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Abstract

Geomechanical simulations can give essential insights into subsurface processes, but
typically require solving large, ill-conditioned linear systems. An important method
for solving these linear systems is the Conjugate Gradient method, but applying this
method to ill-conditioned matrices can result in slow convergence. To improve the
convergence of the Conjugate Gradient method, the iterative solver is preconditioned
using the Algebraic Multigrid method. In Algebraic Multigrid methods, a hierarchy of
matrices of different sizes is derived. When applying these methods as a preconditioner
to the Conjugate Gradient method, on each level of the multigrid hierarchy fast
convergence is observed in particular components of the residual. This leads to
much fewer iterations being required in the Conjugate Gradient method, at the cost
of the iterations being computationally more expensive. These Algebraic Multigrid
methods do require a more problem-specific setup configuration than more simple
preconditioners like the Jacobi preconditioner. In this research, the Conjugate Gradient
method preconditioned with various Algebraic Multigrid methods is studied and
compared with the Jacobi preconditioned Conjugate Gradient method. For this,
the Conjugate Gradient method, preconditioned with both the Jacobi and Algebraic
Multigrid-based methods, is applied to linear problems derived from geomechanical
simulations. Using Algebraic Multigrid preconditioners can reduce the number of
iterations required for convergence of the Conjugate Gradient method by a factor of
80. While a single iteration with an Algebraic Multigrid preconditioner is more time-
expensive than an iteration with a Jacobi preconditioner, significant reductions, of up
to five times, are observed in the runtimes of the linear solver. This comes at the
cost of a higher peak memory requirement in the application of the linear solver. The
vast reduction of the runtime of the linear solvers makes the studied geomechanical
simulations significantly faster. This makes the Algebraic Multigrid preconditioners a
valuable addition to these simulations.
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Introduction 1
Geomechanical simulations form an important tool in the modelling of subsurface
deformations. Modelling these deformations is of essential importance in a wide range
of applications, for example, to ensure the integrity of wellbores (Allawi and Al-
Jawad [1]), to predict subsidence caused by the removal of fluids or gases (Fredrich
et al. [12]) and to predict the effects of CO2 Capture and Storage (CCS) (Li et al.
[20]) (Metz et al. [21]).

To model these subsurface deformations, changes over time in displacement, stress
and strain in the area of interest are computed. For this, the area of interest
is discretised using numerical methods such as the Finite Element Method (FEM)
(Zienkiewicz and Taylor [39]). Through these discretisations, accurate estimates
of changes in displacement, stress and strain can be obtained, but this can be
computationally expensive for large models. In these simulations, typically the most
computationally expensive part is solving large linear problems. There are a wide range
of methods to solve these problems, but there are large differences in performance on
large models between these methods. This means that the right method has to be
found to solve these linear problems.

The Conjugate Gradient (CG) method is one of the most effective methods for
solving large linear problems (Saad [26]). The performance of this method highly
depends on the condition number of the observed matrix. To further improve
the performance of this method, preconditioning methods can be applied to the
linear system. However, finding the best preconditioner for a linear system can be
complicated. Simple preconditioners, such as the Jacobi preconditioner (Saad [26]),
can be used, but these typically do not give as much improvement as more complicated
methods such as deflation preconditioners (Jönsthövel [16]) and Algebraic Multigrid
(AMG) preconditioners (Stüben [31]). These more complicated methods have the
downside of requiring a proper setup configuration for the approached application.

Especially AMG-based preconditioners can give significant improvements if a good
problem-specific setup is used. For this, different AMG preconditioners are approached.
For these AMG preconditioners, a good setup for the linear systems obtained from
geomechanical simulations is tried to be obtained.

The observed linear systems are obtained through simulations in the Visage finite-
element geomechanics simulator (SLB [30]). This simulator performs numerical
calculations of rock stresses, strains, displacements and failures in geomechanical
processes. This can be used in a wide range of modelling applications, such as for
modelling the integrity of wells, subsidence, and the effects of CO2 Capture and Storage
(CCS) (SLB [28]).

In the simulations studied, the Visage simulator is coupled with the Intersect high-
resolution reservoir simulator (SLB [29]). The Intersect simulator models the flow of
fluids and gases in a reservoir. In these coupled simulations, both the flow of fluids and

1



gasses and the effect of this flow on the stress and strain in the surrounding rock are
modelled, with both simulators being used for their own application. An example of
a discretised reservoir domain as encountered in simulations within Intersect is shown
in Figure 1.1a. The corresponding geomechanical FEM discretisation as used in the
simulations in Visage is shown in Figure 1.1b. This reservoir domain is embedded in
the geomechanical domain.

(a) (b)

Figure 1.1: Example of (a) reservoir model observed in the Intersect simulator and (b)
geomechanical model observed in the Visage simulator

In these simulations, the geomechanical models observed in Visage are typically
much larger than the models observed in Intersect. This leads to the simulation in
Visage being computationally much more expensive. For the geomechanical simulation
in Visage, the most expensive part is solving linear problems. This means that to
decrease the runtime of the coupled simulations, an effective linear solver has to be
used.

In this research, the AMG-based preconditioners are applied to the linear systems
encountered in the geomechanical simulations in the Visage simulator. The performance
of three AMG-based preconditioners is compared with each other and with previously
used preconditioners. There, significant improvements are seen when using the AMG-
based preconditioners for both the required number of iterations in the CG method
and the runtime of the linear solvers. For the number of iterations, improvements as
high as a factor of 80 are seen by applying the AMG-based preconditioners. Although
single iterations are longer with the AMG-based methods, the runtimes are improved
by up to a factor five through the application of the AMG methods. This improvement
in runtime comes at the cost of a higher peak memory requirement.

Here, first, an overview of the workflow for geomechanical simulations performed
in the Visage simulator is given in Chapter 2. Then, iterative linear solver methods
are discussed in Chapter 3, with a focus on the two most important methods for this
application, the CG and AMG methods. After this, in Chapter 4, it is discussed
how the experiments on the basis of which the linear solver methods are compared
are carried out. The results of these experiments and the comparison of the methods
are presented in Chapter 5. Lastly, the conclusions drawn from this research together
with recommendations on the use of linear solvers in these simulations are given in
Chapter 6.
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Visage Framework 2
The geomechanical simulations considered here are obtained using the Visage finite-
element geomechanics simulator. The workflow of the geomechanical simulations
performed in the Visage simulator can be simplified into three stages. In Figure 2.1
an overview is given of this workflow. From the input, the finite element problem
is formulated. This finite element problem is a nonlinear problem, which is solved
iteratively using the Newton-Raphson method. Applying the Newton-Raphson method
requires solving a linear problem, which is done with one of several linear solvers. When
the Newton-Raphson method converges to a suitable solution, the simulator advances
to the next load step. When the last load step is reached, the results of the simulation
are returned.

In a geomechanical simulation in Visage, the domain that is observed is typically
of the form of a cuboid. The reservoir observed in the flow simulation in Intersect is
located at the barycenter of this cuboid. The domain around this reservoir is extended
in every direction, with the so-called overburden, underburden and sideburden. These
are mandatory to properly set the boundary conditions of the mechanical problem. For
the domain in these simulations, a boundary condition is prescribed on all six sides of
the cuboid. Using an FEM discretisation, the domain is discretised using hexahedral
elements with eight nodes.

This chapter discusses the three stages of the Visage workflow. First, a description

Input

Problem Formulation
Section 2.1

Non-linear Problem
Newton-Raphson method

Section 2.2

Linear Problem
Linear solvers

Section 2.3, Chapter 3

Convergence

Non-linear

Problem?

Last load
step?

Output

No

Yes

No

Yes

Figure 2.1: Overview of workflow of geomechanical simulations in Visage
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of how the nonlinear problem is formulated is given in Section 2.1. After this, it is
described how this nonlinear problem is solved using the Newton-Raphson method in
Section 2.2. Finally, an overview of linear solvers is given in Section 2.3, which is
expanded upon in Chapter 3.

2.1 Problem Formulation

Modelling the deformation behaviour of a volume of rock or soil is done through the
stress, strain and displacements in that volume. To model the stresses in a volume,
a global stress equilibrium equation needs to be solved. This states that the external
forces on the volume of rock or soil are equal to the internal forces. As the stress in the
rock describes the internal forces, this can be used to determine the stresses within the
rock or soil, which is then used to describe the strain and displacement.

2.1.1 PDE problem

To formulate the equations that model the equilibrium equation, first the concepts of
stress, strain and displacement are described. For this, let Ω describe the volume in
which the equilibrium equation is to be solved and let p =

(
xp, yp, zp

)
describe a point

in this domain. In this point, the displacement d, stress σ and strain ϵ are given by
the vectors

d =

dx
dy
dz

 σ =


σxx

σyy

σzz

τxy
τyz
τzx

 . ϵ =


ϵxx
ϵyy
ϵzz
γxy
γyz
γzx

 (2.1)

Figure 2.2: Stress components
in a small cube. This example

uses σxy instead of τxy for shear
stress components

(Fossen, p. 77 [10])

There, the displacement d describes the movement
or shift of the point p and consists of three
components, one for each direction. The stress σ,
which describes the force in a unit area around p
and the strain ϵ, which describes the change in shape
due to stress, consist of six components. Both these
vectors consist of three normal components, of form
σxx for stress and ϵxx for strain, and three shear
components, of form τxy for stress and γxy for strain.
Figure 2.2 illustrates the different components of the
stress vector on a small cube. There, it is seen that
there are actually nine components for stress and
strain. However, due to symmetries, only the six
components of stress and strain given in Equation 2.1
need to be considered.

Along with the three vectors for displacement,
stress and strain, several forces can also be described
at p. These include external forces, denoted by β,

4



and traction forces, denoted by t. These forces have three components each, one in
every direction, similar to the displacement.

