with δ∼N (0,0.05) as long as |r | < 1. The values of the coordinates x, y, z
in these functions are scaled to lie in between 0 and 1. Lastly, the boundary conditions are imposed
only on the boundary of the cubic domain; this means that we are technically considering a cubic
breast. Visual illustrations of these functions are shown in the figure below.
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Figure 4.1: (a) 1D representation of the tumour cell distribution within the cubic domain with no noise and θ = 10, (b)
Voxel plot showing where the shear modulus is 4kPa; everywhere else it is 2kPa.

All the results in this section were acquired on a desktop computer with an AMD Ryzen 1200
Quad-Core Processor (3.7 GHz) and 16 GB RAM. Timings in subsequent Sections were also done on
this computer, unless stated otherwise.

4.2.2. Varying grid size

First we want to check what happens to the amount of time and iterations needed, when we vary
the amount of discretisation points. For this we take nx = ny = nz = ni , and we note that for full
resolution we need around ni = 120. The following two figures show the result of this test, averaged
over 10 runs with small perturbations in the tumour.

Figure 4.2: Time needed to solve the linear elastic equation versus the grid size for all methods.
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Figure 4.3: Iterations needed to solve the linear elastic equation versus the grid size for all methods.

The GMG and LU method were not evaluated for all grid sizes, as they already required large
amounts of time for small grids. In Figure 4.3 the two Laplacian preconditioning methods are dis-
played in one line as they are essentially the same method with a different implementation, and
hence they need the same amount of iterations. Furthermore, the GMG method was evaluated at
different grid sizes, as the implementation used benefits from grids of size ni = 2d +2 for d ∈Nwhile
FFT methods benefit from ni = 2d +1.

The first observation we make is that the Laplacian preconditioning method is the clear winner
for large grid sizes. The method using two DST’s and the Thomas algorithm seems to be slightly
faster, especially when the grid size is not a power of 2 (which is beneficial for the FFT calculation
method). The LDLT method which contains more information of the system is slower, and actually
takes the same amount of iterations to solve (the lines overlap, and hence the one of the Laplacian
methods is not visible). Picking off-diagonal blocks of B with constant coefficients apparently does
not make the preconditioner resemble the inverse of B more than the Laplacian preconditioner. The
Eisenstadt method, with the actual off-diagonal blocks of B is slightly faster than the LDLT method
and takes less iterations. Diagonal or no preconditioning is not competitive in comparison to these
other methods, as well as AMG. For some of the methods pre-work needs to be done, such as deter-
mining L and U for the LU method. We can subtract the time needed for this in our analysis, as it
only needs to be done once. It was found that this does not influence the conclusions of this Section.

The GMG method has a relatively high run-time compared to the others. This mostly seems to
originate from the Gauss-Seidel iterations, of which we do 2 in pre-smoothing and 1 post-smoothing
during each V-cycle. One can instead use Jacobi iterations for smoothing, but as our matrix is not
diagonally dominant there is no guarantee that this will converge. Faults in the implementation
don’t seem to be there, especially since the amount of iterations appears constant with respect to
the grid size. We check the amount of iterations needed for larger grid sizes by running it once for
the larger grid sizes, the result of this is shown in the next table.
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ni 9 17 25 33 49 65

no. iters 11 14 15 15 16 16

Table 4.1: Number of iterations needed for the GMG method for ni ×ni ×ni grids.

Indeed we find that the amount of iterations stays more or less constant, even for larger grid
sizes. At ni = 65 the GMG method took over 5 hours; clearly not feasible for our problem. Further
improvements to the method could be made by implementing it in lower-level languages such as C
or Fortran.

One last thing to check is the order of the increase in iterations as a function of the grid size,
which can be established with the log-log plot in Figure 4.3. The slopes are determined by only
using the last three data-points, as the slope has converged to a constant value by then. In the next
table the slopes are given.

Table 4.2: Slopes of the time increase as a function of the grid size for all the methods.

Method CG CG(d) CG(Lap) CG(LDL>) CG(Eis) GMG

Slope 0.868 0.866 0.103 0.103 0.0920 0

We see that the slopes are rather low, so the amount of iterations needed does not increase that
much with the grid size. The likely reason for this is that the large the grid size is, the sparser the
right-hand side becomes. This is because the spatial derivative of N is only non-zero on the surface
of a ball in our scenario, the fraction of which compared to the volume of a cube becomes smaller
the larger the grid-size is.

4.2.3. Iterations and time

More insights on these iterative methods can be gained by checking the convergence per iteration
and time, for various sizes of the grid. In the next figures we show the residual error ||Buk−g (N|| and
the relative error ||u −uk ||. The ‘true’ solution u is found by first running CG(Lap) on the problem
with a relative error of 10−10 as the stopping criterion. First we check the output for ni = 16.

Figure 4.4: Residual and relative error per iteration for a grid with ni = 16.
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Figure 4.5: Residual and relative error per time for a grid with ni = 16.

As the Eisenstadt method technically solves a transformed problem, we can’t impose the exact
same stopping criterion on it. Instead, it is solved up to a residual of order 10−6 in its own norm. The
error per time figure was cropped such that the most interesting part is shown; the GMG method
took around 3.5 seconds here. The errors per iteration are shown for both CG(Lap2) and CG(Lap3),
but they overlap as they are different implementations of the same method.

The behaviour is more or less as we predicted, with the residual error decreasing exponentially
per iteration for all methods. For these small systems the computational cost is low, so simple
method as CG and CG(d) win here time-wise, even though they need a relatively high amount of
iterations. The theoretically high convergence per iteration of GMG is clear here, but it does not
reflect in the time needed. Next we check the same figures for ni = 32.

Figure 4.6: Residual and relative error per iteration for a grid with ni = 32.
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Figure 4.7: Residual and relative error per time for a grid with ni = 32.

The errors per time figures were once again cropped, this time the GMG method took around
100 seconds. One interesting thing we are again able to see here is that the amount of iterations for
CG(Lap) and CG(LDLT) / CG(Eis) are the same, with the error decreasing in a very similar manner.
With more work, one might be able to find a preconditioner with non-zero off-diagonal blocks of
lower computational cost than CG(Lap).

In summary, we found in this Chapter that for large systems it is best to use the CG(Lap2)
method. Preconditioners with more information do not add much more value and are more com-
putationally expensive. Further improvements can likely only be achieved by implementing the
methods in lower-level programming languages. We continue by doing a detailed analysis on meth-
ods for time integration in the next Chapter, where we use CG(Lap2) in each time-step.





5
Temporal Integration

This Chapter starts with an introduction to the methods used for time-stepping in Section 5.1. We
then continue with an analysis of the accuracy and the time needed of each of these methods in
Section 5.2. After this an extension is made to incorporate high-performance computing in Section
5.2.3.

5.1. Methods
The equation we are evaluating is of the form ∂Nm

∂t = A(Nm)Nm + f (Nm) with −A SPD, as in equation
3.13.

5.1.1. First Order Schemes
As usual, we define the Forward Euler (FE) and Backward Euler (BE) method with forward and back-
ward differences for the temporal derivative. Forward difference for a given time-step size of ∆t is
given by

∂Nm

∂t
≈ Nm+1 −Nm

∆t

If substituted into equation 3.13 the value of Nm+1
i , j ,k can be evaluated with a simple matrix-vector

product by moving the known elements to the right-hand side

Nm+1 = Nm +∆t
(

A(Nm)Nm + f (Nm)
)

We denote the system matrix as A(Nm) here to highlight the dependency on Nm , which is im-
portant for other methods. As Forward Euler is an explicit method, there is a bound on the time step
for the method to be stable. This bound was derived in [5], and is given by

∆t ≤ 2

4Dmax
( 1
∆x2 + 1

∆y2 + 1
∆z2

)+|k|max +αCmax
(5.1)

The inclusion of the third dimension makes the time step restriction stricter; if Dmax is the factor
contributing most to the restriction, the maximum time step in 3D is two-thirds of the one in 2D.
As the vector D changes each iteration, it is difficult to respect this bound with full certainty using a
fixed value of∆t . In the preceding two works of this thesis, the time step criterion was checked after
each parameter-update in the inversion method; if it was too large, the evaluation was done again
with half the time step as before. On the other hand, BE is unconditionally stable, with backward
difference given by

29
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∂Nm+1

∂t
≈ Nm+1 −Nm

∆t

It is not too straight-forward to evaluate this system, however. Fixed point iteration would still be
unstable for the values of∆t where FE is unstable, so we need to solve it implicitly. The dependency
of the matrix A on the vector Nm+1 and the quadratic part in the reaction term provide difficulties.
We overcome this by making the following assumption about the right-hand side, which has the
“easy part implicit, hard part explicit” mindset applied.

A(Nm+1)Nm+1 + f (Nm+1) ≈ A(Nm)Nm+1 +k ·Nm
(
1− Nm+1

θ

)
−αCm+1 ·Nm+1

Note the choice of Nm+1 in the reaction term, as this enforces that the resulting system is still
negative definite. We take the above to be the right-hand side and the backward difference equation
to be the left-hand side, and by rearranging some terms we find the following system for the next
time-step. (

In −∆t
(

A(Nm)−k · Nm

θ
−αCm+1

))
Nm+1 = Nm +∆tk ·Nm

Solving this can be done once again by CG, as the matrix is definite and symmetric. A diagonal
preconditioner is easy to implement, so CG(d) will be done in practice. Moreover, one should see
that the matrix on the left-hand side is actually already quite close to the identity matrix, given that
∆t is not taken too big. Another possibility for solving this system implicitly is by constructing an
enlarged system for both Nm+1 and um+1, and solving them simultaneously. They do this efficiently
in [29].

5.1.2. Second Order Schemes
The FE and BE method can be combined into the second-order accurate Crank-Nicholson (CN)
method, which can be seen as the average value of the two methods. At the cost of needing more
time than the individual two methods, the order of accuracy increases to two. The system to solve
is now

(
In − ∆t

2

(
A(Nm)−k · Nm

θ
−αCm+1

))
Nm+1 = Nm + ∆t

2
k ·Nm + ∆t

2

(
A(Nm)Nm + f (Nm)

)
We also need to solve this implicitly, which can be done in the same way as for BE. If second

order accuracy is required but implicit solutions are difficult to obtain, we could use the Modified
Euler (ME) method, which is also known as Heun’s method. This is a two-step explicit method, and
the solution is found as follows.

Ñm+1 = Nm +∆t
(

A(Nm)Nm + f (Nm)
)

Nm+1 = Nm + ∆t

2

(
A(Nm)Nm + f (Nm)+ A(Ñm+1)Ñm+1 + f (Ñm+1)

)
This method has the same stability criterion as FE.

5.1.3. RK4 and Generalized Alpha
It remains to see if higher accuracy is necessary for this setting. If so, there is benefit in using the
Runge-Kutta 4 (RK4) method, which is fourth order accurate. The amount of tumour cells at the
next time-step is iteratively calculated as follows
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Nm+1 = Nm + ∆t
6 (k1 +2k2 +2k3 +k4)

k1 = A(Nm)Nm + f (Nm)

k2 = A(Nm + ∆t
2 k1)(Nm + ∆t

2 k1)+ f (Nm + ∆t
2 k1)

k3 = A(Nm + ∆t
2 k2)(Nm + ∆t

2 k2)+ f (Nm + ∆t
2 k2)

k4 = A(Nm +∆tk3)(Nm +∆tk3)+ f (Nm +∆tk3)

For this we need A not only at time tm and tm+1, but also at the midpoint tm+1/2. We can luckily
accurately estimate this matrix as shown in the equations. The accuracy is greatly increased here, so
the time-steps could plausibly be taken rather large. We might not need to calculate the diffusion at
each intermediate step, as the difference will be minimal while the increased computational cost is
high. For system matrices with real eigenvalues, the stability region of RK4 is

p
2 times larger than

the one of FE.

