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1 Introduction

In this paper I present my preliminary work towards my MSc thesis project titled
”Physics-Informed Neural Networks and Topology Optimization for the Design
of Flat Metamaterial Space Optics”. The goals of my project are to investigate
and implement methods for the geometric design of flat optical metasurfaces,
with several possible configuration cases and a real-world deployment applica-
tion in space optics.

My work so far has included a review of both literature on useful background
material and projects with similar goals to mine, deliberation with my advisors
on the formulation of the design problem, and planning towards software im-
plementation of possible solutions.
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I begin with an overview of relevant background material on metamate-
rials, methods in computational electromagnetics, and algorithmic differentia-
tion. Then I discuss several similar, previously-completed projects which I found
during my review of the literature, discussing in depth their methods, including
those in physics-based machine learning and topology optimization. Finally, I
overview the framing of my project, list my research questions, asses the appli-
cability of discussed methods, and propose some implementation plans.

This project is part of my MSc in Applied Mathematics at TU Delft, itself
part of the Computer Simulations for Science and Engineering (COSSE) MSc
programme jointly administered by TU Delft, TU Berlin, and KTH.

2 Background Material

In this section, I present introductory discussions on some fields of background
material necessary to construct solutions to my design problem. Because the
lenses I am concerned with are to be made of an all-dielectric metamaterial, I
start by answering what exactly a metamaterial is. Then I formulate and discuss
rigorous coupled-wave analysis, or RCWA, a numerical solver method which I
will be using to simulate wave scattering as part of my design process. Finally,
I introduce algorithmic differentiation, or AD, a mathematical programming
technique which will be essential to the physics-based machine learning and
optimization methods I hope to apply.

2.1 Terahertz Metamaterials

There is no universally accepted definition of the term metamaterial, but it
refers in general to engineered composite materials which may exhibit physi-
cal properties, most notably electromagnetic response, which are not observed
in nature or in their constituent materials. Usually, these properties arise due
primarily to some sub-wavelength-scale lattice structure of the material rather
than directly from its chemical properties.

Metamaterials may possibly exhibit unusual properties such as having a
negative index of refraction for particular wavelengths[1]. They might also be
”left-handed” - that is, inside such a material, electromagnetic waves obey a
”left-hand rule” and can convey energy in the direction opposite to their phase
velocity[2]. This has led to great interest in recent years in their use for devel-
oping novel optical devices, such as ultra-thin flat lenses and collimators[3][4][5]
and hybrid systems for correcting chromatic and spherical aberrations in tra-
ditional refractive lenses[6]. Dielectric metamaterial lenses, or metalenses,
have been developed in recent years with favorable properties such as full phase
coverage[7][8], polarization insensitivity[9][10], high numerical aperture[10], and
dynamically controllable focal length and intensity[11]. Applications for such
devices exist in many fields and include sub-diffraction limit super lenses, cloak-
ing devices, medical imaging, and flat space optics.

In general, the periodicity of the sub-wavelength-scale structure of a metama-
terial is too small for incident electromagnetic waves to scatter between adjacent
elements, and so the wave itself is not resonant. However, when the metama-
terial contains a metallic element, an incident wave may induce an oscillating
current which itself is resonant and emits some response. Such metamaterials
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are called resonant. Other materials, lacking conductive components and reso-
nant currents, are called nonresonant, derive their properties simply from how
their structure scatters incident power, and can have arbitrarily small periodic-
ity. Metamaterials can broadly be divided into these two classes.

In this project, I am primarily concerned with nonresonant terahertz meta-
materials - those which exhibit desirable properties in the terahertz range, usu-
ally defined as 0.1 to 10 THz. The lack of naturally occurring materials and
practical technologies which interact with waves in this frequency band is called
the terahertz gap and has led to great interest in techniques for the develop-
ment of devices which function in this range. In particular I consider the notion
of a dielectric metasurface, a surface of sub-wavelength dielectric structures
whose optical properties are governed by a large number of geometrical param-
eters.

Terahertz metasurfaces are of particular concern to my application in space
optics due to their ability to replace traditional refractive optics. Because their
surface structure is of sub wavelength-scale, they are essentially flat, which can
be favorable over bulky silicon refractive lenslets. Recent advances in micro-
fabrication have not only increased the possible geometric degrees of freedom
for metasurfaces, but have also made it possible to manufacture and test such
devices relatively quickly and to high accuracy, opening up potential for tight-
looped design processes[12].

My project deals with the question of how to effectively and efficiently choose
good parameters of a metasurface for a particular application. In general, the
forward problem, that is, finding how light is scattered by a particular meta-
surface, is well understood. In simple cases it admits analytical solutions, and
is otherwise solved commonly via a number of numerical solver methods for
Maxwell’s Equations. However, the reverse problem of finding an appropriate
lens topology given a desired scattering pattern becomes intrinsically ill-posed
in the presence of multiple light scattering, which is the case when dealing with
metamaterials[13]. This makes normal numerical solver methods for the reverse
problem computationally intractable and necessitates the investigation of more
powerful computational techniques from optimization and machine learning.

Several papers which I discuss later in this review [13][14][15][16][17][18] have
already proposed and implemented such techniques for similar, but not identi-
cal, applications to mine. In order to understand how these techniques work and
decide which to apply, I first need to understand methods to solve the forward
problem.

2.2 Computational Electromagnetics

A key component of most techniques for metasurface design is a method for
predicting a device’s electromagnetic response to some incident wave, that is, a
forward solver. Normally this amounts to solving Maxwell’s equations numer-
ically for approximations of the electric and magnetic field values in the space
around the device. In order to do so, some understanding of computational
electromagnetics is required.

In this section I briefly reintroduce Maxwell’s equations and use them as
a motivation for rigorous coupled-wave analysis, a semi-analytical fast solver
method which I will be taking advantage of in my project.
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2.2.1 Maxwell’s Equations

In the following table I summarize Maxwell’s equations, a set of partial dif-
ferential equations which constitute a model of classical electromagnetics and
underlie all solver methods used to analyze and design metasurfaces. We con-
sider them here in differential form.

Name Statement Explanation

Gauss’s Law ∇ ·E = ρ/ϵ0

Electric flux through a closed
surface is proportional to the
charge enclosed by that surface.

Gauss’s Law for
Magnetism

∇ ·H = 0
Magnetic monopoles do not
exist.

Faraday’s Law of
Induction

∇×E = −dB
dt

A time-varying magnetic field
always accompanies a spatially
varying electric field.

Ampere’s Law
(with Maxwell’s
Addition)

∇×H = J+ ϵ0
dE
dt

The magnetic field induced
around a closed loop is related
to the electric current through
that loop.

Table 1: Statement of Maxwell’s Equations in a vacuum, differential form. Here,
E is the electric field intensity (V/m), H the magnetic field intensity (A/m),
ρ a charge density (C/m3), J a current density (A/m2), ϵ0 the permittivity of
free space (F/m), µ0 the permeability of free space (H/m), and ∇·,∇× the
divergence and curl differential operators.

In the remainder of this section, I consider only propagating E and H fields
with no charge or current sources, so ρ = 0 and J = 0.

A number of numerical simulation methods exist and are widely adopted for
finding approximate solutions to these equations for general incident waves and
devices, including the finite element method (FEM), the finite difference time
domain method (FDTD), and the finite difference frequency domain method
(FDFD). Other methods, such as the one discussed immediately below, rely on
assumptions about the geometry of a scattering device but can gain increased
performance as a trade-off.

2.2.2 Formulation of RCWA

Rigorous coupled-wave analysis, or RCWA, is a semi-analytical method used to
solve Maxwell’s equations for scattering from layered, periodic dielectric struc-
tures, a class of objects which include some metasurfaces. It is considered the
dominant method in the analysis of such structures, owing to its high computa-
tional efficiency[19]. Consider a 3d dielectric structure such as the one depicted
below.