Using the described notation, the global stress equilibrium equation can be
described. Timoshenko and Goodier [36] describes this stress equilibrium as the
following Partial Differential Equation (PDE),


∂σxx

∂x
+ ∂τxy

∂y
+ ∂τzx

∂z
= βx

∂τxy
∂x

+ ∂σyy

∂y
+ ∂τyz

∂z
= βy

∂τzx
∂x

+ ∂τyz
∂y

+ ∂σzz

∂z
= βz

on Ω. (2.2)

This PDE can be rewritten to
STσ = β, (2.3)

with

ST =

 ∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

 . (2.4)

Together with this PDE, two possible boundary conditions are described. Typically,
the boundary Γ is divided into two parts, a displacement boundary Γd, where a
displacement is induced and a traction boundary Γσ, where a strain is induced. This
gives the boundary condition{

d = d̄, t = 0 on Γd

t = t̄ = σ̄ · n on Γσ,
(2.5)

where d̄, t̄ and σ̄ are given displacements, traction forces and strains and n is a normal
vector orthogonal to the boundary.

By solving the equilibrium equation, the stresses are obtained, which can then be
related to the strain in p. This is done using the relations obtained from Hooke’s law,
which states

σ = Dϵ. (2.6)

Here, D describes the stress-strain relationship. A simple example for this matrix is
the isotopic stress-strain relationship described by Timoshenko and Goodier [36], as

D =
E

1− ν2


1 ν ν 0 0 0
ν 1 ν 0 0 0
ν ν 1 0 0 0
0 0 0 1−ν

2
0 0

0 0 0 0 1−ν
2

0
0 0 0 0 0 1−ν

2

 . (2.7)

There, E describes the Young’s modulus and ν the Poisson’s ratio. The values of these
depend on the properties of the material. In many problems D is a more complicated
matrix, which can depend on the stress or strain itself. This makes the stress-strain
relationship nonlinear.
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The strain in this point is then used to determine the displacement in the point.
Zienkiewicz and Taylor [39] (p.22) describes the relations between these as

ϵ = Sd. (2.8)

There, S is the transpose of the operator described in Equation 2.4. With this, the
global stress equilibrium equation can be described in terms of the displacement as

STDSd = β. (2.9)

As this PDE depends on the matrix D, which is dependent on the description of the
problem, nothing can be said directly about this problem. However, for the problems
observed in this research, it can be assumed that the matrix D is such that the PDE
is elliptic.

2.1.2 FEM problem

Solving the described continuous problems is usually not possible. This means that a
way has to be found to describe the continuous problem as a discrete problem. This is
done through the Finite Element Method (FEM), which reduces the continuous problem
to a problem in a finite number of elements.

Figure 2.3: Example of FEM
discretisation of a

two-dimensional region using
triangular elements (Zienkiewicz

and Taylor, p. 20 [39]).

To transform a continuous problem into a
discrete problem using FEM, the area of interest
is divided into triangular or quadrilateral elements
for two-dimensional problems and into triangular
pyramid or cuboid elements for three-dimensional
problems. Figure 2.3 shows a simple example of
a two-dimensional domain discretised in triangles
using the FEM method. This simple example
is not representative of the problems observed
in the geomechanical simulations considered here.
Figure 1.1b gives a better, but more complicated,
representation of an FEM discretisation of a
large domain that is observed in the simulations
considered here. The domains observed in the
simulations are large, three-dimensional domains,
that are discretised in hexahedral elements with
eight nodes.

The elements in an FEM discretisation are represented by a finite number of
interconnected nodal points. In the elements, the continuous functions are described
by a basis of standard functions. The coefficients of these functions form a discrete
problem.

For problems like those studied here, the finite number of unknowns are the
displacements at the nodal points. The displacement within an element is described
through the displacements in the nodal points. The displacement functions then
describe the strain within the elements in terms of the nodal displacement. These
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strains then describe the stress in the element (Zienkiewicz and Taylor, p. 18
[39]).

In the FEM model, the displacement at a point p is approximated by the nodes of
the element e in which p is located. The displacements in the nodes of an element are
described by ue ∈ R3Ne

o , where N e
o is the number of nodes in the element e. This vector

is of the form ue =

 ue
1
...

ue
Ne

o

, where ue
i is the displacement in a node i. From the nodal

displacement the displacement in p can be obtained as

d =

Ne
o∑

i=1

F e
i u

e
i , (2.10)

where F e
i ∈ R3×3 represents the function that maps the coordinates of node i to the

coordinates of the point in which the displacement is obtained. The position functions
together form a shape function F e ∈ R3×3Ne

o for this element, where

F e =
[
F e
1 F e

2 · · · F e
Ne

o

]
. (2.11)

This leads to the displacement in p being described as

d = F eue, (2.12)

Now, the strain at p can be described by the displacement at the point, which
means that the strain can be described in terms of the nodal displacements. For this,
Equation 2.8 and Equation 2.12 are combined, to obtain

ϵ = Beu, (2.13)

where Be = SF e. Using Equation 2.6, the stress can then be obtained at this point.
Similarly to the global equilibrium, an equilibrium in a single element can be

obtained. Then it is obtained that the internal stresses are equal to the combination
of the distributed body forces β in the element, the traction forces t̄ on the boundary
of the element, and the nodal forces qe ∈ R3Ne

o in the element. Zienkiewicz and Taylor
[39] (p.23) describes the equilibrium in a single element as

Keue + f e = qe. (2.14)

Here, K is described through the relations between stress, strain and displacement, as

Ke =

∫
V e

(Be)TDBedV e, (2.15)

where V e describes the volume of the element. f e is described using the distributed
body forces and external loading on the boundary t̄, as

f e = −
∫
V e

(F e)TβdV e −
∫
Γe

(F e)T t̄dΓe, (2.16)
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where Γe describes the boundary of the element.
This equation in a single element can be used to obtain an equation for the entire

domain. This is simply done by extending the concepts described in a single element to
the entire domain. The vector of nodal displacements is then given by u ∈ RNo , where
No is the number of nodes in the domain. Then the displacement in a point is given as

d = Fu, (2.17)

where F ∈ R3×3No is a global shape function, consisting of similar submatrices as the
shape functions of a single element. The global shape function is described through
the submatrices of the position function of the elements. For a point in element e,
this global shape function has submatrices Fi = [F e]i for the nodes in element e and
Fi = O3,3 for the nodes not in element e. With this global shape function, a global
version of the matrix Be is obtained that describes the strain at a certain point as
B = SF .

Using this global shape function, the equation in one element in Equation 2.14 can
be extended to a global equation as

Ku+ f = ρ. (2.18)

There, ρ describes external concentrated forces at the different nodes and K and f are
global versions of Ke and f e, given by

K =

∫
V

BTDBdV e (2.19)

f = −
∫
V

F TβdV −
∫
Γe

F T t̄dΓ.

Here, V represents the entire domain in which the equilibrium equations are solved,
with Γ representing its boundary. As K generally depends on u, this problem can be
expected to be nonlinear.

2.2 Nonlinear Problem

The FEM discretisation of the global stress equilibrium equation is expected to be a
nonlinear problem. This means that an effective method for solving nonlinear problems
has to be employed to solve this equation. To apply a nonlinear solver method, the
problem is rewritten in the form

Φ(u) = η. (2.20)

There, Φ : Rn → Rn a nonlinear vector function of u, given by Φ(u) = Ku and η ∈ Rn

is a vector, given by η = ρ− f . This can be transformed to

Ψ(u) = Φ(u)− η = 0, (2.21)

which means that the problem that is to be solved is finding a zero of a nonlinear
function. Finding a nonzero of a nonlinear function can in general only be done using
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an iterative method. A wide range of iterative methods for finding zeros of nonlinear
problems is available, as described by Zienkiewicz and Taylor [40].

To solve the nonlinear problem observed here, the Newton-Raphson method is used.
This is the iterative method with the fastest convergence of all iterative methods for
solving nonlinear problems. The method uses the Jacobian of the function Ψ(u) to
determine how u should be changed to converge to a solution.

For this, let ui be an approximate solution to Equation 2.21. Then it is desired to
find ui+1 = ui +∆ui, so that ui+1 is a better approximate solution and ∆ui is a small
change to ui.

This is done through the Taylor expansion of Ψ(u) around ui, which gives

Ψ(u) = T(u;ui+1) = Ψ(ui) +

(
∂Ψ(ui)

∂u

)
(u− ui) +O((u− ui)

2). (2.22)

Evaluating this in ui+1 gives

Ψ(ui+1) = Ψ(ui) +

(
∂Ψ(ui)

∂u

)
(u− ui) +O((u− ui)

2) (2.23)

Ψ(ui+1) = Ψ(ui) +

(
∂Ψ(ui)

∂u

)
(∆ui) +O(∆u2

i ).

Since the update ∆ui can be assumed to be small, the higher order terms O(∆u2
i ) are

small and thus

Ψ(ui+1) = Ψ(ui) +

(
∂Ψ(ui)

∂u

)
∆ui ≈ 0. (2.24)

Now let KT = −∂Ψ(ui)
∂u

and Ψi = Ψ(ui), then the linear problem

KT∆ui = Ψi (2.25)

is obtained. By solving this linear problem, the update of ui is found and thus ui+1 =
ui +∆ui can be calculated. The linear problem is solved using a linear solver method,
as described in Section 2.3 and Chapter 3.

In Algorithm 2.1 an overview is given of the algorithm used to find a suitable
approximation to a nonlinear problem using the Newton-Raphson method. The
stopping condition is typically based on tolerance of the residual or on a maximum
number of iterations.