Another second-order method is the Generalizedα−method (GA) [30], as used in another math-
ematically high-level related work on prostate cancer [31]. This method requires values Nm and Ṅm

to both be known and used. Here the dot indicates the first time derivative for convenience of no-
tation. First a predictor is made for the next time step, with which predictors of two midpoints are
assembled

Nm+1
(0) = Nm

Ṅm+1
(0) = γ−1

γ Ṅm

N
m+α f

(i ) = Nm +α f
(
Nm+1

(i−1) −Nm)
Ṅm+αm

(i ) = Ṅm +αm
(
Ṅm+1

(i−1) − Ṅm)
The subscript i indicates the iteration of the prediction, and a dot above a vector means the first

temporal derivative of that quantity. We need to define parameters γ,α f ,αm here, which influence
the damping of frequencies. If all three parameters take the value 1, the method coincides with the
backward Euler method. For second order stability we require γ = 1

2 +αm −α f and αm ≥ α f ≥ 1
2 ,

which is shown in [32]. They also express the parameters in terms of ρ∞ as introduced in [30] as
follows

αm = 1

2

(3−ρ∞
1+ρ∞

)
, α f =

1

1+ρ∞
, ρ∞ ∈ [0,1]

Fro ρ∞ = 1 the highest frequencies are preserved and the method coincides with the midpoint
rule, while for ρ∞ = 0 the highest frequency is annihilated in one step. Non-linear problems such
as ours have benefit from lower values of this parameter, according to the original authors, but it
should be tuned accordingly to each problem. To update the given predictors, we need the nodal
values of the non-linear residual, which in our case is defined as

R(i )
(
Ṅm+αm

(i ) ,N
m+α f

(i )

)= Ṅm+αm

(i ) − A(N
m+α f

(i ) )N
m+α f

(i ) − f
(
N

m+α f

(i )

)
We want this residual to be equal to zero, for which we iterate. To do this, the residual is lin-

earised with respect to the solution variable as

R(i )
(
Ṅm+αm

(i ) ,N
m+α f

(i )

)+ dR(i )
(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
dṄm+1

(i )

∆Ṅm+1
(i ) = 0
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The tangent matrix of R(i ) here will be denoted as S(i ) =
dR(i )

(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
dṄm+1

(i )

, and it can be

calculated explicitly as

S(i ) =
∂R(i )

(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
∂Ṅm+αm

(i )

∂Ṅm+αm

(i )

∂Ṅm+1
(i )

+
∂R(i )

(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
∂N

m+α f

(i )

∂N
m+α f

(i )

∂Ṅm+1
(i )

=αm

∂R(i )
(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
∂Ṅm+αm

(i )

+α f γ∆t
∂R(i )

(
Ṅm+αm

(i ) ,N
m+α f

(i )

)
∂N

m+α f

(i )

=αm In +α f γ∆t
(
− A(N

m+α f

(i ) )−
∂A(N

m+α f

(i ) )

∂N
m+α f

(i )

N
m+α f

(i ) −diag
(
k− 2

θ
k ·N

m+α f

(i ) −αC
))

The derivatives of Ṅm+αm

(i ) and N
m+α f

(i ) follow from the definition of their iterative updates intro-

duced earlier, and the update of Nm+1
(i ) which follows shortly. The derivative of R(i ) with respect to

N
m+α f

(i ) contains the term −∂A(Nm+α f )
Nm+α f

Nm+α f , of which the first term can be derived analytically as
follows

∂A

∂N
= ∂A

∂D
· ∂D

∂σvm
· ∂σvm

∂σ
· ∂σ
∂ε

· ∂ε
∂u

· ∂u

∂N
(5.2)

In the derivative ∂D
∂σvm

we multiply with γ, and in the derivative ∂u
∂N we multiply with λ, both of

which are in the order 10−3. This suggests that this term might be negligibly small. Finding the
search direction ∆Nm+1

(i ) leads to solving this linear problem in each corrector step

S(i )∆Ṅm+1
(i ) =−R(i )

We omit the parantheses and parameters here for ease of notation. This symmetric system can
be solved with the conjugate gradient method, which we speed up with a diagonal preconditioner.
The approximate value at the next time step can then be updated as such

Ṅm+1
(i+1) = Ṅm+1

(i+1) +∆Ṅm+1
(i )

Nm+1
(i+1) = Nm+1

(i ) +γ∆t∆Ṅm+1
(i )

After this we update the values of N at the alpha-levels again and iterate further, up until i = imax.
Just like with the fixed point method, we likely only need a few iterations to reach a good enough
solution.

5.2. Accuracy Analysis
We now check how accurate each method is and weigh it up against the time needed. All simu-
lations are executed for 64 days with varying time-steps. The linear elastic sub-problem is solved
with the CG(Lap2) method, as that gave the best results in the previous Chapter. Additional param-
eters used here are γ= 2.0e −3, β= 0.25d−1, D0 = 2.0e −3mm3d−1 and α= 9.0e −2(µM ·d)−1. The

function used for the drug concentration is based on the NBVM method, such that C dr ug
ti ssue (x̄, t ) =

C0 exp
(−β(t mod ti nt )

)
. Here the time interval between admission is ti nt = 15 days, and the values

for C0 in µM are 0.28,0.16,0.70 for fibroglandular, adipose and tumour tissue respectively [1].

The proliferation rate is chosen based on the initial tumour profile and mimics the results of [5];
the growth of the tumour is largest at its boundary, and we define it by k(r ) = 2 ·10−3(1.5e−1200r 6 −
1.25e−600r 4

) with the radius r =
√

(x − 1/2)2 + (y − 1/2)2 + (z − 1/2)2 on scaled coordinates x, y, z between
0 and 1. The function in 1D is shown in the next figure.
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Figure 5.1: 1D representation of the proliferation rate.

In the remainder of this section recycling is used in the linear elastic sub-problem for all meth-
ods, with the starting vector being the solution of the previous time-step. This resulted in a drop of
iterations needed by up to 50%, with on average a drop of 37.5%. The lowest frequency eigenvector
of B as the starting vector gave similar results, but was computationally very expensive to obtain.

5.2.1. Comparison
We evaluate all the schemes as defined above, on an interval of t1 = 10 days with a time-step of
d t = 1 day. The FE method in our setting is stable then, which means that the ME and RK4 methods
should be stable too, as their regions of stability for real functions are at least as big as FE. The time-
step d t and the final time t1 are not too important for this experiment, as we can assume that the
time needed per iteration for each method is more or less constant. Nonetheless, we still average the
result over 10 runs again. The time needed for all methods is shown in the figure below for varying
grid sizes.

Figure 5.2: Time needed per method for 10 iterations for different grids of size ni ×ni ×ni , averaged over 10 runs.
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Note that the FE/BE/CN and RK4/GA lines mostly overlap. A few interesting observations can
be made here. First of all, the difference in time needed per method grows but there seems to be a
more-or-less constant factor between them. In some of the systems, the CN method is slightly faster
than the BE method. The first reasonable explanation for this would be that the condition number
of the system that CN is trying to solve is better. However, it turns out that for both CN and BE the
CG(d) method solves the time step in a single iteration to the required accuracy of 10−5. The need for
only a single iteration is also the reason that they are as fast as FE; only one additional matrix-vector
multiplication is needed, and the majority of the time is spend in the linear-elastic sub-problem. It
seems that the time difference between CN and BE is not significant, but it is nice to see that the
second order method CN does not need any additional computation time with respect to the first
order BE. As expected, RK4 is one of the slowest methods with its high number of steps, but it is still
reasonably fast. Looking at the time needed for the second order GA and ME method, they are not
a competitive method in comparison to CN.

To see the workings of all methods, we analyse them further for ni = 65 up to t1 = 64. This
choice of ni is large enough for a representative analysis, small enough that results can be acquired
in reasonable time, and it makes the FFT in the linear-elastic sub-problem efficient on the ni − 1
points. The next figure shows the total amount of tumour cells over time as found by all methods in
this setting.

Figure 5.3: Time needed per method for 10 iterations for different grids of size ni ×ni ×ni , averaged over 10 runs.

As the chemotherapy agent is assumed to be inserted every 15 days, there is a sharp drop in the
total amount of tumour cells at these time-points. The exact ‘elbow’-points differ a bit in location
per method, as forward-looking methods encounter the increased chemo-term earlier (viz. FE ver-
sus BE). The RK4 method has the highest accuracy, so we can assume that its result is the closest to
the truth. However, a time-step of d t = 1day is still relatively high, so even this result can still be off
a bit. At t1 there is quite some difference between the methods, with a factor of 1.15 between the
biggest and the smallest number. This suggests that accuracy of the method indeed plays a big role,
which we investigate more in the next section.

The choice of the damping parameter in the generalized α method up until now was ρ∞ = 0.25,
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as suggested by [30]. We check what the influence of this parameter is on the simulation. In the next
figure the output is shown in the same setting as before.

Figure 5.4: Outcome of the Generalisedαmethod for different values of ρ∞, with t1 = 64 on a 65×65×65 grid and d t = 1.

We see that the higher the parameter ρ∞ gets, the lower the output at t1 is. Seeing how the solu-
tion in Figure 5.2 of GA is too high, it suggests that for our problem there is benefit in using higher
values of ρ∞. Our prediction was that we would benefit from lower values in our problem due to the
non-linearity, as stated in [30]. However, we also mentioned that for lower values of ρ∞ the high-
est frequencies would be annihilated faster, which resulted in our periodic exponentially decaying
chemotherapy term being smoothed out. This is most likely the cause of the overshoot of the solu-
tion. Despite the solution of GA being very close to reality for higher values of ρ∞, its required time
is too large for it being competitive in comparison to other methods. Especially when compared to
CN, which is also second order accurate. A last thing to note about GA is that we can indeed neglect
the small but hard-to-compute term; this results in an error of less than 10−6 in the found solution.

It is interesting to see that all other methods consistently underestimate the amount of tumour
cells at t1. Generally, explicit method overestimate the change in values while implicit method un-
derestimate it. The implicit methods likely don’t show this behaviour due to their semi-explicitness
in the evaluation of the linear-elastic sub-problem. Higher accuracy could be achieved by evaluat-
ing this iteratively as well in the implicit solve, or by using multi-step methods like Adam-Bashforth.

5.2.2. Order of errors

In the previous section we saw that the accuracy of the method differs hugely. To investigate this,
we look at the outcome of the first order FE, second order CN and fourth order RK4 method. This is
done for time-steps of size d t = 0.25,0.5,1,2,5 up until t1 = 64. Note that in our setting of parameters
stability is still guaranteed with theses step sizes. The results are shown in the next three figures,
shown over the next two pages.
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Figure 5.5: Outcome of the Forward Euler method for different time-steps d t , with t1 = 64 on a 65×65×65 grid.

Figure 5.6: Outcome of the Crank Nicolson method for different time-steps d t , with t1 = 64 on a 65×65×65 grid.

