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1 Introduction

The development of optical metamaterials in recent years has enabled the design
of novel optical devices with exciting properties and applications ranging across
many fields, including in scientific instrumentation for space missions. This in
turn has led to demand for computational methods which can produce efficient
device designs.

Traditional optical devices admit a closed-form solution for this inverse de-
sign problem. However, in the presence of strong multiple scattering, which
is often the case when considering optical metamaterials, the inverse problem
becomes ill-posed. As a result, many optimization and machine learning tech-
niques have been applied towards discovering good solutions.

In this MSc thesis project, several of the most promising of these techniques
are applied to a specific problem, the discovery of silicon metamaterial lens de-
signs for the CoPILOT high-altitude balloon project. Ultimately, a software tool
capable of producing effective and admissible designs is produced and demon-
strated.

First, an overview of the CoPILOT design problem is presented. Next, rel-
evant background material topics, including properties of metamaterials and
computational methods for simulating them, are covered in some detail. Af-
ter this, methods used to solve optical design problems in past literature are
described and contrasted. Then, a comprehensive explanation of the method
developed and used for this project, including important design considerations,
is given. The best solutions found using this lens optimization method are shown
and compared. Finally, fruitful areas of future work on this topic are listed.

2 Overview of the Design Problem

This section introduces the design problem at hand: the search for metamaterial
lens shapes for the CoPILOT high-altitude balloon mission. First, basic infor-
mation about the mission itself and its goals is given. Next, the manufacturing
constraints and design cases, which were guiding factors in the development of
solution methods, are described. Finally, the research questions to be addressed
in these experiments are introduced.

2.1 The CoPILIOT Project

CoPILOT is a planned mission by the French space agency CNES with the goal
of improving existing maps of low density cold gas in the Milky Way and local
group galaxies, otherwise known as the interstellar medium (ISM). Far from
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being inert, the ISM forms a dynamic system interlinked with the processes of
star formation, evolution, and death. Observing the distribution and heating
of the ISM is therefore instrumental in understanding these processes as well as
the long-term structure of galaxies.

To accomplish this mapping, CoPILOT will observe the fine structure line of
ionized carbon (C+) which occurs at 157.679µm. This spectral line corresponds
to what is known as a forbidden process, which can only occur frequently enough
to be observed under conditions present in low-density, cold gas clouds, therefore
uniquely characterizing the ISM. The intensity of emissions by this process also
depends on the density and temperature of the gas, making it possible to learn
something about the local conditions of the ISM based off of these observations.
These characteristics, combined with the abundance of carbon in the universe,
make it an ideal tracker for ISM conditions in star-forming regions.

Because the Earth’s atmosphere is significantly opaque in the far-infrared,
observations of the C+ fine structure line are not possible from ground-based
observatories. As a result, airborne or space-based instruments are required.
Several such experiments have already produced C+ emission observations in
the past, including the Far InfraRed Absolute Spectrophotometer (FIRAS)
aboard the COsmic Background Explorer (COBE) satellite[1], the HIFI and
PACS instruments on the Herschel space observatory[2], FIFI-LS and GREAT
on the SOFIA airborne observatory[3], and the Balloon-borne Infrared Carbon
Explorer (BICE)[4]. While these missions, COBE in particular, have provided
state-of-the-art C+ emission mappings, imperfections in instrument capabilities
have led to properties of the data which could be improved in future mappings,
including low angular resolution, low sensitivity to non-bright regions, and a
lack of wide-field mapping.

CoPILOT aims to produce a C+ map of the sky which improves on previous
maps in these areas. Specifically, the combination of a wide field of view, high-
speed mapping capabilities and high sensitivity as compared to FIRAS will
lead to the production of a high quality map suitable for use towards several
science objectives. These include validation of ISM models via observation of
distributions of ISM attributes including temperature, density, metallicity, and
radiation field, estimation of galactic and inter-galactic star formation rate, and
identification of regions of interest for future very high resolution observations.

2.2 Lens Design

CoPILOT is a follow-up to the 2017 PILOT balloon-borne experiment, and
will reuse and modify some of its pre-existing instrumentation. One potential
modification is the replacement of traditional refractive optics with lenses made
from a non-resonant terahertz metamaterial. An explanation of metamaterials
as well as methods for modelling their optical behavior can be found in section
3, background material.

Such lenses have several advantageous properties, most notably being both
lighter and smaller in the focal direction. In high-altitude and space-based
instruments, low-weight and physically compact components are highly sought
after because smaller and lighter systems reduce cost and enable more additional
features to be carried in the payload.

This research aims to evaluate the possibility of using metamaterial lenses
on CoPILOT by seeking metamaterial lens shapes which can match or out-
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perform the effectiveness of the existing optics while adhering to mission and
manufacturing design constraints. Furthermore, it seeks to produce a software
tool which can produce on-demand designs for similar applications.

2.2.1 Physical Description

The existing conventional refractive lens, proposed to be replaced, consists of a
array of silicon lenslets, as seen in Figure 1.

Figure 1: Existing lens design from PILOT experiment.

The proposed metamaterial lens, or metalens, would be composed of an
array of flat metamaterial lenslets. Each lenslet is divided into a grid of square
regions called ’pixels’, each of which has a uniform, discrete height. The surface
the lens is only etched with detail to a certain depth, below which is a uniform
substrate layer. This arrangement can be seen in Figure 2.

The dimensions of each pixel and the possible pixel heights are determined
by manufacturing constraints. The total thickness of each lens, the dimensions
of the lenslet array, and the focal length are determined instead by CoPILOT
design constraints.

2.2.2 Manufacturing Process and Constraints

The entirety of the device, both the surface etching as well as the underlying
substrate layer, will consist of high-resistivity, float-zone silicon, which is a type
of highly pure silicon obtained via a process called vertical zone melting. This
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Figure 2: Basic proposed design of a metamaterial lens for CoPILOT. This
design shows 20× 20 pixels per lenslet, which in reality can be increased up to
250 × 250. Lenslet thickness d and dimensions of lenslet array depend on the
use case, as discussed below.

silicon is one of the most transparent dielectric materials in the THz domain,
making it well suited for construction of non-resonant THz metamaterials[5]. It
has a relative permittivity of ϵ = 12.04, and displays several favorable optical
properties including very little dispersion over the 0.5-4.5 THz band. Techniques
for layered etching of silicon, as is required to manufacture the CoPILOT device,
are also well established[6].

Effective lens designs found during this research can be fabricated as actual
devices by the Kavli Nanolab Delft[7], a nanofabrication research facility at TU
Delft which uses the Van Leeuwenhoek Laboratory (VLL) cleanroom facilities.
This will enable experimental verification of discovered designs, as well as the
eventual production of flight lenses.

The following constraints are imposed by the manufacturing process:

• The minimum size of etched features is 20µm, with a tolerance of ±2µm.

• The size of each lenslet is set at 5mm×5mm. This, combined with the first
constraint, puts a limit on the number of pixels per lenslet at 250× 250.

• The surface etching can have a maximum of 5 layers, each of thickness
50µm. This leads to 6 different possibilities for the discrete height of each
pixel.

• ”Tunnels” are not allowed in the surface. This means that for any pixel,
there may be no layer which is filled with material above a layer which is
not.
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2.2.3 Design Constraints and Cases

CoPILOT calls for two separate lens designs, which we call the two design cases.
The near field case calls for wave focusing in the device’s near field, meaning
a focal length of less than one wavelength. The far field case calls for the
opposite, namely a focal distance longer than one wavelength.

Figure 3: Near field design case. The focal point of each lenslet is the center of
its transmission side surface, and all lenslets are identical.

In the near field design, depicted in Figure 3, the entire optical device consists
of an array of 10 × 10 lenslets. Each lenslet should focus at the transmission
side of each lenslet, or equivalently, each should have a focal length of 0. In
this design, the total thickness of the device, including both the surface etching
and substrate layer, should be 1.2mm. However, this thickness, as discussed
in section 7, is one of several design parameters which may be optimized. The
design should be optimized for an incident plane wave with wavelength λ =
120µm or 2.5THz.

The far field design, shown in Figure 4, demands instead a single lenslet
which focuses on a point in the far field.

Figure 4: Far field design case. All lenslets focus on a single faraway point,
meaning that now they must be not identical.

Here, the entire lens consists only of one lenslet, with a focal length of 3cm.
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The total thickness of the device should be 500µm, but this thickness, again,
may be optionally optimized. This design should be optimized for an incident
plane wave with wavelength λ = 158µm or 1.9THz.

2.3 Research Questions

The primary research questions at hand in this project are:

What technique is the most effective and computationally efficient
for determining good CoPILOT lens designs? What does a good

software implementation of such a method look like?

The high-level goal of the project is to construct effective lens designs and
ultimately demonstrate functioning metalenses via fabrication. Of course, this
is impossible without an optimization method which is both able to find such
good designs and computationally efficient enough to handle many geometric
parameters. And a method itself is not particularly useful without an effective
software implementation.

In section 3, several methods used for similar metamaterial optics optimiza-
tions applications in the literature are discussed and examined for applicability
to the CoPILOT problem. Answering this research question is a matter of
implementing these methods, adapting them to the CoPILOT problem, and
comparing them in terms of produced solution quality and computational effi-
ciency.

In addition, for any working optimization method, there will be a number
of model hyperparameters which can affect the performance of the method. For
typical machine learning methods, these include values such as the learning rate,
initial guesses, and maximum number of training iterations. The choice of these
parameters has measurable effects on solution quality, so finding good values is
another necessary step towards an effective optimization implementation.

Other research questions suitable for future work on this topic are detailed
in section 7.

3 Background Material

In this section, some fields of background material necessary to construct solu-
tions to the CoPILOT lens design problem are introduced and discussed. Be-
cause the lenses are to be made of an all-dielectric metamaterial, the first topic
addressed concerns what exactly a metamaterial is. Next comes the formula-
tion and discussion of rigorous coupled-wave analysis, or RCWA, a numerical
solver method which is used to simulate wave scattering as part of the design
process. Finally there is an introduction to algorithmic differentiation, or AD,
a mathematical programming technique which is essential to the physics-based
machine learning and optimization methods used in the lens design methods.

3.1 Terahertz Metamaterials

There is no universally accepted definition of the term metamaterial, but it
refers in general to engineered composite materials which may exhibit physical
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properties, most notably electromagnetic response, which are not observed in
nature or in their constituent materials. Usually, these properties arise due
primarily to some sub-wavelength-scale lattice structure of the material rather
than directly from its chemical properties.

Metamaterials may possibly exhibit unusual properties such as having a
negative index of refraction for particular wavelengths[8]. They might also be
”left-handed” - that is, inside such a material, electromagnetic waves obey a
”left-hand rule” and can convey energy in the direction opposite to their phase
velocity[9]. This has led to great interest in recent years in their use for develop-
ing novel optical devices, such as ultra-thin flat lenses and collimators[10][11][12]
and hybrid systems for correcting chromatic and spherical aberrations in tra-
ditional refractive lenses[13]. Dielectric metamaterial lenses, or metalenses,
have been developed in recent years with favorable properties such as full phase
coverage[14][15], polarization insensitivity[16][17], high numerical aperture[17],
and dynamically controllable focal length and intensity[18]. Applications for
such devices exist in many fields and include sub-diffraction limit super lenses,
cloaking devices, medical imaging, and flat space optics.

In general, the periodicity of the sub-wavelength-scale structure of a metama-
terial is too small for incident electromagnetic waves to scatter between adjacent
elements, and so the wave itself is not resonant. However, when the metama-
terial contains a metallic element, an incident wave may induce an oscillating
current which itself is resonant and emits some response. Such metamaterials
are called resonant. Other materials, lacking conductive components and reso-
nant currents, are called nonresonant, derive their properties simply from how
their structure scatters incident power, and can have arbitrarily small periodic-
ity. Metamaterials can broadly be divided into these two classes.

The CoPILOT lens design problem concerns an etched silicon surface with
features smaller than the wavelength of the THz radiation it affects. This is
an example of a nonresonant terahertz metamaterial - a metamaterial which
exhibits desirable properties in the terahertz range, usually defined as 0.1 to
10 THz. The lack of naturally occurring materials and practical technologies
which interact with waves in this frequency band is called the terahertz gap
and has led to great interest in techniques for the development of devices which
function in this range.

The term dielectric metasurface can be used to describe the CoPILOT
device. This refers to a surface of sub-wavelength dielectric structures whose
optical properties are governed by a large number of geometrical parameters.
This project deals with the question of how to effectively and efficiently choose
such parameters.

In general, the forward problem, that is, finding how light is scattered
by a particular metasurface, is well understood. In simple cases it admits ana-
lytical solutions, and is otherwise solved commonly via a number of numerical
solver methods for Maxwell’s Equations. However, finding effective metasurface
parameters requires solving the inverse problem - that of finding an appro-
priate lens topology given a desired scattering pattern. This reverse problem
becomes intrinsically ill-posed in the presence of multiple light scattering, which
is the case when dealing with metamaterials[19]. As a result, normal numerical
solver methods for the reverse problem are computationally intractable and the
investigation of more powerful computational techniques from optimization and
machine learning is necessary.
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Several papers discussed in the section on previous results [19][20][21][22][23]
[24] have already proposed and implemented such techniques for similar, but not
identical, applications. In order to understand how these techniques work and
decide which to apply, first methods to solve the forward problem must be
understood.

3.2 Computational Electromagnetics

A key component of the most common techniques for metasurface design is
a method for predicting a device’s electromagnetic response to some incident
wave, that is, a forward solver. Normally this amounts to solving Maxwell’s
equations numerically for approximations of the electric and magnetic field val-
ues in the space around the device. In order to do so, some understanding of
computational electromagnetics is required.

In this section Maxwell’s equations are briefly reintroduced and used as
a motivation for rigorous coupled-wave analysis, a semi-analytical fast solver
method which is integral to the successful optimization of lenses for CoPILOT.

3.2.1 Maxwell’s Equations

In the following table, Maxwell’s equations, a set of partial differential equa-
tions which constitute a model of classical electromagnetics and underlie all
solver methods used to analyze and design metasurfaces, are summarized. They
are considered here in differential form.

Name Statement Explanation

Gauss’s Law ∇ ·E = ρ/ϵ0

Electric flux through a closed
surface is proportional to the
charge enclosed by that surface.

Gauss’s Law for
Magnetism

∇ ·H = 0
Magnetic monopoles do not
exist.

Faraday’s Law of
Induction

∇×E = −dB
dt

A time-varying magnetic field
always accompanies a spatially
varying electric field.

Ampere’s Law
(with Maxwell’s
Addition)

∇×H = J+ ϵ0
dE
dt

The magnetic field induced
around a closed loop is related
to the electric current through
that loop.