2.3 Linear Problem

The most time-consuming part in solving the nonlinear problem with the Newton-
Raphson method is obtaining the corrections to the approximate solutions ui. To obtain
this correction, the linear problem in Equation 2.25 has to be solved. To solve such a
linear problem, a wide range of methods exists, of which a selection is discussed here.
The methods discussed here are the specific methods that can be used in simulations
using the Visage simulator.
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Algorithm 2.1: Newton-Raphson method

Data: Vector function Ψ(·), Jacobian of vector function ∂Ψ(·)
∂u , Initial approximate

solution u0

Result: Approximate solution u
Initialize i = 0
while Stopping condition not satisfied do

Compute KT = −∂Ψ(ui)
∂u and Ψi = Ψ(ui)

Solve KT∆ui = Ψi using a linear solver method
Update ui+1 = ui = ∆ui

Set i = i+ 1
end

To simplify the notation for describing the linear solvers, the linear problem is
described as

Ax = b, (2.26)

with A ∈ Rn×n a matrix of coefficients, x ∈ Rn a vector of unknowns and b ∈ Rn

right-hand side vector. This problem directly corresponds to the linear problem that
is solved in each iteration of the nonlinear solver given in Equation 2.21. Then A
corresponds to KT , x to ∆ui and b to Ψi.

The methods that can be used to solve linear problems can be divided into two
groups. The first of these are direct methods, which are described in Section 2.3.2.
These methods directly find an exact solution to a linear system with a nonsingular
matrix. The second type of method instead iteratively finds an approximation to
the exact solution. These iterative methods do in general not find exact solutions to
linear problems, but are much more suitable for large linear problems that are typically
encountered in simulations. A selection of iterative linear solver methods is described
in Chapter 3.

2.3.1 Properties of linear problem

Before discussing methods to solve the linear problems encountered in the simulations,
it is important to ensure that these methods are applicable. For this, some of the
properties of the observed problems are discussed.

Firstly, the observed PDEs are elliptic. From this it is obtained that, if the FEM
discretisation is performed well, the matrices in the considered linear problems are
Symmetric Positive Definite (SPD) (Süli [34]). The matrix being SPD is helpful in the
application of linear solver methods, particularly in for the iterative methods discussed
in Chapter 3. The matrix being SPD can be confirmed by observing the matrix itself.
There it is seen that the matrix A is a symmetric matrix. Furthermore, the assumption
can be made that the diagonal elements of this matrix are all positive, [A]i,i > 0 for all

i. In addition, it can be assumed that for every row i, [A]i,i >
∑N

j=1[A]i,j, which means
that A is diagonally dominant. Together, these properties confirm that the coefficient
matrix A is SPD (Horn and Johnson, p. 438 [14]).
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An important property for all linear solvers that directly follows from the matrices
being SPD is that they are nonsingular. This means that a unique solution to this
linear system is guaranteed to exist.

The linear problems observed in these types of simulations are typically large and
sparse. Because the problems are large, the linear solvers used should be methods that
scale well with the size of the linear problems. Furthermore, the methods have the
added requirement of preserving the sparsity of the problems, as the loss of sparsity
can give significant increases in memory requirements. Both of these properties make
direct solver methods less suitable than iterative methods for the problems observed in
these simulations.

Lastly, the observed matrices can be assumed to be ill-conditioned. In large
problems, there can be large irregularities in the FEM discretisation, with large
differences between the sizes of elements. This leads to ill-conditioned matrices, which
make the application of iterative methods more complicated. Typically, a more ill-
conditioned linear system requires more iterations than a well-conditioned system.
To improve the conditioning of the linear system, preconditioning methods must be
applied, as covered in Chapter 3.

2.3.2 Direct Linear Solver Methods

Direct methods are the most simple methods for solving linear problems, but are
typically not suitable for solving large linear systems observed in the considered
geomechanical simulations. Two of methods of this type, matrix inversion and
triangular substitution through Choleski decomposition, are discussed here. These
are the two methods that can be employed for small problems in the Visage simulator.
More direct methods exist for solving linear problems and are covered by Vuik, C. and
Lahaye, D.J.P. [38].

The most simple method used to directly solve a linear system is matrix inversion.
For matrix inversion, a inverse matrix A−1 of A is found such that

A−1A = AA−1 = I. (2.27)

Then this inverse matrix is used to obtain the solution to Ax = b as x = A−1b. For
a nonsingular matrix, this inverse matrix is guaranteed to exist. The calculation of
this matrix can be done using several methods, such as Gaussian elimination and
eigendecomposition of the matrix. However, this method is computationally very
expensive and the inverse matrix cannot be guaranteed to be sparse when A is sparse.
Together, this means that matrix inversion can only be applied to very small linear
systems.

Triangular substitution through Choleski decomposition is computationally more
efficient than matrix inversion. To apply triangular substitution to a matrix, the
matrix is decomposed into an upper and lower triangular matrix, after which triangular
substitution is applied (Vuik, C. and Lahaye, D.J.P., p. 54 [38]). For the
Choleski decomposition, a lower triangular matrix C is computed such that A = CCT .
The matrix C is obtained entry-wise from the matrix A. For this, the columns of C,
starting with the first column, are obtained by first computing the diagonal entry in
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the column as

[C]k,k =

√√√√[A]k,k −
k−1∑
j=1

C2
k,j. (2.28)

This is used to compute the entries below the diagonal, starting with the first entry
below the diagonal, as

[C]i,k =
1

[C]k,k

(
[A]i,k −

k−1∑
j=1

Ci,jCk,j

)
. (2.29)

Although this method gives a significant improvement over matrix inversion, it is still
computationally too expensive to be applied to the large systems that are typically
encountered in geomechanical simulations. Also, like matrix inversion, this method can
lead to a loss of sparsity for sparse systems. This means that to find a solution to the
encountered problems iterative methods must be used.
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Iterative Linear Solver
Methods 3
The direct methods discussed in Section 2.3.2 can be used to solve the linear problem
described in Equation 2.25, but are computationally far too expensive to be applied
to large problems. To solve the large problems observed in geomechanical simulations,
iterative methods must be used.

This chapter discusses several iterative methods that can be used to solve linear
systems. The methods discussed first, in Section 3.1, are methods that make use of
simple iterations and are referred to as Basic Iterative Methods (BIM). In most cases,
these methods are not used to solve the approached linear systems but instead are
used to improve the performance of other methods. One such method, the Conjugate
Gradient (CG) method, is discussed in Section 3.2. This is commonly the best method
for solving linear systems with SPD matrices. The performance of this method can
be improved by using a preconditioning method, for which the BIMs can be used.
Although BIMs are very useful for this, more advanced methods can be used as a
better preconditioner for the CG method. One such method is derived from Algebraic
Multigrid methods, on which the main focus of this project is put. In Section 3.3, an
extensive overview of this method of preconditioning is given.

3.1 Basic Iterative Methods

Basic iterative methods typically make use of iterations of the form

xk+1 = Gxk + c, (3.1)

where xk should converge to the exact solution x to Equation 2.26. The matrix G ∈
Rn×n is most commonly obtained by splitting the original matrix A into A = M −
N , where M and N are such that every nonzero element in A is represented in the
corresponding position in either one of the matrices. Using this splitting, G is given by

G = M−1N = I −M−1A. (3.2)

The exact way in which A is split in M and N differs between several iterative methods.
In most cases, these are described in terms of the matrices obtained from the splitting

A = D − E − F. (3.3)

There, D ∈ Rn×n is a diagonal matrix, containing the diagonal elements of A, E ∈ Rn×n

is a lower triangular matrix containing the elements of A located below the diagonal,
multiplied by −1 and F ∈ Rn×n is an upper triangular matrix containing the elements
of A above the diagonal, multiplied by −1. The other element of the basic iteration,
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the vector c ∈ Rn, is obtained from the right-hand side vector of the original system,
as

c = M−1b.

The first iteration in Equation 3.1 is performed with an initial vector x0. It is desirable
for this initial guess to be as close as possible to the exact solution, as this means less
iterations being required to converge to the solution. However, rarely enough is known
about the exact solution to choose an initial vector close enough to the exact solution.
In most cases where nothing is known about the solution, this initial vector is chosen
randomly.

With G = I −M−1A, Equation 3.1 can be seen as solving the system

M−1Ax = M−1b, (3.4)

which is exactly the original system multiplied to the left with M−1. This is called a
preconditioned system, where M is called a preconditioner. As the convergence of the
basic iteration is in many cases very slow, this is the most prevalent use of the basic
iterative methods.

3.1.1 Examples of Basic Iterative Methods

Using the splitting given by Equation 3.3 several iterative methods can be described. A
very simple iteration is the Jacobi iteration, which uses M = D, giving G = I −D−1A
and c = D−1b. As D is a diagonal matrix, inversion of this matrix and multiplication
by this matrix are not complicated in terms of computations. Using this, the iteration
for the Jacobi method is obtained as

xk+1 = D−1(E + F )xk +D−1b. (3.5)

The Jacobi iteration can be altered into a damped or relaxed variant, which uses a
weighted average of the current iterant, xk and the next iterant obtained from applying
one step of the Jacobi iteration. This gives

xk+1 = (1− ω)xk + ω(D−1(E + F )xk +D−1b). (3.6)

This corresponds to an iteration of the form of Equation 3.1 with G = I − ωD−1A.
Another basic iteration method derived in a similar way as the Jacobi iteration is

the Gauss-Seidel iteration. Like the Jacobi iteration, this uses an iteration of the form
of Equation 3.1, but for this method G = I − (D − E)−1A is used. This gives the
iteration

xk+1 = (D − E)−1Fxk + (D − E)−1b. (3.7)

Obtaining the iteration matrix for the Jacobi method was not complicated as there
only the easily computed inverse of a diagonal matrix is required. It is more difficult to
obtain the iteration matrix for the Gauss-Seidel method, as this requires the inverse of
a lower triangular matrix D − E. In general, it is not possible to compute this inverse
in a efficient way. Therefore, the next iterant is intead obtained by solving the system

(D − E)xk+1 = Fxk + b.
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As D − E is lower triangular, this system can be easily solved in an efficient way, by
making use of forward substitution (Vuik, C. and Lahaye, D.J.P., p. 49 [38]).

In the same way as this Gauss-Seidel method using forward substitution is described,
a backward Gauss-Seidel method can be defined. For this each iteration step is done
by solving

(D − F )xk+1 = Exk + b.

