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Chapter 1

Introduction

Mathematical models and their simulations are becoming more and more fundamental in both
industrial and academical environments. Thanks to the increasing computational capabilities,
it is nowadays possible to simulate industrial and physical processes, exploring their evolution
in time without actually performing them.

The field of numerical simulations has an extremely wide set of possible applications. Engi-
neering problems can be faced with the help of computer simulations, which can provide fast and
reliable results in complex situations. Design products optimizing specific physical properties,
exploring scenarios, predicting vulnerabilities are just a few of the cases in which a numerical
approach can be as efficient as low-cost.

Applications of simulations have been developed in a huge variety of fields, both in fundamental
academic research and in industrial applications, e.g. petrochemical, marine, pharmaceutical
and aeronautical industries.

The main feature that numerical simulations provide is optimal and low-cost development of
products and services. To this purpose, simulations of fluid/fluid, fluid/solid particles systems
are essential tools and require deep research to obtain realistic results.

Using a "mathematical” perspective, it is possible to claim that at a first order approxima-
tion the entire world is based on fluids/particles interactions.
This is the reason why one of the most challenging fields is the study of fluid/particles sytems,
which has applications in uncountable different contextes. The fluid behavior is described by
fluid dynamics, more precisely by Navier-Stokes equations and in this work it is simulated
through methods of Computational Fluid Dynamics (CFD), whereas the dynamics of discrete
solids or particles is described using Newton's law on each particle and, in this work, simulated
using Discrete Element Method (DEM).

The aim of this work is to develop a robust coupling between an open source CFD toolbox
(OpenFOAM) and DEM.



Chapter 2

Problem Description

Obtaining accurate and reliable results from simulations of fluid-particle systems is extremely
important, therefore in the last decades academical and industrial researches focused more and
more on the attempt to develop efficient numerical approaches to be used in all kinds of appli-
cations.

Numerical methods and their implementations are continuously improved, year by year, and
the literature on mathematical modeling and numerical simulations has become extensive. Even
if progress has grown exponentially over the years, a lot of work is still to be done, both in the
modeling and in the simulation.

As stated in the introduction, the aim of this work is to study the coupling between fluid
simulations, through the methods of CFD, implemented in OpenFOAM, and solid particle in-
teractions, modeled by DEM.

The current implementation in OpenFOAM already includes a rudimentary interaction between
the modeled particles themselves and between the particles and flow, but it has significant limi-
tations on the size and shape of the modeled particles. In fact, particles are only approximated
as spheres, but the most problematic aspect of the implementation is the ratio between particles
and the fluid grid.

Therefore, the objective is to develop a new and robust coupling algorithm to improve the cur-
rent implementation.

To this purpose, a literature study has been carried out, to develop the necessary basis to
understand the state-of-the-art approaches adopted to simulate fluid/particle systems. This re-
port is the result of the work and it provides the most relevant ideas that have been developed
in the field.

Firstly, in Chapter 3 the equations of incompressible fluid dynamics are presented and de-
rived. A brief introduction to the open source software OpenFOAM is given. Then, in Chapter
4 the Discrete Element Method for modeling particle/particle interactions is described and two
softwares packages for DEM simulation are presented: HADES and LIGGGHTS, respectively. In
Chapter 5 the state-of-the-art techniques for the coupling between CFD and DEM are described
in detail. Finally, in Chapter 6 possible directions for the MSc project are briefly listed.



Chapter 3

Incompressible Fluid Dynamics

In this chapter fluid flows are considered. We briefly introduce the equations that arise from
incompressible fluid dynamics. The Navier-Stokes equations are derived under the hypothesis
of incompressibility. Then, OpenFOAM, an open source software package for fluid simulations,
is introduced.

3.1 Derivation of Incompressible Navier-Stokes equations

Derivation of Navier Stokes equations appears in every monograph dedicated to fluid and flows,
therefore in this report only main ideas are presented. We follow the derivation of the equation
in [11]

The first step in the derivation of Navier Stokes equations is to apply the principle of mass
conservation to a control volume V' (¢) that contains a specific collection of fluid particles.
Let p(x,t) be the density of the fluid at point x at time ¢, then conservation of mass applied on
control volume V' (t) reads:
— p(x,t)dV = 0. (3.1)
dt V(t)
Let u(x,t) be the velocity field, A(t) the surface of the control volume and n the outward normal
to the surface. Then applying Reynolds transport theorem we get:

/ gp(x, t)dV + / p(x,t)u(x,t) - ndA = 0. (3.2)
vy Ot Af®)

Applying divergence theorem to the surface integral we get:
0
/ {p(x, t)+ V- (p(x,t)u(x, t))} dv =0. (3.3)
V(t) ot

Equation (3.3) has to be valid for all possible control volumes, in particular for vanishing control
volumes. Therefore, the integrand in the left hand side has to be zero. We derived the differential
form of the mass conservation, or the continuity equation.

9 Pl 1)+ V- (p(x, 1, 1)) = 0. (3.4)

Usually, the continuity equation (3.4) is written as:

dp
5+ V() =0, (3.5)
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Adding the hypothesis of incompressible flows, equation (3.5) becomes:
V.-u=0. (3.6)

We will follow the same procedure applying the principle of momentum conservation to the
control volume V' (¢). The conservation of momentum deals with forces applied to the control
volume. We will divide the forces in two contributes: body forces, that act without physical
contact with the element and surface forces, that act through direct contact with the surface
of the element. To this purpose, let f(x,t) be the body force per unit mass on the fluid inside
V(t) and let t(n, x,t) be the surface force per unit area on the surface A(t), usually called stress
vector.

d/ p(x, t)u(x,t)dV:/ p(x, t)f(x,t)dVJr/ t(n,x,t)dA (3.7)
dt Jv V() Af®)

We use the assumption on curvature of Cauchy, i.e. t(n,x,t) = T(x,¢)n, where T(x,t) is usually
called stress tensor. This corresponds to the hypothesis that the stress vector is a linear function
of the stress tensor and the normal derivative to the surface. Applying the Reynolds Transport
Theorem and the divergence theorem on the surface integral we get:

/V(t) {;P(x,t)u(x,t) + V- (p(x,t)u(x,t)) — p(x,t)f(x,t) — V- (T(th))} AV =0. (3.8)

As the case of mass conservation, equation (3.8) has to hold for vanishing control volumes,
therefore the integrand on the left hand size has to be zero.

gtp(x, tu(x,t) + V- (p(x,t)u(x,t)) — p(x, t)f(x,t) = V- (T(x,t)) = 0. (3.9)

Using the continuity equation (3.4) and the shorter notation we can simplify the equation (3.9)
and we obtain the Cauchy equation of motion:
Ou

p<8t+u-Vu>:V-T—|—f. (3.10)
Equation (3.10) is able to describe the conservation of momentum at differential level for both
fluids and solids. In order to describe fluids we have to consider a constitutive equation for the
stress tensor T.
We consider newtonian fluids, in which the stress tensor T is a linear function of the rate of
strain tensor E = %(Vu + Vu)T and we add the incompressibility assumption. Hence, we get
the following equation for the stress tensor T:

T = —pIl + 2uE, (3.11)

where p is the pressure and p is the viscosity of the fluid.
Substituing the constituve relation on the Cauchy equation of motion (3.10) gives:
Ju
p E—Fu-Vu =—-Vp+ pAu+f. (3.12)

Considering the continuity equation (3.6) and the Cauchy equation for incompressible new-
tonian fluids (3.12) we finally get the Navier Stokes equations:

V-u=0
p(?;tl—i-u~Vu) =—-Vp+pAu+f (3.13)

6
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3.2 OpenFOAM

The Navier Stokes equations derived in the previous section are a system of non-linear partial
differential equations. They manage to describe the behavior of general 3D flows, laminar or
turbulent. They are extremely efficient in modeling all kind of flows but, due to non-linearities,
an analytic solution is not available for the general case.

Therefore, up to now, only numerical solutions are available. Numerical solutions are determined
by discretization of the equations and on development of algorithms to get an approximation of
the solution of the original (continous) problem.

Several commercial software packages are able to simulate efficiently the behavior of fluids
in several different situations. In this report we will consider an open source software, Open-
FOAM and we will refer to its user’s guide [6]. OpenFOAM (”Open source Field Operation And
Manipulation™) is a C++ toolbox for the development of customized numerical solvers for the
solution of continuum mechanics problems. It also provides pre- and post-processing utilities.
Basically, OpenFOAM is a library, which can be used to build the so called applications. Appli-
cations can be solvers or utilities. Solvers perform the calculation to solve a specific problem.
Utilities prepare the mesh, set-up the simulation case and process the results.

OpenFOAM uses Finite Volume Method (FVM) for the discretization and the solution of
partial differential equations. The idea is that the domain is divided in control volumes. On
each control volume, partial differential equations are discretized and solved.