The first observation we make is that for all three methods the total number of tumour cells goes
up when d t is decreased. With big time-steps, the effect of the chemo-therapy term is more dom-
inant, as high values of its exponentially decaying term are considered for larger periods of time.
We also see for all methods that the error at t1 halves whenever the time-step is halved, assuming
that the ’true‘ solution lies slightly above d t = 0.25. For the first-order method FE this is correct,
though for the second- and fourth-order method we expected more rapid convergence. A likely
cause for this is that in the derivation of the order of error for the higher order methods we assume
that our function is twice differentiable. Due to the non-linearity of the chemotherapy term we do
not achieve this, and hence for larger values of ∆t the accuracy is worse. It is clear nonetheless that
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the higher the order of accuracy, the earlier the method converges to the true solution.

Figure 5.7: Outcome of the Runge-Kutta 4 method for different time-steps d t , with t1 = 64 on a 65×65×65 grid.

From the three images we can conclude that we either need a high order of accuracy or a small
time-step in order to make a good prediction. If the inverse problem later on is solved for a lower
accuracy method, the parameters we obtain will not be representative for the patient. Without a
doubt this would result in bad results for the error at time t2, assuming that the model itself is an
accurate description of reality. The RK4 method with d t = 1 and the CN method with d t = 0.5
should both be good enough. Looking at figure 5.2 and assuming that a simulation with d t = 0.5
takes twice as long to execute, we can add log10(2) ≈ 0.3 to the logarithmic y−axis to deduce that the
CN method is faster than the RK4 method with half the time-step. There are methods to speed RK4
up though, which we see in the next section.

5.2.3. Parallel Timestepping
There is still a huge plausible reduction in computation time by having the time-steps be executed
in parallel. This is where the Parareal algorithm [33] comes in. For this algorithm we need a fast
coarse solver and a fine high accuracy solver of the initial value problem. Furthermore, we have a
parallel computing CPU infrastructure with P processors.

Let us denote C (Nm ,d tc , tnext ) as the solution of the coarse solver with initial value Nm at time
tnext with coarse step size d tc , and we define F (Nm ,d t f , tnext ) likewise. The coarse time step
should depend on the amount of processors we are using, such that d tc := tmax/P . The fine step
d t f size should be a divisor of d tc , and it should be in the resolution that we want the final so-
lution to be. Our first initial guess of the solution is then fully defined by the coarse solver as
Nm+1

0 = C (Nm
0 ,d tc , tm +d tc ), where N0

0 is the initial value. Then we run the fine solver in parallel
on all the time ‘slices’, and calculate all the values F (Nm

i ,d tc , tm +d tc ) for the iteration number i .
The next iterates are then found with a head-tail-esque method, such that the discontinuous slices
are continuous again, and the new coarse iterates are Nm+1

i+1 =C (Nm
i+1,d tc , tm+d tc )+F (Nm

i ,d tc , tm+
d tc )−C (Nm

i ,d tc , tm +d tc ). This algorithm continues iterating until the iterates converge, which we
check by evaluating ||Nm+1

i+1 −Nm+1
i || < ε||N0|| with tolerance ε= 10−5.
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In our setting, the coarse solver to be used should be fast and able to make big steps. The uncon-
ditionally stable CN method should be appropriate for this; another option would be BE, but CN is
more accurate and takes the same amount of time to calculate. According to the previous Section,
the CN method is only approximately three times as fast as the RK4 method, which is not enough.
Hence we skip the linear elastic sub-problem in the coarse solver, and set the Von Mises stress to
be zero everywhere. The fine solver should be the fourth order accurate RK4 method; from the pre-
vious two Sections we see that these choices are the most valid. In the next figure, the workings of
the parareal algorithm is demonstrated for a small example with ni = 33, t1 = 64, d t f = 1, P = 8 and
d tc = 8.

Figure 5.8: Output of the Parareal algorithm, with CN as the coarse solver and RK4 as the fine solver, with ni = 33, P = 8,
d t f = 1.

This image nicely demonstrates how the individual slices converge towards each other, and how
they do so in 4 iterations. Note that the actual parareal method will take 5 iterations, as it will only
terminate when the relative difference between subsequent iterations are small enough. If we were
to run the normal RK4 method in the same setting, the amount of sequential RK4 steps would be
the same computational cost as in 8 Parareal iterations, neglecting the time needed for the CN steps.
This results in a theoretical maximum speedup of S8 = 2 for this small example. With more proces-
sors this speedup should be even larger; this example was just taken for its visual interpretability.

Now we would like to test the speedup in practice on large-scale examples. For this we made
use of the Delft Blue Supercomputer [34], with the MPI4PY-package [35]. The CPUs we use are Intel
XEON E5-6248R 24C 3.0GHz, with 48 cores and 192GB RAM. The test setting we will be using now
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has ni = 65 and d t f = 0.5, and t1 = 64 is unchanged. The speedup is tested for P = 4,8,16,32,64, and
the results of this test are shown in the table below.

Table 5.1: Speedup SP achieved for a differing amount of processors P , as well as the amount of iterations and actual
time needed t in seconds. Corrected times and speedups are marked with an asterisk ∗.

P 1 4 8 16 32 64
iters - 4 5 4 3 3
t (s) 835.34 805.17 657.17 417.88 220.69 179.89
SP 1 1.04 1.27 2.00 3.76 4.64
t∗(s) 835.34 732.68 409.09 202.18 114.90 128.22
S∗

P 1 1.14 2.04 4.13 7.27 6.51

The first column represents the output of the sequential algorithm. The results are great, and we
see a maximum speedup of 4.64. They are not as high as expected, however. After a lot of tweaking
it was found that this does not have to do with the algorithm or the model, but with the working of
PYTHON and MPI4PY on the Delft Blue hardware. Some processors were calculating at lower speeds
than the others (up to 2.5×), even when executing basic scripts. To show the attainable results, two
more rows are shown in the table. These show the corrected time measure, where every processor
takes as much time to do the coarse solve as the fastest, and the corresponding corrected speedup.
Here we see that the speedup is more in line with the theoretical one, with a maximum speedup of
7.27.

The difference between the theoretical speedup and the one in practice is mainly explained by
the time needed for the coarse solver. The corrected communication time is in the order of 0.1−1s,
so this does not play a significant role. For the ‘fast’ processors, the communication time is rather
high as they need to wait for the slower ones.

An important consideration to make is that the more processors we use, the more calculations
we need to do with the coarse solver. As this method should inherently be fast this is not that big of
an issue for a low to medium amount of processors. When 8 processors are used, we spend 2.10% of
the full calculation time on the coarse solver, but for 64 processors this shoots up to 40.2%. The cost
of the coarse solver can be reduced further, for example by solving it on a coarser grid and interpo-
lating the result. In the corrected timings we see that the total computation time actually increases
when going from 32 to 64 processors.

We conclude this chapter with the decision to use Parareal for time integration with the amount
of processors equal to a quarter of the amount of time-steps. If that many aren’t available, we use
as many as possible. The fine solver is the Runge-Kutta 4 method, and the coarse solver the Crank-
Nicolson method.
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Parameter Estimation

In this Chapter the inverse problem is solved on the test data-set. The assumptions of the simulated
data are the same as in the previous two Chapters, unless stated otherwise. The methods which
are to be tested are first introduced in Section 6.1, after which we compare their workings and best-
found results in Section 6.2.

6.1. Methods
The equation to minimise in its general form is F(P(k)) = ||f(P(k))||22 = ||Nd at a(t1)−Nmodel (t1;P(k))||22
for a parameter vector P(k). Sensitivity of this equation is mathematically described by the Jacobian
of the model. Regularisation terms are added later as well, to enforce uniqueness of the solution.

6.1.1. Non-linear optimisation
The most common way we found in literature of solving the inverse problem is the Levenberg Mar-
quardt (LM) algorithm [36]. This algorithm is initiated with an initial guess P(0), which we are free
to choose and should base on literature values. To find the correct search direction sk for our next
guess P(k+1) := P(k) + sk we linearise the model prediction using the Jacobian.

Nmodel
(
t ,P(k) + sk

)≈ Nmodel
(
t ,P(k))+ J sk , J := ∂Nmodel

(
t ,P(k)

)
∂P(k)

With this linearisation, we can approximate the error of a plausible next iterate with parameters
P(k) + sk as

||Nd at a(t1)−Nmodel (t1;P(k) + s)||22 ≈ ||Nd at a(t1)−Nmodel (t1;P(k))||22
−2

(
Nd at a(t1)−Nmodel (t1;P(k))

)> J sk + s>k J> J sk

Setting the derivative of this entity with respect to sk equal to zero gives the following normal
equations (

J> J
)
sk = J>f(P(k))

What we derived here is actually what is known as the Gauss-Newton (GN) method. The modi-
fication LM gives to this is by adding a damping factor λd to the equation as follows(

J> J +λd In
)
sk = J>f(P(k)) (6.1)

For a large value of this λd the method resembles the Gradient Descent (GD) method; indeed we
see that sk will go in the direction of the biggest descent. The algorithm starts with a large value of

41
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λd , which gradually decreases each iteration. If a new iterate has a higher error than the previous,
λd is increased instead. The factors by which we decrease and increase are 12 and 3 respectively,
which are taken from [37]. The termination can be done whenever we want, such as when there is
no improvement for a set amount of iterations, when the error becomes sufficiently small or after a
set amount of time. For this method we need to compute the Jacobian, which will be talked about
in the next sub-section.

The second method we are testing is the Trust Region Reflective (TRF) algorithm [38], which has
a big benefit with respect to LM that bounds can be imposed on the parameters. The idea of Trust
regions algorithms is that at iteration k the next iterate is determined as a solution to a quadratic
sub-problem, which approximates the model well within a certain region, i.e.

F(P(k) + s)−F(P(k)) ≈ψk (s) = g>
k s + 1

2
s>(Hk +Ck )s, ∀s : ||Dk s|| ≤∆sk

gk =∇f(P(k)), Hk =∇2f(P(k)), Ck = Dk diag(gk )J v
k Dk

From the derivation of the LM method we find that we can approximate the gradient and Hes-
sian as gk ≈−2J>f(P(k)) and Hk ≈ 2J> J . The matrix Dk is a scaling matrix dependent on the bounds
[li ,ui ] of the parameters. It is defined as follows using auxilliary vector ~v .

~v = [vi (P)], vi (P) =


ui −Pi gi < 0,ui <∞
Pi − li gi ≥ 0, li >−∞
−1 gi < 0,ui =∞
1 gi ≥ 0, li =−∞

, Dk = diag
(|~v(P(k))|−1/2

)

With this matrix Dk we define the last matrix Ck , which enforces the bounds of the parameters.
It involves the Jacobian matrix J v

k of ~v , which is diagonal and has a -1 in the first case of the values
for vi , a 1 in the second case, and zeroes elsewhere. The minimum of the quadratic approximation
ψk (s) is denoted as sk , and it represents the best parameter step for the next iterate. In smaller sys-
tems one can find this minimum with matrix factorisation, but this is not viable for us. Instead we
use the Conjugate Gradient Steihaug [39] method, which works as shown in Algorithm 4.