Now D − F is upper triangular, which means that this system has to be solved using
backward substitution. This corresponds to an iteration of the form of Equation 3.1,
with G = I−(D−F )−1A. Both Gauss-Seidel methods can be combined in a Symmetric
Gauss-Seidel method, which uses an iteration that consists of a forward Gauss-Seidel
iteration followed by a backward Gauss-Seidel iteration.

By introducing overrelaxation, the Gauss-Seidel method can be generalised. This is
done by introducing a parameter ω, with which a different splitting of A of the form

ωA = (D − ωE)− (ωF + (1− ω)D). (3.8)

is described. Using this splitting the Successive OverRelexation (SOR) method is
defined as

(D − ωE)xk+1 = (ωF + (1− ω)D)xk + ωb. (3.9)

In the same way as for the Gauss-Seidel iteration, this system can be solved by forward
substitution. This iteration corresponds to an iteration as described by Equation 3.1
with

Gω = (D − ωE)−1(ωF + (1− ω)D)

cω = ω(D − ωE)−1b.

Similar to the Gauss-Seidel method, this method can be extended to a symmetric
iteration, referred to as Symmetric SOR. This makes use of two iteration steps,

(D − ωE)xk+ 1
2
= (ωF + (1− ω)D)xk + ωb

(D − ωF )xk+1 = (ωE + (1− ω)D)xk+ 1
2
+ ωb.

3.1.2 Preconditioning using BIMs

While the basic iteration methods described here can be applied directly to find an
approximation of the solution to a linear system, this is typically not the best way to
use them. The methods are only guaranteed to converge if the spectral radius is such
that ρ(G) < 1, and even then the convergence is in many cases slow (Saad, p. 115
[26]).

Although basic iterative methods are often insufficient for solving large linear
systems, they can be used to transform a linear system so that other more advanced
methods can be applied more effectively. Using a preconditioning matrixM , the system
is transformed, by multiplying it to the left, to

M−1Ax = M−1b. (3.10)
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This transformation applied to linear systems with the goal of decreasing the
condition number while making sure the solution to the system is the same is
called preconditioning. This specific way of preconditioning, by multiplication with a
preconditioning matrix to the left, can be referred to as left preconditioning, with similar
methods of right and split preconditioning being defined through a multiplication to
the right and on both sides respectively, given by

AM−1u = b, x = M−1u, (3.11)

M−1
L AM−1

R u = M−1
L b, x = M−1

R u. (3.12)

These two variants, however, are not used as commonly as the left preconditioning
variant, and, unless specified, ’preconditioning’ refers to the left variant.

As will be discussed in Section 3.2, the efficiency for many methods highly depends
on the condition number of the coefficient matrix, given, for a nonsingular matrix by

κ(A) = ∥A−1∥∥A∥. (3.13)

The norm used here in general is the Euclidian or L2-norm, which gives the condition
number in the 2-norm. This condition number in 2-norm can be described as

κ(A) =
|λmax(A)|
|λmin(A)|

. (3.14)

Here, λmax(A) and λmin(A) describe the, in absolute value, largest and smallest
eigenvalues of A, respectively. It can be easily seen that the condition number for
any matrix satisfies κ(A) ≥ 1. In general, the performance of iterative methods for
solving a linear system is best when the condition number is close to 1 and decreases
as the condition number increases. This means that, when applying a preconditioning
method to a linear system, it is desired to use a preconditioning matrix M−1 such that
κ(M−1A) ≈ 1.

To obtain a condition number close to 1, it is obvious that M should approximate
A, as M−1 = A−1 would lead to a condition number of 1. However, for effective
application of a preconditioning matrix, there is the additional requirement of it being
simple enough to obtain a solution to a linear system with the preconditioning matrix.
This means that it should be simple to a system of the form

Mx = u. (3.15)

The matrices obtained for the BIMs all approximate the matrix A and it is simple to
find a solution to linear problems using these matrices, making them great candidates
for preconditioning methods. For the four methods described in Section 3.1.1, this gives
preconditioning matrices

MJAC = D, (3.16)

MGS = D − E, (3.17)

MSOR =
1

ω
(D − ωE), (3.18)

MSSOR =
1

ω(2− ω)
(D − ωE)D−1(D − ωF ). (3.19)
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3.1.3 Hybrid and ℓ1− preconditioning matrices

Using the preconditioner obtained from the iterative methods described previously,
especially Gauss-Seidel, two sets of new preconditioner matrices can be described.
These new preconditioners are described by Baker et al. [3] (p.5) and are referred
to as hybrid and ℓ1− preconditioner matrices. These preconditioning methods are
typically applied to iterative methods which make use of parallel computing methods.

For the hybrid preconditioner, a non-overlapping partition of the unknowns is
considered. For this let Ω = {1, . . . n} be the set of indices of the unknowns, which is
partitioned as

Ω =

Np⋃
k=1

Ωk, (3.20)

Ωi ∩ Ωj = ∅, i ̸= j.

with each Ωk representing subset of the unknowns. When using multiple processors,
this partition can often be done such that each Ωk represents the unknowns in the
processor k and Np is the total number of processors (Baker et al., p. 10 [3]). With
this partition, the coefficient matrix A can be divided in blocks, along its rows and
columns, resulting in N2

p blocks. These blocks, denoted by Akl, are such that block Akl

has rows with indices in Ωk and columns with indices in Ωl. With this, we consider the
systems obtained from the diagonal blocks of A, given by

Akkxk = bk.

From this system, the Gauss-Seidel preconditioner of this matrix can be obtained as
Mk = Dk − Ek, where Dk and Ek are the diagonal and lower triangular parts of
Akk respectively. The hybrid preconditioner matrix MH is obtained from these block
preconditioner matrices, as a block-diagonal matrix, with the block preconditioner
matrices on the diagonal, given by

MH =


M1 O · · · O
O M2 · · · O
...

...
. . .

...
O O · · · MNp

 . (3.21)

Although the application of these hybrid preconditioners generally provides a good
improvement in the convergence of many iterative methods, they do not guarantee
convergence (Baker et al., p. 13 [3]). To fix this problem, ℓ1−preconditioners
are proposed, which attempt to fix the lack of guaranteed convergence of hybrid
preconditioners by adding an appropriate diagonal matrix. For this let Dℓ1 be the
matrix with entries

[Dℓ1 ]i,i =
n∑

j=1

∣∣[A]i,j∣∣, (3.22)

so for the blocks Akk, D
ℓ1
k has entries[

Dℓ1
k

]
i,i
=

n∑
j=1

∣∣[Akk]i,j
∣∣. (3.23)
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Then the ℓ1−preconditioner matrix Mℓ1 is described as the block-diagonal matrix

Mℓ1 = MH +Dℓ1 =


M1 +Dℓ1

1 O · · · O
O M2 +Dℓ1

2 · · · O
...

...
. . .

...
O O · · · MNp +Dℓ1

Np

 . (3.24)

Transforming a linear system using the ℓ1−preconditioner and applying an iterative
method to this system does guarantee convergence (Baker et al., p. 13 [3]).

3.2 The Conjugate Gradient Method

As discussed before, convergence of methods based on basic iterations can be slow for
large problems. The main downside of these methods is that these methods require a
matrix-vector multiplication at every iteration step, which can be problematic in terms
of computations when the system is of large size and many iterations are required.

To avoid these problems, it is required to define a method that can be expected
to require fewer iterations than basic iterative methods. For this, techniques based on
projections on a Krylov subspace obtained using the initial residual can be very helpful.
These Krylov subspaces can be used to find the best approximation of the solution of a
linear system that is of the form p(A)b, where p(A) approximates A−1. Here p(A) is a
polynomial of A, of which the degree is the same as the degree of the Krylov subspace
observed.

While a wide range of this type of method exists, the most effective method
for linear systems with SPD matrices is the Conjugate Gradient method. This
method is specifically developed for the application to this class of systems. Other
methods that make use of similar principles, such as Generalised Minimal Residual
(GMRES), Generalised Conjugate Residual (GCR) or BiConjugate Gradient Stabilised
(BiCGSTAB), can also be used to solve the considered type of linear system, but are
not covered further here. Saad [26] gives an extensive overview of these and other
methods, along with an explanation of the Conjugate Gradient method.

The Conjugate Gradient method makes use of projections on the Krylov subspace
Km(r0, A) given by

Km(r0, A) = Span{r0, Ar0, A2r0, . . . , A
m−1r0}, (3.25)

where r0 is the initial residual, given by r0 = b − Ax0. The approximate solution
obtained at each iteration of the Conjugate Gradient method is such that xm ∈ x0+Km,
the residual of which is orthogonal to the Krylov subspace Km.

The CG method is developed specifically for SPD linear systems. For solving linear
systems of this type, CG is in many cases the best performing technique (Saad, p.
196 [26]). As discusses in Section 2.3, the linear problems encountered in the discussed
geomechanical simulations can be expected to be SPD.
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3.2.1 Conjugate Gradient Algorithm

The algorithm for the CG method is derived from the Lanczos method, a procedure for
producing an orthogonal span of a Krylov subspace, like the one given in Equation 3.25.
This procedure works particularly well for SPD matrices. As described by (Saad, p.
196 [26]), the Lanczos algorithm finds an approximate solution xm as

xm = x0 + Vmym (3.26)

ym = T−1
m (βe1) .

The matrix Vm ∈ Rn×m is obtained as a matrix whose columns are the so-called Lanczos
vectors vj, which are orthogonal vectors spanning the Krylov subspace Km (r0, A).
The matrix Tm ∈ Rm×m is a tridiagonal matrix that contains the orthogonalisation
coefficients obtained from the Lanczos algorithm. Lastly, the scalar β is obtained from
the initial residual β = ∥r0∥2 and e1 ∈ Rm is the first unit vector of length m. A major
advantage of this method is that the residual in an iteration step can be computed
using only what is obtained at this step. For this, rm is obtained as

rm = βm+1e
T
mymvm+1. (3.27)

From this it can be seen that the residuals at each step, {r1, . . . rm}, are orthogonal to
each other, as the Lanczos vectors are orthogonal to each other as well.