The structure is uniform in the z (longitudinal) direction, and periodic in
the x and y (transverse) directions. A single spatial period of the structure is
called a unit cell. As a ”semi-analytical” method, RCWA seeks to solve for the
response analytically in the longitudinal direction, while solving numerically in
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Figure 1: A layered, periodic dielectric structure.

the transverse directions via discretization in Fourier space.
In order to derive this method, Maxwell’s equations must first be framed in

their time-harmonic form. I will also now consider the solution inside one of the
device layers, with some space-dependent relative permittivity and permeability
ϵr(x, y) and µr(x, y). Note that these parameters do not depend on z because
each of the layers is regular in the longitudinal direction. Because the first two
equations are not time-dependent, they remain unchanged, and Faraday’s Law
and Ampere’s Law become:

∇×E = k0µr(x, y)H̃ and ∇× H̃ = k0ϵr(x, y)E,

where k0 = ω
√
µ0ϵ0, and H̃ = −i

√
µ0/ϵ0H

Here, k0 is the wavenumber corresponding to each harmonic of frequency ω,
and H̃ is the normalized magnetic field intensity. This normalization is helpful
because it eliminates any sign inconsistency introduced with the complex values
and equalizes the amplitudes of E and H.

A complex Fourier series expansion of the material properties ϵr and µr in
the transverse directions can now be taken, leaving the z direction alone:

ϵr(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

am,ne
i(mT1+nT2)r

am,n =
1

ΛxΛy

∫ Λx/2

−Λx/2

∫ Λy/2

−Λy/2

ϵr(x, y)e
−i(mT1+nT2)r dy dx

µr(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

bm,ne
i(mT1+nT2)r

bm,n =
1

ΛxΛy

∫ Λx/2

−Λx/2

∫ Λy/2

−Λy/2

µr(x, y)e
−i(mT1+nT2)r dy dx

T1 = 2π
Λx

x̂ and T2 = 2π
Λy

ŷ are called reciprocal lattice vectors, and

provide a simpler way to write the expansion terms. M and N are the number of
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spatial harmonics in the expansion in the x and y directions, respectively. They
should both be odd and rounded down when divided by 2 so that the expansion
is centered on (m,n) = (0, 0). Λx and Λy are the lengths of the spatial interval
of the expansion in x and y, or equivalently the transverse dimensions of the
unit cell. Following this expansion, all information about the permittivity and
permeability distributions is contained in the Fourier coefficients am,n and bm,n.

The fields can then be expanded as

E(x, y, z) =

M/2∑
m=−M/2

N/2∑
n=−N/2

S(m,n; z)e−i(kx(m,n)x+ky(m,n)y)

H̃(x, y, z) =

M/2∑
m=−M/2

N/2∑
n=−N/2

U(m,n; z)e−i(kx(m,n)x+ky(m,n)y)

where kxy(m,n) = β −mT1 − nT2, and

kx(m,n) = βx −mT1,x − nT2,x, ky(m,n) = βy −mT1,y − nT2,y

This expansion is a representation of the E and H fields as a sum of in-
finite 2d plane waves or spatial harmonics. m and n parameterize the angle
and period of each plane wave, and S and U are their (z-dependent) complex
amplitudes. I adopt the convention that e−ikz represents a wave travelling in
the +z direction.

kxy is the wave vector which characterizes each plane wave in our expan-
sion, pointing the direction normal to the wave and with magnitude equal to
its wavenumber. Solutions to Maxwell’s equations must obey Blotch’s theo-
rem, which states that waves in a periodic dielectric structure take the form
of a plane wave modulated by a periodic function. β is the wave vector of this
aperiodic plane wave component, which can be thought of equivalently as the
wave number of an incident wave to the device. As an example, assuming free
space outside of our layer, for an incident plane wave of frequency ω at incident
polar angle θ and azimuthal angle ϕ, there is simply

β = ωϵ0µ0

sin(θ)cos(ϕ)sin(θ)sin(ϕ)
cos(θ)


The goal is to find the complex amplitudes S and U, which can then be

converted back into field values in cartesian space. To do so, the curl operators
in our time-harmonic Maxwell equations can be expanded and then the Fourier
expansions for ϵr, ρr,E and H̃ can be substituted in. Consider for Ampere’s
Law:

Equation Curl Expanded

∇×E = k0µr(x, y)H̃ =⇒


dEz

dy − dEy

dz = k0µr(x, y)H̃x
dEx

dz − dEz

dx = k0µr(x, y)H̃y
dEz

dx − dEx

dy = k0µr(x, y)H̃z

=⇒
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Semi-Analytical Fourier Space

−ik̃y(m,n)Sz(m,n; z̃)− dSy(m,n; z̃)

dz̃
=

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUx(q, r; z̃)

dSx(m,n; z̃)

dz̃
+ ik̃x(m,n)Sz(m,n; z̃) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUy(q, r; z̃)

−ik̃x(m,n)Sy(m,n; z̃) + ik̃y(m,n)Sx(m,n; z̃) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−rUz(q, r; z̃)

Here the normalized wave vector components k̃x = kx/k0, k̃y = ky/k0 and

k̃z = kz/k0 are used, as well as the normalized longitudinal coordinate z̃ =
k0z. These equations hold true for all choices of m ∈ [−M/2,M/2] and n ∈
[−N/2, N/2], and so the combined set of all equations for each choice can be
written as one matrix equation. To do so, some matrices and column vectors
are introduced:

sx =
[
Sx(1, 1), Sx(1, 2), · · · Sx(M,N)

]T
and equivalently for sy, sz,ux,uy,uz,

K̃x =


k̃x(1, 1) 0

k̃x(1, 2)
. . .

0 k̃x(M,N)

 , and equivalently for K̃y, K̃z.

In addition, there are some useful definitions for the material properties:

JϵrK = [ϵr(m,n)], for ϵr(m,n) =

M/2∑
q=−M/2

N/2∑
r=−N/2

am−q,n−r and

JµrK = [µr(m,n)], for µr(m,n) =

M/2∑
q=−M/2

N/2∑
r=−N/2

bm−q,n−r

These [ϵr] and [µr] are symmetric convolution matrices which contain all
information about the permittivity and permeability distributions in the layer.
Ampere’s Law in semi-analytical Fourier space is then

−iK̃ysz −
d

dz̃
sy = [µr]ux

d

dz̃
sx + iK̃xsz = [µr]uy

K̃xsy − K̃ysx = [µr]uz

The longitudinal term uz can be eliminated by solving for it in the third
equation. After expanding the result and simplifying, there is the block matrix
form

d

dz̃

[
sx
sy

]
= P

[
ux

uy

]
, (1)
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where P =

[
K̃x[ϵr]

−1K̃y [µr]− K̃x[ϵr]
−1K̃x

K̃y[ϵr]
−1K̃y − [µr] −K̃y[ϵr]

−1K̃x

]
Applying the same steps for Faraday’s Law, there is

d

dz̃

[
ux

uy

]
= Q

[
sx
sy

]
, (2)

where Q =

[
K̃x[µr]

−1K̃y [ϵr]− K̃x[µr]
−1K̃x

K̃y[µr]
−1K̃y − [ϵr] −K̃y[µr]

−1K̃x

]
Finally, taking the derivative of (2) with respect to z̃ and substituting the

result into (1), the matrix wave equation for sx and sy is obtained:

d2

dz̃2

[
sx
sy

]
−Ω2

[
sx
sy

]
= 0,where Ω2 = PQ

(Standard PQ Form)

This is simply a large number of ODEs which each admit an analytical
solution. The solutions are of the form[

sx(z̃)
sy(z̃)

]
= e−Ωz̃s+(0) + eΩz̃s−(0)

where s+(0) and s−(0) are initial values of the problem for forward and
backwards propagating waves, respectively.

Now all that is required are the matrices e−Ωz̃ and eΩz̃, which can be found
using the property

f(A) = Wf(λ)W−1, where

A is an arbitrary full rank matrix, f an arbitrary matrix function, W the
matrix of A’s eigenvectors, and λ the matrix of corresponding eigenvalues. Ap-

plying this to Ω2 with each f(A) = eAz̃ and f(A) = e−A(̃z) gives

e−Ωz̃ = We−λz̃W−1 and eΩz̃ = Weλz̃, where

eλz̃ =


e
√

λ2
1 z̃ 0

. . .