With this method we can find the best next iterate within the bounds of our parameters. Just as
in regular CG, the parameter ε here represents a relative tolerance stopping criterion. We can now
define the ratio between the approximated and actual reduction in objective value ρk = (

f(P(k) +
sk )− f(P(k))

)/
ψk (sk ). We also define some parameters 0 < µ < η < 1 and 0 < γ0 < γ1 < 1 < γ2 which

decide what we do in each iteration. If ρk >µ, i.e. the prediction is accurate, we set P(k+1) = P(k) + s,
else we leave it at P(k+1) = P(k). Then we update the trust region: if ρk < 0 we pick ∆sk+1 = γ0∆sk ,
if ρk < µ we pick ∆sk+1 = max(γ0∆sk ,γ1||Dk sk ||), if ρk ∈ (µ,η) we pick ∆sk+1 = max(γ1∆sk , ||Dk sk ||),
and if ρk ≥ η we pick ∆sk+1 = max(∆sk ,γ2||Dk sk ||). This choice of trust region updates is common
in most literature on trust regions, but there are other options. The norm can also be chosen freely,
and we use the L2-norm as in the rest of this thesis.
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Algorithm 4 Conjugate Gradient Steihaug

1: s0
k := 0, r0 :=−gk , z0 = D−2

k r0, d0 = z0

2: j := 0
3: While stopping criterion not met do
4: γ j = d>

j Hk d j

5: If γ j ≤ 0

6: τ= min
{
τ ; ||Dk (s j

k +τd j )|| =∆sk
}

7: s j
k = s j

k +τd j

8: Return
9: α j = r>j z j /γ j

10: s j+1
k = s j

k +α j d j

11: If ||Dk s j+1
k || >∆sk

12: τ= {
τ ; ||Dk (s j

k +τd j )|| =∆sk
}

13: s j
k = s j

k +τd j

14: Return
15: r j+1 = r j −α j Hk d j

16: If ||Dk r j+1|| < ε||Dk gk ||
17: s j

k = s j+1
k

18: Return
19: z j+1 = D−2r j+1

20: β j = r>j+1z j+1/r>j z j

21: d j+1 = z j+1 +β j d j

22: j = j +1
23: end While
24: Return s j

k

A method combining the ideas of LM and trust regions is Powell’s dog leg method [40–42]. For
this method we define the same trust region as in TRF with Hk , gk and ∆sk again. This time we
compute the Gauss-Newton direction sg n and the steepest descent direction ssd of this quadratic
model, i.e.

Hk sg n,k := gk , ssd ,k := g>
k gk

g>
k Hk gk

gk

The Gauss-Newton step is obtained with a simple CG(d) solve. These steps are similar to the
directions one would take in LM. With these two steps we update P(k) as follows: if ||Dk sg n,k || ≤∆sk

we set s = sg n,k , if both ||Dk sg n,k || > ∆sk and ||Dk ssd ,k || > ∆sk we set s = ∆sk /||ssd ,k || · ssd ,k , and
else we set s = ssd ,k + τ(sg n,k − τ1ssd ,k ) where τ defines the dogleg point, and is chosen such that
||Dk s|| = ∆sk . Our next attempted parameter vector is then P(k+1) = P(k) + s, the output of which is
evaluated. The scaling matrix Dk is the same as in TRF, and the trust region is also updated in the
same way with the model function ψk (s). The third option for the search direction is called the ‘dog
leg’ step, as it is a broken line which approximates the optimal path for our parameter to take. Note
that while this method uses the same trust region, it does not respect the upper and lower bounds
strictly. There is still incentive to stay within the region, and if needed an adjustment can be made
such that the bounds are strict; this is called the dog-box method [43].

Lastly we try out the adjoint state method, of which great explanations are given in [29, 44].
For this method we need a primary equation which contains all to-be-optimised parameters; fortu-
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nately they are all in the reaction-diffusion equation already, so we can take that. If parameters of
the linear-elastic equation were to be optimised, a equation for a simultaneous solve would need to
be stated. We then define the adjoint equation for the adjoint state variable φ(x̄, t ) as follows

∂φ(x̄, t )

∂t
= A∗(φ)φ(x̄, t )+ f ∗(φ)

A∗ = A, f ∗(φ) = k ·φ(x̄, t )
(
1− 2N (x̄, t )

θ

)
−αC (t )φ(x̄, t )

The adjoint matrix A∗ is the same as the regular matrix A as it is Hermitian, due to its symme-
try and realness. We can put in the values of φ in the linear-elastic equation as we would for the
regular system. The non-linear adjoint operator f ∗ involves the Fréchet derivative of the reaction
term, which also depends on the values of N (x̄, t ). The discretised initial condition for the adjoint
equation at time t1 =: m ·∆t is defined as

φm = ∂F(P)

∂Nm =−2f(P) =−2
(
Nd at a(t1)−Nmodel (t1;P(k))

)

We need to find the adjoint state variable at time t0, which can be done by evaluating the adjoint
equation backwards. Note that all intermediary values of Nm have to be stored for this, which re-
quires ample working memory. Using this adjoint vector, the gradient of the objective can be found
as follows

dF(P)

dP
= ∂F(P)

∂N
+∆t

m∑
i=0

(φi )>
(∂A(Ni )

∂P
Ni + ∂ f (Ni )

∂P
Ni

)

As in the other three methods, the derivatives of the time operator with respect to the parameter
vector are already partially computed in the time-stepping, so this does not require much extra time.
The AS method only gives the gradient, so the step-size is yet to be determined. Line search can find
a local minimum along the line of the gradient, but for each attempted parameter vector we need to
evaluate the whole model from time t0 to t1. This takes too much time for our purposes, and hence
we attempt to extract more information of our systems Hessian using the L-BFGS method [45, 46].
With this we iteratively get a better approximation of the inverse Hessian (H (k))−1 along with each
attempted parameter vector. It also only needs to store a set amount m of vectors instead of the
whole matrix. The initial guess and the updates are given by the following algorithm.

sk = P(k+1) −P(k), yk =∇F(P(k+1))−∇F(P(k)), ρk = 1

y>
k sk

H (0)
0 = 20

∣∣∣∣∣∣∇F(P(0))
∣∣∣∣∣∣

2
||P(0)||−1

2 In3
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Algorithm 5 L-BFGS Method

1: q =∇F(P(k))
2: For i = k −1, . . . ,k −m:
3: αi = ρi s>i q
4: q = q −αi yi

5: end For

6: γk = s>k−1 yk−1

y>
k−1 yk−1

7: H 0
k = γ−1

k In3

8: z = (H 0
k )−1q

9: For i = k −m, . . . ,k −1
10: βi = ρi y>

i z
11: z = z + si (αi −βi )
12: end For
13: sk =−z
14: Return sk

The initial guess of the Hessian is one such that the step size is 5% of the length of the parame-
ter vector. This step is not too important for the remainder of the algorithm, as long as the matrix
H 0

0 is SPD. The resulting step sk of the algorithm is an approximation of the Gauss Newton step
sk = −(Hk )−1∇F(P(k)). The amount of vectors m we need to store for accurate results is quite low,
the value m = 10 is often used and works well. In line 8 a system needs to be solved, but the first
Hessian approximation is diagonal so this only involves element-wise division. Note that for Hk to
remain SPD we need each value of s>i yi to be non-negative. This is not guaranteed due to the prob-
able non-convexity of our problem and lack of line search, so if this value is negative the rank one
update corresponding to this index is skipped.

Another option for determining the step size in Adjoint State methods is by changing to a second
order Adjoint State method. For this one adds two more adjoint variables, and each optimisation
step the model needs to be evaluated forwards and backwards one additional time with these new
variables. Due to the additional memory requirements and time limitations this was not imple-
mented, but for problems where Jacobians are hard to estimate this is likely one of the best options.

6.1.2. Approximating Jacobians
The Jacobian of our model is needed for the LM, TRF and DL method. A naive calculation of this
would be to vary one of the parameters slightly, run the model from t0 to t1 and check the difference
in the results. However, with more parameters to tune than the amount of pixels this is not doable;
for a system of size 100× 100× 100 we would need 106 model runs to find the Jacobian, plus this
would need to be done for several iterations.

Instead we approach the calculation of the Jacobian in a more analytic way. The calculation of
the amount of tumour cells Nm+1 involves both the parameter vector P and the amount of tumour
cells at the previous time-step Nm (for one-step methods). However, this previous time-step is also
dependent on the parameters, and the step before. Let Nm+1 = S (Nm ,P) represent the scheme we
use to find the value at the next time-step, then its derivative with respect to P is as follows.

dNm+1

dP
= ∂S (Nm ,P)

∂P
+ ∂S (Nm ,P)

∂Nm · dNm

dP
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The input data N0 is independent of the parameters, i.e.
dN0

dP
= 0. There is thus a possibility

of calculating the Jacobian of the model along with the time-stepping, given that the derivatives
here are simple to compute. To find the Jacobian for the RK4 method we first derive the one for FE,
whose scheme will be denoted as FE (Nm ,P). The following three derivatives are found for the three
optimisation parameters D0,k,α.

Nm+1 =FE (Nm ,P) = Nm +∆t
(

A(Nm)Nm +kNm
(
1− Nm

θ

)
−CmNm

)
dNm+1

dD0
=∆t

(
A(Nm)

D0
Nm +

(
I + A(Nm)+k

(
1− 2Nm

θ

)−αCm
)dNm

dD0
+ ∂A(Nm)

∂Nm Nm dNm

dD0

)
dNm+1

dk
=∆t

(
Nm

(
1− Nm

θ

)+ (
I + A(Nm)+k

(
1− 2Nm

θ

)−αCm
)dNm

dk
+ ∂A(Nm)

∂Nm Nm dNm

dk

)
dNm+1

dα
=∆t

(
−CmNm +

(
I + A(Nm)+k

(
1− 2Nm

θ

)−αCm
)dNm

dα
+ ∂A(Nm)

∂Nm Nm dNm

dα

)
Note that the sums of matrix and vectors here actually represent the matrix summed with a ma-

trix containing the vector on its main diagonal, for conciseness. The first term in each derivative
is equal to the contribution of the diffusion, reaction and chemo terms divided by their respective
parameter, as they are all linearly dependent on them. This means that no additional calculations
are needed for these terms. The second term in each derivative has the same pre-factor, so this only
needs to be calculated once. The third and last term is difficult, but we saw in the GA method that
the derivative of the matrix A with respect to Nm is negligibly small (see Equation 5.2).

Another apparent difficulty is the fact that the derivative with respect to k is a n3
i ×n3

i matrix,
which needs to be multiplied with another n3

i ×n3
i matrix in each iteration. Luckily the matrix is

sparse, with only 1 non-zero diagonal after the first iteration. The matrix it is multiplied with has
7 non-zero diagonals, so the amount of diagonals increases each iteration. The influence of the
parameter ki , j ,k in a certain cell ’spreads‘ one step in the x−, y− and z−direction each iteration.
With approximately 100 cells in each direction and fewer time-steps than that, the result is that the
matrix is still mostly filled with zeroes. For the implementation of this, the Jacobian values of the
Jacobian with an absolute value smaller than 10−10 were neglected in all intermediate steps; this
greatly decreases the memory-leak due to numerical precision. Moreover, the influence of these
cells are negligible given that the amount of tumour cells per voxel is generally smaller than 1010.

We tested this way of calculating the Jacobian on a small 12×12×12 system with t1 = 64, such
that we can still find the ’real‘ Jacobian in acceptable time. It was found that the integrated Jaco-
bian method has a mean relative error of only 3 · 10−5. This is a more than acceptable result, and
we should be able to find optimal parameters in this manner. Note that the order of the error is the
same as the order of the neglected term. The time needed per iteration of the FE method increased
by a factor of 1.047, and for a larger system with ni = 65 this factor in to 1.203 (both averaged over
10 runs).

The calculation of the Jacobian with a model using RK4 for temporal integration is similar, and
makes use of the chain rule. We can express it as follows.