Table 1: Statement of Maxwell’s Equations in a vacuum, differential form. Here,
E is the electric field intensity (V/m), H the magnetic field intensity (A/m),
ρ a charge density (C/m3), J a current density (A/m2), ϵ0 the permittivity of
free space (F/m), µ0 the permeability of free space (H/m), and ∇·,∇× the
divergence and curl differential operators.

In the remainder of this section, only propagating E and H fields with no
charge or current sources are considered, so ρ = 0 and J = 0.

A number of numerical simulation methods for finding approximate solu-
tions to these equations exist, which hold for general incident waves and device
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Figure 5: A layered, periodic dielectric structure[26].

shapes. Among these, those most widely adopted include the finite element
method (FEM), the finite difference time domain method (FDTD), and the fi-
nite difference frequency domain method (FDFD). Other methods may rely on
assumptions about the geometry of a scattering device but can gain increased
performance as a trade-off.

3.2.2 Formulation of RCWA

Rigorous coupled-wave analysis, or RCWA, is a semi-analytical method used to
solve Maxwell’s equations for scattering from layered, periodic dielectric struc-
tures, a class of objects which include some metasurfaces. It is considered the
dominant method in the analysis of such structures, owing to its high compu-
tational efficiency[25].

The following mathematical formulation of RCWA is adapted from the Com-
putational Electrodynamics course notes by Dr. Raymond C. Rumpf[26], who
also originated key components of the formulation[25].

Consider a 3d dielectric structure such as the one depicted in Figure 5.
The structure is uniform in the z (longitudinal) direction, and periodic in

the x and y (transverse) directions. A single spatial period of the structure is
called a unit cell. As a ”semi-analytical” method, RCWA seeks to solve for the
response analytically in the longitudinal direction, while solving numerically in
the transverse directions via discretization in Fourier space.

To describe the solution inside one of the device layers, some material param-
eters must be introduced, namely some space-dependent relative permittivity
and permeability ϵr(x, y) and µr(x, y). Permittivity represents the degree to
which a dielectric material is polarized in response to an applied electric field,
while permeability measures magnetization of the material in response to an
applied magnetic field. ”Relative” here denotes that the ratio of these values
to the permittivity and permeability of free space is used. For float-zone silicon
at room temperature, a relative permittivity of 11.9 and relative permeability
of 1.0 is observed[27]. Note that these parameters do not depend on z because
each of the layers is regular in the longitudinal direction.

In order to derive this method, Maxwell’s equations must first be framed in
their time-harmonic form. Because the first two equations in Table 1 are not
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time-dependent, they remain unchanged, and Faraday’s Law and Ampere’s Law
become:

∇×E = k0µr(x, y)H̃ and ∇× H̃ = k0ϵr(x, y)E,

where k0 = ω
√
µ0ϵ0, and H̃ = −i

√
µ0/ϵ0H

Here, k0 is the wavenumber corresponding to each harmonic of frequency ω,
and H̃ is the normalized magnetic field intensity. This normalization is helpful
because it eliminates any sign inconsistency introduced with the complex values
and equalizes the amplitudes of E and H.

A complex Fourier series expansion of the material properties ϵr and µr in
the transverse directions can now be taken, leaving the z direction alone:

ϵr(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

am,ne
i(mT1+nT2)r

am,n =
1

ΛxΛy

∫ Λx/2

−Λx/2

∫ Λy/2

−Λy/2

ϵr(x, y)e
−i(mT1+nT2)r dy dx

µr(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

bm,ne
i(mT1+nT2)r

bm,n =
1

ΛxΛy

∫ Λx/2

−Λx/2

∫ Λy/2

−Λy/2

µr(x, y)e
−i(mT1+nT2)r dy dx

T1 = 2π
Λx

x̂ and T2 = 2π
Λy

ŷ are called reciprocal lattice vectors, and

provide a simpler way to write the expansion terms. M and N are the number of
spatial harmonics in the expansion in the x and y directions, respectively. They
should both be odd and rounded down when divided by 2 so that the expansion
is centered on (m,n) = (0, 0). Λx and Λy are the lengths of the spatial interval
of the expansion in x and y, or equivalently the transverse dimensions of the
unit cell. Following this expansion, all information about the permittivity and
permeability distributions is contained in the Fourier coefficients am,n and bm,n.

The fields can then be expanded as

E(x, y, z) =

M/2∑
m=−M/2

N/2∑
n=−N/2

S(m,n; z)e−i(kx(m,n)x+ky(m,n)y)

H̃(x, y, z) =

M/2∑
m=−M/2

N/2∑
n=−N/2

U(m,n; z)e−i(kx(m,n)x+ky(m,n)y)

where kxy(m,n) = β −mT1 − nT2, and

kx(m,n) = βx −mT1,x − nT2,x, ky(m,n) = βy −mT1,y − nT2,y

This expansion is a representation of the E and H fields as a finite sum of
spatially infinite 2d plane waves, or spatial harmonics. m and n parameterize
the angle and period of each plane wave, and S and U are their (z-dependent)
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complex amplitudes. I adopt the convention that e−ikz represents a wave trav-
elling in the +z direction.

kxy is the wave vector which characterizes each plane wave in our expan-
sion, pointing the direction normal to the wave and with magnitude equal to
its wavenumber. Solutions to Maxwell’s equations must obey Blotch’s theo-
rem, which states that waves in a periodic dielectric structure take the form
of a plane wave modulated by a periodic function. β is the wave vector of this
aperiodic plane wave component, which can be thought of equivalently as the
wave number of an incident wave to the device. As an example, assuming free
space outside of our layer, for an incident plane wave of frequency ω at incident
polar angle θ and azimuthal angle ϕ, there is simply

β = ωϵ0µ0

sin(θ) cos(ϕ)sin(θ) sin(ϕ)
cos(θ)


The goal is to find the complex amplitudes S and U, which can then be

converted back into field values in cartesian space. To do so, the curl operators
in our time-harmonic Maxwell equations can be expanded and then the Fourier
expansions for ϵr, ρr,E and H̃ can be substituted in. Consider for Ampere’s
Law:

Equation Curl Expanded

∇×E = k0µr(x, y)H̃ =⇒


dEz

dy − dEy

dz = k0µr(x, y)H̃x

dEx

dz − dEz

dx = k0µr(x, y)H̃y

dEz

dx − dEx

dy = k0µr(x, y)H̃z

=⇒

Semi-Analytical Fourier Space

−ik̃y(m,n)Sz(m,n; z̃)− dSy(m,n; z̃)

dz̃
=

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUx(q, r; z̃)

dSx(m,n; z̃)

dz̃
+ ik̃x(m,n)Sz(m,n; z̃) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUy(q, r; z̃)

−ik̃x(m,n)Sy(m,n; z̃) + ik̃y(m,n)Sx(m,n; z̃) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUz(q, r; z̃)

Here the normalized wave vector components k̃x = kx/k0, k̃y = ky/k0 and

k̃z = kz/k0 are used, as well as the normalized longitudinal coordinate z̃ =
k0z. These equations hold true for all choices of m ∈ [−M/2,M/2] and n ∈
[−N/2, N/2], and so the combined set of all equations for each choice can be
written as one matrix equation. To do so, some matrices and column vectors
are introduced:

sx =
[
Sx(1, 1), Sx(1, 2), · · · Sx(M,N)

]T
12



and equivalently for sy, sz,ux,uy,uz,

K̃x =


k̃x(1, 1) 0

k̃x(1, 2)
. . .

0 k̃x(M,N)

 , and equivalently for K̃y, K̃z.

In addition, there are some useful definitions for the material properties:

JϵrK = [ϵr(m,n)], for ϵr(m,n) =

M/2∑
q=−M/2

N/2∑
r=−N/2

am−q,n−r and

JµrK = [µr(m,n)], for µr(m,n) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−r

These [ϵr] and [µr] are symmetric convolution matrices which contain all
information about the permittivity and permeability distributions in the layer.
Ampere’s Law in semi-analytical Fourier space is then

−iK̃ysz −
d

dz̃
sy = [µr]ux

d

dz̃
sx + iK̃xsz = [µr]uy

K̃xsy − K̃ysx = [µr]uz

The longitudinal term uz can be eliminated by solving for it in the third
equation. After expanding the result and simplifying, there is the block matrix
form

d

dz̃

[
sx
sy

]
= P

[
ux

uy

]
, (1)

where P =

[
K̃x[ϵr]

−1K̃y [µr]− K̃x[ϵr]
−1K̃x

K̃y[ϵr]
−1K̃y − [µr] −K̃y[ϵr]

−1K̃x

]
Applying the same steps for Faraday’s Law, there is

d

dz̃

[
ux

uy

]
= Q

[
sx
sy

]
, (2)

where Q =

[
K̃x[µr]

−1K̃y [ϵr]− K̃x[µr]
−1K̃x

K̃y[µr]
−1K̃y − [ϵr] −K̃y[µr]

−1K̃x

]
Finally, taking the derivative of (2) with respect to z̃ and substituting the

result into (1), the matrix wave equation for sx and sy is obtained:

d2

dz̃2

[
sx
sy

]
−Ω2

[
sx
sy

]
= 0,where Ω2 = PQ

(Standard PQ Form)

This is simply a large number of ODEs which each admit an analytical
solution. The solutions are of the form

13



[
sx(z̃)
sy(z̃)

]
= e−Ωz̃s+(0) + eΩz̃s−(0)

where s+(0) and s−(0) are initial values of the problem for forward and back-
wards propagating waves, respectively.

Now all that is required are the matrices e−Ωz̃ and eΩz̃, which can be found
using the property

f(A) = Wf(λ)W−1, where

A is an arbitrary full rank matrix, f an arbitrary matrix function, W the
matrix of A’s eigenvectors, and λ the matrix of corresponding eigenvalues. Ap-

plying this to Ω2 with each f(A) = eAz̃ and f(A) = e−A(̃z) gives

e−Ωz̃ = We−λz̃W−1 and eΩz̃ = Weλz̃, where

eλz̃ =


e
√

λ2
1 z̃ 0

. . .

0 e

√
λ
N2

λ
z̃


Here, W is the matrix of Ω2’s eigenvectors, and λ1...λNλ

are its correspond-
ing eigenvalues. This gives a final solution for s[

sx(z̃)
sy(z̃)

]
= We−λz̃c+ +Weλz̃c−, where

c+ = W−1s+(0) and c− = W−1s−(0)

Writing a similar expression for u and combining in order to write the final
solution for both s and u inside a single layer, there is

ψ(z̃) =


sx(z̃)
sy(z̃)
ux(z̃)
uy(z̃)

 =

[
W W
−V V

] [
e−λz̃ 0
0 eλz̃

] [
c+

c−

]
, where

V = QWλ−1

Therefore, finding the complex amplitudes sx, sy and ux, uy, and thus the
solution to Maxwell’s equations for wave scattering inside a single dielectric
layer, amounts to solving the eigenvalue problem for Ω2 to obtain W and λ.
There are no strong assumptions about Ω2, meaning that this is in general a
complex-valued degenerate eigenproblem. The implications of this for solving
the inverse problem are significant and discussed in section 4.3.

However, if the layer is homogeneous, meaning that the material is isotropic
and ϵr and µr are constant values which no longer depend on x and y, some
simplifying assumptions can be made in order to obtain the solution

W =

[
I 0
0 I

]
, λ =

[
iK̃z 0

0 iK̃z

]
, K̃z = (

√
µ∗
rϵ

∗
rI− K̃2

x − K̃2
y)

∗, V = Qλ−1
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This means that for homogeneous layers, the eigenvalue problem does not
actually need to be solved.

Now consider the problem for a device consisting of multiple non-homogeneous
periodic layers. At each layer, JϵrK and JµrK are different, and therefore also P,
Q, Ω2, W, V, λ, c+ and c−. However, boundary conditions dictate that K̃x

and K̃y remain the same between layers. This means that, for some layer i of
thickness Li, sandwiched by two homogeneous layers 1 and 2 of zero thickness
each with constant ϵ0 and µ0, there are boundary conditions

ψ1 = ψi(0) ⇒
[
W0 W0

−V0 V0

] [
c+0
c−0

]
=

[
Wi Wi

−Vi Vi

] [
c+i
c−i

]
, and

ψi(k0Li) = ψ2 ⇒
[
Wi Wi

−Vi Vi

] [
e−λik0Li 0
eλik0Li 0

] [
c+i
c−i

]
=

[
W2 W2

−V0 V0

] [
c+0
c−0

]
Here, W0, V0, c

+
0 and c−0 are calculated using the solution for homogeneous

layers. For any such layer i a scattering matrix S(i) can be defined such that[
c−1
c+2

]
= S(i)

[
c+1
c−2

]
,S(i) =

[
S
(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

]

S
(i)
11 = (Ai −XiBiA

−1
i XiBi)

−1(XiBiA
−1
i XiAi −Bi)

S
(i)
12 = (Ai −XiBiA

−1
i XiBi)

−1Xi(Ai −BiA
−1
i Bi)

S
(i)
21 = S

(i)
12 , S

(i)
22 = S

(i)
11

Ai = W−1
i W0 +V−1

i V0, Bi = W−1
1 W0 −V−1

i V0, Xi = e−λik0Li

Here, c1 and c2 correspond to the reflection and transmission sides of the
layer, respectively. An entire device can be modelled as a series of such layers,
separated by homogeneous gap layers of zero thickness with constant ϵ0 and
µ0. Such zero thickness gaps have no effect on the physical validity of the
model and simplify the calculation of each scattering matrix by ensuring that
each depends on only the physical parameters of its corresponding layer and
not those of adjacent ones. Thus if the device contains multiple identical layers
in different positions, the corresponding scattering matrix only needs to be
constructed once.