A dissertation of the FVM is beyond the scope of this work. Details of the implementation of
the method and of the various techniques developed over the years can be found in monographs
like [18] or [5].

OpenFOAM solvers have been developed for a broad set of problems. Some areas in which
standard solvers available for fluid mechanics are: basic CFD, incompressible/compressible flows
with DNS, RANS and LES capabilities, multiphase flows and particle-tracking solvers.

Other fields in which OpenFOAM has been used are: combustion, conjugate heat transfer,
molecular dynamics, electromagnetism and solid dynamics.

Main built-in solvers
Several solvers have been developed for different applications. Here we list the most relevant to
the purpose of this literature study.

Incompressible Flows:

e icoFoam Transient solver for incompressible, laminar flow of Newtonian fluids.

pimpleFoam Large time-step transient solver for incompressible, turbulent flow, using the
PIMPLE (merged PISO-SIMPLE) algorithm.

pimpleDyMFoam Transient solver for incompressible, turbulent flow of Newtonian fluids on
a moving mesh, with possibility of local refinements.

pisoFoam Transient solver for incompressible, turbulent flow, using the PISO algorithm.

simpleFoam Steady-state solver for incompressible, turbulent flow, using the SIMPLE
algorithm.

Multiphase flows:
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e interFoam Solver for 2 incompressible, isothermal immiscible fluids using a VOF (volume
of fluid) phase-fraction based interface capturing approach.

e interDyMFoam Solver for 2 incompressible, isothermal immiscible fluids using a VOF (vol-
ume of fluid) phase-fraction based interface capturing approach, with optional mesh motion
and mesh topology changes including adaptive re-meshing.

e multiphaseEulerFoam Solver for a system of many compressible fluid phases including
heat-transfer.

e multiphaseInterFoam Solver for n incompressible fluids which captures the interfaces and
includes surface-tension and contact-angle effects for each phase.

Direct numerical simulations
e dnsFoam Direct numerical simulation solver for boxes of isotropic turbulence.
Particle-tracking flows

e DPMFoam Transient solver for the coupled transport of a single kinematic particle cloud
including the effect of the volume fraction of particles on the continuous phase.
A more complete discussion of this solver is provided in section 5.6

e MPPICFoam Transient solver for the coupled transport of a single kinematic particle cloud
including the effect of the volume fraction of particles on the continuous phase.
Multi-Phase Particle In Cell (MPPIC) modeling is used to represent collisions without
resolving particle-particle interactions. They are in fact represented by models which eval-
uate mean values calculated on the Eulerian mesh. A severe limitation of the solver is that
the size of particles must be small compared to the Fulerian grid for accurate interpolation.
This coupling will be defined as unresolved coupling in the following chapter.

The solver provides reliable results in dense particle flows ( more than 5% by volume), but
since it does not resolve particle-particle interactions it is not useful for the aim of this work.

How to use the built-in solvers
Each simulation takes place in a specific directory, created by the user. In this directory there
have to be three subdirectories:

® system
It contains files to control the generation of the mesh and the integration method used to
solve the specific problem.

e constant
It contains the specification of constant of the problem and it store the mesh, once it has
been generated following the instructions contained in the system directory

e 0
It contains one file per variable of the problem. Each file contains initial and boundary
conditions for the specific variable.

All the files required by the simulation are text files with an appropriate syntax. Usually, two
commands are necessary to perform a simulation: blockMesh generates the mesh and then a
solver is used to actually perform the calculation, i.e. if we want to use icoFoam solver, it is



3.2. OPENFOAM

enough to use the command icoFoam. Other commands may be required in specific cases.

Once the simulation has been performed, other directories will be created in the directory
of the project: OpenFOAM will store the evolution of the solution in time with an user-defined
time step, usually larger than the actual time step used in the calculations. Each directory will
contain one file per variable, and in that file the numerical values for that variable are stored.
Usually the visualization of the results is done via ParaView, an open source multiple-platform
application for interactive, scientific visualization.

A very first example of the output that can be obtained using OpenFOAM is given in Figure
3.1. We consider an isothermal, incompressible, laminar flow in a 2D square domain. Left, right
and down side of the square are walls, at the top the fluid is moved with velocity 1 in the right
direction. The simulation has been performed using a tutorial provided with OpenFOAM.
Note that OpenFOAM solves three dimensional problems, even if the problem considered is two
dimensional.
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Figure 3.1: Isothermal, Incompressible, Laminar flow in a 2D square domain
Left, right and down side of the square are walls, at the top the fluid is moved with velocity 1
in the right direction. Magnitude of velocity is plotted.



Chapter 4

Particle/Particle interactions

In this chapter, the interaction between particles in pure granular flows is considered.

Two different approaches are possible to describe particle/particle interaction: Lagrangian
tracking or Eulerian modeling approaches.

e Lagrangian approach: individual particles (or parcels of) are tracked through the field and
properties of each particle are evaluated.
examples: Discrete Element Method (DEM), Discrete Parcle Method (DPM)

e Eulerian approach: sets of algebraic conservation equations are solved simultaneously for
each node in the field.
examples: Two Flow Model (TFM)

In this work, we focus on the description of Discrete Element Method. Firstly, we introduce
the method. Then, two open source software packages, HADES and LIGGGHTS, that apply
DEM are introduced and presented.

General overview of DEM

DEM is based on the assumption that the material in consideration is made of separate, discrete
particles. Granular matter, bulk material, solutions, liquids, powder, rock masses are the most
common example of application of DEM.

The first steps of development of a DEM for a particles system are the generation of a model,
the orientation in space of all the particles and assignment of an initial velocity to them. The
forces applied on each particle are computed from the initial data and depend on the model used
to describe contact between particles and on the physical laws relevant on the specific problem.
Possible important contributions can be given by:

e Macroscopic: Friction, Contact plasticity, Attractive potentials (cohesions, adhesion),
Gravity

e Microscopic: Electrostatic attraction (Coulomb), intra-molecular forces (Van der Waals)

Every force taken into consideration for a specific problem is summed to have the total force
exerted on every particle.

Once the total force acting on each particle is computed, it is possible to perform an inte-

gration in time to evaluate the new positions and the velocities of the particles, using suitable
integration method, as the Verlet algorithm, symplectic integrators or the leapfrog method. The

10
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simulation consists in applying this steps until a suitable final time is reached.

Not all the possible forces taken into account have the same computational cost. A peculiar
case is given by long-range forces, which require to evaluate the interaction between each pair
of particles. In this case, the computational cost of the method increases quadratically with
the number of particles considered. Ad-hoc methods are developed to reduce the computational
effort, for example combining particles that are far from the particle in consideration and con-
sidering them as a single pseudo-particle.

The main disadvantage of DEM is that the maximum number of particles is strongly limited
to computational resources. Usually, fluids are considered as made of billions of particles and
this results in a huge demand in computational power. Cluster of GPUs can be used for reducing
computational time.

Despite this problems, DEM is a powerful resource to simulate a wide variety of granular
flows and rock mechanics problems and it can be the unique way to study micro dynamics of
systems in which measurements are nearly impossible due to the small scale.

4.1 Discrete Element Method

The Discrete Element Method (DEM) is a Lagrangian method used for calculating the dynamics
of large granular systems. In this presentation we use results presented in [4] and [8]. The particle
flow is resolved at the particle level. In fact, as described above, DEM calculates the trajectory of
each particle considering the influences by other particles, walls or other problem-specific forces.
The motion of a particle consists of a rotational and a translational component, therefore the
equations that describe the method are the Newton’s laws for translations and rotations:

dui
m;—— = I';
7 dt 1y
I'dWi '
ldt — 4L

(4.1)

where m; is the mass of the particle i, F; is the force applied to the particle and u; is the velocity,
which is unknown; I; is the inertia tensor, 7T; is the torque applied to the particle and w; is the
angular velocity, which is also an unknown. The force F; has to be modeled in order to describe
the particle/particle interactions. Usually, as described in [8], F; takes into account:

e a gravitational component m;g

e particle-particle collisions N, Fip

e particle-wall interactions )y Fj.

e cohesive interactions N, Fic
where IV, is the number of the particles in the system and N, is the number of the walls. We
have to mention that other problem-specific forces can be considered, like electromagnetic or

chemical contributions. Using the aforementioned forces, the force F; on the particle is given
by:

F; =m;g + Z F;p+ Z Fiw+ Z Fi. (4.2)
Np

Ny Ny

11
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In this case, Netwton’s laws (4.1) take the form:

du;
misge = Mg+ Y Fip+ 3 Fiw+ 3 Fio
N, Nuw N,

dw;
g =T

(4.3)

After having derived the equation (4.3) it is straightforward to notice that the next step is to
model the forces F;p, Fj ., i.e. the contributions of the interaction between particle i and all
other particle and the walls, respectively, and and Fj ., i.e. the contribution of the cohesive forces.