The final set of vectors, the auxiliary vectors pi, required to define the algorithm for
the CG method is obtained from the columns of the matrix Pm = VmU

−1
m , where Um is

obtained from the LU-decomposition of Tm. Now it is undesirable to actually compute
this matrix Pm and fortunately this is not required. Instead, pj+1 can be obtained
directly from the previous iterate as

pj+1 = rj+1 + βjpj, (3.28)

with βj =
(rj+1,rj+1)

(rj ,rj)
. These auxiliary vectors can be used to describe the iteration of

the approximate solution and residual

xj+1 = xj + αjpj

rj+1 = rj − αjApj,

with αj =
(rj ,rj)

(Apj ,pj)
.

With what is described above, an algorithm can be described for the CG method,
which is provided in Algorithm 3.1. The stopping condition used is generally in the
form of a relative tolerance on the residual, so the condition is satisfied if the residual
is such that

∥rj∥ < ϵ∥r0∥, (3.29)

for some chosen ϵ ∈ R+. Alternatively, a maximum amount of iterations or absolute
tolerance can be used either on its own or in combination with a relative tolerance
condition. However, these stopping conditions cannot be assumed to give any
information about the convergence of the method and are usually only used to limit
cases where convergence is much slower than expected.
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Algorithm 3.1: Conjugate Gradient Method (Saad, p. 199 [26])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Approximate Solution
x0

Result: Approximate Solution x, Residual r
Initialize r0 = b−Ax0

p0 = r0
j = 0

while stopping condition not satisfied do
qj = Apj

αj =
(rj ,rj)
(qj ,pj)

xj+1 = xj + αjpj

rj+1 = rj − αjqj

βj =
(rj+1,rj+1)

(rj ,rj)

pj+1 = rj+1 + βjpj

j += 1
end
x = xj

r = rj

3.2.2 Preconditioned Conjugate Gradient Method

Saad [26] (p.215) describes an upper bound for the error at the m-th step of the CG
algorithm by

∥x∗ − xm∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)m

∥x∗ − x0∥A. (3.30)

Here, it is seen that the rate of convergence, given by the fraction

√
κ(A)−1√
κ(A)+1

, is close to 0

when the condition number κ(A) is close to 1 and becomes close to 1 when κ(A) is large.
Since this upper bound for the error decreases faster when the rate of convergence is
small, it is desirable to apply CG to a system with a condition number close to 1. As
discussed in Section 3.1.2, preconditioning can be used to transform a linear system
into a new system, for which the condition number of the observed matrix is closer
to 1. Since CG is commonly applied to systems that are ill-conditioned, it is often
advantageous to apply a preconditioning method before applying the CG iteration.

A major concern when applying preconditioning while solving a linear system using
the CG method is the fact that, to ensure convergence of the CG method, it has to be
applied to an SPD matrix. This means that preconditioning to the left and right can
in general not be applied without problems, as M−1A and AM−1 are only guaranteed
to be SPD if A and M−1 commute.

A possible way of solving the problem of the preconditioning matrix not being an
SPD matrix is by using a split preconditioned system of the form

L−1AL−Tu = L−1b, x = L−Tu. (3.31)

There, L is obtained from the Cholesky factor decomposition of M . This ensures that
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L−1AL−T is SPD and thus guarantees convergence when applying the CG method to it.
However, this method of preconditioning does still have the disadvantage of requiring to
compute the Cholesky decomposition of the matrix M , which can be computationally
costly.

As simply applying the CG method to a preconditioned system in most cases is not
expected to work well, it is desired to develop an adapted method for the CG method
that makes use of preconditioning. The main problem that arises when applying CG to
a regular left preconditioned system is the fact that M−1A is not necessarily self-adjoint
with the Euclidian inner product. To solve this, M−inner products can be used instead
of the standard Euclidean inner product.

For an SPD matrix M , the M−inner product is defined as (x,y)M = xTMy. This
inner product has the property

(x,y)M = (Mx,y) = (x,My). (3.32)

Using this property and the fact that A is self-adjoint with the standard Euclidean
inner product, it is obtained that

(M−1Ax,y)M = (Ax,y) = (x, Ay) = (x,M−1Ay)M . (3.33)

This means that M−1A is self-adjoint with the M−inner product, which can be used
to develop an adapted CG method that can be applied to the preconditioned system.

By replacing the inner products used in the original CG method with M−inner
products and introducing a new residual zj = M−1rj, an alternative variant of the CG
method can be described. This variant is equivalent to applying CG to a preconditioned
system M−1Ax = M−1b. This new variant works in the same way as the method
described by Algorithm 3.1, but with the scalars αj and βj now being obtained from

αj =
(zj, zj)M

(M−1Apj,pj)M

βj =
(zj+1, zj+1)M
(zj, zj)M

The computation of the M−inner product is in general less efficient than the
computation of the regular Euclidean inner product. This makes it desirable to
transform the M -inner products in the calculation of αj and βj into Euclidean inner
products. For this it is obtained that

(zj, zj)M = (Mzj, zj) = (rj, zj) ,(
M−1Apj,pj

)
M

=
(
MM−1Apj,pj

)
= (Apj,pj) .

With these, αj and βj can instead be computed using only regular Euclidian inner
products as

αj =
(rj, zj)

(Apj,pj)

βj =
(rj+1, zj+1)

(rj, zj))
.
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Additionally, the update of the vector pj is based on the residual of the preconditioned
system, given by

pj+1 = zj+1 + βjpj. (3.34)

Lastly, the computation of the vector zj = M−1rj is required in each step of the
algorithm. Algorithm 3.2 provides a complete overview of the newly obtained algorithm
for this Preconditioned CG (PCG) method.

Algorithm 3.2: Preconditioned Conjugate Gradient Method (Saad, p. 277 [26])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Approximate Solution
x0

Result: Approximate Solution x, Residual r
Initialize r0 = b−Ax0

p0 = r0
j = 0

while stopping condition not satisfied do
qj = Apj

αj =
(rj ,zj)

(Apj ,pj)
xj+1 = xj + αjpj

rj+1 = rj − αjqj

zj = M−1rj

βj =
(rj+1,zj+1)
(rj ,zj))

pj+1 = zj+1 + βjpj

j += 1
end
x = xj

r = rj
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3.3 Algebraic Multigrid

Iterative methods such as the CG method can theoretically perform well for any system
to which they can be applied. In practice, however, applying these methods to large
linear systems can cause problems as these systems commonly have large condition
numbers, resulting in slow convergence. Furthermore, applying basic operations to
linear systems becomes computationally more expensive as the size of the linear system
increases. This together means that larger systems require both more operations and
the computations of those operations are more expensive, which makes the Krylov
subspace-based methods less suitable for large systems.

For problems too large to be efficiently solved using a Krylov iteration, multigrid
methods can be used to improve the performance of the Krylov iteration. The goal of
a multigrid method is to transform a linear system into a smaller system, to which a
linear solver method is applied. The solution obtained from this is then transformed
back to the larger linear system. This is especially useful on systems with a high level
of sparsity, as the decrease in size from applying a multigrid method to the system can
be large.

Multigrid methods can be divided into two distinct groups. The first type
of multigrid methods is referred to as Geometric Multigrid and requires extensive
knowledge about the grid used to describe the linear system that is observed. To
apply a geometric multigrid method, linear systems of different sizes are obtained from
different discretisations of the observed problem. If different levels of discretisation are
available, a geometric method can be very effective. However, without the different
levels of discretisations, applying a geometric multigrid method requires defining the
different levels in the setup of the solver, which can be expected to not be a viable
option. For the problems observed here, it cannot be expected that one has extensive
knowledge of the grid structure of the variables. This means that geometric multigrid is
not expected to give useful results and will therefore not be considered further. Briggs
et al. [6] does provide a more extensive overview of this topic.

The second type of multigrid methods is the Algebraic Multigrid (AMG) methods,
which, like Geometric Multigrid, makes use of a transformation to a system on a smaller
grid, but does not require knowledge about the actual underlying grids. AMG instead
derives smaller systems using only the matrix that describes the linear system that is
desired to be solved. This makes AMG much more suitable for application to large,
sparse linear systems.

The framework in which AMG is approached here is the classical framework, as
discussed by Ruge and Stüben [25]. Other approaches to AMG methods can be
used, such as aggregation-based methods, but they are not covered here. The main
difference between the aggregation-based and classical AMG methods is the way in
which coarsening and prolongation are defined (Stüben [33]). Vanek et al. [37] gives
an complete overview of these aggregation-based AMG methods.

When discussing AMG methods, the structure that defines the method is still
commonly referred to as ’grids’ or ’levels of grid’. These terms are used because they
give an intuitive approach to the theoretical method. It is important to note that even
though these terms are used, no actual grid system is required to be built. Instead, only
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the matrices that define the linear systems are practically used to define the method
used.

Here, several components required to define an AMGmethod are discussed. First, to
give a general overview of how an AMGmethod can be applied, a simple way of applying
a multigrid cycle, which only uses two levels, is discussed. Secondly, different ways to
expand on this simple two-grid cycle with different cycling techniques are discussed.
After this, the components of the multigrid cycle are discussed, those being coarsening
methods, smoothing methods and techniques for prolongation and restriction. Lastly,
it is discussed how this AMG method can be combined with the CG method, in the
form of a preconditioner to the CG method, to make use of the advantages of both
methods.

3.3.1 AMG Algorithm

3.3.1.1 Two-grid Cycle

The most simple way to apply a multigrid method is to use a two-grid cycle. A two-
grid cycle uses a transformation between a fine grid, denoted by Ωh and a coarse grid,
indicated by ΩH . Within the application of an AMG method, these grids are not
actually defined, but for theoretical explanation, they are still considered. In practice,
two grid levels are not always sufficient to solve the problem at hand, as the obtained
coarse grid is, in most cases, still too large to effectively solve a linear system. However,
most multigrid methods are described in a similar way, making the two-grid cycle very
useful for a simple overview of the framework of a multigrid method.