This convention for the scattering matrix ensures that it is symmetric and
thus highly efficient to calculate, as well as consistent with convention[25]. In
addition, it allows the matrices of individual layers to be easily combined into
a global scattering matrix as

S(global) = S(ref) ⊗ S(device) ⊗ S(trn),

S(device) = S(1) ⊗ S(2) ⊗ · · · ⊗ S(NL) for NL layers

Here, ⊗ is the Redheffer star product[28] defined as

A ⊗ B =

[
A11 A12

A21 A22

]
⊗

[
B11 B12

B21 B22

]

=

[
B11(I−A12B21)

−1A11 B12 +B11(I−A12B21)
−1A12B22

A21 +A22(I−B21A
−1
12 B21A11 A22(I−B21A12)

−1B22

]
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The scattering matrices S(ref) and S(trn) represent the device’s reflection
(i.e. −z) and transmission (+z) regions, respectively, and are calculated using
some constant physical parameters in those regions ϵr,ref , ϵr,trn, µr,ref and µr,trn

as

S
(ref)
11 = −A−1

refBref , S
(ref)
12 = 2A−1

ref ,

S
(ref)
21 =

1

2
(Aref −BrefA

−1
refBref ), S

(ref)
22 = BrefA

−1
ref ,

Aref = W−1
0 Wref +V−1

0 Vref , Bref = W−1
0 Wref −V−1

0 Vref ,

with equivalent expressions for Atrn,Btrn, and S(trn)

Knowing S(global), an approximation of the transmitted and reflected fields
for some incident wave and and arbitrary periodic, layered device can finally be
obtained. For some normalized incident polarization vectorP = [px, py, px]

T , ∥P∥ =
1, and vector δ0,pq of length M ×N , which has 0s in all positions except for a
1 in the p, qth position indicating the mode of the incident wave (normally the
center position), there is

cinc = W−1
inc

[
pxδ0,pq
pyδ0,pq

]
, and

rT =

[
rx
ry

]
= WrefS11cinc, tT =

[
tx
ty

]
= WrefS21cinc

These are the transverse components of the complex wave amplitudes in the
reflected and transmitted regions. The longitudinal components are

rz = −K̃−1
z,ref (K̃xrx + K̃yry), tz = −K̃−1

z,trm(K̃xtx + K̃yty), with

K̃z,ref = −(
√

µ∗
r,ref ϵ

∗
r,refI− K̃2

x − K̃2
y)

∗, and equivalently for K̃z,trn

To get the final fields in both regions, these plane wave amplitudes can be
transformed back to cartesian space, and then propagated any distance z away
from the transmission or reflection surface of the device. Several methods for
calculating this propagation exist, such as the band-limited angular spectrum
method[29]. An implementation of this propagation method is provided in the
code of Colburn and Majumdar[23].

3.3 Algorithmic Differentiation

Differentiability of a process with respect to its inputs often brings many ad-
vantages and enables many methods for modelling it. Having access to the
derivatives of a forward solver enables direct optimization algorithms such as
gradient descent for the inverse problem. Access to derivatives is also required
when characterization of the quality of a solution depends on its derivatives, a
property of physics-informed machine learning methods.

However, for an arbitrary function implemented as computer program, such
as a numerical solver, the derivative is not, in general, available. There are
several techniques which attempt to address this.
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In numerical differentiation, the method of finite differences is used to
compute an approximation to the derivative using several evaluated function
values. While simple to implement, this technique can encounter problems with
floating-point round-off errors due to the discretization introduced. In addition,
its performance does not scale well to higher-order derivatives or derivatives with
respect to many inputs. These problems make it ill-suited to an optimization
problem in which the target function is highly nonlinear and has many inputs,
such as scattering from a metasurface.

In symbolic differentiation, one attempts to represent the function as a
single mathematical object or expression, which can be used to analytically com-
pute the exact value of a derivative. However, in practice, this is a complicated
task which requires the function to be rewritten in a number of fundamental
ways - for example, normally numbers in the program must be converted to
arbitrary-precision representation, so that the precision limits of standard float-
ing point types do not impact the exactness of the computation. This is highly
inefficient for programs with many inputs and operations, which includes most
numerical solvers for physical problems.

A third option, algorithmic differentiation (also called automatic differ-
entiation, computational differentiation, autodiff, or simply AD), attempts to
solve all of these complications. AD takes advantage of the fact that any se-
quential computer program, no matter its complexity, is essentially a series of
elementary operations. As long as the derivative of each elementary operation
is known, the chain rule can be applied to evaluate the derivative of such a
composed function.

AD contrasts with symbolic differentiation in that it relies only on the chain
rule and knowledge about derivatives of elementary operations. Symbolic differ-
entiation additionally relies on analytical results about the derivatives of more
complicated operations, up to and including an entire program, which is the
source of the method’s difficulties.

AD has two operating modes, each of which computes the same values but
with derivatives of the composing operations computed in a different order. In
forward accumulation, derivatives of the first intermediate value (i.e. that
after the first operation has been applied) with respect to the inputs are eval-
uated first, and the products of each operation’s derivative are accumulated
as we progress through the operations towards the output. For a function
y = fn(fn−1(...(f1(x)) with intermediate values w0 = x, wi = f i−1(wi−1),
wn = y, this computes

dwi

dx
=

dwi

dwi−1

dwi−1

dx
for i = 1, 2...n

The alternative is reverse accumulation, which instead starts from the
output and progresses backwards towards the input, computing

dy

dwi
=

dy

dwi+1

dwi+1

dwi
for i = n− 1, n− 2...1

Each of these modes has performance advantages in certain applications. For
computing the gradient of a function with a large number of inputs relative to
the number of outputs, such as a loss function for a neural network, the reverse
mode is far more computationally efficient[23].
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3.3.1 Correctness of AD

Standard autodiff frameworks following this framework can be formally shown
to be correct, in the sense of correctly computing the derivative at almost all
points in the domain for some function. This applies to a large class of possibly
non-differentiable functions, given that the function is differentiable almost ev-
erywhere and that some assumptions hold on the set of elementary operations.
Specifically, each of the elementary operations utilized by the program must be
piecewise analytic under analytic partition (or PAP)[30].

A PAP function f : X → Y is a piecewise function made up of partitions
{Ai, f i}i∈{1,2...} such that all f i are analytic functions over their domains Xi =
{x ∈ Ai|f i(x)}, and Ai are analytic partitions[30].

Recall that an analytic function is infinitely differentiable and equal to its
Taylor expansion. An analytic partition is any set A ∈ Rn for which some
analytic functions g+j : X+

j → R and g−k : X−
k → R on open domains X+

j , X−
k ⊆

Rn for j ∈ J , k ∈ K, J,K ∈ Z>0 exist such that A = {x ∈ X+
j |(∀j ∈ J)g+j (x) >

0} ∪ {x ∈ X−
k |(∀k ∈ K)g−k (x) ≤ 0}. In other words, an analytic partition can

be broken up into a number of regions on each of which some analytic function
exists such that for all points in that region, the analytic function is strictly
positive or less than or equal to zero.

Most of the elementary operations used in common implementations of AD,
such as PyTorch and TensorFlow, hold to this condition, and so these autod-
iff systems can be shown to be correct for all programs written using these
operations. An example is the relu function ϕ(x) = max(0, x), a common ac-
tivation function for neural networks. This function is not differentiable at 0,
but the TensorFlow implementation returns 0 for its derivative evaluated at 0
anyway. This choice makes the TensorFlow implementation of relu in fact a
PAP function and leads to AD correctness for programs using this operation.

3.3.2 Implementation of AD

There are several approaches to implementing programs such as to utilize al-
gorithmic differentiation, a programming paradigm known as differentiable
programming. A relatively straightforward approach is to overload basic
arithmetic operators so that they return information about their derivatives
in addition to their results. This can be accomplished efficiently in many lan-
guages - for example, C++.

Another approach formulation of the program as a computational graph.
The nodes of such a graph represent operations, and its edges represent data
dependency between them. This is the strategy employed by TensorFlow, a
widely-used, flexible, open-source software framework for machine learning[31].
First released in 2015, TensorFlow provides a high-level scripting interface which
can be used to compose such program graphs from elementary operations such as
matrix multiplications and convolutions, and to execute these programs on pow-
erful heterogeneous computer architectures including GPUs. This has enabled
many applications of differential programming and machine learning across sec-
tors.

Implementations of differentiable versions of common solver methods from
computational electromagnets using AD have already been shown, including
FDTD[32], FDFD[33], and RCWA[23].
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4 Past Methods and Results from Literature

In this section, a number of previous papers which address the use of machine
learning and optimization techniques for the design of metamaterial optical
devices and metasurfaces are presented. The methods they employ are discussed
in depth and categorized into three groups based on their general approach.

4.1 Scientific Machine Learning

The first class of solutions belongs to what can be described broadly as scientific
machine learning. This refers simply to the application of standard methods
in machine learning, such as modelling processes via deep neural networks, to
scientific data sets. Applied to an inverse scattering problem, this approach
leads to a neural network which replicates the results of a numerical solver
method, efficiently predicting electromagnetic response for a device given the
parameters of a metasurface. Such a network can be called a forward network.
This enables, in turn, the training of an inverse network which can predict
metasurface parameters given some desired response.

4.1.1 Jiang et al.

Jiang et al.[21] applies this idea in order to design metalenses for phase manip-
ulation. Their goal is the training of a deep neural network, or DNN, which
can predict metasurface geometric parameters of a device that produces some
desired phase spectra. Six geometric parameters are sought. These are the
transverse dimensions of three small TiO2 structures called nanofins of fixed
height, which are tiled across a substrate surface. The arrangement can be seen
in Figure 6.

Figure 6: Metasurface design sought by Jiang et al. composed of repeating
nanofin structures[21].

First, an FDTD solver is used to generate phase spectra, sampled at 81
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frequency points over the 380nm-780nm band, for a sample of 7680 parame-
ter combinations. The phase coefficients can be calculated from the scattering
matrices used by FDTD, which resemble those from RCWA. Care is taken to
cluster more samples around discontinuities in the phase, so that these discon-
tinuities may be properly learned. A DNN with six hidden layers composed
of approximately 600 neurons each is implemented using TensorFlow[31] and
trained on the majority of the generated data, using a mean absolute error loss
function which compares predicted spectra to generated spectra. Network hy-
perparameters such as batch size and learning rate are varied and compared in
terms of network performance, with the best out of those tried selected, but
no sophisticated hyperparameter search method is employed. This results in a
forward network which models the FTFD solver with an error of <0.2 on 93%
of the test data.

Next, the inverse network is initialized. The structure is the same as the
forward network except that the loss function now compares predicted spectra
to some desired spectra, and that the input layer of geometric parameters is
now treated as a hidden layer and the parameters as trainable weights. The
rest of the network weights are reused from the forward network and fixed.

In the reverse network optimization process, some arbitrary initial guesses
for geometric parameters are first chosen. The network output is calculated,
resulting in a loss, which can then be used to update the parameter guess via
backpropagation. This is repeated until the loss is small enough to meet a
stopping condition, and then the result is checked for correctness with a FDTD
simulation. This optimization process is repeated to find other ideal parameters
for any additional desired phase spectra. The authors also extend their process
to predict and design for other phase properties, including group delay and
group delay dispersion, in order to demonstrate the generalizable power of their
DNN approach.

4.1.2 An et al.

An et al.[20] attempt a similar goal with a similar approach. The authors con-
sider arrays of small dialectric structures of varying shape with 3-5 geometric
parameters and possibly a variable permittivity. They call these building blocks
meta-atoms, and arrange them on top of a substrate material of lower refrac-
tive index, as seen below.

As in Jiang et al.[21], a large amount of simulation-generated amplitude and
phase spectra training data is created - over 50000 combinations of geometric
parameters, and 31 frequency samples over the 30-60THz (5-10µm wavelength)
band. Again, the problem of how to ensure that phase discontinuities are prop-
erly captured by the DNN model arises. Finding that these discontinuities occur
in the amplitude and phase but that the real and imaginary parts of the complex
transmission coefficient, from which the amplitude and phase can be calculated,
are continuous, the authors decide to construct two independent networks which
predict these parts. The outputs of these two DNNs can then be combined to
predict amplitude and phase according to the formulas

amplitude =
√

Im(T )2 +Re(T )2, and
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Figure 7: Metasurface design sought by An al. composed of arrays of dielectric
”meta-atoms”. Separate DNNs are employed for parameter selection of each
meta-atom structure, such as the cylindrical and H-shaped ones seen here[20].

phase = tan−1 Im(T )

Re(T )

Here, the transmission coefficient T is the ratio of the amplitude of the
incident wave to that of the transmitted wave. T can be calculated directly from
the results of any full-wave simulation such as FDTD and therefore can be used
in the loss function for these DNNs. Each network is again implemented with
TensorFlow[31] has three hidden layers consisting of 500, 500, and 200 neurons
each. For a simple cylindrical meta-atom design, the resulting trained networks
achieve an average mean squared error on the test set of 0.00035 for the real
part and 0.00023 for the imaginary part of T . The authors go on to repeat this
process, training networks to predict transmission coefficient components for
over 30000 meta-atom structures, including the H-shaped one shown in Figure
7.

These authors take a slightly different approach to the design of the inverse
network, which they call a ”meta-filter design network”. For any one meta-
atom structure, the meta-filter design network is a separate DNN with four
hidden layers of widths 500, 500, 500, and 50 neurons each which takes as
input a desired phase spectra and produces design parameters as output. The
resulting parameters are fed to the forward network, which produces a predicted
spectra which can be compared to the target to produce a loss. This is then
backpropagated in order to update the many weights and biases of the design
network, while the forward network parameters remain unchanged. In this way,
the trained forward network is used as part of the loss function, effectively a
more computationally efficient stand-in for a standard numerical solver.

Because the meta-filter design network is a proper DNN of its own here,
rather than Jiang’s one layer added to the forward network, it can be trained
once on a data set consisting of many desired phase spectra and afterwards be
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used to efficiently predict meta-atom parameters for many other desired spectra.
This is in contrast to Jiang’s method, wherein the inverse network must be re-
optimized for each desired spectra.

4.2 Physics-Informed Neural Networks

While the methods discussed above may fall under the category of scientific
machine learning, they do not actually take advantage of any physical knowledge
known about the system. The closest they come to this is using numerical
solvers based on it to generate training data. A more clever approach might be
to embed information about the physical laws, that is, Maxwell’s equations or
some other set of PDEs, into the learning process itself. This can be achieved
by incorporating the PDEs that govern the data set into the network’s loss
function. The network is then called a physics-informed neural network,
or a PINN[34].

Say that, for a function u(x) with x = (x, y) in a domain Ω ⊆ R2, there is a
PDE of the form

f

(
x;

du

dx
,
du

dy
,
d2u

dx2
,
∂2u

∂x∂y
,
d2u

dy2
;λ

)
= 0, for x ∈ Ω,

with some mixed boundary conditions

u(x) = gD(x) on ΓD ⊂ ∂Ω and
du(x)

dx
= gR(u, x, y) on ΓR ⊂ ∂Ω

Here λ is an unknown parameter in the PDE system, which could represent,
for example, some metasurface parameters. The goal of the PINN is to recover
λ.