For the sake of simplicity, in the development of DEM each particle is assumed to be a
sphere. This will impose a limitation on the accuracy of the method, but non-spherical particle
can be approximated by several spheres glued together.

The assumption is a necessary simplification, since it allows to develop easily contact and cohe-
sive models and to consider the arising torque 7; as generated exclusively by tangential compo-
nent of the force Fj.

Particle-particle interactions
For the purpose of modeling the interactions that arise form particle-particle collisions, two
different approaches can be used: hard sphere model and soft sphere model.

e Hard sphere approach
The particles are impenetrable and the contacts are instantaneous and perfectly rigid.
Only binary are considered and long-distance particle forces are neglected. This approach
is mainly useful in dilute systems, where the number of binary collisions prevail.

e Soft sphere approach
When solids exert forces on each other, they are subjected to deformation. In this model,
deformation is replaced with an overlap between the two particles taken in consideration.
The results are more accurate than the hard sphere model, but the computational effort
is much bigger.

The Discrete Element Method is based on the soft sphere model.

The main assumption is that particles which are in direct contact with the particle in con-
sideration influence its motion. A collision between elastic particles generates repulsive forces,
which will be directly proportional to the deformation, described by the overlap. Since we are
considering deformations, we have to notice that deformation of a body implies energy loss,
which depends on deformation speed.

A very intuitive mechanical analogy to this process is given by the spring-damper system,
where the motion of a body with mass m is described by

mZ +nx + kx = 0, (4.4)

where 7 is the damping coefficient of the dash-pot, k is the stiffness of the spring and x is the
distance form the equilibrium position. In Figure 4.1 a visualization of a spring-damper system
is provided.

In the dash-pot we have loss of kinetic energy, which is in accordance to the hypothesis of energy
loss due to deformation. The solution of this linear ODE is parameter-dependent, and can be

12
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over-damped, critically damped or under-damped. Usually the collision of particle gives rise to
under-damped solutions.

k m
AW VP AT
—
1 I PR
» X

Figure 4.1: Analogy particle collisions and spring-damper system.

The analogy between the two phenomena lies in the following processes. Due to external
forces, one particle A is pushed towards another B. In the spring-damper system this corresponds
to a force that moves the equilibrium position of x. When the point leaves the equilibrium, the
spring compresses and a repulsive force is created. This repulsive force corresponds to the reac-
tion force caused by B acting on the particle A. Due to this reaction force, particle A starts to
return to its original position after having reached the maximum displacement. Due to energy
loss, the velocity of returning will be lower than the velocity before collision.

Using the linear ODE (4.4) not all details of the physical process are described, but we still
manage to model a variety of cases, so we will consider the model a good approximation of reality.

The aim is to develop a model for the force F;,, which describes the force applied to particle
7 due to particle-particle interactions. For the sake of simplicity, we write F;.
The force F; will be the sum of all the collisions with the j particles that are in contact with
particle i. Therefore we can write

Fi=Y"Fy. (4.5)
i

We define § as the overlap that is developed when two particles collide. We consider a collision
between particle ¢ and particle j. The overlap § will have both normal and tangential component
0n,0;. The same applies to the force Fj;j: we decompose it in normal component Fj;; and in
tangential component Fy;;. Hence, equation (4.2) becomes:

F; = Z (Fnij + Fiij) - (4.6)
J

Different equations model these two contributes.

Now we use the analogy between particle collisions and spring-damped systems to build a model
for normal and tangential component of the force applied to the particles. We will deal with the
stiffness parameter k, the damping coefficient n and the friction coefficient f.

Firstly, we model the normal component of the force, i.e. F,;;.

The normal component is given by the sum of the forces due to the spring and the dash-pot.
Using the Hertzian contact theory, the force is given by:

Frij = (—kn03/2 = ni(vi — v;) -n)n (4.7)

13
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Particle 1 Particle 2

Figure 4.2: Spring-damper system applied to contact between particles.

where k,, is the stiffness coefficient in the normal direction, 7,; is the damping coefficient in
the normal direction, v; is the velocity of particle ¢ and n is the unit vector with direction the
line that connects the centers of particles ¢ and j. The power 3/2 of the displacement may seem
strange, but the results are in good accordance with the experimental cases.

Now we model the tangential component of the force, Fy;;.
For the tangential component we have to distinguish two cases, depending on the ability of the
sphere to slide or not. We use a Coulomb-type friction law on the first case, whereas we develop
an ad-hoc model for the second. Hence the force is given by:

Ft”:{ f| ’nlj| ‘ tlj| _f| 717,]| (48)

- k:tét - nthCt else

where k; is the stiffness coefficient in the tangential direction, 7;; is the damping coefficient
in the tangential direction and f is the friction coefficient which is measured empirically, t is
the unit vector in the direction of V., which is the slip velocity and is modeled as:

Vo= (Vz’ —Vj) — ((VZ —Vj) -n)—|—aiwi Xn—+ajw; Xn

where a; and a; are the radii of the particles ¢ and j.

We will now focus on the modeling for the stiffness coefficients k,, and k; and the damping
coefficients 7, and n;.

We use Hertzian contact theory for the normal stiffness coefficient k,. If we know Young’s
modulus £ and Poisson ratios ¢ for the particles ¢ and j we have:

-1
i :§ 1—034_1—0? a; +a;j —1/2 (4.9)
" 3 Ez Ej a;a; '

We use Mindlin’s theory for the tangential stiffness coeflicient k;. Knowing the shear modulus
H of the two particles ¢ and j we have:

—1
1—02 1-0} a; +a;\ /?
ke =8 : ! ! 5/ 4.10
! <H,-+Hj><aiaj n (4.10)

14
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For the two damping coefficients we use the expression proposed by Cundall and Strack.
They calculated the two coefficients as the critical damping conditions for the spring-damped
system (4.4), since the bouncing motion after collision should be damped as soon as possible.
therefore we get:

N = 2y/mkp (4.11)

m = 2v/mky (4.12)

Cohesive Interactions

Granular materials have the ability to resist external tensile stress. This property is caused by
microscopic attraction forces between particles, called cohesive interactions, which may have
physical and chemical origins. For this part, we follow the dissertations [4] and [14].

The cohesive interaction have the effect to resist to separation, shear or rolling of two par-
ticles, restricting the relative particle displacements. Not all the granular materials manifest
appreciable effects of the cohesive interactions: it is possible to subdivide the materials in
weakly cohesive and strongly cohesive, depending on the influence of the cohesive forces in the
macroscopic behavior.

Several physical phenomena can be responsible for the arise of cohesive forces. We will give
three examples: electrostatic and Van der Waals forces as bulk forces and capillary bridge as
contact force.

We first introduce the electrostatic case. Electrostatic forces occur if at the particle surface
the electrical charges of opposite signs are not balanced. The radial force that arise is this case,
between particles ¢ and j is:
qiq;

Foo—
Y Arege, ]

(4.13)
where ¢; and g; are the electrical charges of particles 7 and j, ¢g and ¢, are the vacuum permit-
tivity and relative permittivity of the medium, respectively and [ is the distance between the
particle centers.

This force is attractive if ¢; and ¢; have opposite signs, otherwise it is repulsive.

The Van der Waals forces are inter-particle forces that cause adhesion between particles
between each other and the walls. They are particularly strong when smooth surfaces are
brought to contact. The Van der Waals force between two spheric particles is described by:

A D;D;

Fi=——— 4.14
K 1212 l)i—{—Dj7 ( )

where D; and D; are the diameters of particles i and j respectively, A is a constant (Hamaker
Constant) and [ is the separation distance at the particles start to interact.

Cohesive forces can arise even when two particles are in contact, developing adhesion. An
example is given by capillary bridges. The capillary force is given by:

Fij = —2m Ry cos 0, (4.15)

where v is the liquid surface tension and 6 the contact angle and R7; is the average of the radii
of particles ¢ and j.
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Total Interaction

Once we have modeled each component of the forces acting on the particle ¢, we can go back
to (4.3) and rewrite it in a simpler way. We do not consider all the particles, but only those
that are in contact with particle <. Hence we do not sum over IV, but over j. Moreover, we sum
all the different contributions in the normal direction in F!% and in the tangential direction in

nij
Fttlf;t Therefore we obtain:

d
= mig + 32 (Rl + )

dw;
Iiditl = ; (an X Fttlzt)

(4.16)

since the torque T; is generated exclusively by the tangential component of the forces, as ex-
plained in the previous paragraph.

4.2 HADES

HAbaneras Discrete Element Simulator, named HADES, is a discrete element software package,
developed by Habanera, that simulates granular flow or mixture problems.