0 e

√
λ
N2

λ
z̃


Here, W is the matrix of Ω2’s eigenvectors, and λ1...λNλ

are its correspond-
ing eigenvalues. This gives a final solution for s[

sx(z̃)
sy(z̃)

]
= We−λz̃c+ +Weλz̃c−, where

c+ = W−1s+(0) and c− = W−1s−(0)

Writing a similar expression for u and combining in order to write the final
solution for both s and u inside a single layer, there is
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ψ(z̃) =


sx(z̃)
sy(z̃)
ux(z̃)
uy(z̃)

 =

[
W W
−V V

] [
e−λz̃ 0
0 eλz̃

] [
c+

c−

]
, where

V = QWλ−1

Therefore, finding the complex amplitudes s and u, and thus the solution to
Maxwell’s equations for wave scattering inside a single dielectric layer, amounts
to solving the eigenvalue problem for Ω2 to obtain W and λ. There are no
strong assumptions about Ω2, meaning that this is in general a complex-valued
degenerate eigenproblem. The implications of this for use of the method in my
project are discussed in the section on optimization methods.

However, if the layer is homogeneous, meaning that the material is isotropic
and ϵr and µr are constant values which no longer depend on x and y, some
simplifying assumptions can be make in order to obtain the solution

W =

[
I 0
0 I

]
, λ =

[
iK̃z 0

0 iK̃z

]
, K̃z = (

√
µ∗
rϵ

∗
rI− K̃2

x − K̃2
y)

∗, V = Qλ−1

This means that for homogeneous layers, the eigenvalue problem does not
actually need to be solved.

Now consider the problem for a device consisting of multiple non-homogeneous
periodic layers. At each layer, JϵrK and JµrK are different, and therefore also P,
Q, Ω2, W, V, λ, c+ and c−. However, boundary conditions dictate that K̃x

and K̃y remain the same between layers. This means that, for some layer i of
thickness Li, sandwiched by two homogeneous layers 1 and 2 of zero thickness
each with constant ϵ0 and µ0, we obtain boundary conditions

ψ1 = ψi(0) ⇒
[
W0 W0

−V0 V0

] [
c+0
c−0

]
=

[
Wi Wi

−Vi Vi

] [
c+i
c−i

]
, and

ψi(k0Li) = ψ2 ⇒
[
Wi Wi

−Vi Vi

] [
e−λik0Li 0
eλik0Li 0

] [
c+i
c−i

]
=

[
W2 W2

−V0 V0

] [
c+0
c−0

]
Here, W0, V0, c

+
0 and c−0 are calculated using the solution for homogeneous

layers. For any such layer i a scattering matrix S(i) can be defined such that[
c−1
c+2

]
= S(i)

[
c+1
c−2

]
,S(i) =

[
S
(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

]

S
(i)
11 = (Ai −XiBiA

−1
i XiBi)

−1(XiBiA
−1
i XiAi −Bi)

S
(i)
12 = (Ai −XiBiA

−1
i XiBi)

−1Xi(Ai −BiA
−1
i Bi)

S
(i)
21 = S

(i)
12 , S

(i)
22 = S

(i)
11

Ai = W−1
i W0 +V−1

i V0, Bi = W−1
1 W0 −V−1

i V0, Xi = e−λik0Li

Here, c1 and c2 correspond to the reflection and transmission sides of the
layer, respectively. We can then model an entire device as a series of such
layers, separated by homogeneous gap layers of zero thickness with constant
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ϵ0 and µ0. Such zero thickness gaps have no effect on the physical validity of
the model and simplify the calculation of each scattering matrix by ensuring
that each depends on only the physical parameters of its corresponding layer
and not those of adjacent ones. Thus if our device contains multiple identical
layers in different positions, the corresponding scattering matrix only needs to
be constructed once.

This convention for the scattering matrix ensures that it is symmetric and
thus highly efficient to calculate, as well as consistent with convention[19]. In
addition, it allows the matrices of individual layers to be easily combined into
a global scattering matrix as

S(global) = S(ref) ⊗ S(device) ⊗ S(trn),

S(device) = S(1) ⊗ S(2) ⊗ · · · ⊗ S(NL) for NL layers

Here, ⊗ is the Radheffer star product defined as

A ⊗ B =

[
A11 A12

A21 A22

]
⊗

[
B11 B12

B21 B22

]

=

[
B11(I−A12B21)

−1A11 B12 +B11(I−A12B21)
−1A12B22

A21 +A22(I−B21A
−1
12 B21A11 A22(I−B21A12)

−1B22

]
The scattering matrices S(ref) and S(trn) represent the device’s reflection

(i.e. −z) and transmission (+z) regions, respectively, and are calculated using
some constant physical parameters in those regions ϵr,ref , ϵr,trn, µr,ref and µr,trn

as

S
(ref)
11 = −A−1

refBref , S
(ref)
12 = 2A−1

ref ,

S
(ref)
21 =

1

2
(Aref −BrefA

−1
refBref ), S

(ref)
22 = BrefA

−1
ref ,

Aref = W−1
0 Wref +V−1

0 Vref , Bref = W−1
0 Wref −V−1

0 Vref ,

with equivalent expressions for Atrn,Btrn, and S(trn)

Knowing S(global), an approximation of the transmitted and reflected fields
for some incident wave and and arbitrary periodic, layered device can finally be
obtained. For some normalized incident polarization vectorP = [px, py, px]

T , ∥P∥ =
1, and vector δ0,pq of length M ×N , which has 0s in all positions except for a
1 in the p, qth position indicating the mode of the incident wave (normally the
center position), there is

cinc = W−1
inc

[
pxδ0,pq
pyδ0,pq

]
, and

rT =

[
rx
ry

]
= WrefS11cinc, tT =

[
tx
ty

]
= WrefS21cinc

These are the transverse components of the complex wave amplitudes in the
reflected and transmitted regions. The longitudinal components are

rz = −K̃−1
z,ref (K̃xrx + K̃yry), tz = −K̃−1

z,trm(K̃xtx + K̃yty), with
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K̃z,ref = −(
√

µ∗
r,ref ϵ

∗
r,refI− K̃2

x − K̃2
y)

∗, and equivalently for K̃z,trn

To get the final fields in both regions, these plane wave amplitudes can be
transformed back to cartesian space, and then propagated any distance z away
from the transmission or reflection surface of the device. Several methods for
calculating this propagation exist, such as the band-limited angular spectrum
method[20]. An implementation of this propagation method is provided in the
code of Colburn and Majumdar[17].

2.3 Algorithmic Differentiation

In optimization and deep learning problems it is often very advantageous if the
process to be modeled is differentiable with respect to its inputs. Having access
to the derivatives of a forward solver enables direct optimization algorithms
such as gradient descent for the inverse problem. Access to derivatives is also
usually required when modeling a process via a PINN, because their values are
needed to evaluate the loss function at each training step.

However, for an arbitrary function implemented as computer program, such
as a numerical solver, the derivative is not in general available. There are several
techniques which attempt to address this.

In numerical differentiation, the method of finite differences is used to
compute an approximation to the derivative using several evaluated function
values. While simple to implement, this technique can encounter problems
with floating-point round-off errors due to the discretization introduced, and its
performance does not scale well to higher-order derivatives or derivatives with
respect to many inputs. These problems make it ill-suited to an optimization
problem in which the target function is highly nonlinear and has many inputs,
such as scattering from a metasurface.

In symbolic differentiation, one attempts to represent the function as a
single mathematical object or expression, which can be used to analytically com-
pute the exact value of a derivative. However, in practice, this is a complicated
task which requires the function to be rewritten in a number of fundamental
ways - for example, normally numbers in the program must be converted to
arbitrary-precision representation, so that the precision limits of standard float-
ing point types do not impact the exactness of the computation. This is highly
inefficient for programs with many inputs and operations, which includes most
numerical solvers for physical problems.

A third option, algorithmic differentiation (also called automatic differ-
entiation, computational differentiation, autodiff, or simply AD), attempts to
solve all of these complications. AD takes advantage of the fact that any se-
quential computer program, no matter its complexity, is essentially a series of
elementary operations. As long as the derivative of each elementary operation
is known, the chain rule can be applied to evaluate the derivative of such a
composed function.