To describe a two-grid cycle, two linear systems are required. The first system, on
the fine grid, is the original linear system, as described in Equation 2.26 and denoted
by h, which is desired to be solved. The second linear system, on the coarse grid, is
given by

AHx
H = bH (3.35)

This linear system is defined within the application of the multigrid method. This
second linear system is smaller than the fine system. As the coarse linear system is
of smaller size, it can be expected that it will be much less complicated to obtain an
approximation of the solution for this linear system. This means that it is desirable to
only solve linear systems on the coarse grid and use the result obtained from this to
find an approximate solution on the fine grid.

Both linear systems are defined within a set-up phase, applied before applying the
actual solver. In this set-up phase the structure of the coarse grid is defined along with
a restriction operator

IHh : Ωh → ΩH (3.36)

and a prolongation operator
IhH : ΩH → Ωh. (3.37)

These operators perform a transformation between the two different grids. How they
are obtained is described in Section 3.3.4.

Applying an AMG cycle like a two-grid cycle is done iteratively, with in each
iteration a new iterant on the fine grid level xh

j+1 being obtained from the xh
j the
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previous grid level. This next iterant is obtained with a minimal amount of operations
on the fine grid level. Instead, most computational work is done on the coarse grid level.
To transform the iterant to the coarse grid level, a chosen amount µ of pre-smoothing
operations is first applied, resulting in a smoothed iterant uh

j . How these smoothing
operations are performed is discussed in depth in Section 3.3.2.

From this smoothed iterant, a residual on the fine grid, rhj = fh−Ahu
h
j is obtained.

Using the restriction operator, this residual is transformed to the coarse grid, as

rHj = IHh rhj . (3.38)

This coarse residual is then used to obtain a correction δH
j from solving

AHδ
H
j = rHj , (3.39)

where AH is the transformed coefficient matrix obtained through the Galerkin
projection given by

AH = IHh AhI
h
H . (3.40)

The system in Equation 3.39 is solved using some linear solver method. This system
is desired to be of small enough size for a direct method to be applied effectively. In
most cases, this is not possible with a hierarchy of only two levels, which means that
either more levels must be used, or an iterative solver method has to be used to obtain
the correction.

The correction δH is used to correct the previously obtained iterant uh
j , by

ũh
j = uh

j + IhHδ
H . (3.41)

From this, a new iterant xh
j+1 is obtained by applying ν post-smoothing steps to ũh

j .

Algorithm 3.3: Two-grid cycle AMG (Saad, p. 442 [26])

Data: AMG structure: {Fine Coefficient Matrix Ah, Coarse Coefficient Matrix AH ,
Restriction Operation Matrix IHh , Prolongation Operation Matrix IhH ,
Smoothing Operators S, T }, right-hand side bh, Initial Approximate Solution
x0

Result: Approximate Solution x, Residual r
while stopping condition not satisfied do

uh
j = Sµ(Ah,x

h
j ,b

h)

rHj = IHh rhj
Solve AHδHj = rHj for δHj using a chosen linear solver technique.

ũh
j = uh

j + IhHδH

xh
j+1 = T υ(Ah, ũ

h
j , f

h)
j += 1

end
x = xj

r = rj
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As can be seen, the only linear system that must be solved is in Equation 3.39. This
linear system is on the coarse grid and can be expected to be computationally much
less costly than solving the original system on the fine grid.

Algorithm 3.3 gives an overview of the algorithm for this two-grid cycle. This
algorithm consists of the iteration described above, which is repeated until a chosen
stopping condition is satisfied. This stopping condition is typically based on the residual
in an iteration j being relatively small compared to the residual of the initial solution,
as previously described in Equation 3.29.

3.3.1.2 Cycling techniques

The two-grid cycle in practice is rarely useful, as in most cases where the application
of AMG is useful, the first coarsened level is still too large to solve directly. This
means that instead of the two linear systems, the original and the coarse system in
Equation 3.35, used in the two-grid cycle, a series of linear systems is used. These are
given by

Akx
k = bk, (3.42)

where k = 0, . . . K is the grid level of the linear system. There, A0x
0 = b0 corresponds

to the original linear system as described by Equation 2.26. As there are now more
than two grid levels, the two-grid cycle does not anymore suffice, and it is necessary
to describe more advanced techniques for AMG cycles. Generally, these techniques are
based on the same principles as described for two-grid cycles but are applied to AMG
structures of more than two levels.

The most simple, and in many cases most useful, way of cycling through a bigger
multigrid structure is using a V-cycle. This cycle is described in a way very similar
to the two-grid cycle, but instead of solving after one coarsening operation, coarsening
operations are repeated until the most coarse grid level of the multigrid structure is
reached.

Figure 3.1a gives an overview of what a V-cycle looks like for a multigrid structure
of four levels. At each step of the cycle, an operation is applied depending on the level
of the step and the level of the next step. The highest level of the multigrid structure
is the most coarse level and thus the smallest linear system. This is the only level
on which the linear system is solved and a correction for the approximate solution is
obtained. On the more fine levels, if the next step of the cycle is on a more coarse
level, first pre-smoothing is applied µ times. After this, the restriction operator Ikk+1

is used to obtain a system at a higher level. On the other hand, if the next step of
the cycle is on a finer level, prolongation, given by Ik+1

k , is applied first. After that,
υ post-smoothing operations are applied. The operators for these operations are all
obtained in the same way on each level, but the exact operators are not the same, as
the linear systems on the different levels are not the same.

This V-cycle can be extended upon further by, instead of directly returning to
the finest level after finding a correction to the approximate solution on the coarsest
level, first returning to the coarsest level to improve the correction to the approximate
solution. Cycles of this type are referred to as W cycles and examples of type of cycle
are shown in Figure 3.1b. The number of times the cycle returns to the coarser level
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before returning to a finer level is called the cycle index and is denoted by γ. This index
is given such that the cycle returns to a finer grid level on the γ’th time of arriving at a
certain grid level from lower levels. This means that performing a W-cycle with γ = 1
is the same as performing a V-cycle.

The advantage of a W-cycle is that a larger part of each iteration is performed on
the coarse grid levels, on which computations are less costly. This can lead to fewer
full iterations being required, at the trade-off of each single iteration becoming slightly
more costly. However, it does not guarantee that fewer iterations are required and
therefore can just lead to iterations being more costly without any advantages (Saad
[26]).
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Figure 3.1: (a) Example of V-cycle with four levels. Ikk+1 and Ik+1
k denote the restriction

and prolongation operators respectively used to map between levels. Sµ
k and T υ

k denote the
smoothing operations. On the most coarse level, marked grey, the system is solved and the
coarse grid correction δj is obtained. (b) Three Examples of W-cycles of four levels with
different values of cycle index γ (Saad, p. 445 [26]). γ = 1 gives the same as the regular
V-cycle.

3.3.2 Smoothing

The first aspect that must be defined to describe the multigrid cycle discussed above is
the smoothing operation. This operation is described by Stüben et al. [32] (p.16) as

S(Ah,x
h,bh) = Shx

h + (Ih − Sh)A
−1
h bh. (3.43)

This gives a transformation of the error e = xh
∗ − xh, with xh

∗ the exact solution to
Equation 2.26, of

ēh = She
h, (3.44)

where ēh is the error obtained from the xh after the application of the smoother,
ēh = xh

∗ − Sµ(Ah,x
h, fh).

In practice, it is not viable to make use of the inverse of Ah within the smoother, and
the matrix Sh is commonly of the form Sh = Ih −M−1

h Ah. This results in a smoothing
operation of the form

S(Ah,x
h, fh) = (Ih −M−1

h Ah)x
h +M−1

h fh. (3.45)
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As can be seen, this is similar to the iteration described by Equation 3.1. This suggests
that the BIM’s discussed in Section 3.1 can be useful for the description of the smoothing
operation.

These methods are commonly not useful for finding an accurate approximation of
the solution to large linear systems because of their slow convergence of the error.
However, these methods can give fast convergence in the first few iterations in which
the method is applied. As the application of a multigrid correction can be very costly,
it is desirable to apply the multigrid process only if it is absolutely necessary. This is
the case if the error is algebraically smooth, which is defined as an error eh such that
∥She

h∥ ≈ ∥e∥. If this is the case, then the simple iteration of repetitively applying
S will not perform well and the correction obtained from the application of an AMG
method can give a significant improvement.

Now, a smoother which causes errors to be algebraically smooth after several
iterations is not enough for it to be a well performing smoother. The smoother also has
to be guaranteed to be efficient in reducing the error as long as ∥e∥2 is large compared to
∥e∥1 (Clees, p. 42 [8]). More specifically, a smoother Sh has to satisfy the smoothing
property for any SPD matrix, which is the case if Equation 3.46 is satisfied for some
σ > 0, independent of e.

∥She∥21 ≤ ∥e∥21 − σ∥e∥22 (3.46)

With this smoothing property, it can be proven that several different types of
matrices can be used as effective smoothers. Stüben et al. [32] provides the proof
that several different preconditioning matrices, as described in Section 3.1.2, satisfy
this smoothing property. First, it is shown in Theorem 3.1 (Stüben et al., p. 29
[32]) that the Gauss-Seidel preconditioning matrix satisfies the smoothing property
with σ = 1

(1+γ−)(1+γ+)
, where

γ− = max
i

{
1

[w]i[A]i,i

∑
j<i

[w]j |[A]i,j|

}

γ+ = max
i

{
1

[w]i[A]i,i

∑
j>i

[w]j |[A]i,j|

}

for any vector w > 0. Then, it is shown in Theorem 3.2 (Stüben et al., p. 30
[32]) that the relaxed Jacobi preconditioning matrix satisfies the smoothing property
for σ = ω(2 − ωη), where η is such that η ≥ ρ(D−1A). The hybrid and ℓ1-matrices
discussed in Section 3.1.3 are also commonly used as smoothers in AMG methods.
Baker et al. [3] discusses how these matrices are used as smoothing matrices and that
they satisfy this smoothing property.