As described in the previous section, using DEM the behavior of the entire material /mixture is
simulated by considering contribution of each constituent in the mixture individually. In fact,
performing a simulation of the complex interactions between the grains mutually and the in-
fluence of the environment on the individual grains, the behavior of the whole mixture can be
evaluated.

In HADES the dynamics of the individual particles is evaluated by integrating Newtons
second law of motion.
With the technique adopted in the previous section, it is possible to model the total net forces
and torques acting on a particle. This is obtained summing the individual forces F;; and torques
T;; that act on body ¢ over the number of actuators j, where as actuators we define the processes
responsible for the arise of a force.
Knowing the particle state (its position and its velocity) at a particular time, it is possible to
obtain the state of particles at a later time integrating the above equations in time. To this
purpose various numerical integration schemes can be used. Currently, HADES only supports
explicit schemes.

HADES software provide a powerful implementation of the DEM. The outline of the solution
procedure is given by:

Outline of solution procedure

Initialize the state of all particles (positions, velocities);

while ( not done ) do

calculate the individual forces that act on the particles at time t (more evaluations at
different positions and times may be necessary);

calculate the net force and torque that act on each body;

calculate the new velocity and position of each particle at time t + At by integration
over the time period At;

advance the time to t + At;

advance the particles to the new state;

end
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Actuators and Models

Very different processes can be at the origin of forces and each one of them requires careful
modeling. As stated before, we call each of these processes an actuator. The result of an active
actuator on a particle is a force. For example, gravity, drag and contact are actuators that may
contribute to the total net force that acts on a particle.

In HADES the force F;; that acts on a particle ¢ due to an actuator j is independent from the
force Fj; that acts on the same body but from a different actuator k. Therefore each actuator
can evaluate its influence on a group of particles, independently from any other actuators that
may be active. For example, the evaluation of the gravity force can be performed independent
from the evaluation of the drag force and contact force.

In HADES these actuators are encapsulated in so called Models. Each Model calculates its

contribution to the total force that acts on each particle. These Models can be added via the
input file.
The user specifies, in an ASCII input file, which models are active during the simulation and
what values should be used for the relevant model parameters. For example, if gravity plays no
role in the experiment that is being simulated, the user simply does not add this Model. This
modular design gives HADES a very strong flexibility and since most of the functionalities are
encapsulated in independent Models, it also allows HADES to be extended in a simple way.

Physical objects, such as containers, hoppers, borders and particles, may have arbitrary
shapes, but the evaluation of the mutual interactions between arbitrarily shaped objects is in
general too computationally expensive. Hence, optimized algorithms are provided for simple
shapes, like spheres and planes.

Particular useful Models are those that imply forces on the particles. The implemented
Models with this purpose are collision models, that calculate the inter-particle contact forces,
drag force models that calculate the force on a body that moves through a medium and the
gravity model that calculates the gravitational forces that act on a body.

Other implemented Models control the number of particles that are active during a sim-
ulation. To this purpose, a sink model and various generator model are available. The sink
model deletes from the simulation the particles that enter a user-defined geometrical region,
instead other gemerator models are able to generate particles of a user-defined shape and size,
at user-defined locations at user-defined times during the simulation.

Property files

In order to run an HADES simulations, user-defined input needs to be considered. The user
gives directives through the property files. The property file is a text file containing a set of
name-value pairs, called properties, that describe the runtime parameters and the models to be
used. The general syntax of a property is:

name = value;

The value of a property can also be a property set, so that it is possible to create a tree-like
structure of properties. An example of same parts of a property file is given by the following
script:

integrator = // define integration scheme and configure integrator

{
type = "Heun";
maxTimeStep = 5.0e-03;
minTimeStep = 5.0e-07;
fixedTimeStep = false;
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};
generator = // define generator type and configure this generator
{
type = "ellipsoidGenerator";
maxElemSize = 1.0e-02;
maxElemCurv = 10.0;
density = 1000.0;
groupName = ‘'particles";
outputFile = 'myname.out";
generation =
{
nr0fBatches =1;
bodiesPerBatch = 8000;
fireTime = 0.0;
};
};

Using this kind of syntax for the appropriate properties, the user is able to generate particles
with particular shapes, choose which actuators to apply, define the time integration method and
all the parameters required for the simulation.

We now list the built-in models, already available in the current version of HADES.

Built-in Models
Models to add bodies to a simulation:

e cllipseGenerator generates bodies of elliptical shape

e ellipsoidGenerator generates bodies of ellipsoidal shape

e fromFileGenerator generates bodies of which the shape description is obtained from file
Model that remove bodies from a simulation:

e sink removes bodies from the simulation
Models that apply contact forces and gravity to particles:

e HertzContact Hertz Mindlin contact between particles of spherical shape

e HertzContactPlaneSphere Hertz Mindlin contact between particles of spherical shape
and infinite planes

e gravity calculates the gravitational force on bodies
e segmentContact contact model between particles of arbitrary shape

Other modulus provide a first (one-way) coupling between particles and fluid. for example the
calculation of drag force on particles, but we will discuss them later in the section dedicated to
the coupling.

Up to now, HADES provides extensive modulus for contact forces, but cohesive force are
missing.
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We now give two examples of the usage of HADES software.

In Figure 4.3 the fall of particles in a 2D box is simulated. After the flow is stopped, a circular
motion is imposed on a particle and the behavior of all the other particles of the system is
explored.

In Figure 4.4 the collision of 3D particles is explored. The particle in the right is provided with
a velocity in left direction. All the collisions are accurately caught and in the final time of the
simulation all the particles have a non-zero velocity in the left direction. Due to the lack of
other collisions, the particle in the left moves away from the system.

Figure 4.3: Particles fall and successive perturbation

Figure 4.4: 3D Collisions

4.3 LIGGGHTS

LIGGGHTS is an Open Source Discrete Element Method Particle Simulation Software.
LIGGGHTS stands for LAMMPS improved for general granular and granular heat transfer
simulations. LAMMPS is a classical molecular dynamics simulator. It is widely used in the
field of Molecular Dynamics. Thanks to physical and algorithmic analogies, LAMMPS is a very
good platform for DEM simulations. LAMMPS offers a GRANULAR package to perform these
kind of simulations. LIGGGHTS aims to improve those capability with the goal to apply it to
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industrial applications. A very detailed documentation is provided in [3].

LIGGGHTS applies the Discrete Element Method described in the previous sections for
simulations of interactions of particles between each other and with walls of containers. The
equation of motion is numerically integrated, updating the state of each particle every time step.
LIGGGHTS is a software written in C++ and it supports parallel computing via MPI. Mainly,
it is open-source, but some functionalities are provided only through a commercial license.

The user has to provide the set up of the simulation and the parameters required through a
text file, called input file. Then, the user will run an executable file giving as input the text file
filled with the geometry, material parameters and details of the simulation. It is possible to set
the geometry of the problem directly on the input file or importing an user-defined mesh via a
STL file.

Input File

In the input file, the user has to set up the domain of the simulation, to choose the models to use
(contact, cohesion, ...) and to fix all the parameters necessary for the simulation. The structure
is usually given by:

e Definition of the shape of the particle

e Definition of the boundaries of the domain

e Definition of the minimum distance for detecting the neighbors of the particles
e Setting of the physical parameters required by the model used

e Fixing the walls of the simulation or importing STL geometries

e Fixing the region of insertion of the particles

e Choosing if particles with different properties are needed

e Choosing output settings

e Run up to a certain final time

Here we give an example of an input file, which has been used to produce a simulation of
a particle drop on a oblique chute. Spherical particles have been used, but with two different
sizes: 30% big and 70% small. Result of the simulation at the final time is shown in Figure 4.5.