The PINN then consists of a DNN with an output û(x, y; θ) which approxi-
mates u, where θ is a vector of all DNN weights and biases to be trained. The
goal is then to train the DNN and optimize θ and λ so as to minimize the error
between u and û. This is achieved with a loss function of the form

L(θ, λ) = wfLf (θ, λ; Tf ) + wiLi(θ, λ; Ti) + wbLb(θ, λ; Tb), where

Lf (θ, λ; Tf ) = 1
|Tf |

∑
x∈Tf

∥∥∥f (
x; dû

dx ,
dû
dy ,

d2û
dx2 ,

∂2û
∂x∂y ,

d2û
dy2 ;λ

)∥∥∥2
2
,

Li(θ, λ; Ti) = 1
|Ti|

∑
x∈Ti

∥û(x)− u(x)∥22,

Lb(θ, λ; TbD, TbR) =
1

|TbD|
∑

x∈TbD
∥(û(x)− gD(x))∥22

+ 1
|TbR|

∑
x∈TbR

∥∥∥(dû(x)
dx − gR(u,x)

)∥∥∥2
2

Here, Lf , Li and Lb are loss terms representing adherence to the PDE, to
a desired solution u(x), and to the boundary conditions, respectively, and wf ,
wi and wb are their weights. Tf and Ti are some set of points sampled from
Ω at which these conditions are checked, which may be on a grid or chosen
randomly. Similarly, TbD are sampled from ΓD and TbR from ΓR. If the PINN
is implemented with an AD system such as TensorFlow, then the derivatives
dû(x)
dx are easily available at each training step.
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The inclusion of the Li term makes this an inverse problem which finds
λ, but requires some known solution u(x). In other words, given some known
solution to the PDE, this network can find the PDE parameter λ such that the
PDE admits such a solution. A remarkable fact is that with the minimal change
of omitting Li, the PINN functions in a forward direction instead, finding an
admissible solution û(x) given some λ. Adding this term is of insignificant
computational cost, meaning that this PINN framework can solve forward and
inverse problems on equal footing[19].

To train the PINN, normal forward evaluation and backpropagation is iter-
ated until the loss is smaller than some σ. Afterwards, the obtained λ and û(x)
can be verified using a numerical simulation method. The entire architecture is
summarized in Figure 8.

Figure 8: Framework of a general PINN, for the inverse problem to obtain PDE
parameter λ. The left FNN (feed-forward neural network) is a model of the
PDE solution, and the right side shows the terms of the loss function[19].

4.2.1 Chen et al.

Chen et al.[19] applies this general framework to the problem of homogenizing
finite-size metamaterials. That is, they seek to replace a lattice of cylindrical
dielectric meta-atoms each having some constant permittivity ϵ with a single
dielectric cylinder having a permittivity profile ϵ(x, y). Both the lattice of meta-
atoms and the single scatterer should produce the same scattering pattern. For
this problem, the relevant PDE is the Helmholtz equation for weakly inhomo-
geneous 2d media under transverse magnetic (TM) polarization excitation, for
the unknown electric field z component Ez:

∇2Ez(x, y) + ϵr(x, y)k
2
0Ez = 0

Here k0 is the wavenumber of the incident wave in free space and ϵr(x, y)
is the sought permittivity profile. In terms of the general PINN framework,
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u(x, y) is generated from a single numerical simulation of the original meta-
atom lattice, and the sought parameter λ is ϵr. The situation and results can
be seen in Figure 9.

Figure 9: Use of a PINN for retrieval of an effective permittivity profile ϵ(x, y).
a) Arrangement of original meta-atoms whose scattering pattern is desired, with
a = 500nm, r = 125nm, d = 10µm,N = 317, ϵ = 3. b) Simulated scattering
pattern u(x, y) of the meta-atom lattice with incident plane wave wavelength
λ0 = 2.1µm. c) Permittivity profile ϵr(x, y) for a single cylinder, predicted by
the PINN. d) Scattering pattern for predicted permittivity profile, with 2.82%
error compared to the desired pattern in b)[19].

Chen et al. use DeepXDE[35], a Python deep learning library, to implement
their PINN with 4 layers of 64 neurons each. An FEM simulation, sampling
both Ez and ϵr at a 150x150 square lattice spatial resolution, is used both
to generate the desired scattering pattern as well as verify the result. The
hyperbolic tangent activation function is used, and the training rate is set to
10−3. 150000 iterations of training were run, after which a loss value of 10−2

was reached. The retrieved permittivity profile ϵr(x, y) produced a scattering
pattern with only 2.82% error in the L2 norm when compared to the desired
pattern.

The authors go on to show that their PINN implementation is valid for solv-
ing the homogenization problem for other arrangements of meta-atoms, such as a
Vogel spiral. By using the framework to recover effective permittivity for coated
cylinders and arrangements of multiple cylinders, they show that their method
can be extended to deal with multiple materials and objects. Finally, they ap-
ply their method to the problem of invisible cloaking design, that is, finding
the permittivity of a cloaking material which, when applied to a nanocylinder,
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cancels its scattering for a given incident plane wave.

4.3 Topology Optimization

The use of classical optimization methods for metasurface design has been
criticized due to the high performance cost of running many forward simula-
tions[21][22][19]. This criticism has been leveled in particular at the use of ad-
joint methods, a class of general methods for numerically computing gradients
which can be used for optimization in metamaterial design. This has motivated
the application of machine learning techniques to the inverse design problem,
as discussed in the previous two sections.

However, papers in recent years have demonstrated the recovery of many
metasurface parameters at similar levels of accuracy and efficiency to the deep
learning solutions through the use of more traditional optimization methods,
enabled through the use of more powerful forward solvers such as RCWA and
efficient software implementation with strong low-level optimization in C, par-
allelism, and AD using TensorFlow[24][23]. These techniques are able to de-
termine unique metalens shapes from an extensive design space consisting of a
high number of geometric degrees of freedom, and can be said to belong to the
field of topology optimization.

4.3.1 Colburn and Majumdar

As discussed in detail in section 3.2.2, despite offering a very high standard of
performance for solving the multiple scattering problem for periodic, layered
devices, RCWA has issues with respect to differentiability. Specifically, at its
core, one must find solutions to the matrix wave equation

d2

dz̃2

[
sx
sy

]
−Ω2

[
sx
sy

]
= 0

which amounts to solving the eigenproblem for the matrix Ω2. In order for the
entire method to be differentiable and for an AD implementation to be possible,
access to the derivatives of these eigenvectors and eigenvalues is required. For
certain scatterer geometries, Ω2 is Hermitian and has no repeated eigenvalues.
However, this does not hold for general scatterers, leading to a complex-valued,
degenerate eigenproblem wherein the eigenvector gradients are undefined[36].

Without differentiability, standard optimization techniques for nonlinear
functions are not applicable to RCWA. However, it is possible to make some
small modifications to the method in order to make an AD implementation of
RCWA possible.

Colburn and Majumdar[23] formulate and apply these corrections, resulting
in a TensorFlow implementation which can be directly optimized for metasurface
parameters. Two innovations are combined. First, they consider an eigenequa-
tion of the form Ω2W = WΛ, where the columns of W are the eigenvectors of
Ω2 and Λ is the diagonal matrix of its eignvalues, and some real scalar func-
tion J = f(W,Λ) which depends on the eigendecomposition. Using Wirtinger
derivatives, operators from complex analysis which enable a differential calculus
for complex functions completely analogous to ordinary calculus for real func-
tions, the authors derive an expression for the sensitivity of J to changes in Ω2.
This is written as
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Here, F is defined as Fij = 1/(λi − λj) if i ̸= j and Fij = 0 otherwise, with
λ0, λ1...λn the eigenvalues of Ω2. ◦ is the Hadamard product defined on two
matrices A and B of the same dimensions as (A ◦B)ij = (A)∗ij(B)ij .

This effectively removes any differentiability problems caused by the pres-
ence of complex eigenvalues. However, if any eigenvalues are repeated, i.e. are
degenerate, Fij remains undefined. to avoid this problem, the authors redefine
F as

Fij =
λi − λj

(λi − λj)2 + ε

where ε is a small real number. The introduction of ε also introduces some small
error in Fij but ensures that the reverse sensitivity of J is defined. The result is
a slightly modified RCWA which can be implemented correctly with AD, using
TensorFlow. The authors present such an implementation, and validate its
output against another commonly used implementation of RCWA originating
from the electrical engineering department of Stanford University, S4 [37], in
order to certify that the introduced error is insignificant.

Having this implementation, Colburn and Majumdar now cleverly imagine
the reverse scattering problem of optimizing inverse RCWA for some metasur-
face parameters ai as equivalent to optimizing weights of a neural network via
backpropagation. The scheme is illustrated in Figure 10.

Figure 10: Colburn and Majumdar’s scheme for metamaterial design with
RCWA and algorithmic differentiation. The figure follows all notation used
in the section on RCWA[23].

The authors treat the metamaterial parameters ai as trainable weights of
a neural network. After initial guesses for the ai are provided, RCWA is used
to calculate the E field in the reflection and transmission regions, following

26



the black arrows. This result is passed to some scalar loss function L, which
defines an optimization criteria - for example, maximizing intensity on a focal
plane. Because this has all been implemented using TensorFlow, the gradients
dL
dai

are readily calculated using the reverse mode of AD, following the blue
arrows. Then, updates can be applied to the ai in order to produce new best
guesses. This process is iterated until the loss is sufficiently small, at which
point some optimized ai have been obtained. All code is available at https:

//github.com/scolburn54/rcwa_tf.
The approach turns out to be both flexible and powerful. This optimization

scheme is shown to find effective parameters for a broad range of periodic, lay-
ered metasurface structures, including arrays of independently sized nanopost
resonators and multilayer gratings. In addition, a number of optimization ob-
jectives and loss functions are demonstrated, such as minimizing reflection and
focusing red, blue and green light at different points. For a relatively simple
case of optimizing reflectivity for an array of nanocylinders on a substrate, the
scheme is able to find a design maximizing reflectivity at 99.8% of the incident
light.

Additionally, the method is shown to work for aperiodic structures. As an
example, a polarization- multiplexed metalens is designed to direct vertically
and horizontally polarized incident light to separate focal spots. The applica-
bility of RCWA here to this device and other similar metasurfaces is based on
the local phase approximation, meaning that scatterers only slowly vary with
position.

Great care is taken by the authors to ensure high performance. In addi-
tion to the inherent speed of RCWA, the scheme benefits from the efficiency
and parallelizability of backpropagation. Implementation in TensorFlow allows
for easy usage of dedicated parallel architecture including GPUs[31], which is
demonstrated to increase performance by 14x to 24x for certain problems.

Compared specifically to adjoint methods, a speedup is demonstrated in
terms of time per optimization iteration. Iterations of an adjoint method nor-
mally cost twice the forward simulation time because they require two simula-
tions, the forward and adjoint simulations, to compute a gradient. The authors
demonstrate that their scheme, which performs one forward simulation and a
backpropagation update per iteration, results in a 1.4x speedup over the adjoint
standard of two forward simulations for multiple problems. This result and the
GPU speedup are shown in Figure 14.

4.3.2 Lin et al.

The paper of Lin et al.[24] adds additional support to the efficiency of topology
optimization schemes for periodic, layered metasurface design. The authors use
RCWA as their primary forward solver method for each unit cell of the periodic
device, with FDFD used to perform a full-device simulation after results are
obtained for verification. Unlike Colburn and Majumdar, however, Lin et al.
do not leverage AD or backpropagation for performance gains, instead using the
adjoint state method and relying just on efficient implementations of the forward
solvers in C and massive parallelization using the message-passing interface
(MPI) library.

This choice turns out to be effective. The authors claim that their straight-
forward topology optimization approach allows them to handle thousands of
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Figure 11: Performance results for the Colburn-Majumdar metaoptics opti-
mization scheme.Both simple optimization of scatterer shape and full topology
optimization are considered. Left: optimization iteration time, normalized to
the time of a single forward simulation, are compared to the adjoint method
(black horizontal line). Right: speedup factor from GPU parallelization vs.
problem complexity[23].

degrees of freedom per unit cell, far exceeding the number of parameters op-
timized by the machine learning approaches. This is demonstrated through
the recovery of multi-layer aperiodic topologies for monochromatic and multi-
wavelength focusing metalenses, in both 2d and 3d. One example is given in
Figure 12.

Figure 12: Monochrmatic 3d cylcindrical metalens topography achieved through
adjoint method optimization by Lin et al. Red section shows a single λxλ unit
cell. Plot on the right shows simulation of the final focusing behavior[24].

This lens topology contains 4x104 degrees of freedom in total, and was com-
puted in parallel on 25 CPUs. The final FDTF validation simulation gives a
transmission efficiency of 75%.

Optimization of arbitrary aperiodic topologies using RCWA is achieved though
approximating the aperiodic structures as a set of periodic scattering problems,
one for each unit cell. In other words, to solve for the near field for each unit cell,
a separate problem is solved in which the single unit cell is tiled across an entire
device. Each of the problems may be solved entirely in parallel. Afterwards,
the final near field is approximated via the periodic near field solutions.

The authors conclude by positing the expectation that methods such as

28



Figure 13: Lin et al. approximate the near field scattering pattern of an arbi-
trary aperiodic layered metasurface, shown at top, by solving a separate periodic
scattering problem for each unit cell. These solutions, shown in the lower three
rows, are combined to approximate the near field on the entire surface[24].

theirs will become indispensable for tackling design problems with large design
spaces and multiple layers.

4.4 Relationship Between Methods

Based on this literature survey, it is possible to make some reasonable prelim-
inary comparisons between these methods. The timescale of a Master’s thesis
project simply does not allow for all of them to be implemented and experimen-
tally compared. Thus evaluating their individual advantages and disadvantages
is instrumental to arriving at a good solution method for the CoPILOT design
problem.

4.4.1 Physical Accuracy

The methods from scientific machine learning do not strictly enforce the physical
correctness of their solutions, because they use only general neural network
frameworks not specially adapted for an application in optics. Despite this, they
can derive physical accuracy from the use physically accurate training data. This
relies on an accurate, pre-existing numerical forward solver which can be used to
generate such data. Given that the solver is accurate and that the training data
covers a representative sample of the design space, then there is a reasonable
expectation that the trained neural network will produce physically accurate
solutions. This can always be verified via additional numerical simulations of
the results.

However, when modelling highly nonlinear and possibly discontinuous func-
tions such as those which describe multiple scattering in metamaterials, the
dependency of a neural network’s accuracy on training data coverage of the de-
sign space can be detrimentally strong. In order to maintain a reasonable model
accuracy, either a prohibitively large corpus of training data must be produced
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or the design space must be made smaller by reducing the number of optimized
parameters. Both Jiang[21] and An[20] achieve model accuracy via the latter
approach, allowing for only 3 to 6 geometrical metasurface parameters.

Similarly, these methods cannot strictly enforce manufacturing and design
constraints. If the training data only contains examples of solutions which are
admissible in terms of these constraints, then the network will not have access
to any information about the distinction between admissible and non-admissible
solutions, and the admissibility of results is not guaranteed. For example, Jiang
et al.[21] find that sometimes the network will return negative parameter values
which have no physical meaning.

This can potentially be solved via regularization terms in the training loss
function which disincentivize non-admissible and non-physical solutions. This
strategy carries with it the risk that adding such terms may make the loss
function non-convex. If this happens, the training of the network may no longer
converge, leading to unstable behavior and a failure of the method to find good
solutions. Either way, as long as non-physical and non-admissible results remain
technically possible, they must be weeded out via validation.