Nm+1 = Nm + ∆t

6

(
FE (Nm)+2FE (Nm + ∆t/2k1)+2FE (Nm + ∆t/2k2)+FE (Nm +∆tk3)

)
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dNm+1

dP
=

(dFE (Nm

dP
+2

dFE (Nm + ∆t/2k1)

dP
· 1

2

dFE (Nm)

dP

+2
dFE (Nm + ∆t/2k2)

dP
· 1

2

dFE (Nm + ∆t/2k1)

dP
· 1

2

dFE (Nm)

dP

+ dFE (Nm +∆tk3)

dP
· dFE (Nm + ∆t/2k2)

dP
· 1

2

dFE (Nm + ∆t/2k1)

dP
· 1

2

dFE (Nm)

dP

)
This involves a lot more steps than the just the FE method. One issue here could be the time

needed to compute this all, and another that the sparsity of the Jacobian disappears faster. Hence
we test if the Jacobian as calculated by the FE method while using the RK4 for temporal integration
is accurate enough. For the same small system as before we found a relative mean error of 5 ·10−2

in comparison to the real one. This might be good enough to find optimal parameters, which we
will see from tests later on. When using the RK4 Jacobian method the increase in time per iteration
is a factor of 1.068, while the FE Jacobian method only has a factor of 1.015. After enlarging the
system to a size of ni = 64 the factors change to 1.886 and 1.036 respectively. These factors were
again averaged over 10 runs.

6.1.3. Regularisation
To be able to uniquely solve this optimisation problem, we have to adjust the objective with a regu-
larisation term. The first and most common way of doing this is with Tikhonov regularisation, where
our objective of equation 3.10 changes to

min
P

||Nd at a(t1)−Nmodel (t1;P)||22 +||ΓPsub ||22
The objective is now quadratic in a subset Psub of the parameters P, so in a pool of optimal solu-

tions it will pick the one with the smallest L2−norm. There are at least n +2 parameters we want to
optimise, i.e. k,D0,α, so at least two parameters need to be included in P0. A subsequent problem
is then that the weight hyper-parameter Γ needs to be tuned; in [1] different values of the hyperpa-
rameter greatly influenced results. We can attempt to tackle this problem with cross-validation tests
on large (simulated) data-sets, or by manual tweaking.

This regularisation technique can be extended to general norms instead of the L2-norm used
above by setting the objective as follows

min
P

||Nd at a(t1)−Nmodel (t1;P)||22 +||ΓRPsub ||22
With a clever choice of R we can minimise the total variation of P0 := k, which favours looking

for solutions with k varying as little as possible. Similarly choosing R to represent the Laplacian
we will look at smooth solutions only, as sudden jumps or discontinuities are not favourable to this
objective. These choices of matrices are actually respectively equal to

RT V =

Unx ⊗ Iny ⊗ Inz

Inx ⊗Uny ⊗ Inz

Inx ⊗ Iny ⊗Unz


R∆ = Tnx ⊗ Iny ⊗ Inz + Inx ⊗Tny ⊗ Inz + Inx ⊗ Iny ⊗Tnz

The matrices Uni and Tni are defined as in Chapter 3. We could also define the regularisation
with matrix norms || · ||R>R , but this hides the ’action‘ of the regularisation operator more. Regular-
isation always introduces bias to our model, so we need to be careful to not jump to conclusions
on test data; Laplacian regularisation on a data-set with a smoothly generated k will naturally yield
good results. When using TV and Laplacian regularisation on k, it is wise to also apply Tikhonov
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regularisation on D0 and α to keep them from diverging accidentally.

In order to implement regularisation on the non-linear optimisation methods we describe the
regularisation term in the objective function with R(P). In the LM method we differentiate the
objective function of the next iterate with respect to the step s, so we also need to differentiate the
regularisation term. We find the following identity.

R(P+ s) = ||ΓR(Psub + ssub)||22 = (ΓRPsub)>ΓRP+2(ΓRPsub)>ΓRssub + (ΓRssub)>ΓRssub

=⇒ ∂R(P+ s)

∂s
= 2(ΓR)>ΓRPsub +2(ΓR)>ΓRssub =: 2R0 +2R1ssub

Thus we see that we can simply modify the LM equation 6.1 to the next one.(
J> J +λd In +R1

)
sk = J>f(P(k))−R0

For the TRF and DL method we have to modify the quadratic approximationψk (s) to include the
regularisation terms. Since the matrix Hk and the vector gk correspond to the left- and right-hand
side of the LM equation respectively, the change we need to make to them is similar. As we don’t
differentiate in this setting we need to multiply the terms with 2, and the result is as follows.

gk =−2J>f(P(k))−2R0, Hk = 2J> J +2R1

For the adjoint state method we insert the regularisation terms in the L-BFGS part. In algorithm
5, we add R1 to the initial Hessian estimate in line 7, which means that we need to solve a system
in line 8. This is done with CG(d) and should not take many iterations to solve. We also update
the definition of yk to include R0 in the gradients. Note that the regularisation term in the inverse
Hessian vanishes the more terms there are included in the L-BFGS procedure.

6.2. Parameter Analysis
We want to avoid having to try each combination of parameter estimation method, regularisation
method and hyperparameters, as this will take too much time. Hence we first pick the appropriate
regulariser which works best on a small problem for one of the parameter estimation methods. After
this large-scale tests are performed with all the parameter estimation methods, and their results are
evaluated.

In the TRF and DL method the parameters used wereµ= 0.25,η= 0.75,γ0 = 0.0625,γ1 = 0.5,γ2 =
1 just like the original authors in [38]. Additionally, in TRF the parameters all have a lower bound
of 0 for physical relevance, D0 and α have an upper bound of 1 and k of 0.02 to avoid divergence.
The proliferation rate has a low upper bound for physical relevance as well; a tumour in real life
will certainly not grow faster than 2% a day, and likely much slower even. In DL we construct the
matrices with an upper bound of 0.005 on k, but note that this is not an actual upper bound. We can
have values of k higher than this upper bound, so by putting it lower than the actual value we hope
to achieve physically relevant values. The simulated data set we use is the same as in Section 5.2.

6.2.1. Choice of Regulariser
The three regularisers and their hyperparameters will be compared on a small problem with ni = 33,
d t = 1, t1 = 64, t2 = 128 and P = 32. The ‘real’ parameters are the same as in the previous sections,
and the initial parameter combination is picked as follows: k is taken to be uniformly spread be-
tween 0 and 0.02 on all voxels, D0 is taken from an exponential distribution with λ = 0.006, and α

is taken from an exponential distribution with λ = 0.23. The dog-leg method is picked to try these
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regularisers out, as this method seemed to be rather quick in testing. The upper semi-bounds on
the parameters also enforce stability of RK4. The maximum allowed timestep for FE according to
Equation 5.1 is 1.95 when the parameters are at their highest, and RK4 is stable up to

p
2 times that

maximum. The parameter estimation method is stopped if the normalized score (i.e. square root of
the score divided by the norm of N (t1)) is less than ε= 10−5, if there isn’t improvement in 5 iterations
or if the process takes more than 30 minutes.

In the following table we show the results of this test. For each combination of regulariser and
hyperparameter we calculated the error in the Frobenius norm of the predicted number of tu-
mour cells at t2 and the proliferation rate k as ||Nd at a(t2)− Nmodel (t2)||F /||Nd at a(t2)||F , ||kd at a −
kmodel ||F /||kd at a ||F . We also calculated the mean relative difference of their values element-wise.
This was only done where the ‘real’ values are larger than 103 for N and 10−5 for k to avoid exploding
values in areas of no importance. Furthermore, we calculate the relative difference in D0 and α as
(D0,model −D0,d at a)/D0,d at a , (αmodel −αd at a)/αd at a .

Table 6.1: Regulariser test results for the dog-leg method.

N (t1) N (t2) k D0 α

Reg Par Score Err Iters Err Diff Pear Err Diff Pear Err Err

Tik 10 < ε < ε 9 1.2e-2 5.0e-2 1.0 4.3 3.1 0.27 0.30 -1.0e-2
102 < ε < ε 9 1.2e-2 5.2e-2 1.0 3.9 1.9 0.28 0.32 -9.9e-3
103 < ε < ε 10 1.3e-2 5.3e-2 1.0 3.4 1.2 2.1 0.31 -9.0e-3
104 < ε < ε 10 1.2e-2 5.0e-2 1.0 3.3 1.1 0.32 0.32 -9.6e-3
105 2.8e-5 < ε 35 1.2e-2 1.1e-2 1.0 0.55 0.22 0.95 4.4e-2 -1.0e-2
106 2.7e-4 3.4e-5 40 9.4e-3 2.4e-2 1.0 0.45 0.19 0.97 0.26 -1.3e-2

TV 10 < ε < ε 10 1.4e-2 4.3e-2 1.0 7.3 7.1 0.13 0.23 -7.7e-3
102 < ε < ε 9 1.5e-2 5.7e-2 1.0 5.4 11 0.25 0.37 -6.6e-3
103 < ε < ε 9 1.5e-2 7.4e-2 1.0 7.7 15 0.18 0.59 -6.0e-3
104 < ε < ε 10 1.4e-2 4.6e-2 1.0 4.0 10 0.37 0.28 -7.9e-3
105 1.5e-5 < ε 35 1.4e-2 7.7e-3 1.0 0.73 1.7 0.95 -1.3e-2 -7.3e-3
106 1.5e-4 < ε 35 1.3e-2 1.3e-2 1.0 0.78 1.8 0.95 4.3e-2 -9.2e-3

Lap 10 < ε < ε 11 1.5e-2 5.7e-2 1.0 12 14 -4.4e-3 0.36 -6.3e-3
102 < ε < ε 10 1.1e-2 7.4e-2 1.0 11 18 9.7e-4 0.62 -1.2e-2
103 < ε < ε 9 1.4e-2 4.4e-2 1.0 5.6 7.9 5.2e-2 0.24 -8.2e-3
104 < ε < ε 9 1.2e-2 3.8e-2 1.0 5.1 6.6 5.2e-2 0.22 -1.0e-2
105 1.4e-5 < ε 33 1.6e-2 7.3e-3 1.0 0.89 1.3 0.92 -1.0e-2 -5.7e-3
106 1.4e-4 < ε 30 1.2e-2 7.7e-3 1.0 0.91 1.3 0.91 7.5e-3 -9.6e-3

A first observation is that the size of the error of N (t2) does not vary that much between the
methods, while there are slight deviations in the relative element-wise difference. The explanation
for this is that the simulations with low relative difference have their error located mainly on the
small elements, which are not taken into account for this metric. The Pearson correlation coeffi-
cient is as high as can be for N (t2), which implies that the predicted outcome is equivalent to a
scaled off-set version of the real outcome. In related research the Concordance correlation coeffi-
cient was used instead, which takes into account that the means of the compared quantities can be
different. This was not done in this work, as for a qualitative prediction the exact values are not the
biggest concern. Although there are vastly different outcomes for the found parameter values, the
inversion method is always able to fit the model to t1, which in turn also results in a good estimation
at t2.

In all three regularisation methods, we see that a high valued hyperparameter results in more
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accurate estimations of k. For low values, the proliferation rate is factors too high. A good explana-
tion for this is that the proliferation is overshadowed by the much more impactful drug efficacy α,
so higher values do not generally result in more tumour cells. The proliferation is most important
at the boundary of the tumour, where the diffusion rate D0 is also very important. We see that the
more accurate (i.e. lower) k gets, the better D0 gets as well, as they do not need to counteract each
other anymore. The Laplacian regulariser is clearly the worst at finding good values for k, which
probably has to do with the fact that our choice of k does not have a second derivative close to zero.