# Simple chute wear test

atom_style granular
atom_modify map array
boundary fff
newton off

communicate single vel yes

units si

region domain block -0.5 0.1 -0.2 0.2 -0.4 0.15 units box
create_box 1 domain

neighbor 0.002 bin

neigh_modify delay O

# Material properties required for new pair styles
fix ml all property/global youngsModulus peratomtype 5.e6
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fix m2 all property/global poissonsRatio peratomtype 0.45

fix m3 all property/global coefficientRestitution peratomtypepair 1 0.3
fix m4 all property/global coefficientFriction peratomtypepair 1 0.5
fix mb5 all property/global k_finnie peratomtypepair 1 1.0

# New pair style

pair_style gran model hertz tangential history #Hertzian without cohesion
pair_coeff * *

timestep 0.00001

fix gravi all gravity 9.81 vector 0.0 0.0 -1.0

# Fix the wall: the chute

fix cad all mesh/surface/stress file meshes/simple_chute.stl type 1 wear finnie

fix inface all mesh/surface file meshes/insertion_face.stl type 1

fix granwalls all wall/gran model hertz tangential history mesh n_meshes 1 &
meshes cad

# Distributions for insertion

fix ptsl all particletemplate/sphere 15485863 atom_type 1 density constant 2500
radius constant 0.0015

fix pts2 all particletemplate/sphere 15485867 atom_type 1 density constant 2500
radius constant 0.0025

fix pddl all particledistribution/discrete 32452843 2 ptsl 0.3 pts2 0.7

# Region and insertion
group nve_group region domain
region bc cylinder z 0.0 0.0 0.015 0.05 0.12 units box

# Particle insertion

fix ins nve_group insert/stream seed 32452867 distributiontemplate pddl &
nparticles 6000 massrate 0.1 insert_every 1000 overlapcheck yes &
all_in no vel constant 0.0 0.0 -1.0 insertion_face inface

# Apply nve integration to all particles that are inserted as single particles
fix integr nve_group nve/sphere

# Output settings, include total thermal energy

compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo 1000

thermo_modify lost ignore norm no

# Insert the first particles so that dump is not empty

run 1

dump dmp all custom/vtk 200 post/chute_x.vtk id type type x y z ix iy iz &
vx vy vz fx fy fz omegax omegay omegaz radius

dump dumpstress all mesh/gran/VTK 200 post/mesh_*.vtk stress wear cad

# Insert particles
run 100000 upto
unfix ins

In LIGGGHTS it is possible to apply also cohesive models. The simulation of the drop of
particles has been performed and in Figure 4.6 and 4.7 final results are given.
As expected, the case with cohesive forces results in the creation of a clump, whereas without
cohesive forces a more ordered structure is obtained.
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Figure 4.5: Particle drop on a chute.

Figure 4.6: Drop with cohesion.

Figure 4.7: Drop without cohesion.
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Chapter 5
Coupling

Physical simulations often deal with interactions between solid particles and fluids, whereas up
to now we considered these two phenomena as independent. In this section, some methods for
the interaction between fluids and particles are described and analyzed. This process is called
Coupling, and we will focus on the coupling between CFD for fluid simulations and DEM for
particle interactions.

The first classification of the coupling procedure regards the reciprocal influences between
fluid and particles and particle on themselves. In fact, we distinguish 3 different cases:

o 1-way coupling
Fluid exerts influence on particle motion but not vice versa. Neglect particles interactions

e 2-way coupling
Fluid exerts influence on particle motion and vice versa. Neglect particles interactions

e J-way coupling
Fluid exerts influence on particle motion and vice versa. Resolve particles interactions

Depending to the specific problem, the most efficient coupling can be implemented. The aim of
this project is to study the 4-way coupling, therefore we will focus on this case.

In this chapter, we firstly describe the modeling of fluid/particle interactions, describing
the different contributions to the phase coupling. Then we discuss some general issues on the
coupling procedure, i.e. the time step choice and the contact detection algorithm. Finally,
we describe two different approaches that have been developed for the CFD-DEM interactions:
Resolved and Unresolved couplings. Resolved coupling is useful when the size of the particle
is bigger than the computational grid used for fluid simulation, whereas unresolved coupling
deals with the case of particles which are smaller than the computational grid. We will describe
in depth the details of this two distinct methods, for which we follow the references [8] and
[10]. Some open source implementations of the coupling procedure are then listed and briefly
described.

5.1 Modeling of Fluid/Particle Forces

The fluid dynamics force on a particle can be modeled as the superposition of different con-
tributes. In this section we briefly describe the different components. It is important to notice
that not every component will be relevant in every problem: the formulation of fluid/particle
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interactions is often problem-specific. In this section, we follow [4] for the description of the
different contributions.

Mainly, the influence of fluid on particle motion can be described as the sum of two contri-
butions: drag forces and lift forces.
5.1.1 Drag forces
The drag forces that arise on the particle due to the fluid are:
Undistrubed flow

Steady state drag

Virtual (or added) mass

Basset term

Undisturbed Flow
This component describes the contribution of the pressure and the shear stress fields in the
undisturbed flow, i.e. in the flow without considering the presence of the particle. This term
contributes significantly in liquid-particles flows, but it is neglectable in gas-particle flows. The
model is described by:

8]) + 87‘1k> ’

Fuq=Vy <— (5.1)

where Vj is the volume of the particle.

Steady state drag

This terms models the drag force that acts on the particle in a velocity field where there is no
acceleration of relative velocity between the particle and the conveying fluid. Different models
are available in the literature, to describe a variety of situations. We give, as an example, the
steady state drag force based on the drag coefficient Cp:

1
Fss = ipCACD|u—v|(u—U), (5.2)

where p. is the density of the fluid carrier, A is the project area of the particle in the direction
of relative velocity of fluid and particle and Cp is the drag coefficient. The drag coefficient Cp
is strongly influenced by the Reynolds number Re. The dependence of Cp from Re has been
extensively studied and there are several models available for different ranges of Re.

Virtual (or apparent) mass effect

The virtual mass effect appears when a body in a fluid is subjected to an acceleration. The
fluid is accelerated, and the work necessary to obtain this acceleration is done by the body.
Therefore, the global effect is called apparent mass force, since it is equivalent to adding a mass
to the sphere.

The virtual mass force can be modeled as:

1 Du  dv
va:* T ) .
pPeVa (Dt dt) (5-3)

being V; the volume of the particle.
Virtual mass effect appears only in unsteady flows.
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Basset Term

This term describes the delay in the development of boundary layers due to the fact that relative
velocity changes with time. It describes the viscous effects of an acceleration and it is known in
literature also as history term, since its value depends on acceleration history up to the present
time. This contribution is modeled as:

by — ;) (ui —vi)o

3
Fpuss = —=D? e dt’ + ) 5.4
B 5 D Vel [ ; — 7 (5.4)

We see that also the initial value of the relative velocity influences the final force Fpgss-
Basset term appears only in unsteady flows.

5.1.2 Lift forces

The lift forces that arise are:
e Magnus lift

e Saffman lift

Saffman Lift

The Saffman lift arises from the pressure distribution on a particle in a velocity gradient. Let
us consider a sphere immersed in a shear flow, with higher velocity at the top of the particle
and lower at the bottom. The higher velocity on at the top causes a low pressure, whereas the
lower velocity at the bottom gives rise to a high pressure. This differential of pressure develops
a lift force.

Let us define the shear Reynolds number Reg, i.e the Reynolds number based on the velocity
difference between the top and the bottom of the particle:

- D? du

Reg = (5.5)

e dy’
where v, is the kinematic viscosity of the fluid carrier and D is the diameter of the particle.

If both the relative Reynolds number based on velocity different of fluid and particle Re, and
the shear Reynolds number are small (< 1) and Re, < v/Reg, then the Saffman lift force can
be modeled as:

FSaff = 1.61M0D|ui - Ui‘\/ Reg. (5.6)

Magnus Lift

The Magnus force is the lift generated by the rotation of a particle, due to the presence of a
pressure differential between both sides of the particle, caused by the velocity differential due
to rotation. The rotation may be caused by other phenomena than velocity gradient.
Generally, the direction of the force is the normal to the plane formed by the rotation vector
and the relative velocity vector. If they are orthogonal to each other, the Magnus lift force can
be modeled as:

1
Frag = §pCACLR\U —ul(v —u), (5.7)

where A is the project area of the particle and Cpg is the lift coefficient due to rotation. The
modeling of the coefficient Cpr has been explored extensively and a variety of equations are
available in the literature.
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5.1.3 Total interaction

Exploiting the same procedure adopted by Discrete Element Method in the modeling of parti-
cle/particle interactions, the total force is obtained summing all the contributions relevant for
the specific problem.

The total force exerted by the fluid on the particle is therefore:

Ffp: ud+Fss+va+FBass+FSaff+FMag- (58)

Applying third Newton’s law we obtain that the force exerted by the particle on the fluid is equal
in magnitude and opposite in direction to the total force that the fluid exerts on the particle
that we just modeled.

5.2 General issues of Coupling

The coupling between CFD and DEM presents two intrinsic difficulties: an accurate choice for
the time step of the simulation and an efficient approach for contact detections.

In fact, for the choice of time steps, we have to consider that it is necessary to catch collision
dynamics and satisfy maximum particle overlap constraint (since particles deformation are not
modeled directly, but through their overlap).

As far as contact detection is concerned, it is straightforward to notice that a detection of
contacts at every time step for every particle is extremely expensive from a computational point
of view and, of course, not optimal. The problem is how to detect which particles collide every
time step in a computationally efficient way. Various approaches have been proposed and we
will discuss the Neighbor List method developed by Verlet in 1967 and the link-cell method
proposed by Plimpton in 1995.

5.2.1 Time step choice

It is really important to choose carefully the time steps for the phases of CFD and DEM. Usually,
the time step for DEM is smaller than the one for CFD: in most cases the DEM-time step has to
be at least an order smaller. In order to compare the two time scales, three important parameters
are evaluated:

e CFL number for CFD,
e Rayleigh time for DEM,

e Particle relaxation time for CFD-DEM.