AD has two operating modes, each of which computes the same values but
with derivatives of the composing operations computed in a different order. In
forward accumulation, derivatives of the first intermediate value (i.e. that
after the first operation has been applied) with respect to the inputs are eval-
uated first, and the products of each operation’s derivative are accumulated
as we progress through the operations towards the output. For a function
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y = fn(fn − 1(...(f1(x)) with intermediate values w0 = x, wi = f i−1(wi−1),
wn = y, this computes

dwi

dx
=

dwi

dwi−1

dwi−1

dx
for i = 1, 2...n

The alternative is reverse accumulation, which instead starts from the
output and progresses backwards towards the input, computing

dy

dwi
=

dy

dwi+1

dwi+1

dwi
for i = n, n− 1...1

Each of these modes has performance advantages in certain applications. For
computing the gradient of a function with a large number of inputs relative to
the number of outputs, such as a loss function for a neural network, the reverse
mode is far more computationally efficient[17].

2.3.1 Correctness of AD

Standard autodiff frameworks following this framework can be formally shown
to be correct, in the sense of correctly computing the derivative at almost all
points in the domain for a large class of possibly non-differentiable functions,
given that the function is differentiable almost everywhere and that some as-
sumptions hold on the set of elementary operations[21]. Specifically, each of the
elementary operations utilized by the program must be piecewise analytic
under analytic partition (or PAP).

A PAP function f : X → Y is a piecewise function made up of parti-
tions {Ai, f i}i∈{1,2...} such that all f i are analytic functions over their domains
Xi = {x ∈ Ai|f i(x)}, and Ai are analytic partitions.

Recall that an analytic function is infinitely differentiable and equal to its
Taylor expansion. An analytic partition is any set A ∈ Rn for which some ana-
lytic functions g+j : X+

j → R and g−k : X−
k → R on open domains X+

j , X−
k ⊆ Rn

for j ∈ J , k ∈ K, J,K ∈ Z>0 exist such that A = {x ∈ X+
j |(∀j ∈ J)g+j (x) >

0} ∪ {x ∈ X−
k |(∀k ∈ K)g−k (x) ≤ 0}. In other words, an analytic partition can

be broken up into a number of regions on each of which some analytic function
exists such that for all points in that region, the analytic function is strictly
positive or less than or equal to zero.

Most of the elementary operations used in common implementations of AD,
such as PyTorch and TensorFlow, hold to this condition, and so these autodiff
systems can be shown to be correct for all programs written using these opera-
tions. An example is the relu function ϕ(x) = max(0, x), a common activation
function for neural networks. This function is not differentiable at 0, but the
TensorFlow implementation returns 0 for its derivative evaluated at 0 anyway.
This choice makes the TensorFlow implementation of relu in fact a PAP func-
tion and leads to AD correctness for programs using this operation.

2.3.2 Implementation of AD

There are several approaches to the implementation of programs as to utilize
algorithmic differentiation, a programming paradigm known as differentiable
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programming. A straightforward approach might be to overload basic arith-
metic operators so that they return information about their derivatives in ad-
dition to their results. This can be accomplished efficiently in many languages
- for example, C++.

Another approach is to formulate the function as a symbolic computational
graph, with nodes representing operations and edges representing data depen-
dency between them. This is the strategy employed by TensorFlow, a widely-
used, flexible, open-source software framework for machine learning[22]. First
released in 2015, TensorFlow provides a high-level scripting interface which can
be used to compose such program graphs from elementary operations such as
matrix multiplications and convolutions, and to execute these programs on pow-
erful heterogeneous computer architectures including GPUs. This has enabled
many applications of differential programming and machine learning across sec-
tors.

Implementations of differentiable versions of common solver methods from
computational electromagnets using AD have already been shown, including
FDTD[23], FDFD[24], and RCWA[17].

3 Previous Methods and Results

In this section, I present a number of previous papers which address the use of
AI and optimization techniques for the design of metamaterial optical devices
and metasurfaces, discussing their methods in depth. I have categorized them
into three groups based on their general approach.

3.1 Scientific Machine Learning

The first class of solutions belongs to what can be described as broadly as sci-
entific machine learning. This refers simply to the application of standard
methods in machine learning, such as deep neural networks, to scientific data
sets. This leads to a neural network which replicates the results of a numerical
solver method and can efficiently predict EM response for a device given the pa-
rameters of a metasurface, which can be called a forward network. This leads
in turn to the training of an inverse network which optimizes metasurface
parameters given some desired response.

3.1.1 Jiang et al.

Jiang et al.[15] applies this idea in order to design metalenses for phase manipu-
lation, with the goal of training a DNN which can predict metasurface geometric
parameters for a desired phase spectra. Six geometric parameters are sought:
the transverse dimensions of three small TiO2 structures called nanofins of fixed
height, which are tiled across a substrate surface.

First, an FDTD solver is used to generate phase spectra, sampled at 81
frequency points over the 380nm-780nm band, for a sample of 7680 parameter
combinations. The phase coefficients can be calculated from the scattering ma-
trices used by FDTD, which resemble those from RCWA. Care is taken to cluster
more samples around discontinuities in the phase, so that these discontinuities
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Figure 2: Metasurface design sought by Jiang et al. composed of repeating
nanofin structures.

may be properly learned. A DNN with six hidden layers composed of approx-
imately 600 neurons each is implemented using TensorFlow[22] and trained on
the majority of the generated data, using a MAE loss function which compares
predicted spectra to generated spectra. Network hyperparameters such as batch
size and learning rate are varied and compared in terms of network performance,
with the best out of those tried selected, but no sophisticated hyperparameter
search method is employed. This results in a forward network which models the
FTFD solver with an error of <0.2 on 93% of the test data.

Next, the inverse network is initialized. The structure is the same as the
forward network except that the loss function now compares predicted spectra
to some desired spectra, and that the input layer of geometric parameters is
now treated as a hidden layer and the parameters as trainable weights. The
rest of the network weights are reused from the forward network and fixed.

In the reverse network optimization process, some arbitrary initial guesses
for geometric parameters are first chosen. The network output is calculated,
resulting in a loss, which can then be backpropagated in order to update the
parameter guess. This is repeated until the loss is small enough, and then the
result is checked for correctness with a FDTD simulation. this optimization pro-
cess is repeated to find other ideal parameters for any additional desired phase
spectra. The authors also extend their process to predic and design for other
phase properties, including group delay and group delay dispersion, in order to
demonstrate the generalizable power of the DNN approach.

3.1.2 An et al.

An et al.[14] attempts a similar goal with a similar approach. The authors
consider arrays of small dialectric structures of varying shape with 3-5 geomet-
ric parameters and possibly a material parameter (permittivity), called meta-
atoms, arranged on top of a substrate material of lower refractive index, as
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seen below.

Figure 3: Metasurface design sought by An al. composed of arrays of dielectric
”meta-atoms”. Separate DNNs are employed for parameter selection of each
meta-atom structure, such as the cylindrical and H-shaped ones seen here.

As in Jiang et al., a large amount of simulation-generated amplitude and
phase spectra training data is created - over 50000 combinations of geometric
parameters, and 31 frequency samples over the 30-60THz (5-10µm wavelength)
band. Again, the problem of how to ensure that phase discontinuities are prop-
erly captured by the DNN model arises. Finding that these discontinuities
occur in the amplitude and phase but that the real and imaginary parts of the
complex transmission coefficient, from which the amplitude and phase can be
caluculated, are continuous, the authors decide to construct two independent
networks which predict these parts. The outputs of these two DNNs can then
be combined to predict amplitude and phase according to the formulas

amplitude =
√
Imag(T )2 +Real(T )2, and

phase = tan−1 Imag(T )

Real(T )

Here, the transmission coefficient T is the ratio of the amplitude of the
incident wave to that of the transmitted wave. T can be calculated directly
from the results of any full-wave simulation such as FDTD and therefore can be
used in the loss function for these DNNs. Each network is again implemented
with TensorFlow[22] has three hidden layers consisting of 500, 500, and 200
neurons each. For a simple cylindrical meta-atom design, the resulting trained
networks achieve an average MSE error on the test set of 0.00035 for the real
part and 0.00023 for the imaginary part of T . The authors go on to repeat this
procress, training networks to predict transmission coefficient components for
over 30000 meta-atom structures, including the H-shaped one shown above.