When the hyperparameter was set to 105 or 106, the methods were not able to find a solution
with a low enough score in time. This is due to a combination of two factors. First, the regularisa-
tion might be too harsh, and exploring in directions which would be good for the error at N (t2) is
made impossible by the large regularisation term. Second, the score cut-off criterion also takes the
regularisation term into account. The second column under N (t2) shows that just the error is low
enough in all-but-one case, but that the enormous regularisation term forces the parameter tuning
to continue.

The all-round best results are found with Tik and TV with high hyperparameters, with Lap lack-
ing behind slightly. As the proliferation rate k in reality is likely piece-wise continuous among tissue
types, there is hope that TV gives better results on real data. Hence the dog-leg method will be exe-
cuted using TV regularisation with hyperparameter 105.

Due to the expected size of the variables (known from literature) it might be handy to have the
hyperparameters be different for the three parameters. Asα is expected to be around 10 times as big
as kmax, its regularisation parameter should be 10 times smaller. This was tested on our best found
regulariser. The results were marginally better, but it is negligible in practice. If non-satisfactory
results are found on real data it might be worth playing around with this some more.

We also tried this best-found regulariser on LM, TRF, and AS, and results turned out to be a bit
different. The same test was repeated for these three methods, the results of which can be found in
Appendix A.2. The conclusions are that we run LM with Tikhonov regularisation and hyperparam-
eter 106, TRF with Tikhonov regularisation and hyperparameter 105, and AS with TV regularisation
and hyperparameter 105. Regularisation was found to not have such a big effect on AS due to the
L-BFGS implementation, so its choice is mainly based on the assumptions.

6.2.2. Large-scale testing

With a properly tuned regulariser and hyperparameter combination we are now ready to compare
the parameter estimation methods. We return to the test scenario with ni = 65 with a maximum
simulation time of 4 hours, leaving the other settings unchanged from the last section. In the fol-
lowing figures we see the reduction in error of the amount of tumour cells at t1, as well as the score
according to the objective functions over the simulation time for all four methods.
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Figure 6.1: Normalised error reduction of the inversion methods over the simulation time.

Figure 6.2: Objective function score of the inversion methods over the simulation time.

The first observation we make is that the four methods start off almost equally strong. The two
trust region methods succeed in continuously lowering the score and the error, while the other two
methods seem to get stuck. After a while LM has a raising error while the score drops a bit; this has
to do with the balance between reducing the regularisation term and the actual error. The fact that
AS performs the worst is not too strange, as it is the only Quasi-Newton method amongst real New-
ton methods. Furthermore, the steps it takes are just estimates of finding the Gauss-Newton point,
while the others in addition to this also incorporate the steepest descent direction. We see this re-
flected in the fact that the score of the AS method even increases a single time. The TRF algorithm
has the slowest steps, as the CGT method generally requires ample iterations to find a satisfactory
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step. These steps seem to always decrease the error and score immensely though, so compared to
LM and AS it is worth taking this time. The DL approximates the same step, and although the score
does not decreases as much each iteration, a satisfactory solution is found way earlier. It is great
to see that this method does the majority of its work within the first two hours, which suggests that
with even larger problems we might attain the goal of optimising the parameters within a working
day.

Next we verify how accurate the parameter estimates are, and how good the predictive power is
at t2. A table is given below with the same metrics as in the last Section for the four methods. Addi-
tionally, a figure with the total amount of tumour cells over the time domain is given for qualitative
interpretation of the found parameter sets.

Table 6.2: Output of the large-scale inversion methods test.

N (t1) N (t2) k D0 α

Method Score Err Iters Err Diff Pear Err Diff Pear Err Err

LM 8.9e-3 7.9e-3 27 8.0e-2 4.0e-2 1.0 2.2 0.50 0.95 -4.3e-3 8.7e-2
TRF 2.4e-5 1.1e-5 11 0.19 9.5e-2 1.0 5.1 4.6 0.90 5.7e-2 0.20
DL 5.0e-5 < ε 26 3.3e-2 1.6e-2 1.0 1.2 2.5 0.94 -2.1e-2 1.6e-2
AS 2.8e-2 2.8e-2 26 3.3e-2 0.98 1.0 4.6 6.3 2.6e-2 56 -1.3e-2

Figure 6.3: Simulations of total tumour cell growth using best-found parameters of all four methods.

In almost all metrics we find that the dog-leg method performs best. The most important of
these is the performance at t2, of which DL is best as well. Only for AS the error is as good, but
this is most likely a coincidence. The fact that AS scores well in these metrics is not likely to be a
attribute of the method, but just luck. Again we see that the values the three parameters need not
be to close to the ‘real’ values, and vastly different combinations can model very similar behaviour.
This is again a consequence of the parameters being able to take over each others roles of diffusing,
growing and shrinking.
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One possible issue in the future is the almost guaranteed over-estimation of the proliferation
rate. We have verified that the model can find a satisfactory combination of parameters for more-
or-less random initial parameters. Hence we can now introduce some bias by setting the initial pa-
rameters to be lower than the real ones. This might steer the model into choosing relatively smaller
parameters values overall, especially when combined with the regularisation. In the next test we do
this, and set the initial parameter values to be roughly half of the real ones. The results are once
again shown in the next table and figure.

Table 6.3: Output of the second large-scale inversion methods test.

N (t1) N (t2) k D0 α

Method Score Err Iters Err Diff Pear Err Diff Pear Err Err

LM 1.1e-3 7.8e-4 28 6.0e-2 3.2e-2 1.0 1.2 0.34 -0.21 8.8e-3 -9.6e-2
TRF < ε < ε 7 5.0e-3 5.4e-3 1.0 1.5 2.5 0.60 -4.0e-3 -2.9e-2
DL 4.4e-5 < ε 23 7.3e-3 6.6e-3 1.0 0.33 0.98 0.97 -5.8e-3 -3.2e-2
AS 5.5e-3 5.4e-3 32 2.4e-2 8.7e-2 1.0 1.8 2.4 0.11 1.9 -5.1e-2

Figure 6.4: Second round of simulations of total tumour cell growth using best-found parameters of all four methods.

It is evident from this data that the change in initial parameters had its intended effect. The
prediction at t2 is now even better and makes a near-perfect estimate of the final amount of tumour
cells. Out of the four methods, the trust region methods are the best, with slightly better results for
DL. With this we conclude that the best way to go forward is to use Powell’s dog-leg method with
Total Variation Regularisation with hyperparameter 1 ·105. The next Chapter verifies if this method
does not only work on simulated data, but on real data as well.





7
Patient Results

In this final content Chapter the predictive capabilities of the numerically optimised model are
tested on the real data. This is structured by first giving all the relevant figures and metrics in Section
7.1. The implications and consequences of the findings are then thoroughly discussed in Section
7.2.

7.1. Predictions
7.1.1. Scaling Data
For the efficiency of the FFT’s in the linear elastic sub-problem, we know that it is important that
the size of each spatial dimension is not prime, and preferrably a power of two plus one. Hence we
downscale the data slightly, with the downscaling factor among each dimension around 2. Because
of this rather small factor we can simply linearly interpolate the data, and scale it. The scaling is
done in a way that the total amount of tumour cells over the domain remains the same; each voxel
value is multiplied with the same factor for this. This should still respect the original distribution
of cells, and give a good representation of what the tumour looks like at a different scale. If the
downscaling factor is lower than two, then information from each original voxel is used, and hence
information loss will be minimal. For finding the drug concentration in the tissue with the NBVM
method, we need to also resize the DCE-MRI curves. This can be done without scaling, as this data
needs to be scaled such that the maximum value in this array is one anyways.

The tests on the real data will hence be performed on a system with dimensions nx = 81,ny =
81,nz = 61; initial test were done on 97,97,65, but for some patients the memory requirements
became too big. The increase in total voxels makes the regularisation parameter weigh differently,
so it is important to check if that has a noticeable influence on the results. In addition to this, we
only use P = 12 processors and time-steps of approximately d t = 1. Specifically the time-steps were
d t = t1/(8 ·P ), such that each rank has to do eight RK4 steps. More processors would be beneficial,
but although there are ample the additional memory requirements were too much. In the next table
some simple data of the downscaled data is displayed.

Table 7.1: Details timings of the scans of all patients, as well the size of their tumours at those times.

t1 t2 #NZ(t0) #NZ(t1) #NZ(t2)

p1 90 169 979 65 30
p2 87 191 1843 104 99
p3 84 174 1168 662 165

55
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Here #NZ(ti ) means the number of non-zero elements in the vector of tumour cells at time ti .
More technical details of the scans can be found in Appendix A.1 It is evident that the three patient
scenarios are quite distinct, with differing initial sizes and responses. The tests in this Chapter were
performed on the cluster of the BIGR group of the Erasmus Medical Center [47]. The CPUs used run
on 2.9GHz with 512GB RAM.

7.1.2. Calibration Results
The first experiment perform is the calibration, as described in the previous chapters, on all three
patients with their best-found hyperparameters. This uses Lap2 preconditioning, Parareal time in-
tegration, TV(105) regularisation and the Dog-leg method. In the next table and figures the results
of this experiment are displayed.

Table 7.2: Outcome of fitting the model on real data of three patients.

N (t1) N (t2) k D0 α

Patient Score Err Iters Err Diff Pear Mean Min Max

p1 6.6e-2 3.9e-2 115 1.2 1.1 0.48 -2.4e-3 -9.0e-2 0.64 7.2e-2 0.50
p2 3.7e-2 2.6e-2 26 1.6 1.0 1.8e-2 -4.6e-3 -0.43 0.27 2.3e-2 0.51
p3 6.4e-2 4.5e-2 44 2.4 0.99 8.3e-2 -3.0e-3 -0.19 0.60 6.4e-2 0.20

Figure 7.1: Score and error over simulation time for all three patients

Figure 7.2: Total amount of tumour cells for all three patients between times t0, t1 and t2.
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The score and error at t1 don’t go under the threshold anymore, but that was to be expected.
With measurement, modelling and a minimal amount of numerical errors, an error in the single-
digit percentage range is more than acceptable. The difference in the amount of iterations per pa-
tient has to do with the amount of non-zero tumour cell values in the voxels at t0 and t1; for p2 this
is more than double than the other two patients, causing the Jacobian to be less sparse and hence
more computation is needed.

Figure 7.3: Visualisation of the prediction and calibration results on slices of all the patients.

The results at the validation point are not bad, but have a lot left to wish for. We see that the
calibration seems to converge to a solution which has an equilibrium about the values at t1, which
causes the predictions at later time-points to be similar to that. This is also reflected in the rather
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high values for k and α. In the Figure 7.3, the measured and calculated tumour values at t1 and t2

are given in the most characteristic slice of the tumour, as well as the found value for k and αC . The
suffix ‘-mod’ here indicates that it is a predicted / modelled value.

For patient p1 there doesn’t happen too much to the tumour shape and location after t1, and
hence the prediction seems alright. For p2 and p3, however, the tumour still shrinks quite a bit, and
moves slightly within the breast as well. This is clearly reflected in the Pearson correlation coeffi-
cient at t2. The movement could be a result of movement of the patient in between scans, but most
of this should have been fixed in the registration phase of the post-processing of the MRI images. We
also see that the proliferation is large where the tumour is still prevalent at t1, and zero or slightly
negative elsewhere. Physically this makes sense, as the tumour should be most active in its core.
The rate at which this proliferation happens, according to our model, is too high though, causing
the predicted tumour at t2 to be too big in all three patients.