3.3.3 Coarsening

Before the AMG algorithm can be applied, it is required to establish an AMG structure.
This requires, on each level of the AMG structure, a set of variables that describe the
problem on that level. These sets of variables are denoted by Ω0, . . .ΩK , where K is the
total number of grid levels used. Ω0 corresponds to the finest grid level and includes
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all variables of the original system. This original set of variables is used to describe the
sets of variables at higher levels (Stüben et al., p. 16 [32]).

To derive a system on a more coarse level, say k+1, the set of variables on grid level
k is divided into two subsets. These subsets are such that the first, Ck, represents the
variables of Ωk that will be used at the coarser level k+1. This means that the variables
on the coarser level are obtained as Ωk+1 = Ck. The second subset, Fk, represents the
variables only used on level k and not on level k+1. These two subsets can be referred
to as the coarse variables (Ck) and the fine variables (Fk) of the level k (Falgout [9]).
Ck and Fk are such that

Ck ∪ Fk = Ωk

Ck ∩ Fk = ∅.

These two subsets will later, in Section 3.3.4, be used to describe the prolongation
and restriction operators, which are used to map between different grid levels. As the
variables on each grid level are obtained from a subset of the variables on more fine
level, it is obtained that

ΩK ⊂ ΩK−1 ⊂ · · · ⊂ Ω1 ⊂ Ω0.

The number of grid levels is usually determined by the coarsening process. One method
of determining the number of grid levels is by deriving higher grid levels as long as the
unknowns can be split into sets Ck and Fk in a way that satisfies the constraints
described by the coarsening method.

Only once this split in coarse and fine variables can not be made without conflicting
with the constraints of the coarsening method, no new levels are derived anymore.
Then, the last derived grid level is used as the coarsest level. Alternatively, it is
possible to not derive more coarse levels if the last derived level is of such a small size
that a linear solver can be applied effectively. In practice, this is in most cases the best
method to determine the required amount of grid levels, as this way it is made sure
that not more levels are created than necessary.

To give an accurate description of the coarsening methods, it is necessary to first
introduce some concepts concerning what is by Stüben et al. [32] (p.64) referred to as
connections of variables. For this, Definition 3.1 introduces the concept of connected
variables. Definition 3.2 extends upon Definition 3.1 by introducing a special kind of
connectivity, as described by Falgout [9]. In this definition of strong connectivity, any
positive connection between variables is considered weak. This specific way of defining
a strong connection is sometimes referred to as strong negative connectivity (Stüben
et al., p. 64 [32]), but since it is sufficient here to consider positive connections as
weak, this distinction is not made here.

Definition 3.1. A variable of index i is connected to another variable of index j if
[A]ij ̸= 0, with its set of couplings represented by

Ni = {j ∈ Ω : [A]ij ̸= 0}
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Definition 3.2. A variable of index i is strongly connected (or strongly negative
connected) to another variable of index j if, for some chosen threshold 0 < θecg < 1,

−[A]ij ≥ θecg max
k ̸=i,[A]ik<0

[A]ik

With this, the set of strong connections of a variable i is given by

Si = {j ∈ Ni : i strongly coupled to j}

and similarly, the set of strong transpose connections

ST
i = {j ∈ Ω : i ∈ Sj}.

Theoretically, there are no requirements for the way in which the variables are split
between the sets Ck and Fk and thus any desired method can be used. However, it is
advantageous for the convergence of the AMG method to make use of a separation that
is as uniform as possible. Moreover, the performance of the AMG method is improved
if any variable in Fk is surrounded by variables in Ck. This means that every variable
in Fk is connected to only one, or a minimum number, of variables in Ck.

Here, two different methods of applying coarsening are discussed, Standard and
Aggressive Coarsening. After this, the concept of complexities is discussed, which can
give useful information on how many elements an AMG structure has.

3.3.3.1 Standard Coarsening

Standard Coarsening is based on direct couplings between variables in Fk and Ck.
When using standard coarsening, all variables that are chosen in Fk must be strongly
connected to a minimum number of variables in Ck (Stüben et al., p. 64 [32]).

Standard coarsening, as well as other coarsening methods described later, can be
described as a simple iteration. For this, initially, all variables are added to a set of
unclassified variables U . From this unclassified set, at each iteration, one variable is
chosen and added to the set C and all the variables to which it is strongly connected
are added to the set F . This is repeated until no variables are left in the unclassified
set, after which C is used as the set Ck and F is used as the set Fk.

This simple iteration cannot be used on its own, as this can result in a random
distribution of fine and coarse variables where it is desired to have a uniform distribution
of coarse variables. To ensure that there is order in the way in which variables are
chosen to be added to C, Stüben et al. [32] (p.65) introduces the concept of measure
of importance υi, as

υi = |ST
i ∪ U |+ 2|ST

i ∩ F |. (3.47)

This means that the choice of the next unknown that is added to C is based on how
many of its strong connections are with unclassified variables and how many of its
connections are with variables that are already classified in F . There, more importance
is given to the strong connections with the variables in Fk. With this measure of
importance, the iteration described above is used, with the coarse variables chosen
based on the measure of importance.
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If this is applied to a matrix that is symmetric, any variable that has any connections
to other variables is classified as either coarse or fine. If there are variables that do not
have any connections to other variables, they are classified as fine. A variable can only
have no connections to other variables if the only nonzero element in the corresponding
row of the matrix is on the diagonal. If this is the case, the solution in this variable
can be easily obtained directly. These types of variables do not have to be considered
in the AMG structure.

Figure 3.2 gives an example of what this method of coarsening would look like on a
five-by-five grid. Note here that despite an actual grid being shown in this example, in
practice such a grid is never used when deriving an AMG structure. The graph structure
shown here corresponds to a matrix of size 25, with each unknown corresponding to a
node in the graph and each edge between nodes corresponding to a strong connection
between two unknowns. To describe this grid, let xi,j be the node in the i’th row
starting from the bottom and j’th column starting from the left, so x1,1 is the bottom
left node.

In the first figure, Figure 3.2a, none of the unknowns have been processed yet and
in all nodes the measure of importance is presented. In the first step of the iteration
that divides the unknowns into Ck and Fk, the unknown with the highest measure of
importance, or one of the unknowns with the highest measure of importance if there
is no unique unknown with the highest measure of importance, is chosen to be in Ck.
This is shown in Figure 3.2b, where x2,2 is chosen to be added to Ck. All unknowns
to which it is strongly connected are then added to Fk. After this, the measures of
importance are updated according to Equation 3.47 as shown in Figure 3.2c. This is
repeated until every unknown is either added to Ck or to Fk as shown by Figure 3.2d-j.
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Figure 3.2: Standard coarsening on an example of a 5x5 grid. At each step, the variable i with
the largest value of υi is chosen to be added to Ck, with all variables strongly connected to i
being added to Fk ((b),(d),(f),(h) and (j)). After adding the chosen variables to the subsets,
υi is updated for all variables that are not chosen to be added to one of the sets ((c),(e),(g) and
(i)). (j) Here the last step is shown as one step, while this is separate iterations in practice.
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3.3.3.2 Aggressive Coarsening

Aggressive Coarsening extends on the idea of strong connections between variables in Ck

and Fk, but where standard coarsening uses direct connections, aggressive coarsening
instead uses paths of strong connections. For this, Ruge and Stüben [25] introduces
the concept of long-range strong connections according to Definition 3.3.

Definition 3.3. A variable i0 is strongly connected along a path of length ℓ to iℓ
if there exists a sequence of variables i0, i1, . . . iℓ such that ik ∈ Sik−1

for k = 1, 2, . . . ℓ.
In extension, i0 is strongly connected with respect to (p, ℓ) to iℓ if there are at
least p paths of maximum length ℓ along which i0 is strongly connected with iℓ.

Aggressive coarsening is done exactly the same way as standard coarsening, but
instead of the previously used strong connections, these strong connections with respect
to (p, ℓ) are used. This means that aggressive coarsening can be seen as a generalisation
of standard coarsening, as the strong connections used in the method for standard
coarsening described above are the same as strong connections with respect to (1, 1).

Aggressive coarsening is applied with the values specifically chosen for p and ℓ.
Practically, only small values of p and ℓ are useful, since large values would lead to
too many variables being classified as fine (Stüben et al., p. 67 [32]). The two
aggressive coarsening methods that turn out to be the most useful are known as A1-
coarsening and A2-coarsening. A1-coarsening makes use of connections with respect to
(p = 1, ℓ = 2), similarly, A2-coarsening uses connections with respect to (p = 2, ℓ = 2).
Furthermore, aggressive coarsening is commonly only advantageous at the finest grid
level. On coarser grid levels, standard coarsening can be expected to be required.
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Figure 3.3: Example of A1-coarsening on the same example as used in Figure 3.2. For less
extensive representation, both the addition of unknowns to Ck and Fk and the update of the
measure of importance are done at the same time here.
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Figure 3.4: Example of A2-coarsening on the same example as used in Figure 3.2.
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Figure 3.3 shows how A1-coarsening is applied to the example of 25 unknowns used
in Figure 3.2. As the grid is initially the same as in Figure 3.2a, the same node, x2,2, is
added to Ck. However, with this aggressive coarsening method, every node connected
by a path of length two or less to x2,2 is added to Fk in Figure 3.3b. This means that
every unknown that either is strongly connected to x2,2 or is strongly connected to a
variable that is strongly connected to x2,2 is added to Fk. Then in Figure 3.3c, the
same is applied and now x3,4 is added to Ck and all unknowns connected by a path of
less than 2 are added to Fk. In Figure 3.3d-e, the same method is repeated until all
unknowns are added to Ck or Fk.

In a similar way, Figure 3.4 gives an overview of the application of A2-coarsening.
Again, the process of choosing unknowns for the coarser grid level is started by adding
x2,2 to Ck. However, now only the unknowns that have at least two paths to x2,2

of a length of at most two are added to Fk. As shown in Figure 3.4b, this leads
to a difference for two unknowns compared to Figure 3.3b, x4,1 and x1,4. These two
unknowns are only connected to x2,2 by one path of length two and thus were added to
Fk for the and therefore were added to Fk when using A1-coarsening, but are not when
using A2-coarsening. In Figure 3.4c-e, the process is repeated again until all unknowns
are added to either Ck or Fk.