The PINN approach also relies on such terms in the loss function, but brings
several advantages due to the fact that they are codified in terms of the boundary
conditions of the relevant physical problem. Because of this, the local convex-
ity and existence of minima of the loss function depends only on the existence
of optimal solutions to the physical problem. In the case of metasurface de-
sign, this means that the existence of good designs leads to convergence of the
PINN[21]. While the existence of good solutions can’t be presupposed, without
them, the optimization problem would fail for even a perfect method. PINNs,
however, still face the same difficulties as scientific machine learning methods
with respect to enforcing design and manufacturing constraints - if included in
as loss terms, these constraints may cause loss of loss function convexity and
create convergence issues for the training algorithm.

The physical accuracy of solutions produced by the topology optimization
approach depends only on the accuracy of the numerical forward solver used.
As long as the physical predictions of the solver at each optimization step are
accurate and good solutions to the design problem exist, then gradient descent is
guaranteed to arrive at least at a local minimum. This class of methods still faces
the same problem as the previous two concerning problematic regularization
terms for forcing admissible solutions, and strategies to tackling this problem
are discussed in depth in section 5. However, given that a fast and accurate
forward solver exists for the design problem, which is now the case in most
applications, this seems like the strongest promise of physical accuracy given by
any of the three discussed approaches.

4.4.2 Computational Cost

Prior to the introduction of machine learning based approaches to metamaterial
optics design, more traditional optimization strategies were employed. One such
idea is the construction of a large ”library” of possibly metasurface designs, each
of which is modelled with a forward solver to determine a scattering response.
Afterwards, some classical search method, such as a straightforward grid search
is used to traverse the library in order to locate desirable metasurface shapes.
This idea is criticized as being inefficient and time-consuming, both due to the
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time cost of running many numerical simulations as well as the common over-
reliance on trial and error or empirical reasoning in the search method which is
not sound when applied to the highly nonlinear problem of multiple scattering in
metamaterials[21][20]. These approaches can be used as a baseline to compare
against those considered here in terms of performance.

Evaluating a neural network in the forward direction is typically an inexpen-
sive operation compared to running a numerical solver. Thus, once the network
is trained, scientific machine learning methods outclass all others in terms of
performance. But the true performance cost is derived from the training, and
depends on the size of the body of training data. Because a numerical solver
must be used to generate the training data, more training data means more use
of the solver. Although this is a one-time cost after which the network can be
trained multiple times on the same data, the cost of training also scales with
the size of the training corpus.

Because the physical accuracy of the model relies on heavy coverage of the
design space by the training data, when using these methods there is therefore an
unavoidable and potentially unfavorable correlation between physical accuracy
and cost. Lacking some sort of advanced heuristic approach to adjusting the
density of training data across the design space in advantageous ways, it is likely
that increasing the amount of training data will only have diminishing returns
on solution quality while continuing to impact performance. At some point,
time constraints will impose a cap on the amount of training data which can be
used and with it a cap on the accuracy of the model. Equivalently, this restricts
the number of parameters which can be optimized for by putting a cap on the
size of a design space for which the model can remain reasonably accurate while
maintaining a reasonable execution time.

The magic of the PINN framework is that, by penalizing non-physical solu-
tions, it restricts the space of admissible solutions to a manageable size. Com-
pared to normal machine learning methods applied to the same problem, a
PINN loss function acts as a regularization agent and amplifies the information
content of used data, allowing the PINN to generalize well even when using
much less training data. Only one piece of training data is generated and used,
the desired scattering pattern u, compared to the prior approaches in which
thousands or hundreds of thousands of simulations are required to generate a
massive training corpus. In this small-data regime, most other general machine
learning techniques fail to provide any sort of convergence guarantees[34].

In fact, because the inverse PINN requires no data on the parameters λ which
it predicts, it belongs to the class of methods called unsupervised learning,
to which reinforcement learning also belongs[19].

These features of PINNs enable them to overcome the training data limita-
tions of the previous methods and allows for the prediction of greater numbers
of metasurface parameters. This is clearly seen in the results of Chen et al.[19],
in which the permittivity profile ϵr is predicted at every point on a 150 × 150
square spatial lattice across the domain - 22500 parameters, if considered inde-
pendently.

A downside to the PINN framework is that a single trained PINN does
not function as a general solution to the inverse problem for multiple design
cases. This means that when changing the design goal by, for example, ad-
justing the focal length, the PINN network needs to be retrained. In Chen at
al.[19] the PINN must be retained to predict metasurface parameters for each
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desired scattering pattern. By contrast, networks trained according to meth-
ods from scientific machine learning are able to predict geometrical parameters
for numerous devices of differing goals without needing to be retrained. In An
et al.[20], the authors are able to predict metasurface parameters for a great
number desired phase profiles with repeated evaluations of the same meta-filter
design network, without retraining needed in between each.

If designs for many diverse devices are routinely required and the network is
forward evaluated many times, this is highly computationally efficient. This is
rightly cited as a performance boon. However, if the number of devices needed
to be designed is small, this provides virtually no upside.

How can the topology optimization approach be brought into the perfor-
mance discussion? Algorithmically, there are some overlapping areas for which
strong comparisons can be made between all three discussed methods. In all
three, an iterative optimization is performed for some parameters. In the case
of the scientific machine learning methods, it is the backpropagation process
to find network weights and biases. For a PINN, the geometrical metasurface
parameters are included alongside these. For topology optimization, it is the
normal gradient descent to find metasurface parameters. As discussed in sec-
tion 5, this comparison has interesting implications for the interoperability of
the methods.

But how can these processes be compared? What is the cost of each iter-
ation, and how many iterations are required? A PINN attempts to optimize
the greatest number of parameters - both the network parameters as well as
metasurface parameters. Yet, due to the size of the training data required, the
training iterations of the scientific machine learning methods are likely to be
the most expensive of the three. In addition, due to the efficient use of the
boundary conditions to restrict the design space, it is possible but not certain
that a PINN will outclass these methods in terms of the number of training
iterations required to reach a suitably accurate model.

When it comes to the topology optimization approach, the performance
comparison is less straightforward. It could be theorized that the cost of one
iteration of gradient descent may be cheaper than one PINN training iteration
because the number of parameters being optimized, and therefore the number
of gradients needed to be calculated, is smaller in the case of topology opti-
mization. However, the question of how many such iterations is required for
convergence has no clear answer without analytical knowledge about the shape
of the loss function, the lack of which motivates the entire search for an opti-
mization method. Ultimately, the answers to these questions are likely to be
application specific, with the optimally performant solution possibly only be-
ing able to be determined via experimental comparison, exploration of efficient
implementations, and optimization of model hyperparameters.

4.4.3 Applicability to CoPILOT Design Problem

All three of the discussed method classes are sufficiently general in order to
be applicable to the CoPILOT lens design problem, but the advantages and
disadvantages of each with regards to physical accuracy and computational per-
formance must be considered. Physical accuracy is of course a primary concern,
without which a method is not viable. And because the problem requires the
optimization of a large number of geometrical lens parameters, computational
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efficiency is perhaps even more important - without it, a given method may
simply be unable to handle the scale of the problem.

The primary upside of scientific machine learning compared to the others is
the speed of model evaluation for many designs. However, for CoPILOT, only
two design cases exist, meaning that this advantage is wasted. In consideration
of the other problems these methods face with accuracy and performance in
comparison to the others, this makes these methods less suited to the design
problem at hand.

PINNs present a very flexible and powerful framework better suited to sin-
gle device designs. However, in terms of implementaion complexity, they carry
some problems compared to topology optimization. The core of the PINN is
the framing of a loss function in terms of boundary conditions to a PDE which
is descriptive of the physical problem. But in the CoPILOT case, these condi-
tions take the form of reflection and transmission coefficients on the material
boundaries between device layers, as seen in RCWA. This means that the for-
mulation of the boundary conditions, and therefore the loss function, changes
as the metasurface shape is optimized. There is also the question of how to
take advantage of RCWA in this context. A PINN seeks to replace a numeri-
cal forward solver with a trained network, but this is done primarily because a
differentiable version of a conventional forward solver is not presumed to exist.
In the CoPILOT case, such solvers actually do exist, in the form of RCWA
implementations using AD or the adjoint state method. What is then unclear
how this can be optimally used in conjunction with a PINN - perhaps part of
the network can be replaced with known operations from RCWA.

Good solutions to these problems will likely only arise after long periods of
development and experimentation. For this reason, a PINN approach is less
viable for projects under more limited time constraints.

As seen in the next section, the final implementation arrived upon relies
mostly on the topology optimization approach, while also adopting and exper-
imenting with ideas from PINNs. Topology optimization has been shown in
the literature to be generalizable to many applications in metaoptics, flexible
enough to take advantage of diverse techniques including AD, and powerful
enough to handle many metasurface parameters, making it the most well suited
to the CoPILOT problem.

5 Lens Optimization Implementation

In this section, a detailed description of a working optimization method for pro-
ducing quality, admissible solutions to the CoPILOT metamaterial lens design
problem is given. This method is based primarily on the topology optimization
approach described in the previous section, but certain features and algorithmic
improvements take inspiration from the PINN and scientific machine learning
approaches. The method was implemented over the course of a few months
as part of this thesis project and is available for use as an easily configurable
python library. All source code and Jupyter notebook examples can be found in
the public Github repository https://github.com/deveringham/metalens_

optimization.
First, a pseudocode overview of the method is given. After this, important

choices made in its design are explained and motivated. Next, important tunable
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model hyperparameters are listed and described. The interactions between these
parameters are explored, and the grid search method used to find their optimal
values is introduced. Finally appears a brief exploration of implementation
ideas which did not make the final cut, either because they did not work for this
application or were outperformed by other ideas. This entire section is written
keeping in mind the future student or researcher working on a similar problem,
in the hope that a detailed description of the work that went into this project
may help them with theirs.

5.1 Complete Algorithm Overview

A psuedocode sketch of the complete metasurface lens optimization algorithm
is given below.

1 def op t im i z e dev i c e ( ) :
2
3 # Get the i n i t i a l guess .
4 H = in i t me t a s u r f a c e ( i n i t i a l h e i g h t = h i )
5
6 # Define op t imizer .
7 opt = opt imize r .Adam(H, l e a r n i n g r a t e = L)
8
9 # I n i t i a l i z e the sigmoid c o e f f i c i e n t .

10 S = 1 .0
11
12 # Optimize .
13 for i in range (N) :
14
15 # Do forward pass , c a l c u l a t i n g l o s s .
16 l o s s = l o s s f u n c t i o n (H, S , r f , w 1 , w 2 )
17
18 # Calcu la t e g rad i en t s us ing AD.
19 l o s s . backward ( )
20
21 # Apply g rad i en t s to p i x e l h e i g h t s .
22 opt . s tep ( )
23
24 # Increase the sigmoid c o e f f i c i e n t .
25 S += ( S f / N)
26
27 # Round o f f to a f i n a l , admiss i b l e , s o l u t i on .
28 H = torch . round(H)
29
30 # Return the f i n a l metasurface r ep r e s en ta t i on .
31 return H

The parameters L, N , Sf , hi, rf , w1, and w2 are model hyperparameters
which affect the behavior of the algorithm and the obtained results but not its
basic structure or physical accuracy. A description of each is given in section 5.3.
The function init metasurface generates the initial guess for the metasurface,
and is described there along with hi. The choice of loss function, denoted
here simply as loss function, is described in the section on implementation
considerations.

An optimizer object is instantiated in the psuedocode, which represents an
interface to an implementation of some standard optimization method. Specif-
ically, the Adam algorithm is used, which is a computationally efficient and
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memory-light stochastic optimization method named after its core innovation
of adaptive memory estimation [38]. Adam has a convergence bound compara-
ble to other common methods, can outperform such methods for a wide class of
objective functions, and even scales well to high-dimensional problems. These
features, especially the low memory usage, make it well-suited for use on the
CoPILOT problem.

The pseudocode also relies on an interface to an algorithmic differentiation
framework on lines 19 and 22. It is similar to that which would be used in order
to implement the code using TensorFlow[31] or PyTorch[39]. In practice, two
implementations were produced, each taking advantage of one of these frame-
works, and their performance was compared. The results of this comparison are
discussed in section 5.2.3.

The original version of the rcwa tf solver, utilizing TensorFlow, is the only
part of this algorithm which has not been created as part of this project. It has
been heavily modified for use on the CoPILOT problem, and its port to Py-
Torch, described in section 5.2.3, is new here. In addition, all parts described in
the following sections, including the formulation of the metasurface, the differ-
entiable thresholding strategy, the formulation of the loss function, the memory
optimization strategies, and the hyperparameter tuning strategies, are original
work.

5.2 Implementation Considerations

Consider the topology optimization approach as applied to the CoPILOT lens
design problem. A differentiable RCWA solver, implemented with TensorFlow
so as to provide access to its gradients via AD, is given by Colburn and Ma-
jumdar in the form of their library rcwa tf [23]. The most naive method, then,
is using a straightforward gradient descent to optimize the geometrical lens pa-
rameters, namely the heights of each pixel.

In such a method, at each optimization step, the current best device is
represented as a 2-dimensional array of pixel heights. A forward simulation of
the current device produces an image of the electric field intensity on the focal
plane. Then this image is fed to a loss function, which outputs a loss value which
characterizes the quality of the solution. A backwards pass of AD provides the
gradients of this loss with respect to the pixel heights. These gradients can
then be applied to current heights to produce a next best guess. This process is
iterated until the loss converges. What implementation considerations must be
taken into account in order to adapt such a method to the problem at hand?

5.2.1 Forcing Admissible Solutions

The first issue is that this naive method does nothing to ensure that the solutions
it produces adhere to the manufacturing constraints. The most important of
these is the requirement that the pixel heights take on only one of 6 possible
discrete values. Because the shape of the surface is formulated in terms of pixel
heights rather than layers, this requirement also enforces of the ”no tunnels”
rule. Solutions which adhere to this requirement can be called admissible
solutions.

In the naive approach, heights at each step must be represented as floating
point values in order for their free optimization via gradient descent to make
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sense. By contrast, heights in an admissible solution can be represented as inte-
gers. While methods for discrete optimization of integers exist, these are not in
general compatible with gradient descent, typical machine learning techniques,
or AD frameworks including TensorFlow and PyTorch. A more flexible idea
is to instead keep the heights as floats during the optimization process, but at
some point to convert or force them towards integers.

The most obvious idea is to conduct unconstrained float optimization and
to simply round off those values to the nearest integer after convergence. How-
ever, while the converged float solution may produce a good result, there is no
guarantee that the nearest integer solution will do the same. In most cases, this
final round-off will produce a significant spike in loss at the final iteration, as
seen in the example learning curve given in Figure 14.

Figure 14: Learning curve for free optimization of metasurface relative permit-
tivity, with admissibility constraints applied once at the end. Note the spike in
loss at the last iteration, when these constraints are applied.