These authors take a slightly different approach to the design of the inverse
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network, which the call the mete-filter design network. For any one meta-
atom structure, the meta-filter design network is a separate DNN with four
hidden layers of widths 500, 500, 500, and 50 neurons each which takes as
input a desired phase spectra and produces design parameters as output. The
resulting parameters are fed to the forward network, which produces a predicted
spectra which can be compared to the target to produce a loss. This is then
backpropagated in order to update the many weights and biases of the design
network, while the forward network parameters remain unchanged. In this way,
the trained forward network is used as part of the loss function, effectively a
more computationally efficient stand in for a standard numerical solver.

Because the meta-filter design network is a proper DNN of its own here
rather than Jiang’s one layer added to the forward network, it can be trained
once on a data set consisting of many desired phase spectra and afterwards be
used to efficiently predict meta-atom parameters for many other desired spectra.
This is in contrast to Jiang, wherein the inverse network must be re-optimized
for each desired spectra.

3.1.3 Advantages and Disadvantages

Prior to the introduction of neural network-based approaches to these design
problems, they would have been solved via more traditional optimization ap-
proaches. One mentioned by both Jiang and Al is the practice of first building
a large ”library” of possible metasurface designs and simulating the response of
each with a numerical solver, then using some classical search method to traverse
the library and find desired metasurface parameters. Both authors criticize this
approach as being inefficient and time-consuming, both due to the time cost
of running many numerical simulations as well as the common over-reliance on
trial and error or empirical reasoning in the search method which is not sound
when applied to the highly nonlinear problem of multiple scattering in metama-
terials. They criticize adjoint methods for the same dependency on slow solver
methods.

The scientific machine learning approaches discussed in this section still rely
on some numerical solver in order to generate training data, but this is a one-
time cost and the trained networks are thereafter able to predict metasurface
parameters without any further need of the numerical solver.

However, despite these papers’ attempts to address this, the highly nonlin-
ear and possibly discontinuous nature of multiple-scattering solutions can lead
to the accuracy of these DNN’s predictions strongly depending on how well the
training data achieves coverage of the design space. In order to maintain a
reasonable model accuracy, then, either a prohibitively large corpus of training
data must be produced or the design space must be restricted by reducing the
number of geometrical metasurface parameters. Both papers do this, allowing
for only 6 or less parameters. While allowing the method to be viable, it greatly
restricts the possible metasurface designs, which may perhaps lead to highly
effective designs being missed.

Another issue is that the general neural network frameworks applied in these
papers do not strictly enforce the physical correctness of solutions or the man-
ufacturing admissibility of discovered metasurface parameters. For example,
Jiang et al. find that sometimes the network will return negative parameter
values which have no physical meaning. This problem is more coherently han-
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dled via classical constrained optimization frameworks. As long as nonphysical
results remain technically possible, they must be weeded out via validation with
numerical solvers.

Because my project seeks to explore many geometrical parameters and retain
high physical accuracy, it will be important to overcome both of these issues.
The next methods discussed are focused on doing just that.

3.2 Physics-Informed Neural Networks

While the methods discussed above may fall under the category of scientific
machine learning, they do not actually take advantage of any physical knowledge
known about the system (aside from using numerical solvers based on it to
generate training data). A more clever approach would be to embed information
about the physical laws, that is, Maxwell’s equations or some other set of PDEs,
into the learning process itself. This can be achieved by incorporating the PDEs
that govern the data set into the network’s loss function. The network is then
called a physics-informed neural network, or a PINN.

Say that, for a function u(x) with x = (x, y) in a domain Ω ∈ R, there is a
PDE of the form

f

(
x;

du

dx
,
du

dy
,
∂2u

∂x∂y
;λ

)
= 0, for x ∈ Ω,

with some mixed boundary conditions

u(x) = gD(x) on ΓD ⊂ ∂Ω and
du(x)

dx
= gR(u, x, y) on ΓR ⊂ ∂Ω

Here λ is an unknown parameter in the PDE system, which could represent,
for example, some metasurface parameters. The goal of the PINN is to recover
λ.

The PINN then consists of a DNN with an output û(x, y; θ) which approxi-
mates u, where θ is a vector of all DNN weights and biases to be trained. The
goal is then to train the DNN and optimize θ and λ so as to minimize the error
between u and û. This is achieved with a loss function of the form

L(θ, λ) = wfLf (θ, λ; Tf ) + wiLi(θ, λ; Ti) + wbLb(θ, λ; Tb), where

Lf (θ, λ; Tf ) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (
x;

dû

dx
,
dû

dy
,
∂2û

∂x∂y
;λ

)∥∥∥∥2
2

,

Li(θ, λ; Ti) =
1

|Ti|
∑
x∈Ti

∥û(x)− u(x)∥22,

Lb(θ, λ; Tb) =
1

|Tb|
∑
x∈Tb

∥∥∥∥(û(x)− gD(x)) +

(
dû(x)

dx
− gR(u,x)

)∥∥∥∥2
2

Here, Lf , Li and Lb are loss terms representing adherence to the PDE, to a
desired solution u(x), and to the boundary conditions, respectively, and wf , wi

and wb are their weights. Tf , Ti, Tb are some set of points sampled from Ω at
which these conditions are checked, which may be on a grid or chosen randomly.
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If the PINN is implemented with an AD system such as TensorFlow, then the

derivatives dû(x)
dx are easily available at each training step.

The inclusion of the Li term makes this an inverse problem which finds
λ, but requires some known solution u(x). In other words, given some known
solution to the PDE, this network can find the PDE parameter λ such that the
PDE admits such a solution. A remarkable fact is that with the minimal change
of omitting Li, the PINN functions in a forward direction instead, finding an
admissible solution û(x) given some λ. Adding this term is of insignificant
computational cost, meaning that this PINN framework can solve forward and
inverse problems on equal footing[13].

To train the PINN, normal forward evaluation and backpropagation is iter-
ated until the loss is smaller than some σ. Afterwards, the obtained λ and û(x)
can be verified using a numerical simulation method. The entire architecture is
summarized in diagram below:

Figure 4: Framework of a general PINN, for the inverse problem to obtain PDE
parameter λ. The left FNN (feed-forward neural network) is a model of the
PDE solution, and the right side shows the terms of the loss function.

3.2.1 Chen et al.

Chen et al.[13] applies this general framework to the problem of homogenizing
finite-size metamaterials. That is, they seek to replace a lattice of cylindrical
dielectric meta-atoms each having some constant permittivity ϵ with a single
dielectric cylinder having a permittivity profile ϵ(x, y). Both the lattice of meta-
atoms and the singly scatterer should produce the same scattering pattern. For
this problem, the relevant PDE is the Helmholtz equation for weakly inhomo-
geneous 2d media under TM polarization excitation, for the unknown electric
field z component Ez:

∇2Ez(x, y) + ϵr(x, y)k
2
0Ez = 0
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Here k0 is the wavenumber of the incident wave in free space and ϵr(x, y)
is the sought permittivity profile. In terms of the general PINN framework,
u(x, y) is generated from a single numerical simulation of the original meta-
atom lattice, and the sought parameter λ is ϵr. The situation and results can
be seen below.

Figure 5: Use of a PINN for retrieval of an effective permittivity profile ϵ(x, y).
a) Arrangement of original meta-atoms whose scattering pattern is desired, with
a = 500nm, r = 125nm, d = 10µm,N = 317, ϵ = 3. b) Simulated scattering
pattern u(x, y) of the meta-atom lattice with incident plane wave wavelength
λ0 = 2.1µm. c) Permittivity profile ϵr(x, y) for a single cylinder, predicted by
the PINN. d) Scattering pattern for predicted permittivity profile, with 2.82%
error compared to the desired pattern in b).