CFD

We consider only the presence of a fluid phase. For the numerical integration of the Navier-Stokes
equations, the most important parameter to consider is the C’F'L number (Courant-Friedrichs-
Lewy). In an n dimensional case, CF'L is defined as:

Uj

Al‘i ’

CFL=At)_ (5.9)
=1

where At is the time step and Az is the space step in the computational grid.
Since the CFL number is a measure of how many cells an infinitesimal volume of fluid passes in
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one time step, this has to be smaller than one in order to preserve the stability of the numerical
scheme. Therefore, we get a constraint on the CFL which translates in a constraint on the time
step At:

Uj

Al‘i '

(5.10)

Uj
T

CFL = At

n
<l = At<1/)
i=1

DEM

Considering only the interactions between particles, we are in the field of granular flows.

In high density particle regions, the motion of particles is affected not only by forces and torques
arising from collisions with particles in the immediate neighbor, but also by disturbances prop-
agating from more distant particles. The propagation of these disturbances is modeled via
Rayleigh waves, i.e. surface waves that travel (with both longitudinal and transverse compo-
nents) near the surface of solids. To ensure realistic force transmission rates and to prevent
numerical instabilities, an upper bound for the simulation time step is therefore necessary.

The idea proposed in [13] and [1] is that time step for detecting collision between a particle
and its neighborhood should be less than the time it takes for the Rayleigh wave to transverse
the minimum size particle in the assembly. The Rayleigh time step proposed is therefore:

Vp/G (5.11)

0.1631v + 0.8766

where r and p are the radius and the density of the particle, G is the particle shear modulus
and v is Poissons ratio. We see that the time-step is material dependent through G. Hence, if
we want to model the motion of particles of different materials, we necessarily have to consider
the minimum of the different Rayleigh time steps.

Therefore, to prevent numerical instabilities and unphysical results, Atprpy < Tr. Often, a
fraction of Tk is used for the integration time-step.

Tr = nr

| CFD-DEM: Particle Relaxation Time]

Exploring the interaction between fluid phase and solid particles, the concept of particle relax-
ation time 7 is introduced as a measure of the resistance of a particle to adapt to flow motion:
the larger 7, the stronger the resistance. The definition of the particle relaxation time is not
unique: depending on the specific problem, different models can be used.

In [4] particle relaxation time 7 is modeled, in the Stokes regime (Re < 1), as:

2

ppd
= 5.12
=t (512)

whereas in [8] another model is used:
2
ppd 0.687\—1

=—(1+0.15R 5.13

In order to achieve stability of the numerical method, the DEM time step width has to be lower
than particle relaxation time:

Pp d?

18u

As we see, we have three constraints for two parameters (At for CFD and DEM). As a rule

of thumb DEM-At usually at least one order smaller than CFD-A¢, but mainly the approach is
problem-dependent and literature material does not provide satisfactory results.

At<t = At< (1+0.15Re%687)~1, (5.14)
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5.2.2 Contact Detection Algorithm

In order to model accurately the dynamics of contacts, it is important to verify if two particles
are colliding, at each time step of the simulation. As stated in the introductory paragraph, it is
absolutely not efficient to check at every time step if each particle is colliding with every other
particle in the system. This operation would cost n? checks, being n the number of particles.
Since the check should be done at every time step of the simulation, the process would become
too computationally expensive.

We now discuss an approach to overcome to this limitation: the Neighbor List method,
proposed by Verlet. The main idea is the periodic construction of a list of potential contacts,
in order to exclude a priori evaluations of contacts between particles too distant. Every time
step, the algorithm checks the list for each particle and evaluates if that particle is colliding
with the particles in its neighbor list. Of course, the list is built with a period larger than a
simulation time step: we define IV as the number of time steps after which the list is updated.
In the hypothesis of spherical particles, we include a pair of particles (i and j) if it holds:

Ix; — x| <ri+1;+s, (5.15)

where r; and r; are the radii of particles 7 and j respectively and s is the Verlet parameter, that
can be chosen between some bounds. If we assume a constant time steps At and a maximum
particle velocity vpmqs, the number of time steps after which we update the list can be modeled
as:

s

N=— .
2Umaz At

(5.16)

Alternatively, another method to build the neighbor list is called link-cell method and it is
based on a binning approach on a grid decomposition. In this case, the parameter to choose is
the length scale of the binning. A visualization of the two different method is provided in Figure
5.2.2, where only one particle has been considered and not a pair as in (5.15) for Verlet method.
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Figure 5.1: Contact Detection Methods. The case of a single particle is analyzed. In the
left, the scheme of the Verlet algorithm is given and in this case Ry is the figure is the radius of
the particle ans Ry is the Verlet parameter s. In the right, the link-cell method is represented.

Comparison between the two approaches is explored in [12], but results are often problem
dependent, since lots of parameters require careful tuning. The general trend is that in case
of a relatively small number of particles is relatively small, the Verlet algorithm is faster than
linked-cell algorithm, and the linked-cell algorithm seems more efficient when the number of
particles is large.
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5.3 Resolved CFD-DEM

In the resolved coupling we deal with particles which cover multiple cells of the CFD computa-
tional grid. The core idea of this method is to add a force term to the Navier-Stokes equations,
in order to take under consideration the presence of the solid particles.

Since the particles are larger than the CFD computational grid, it is not possible to consider
the presence of the particle in only one CFD cell (e.g. the cell where the centroid of the particle
lies): this would lead to unphysical results, in which the fluid would flow even in cells occupied
entirely by the solid particle. To overcome this problem, ad hoc methods were developed in
order to be able to resolve the fluid in an accurate way. These methods are known in literature
as Immersed Boundary Methods (IB) and Fictious Domain Methods (FD).

Fictious domain methods are general techniques developed for solving differential equations
on complicated domains. The problem is translated into a simpler domain, solved and then the
solution is corrected to satisfy the original problem. Instead, an Immersed Boundary Method
is a specific approach for CFD to simulate fluid-structure interactions. Basically, Immersed
Boundary Method belongs to Fictuois Domain approaches. We will give two applications of
these approaches to Resolved coupling, a fictious domain method presented in [8] and the PISO
Immersed Boundary scheme developed in [2].

A Fictious domain Method

In this application of the Fictious domain approach the aim is to perform a correction of the
velocity field of the fluid. This can be proved to be equivalent to adding a force term to the
Navier-Stokes equations. The approach that we will describe provides satisfactory results for
moderate Reynolds number.

We consider only one velocity field and one pressure field in the domain and they are shared by
the fluid and the solid. The domain taken into account is provided in Figure 5.2.

Firstly, only the fluid is considered and in the whole domain the velocity field is calculated
from the following equations:

( Oou .
p<8t+u'Vu> =—-Vp+pAu+f in Q
V-u =0 in Q
u =ur onT (5.17)
u(z,t =0) =ug(x) in
u =uy on I';
L o-n =tr on I'y.

Figure 5.2: Domain for Resolved Coupling
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The first two equations are the standard Navier-Stokes equations for incompressible fluids. The
third and the fourth ones are the boundary conditions on the entire domain and the initial
conditions, respectively. The last two equations concern the actual coupling between the fluid
and the solid phases: they provide the continuity of velocity field and the normal component of
the stress tensor.

Once the data from DEM have been evaluated through a numerical integration, the method
consists in the following four phases:

1. Evaluation of an interim velocity field &1 and its associated pressure field
2. Creation of a new velocity field u
3. Correction of the new velocity field into the final one u

4. Correction of the pressure field

1. Interim velocity field The interim velocity is obtained solving the Navier-Stokes equation
in the whole domain, usually using a finite volume method with the PISO (Pressure-Implicit
with Splitting of Operators) algorithm.

2. New velocity field The interim velocity is corrected in the particle areas imposing the
velocity obtained from the DEM calculations.
This step is equivalent to adding a force term f to the Navier-Stokes equation, where f satisfies:

f:pgﬁl—m. (5.18)

3. Final velocity field Unfortunalety, the new velocity field does not satisfy the divergence-
free constraint of the Navier-Stokes equation, which comes from mass conservation under the
hypothesis of incompressibility. Therefore, the application of a correction operator is necessary.
We define a corrected field u

u=1-Ve, (5.19)

where ¢ is an unknown scalar field and u is forced to satisfy the divergence-free constraint.
Hence, applying the divergence operator to (5.19) we get a Poisson equation for ¢:

A¢p =V -u. (5.20)
4. Correction of pressure field After having solved (5.20), the pressure obtained from the
first step can be corrected in the final one.