The idea of freely optimizing float heights also faces a problem with the
use of RCWA. RCWA relies on a description of the device being simulated as
consisting of a discrete number of layers with fixed thicknesses. If the height
of each pixel can change continuously at each optimization step, then at each
step the number device layers and their thicknesses can also change - adding
some complication to the process of calculating the gradients. The cost of each
iteration is no longer guaranteed to be stable. In addition, allowing each pixel
to have a unique height leads to the possibility of needing up to n2 + 1 layers
in order to describe the device. Because the computational complexity of a
forward solve in RCWA depends linearly on the number of layers, this situation
quickly becomes computationally intractable.

To address this issue, the float heights can be mapped to another parameter
of the metasurface which can be freely optimized without additional computa-
tional cost. Specifically, the relative permittivity ϵ of each pixel at each layer is
used. A continuous function height to stacked, which maps heights to per-
mittivity values at each layer, can be constructed such that when the height
takes on an integer value, an admissible solution for that pixel is output. For 3
layers, such a function must fulfil
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height to stacked(h) =


[1, 1, 1] for h = 0,
[1, 1, ϵ] for h = 1,
[1, ϵ, ϵ] for h = 2,
[ϵ, ϵ, ϵ] for h = 3.

Here, 1 is the relative permittivity of free space, and ϵ > 1 is the relative
permittivity of the device material. As long as this function is implemented
such that it is continuous for all h ∈ [0, 3], heights can then be freely optimized
without concern as to intractable computational complexity of simulating the
device.

However, solutions must still be restricted to being admissible. This can be
achieved by implementing height to stacked using thresholding, that is, by
rounding off or nudging towards admissible ones at each optimization step. A
successful thresholding strategy must meet two criteria:

• It must not overly restrict the ability of the optimization algorithm. If,
early in the optimization process, the solution is repeatedly thresholded to
a solution which has previously been reached, then the process has gotten
stuck. This is unfavorable because it likely prevents a better admissible
solution from being reached.

• It must be differentiable. In order for AD to successfully return gradients
at each step, every operation executed during the forward pass must be
differentiable. This includes not just the mathematics of the solver but
also the conversion from heights to permittivities and any thresholding.

These requirements immediately rule out any round-off operations, as they
are not differentiable. A differentiable alternative is the sigmoid function,
given by

Sig(x, S, a, b) =
a

1 + e−S(x−b)

where a gives the maximum height of the sigmoid curve, b gives its horizontal
translation, and S governs the horizontal scaling of the curve or, equivalently,
its slope in the transition region. In the rest of this description, S is simply
called the sigmoid coefficient. The sigmoid function is plotted in Figure 15
for a few values of S.

Sigmoid functions are commonly used in neural networks as activation func-
tions and to introduce nonlinearity into a model. In this application, a sigmoid
function can be used to differentiably ”nudge” a solution towards an admis-
sible one, with the magnitude of the solution restriction being related to the
magnitude of S.

Several properties of the sigmoid function make it suitable for this role.
Firstly, the sigmoid function maintains the side of the transition region on which
each of its inputs occur. By that, it is meant that

for xout = Sig(xin, S, a, b),

xout =

{
> a

2 , if xin > b, and

< a
2 , if xin < b.

.
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Figure 15: Sigmoid function plotted for a = 1, b = 0, and several values of S.

That is, for points xin which lie to the left of the transition at x = b, the
output xout is less than half of the sigmoid curve height a, and the opposite
holds true for points on the positive side of the transition. This property is
useful because it means that for an input float height and an offset b which
is halfway between two admissible integer values, the output height returned
by the sigmoid is always closest to the same admissible value which the input
already was - in other words, the closest admissible value for some input is
invariant under the sigmoid operation.

Another favorable property of the sigmoid function is that this thresholding
behavior becomes more pronounced, continuously, as S increases. As seen in
the figure above, Sig(x, 10, 1, 0) = 0 if x < 0 and = 1 if x > 0, unless x is very
close to 0. When S is large, almost all input values are forced all the way to an
admissible value, in this case, 0 or 1. If the output is then rounded off to a final
admissible solution, the difference will be very small.

A very good solution strategy for the CoPILOT design problem, then, is
to apply differential thresholding operation in the form of a sigmoid function
at each optimization step, while increasing S after each step. This allows for
free optimization of the heights early in the optimization process, and gradual
forcing towards an admissible solution as the process progresses. This results in
a learning curve like shown in Figure 16, where the quality of the solution, as
characterized by a small loss value, increases early on, then eventually converges
to a lower quality but admissible solution as the sigmoid coefficient is annealed.

To realize this idea in practice, a differentiable form of the function height to stacked

is implemented using several sigmoid functions. For 3 layers, it takes the form

diff height to stacked(h, S) =

[ 1 + Sig(h, S, ϵ− 1,
1

2
), 1 + Sig(h, S, ϵ− 1,

3

2
), 1 + Sig(h, S, ϵ− 1,

5

2
) ]
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Figure 16: Learning curve for optimization with differential thresholding and
sigmoid coefficient annealing. Note the smoother final convergence behavior vs.
Fig. 15, but with the tradeoff of loss increase in the middle of the curve due to
steadily increasing the admissibility forcing.

=


[1, 1, 1] for h = 0,
[1, 1, ϵ] for h = 1,
[1, ϵ, ϵ] for h = 2,
[ϵ, ϵ, ϵ] for h = 3.

The choice of b in each term horizontally translates the sigmoid such that
the transition region is halfway between two admissible values. This function
can be simply extended with additional terms for devices with more layers.

5.2.2 Choice of Loss Function

Of course, in order to perform an optimization iteration, a loss function must
be defined. This function should take a height representation of a CoPILOT
metasurface and return a float value representing the quality of that solution. A
higher quality solution should correspond to a smaller return value, and in order
to find an optimal solution, the loss should be minimized. At each optimization
iteration, the gradients of this loss value with respect to the pixel heights are
calculated during the backwards step of AD, and these gradients can be ap-
plied to update the heights. The choice of a loss function therefore affects the
optimization algorithm greatly is and is the second important implementation
consideration.

CoPILOT’s near field and far field design cases, while requiring different
focal distances, share the goal of maximizing the focusing of light at the center
of the focal plane. Assume access to a differentiable function solve(M), which
uses RCWA to solve the scattering for a metasurface described by the given 3D
tensor of relative permittivities M and returns a matrix representing electric
field intensity at some physical sampling rate on the focal plane. Such function-
ality is provided by the rcwa tf solver[23]. Then, a loss function which encodes
the proper optimization goal simply converts a given matrix of pixel heights H
to a permittivity representation M using diff height to stacked, passes the
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result to solve, and returns the negative sum of all focal plane intensity values
within some small distance r of the center.

1 def l o s s f u n c t i o n (H, S , r ) :
2
3 # Convert h e i g h t r ep r e s en ta t i on o f metasurface
4 # to s tacked rep r e s en ta t i on s u i t a b l e f o r so l v e r ,
5 # using d i f f e r e n t i a b l e t h r e s ho l d i n g .
6 M = d i f f h e i g h t t o s t a c k e d (H, S)
7
8 # Solve f o r s c a t t e r i n g from metasurface .
9 f o c a l p l a n e = so l v e (M)

10
11 # Sum e l e c t r i c f i e l d i n t e n s i t i e s around
12 # center o f f o c a l p lane .
13 i = f o c a l p l a n e . shape (0 ) / 2
14 return −1 ∗ sum( f o c a l p l a n e [ i−r : i+r , i−r : i+r ] )

Figure 17: Diagram of loss function for rf = 200. The units are in terms of
the physical sampling rate used by the solver. An example scattering pattern
from an optimized lens, shown on the 5mm × 5mm region of the focal plane
immediately behind the device, is used as the background. A large rf is chosen
for visual clarity. In practice, a much smaller value around 10 is chosen.

This loss function incentivizes intensity at the focal spot. The matrix slicing
on line 14 selects for only the square region of width and height r in the center
of the focal plane, as seen in Figure 17.

A slightly more sophisticated loss function also disincentivizes intensity else-
where:

1 def l o s s f u n c t i o n (H, S , r , w 1 , w 2 ) :
2
3 # Convert h e i g h t r ep r e s en ta t i on o f metasurface
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4 # to s tacked rep r e s en ta t i on s u i t a b l e f o r so l v e r ,
5 # using d i f f e r e n t i a b l e t h r e s ho l d i n g .
6 M = d i f f h e i g h t t o s t a c k e d (H, S)
7
8 # Solve f o r s c a t t e r i n g from metasurface .
9 f o c a l p l a n e = so l v e (M)

10
11 # Sum e l e c t r i c f i e l d i n t e n s i t i e s around
12 # center o f f o c a l p lane .
13 i = f o c a l p l a n e . shape (0 ) / 2
14 l o s s 1 = −1 ∗ sum( f o c a l p l a n e [ i−r : i+r , i−r : i+r ] )
15
16 # Sum e l e c t r i c f i e l d i n t e n s i t i e s everywhere
17 # excep t around center o f f o c a l p lane .
18 l o s s 2 = w 2 ∗ (sum( f o c a l p l a n e [ : , 0 : i−r ] )
19 + sum( f o c a l p l a n e [ : , i+r : −1])
20 + sum( f o c a l p l a n e [ 0 : i−r , i−r : i+r ] )
21 + sum( f o c a l p l a n e [ i+r :−1 , i−r : i+r ] ) )
22
23 # Final l o s s i s weighted sum of the se
24 # two terms .
25 return w 1 ∗ l o s s 1 + w 2 ∗ l o s s 2

The slicing on lines 18-21 selects the region of the focal plane everywhere
except the square used in the first term, like shown in Figure 18.

Figure 18: Diagram of improved loss function for rf = 200.

The focal spot radius r and the loss term weights w 1, w 2 are now method
hyperparameters. When changed, they affect the optimization algorithm, but
not the physical accuracy of the method, and may lead to changes in convergence
and solution quality. There are a number of other such hyperparameters, which
are discussed in section 5.3.
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5.2.3 Meeting Memory Constraints

A final important consideration has to do with memory performance of the
method. The machine available for this project, a server owned by TU Delft’s
Optics group, possesses an NVIDIA A6000 GPU with 48GB of GPU memory.
Execution of the optimization code on the GPU carries large performance ben-
efits in terms of execution time, as seen in Figure 19. In order to optimize the
CoPILOT devices in a reasonable amount of time, then, it is necessary that the
optimization code is able to operate under this 48GB GPU memory constraint.

Figure 19: Performance comparison of the CoPILOT metalens optimization
algorithm running on GPU vs CPU. For small problems, the overhead of ini-
tializing the GPU dominates, but for larger problems, the speedup due to GPU
parallelization makes it by far the best option.

The most memory intensive part of the optimization algorithm is the com-
putation of the gradients of the pixel heights with respect to the loss during the
backwards mode of AD. The memory consumed during this computation de-
pends on some parameters of the device being optimized, including the number
of pixels in each transverse dimension and the number of layers. It also depends
on some parameters of the RCWA solver, including the number of spatial har-
monics used in the Fourier decomposition and the physical sampling rate desired
of the focal plane scattering pattern. Therefore, the ability of the algorithm to
optimize devices with many pixels and layers while maintaining physical accu-
racy of the simulations at each step depends strongly on the efficiency of its
memory utilization.

The device’s pixel count is particularly relevant. An optical device only
functions as an optical metamaterial if it includes features smaller than the
wavelength of light with which it interacts, and the effect is most pronounced
for materials with features less than 1

3 of the wavelength. Because the CoPILOT
lenslets have a fixed size of 5mm/times5mm, if the metasurface etching is made
to cover the entire surface of each lenslet, then the size of each pixel in each
transverse dimension is the device size in that dimension divided by the number
of pixels in that dimension. Therefore, whether a CoPILOT lenslet displays
metamaterial behavior is dependent on the number of pixels, or the resolution,
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of that device.
Importantly, a large increase in the quality of solutions is seen when passing

this limit, as shown in Figure 20. Therefore, it is imperative for the discovery of
effective lens designs that the algorithm is memory efficient enough to simulate
and optimize large resolution devices.

Figure 20: Comparison of converged solution quality for CoPILOT devices of
different resolutions. The nearfield design case is considered, with hperparam-
eters N = 50, Sf = 10.0, L = 0.8, and hi = 0. These plots show the electric
field intensity produced on the focal plane by an optimized design. The first is
produced by an optimized device with 50× 50 pixels, and at this resolution the
scattering pattern typically reflects the blocky metasurface shape. The second
come from a device of resolution 100 × 100 pixels, and this behaviour is some-
what reduced. The final device, at 150× 150 pixels, surpasses the λ/3 feature
size limit at which metamaterial behavior emerges, and so is able to produce a
much more favorable scattering pattern.

For the nearfield design case, the source wavelength is 120µm, which gives
a minimum desired lenslet resolution of 125 × 125 pixels. The farfield case is
slightly more lenient with a source wavelength of 158µm and minimum desired
resolution of 95×95. In each case, the maximum resolution is 250×250, limited
by manufacturing constraints on the minimum etchable feature size.

The first complete implementation of the optimization algorithm was unable
to meet these requirements, being only able to simulate a 75 × 75 device with
7× 7 spatial harmonics before using up all available GPU memory. Therefore,
some clever approaches to reducing memory usage by AD were required.

Firstly, the memory efficiency of the algorithm was compared when using dif-
ferent AD frameworks. The rcwa tf solver, originally written to take advantage
of the TensorFlow for AD, was rewritten using the alternative framework Py-
Torch[39]. It was found that, even without any high-level algorithmic changes,
PyTorch was more memory efficient on the GPU for this problem.

It is not surprising that TensorFlow and PyTorch perform differently. Their
efficiencies, both in terms of execution time and in terms of memory utilization,
are independent due to differences in the underlying AD implementations and
mathematical implementations of various operations. Thus, which framework
performs better is expected to be highly application-dependent.

For both frameworks, the GPU memory utilization of the code can be mon-
itored using the NVIDIA System Management Interface utility (nvidia− smi).
By breaking the solver into many small steps and measuring memory usage
after each during the AD backwards step, the most memory-heavy operations
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can be identified. For the rcwa tf TensorFlow implementation of RCWA, one
operation alone used nearly 50 percent of all memory used by the program. This
was a matrix exponential operation, defined as

eA =

∞∑
k=0

1

k!
Ak

The matrix exponential plays a key role in the solution of differential equa-
tions, and thus has been used in many wide-ranging applications and been the
subject of a large amount of literature. In RCWA, it is necessary for construct-
ing the scattering matrix after solving the matrix wave equation for the complex
spatial harmonic amplitudes within the device. For this calculation, TensorFlow
uses a form of the scaling and squaring method using Padé approximations,
which derives from the 2005 SIAM article of Higham[40]. PyTorch’s implemen-
tation is instead based on a version of the scaling and squaring method which
uses a Taylor expansion of the exponential rather than Padé approximants, and
originates from the 2019 paper of Bader et. al.[41]. Bader claims that this im-
provement reduces the number of required matrix calculations while maintaining
comparable error estimates.