Chen et al. use DeepXDE, a Python deep learning library, to implement
their PINN with 4 layers of 64 neurons each. An FEM simulation, sampling
both Ez and ϵr at a 150x150 square lattice spatial resolution, is used both
to generate the desired scattering pattern as well as verify the result. The
hyperbolic tangent activation function is used, and the training rate is set to
10−3. 150000 iterations of training were run, after which a loss value of 10−2

was reached. The retrieved permittivity profile ϵr(x, y) produced a scattering
pattern with only 2.82% error in the L2 norm when compared to the desired
pattern.

The authors go on to show that their PINN implementation is valid for solv-
ing the homogenization problem for other arrangements of meta-atoms, such
as a Vogel spiral. By using the framework to recover effective permittivities
for coated cylinders and arrangements of multiple cylinders, they show that
their method can be extended to deal with multiple materials and objects. Fi-
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nally, they apply their method to the problem of invisible cloaking design, that
is, finding the permittivity of a cloaking material which, when applied to a
nanocylinder, cancels its scattering for a given incident plane wave.

3.2.2 Advantages and Disadvantages

The magic of the PINN framework is that, by penalizing non-physical solutions,
it restricts the space of admissible solutions to a manageable size. Compared to
normal machine learning methods applied to the same problem, this loss func-
tion acts as a regularization agent and amplifies the information content of used
data, allowing the PINN to generalize well even when using much less training
data. Only one piece of training data is generated and used, the desired scatter-
ing pattern u, compared to the prior approaches in which thousands or hundreds
of thousands of simulations are required to generate a massive training corpus.
In this small-data regime, most other general machine learning techniques fail
to provide any sort of convergence guarantees[25].

In fact, because the inverse PINN requires no data on the parameters λ which
it predicts, it belongs to the class of methods called unsupervised learning,
to which reinforcement learning also belongs[13].

These features of PINNs enable them to overcome the training data lim-
itations of the methods discussed in the previous section and allows for the
prediction of greater numbers of metasurface parameters. This is clearly seen
in the results of Chen et al., in which the permittivity profile ϵr is predicted
at every point on a 150x150 square spatial lattice across the domain - 22500
parameters, if considered independently. This is in contrast to the previous
methods, which dealt with only 3-6 metasurface parameters[15][14].

Furthermore, this framework can be readily applied in general to the problem
of recovering geometrical metasurface parameters for some desired electromag-
netic response. In this case, the PDE will be a form of Maxwell’s equations such
as the formulation seen in RCWA, u(x) will be the desired field distribution,
and λ will be a vector of metasurface parameters.

A downside to the PINN framework is that a single trained PINN does not
function as a general solution to the inverse problem for multiple problem pa-
rameters, and needs to be retrained for each problem statement. In An et al.,
the authors are able to predict metasurface parameters for many desired phase
profiles with repeated evaluations of the same meta-filter design network, with-
out retraining needed in between each. This is highly computationally efficient,
if many of these calls are made. In Chen at al., by contrast, the PINN must be
retained to predict metasurface parameters for each desired scattering pattern.
This is of minimal concern if the number of desired scattering patterns is low,
but is nonetheless a performance consideration.

Because my project concerns only a small number of desired scattering pat-
terns, PINNs present a leading and likely effective solution to the problem at
hand. However, as discussed in the next section, there are methods which may
be just as effective and possibly more efficient without needing to rely on ma-
chine learning techniques whatsoever.
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3.3 Topology Optimization

The use of classical optimization methods for metasurface design has been
criticized due to the high performance cost of running many forward simula-
tions[15][16][13]. This criticism has been leveled in particular at the use of ad-
joint methods, a class of general methods for numerically computing gradients
which can be used for optimization in metamaterial design. This has motivated
the application of machine learning techniques to the inverse design problem,
as discussed in the previous two sections.

However, papers in recent years have demonstrated the recovery of many
metasurface parameters at similar levels of accuracy and efficiency to the deep
learning solutions through the use of more traditional optimization methods,
enabled through the use of more powerful forward solvers such as RCWA and
efficient software implementation with strong low-level optimization in C, par-
allelism, and AD using TensorFlow[18][17]. These techniques are able to de-
termine unique metalens shapes from an extensive design space consisting of a
high number of geometric degrees of freedom, and can be said to belong to the
field of topology optimization.

3.3.1 Colburn and Majumdar

As discussed in detail in the section on RCWA, despite offering a very high
standard of performance for solving the multiple scattering problem for periodic,
layered devices, it has issues with respect to differentiability. Specifically, at its
core, one must find solutions to the matrix wave equation

d2

dz̃2

[
sx
sy

]
−Ω2

[
sx
sy

]
= 0

which amounts to solving the eigenproblem for the matrix Ω2. In order
for the entire method to be differentiable and for an AD implementation to be
possible, access to the derivatives of these eigenvectors and eigenvalues is re-
quired. For certain scatterer geometries, Ω2 is Hermitian and has no repeated
eigenvalues. However, for general scatterers, this does not hold, leading to a
complex-valued, degenerate eigenproblem wherein the eigenvector gradients are
undefined[26].

Without differentiability, standard optimization techniques for nonlinear
functions are not applicable to RCWA. But it so happens that it is possible
to make some small modifications to the method, analogous to the modification
made to the relu function by TensorFlow in order to ensure it is a PAP function,
which make an AD implementation of RCWA possible.

Colburn and Majumdar[17] formulate and apply these corrections, resulting
in a TensorFlow implementation which can be directly optimized for metasur-
face parameters using backpropagation. Two innovations are combined. First,
they consider an eigenequation of the form Ω2W = WΛ, where the columns of
W are the eigenvectors of Ω2 and Λ is the diagonal matrix of its eignvalues, and
some real scalar function J = f(W,Λ) which depends on the eigendecomposi-
tion. Using Wirtinger derivatives, operators from complex analysis which enable
a differential calculus for complex functions completely analogous to ordinary
calculus for real functions, the authors derive an expression for the sensitivity
of J to changes in Ω2. This is written as
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dJ

dΩ2
= W−H

(
dJ

dΛ∗ + F∗ ◦
(
WH dJ

dW∗

))
WH

Here, F is defined as Fij = 1/(λi − λj) if i ̸= j and Fij = 0 otherwise, with
λ0, λ1...λn the eigenvalues of Ω2. ◦ is the Hadamard product defined on two
matrices A and B of the same dimensions as (A ◦B)ij = (A) ∗ij (B)ij .

This effectively removes any differentiability problems caused by the pres-
ence of complex eigenvalues. However, if any eigenvalues are repeated, i.e. are
degenerate, Fij remains undefined. to avoid this problem, the authors redefine
F as

Fij =
λi − λj

(λi − λj)2 + ε

where ε is a small real number. The introduction of ε introduces also some
small error in Fij but ensures that the reverse sensitivity of J is defined. The re-
sult is a slightly modified RCWA which can be implemented correctly with AD,
using TensorFlow. The authors present such an implementation, the output of
which the validate against and existing RCWA solver, the commonly used S4.

Having this implementation, Colburn and Majumdar now cleverly treat the
reverse scattering problem of solving inverse RCWA for some metasurface pa-
rameters ai as a neural network which can be optimized via backpropagation.
The scheme is illustrated below:

Figure 6: Colburn and Majumdar’s scheme for metamaterial design with RCWA
and algorithmic differentiation. The figure follows all notation I have used in
my section on RCWA.

The authors treat the metamaterial parameters ai like trainable weights of
a neural network. After initial guesses for the ai are provided, RCWA is used
to calculate the E field in the reflection and transmission regions, following
the black arrows. This result is passed to some scalar loss function L, which
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defines an optimization criteria - for example, maximizing intensity on some
focal plane. Because this has all been implemented using TensorFlow, the gra-
dients dL

dai
are readily calculated using the reverse mode of AD, following the

blue arrows. Then, updates can be applied to the ai in order to produce new
best guesses. This process is iterated until the loss is sufficiently small, at
which point some optimized ai have been obtained. All code is available at
https://github.com/scolburn54/rcwa_tf.