Hence, the global outline of the Fictious Domain Resolved method is:
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Outline of Fictious Domain Resolved CFD-DEM coupling
while ( not done ) do

DEM solver: evaluation of positions and velocities of particles)
Data from DEM solver are passed to CFD solver

Evaluation of interim velocity field

Particle tracking: locate cells occupied by each particle
Correction of velocity in the cells occupied by particles
Evaluation of fluid forces acting on particles

Data from CFD solver are passed to DEM solver for the next time step
Divergence-free correction of velocity field

Evaluation of other equations (i.e. concentrations, ...)

end

Immersed Boundary Method

The fictious domain approach presented in the last paragraph gives accurate results at moderate
Reynolds numbers. According to [7], at low Reynolds numbers the results are not satisfactory
anymore, so in 2015 another approach was proposed. This method is known as PISO Immersed
Boundary and it was presented in [2]. It is a slightly more complicated method, since it is based
not only on the correction of velocity and pressure fields, but also of the force term. The results
are valid also in the case of low Reynolds numbers.

The idea of the PISO-IB scheme is to add an immersed boundary method to the standard
PISO scheme. This is pursued using the PISO loops to impose the velocity of the immersed
rigid body while maintaining mass conservation. In every iteration a continuous forcing term
is updated and added to Navier-Stokes equation to take into account the immersed body and
its motion. The method can be implemented and applied in parallel and it can be used with
unstructured polyhedral meshes.

The flow of the algorithm is very similar the the approach developed using the Fictious
domain Method. The main improvement is a correction of the forcing term which is performed
at the end of every the PISO loop. The main structure of the algorithm is:

1. Detection of immersed body through cell and vertex flagging
A solid fraction ; is generated for every cell 4

2. Evaluation of forcing term, based on previous data

3. Evaluation of interim velocity from a momentum predictor

S

. Start of PISO loop

e Correction of velocity

Solution of pressure correction equation

New correction of velocity

Correction of pressure

Correction of forcing term

This is the main feature of the method. Forcing term is corrected using the difference

between current velocity and the the velocity prescribed within the immersed body.
o

finew = fil)ld + E(ui,ib - ui,current)y (521)
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where f3; is the solid fraction evaluated in step 1. and a €]0,0.9] is a relaxation
parameter

General issues of Resolved Coupling

Resolved method belongs to the class of Direct Numerical Simulations (DNS), therefore, in order
to have very precise results, a high resolution of the fluid mesh in the area of the particles is
required. This constraint leads to enormous computational costs, even for small problems. Some
remedies can be applied to overcome this limitation.

The first improvement is given by dynamic local mesh refinement. This process consists in a
mesh refinement around the particles. When a particle moves on, the cells are coarsened again.
Especially for dilute particle systems this has a large effect. This feature is already provided by
OpenFOAM itself.

Another improvement can be parallelization, but in this case, particular attention is to be
given in the communication between processors. A void fraction distribution model has been
developed to take care of this issue.

5.4 Unresolved CFD-DEM

Unresolved CFD-DEM coupling deals with particle with sizes smaller than the CFD computa-
tional grid.

Since different number of particles (of different sizes) can occupy one CFD grid cell, it is useful
to introduce a new variable «, which represents the volume fraction occupied by the fluid in a
cell. Therefore, we use the so-called locally averaged Navier-Stokes equations for the unknown
u, velocity of the fluid phase:

0
p ( (gtu) +V. (auu)> = —aVp+ pAu+ R,y
o (5.22)
a + V . (au) = 0.

where R,s is the force exchange term, i.e. it takes into account the interaction between the fluid
and particle phases. It is evaluated as:

Ryp = Kpp(u —up), (5.23)

where u,, is the velocity of the particle (taken from DEM data) and K is a coefficient. The three
major contributions on the interaction between fluid and particles are the gradient of pressure,
viscous and drag force. Since the pressure gradient and the viscous term are already taken under
consideration in the stress tensor, we model the coefficient K,y using only the contribution of
drag forces. Being V' the volume of the cell, we define f;; as the drag force acting on the fluid
due to particle ¢ and we get:

Zi f d,i

=

K, = (5.24)

Other forces may be relevant depending on the specific problem and they can be simply added
in the expression of K. For example, Magnus force for the rotation of particles, virtual mass
force for particle acceleration, Saffman force for gradient of fluid velocity leading to shear. The
modular feature of the coupling allows to consider these contributions, properly modeled, di-
rectly in the exchange term R,y through K.
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As stated before, usually only drag forces are relevant and various techniques can be applied

in the modeling of K,¢. One possibility has been presented in section 5.1, but other models
have been developed.
In fact, we now consider a combination of Wen and Yu model (for o > 0.8) and Ergun model
(for a < 0.8), which we present in the following paragraph, but it is important to notice that
the choice of the model is not unique, since several models are available. We define d as the
diameter of the particle under consideration, the Reynolds number base on relative velocity Re,,
and the drag coefficient Cy as:

Re, = — P17 5.25
P p (5.25)
Cy= 24 [1+0.15(aRe,)"%7]. (5.26)
aRey, P
Hence, K, is modeled as:
Cdia(l - Oé)‘u B up’a—2.65 a > 08
Kpp = 1—a)? 1_ _ (5.27)
T el Y )] Ll N
ad?p d

The DEM equations are exactly those presented in the section concerning the DEM approach
and they have to be solved before the CFD phase, in order to add to the locally averaged Navier
Stokes equations the proper terms for the specific problem.

The outline of the complete algorithm is given by the following pseudo-code:

Outline of Unresolved CFD-DEM coupling

while ( not done ) do
DEM solver: evaluation of positions and velocities of particles)

Data from DEM solver are passed to CFD solver

Particle tracking: for each particle determine the cell in which it lies

Determine the particle volume fraction and a mean particle velocity for each CFD cell

Evaluation of fluid forces from particle volume fraction, for each particle

Evaluation of exchange terms, for each cell

Evaluation of fluid velocity (considering particle volume fraction and exchange
terms), for each cell

Data from CFD solver are passed to DEM solver for the next time step

Divergence-free correction of velocity field

Evaluation of other equations (i.e. concentrations, ...)

end

Coarse Averaging procedures

One of the most challenging steps in this approach is the interpolation of a Lagrangian property,
the particles volumes fraction, from the DEM side to an Eulerian property, the volume fraction
field, which is defined on the fixed Eulerian grid of the CFD simulation. The same process has
to be performed also for particle velocity and fluid-particle interaction force.

Hence we have to consider methods to interpolate the following physical quantities:

1. Solid volume fraction «,

2. Solid phase velocity u,,
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3.

Fluidparticle interaction force R, y.

In the literature, this process is often called ”coarse graining” or ”averaging”. We therefore
require an interpolation and different approaches have been proposed. A sum up of the different
methods is provided in [16] and [15]

The features that an ideal coarse graining procedure should have are:

1.
2.

Conserve relevant physical quantities

Handle particles both in the interior cells and the cells near boundaries without producing
artifacts

Achieve relatively mesh-independent results

Be convenient for implementation in parallel

. Produce smooth coarse grained fields even with the presence of a few large particles in

relatively small cells

Some approaches developed for this purpose are Particle centroid method (PCM), Divided parti-
cle volume method (DPVM), Statistical Kernel method and the Diffusion-based coarse graining.
For the sake of simplicity we will describe these methods for the scalar quantity a (solid particle
fraction), but the approches can be generalized for the vector fields u, and R, component-
wisely.

Particle Centroid Method (PCM).

It consists in summing over all particle volumes in each cell where the particle centroid
lies, to obtain cell-based solid volume fraction. This method is easy to implement in CFD
solvers, but it can lead to large errors when cell size to particle diameter ratios are small.
Unphysical results can be obtained (for example, particle volume fraction greater than 1).

Divided Particle Volume Method (DPVM),

The volume of a particle is divided among all cells that it overlaps with, according to
the portion of the volume within each cell. Hence, the solid volume fraction in any cell
never exceeds 1 and large gradients in the obtained field are prevented. DPVM works for
arbitrary meshes, as long as the particle diameter is smaller than CFD cell size.

Two grid formulation

Idea is to use two independent meshes for the averaging and for the CFD simulation.
The averaging mesh is chosen based on particle diameters to ensure that the cell sizes
are larger than particle diameters. The CFD mesh is chosen according to flow resolution
requirements.

Statistical Kernel method

The volume of each particle is distributed to the entire domain according to a weight
function called kernel function h(x). The solid volume fraction at location x consists of
the superposition of the distributed volumes from all particles

Diffusion-based coarse graining

Firstly, an initial value ag(x) is obtained using PCM. Then, a transient diffusion equation
for a(x,t) is solved with initial condition ag(x) and no-flux boundary conditions. The
result, is a field a(x,t) and it is the solid volume fraction field to be used in the CFD-
DEM formulation. A critical parameter is the final time T for the solution of the diffusive
equation, which has to be a physical parameter characterizing the length scale of the coarse
graining. Diffusion equation is solved on the same mesh as the CFD mesh.
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In Figure 5.3, a representation of the main features of the standard techniques for the coarse
graining procedure is given.