Because fewer matrix calculations in the forward solve corresponds to fewer
results needed to be stored in order to calculate gradients, using the Taylor ex-
pansion method for the matrix exponential leads to improved memory utilization
when calculating gradients. This one change was found to be responsible for the
majority of the difference in memory consumption between the TensorFlow and
PyTorch implementations of the metalens optimization algorithm. The remain-
der of the difference is likely due to differences in the implementations of other
heavy operations required by RCWA, such as the eigenvalue decomposition and
Fourier transforms.

Next, a technique called gradient recompute checkpointing is used to
optimize AD for reduced memory consumption. Recompute checkpointing is
commonly used to reduce memory usage during the training of deep neural
network in order to enable increased model sizes. However, because recompute
checkpointing takes advantage of the computational graph underlying AD used
for DNN training, it is also applicable to any algorithm which relies on AD,
including the metalens topology optimization algorithm. Both TensorFlow and
PyTorch provide implementations of recompute checkpointing.

For an algorithm consisting of n sequential, differentiable operations, the
computational graph used by AD for computing the gradients of algorithm’s
outputs with respect to its inputs is depicted in Figure 21.

Here, A0 is the algorithm’s input, Bn is its output, and B0 is its computed
gradients dBn

dA0
. In order to calculate Bn during the forward pass, all forward

operation nodes f must be evaluated. Then to calculate the backwards nodes b
and the final gradients B0, the outputs of the f nodes are required. Therefore,
they must be stored during the forward pass, and can only be released when
the backwards step has progressed far enough such they are no longer needed.
This storing of intermediate results is the source of memory usage during AD.

For a simple feed-forward DNN, the f nodes correspond to the network
layers. If each layer is the same size, then memory consumption grows linearly
with the number of layers n, or equivalently can be said to be of order O(n).
The number of calculations performed and the execution time is also of order
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Figure 21: Diagram of computational graph for computing gradients of an ar-
bitrary function. The function represented here is composed of 4 differentiable
steps or operations. Each is represented by a forward node f and a backwards
node b.

O(n). For the RCWA solver, each f represents an intermediate result reached
after some calculation. Each result may be of a different size and require more
memory to store, and therefore are not all of equal weight. This was clearly
seen with the particular heaviness of the matrix exponential step.

By choosing to recompute intermediate results instead of storing them,
tradeoffs can be made between computational efficiency and memory usage.
Consider first the memory-poor backpropagation strategy, in which all
nodes are recomputed during the gradient calculation. Using this method, mem-
ory consumption is capped at a constant O(1), determined by the single heaviest
operation. However, the computational efficiency increases to O(n2), which is
intractable for most applications, including lens optimization.

A suitable middle ground between the normal backpropagation strategy and
the memory-poor version exists the the form of checkpointing. Here, specific
nodes are selected as checkpoints, and only the intermediate results of these
f nodes are stored during the forwards pass. As the backwards pass progresses,
nodes are recomputed and results stored until a checkpointed f node is reached,
at which point all nodes so far recomputed can be cleared from memory. Each
node is recomputed at most once, and the maximum memory usage is limited
by the distance between checkpoints.

For the feed-forward DNN with uniformly sized layers, it is optimal to check-

point every
√
n

th
node. Then, the number of nodes between each checkpoint,

and therefore also the memory usage, is on order O(
√
n). This is a marked

improvement compared to the original O(n). In this simple case, the optimal
checkpoints can be chosen automatically. In general, the checkpoints must be
selected manually, and optimal checkpointing depends on the relative weights
of each computational step. If the total amount of work done in one run of the
program is m, then optimally the checkpoints should divide the program into
subroutines which each perform work on the order of O(

√
m).

For the lens optimization algorithm, finding good checkpoints is a matter
of trial and error. Several ideas were tried, including checkpointing alternating
steps in the RCWA algorithm and subdividing heavy calculations like the ma-
trix exponential. The total achieved memory usage reduction of the PyTorch
version of the algorithm with gradient recompute checkpointing was significant
enough to allow for optimization of sufficiently high-resolution devices in both
the nearfield and farfield cases, as shown in Figure 22.
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Figure 22: Final memory usage comparison of the AD frameworks, for the
CoPILOT metalens optimization algorithm. Gradient recompute checkpointing
was used for both frameworks. For devices with a resolution higher than about
75, the TensorFlow representation runs out of memory on the NVIDIA A6000
GPU.

5.3 Tuneable Hyperparameters

The output of the complete lens optimization algorithm also depends on a few
model hyperparameters which affect the optimization process but not the
physical validity of the results. Because the loss function used in this optimiza-
tion model is highly nonlinear, there are many local minima, which correspond
to different solutions of varying quality. The choice of hyperparameters may
determine which of these solutions is reached, and therefore finding the best
solutions requires careful tuning of their values. The most important model
hyperparameters and their interactions are described below.

• Learning Rate L
The learning rate is a parameter of the Adam algorithm for stochastic
gradient descent which is at the core of the lens optimization algorithm.
It is a coefficient multiplied with the calculated gradients which determines
the size of the step which is taken at each step.
A larger learning rate means that pixel heights are adjusted more at each
step and a greater distance in the design space is covered. As a result, it
opens up the possibility of finding minima which are global over a larger
area of the design space. This can mean, however, that good local minima
are skipped over. In addition, if the learning rate is very great, it can lead
to chaotic behavior and failure to converge.
A small learning rate means that pixel heights are only adjusted slightly at
each step. This means that the algorithm will certainly not skip over any
local minima it encounters. However, these local minima may actually be
poor choices compared to some others which might be discovered with a
larger learning rate. Also, a very small learning rate means the algorithm
may take many steps to converge. The best learning rate is a middle value
which balances these tradeoffs. Ideally, The learning rate is large enough
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to allow the algorithm to skip over undesirable local minima, while being
small enough to avoid chaotic, nonconvergent behavior.

• Maximum Iterations N
N is the maximum number of optimization steps that the algorithm takes
before rounding off the pixel heights to admissible values and returning
the final solution. The effect of N on the method’s behavior is closely
related to both the learning rate and the sigmoid coefficient.
If N is very great, the algorithm takes more steps and explores more of the
design space. This may allow for convergence even with a smaller learning
rate. It also allows for forcing solutions to be admissible at a greater rate
while still maintaining freedom of optimization early in the algorithm, as
discussed in relation to S below. In general, increasing N should produce
higher quality solutions.
However, greater N means more iterations and therefore a greater compu-
tational cost and execution time. An ideal N is large enough to allow for
exploration of a sufficiently large area of the design space and sufficiently
smooth forcing of admissibility while not making the execution time of
the algorithm unacceptably long.

• Sigmoid Coefficient S
The sigmoid coefficient, as described in section 5.2.1, is a parameter which
describes how much a solution is forced to adhere to manufacturing and
design constraints at each optimization step. The central idea of the CoPI-
LOT lens optimization approach is to start with a small S and gradually
increase it as optimization proceeds. This lets the method first freely
discovery good, non-admissible solutions, and then converge to the admis-
sible solutions which is closest in the design space.
A final value of the sigmoid coefficient, Sf , is chosen, and then the coeffi-
cient is updated at each step using the formula

S += Sf/N

The initial values of S is set to 0.1. Then, Sf essentially represents the
amount that solutions are forced towards admissibility at the final op-
timization step, before all pixel heights are actually rounded off to the
nearest admissible integer values.
If Sf is very large, then this rounding-off operation is likely to not produce
much change in the solution, which is good for the stability and conver-
gence of the algorithm. On the other hand, a large Sf means that the
sigmoid coefficient is increased by a greater amount at each step and so-
lutions are more rapidly forced towards admissible ones. This interferes
more in the free optimization part of the algorithm, and may prevent dis-
covery of better solutions.
If Sf is small, then the forcing of admissibility is slow and smooth, meaning
that the free optimization is less constrained and perhaps more likely to
discovery better solutions. But this also means that the final rounding-off
operation may induce greater error, leading to unpredictable and incon-
sistent results.
Ideally, some intermediate Sf is chosen which allows good solutions to be
discovered while minimizing error in the final rounding operation. The
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best value is likely related to the maximum number of iterations N . A
greater N allows greater Sf , because the rate of admissibility forcing scales
inversely with N .

• Initial Height hi

The results of the optimization are also sensitive to the initial guess used
for the pixel heights. The simplest guess is to start all pixels at one uni-
form height, which can be expressed as an integer hi.
If hi = 0, this corresponds to the initial device having 0 pixel height every-
where - in other words, it begins as a flat surface and pixels of material are
”stacked” on top as optimization proceeds. If instead hi = (#Layers−1),
then the initial device is flat at the maximum pixel height, and space is
instead ”etched” into that surface as optimization progresses.
Another option is random initialization. Here, the initial pixel heights
are chosen independently and randomly. With this option enabled, the
optimization algorithm can be run many times, with the same hyperpa-
rameters enabled, and different results will be reached.
Without having detailed knowledge of the shape of the loss function, it
is not possible to predict which initial guess will enable the algorithm to
reach the best possible solution. It is possible, also, that the best initial
guess is different even for different selections of the other parameters L,
N and S. Therefore, this is a parameter for which several values should
be tried for each choice of other hyperparameters.

• Focal Spot Radius rf
The focal spot radius determines the size of the region in the center of
the focal plane in which greater electric field intensity is incentivized by
the loss function. The ideal solution has a minimal focal spot radius, with
all light focused precisely at the center of the focal plane. However, the
smaller that rf is, the more sensitive the loss is to small changes in the
metasurface. This means that for very small rf , the optimization process
may be more chaotic and have issues with convergence, unless the learning
rate is very small or N is very large. In addition, it is possible that an
”ideal” solution, in the sense of focusing maximal light within a minimal
radius, does not exist. In the worst case, the loss function written with rf
may not even be convex. In other words, using a minimal rf may make
the algorithm more unstable for no upside.
Therefore, a non-minimal rf should be chosen in order to trade the pos-
sibility of finding perfect solutions in favor of algorithmic stability.

• Loss Weights w1 and w2

As discussed in section 5.2.2, when multiple terms are used, they should
be combined in a weighted sum. The weights used for each term are
then hyperparameters which affect the shape of the loss function. Here,
w1 corresponds to the first loss term, which incentivizes light focusing at
the center of the focal plane, and w2 corresponds to the second, which
disincentivizes light scattering elsewhere. If w1 = 0 or w2 = 0, then the
corresponding loss term is simply left out.
In theory, including the second loss term disincentivizes solutions which
focus a lot of light at the center of the focal plane, but also have significant
secondary focal spots elsewhere. For CoPILOT, such solutions are not
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desireable because the secondary focal spots may result in light scattering
into other instruments and impacting their performance in unpredictable
ways. However, as with rf , the choice of values for w1 and w2 affect the
shape of the loss function, and so some choices may lead to algorithmic
instability and issues with convergence.
Early testing showed no significant improvement in solution quality when
including the second loss term. It is possible that it is simply a physics-
based feature of the loss function that solutions which centrally focus light
do not also coherently focus light in secondary focal spots. In other words,
the type of solutions which the second loss term seeks to disincentivize may
not actually be physically possible anyway. In order to avoid any potential
complications from including the second term, w2 was then set to 0 and
w1 to 1 for all future runs.

5.3.1 Hyperparameter Grid Search

The simplest and most common method for tuning hyperparameter values in
machine learning applications is a grid search. This involves defining a search
space of possible hyperparameter values, and selecting a ”grid” of values within
the search space which will be tried. Then each position on the grid is one
possible selection of hyperparameter values. Then the model is trained and
evaluated using the values from each grid point, and the results are compared
using some evaluation metric in order to determine the most effective hyperpa-
rameter choices.
A script for the grid search was implemented which runs the CoPILOT lens
optimization algorithm many times for different hyperparameter searches. The
results for each run are written to individual log files, which can later be read
in order to compare the quality of solutions. Each run is defined by a choice of
L, N , Sf and hi, leading to a 4-dimensional grid.

Increasing the resolution of the grid, that is, increasing the number of hy-
perparameter values to try, is likely to increase the quality of the best solution
found. However, it also increases the cost of the entire grid search. In addition,
choice of N in particular impacts the cost of each individual optimization run,
meaning that choice of N on the grid must be capped at some reasonable value.
In the end, a suitable grid was selected based on early tests, and the grid search
was run for several days for each of the CoPILOT design cases. The specific
grid used and the results of the search are detailed in the results section.

5.4 Evaluation and Comparison of Solutions

Analysis of the results of the hyperparameter grid search relies on a way to com-
pare the solutions returned by each optimization run. Therefore some evaluation
metric is required in order to quantify the quality of solutions.

In typical machine learning and optimization applications, evaluation met-
rics are distinct and different from the loss function used during training. This
is usually because the desired evaluation metric is not able to be easily used
as a loss function for some reason. It may be non-differentiable, discontinuous,
non-convex, too complicated to be implemented in the context of the training
loop. For example, in an image classification problem, cross-entropy loss may
be used for training but model accuracy used for an evaluation metric.
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The CoPILOT problem, however, specifies a design goal which can be simply
and differentiably implemented as a loss function. This is the loss function as
already defined: the sum of electric field intensities around the center of the
focal plane. Therefore, this function can be used both as an evaluation metric
and the loss function minimized during optimization.

Therefore, to compare solutions generated during the hyperparameter grid
search, the final, admissible solution can simply be passed once more to the
loss function and the computed loss used as an evaluation score. Because loss
is minimized, during optimization, a smaller evaluation score corresponds to a
higher quality solution.

A secondary, optional, evaluation metric can be formulated in terms of the
diffraction limit of the produced devices. The diffraction limit of an optical
system is a principal, theoretical limit on its angular resolution based on the
source wavelength and the device’s numerical aperture. It is formulated as

d =
λ

2 ·NA
=

λ

2n · sin(θ)
Here λ is the source wavelength, n is the index of refraction of the device

material, and θ is half angle subtended by the optical objective lens. That is, if
the total transverse width of the device is l and its total longitudinal thickness is
t, then θ = tan−1(l/2t). The quantity 2n·sin(θ) is called the device’s numerical
aperture or NA.

For an imaging device, d gives the minimum resolvable distance of observable
features. For a scattering device such as a CoPILOT lens, this corresponds to
the minimum half-width of the central gaussian in the focal plane transverse
intensity profile. For any particular CoPILOT device with some such half-width
w, it must hold that d < w. Furthermore, the closer that w is to d, the closer
that the device is to functioning as a theoretically ideal ”diffraction-limited”
device. Thus, it is suitable to use the ratio |wd | as another evaluation metric,
where a larger score indicates a better solution.

In section 6, this diffraction limit metric is applied to compare some of the
higher-scoring solutions with regards to the loss function metric.