The approach turns out to be both flexible and powerful. This optimization
scheme is shown to find effective parameters for a broad range of periodic, lay-
ered metasurface structures, including arrays of independently sized nanopost
resonators and multilayer gratings. In addition, a number of optimization ob-
jectives and loss functions are demonstrated, such as minimizing reflection and
focusing red, blue and green light at different points. For a relatively simple
case of optimizing reflectivity for an array of nanocylinders on a substrate, the
scheme is able to find a design maximizing reflectivity at 99.8% of the incident
light.

Great care is taken by the authors to ensure high performance. In addi-
tion to the inherent speed of RCWA, the scheme benefits from the efficiency
and parrallelizability of backpropagation. Implementation in TensorFlow al-
lows for easy usage of dedicated parallel architecture including GPUs[22], which
is demonstrated to increase performance by 14x to 24x for certain problems.

Compared specifically to adjoint methods, a speedup is demonstrated in
terms of time per optimization iteration. Iterations of an adjoint method nor-
mally cost twice the forward simulation time because they require two simula-
tions, the forward and adjoint simulations, to compute a gradient. The authors
demonstrate that their scheme, which performs one forward simulation and a
backpropagation update per iteration, results in a 1.4x speedup over the adjoint
standard of two forward simulations for multiple problems. This result and the
GPU speedup are shown in the figure below.

Figure 7: Performance results for the Colburn-Majumdar metaoptics optimiza-
tion scheme. Both simple optimization of scatterer shape and full topology
optimization are considered. Left: optimization iteration time, normalized to
the time of a single forward simulation, are compared to the adjoint method
(black horizontal line). Right: speedup factor from GPU parallelization vs.
problem complexity.
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3.3.2 Lin et al.

The paper of Lin et al.[18] adds additional support to the efficiency of topology
optimization schemes for periodic, layered metasurface design. The authors use
RCWA as their primary forward solver method for each unit cell of the periodic
device, with FDFD used to perform a full-device simulation after results are
obtained for verification. Unlike Colburn and Majumdar, however, Lin et al.
do not leverage AD or backpropagation for performance gains, instead using
the basic adjoint method and relying just on efficient implementations of the
forward solvers in C and massive parallelization using the message-passing in-
terface (MPI) library.

Surprisingly, this choice turns out to be effective. The authors claim that
their straightforward topology optimization approach allows them to handle
thousands of degrees of freedom per unit cell, far exceeding the number of pa-
rameters optimized by the machine learning approaches. This is demonstrated
through the recovery of multi-layer aperiodic topologies for monochromatic and
multi-wavelength focusing metalenses, in both 2d and 3d. One example is given
below.

Figure 8: Monochrmatic 3d cylcindrical metalens topography achieved through
adjoint method optimization by Lin et al. Red section shows a single λxλ unit
cell. Plot on the right shows simulation of the final focusing behavior.

This lens topology contains 4x104 degrees of freedom in total, and was com-
puted in parallel on 25 CPUs. The final FDTF validation simulation gives a
transmission efficiency of 75%.

Optimization of arbitrary aperiodic topologies using RCWA is achieved though
approximating the aperiodic structures as a set of periodic scattering problems,
one for each unit cell. In other words, to solve for the near field for each unit cell,
a separate problem is solved in which the single unit cell is tiled across an entire
device. Each of the problems may be solved entirely in parallel. Afterwards,
the final near field is approximated via the periodic near field solutions.

The authors conclude by positing that they expect methods such as theirs
to become indispensable for tackling design problems with large design spaces
and multiple layers - certainly an expectation I’d like to test.
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Figure 9: Lin et al. approximate the near field scattering pattern of an arbitrary
aperiodic layered metasurface, shown at top, by solving a separate periodic
scattering problem for each unit cell. These solutions, shown in the lower three
rows, are combined to approximate the near field on the entire surface.

3.3.3 Advantages and Disadvantages

Based on these papers, it seems that, in recent years, the strongest strategy
for handling metasurface optimization has been via direct optimization meth-
ods either leveraging clever AD formulations or straightforwardly applying high
performance computing techniques. They are highly flexible, performative, and
accurate.

This is not to say that the PINN approach is strictly worse, as I may simply
have failed to find a paper which attempts to optimize as many geometrical
parameters with a PINN as these topology optimization paper attempt to with
their methods. Probably, which strategy is dominant strongly depends on the
application. However, it seems likely that in order to handle highly complex
metasurfaces, a PINN would need to adopt some ideas from these topology op-
timization approaches, such as taking advantage of topology periodicy in order
to utilize the fast RCWA method, or utilizing high-performance parallel archi-
tecture for training.

The comparison of the PINN approach to the topology optimization ap-
proach when applied to my specific application will be one of my central research
questions, as discussed in the following section.

4 Project Proposal

In this section, I discuss the framing of my specific project. I first describe the
metalens at hand, including its parameters, optimization goals, and applica-
tion. I propose the research questions which I will explore over the course of
the project. Finally, I suggest some possible directions to explore, and discuss
what they require as far as software implementation is concerned.
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4.1 Lens Design

4.1.1 Physical Description

The existing conventional refractive lens which I seek to replace with a metalens
consists of a array of silicon lenslets, as seen below.

Figure 10: Existing lens design to be replaced, consisting of an array of tradi-
tional refractive lenslets.

The high-level goal of the project is to replace this design, considered bulky,
with an array of flat metasurface lenslets or unit cells, which are favorable in
space optics applications due to their compactness.

For both designs, I consider incident linearly polarized plane waves at f =
2.5THz.

The entirety of the device, both the metasurface topology itself as well as the
underlying substrate, will consist of high-resistivity, float-zone silicon, which is
a sort of highly pure silicon obtained via a process called vertical zone melting.
This silicon has been found to be one of the most transparent dielectric materials
in the THz domain, making it well suited for construction of nonresonant THz
metasurfaces[27]. It displays a permittivity of ϵ = 11.4, and displays several
favorable optical properties including very little dispersion over the 0.5-4.5 THz
band.

Each lenslet will measure 5mm x 5mm, with a thickness which is left to be
determined as a design parameter. They will have a layered, discrete, stepped
surface topology consisting of a grid of square regions which I call pixels, each
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Figure 11: Basic proposed design of metasurface lens for COPILOT, consisting
of an array of flat metasurface lenslets. This diagram shows 20x20 pixels per
lenslet, which will in reality be 1000x1000. Lenslet thickness d and dimensions
of lenslet array to be determined.

approximately 5µm on a side. This gives a 1000x1000 square grid of pixels on
each lenslet. Each pixel will have a discrete height which can take on one of 5
different values. The result is a structure with 5 layers, which can be manufac-
tures via silicon etching[12].

These pixel heights are the primary geometrical parameters required to be
optimized in my lens design process. The result of any optimization process
should be an array λ of discrete pixel heights, describing the entire topology of
a lenslet.

4.1.2 Design Goals

I am concerned with two separate design goals: a device for wave focusing in
the near field, and one for focusing in the far field.

Figure 12: Near field design case. The focal point of each lenslet is the center
of its transmission side surface, and all lenslets are identical.
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The near field design demands wave focusing at the transmission side of
each lenslet. In many metaoptics design processes, the design goal is speci-
fied in terms of the phase and direction of a transmitted wave. For the near
field case, however, the focal plane is less than one wavelength away from the
transmission surface of the device, meaning that there is not enough space to
construct a coherent plane wave. This necessitates formulation of the goal in
terms of field intensities instead, which are calculable using RCWA.

The near field goal also makes trivial the requirement of RCWA that the
device be periodic, because each lenslet will be identical. The periodicity of the
device is then simply 5mm.

The far field design demands that all lenslets focus instead on a single point
some farther distance away, as shown below.

Figure 13: Far field design case. All lenslets focus on a single faraway point,
meaning that now they must be not identical.

The training goal can be specified identically to the near field case, except
that the field must be propagated further into the transmitted region. However,
because now not all lenslets will be identical, a problem is presented to the
required device periodicity.

I propose to solve this by introducing ”periodicity groups” - groups of lenslets
which will each have the same training goal. Each lenslet in a periodicity group
will focus on a point at the same relative location to itself.