(c) two-grid formulation (d) statistical kernel method

Figure 5.3: Coarse graining methods.

We give an example of the diffusion-based coarse averaging procedure for the case of particle
volume fraction. As stated before, we first apply the Parcel Centroid Method.
For every cell, we sum up all the particles volume to their host cells, i.e. the cell within which
the particle centroid is located. In this way we obtain the total particle volume in each cell.
The solid volume fraction of each cell is then obtained by dividing the total particle volume in
the cell by the total volume of the cell. We consider the cell k& and therefore the particle volume
fraction oy, is evaluated as:
> Vi
Vi
where V}, is the volume of cell k, V},; is the volume of particle ¢ contained in cell £ and ny,;, is
the total number of particle whose centroid lies in cell k.
We therefore obtained a cell-based field for the particle volume fraction. We will refer to this
field as aY(x) and this will be the initial condition for the diffusion equation that is at the core
of the method.

(5.28)

Qs | =

Usually, the initial condition a?(x) is characterized by the presence of steep gradients in the

field. In fact, the entire volume of a particle is added to the cell where the centroid lies, even if
the centroid is near the border of the cell and therefore the actual volume would occupy different
cells. The diffusion-based procedure is able to stabilize the result, since the diffusion equation
essentially redistributes particle volumes within the field conserving automatically total solid
volume in the domain through the diffusion.

We now give the Cauchy problem that is to solve to apply this method:

Oas —Aa; =0
as(x,0) = al(x) + from PCM

(5.29)

It is important to notice that no-flux conditions (i.e. homogeneous Neumann conditions) have
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Figure 5.4: Mesh and particle distribution. In the right, the mesh and particle distributions
are given for the case of two grid method is given. In the left, they are given for all the other
approaches.

to be imposed to ensure mass conservation.

Once we have modeled the procedure, we have to solve the diffusion equation numerically.
The discretization of the equation exploit the already-built CFD mesh, but it remains to fix how
many time steps are necessary to obtained satisfying results in the diffusive process. It has been
shown that a final time T equal to one or three time steps 7 is enough. In order to estimate
the time step 7, we exploit the equivalence between the diffusion-based coarse graining and a
Statistical Kernel method based on the Gaussian distribution.

It is possible to prove, in fact, that the diffusion-based procedure is equivalent to a Gaussian
Kernel method if the bandwidth of the Gaussian distribution b satisfies:

b= V4, (5.30)

where 7 is the time step of the diffusion procedure.

Imposing a value for the Gaussian bandwidth b, (typically in the literature b = 6d, being d the
diameter of the particle), we obtain a value for the diffusion time step 7. Solving numerically
the diffusive equation (5.29) for just 1 to 3 time steps 7, we obtain satisfactory results for the
particle volume fraction field o (x).

In Figure 5.4 we specify the mesh and particle distribution for an experiment on the validity
of the various approaches described above. In Figure 5.5 the results of the coarse graining
procedure are given. It is straightforward to notice that the diffusion-based procedure shows
smooth results, without steep gradients in the particle volume fraction field.

The same procedure can be implemented to interpolate vector quantities. In that case the
diffusion equation is solved component-wisely.

Mesh convergence results and in-depth comparison of the performance of these approaches
are explored in [16]. The diffusion method proposed by the authors manages to achieve very
good results in both mesh-convergence and simplicity of implementation. Hence, an implemen-
tation of the coupling between CFD and DEM should be based on the diffusion coarse graining
approach.
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Figure 5.5: Results of coarse graining procedure. The different coarse graining methods
are applied to the cases described in Figure 5.4.
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5.5 Resolved/Unresolved Coupling

Adopting one of the two techniques presented in the previous sections is not enough to simulate
every physical process. It is of course possible to have situations in which both large and small
solid particles are present and important. Therefore, one of the current research areas is to
develop methods and algorithms in which both the cases are considered and solved. A first
attempt to develop a strategy for the solution of the problem has been published in [9], in which
an algorithm has been developed for an implementation on ANSYS/Fluent platforms.

The coupling developed is a combination of the resolved and unresolved approaches. The
particle-fluid interaction are considered at different scales: cell level for fluid phase and particle
level for particulate phase.

The idea is, at each CFD time step, to evaluate firstly the fluid forces acting on small particles
using a DEM solver to take into account all the inter-particle forces, the influence of walls and
the influence of large objects, using data from the previous CFD time step. These evaluations
are done until the time of CFD simulation is reached.

After we have reached the synchronization between CFD time and small-particles DEM time,
we can move forward on the algorithm and start the evaluation of large-particles dynamics.
The calculation of cell volume fraction and momentum source terms is performed through the
evaluations of the influences of fluid flow, small particles and walls on the large particles.

This process is performed until the final time of simulation is reached.

In Figure 5.6 we report a numerical result obtained in [9], to give an idea of the capability
of the approach. Particle distribution in a fluidized bed with an immersed free-moving tube at
different times is plotted

Figure 5.6: Fluidized bed with an immersed free-moving tube Results are obtained in
[9]. Particle distribution is plotted and particles are colored by velocity magnitude.

5.6 Current implementations

Some libraries are available to simulate the (resolved or unresolved) coupling between fluid and
particle simulation.

38



5.6.

CURRENT IMPLEMENTATIONS

DPMFoam is a library provided by the standard distribution of OpenFOAM. It does not
implement the Discrete Element Method, but DPM (Discrete Parcel Method). The idea
is to aggregate clouds of particles and treat them as one big computational particle. This
method has strong limitations: the dynamic properties (size, velocity, restitution coeffi-
cient, density, ...) for each particle in the parcel have to be the same and the dynamic is
solved only at cloud level, not at particle level.

sediFoam is a library developed by Sun and Xiao (2015), for CFD-DEM unresolved cou-
pling in OpenFOAM. The implementation has been described in [17]. The main focus of
this library is the simulation of sediment transport and fluidized beds. The most peculiar
feature provided in this coupling is the diffusion-based coarse graining approach to per-
form the evaluation of particle volume fraction, as described in the previous section. The
method seems stable for particles sizes at most two times the CFD cell size. The library
couples OpenFOAM 2.4.0 with LAMMPS 1-Fed-2014.

CFDEM is a set of libraries which probably provide the most complete implementation of
the coupling. The software is provided by DCS Computing in open source and commerical
version. It has been developed both for resolved and unresolved coupling. The solver
which has been tested in the outlook of this work is cfddemsolverIB. In the resolved
approach the Fictious Domain Method described in section 5.3 has been implemented. In
the unresolved approach a standar technique has been considered. It couples OpenFOAM-
5.x and LIGGGHTS-3.8.0

coupledPimpleFoam is a library developed by Dynaflow Research Group as an expansion
of the standard PimpleFoam library provided by OpenFOAM. It features a simple adding
term to the Navier Stokes equation to take into account forces arising from the presence of
particles in the flow. This method can be considered as unresolved. Some severe limitations
of this library are:

1. DEM update is performed in every CFD step: this causes constraints on the CFD
time step, since DEM time step usually has to be very small

2. Particle fraction field « is not evaluated. Various drag models are based on this
quantity, therefore they cannot be considered

3. The coarse graining procedure is intrinsically PCM, therefore huge gradients can be
present in the forcing term in the momentum equation.
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Conclusion

6.1 Directions of future work

The field of numerical simulations of fluid/particle system is relatively new and therefore im-
provements are developed continuously, mostly in the latest years. New methods are proposed
and implemented every months, making this topic particularly thriving and inspiring.

Some of the possible future directions for the development of the MSc Thesis Projects are the
following;:

e Improvement of the in-house developed solver pimpleCoupledFoam, implementing a diffusion-
based coarse graining procedure for the unresolved case and implementing from scratch
an immersed boundary method (fictious domain method or PISOIB) for the resolved case.
Some problems of the current implementations are:

1. DEM update is performed at every CFD step. This is not efficients since the DEM
time step is required to be very small and therefore this constraint is imposed also at
CFD level

2. PCM is adopted as interpolation procedure for momentum exchange term. This can
cause huge gradients in the exchange terms between neighbor CFD cells

3. The particle volume fraction oy is not calculated. This imposes a restriction on drag
model to be used (simple sphere drag has to be used and more advanced model have
to be discarded)

e Implementation of a coupling from scratch between OpenFOAM and HADES. This path
would require extensive coding and a preliminary study on the actual feasibility of the
extensions of the various models.

e More theoretical research on optimal time steps for the CFD, DEM and Coupling in order
to obtain satisfactory physical result minimizing the computational costs.
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