7.1.3. Changing Hyperparameters

In the next experiment we change the regularisation hyperparameter to accomodate for the higher
values of the parameters than previously expected. Both a lower and a higher value, 104 and 106,
are tried to see if better results are found. With a lower value, we expect the parameters to be able
to take higher values, while not getting stuck due to interaction of the error and regularisation term.
With higher values we expect physically more realistic values, but convergence might be harder to
achieve. The stability criterion will be tighter when the regularisation is less strict, but this should
not be an issue for our chosen value of d t . The results of this second experiment are shown below.

Table 7.3: Results on real data for a lower hyperparameter of 104.

N (t1) N (t2) k D0 α

Patient Score Err Iters Err Diff Pear Mean Min Max

p1 1.4e-2 1.2e-2 109 1.3 1.2 0.48 -4.4e-3 -0.11 0.57 4.5e-3 0.17
p2 0.14 6.4e-2 72 1.5 1.0 1.1e-3 -5.7e-3 -9.8e-2 0.16 8.3e-3 0.56
p3 7.5e-3 5.2e-3 26 2.4 1.0 6.0e-2 -5.9e-3 -0.47 0.68 9.4e-3 0.19

Figure 7.4: Total amount of tumour cells for all three patients between times t0, t1 and t2 for a low hyperparameter (104).



7.1. Predictions 59

Table 7.4: Results on real data for a higher hyperparameter of 106.

N (t1) N (t2) k D0 α

Patient Score Err Iters Err Diff Pear Mean Min Max

p1 0.20 9.4e-2 141 1.1 1.2 0.50 -4.3e-3 -0.12 4.6e-2 2.9e-4 2.1e-2
p2 0.14 6.7e-2 78 2.0 1.0 1.4e-3 -3.6e-3 -0.10 0.15 1.1e-2 0.17
p3 7.2e-2 3.0e-2 139 2.1 1.0 3.7e-3 -2.7e-3 -0.12 8.3e-2 1.4e-3 6.1e-4

Figure 7.5: Total amount of tumour cells for all three patients between times t0, t1 and t2 for a high hyperparameter (106).

Overall for lower hyperparameters the score and error at t1 decrease slightly. This was expected
for the score as the regularisation doesn’t contribute that much anymore. Contrary to expectations,
lower values for the parameters were found all over the board, especially for the proliferation. This
suggests that the regular experiment got stuck in a local minimum due to the higher regularisation,
instead of getting stuck due to the true parameters being larger than allowed. The found parameter-
set also generates an oscillating solution about an equilibrium again, but with lower amplitude than
the regular case.

With a more strict regularisation the score-value of the calibration goes up, and the error at t1

as well. The values found for the parameters, especially k, are in a physically more realistic range
however. The oscillations also disappear, giving more realistic results. For patient p2 the tumour is
expected to grow quite a bit after t1, which is due to the sharply reduced value of α.

These results suggest that different hyperparameters for the three parameters might be benefi-
cial for the outcome. Hence, in the next experiment we test what the outcome is of using a hyperpa-
rameter of 106 for k, 105 for D0 and 104 forα. The results are shown in the following table and image.

Table 7.5: Results on real data for mixed hyperparameters.

N (t1) N (t2) k D0 α

Patient Score Err Iters Err Diff Pear Mean Min Max
p1 0.20 9.4e-2 141 1.1 1.2 0.50 -4.3e-3 -0.11 4.6e-2 1.3e-4 2.0e-2
p2 0.14 6.4e-2 72 2.0 1.0 1.4e-4 -2.9e-3 -9.8e-2 0.16 9.8e-3 0.48
p3 7.2e-2 2.9e-2 148 2.1 1.0 2.4e-5 -2.7e-3 -0.12 8.3e-2 1.4e-3 6.5e-4
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Figure 7.6: Total amount of tumour cells for all three patients between times t0, t1 and t2 for mixed hyperparameters.

These results are indeed a combination of what was seen before. The values of k are in a physi-
cally realistic range, and no oscillations are observed. Predictions are still not that accurate, but with
only three patients this does not necessarily indicate that the model is not suited for this problem.

7.1.4. Three-image Calibration
Lastly we check if the model can accurately fit the patient data using all three images, which gives an
indication whether or not the data can be properly modelled with the dynamics of our coupled PDE.
This changes the objective function and trust region slightly, now incorporating a second Jacobian
term for the sensitivity of the parameters with respect to N (t2). Due to the additional size of this
second Jacobian, the problem has been down-scaled further to nx = ny = nz = 61. This is not due
to speed bottlenecks, but due to memory requirements when calculutating Jacobians with parareal.
This experiment gives the following output.

Table 7.6: Results on real data when calibration is done on all three scans.

N (t1) N (t2) k D0 α

Patient Score Err Iters Pear Err Diff Pear Mean Min Max
p1 0.42 0.48 72 0.88 0.51 1.1 0.86 -3.4e-3 -0.24 0.14 2.2e-2 4.8e-2
p2 1.5 1.9 28 0.12 1.1 0.84 0.19 4.4e-4 -7.9e-2 7.7e-2 8.5e-2 0.13
p3 0.56 0.70 48 0.78 0.75 0.52 0.66 2.1e-3 -0.29 0.40 6.2e-2 5.7e-2

Figure 7.7: Total amount of tumour cells for all three patients between times t0, t1 and t2 when calibrated on all three
scans.

Note that the found parameters can differ slightly from the previous subsection due to differ-
ently sized voxels. To run the model to t2 in each iterations is more than twice the work than running
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it just to t1, as the Jacobian increases in size each time-step. Hence there weren’t as many iterations
done in the same amount of time, but local minima were found nonetheless.

Figure 7.8: Visualisation of the prediction and calibration results on slices of all the patients when calibrated on all three
scans.

For all three patients, the errors at both t1 and t2 are still in the double digit percentage range.
The correlation between the modelled and actual tumour is significantly higher, however, suggest-
ing that there is a problem in offset and / or scaling. It is also clear from Figure 7.8 that the solution
no longer stabilizes about the scan at t1. The poor results can be the cause of two factors: either the
model does not work too well on the data, or the straight-forward dual objective optimisation im-
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plementation is not satisfactory. Both of these causes can be investigated if future research is done
on the verification of the suitability of the model to the data.

7.2. Discussion
For this model to be used clinically, some points need to be investigated more. We delve a bit deeper
into the data, the model and a practical use-case.

7.2.1. Data Assumptions
First of all, the results are assumed not to be affected by the downscaling. Due to the step of manual
registration of the tumour boundary in the pre-processing, the detail tumour boundary is not dras-
tically worse when other resolutions are used. Loss of fine details of the fibroglandular and adipose
tissue types also should not cause worse predictions, as the region of interest is marked as tumour
tissue anyways. In reality, the dead tumour cells leave behind ‘empty’ cells, whose elastic proper-
ties are different. Incorporating this in the form of a temporally and N -dependent tissue type (and
hence shear modulus) could improve quality of the results.

While the downscaling was not necessary for the time-requirements, it was vital for the memory-
requirements of the program. The size of the Jacobian is rather large, even when stored in a sparse
manner. Combining this with the Parareal method forces one to store more than one Jacobian
per rank, which leads to RAM requirements not feasible for standard computers. Communica-
tion with MPI of these Jacobians was implemented in both a centralised and decentralised man-
ner. The first has all Jacobians gathered on the root node, after which the update is calculated
and the new Jacobians are scattered. The second manner sends Jacobians from the ranks to the
root node and updates them one-by-one. The first way requires a root node with exorbitant RAM
in the scale of 100GB, while the second way requires each node to have 10GB to themselves. The
speedups achieved with Parareal are likely also achievable with parallel matrix-vector multiplica-
tions, so this might be more feasible in practice. It is also suggested to use lower-level languages
in future research, to optimally use hardware and to prevent encountering python-related bugs in
high-performance computing.

One could also use parallelisation for searching the state space for multiple solutions at once.
This could especially contribute when the model has been running for a while, as the model initially
decreases quickly in error but seems to get ‘stuck’ after some time. More radical changes in param-
eters could be attempted more efficiently with this type of parallelisation, making it easier to escape
local minima.

7.2.2. Model Assumptions
A first discrepancy between the model applied to the simulated and real data is the scale of the
found parameters. The assumptions of the simulated tumour model were based on clinical knowl-
edge, and how a tumour is expected to grow in real life. If the proliferation rate is 10%, a small tu-
mour would double in size in less than eight days. Still, we calibrate to find values higher than this,
and the only reason the tumour doesn’t explode in size is the logistical growth shrinking it again.
The counteraction of the proliferation and chemo terms makes calibration of this model extremely
difficult. Regularisation effectively helps with this, but forcing the parameters to take on values that
‘feel realistic’ to the user inhibits the search for the ‘real’ solutions.

Second, we assumed that the tumour would have a Gaussian shape, in the sense that the bound-
ary of the tumour is a smooth transition. The data received was more binary, as the voxels where
the tumour was located always had the amount of tumour cells equal to the capacity θ. Due to the
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downscaling there was some smoothness introduced, however. With binary data, the Von Mises
stress will only be non-zero at the exact location of the tumour boundary. The diffusion will not
follow the expected behaviour of a linear-elastic system in that case. The binary data is likely also
the cause of the large values of the calibrated parameters. To obtain the MRI image at t1, which is
also binary, the proliferation and chemo term need to be large, in order to have either 0 or θ cells in
all voxels. It is not the sole reason for the mediocre results, but likely the main cause.

With knowledge that the data is practically binary in real life, one should take advantage of this
data structure. One way to do this is to use level-set methods [48], which model the boundary
implicitly. These methods are used often in computational fluid dynamics, but to the best of our
knowledge they have not been investigated in computational oncology.

7.2.3. Practical Use
It has been shown that it is computationally feasible to calibrate the model. Even with the relatively
old CPU cluster of the Erasmus hospital, the model can create a prediction in acceptable time. With
better use of the parallelisation and more consistent CPU behaviour, one could definitely make pre-
dictions at an even higher resolution within a working day. To make the model more useful for
the analysis of the doctors, there should be a recommendation for volumes of future admissions of
chemotherapy. This should not be more difficult than one-parameter optimisation in the case of a
constant dosis for each remaining round of chemotherapy. If we want to consider different doses
per round or a variable amount of rounds, some combinatorial optimisation is required. With some
knowledge of the admitted substances, a lot of options could be filtered away beforehand however.

The results of the calibration on all three images suggest that before clinical implementation,
there should be more research on the suitability of the model. The error found when fitting on all
three images is simply too high at the moment to suggest that our model is accurate. One way of test-
ing suitability is researching if there exist solutions to the inverse problem on (simulated) datasets
of multiple scans, with more sophisticated dual-objective optimisation methods. Exploring other
methods, as mentioned before, also creates insights in this manner.

Apart from the amount of images used in calibration, the timing also plays a role. While this has
not been considered in this work, in literature it has been discussed already, such as in [49]. With a
more sophisticated timing of scans, the calibration can guarantee more accurate predictions.
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Conclusion and Future Research

To improve the speed and accuracy of the DI-MCRD model, four possible improvement areas were
identified: the linear-elastic sub-problem of the breast tissue, the temporal evolution of the mod-
eled tumour, the estimation of personalised parameters for patients, and the consideration of devi-
ations of ideal scenarios with real data. Each of these issues was investigated thoroughly, in order to
answer the formal research question of this thesis:

How can the 3D DI-MCRD model be implemented more efficiently, in order to tune the model in a
few hours and accurately predict tumour response for HER2+ breast cancer patients?