5.5 Ideas which Did Not Work

In the process of producing the working lens optimization algorithm implemen-
tation, many ideas were tried which were ultimately left on the cutting room
floor. Some were not practical to implement, others led to poor results, and
others still seemed conceptually interesting while not panning out in practice.
In this section, a few of these ideas are described in order to give some insight
into the implementation process for future students.

• Optimization Directly via Relative Permittivity
Before fully developing the idea of converting between representations of
the metasurface using the function diff height to stacked, the idea was
to directly optimize the relative permittivity of the device at each pixel
rather than the height. This is because rcwa tf required as input what was
called by convention a stacked representation of the metasurface, a 3D
tensor which specifies the relative permittivity of the device at each pixel
and layer. This is as opposed to the height representation, a 2D tensor
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which specifies the metasurface height at each pixel. Because initially it
was not clear how to differentiably convert between these two representa-
tions, an implementation was produced which directly optimized a stacked
representation.
This approach did produce solutions, but had several problems. Firstly,
the number of metasurface parameters was vastly increased versus the
height optimization approach, because there is one parameter per pixel
and per layer rather than only one per pixel. This leads to decreased per-
formance, both in terms of execution time and memory usage.
Secondly, it leads to issues enforcing the CoPILOT manufacturing con-
straints. A height representation is defined in such a way that the ”no
tunnels” constraint is disallowed, but the stacked representation allows
it. That is, a metasurface specified by a stacked representation may have
areas of no material below areas filled with material, something which is
not allowed. Therefore this constraint must be enforced by disincentiviz-
ing tunnels in the loss function. It was found that this, too, was difficult
to implement in a differentiable and computationally efficient way. When
such an implementation was produced, it was then found that this made
the loss function non-convex, leading to poor or no convergence during
optimization.

• Building Device Layer-By-Layer
This problem did not exist, however, as long as the device to be opti-
mized had only one layer. Therefore, an alternative to disincentivizing
tunnels via a loss function term was to instead build the device one layer
a time through multiple, single-layer optimizations. In the first cut of the
algorithm, a single pass was performed, building the layer furthest from
the source first and then progressing upwards. At each layer, only pixels
which contained material on the previous layer were allowed to be filled.
This did work, but led to designs for which upper layers were almost en-
tirely empty. It seemed that the single-pass approach was too drastically
reducing the design space of possible metasurfaces.
Next, a ”cocktail shaker” approach was tried, in which this single pass
of layer optimizations was repeated several times. After the first pass
through the layers, a layer is chosen at random and optimized again, keep-
ing constant the structure of all other layers. Then, all layers above it are
optimized once again, in order, applying the ”no tunnels” constraint. This
is repeated some number N number of times, with a final pass of all layers
starting at the bottom. This did succeed in sometimes producing good,
densely-featured designs, but the algorithm was on the whole unstable.
The quality of solutions depended a lot on the randomness of the layer
selections and not very much on N , instead of smoothly converging as N
increases. This was found to be undesirably unpredictable, and motivated
the development of the final, working algorithm.

6 Lens Optimization Results

In this section, good solutions to the CoPILOT lens design problem, found via
the optimization algorithm and hyperparameter grid search described in the

51



previous section, are presented.

6.1 Near Field Case

The best result found for the far field design case is detailed in Figures 23, 24,
and 25.

Figure 23: Best result found by the hyperparameter search, for the near field
design case. The final scattering pattern on the focal plane, in terms of electric
field intensity, is given (A) as well as cross sections of the scattering pattern
in the transverse directions (C,D). Also given is the learning curve for this
optimization (B).
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Figure 24: Best discovered metasurface
shape for the near field case. Each plot
shows one layer of the device, with trans-
verse dimensions 5mm x 5mm and their
thicknesses listed. The device resolution
is 180 × 180 pixels. The topmost plot
represents that layer which is closest to the
light source, and the bottom-most is the
uniform substrate layer. Yellow pixels mark
locations filled with silicon, while purple
pixels mark locations void of material.

This solution was obtained for learn-
ing rate L = 0.8, maximum iterations
N = 100, maximum sigmoid coefficient
Sf = 10.0, and initial pixel height hi = 3.

There are several remarkable features
of the discovered lens shape - firstly, its
symmetry. Symmetry along the diagonal
axis from the top left to lower right corners
of the design is expected based on the
transverse electric (TE) polarization used
for the source. Full symmetry along both
the x and y axes is not required, but
appears to have been incentivized in this
case.

Nearly all pixels have either the maxi-
mum or minimum possible height. This,
combined with the concentric circles in the
design, causes the lens to resemble a fresnel
lens. This makes sense, considering that
the main benefits of fresnel lenses are that
they can produce short focal lengths while
remaining compact in design compared to
conventional refractive lenses. Apparently,
the error imposed by realizing such a de-
vice under the discretizing manufacturing
constraints is not so great as to negate its
benefits.
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Figure 25: Diffraction limit evaluation metric as applied to the best discovered
solution in the near field design case. For the near field case, the diffraction
limit can be calculated as dnear = λ/2 ·NA ≈ 171.43µm. As seen in the plot,
the half-width of the focal spot gaussian wnear, in both x and y, is ≈ 650µm,
giving a final evaluation score of dnear/wnear ≈ 0.26. While this means that the
device is certainly not acting at the diffraction limit, it is also a nontrivial value,
and is comparable or better to the value obtained for other far field solutions.

6.2 Far Field Case

The best result found for the far field design case is detailed in Figures 26, 27,
and 28.

Figure 26: Best result found by the hyperparameter search, for the far field
design case. The final scattering pattern on the focal plane, in terms of electric
field intensity, is given (A) as well as cross sections of the scattering pattern
in the transverse directions (C,D). Also given is the learning curve for this
optimization (B).
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Figure 27: Best metasurface shape for the
far field case. Each plot shows one layer
of the device, with transverse dimensions
5mm x 5mm and their thicknesses listed.
The device resolution is 180 × 180 pixels.
The topmost plot represents that layer
which is closest to the light source, and the
bottom-most is the uniform substrate layer.
Yellow pixels mark locations filled with
silicon, while purple pixels mark locations
void of material.

This solution was obtained for learn-
ing rate L = 0.8, maximum iterations
N = 50, maximum sigmoid coefficient
Sf = 10.0, and initial pixel height hi = 0.

The first two layers strongly resemble
the best device from the near field case,
consisting of concentric rings of material
reminiscent of a fresnel lens. However, the
center of the design is an empty circle, as
opposed to the filled circle of the near field
case. Also, the near field design has more
irregularities near the edges of the design
as opposed to the far field one.

This design also shows the diagonal
symmetry as expected from the source
polarization. Symmetry along the x and
y axes is also present in all layers except
the 4th, where only the diagonal symmetry
reigns. This may show that x and y axis
symmetry is often, but not always, a
beneficial characteristic for these designs.
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Figure 28: Diffraction limit evaluation metric as applied to the best discovered
solution in the far field design case. In this case, the diffraction limit is dfar =
λ/2 · NA ≈ 225.71µm. As seen in the plot, the half-width of the focal spot
gaussian wfar, in both x and y, is ≈ 450µm, giving a final evaluation score of
dfar/wfar ≈ 0.50. As in the near field case, the best solution is not operating
at the diffraction limit. However, in terms of the diffraction limit metric, this
solution is even more optimal than the best discovered in the near field case,
and again is comparable or better to other results obtained in the far field case.
It is possible that having a nonzero focal length enables better performance in
this metric.

All other solutions found during the hyperparameter grid search runs can be
found in the project’s Github repository at https://github.com/deveringham/
metalens_optimization. In the /results directory, each solution is stored in
a single, JSON-readable file, with the filename identifying the hyperparameter
values used, the device resolution, and the design case.

7 Future Work

While this project has certainly been a success in finding an effective metalens
optimization method and constructing good solutions to the CoPILOT design
problem, there is always room for algorithmic improvement and future work.
In this section, further research questions of interest on the topic of metalens
construction for CoPILOT are listed. Also, additional implementation ideas,
which could not be realized due to time limitations, are suggested.

7.1 Additional Research Questions

Listed here are a few research questions which were not able to be answered
within the limited scope of this project, but which may be of interest to future
students who might continue the work.

Can the solution quality be improved by including some optional
design parameters? Is the computational feasibility of the

optimization algorithm maintained?

As specified by the CoPILOT design constraints, there are a number of extra
lens design parameters which are left to be optionally determined as part of the
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optimization process. It is possible that considering one or more of these, by in-
cluding them in the optimization algorithm, loss function, or evaluation metrics,
may help improve solution quality. The extra design parameters include:

• Lenslet Thickness
The thickness of each lenslet, labeled as d in Figure 2, may be specified
before optimization or left as one additional optimizable parameter. If left
to be optimized, this may be treated as a single additional free geometric
parameter, which is not required to be discretized like the pixel heights.
Because solution methods must already handle a large number of geomet-
ric parameters in the form of the pixel heights, it is unlikely that adding
one more will have a significant effect on performance. However, like han-
dling most of these extra design parameters, it adds some development
cost with no clear promise of improving solutions.

• Single-Sided vs Double-Sided Device
It is possible for two separate topologies to be etched on the transmission
and reflection sides of the device. Doing so would double the number
of geometrical metasurface parameters, leading to significantly increased
cost of optimization. However, this also substantially increases the design
space of possibly lenses, which may lead to the discovery of more effective
designs.

• Single or Multiple Materials
The use of multiple materials, perhaps one per layer, with different in-
dices of refraction, is a possibility. This introduces a single extra free
optimization parameter per layer, corresponding to the index of refrac-
tion of each material. This has a similar additional computational cost as
freely optimizing device thickness, and likely a similar potential payoff.

• Anti-reflective Coating
It is a common practice in optics design to incorporate thin-film anti-
reflective coatings on the surface of devices in order to eliminate stray
light. This can be treated as a single extra uniform layer on the reflection
side of each pixel, with its thickness optionally as another free parameter.
This may be both tricky to implement and computationally heavy, as it
would involve doubling the number of layers in the device in order to allow
for coating on each pixel regardless of its height. However, it allows for
evaluation of whether optimization of the metasurface shape alone can
offer reflection mitigation comparable to using an anti-reflective coating.

Determining which of these optional design parameters are most beneficial
to include in the device optimization method would be both an interesting
exploration of more exotic lens design possibilities and potentially a serious
benefit to the quality of produced lenses.

How sensitive are lens designs to manufacturing inaccuracies and to
the angles of incidence of source waves, and can these sensitivities

be minimized?

It is desirable for lenses to remain effective under source illumination which
is not exactly normal to the device surface. In addition, they should ideally also
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remain effective under slight changes in the width of pixels which might arise
due to nonzero manufacturing tolerances. Therefore, the final research question
concerns the robustness of device performance to these perturbations.

A first step would be to characterize sensitivity to perturbations in source
angle and pixel width. This can be done by starting with a optimized solution,
then applying changes to these values and quantifying the change in device
performance.

A second step would be to incorporate these perturbable parameters as part
of the optimization method in order to minimize solution sensitivity. This could
take the form of additional terms in the loss function. Alternatively, at each
optimization step, simulations of several devices, each representing a randomly
perturbed form of the current device, could be simulated. Then the loss resulting
from each of these designs could be summed for a final loss. Because evaluating
many loss function terms or designs at each optimization step would likely be
computationally expensive, the best strategy might be to use the previously
performed characterization of sensitivities in order to make informed decisions
about which source angle directions and pixel edges are the most sensitive and
should therefore be included in the optimization.

7.2 Additional Implementation Ideas

Finally, there are a few alterations to the successful lens optimization algorithm
which might be considered by a future student.

• Random Initialization
As described in section 5.3, random initialization of the metasurface was
implemented as a possibility for initial guesses. However, this was not
extensively tested, or included as part of the hyperparameter search. Thus,
this remains as an open topic of investigation. During the hyperparameter
search, it was found that solution quality was very sensitive to initial guess.
Therefore, it stands to reason that better solutions may be found for
some initial guess which could be generated randomly. However, For any
random initial guess, the quality of solution that the algorithm reaches
also depends on the selection of other hyperaparameters N , L and Sf .
Therefore, a proper exploration of the benefits of random initialization
probably requires many runs for each hyperparameter selection, and would
take a long time. If resources are available, this is easy to set up and run
over an extended period.

• Exploiting Symmetry
The symmetry of the discovered metasurface designs was discussed in sec-
tion 6. Because some symmetry is expected based on the polarization of
the light source and additional symmetry may be a characteristic of good
solutions, it is possible that restricting the design space to include sym-
metrical designs would reduce the search space, increasing the efficiency
of the algorithm, while not significantly hurting the quality of produced
solutions. If symmetry across both the x and y axes is assumed, then a
2.5mm×2.5mm device can be optimized and then simply reflected across
x and y to produce the final device. Theoretically, this could lead to a
huge speedup, perhaps allowing the device resolution of N to be increased

58



beyond what is currently possible.
However, this is a bit tricky in practice. If the entire 5mm× 5mm device
is simulated via RCWA at each step, then no computations are saved,
even if the device is constrainted to be symmetrical. If, however, only
one 2.5mm×2.5mm device is simulated, performance is increased but the
loss function must then be modified to incentivize focus at a corner of the
focal plane rather than at the center. This seems possible. However, ini-
tial tests showed that the algorithm had trouble producing designs which
could focus well at the corner. In addition, it is probable that in most
cases, each of the 4 corners of the device do not function independently -
that is, one corner device alone will function differently when it is placed
next to the other three. This means that optimizing one corner of the
device and then reflecting it to produce a final design may not actually
result in a convergent algorithm or good solutions.
However, this idea still holds a lot of promise. Maybe the RCWA solver
can be improved to take advantage of symmetry and improve performance.
Or maybe by including slightly more than one quarter of the device in each
simulation, the ability to focus at the corner can be improved. Some al-
gorithmic improvement seems necessary in order to facilitate optimization
of maximal resolution, 250× 250 pixel devices, and something along these
lines seems promising.

• Nonlinear Sigmoid Coefficient Annealing
In the current algorithm, the sigmoid coefficient is increased linearly with
the iteration number. It is possible, however, that this is not optimal, and
that increasing the coefficient according to some other function may allow
better solutions to be reached.
The simplest possibility is to first allow the sigmoid coefficient to remain
at its initial value for some number of iterations before beginning its lin-
ear increase. This allows a longer period of free optimization before the
solution is forced to be admissible, which may result in discovery of better
solutions, similar to the effect of increasing N without actually increasing
the execution time of the algorithm.
Other possibilities are numerous, and require some testing. The coeffi-
cient can be increased exponentially, quadratically, or according to any
arbitrary nonlinear function. An especially interesting option is using a
periodic function, such as a sin or cos curve, and perhaps composed with
another, increasing, function. This may allow for repeated refinement of
a discretized solution.
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