This is likely to introduce some error in the final design, as the lenslets are
not in fact trained to all focus on a single point. However, it allows the en-
forcement of the devices periodicity required for the use of RCWA, enabling
all the same fast design processes as could be used in the near field problem.
This speed is especially important in the far field problem, because one lenslet
design must be produced per periodicity group, rather than one total as in the
near-field problem. Therefore, increasing the size of the periodicity groups also
reduces the total amount of computation required. However, each group could
be optimized in parallel, as in the paper of Lin et al.[18].

The size of the periodicity groups is left to be determined as a design pa-
rameter. If the size is chosen to be 1, then we can apply the idea of Lin et al.
of optimizing a single lenslet by considering it as a periodic element tiled across
an entire device. This is the most expensive case, but admits the largest design
space, allowing arbitrary, aperiodic devices.
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Figure 14: Periodicity groups for far field design case. Groups of lenslets are
trained with the same objective, but the total effect of all groups is still to focus
on one region. Some error is introduced because lenslets in the same group do
not focus on the same point.

4.1.3 Design Parameters

There are a few parameters left unspecified which may be chosen in order to
maximize the effectiveness of the metasurface parameter selection. Choosing
what to do with these is a core question of the project.

• Lenslet Thickness d
The thickness of each lenslet, labled as d in Figure 11, may be specified
before optimization of left as one additional optimizable parameter. In
either case, the thickness of the lenslet below the surface etching can be
treated as a single extra homogeneous layer, easily handled by RCWA.

• Single-Sided or Double-Sided Device
It is possible for two separate topologies to be etched on the transmission
and reflection sides of the device. Doing so would double the number
of geometrical metasurface parameters, meaning that the optimization
process is more computationally expensive, but may expand the design
space to include more effective designs. It is to be determined whether
this trade-off is worth it.

• Size of Periodicity Groups
If the periodicity groups are larger, the cost of optimization is reduced,
because less individual designs must be produced. However, larger period-
icity groups likely lead to greater error in the solution. This is a parameter
which will need to be tuned after an optimization strategy for the far field
problem is implemented.

• Single or Multiple Materials
The use of multiple materials, perhaps one per layer, with different indices
of refraction, is a possibility. This is unlikely to affect the cost of optimiza-
tion, as RCWA already assumes the possibility of different layer materials.
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Whether this actually leads to more effective designs is a question to be
answered after an optimization strategy is implemented.

• Anti-reflective Coating
It is a common practice in optics design to incorporate thin-film anti-
reflective coatings on the surface of devices in order to eliminate stray
light. The simulation of this should be relatively straightforward, as it can
be treated as another layer in the RCWA formulation. By doing so, I can
investigate if this is worthwhile in this application, or if the metasurface
topology alone is sufficient in reducing reflectivity.

4.1.4 Manufacturing

After I have found effective lens designs, the actual lenses will be manufactured
by the Kavli Nanolab Delft[28], a nanofabrication research facility at TU Delft
which uses the Van Leeuwenhoek Laboratory (VLL) cleanroom facilities. This
will enable experimental verification of my results.

There are a few constraints on the design, deriving from manufacturing
constraints. Most importantly, only continuous surfaces are allowed, meaning
that ”bridges” and ”tunnels” of material may not be made. Each lenslet pixel
will be specified by exactly one height, rather than by which layers are filled or
not filled with material.

4.1.5 Deployment

The purpose of this project is to provide viable metamaterial lens designs for
a high-altitude balloon mission named COPILOT. The mission is proposed by
the French Space agency (CNES), in partnership with the National Research
Council of Canada Industrial Research Assistance Program (IRAP), the French
Alternative Energies and Atomic Energy Commission (CEA) and the Nether-
lands Institute for Space Research (SRON).

COPILOT will observe low-density interstellar gas and map the intensity
of the C+ fine structure line at 158 micron, otherwise known as the ionized
carbon forbidden line. This spectral line is produced by ionized carbon that
undergoes a forbidden transition, which occurs only in low density plasmas
and even then at a low rate. It is an indicator of star formation, and information
about its angular distribution and redshift can be used to map the milky way
galaxy. COPILOT will achieve this mapping at unprecedented speed, covering
the entire galaxy up to high galactic latitude. The experiment will improve the
angular resolution of the most sensitive C+ map to date by a factor of 200.

4.2 Research Questions

The primary research questions I am concerned with in this project are as fol-
lows:

1. What technique is the most effective and computationally
efficient for determining metasurface parameters in this application?
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The primary goal of the project is to determine effective metasurface param-
eters and demonstrate a functioning metalens via fabrication. But this will not
be possible unless I build an optimization pipeline which is efficient enough to
handle my many geometric parameters. This will be a matter of trying differ-
ent options and comparing their computational efficiencies as well as prediction
accuracies.

Of the methods discussed, the two I have identified as most promising are
textbftopology optimization with AD and RCWA and a PINN architecture.
The direct analytical performance comparison of these two options is nontriv-
ial, and will need to be verified in practice. To that end, I aim to produce an
implementation of both of these methods and compare their performance and
accuracy across a broad range of cases, including the near and far field cases as
well as various choices of design parameters.

For the topology optimization solution, I plan to modify the code of Colburn
and Majumdar[17] for use with my application. This requires the definition of a
loss function for both the near and far field cases. In both cases, the loss func-
tion must reward field intensity near the focus point while penalizing intensity
in all other directions, in order to minimize stray light which could interfere
unfavorably with other parts of the optical system.

This loss function will form one term of the larger PINN loss function. Using
the notation from my section on general PINN architectures, this corresponds
to Li. The PDE term Lf can be formulated using the derived equation for
the reflected and transmitted field complex amplitudes in terms of the global
scattering matrix from RCWA, with something like

Lf (S,Wref , cinc) = (rT −WrefS11cinc) + (tT −WrefS21cinc)

where S and Wref can be calculated based on the surface topology and
cinc just depends on the choice of incident wave. The final term, Lb, which
deals with boundary conditions, can penalize differences between lenslets which
should be periodically identical.

The PINN will be implemented in TensorFlow in order to easily enable
parallelization and direct comparison to the topology optimization solution.

There is also the question as to how to deal with the discrete nature of
the metasurface topology. As I see it, there are two options - discretizing the
pixel heights after each training or optimization step, or discretizing them after
continuous optimization has completely finished. By discretize, I mean round a
continuous pixel height value off to the nearest of the 5 allowed values.

Without a doubt, both strategies impose some error, but it is unclear at the
outset which one minimizes this. With the backpropagation framework of both
the TensorFlow RCWA and the PINN, it may be possible to model and track
these errors.

2. Which choice of design parameters admits the most effective
metasurface designs while maintaining computational feasibility?

As detailed above, there are a number of design parameters available which
allow a trade-off between design space complexity and computational cost of
optimizing solutions. I want to establish which of these choices most strongly
affects the accuracy of designed metasurfaces, and if these choices depend on
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whether the near or far field case is being considered.

3. How sensitive are the resulting designs to manufacturing
inaccuracies and to the angles of incidence of source waves, and can

these sensitivities be minimized?

A final concern is how robust the performance of designed devices is to slight
changes in the incident waves or geometrical parameters. Because both of the
design approaches take advantage of AD via TensorFlow, I should be able to
gain access to the derivative of the loss with respect to these changes relatively
easily.

A first step will be to characterize the sensitivities by determining the geo-
metric parameters and incident wave directions in which these derivatives are
greatest, for parameters trained with both optimization approaches and differ-
ent choices of design parameters. If some of these sensitivities turn out to be
significant, it may be necessary to penalize them the the loss function. It will
then be interesting to investigate if such a sensitivity-penalizing loss function
can lead to a good balance between low sensitivity and high accuracy.

For the PINN architecture, incentivizing the good performance for multiple
angles of incident waves would probably involve including the incidence angle
as an input to the forward solver, and then including some randomly selected
angles as part of the loss function sample point sets mathcalTf , mathcalTi and
mathcalTb. The loss function should also take into account this angle, and pe-
nalize solutions less when the angle from normal is high.

For the direct topology optimization method, doing the same thing proba-
bly requires multiple runs of the forward solver at each iteration. This might
remove much of the theoretical performance gain that this scheme has over the
PINN, leading to an interesting performance comparison in this case.
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