The sub-problem of linear elasticity saw vast improvements in speed when the solution method
was changed to the Preconditioned Conjugate Gradient method. Using the Laplacian operator as
the preconditioner gave the best results, and the resulting system was solved in a novel manner
using FFT’s in two dimensions and a tridiagonal solver in the third. It was found that high-order
methods are needed to guarantee that the simulations, which span over a 100 days, give an accurate
result. The fourth order Runge-Kutta 4 method was chosen to obtain this, which was implemented
with the Parareal method. The coarse solver for this was the unconditionally stable second order
Crank-Nicolson method, with which a speed-up of >7 can be found, making it faster than regular
first order methods. Fourth order convergence of the error was not found due to the lack of conti-
nuity of the chemotherapy term.

The best result for finding patient parameters on simulated data was obtained with Powell’s
Dog-leg method in combination with Total Variation Regularisation. A novel way of estimating the
Jacobian analytically was used, which was the sole reason that regular Newton-methods can be
used instead of Quasi-Newton methods. Near-optimal solutions were found on a simulated data-
set, and it was found that the found parameters are very sensitive with respect to the regularisation
hyperparameter. With the combination of all these improvements, the goal of tuning the model and
generating an accurate prediction within a working day has been attained successfully.

The model was also tested on a small real data set of three patients. While it is possible to cal-
ibrate the model such that the known MRI scan could be recreated with single-digit percentage
error, the prediction of the validation MRI scan is not sufficiently accurate for clinical usage. One of
the reasons for this is the counteraction of the proliferation and chemo-therapy force terms in the
model, which makes estimation of their respective patient-specific parameters difficult. Second,
the parameters which were found seem to be a lot higher than one would expect from a medical
point of view; this makes the connection with the ‘logical’ simulated data weaker. Furthermore, the
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real data represented the data in a binary manner, while smooth transitions of the boundary of the
tumour were expected. This makes growth and shrinkage of the tumour with a diffusive term less
suitable.

In future work, one should explore the possibilities of different models which might better suit
the data. Level-set methods are very effective for binary data, implicitly modeling the boundary of
the tumour instead of modelling the cells individually. The tissue types should also extend to con-
tain a fourth category of dead tumour cells, to better reflect the elastic properties of the breast over
time. The suitability of the current model can be investigated by verifying if solutions exist when
fitting the parameters to all the scans of a patient; this was briefly explored in this work, but no sat-
isfactory results were found just yet.

On the implementation side, there are likely better ways of utilising parallelisation of the code.
While the Parareal method works great, its memory requirements when also calculating the Jaco-
bian are nearly impractical. It should be compared to straightforward parallel matrix-vector prod-
ucts before continuing with other research. If one wants to support the conclusions found with the
real data better, more patients should be added to the data pool. If these scans are yet to be ac-
quired, one should first look into existing research of the timing of scans to make predictions more
accurate.
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A
Appendix

A.1. Details of MRI Scans
The number of voxels in the x− and y− dimension are 180 for patient p1 and p3, and 210 for patient
p2. In the next table, the size of the voxels and the number of slices in the z−dimension are given
for each patient.

Table A.1: Size of the voxels and the number of slices in the z−dimension for the three patients.

DW DCE
t0 t1 t2 t0 t1 t2

Voxel length (mm) p1 6.5 6.5 6.5 1.6 1.6 2.2
p2 4.8 6.5 6.5 0.9 2.2 2.2
p3 6.5 6.5 6.5 1.6 1.6 2.2

Number of slices p1 32 32 32 120 120 86
p2 34 32 32 160 86 86
p3 32 32 32 120 120 86

All scans except for p2 at t0 were made with a field strength of 1.5T . They used 2 pre- and 6 post-
contrast scans for DCE with 15mL ProHance as the contrast-agent. More acquisition parameters
are shown in the next tables.

Table A.2: Standard MRI acquistion parameters.

DW-MRI DCE-MRI
Scan sequence Spin Echo Vibrant
Repetition time (ms) 5468 4.724
Echo time (ms) 68.6 2.208
Flip angle (degrees) 90 10
Voxel dimension (mm) 1.4×1.4 0.66×0.66
Acquisition matrix 256×256 512×512
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Table A.3: MRI acquistion parameters of p2 at t0.

DW-MRI DCE-MRI
Scan sequence unknown unknown
Repetition time (ms) 9337 4.33
Echo time (ms) 108 1.29
Flip angle (degrees) 90 unknown
Voxel dimension (mm) 1.89×1.89 0.80×0.80
Acquisition matrix 190×116 448×448

All patients had the same treatment schedule, the one for p1 is shown in the next figure as an
example.

Figure A.1: Treatment schedule of patient p1.
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A.2. Full Regulariser Test Results
In the next three tables we see the results of the regulariser test for Levenberg-Marquardt, Trust
Region Reflective and Adjoint State, respectively.

Table A.4: Regulariser test results for the Levenberg-Marquardt method.

N (t1) N (t2) k D0 α

Reg Par Score Err Iters Err Diff Pear Err Diff Pear Err Err

Tik 103 < ε < ε 7 0.17 8.1e-2 1.0 4.1 1.0 0.94 -6.2e-2 0.18
104 < ε < ε 7 0.17 8.9e-2 1.0 4.0 0.79 0.93 3.9e-2 0.18
105 8.5e-5 < ε 37 0.17 8.9e-2 1.0 4.0 0.78 0.93 4.0e-2 0.18
106 8.3e-4 4.2e-5 35 0.16 8.7e-2 1.0 3.9 0.76 0.93 2.9e-2 0.17

TV 103 < ε < ε 7 0.17 9.3e-2 1.0 5.3 10 0.83 -0.11 0.18
104 < ε < ε 7 0.17 8.5e-2 1.0 4.8 7.9 0.88 -8.1e-2 0.18
105 2.4e-5 < ε 39 0.17 8.4e-2 1.0 4.8 7.9 0.88 -8.2e-2 0.18
106 2.4e-4 < ε 34 0.17 8.4e-2 1.0 4.8 7.9 0.88 -8.3e-2 0.18

Lap 103 < ε < ε 7 0.17 9.6e-2 1.0 5.9 13 0.72 -0.12 0.18
104 < ε < ε 7 0.17 8.5e-2 1.0 4.6 7.2 0.88 -7.9e-2 0.18
105 1.7e-5 < ε 28 0.17 8.4e-2 1.0 4.6 6.7 0.89 -9.1e-2 0.18
106 1.7e-4 < ε 26 0.17 8.3e-2 1.0 4.6 6.7 0.88 -8.2e-2 0.18

Note the table above has no results for small hyperparameters, as these values led to non-
physical results, which in turn also caused instability in the explicit numerical methods.

Table A.5: Regulariser test results for the Trust Region Reflective method.

N (t1) N (t2) k D0 α

Reg Par Score Err Iters Err Diff Pear Err Diff Pear Err Err

Tik 10 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
102 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
103 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.0 6.5 0.48 1.9e-2 8.1e-2
104 < ε < ε 7 8.8e-2 4.2e-2 1.0 2.7 2.4 0.91 1.9e-2 8.1e-2
105 5.8e-5 < ε 38 8.8e-2 4.4e-2 1.0 2.4 1.7 0.93 1.1e-2 8.1e-2
106 5.9e-4 1.7e-5 34 8.4e-2 4.0e-2 1.0 2.6 2.4 0.91 2.2e-2 7.6e-2

TV 10 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
102 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
103 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.4 8.0 0.61 1.9e-2 8.1e-2
104 < ε < ε 7 8.8e-2 4.2e-2 1.0 3.8 5.3 0.83 1.8e-2 8.1e-2
105 3.5e-5 < ε 36 8.8e-2 4.4e-2 1.0 4.9 7.4 0.70 -2.4e-3 8.1e-2
106 2.0e-4 < ε 38 8.8e-2 4.4e-2 1.0 3.2 5.6 0.90 -4.9e-2 8.0e-2

Lap 10 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
102 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.1 6.5 0.48 1.9e-2 8.1e-2
103 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.6 8.1 0.52 1.9e-2 8.1e-2
104 < ε < ε 7 8.8e-2 4.2e-2 1.0 5.3 6.3 0.48 1.9e-2 8.1e-2
105 1.6e-5 < ε 29 8.8e-2 4.3e-2 1.0 3.4 5.0 0.82 4.6e-2 8.1e-2
106 1.5e-4 < ε 21 8.7e-2 4.2e-2 1.0 2.6 3.9 0.91 -4.5e-2 8.0e-2

Once again slightly better results were found for Tikhonov and TV regularisation with a hyper-
parameter inbetween values, this time being 5 ·103.
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Table A.6: Regulariser test results for the Adjoint State method.

N (t1) N (t2) k D0 α

Reg Par Score Err Iters Err Diff Pear Err Diff Pear Err Err

Tik 10 2.4e-3 2.4e-3 29 2.1e-2 0.17 1.0 4.7 6.4 3.0e-2 1.2 -2.8e-4
102 1.7e-3 1.7e-3 34 2.1e-2 5.9e-2 1.0 4.7 6.4 3.1e-2 -0.58 7.3e-4
103 1.9e-3 1.9e-3 32 2.1e-2 3.1e-2 1.0 4.7 6.4 3.1e-2 9.9e-3 5.1e-4
104 2.4e-3 2.4e-3 29 2.1e-2 0.17 1.0 4.7 6.4 3.0e-2 1.2 -2.8e-4
105 2.4e-3 2.4e-3 29 2.1e-2 0.17 1.0 4.7 6.4 3.0e-2 1.2 -3.0e-4
106 3.0e-3 2.9e-3 30 2.0e-2 0.38 1.0 4.7 6.4 3.0e-2 3.1 5.2e-5

TV 10 4.0e-3 4.0e-3 23 2.0e-2 0.60 1.0 4.7 6.4 2.8e-2 5.1 -5.9e-4
102 2.2e-3 2.2e-3 30 2.1e-2 0.11 1.0 4.7 6.4 3.1e-2 0.72 -1.5e-4
103 2.4e-3 2.4e-3 29 2.1e-2 0.17 1.0 4.7 6.4 3.0e-2 1.2 -2.8e-4
104 2.3e-3 2.3e-3 31 2.1e-2 4.1e-2 1.0 4.7 6.4 3.1e-2 -0.42 1.3e-3
105 2.6e-3 2.6e-3 27 2.0e-2 0.23 1.0 4.7 6.4 3.0e-2 1.8 -1.0e-4
106 2.9e-3 2.7e-3 30 2.1e-2 0.23 1.0 4.7 6.4 3.0e-2 1.7 -4.9e-4

Lap 10 2.5e-3 2.5e-3 28 2.1e-2 0.22 1.0 4.7 6.4 3.0e-2 1.7 -1.7e-4
102 2.3e-3 2.3e-3 31 2.1e-2 4.1e-2 1.0 4.7 6.4 3.1e-2 -0.41 1.3e-3
103 2.5e-3 2.5e-3 28 2.1e-2 0.22 1.0 4.7 6.4 3.0e-2 1.7 -1.7e-4
104 2.2e-3 2.2e-3 30 2.1e-2 0.11 1.0 4.7 6.4 3.1e-2 0.72 -1.5e-4
105 2.6e-3 2.6e-3 27 2.1e-2 0.23 1.0 4.7 6.4 3.0e-2 1.7 -1.0e-4
106 3.7e-3 3.3e-3 28 2.0e-2 0.46 1.0 4.7 6.4 3.0e-2 3.8 -8.9e-4

Convergence was not found in the same time-span, probably due to the fact that this is a Quasi-
Newton method as opposed to regular Newton methods.
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