3.3.3.3 AMG complexity

With different coarsening methods, multilevel grid structures are obtained in different
ways. With these different grid structures, it is desirable to compare the memory
requirements of the different methods. For this, the concept of multigrid complexities
is introduced. These complexities describe the ratio between the size of the original
problem and the AMG problem obtained by coarsening. The advantage of these
complexities is that they can give a simple estimate of the size of the AMG structure.
This can be used to estimate the total required memory for the different matrices of
the AMG structure. Furthermore, these complexities can be useful in comparing AMG
structures obtained in various methods.

Here, two different AMG complexities will be used. The first type of complexity
involves the total number of variables in the AMG structure and is called grid
complexity. This describes the ratio between the total number of variables in all levels
and the number of variables in the original linear problem. With Nk denoting the
number of variables of Ωk, the grid complexity is obtained as

ωg =

∑K
k=0Nk

N0

. (3.48)

In a similar way, the second type of complexity, operator complexity, is described.
This describes the ratio between the total number of non-zero entries in the matrices
obtained on all levels of the multi-grid structure and the amount of nonzero entries in
the original matrix. To describe the operator complexity, let nnzk denote the number
of nonzero elements of the matrix Ak obtained on the grid level Ωk. Then the operator
complexity is obtained as

ωa =

∑K
k=0 nnzk
nnz0

. (3.49)
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Theoretically, any value such that ω > 1 is possible for these complexities. In practice,
the range of these complexities is commonly more limited. For example, a coarsening
technique that allows a newly created grid to be larger than half the size of the previous
level is generally not very useful. This means that the grid complexity can always be
expected to be less than 2. Furthermore, it is practically not possible for the grid
complexity to be too close to 1, as this would mean the size of the coarse levels is
very small compared to the original problem. This means that in most cases the grid
complexity is at least greater than 1.1 (Cleary et al. [7]). Similarly, the operator
complexity can be expected to be such that 1.2 < ωa < 4.

3.3.4 Prolongation and Restriction

The coarsening methods described above determine which variables are to be used at
the coarse level, but do not give a method to describe linear systems at the coarser grid
levels. Only the linear system at the most fine level is actually defined and this must
be used to define the linear systems at the newly derived grid levels. When defining
these linear systems on higher grid levels, it is important that the newly defined system
is similar to the larger linear system from which it is obtained.

As described in Section 3.3.1.1, the best way to obtain a linear system on a more
coarse grid is to use the Galerkin projection. To derive a linear system on the grid
level k + 1 from a linear system on grid level k, it is required to describe the operator
mapping between these levels. This done using the restriction operator

Ik+1
k : Ωk → Ωk+1 (3.50)

and the prolongation operator

Ikk+1 : Ωk+1 → Ωk, (3.51)

which are such that
(
Ik+1
k

)T
= Ikk+1. Using these operators, the matrix and right-hand

side vector on the higher grid level are defined as

Ak+1 = Ik+1
k AkI

k
k+1 (3.52)

bk+1 = Ik+1
k bk.

This means that to describe the linear systems on higher grid levels, only these
prolongation and restriction operators are required. These operators can be defined in
several ways. Here, only the most classically used method for obtaining the prolongation
and restriction operator, called unknown-based prolongation, is described (Saad [26]).
Other methods of defining this operator can alternatively be used, such as prolongation
operators obtained using bootstrap cycles, as described by Brandt et al. [5].

To describe these operators, the notion of smooth errors discussed in Section 3.3.2
is used. There it was derived that errors within a multigrid cycle are smooth and thus

∥Ske
k∥Ak

≈ ∥ek∥Ak
(3.53)

and smoothers satisfy the smoothing property. As discussed by Saad [26] (p.456), this
leads to the error being such that (Ake

k, ek) ≈ 0 and thus Ake
k ≈ 0. With this, the
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individual components of the error can be approached and it is obtained that for a
unknown i on level k,

[Ak]ii[e
k]i ≈ −

∑
j∈Ni

[Ak]ij[e
k]j. (3.54)

This description of the error in unknown i is used to determine the restriction
operator, by rewriting this equation such that on the right-hand side there are only
unknowns which are chosen for the higher grid level Ωk+1. For this, the sum on the
right-hand side can be split in grid points chosen for Ωk+1 and grid points that are not.
To achieve this, let

Ci = Ni ∪ Ck (3.55)

Fi = Si ∪ Fk (3.56)

Wi = (Ni/Si) ∪ Fk, (3.57)

so the first set, Ci, are all unknowns connected to i that are chosen for the higher grid
level, both weakly and strongly connected. The next set, Fi, are the unknowns that
are strongly connected, but not chosen for the higher grid level. The last set, Wi, are
all weakly connected unknowns that are chosen for the higher grid level. Then the sum
in Equation 3.54 can be split into these three groups as

[Ak]ii[e
k]i ≈ −

∑
j∈Ci

[Ak]ij[e
k]j −

∑
j∈Fi

[Ak]ij[e
k]j −

∑
j∈Wi

[Ak]ij[e
k]j. (3.58)

As it is required to only have unknowns that are in Ci on the right-hand side, these
last two sums have to be eliminated. As the last sum, over the weak connections is
assumed to be small, it is common to add it to the diagonal term, giving(

[Ak]ii +
∑
j∈Wi

[Ak]ij

)
[ek]i ≈ −

∑
j∈Ci

[Ak]ij[e
k]j −

∑
j∈Fi

[Ak]ij[e
k]j − [ek]j. (3.59)

After this, it is necessary to eliminated the terms in Fi. To achieve this, let j be
a variable in Fi, then for this variable, the same expression as for variable i can
be obtained. According to Saad [26] (p.459), this expression for variable j can be
approximated by

[Ak]jj[e
k]j ≈ −

∑
l∈Ci

[Ak]jl[e
k]l. (3.60)

Substituting this back in Equation 3.58 gives the desired result of an expression for
[ek]i using only variables in Ci. This is given by

[ek]i =
∑
j∈Ci

wij[e
k]j, (3.61)

with

wij = −
[Ak]ij +

∑
l∈F s

i

[Ak]il[Ak]lj∑
p∈Ci

[Ak]lp

[Ak]ii +
∑

l∈Fw
i
[Ak]il

.
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This expression is then used to obtain the prolongation operator as

[
Ikk+1

]
ij
=


1 i ∈ VC , i = j

0 i ∈ VC , i ̸= j

wij i /∈ VC , j ∈ VC

0 i /∈ VC , j /∈ VC

. (3.62)

The restriction operator is then directly obtained as Ik+1
k =

(
Ikk+1

)T
.

3.3.5 AMG as Preconditioner

While the AMG method can be used by applying several multigrid cycles, as explained
in Section 3.3.1, it is often more useful in combination with a Krylov method. This
combines the robustness of the Krylov methods with the efficiency of reducing all
components of the error of the AMG method. This is commonly referred to as using
the AMG method as a preconditioner or using the Krylov method to accelerate the
AMG method (Stüben et al., p. 74 [32]). Here, the former description is used.

Applying an AMG method as a preconditioner is done in a way very similar to how
it was done using other preconditioning methods. In a preconditioned Krylov method,
in each iteration a preconditioning operation of the form zj = M−1rj is performed,
where M−1 gives a preconditioning operation. For the more simple methods discussed
above, this operation is a single matrix. When using an AMG method, instead, an
iteration of the AMG cycle is applied to rj (Oosterlee and Washio, p. 89 [22]).
From this a corrected residual is obtained, which is then used in the iteration of the
Krylov method.

Although the practical application of an AMG method is typically performed as
described here, the use of AMG as a preconditioner suggests that an iteration of the
AMG method can be written as a single matrix. This is indeed the case, though it is
inconvenient to describe a full multigrid cycle as a single matrix. The two grid cycle,
as given in Algorithm 3.3, can be described by a single matrix (Saad, p. 442 [26]),
as

M−1 = T υ
h

(
I − IhHA

−1
H IHh Ah

)
Sµ
h . (3.63)

There, Sh and Th are the smoothing operators and IhH and IHh the prolongation and
restriction operators, as they were used above in Algorithm 3.3. A preconditioning
matrix for an AMG method with more levels can be described using this matrix, by
repeatedly replacing the matrix at the coarser level, AH .

Using a multigrid hierarchy with levels {0, . . . K}, with the 0 being the most fine
level that corresponds to the original linear system and K being the most coarse level,
this leads to a preconditioning matrix of the form

M−1 = T υ0
0

(
I −

(
I01T

υ1
1 I12 · · ·T

υK−1

K−1 IK−1
K

)
A−1

K

(
IKK−1S

µK−1

K−1 I
K−1
K−2 · · ·S

µ1

1 I10
)
Ah

)
Sµ0

0 .
(3.64)

When applying an AMG method here, this will be done as a preconditioner. The
Krylov method will in most cases, apart from a small investigation into other Krylov
methods, be the CG method.
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Solver Techniques 4
In the previous chapter an overview of iterative linear solver methods has been
given. Using the Visage simulator discussed in Chapter 2, these iterative methods
can be applied to linear problems obtained from geomechanical simulations. Through
experiments using various linear solver methods on several linear systems, a comparison
between the methods can be made. However, before discussing the results of these
experiments, it must be established what solvers are used and how these solvers are
applied.

This chapter gives an overview of how experiments, of which the results are presented
in Chapter 5, are performed. First, the different linear solver methods that were
approached in these experiments are discussed in Section 4.1, After this, an overview
of parallel computing, which is made use of in the experiments, is given in Section 4.2.
Next, a description of the environment in which the experiments are performed is given
in Section 4.3. Lastly, an overview of how the methods are compared based on the
results obtained in the experiments is given in Section 4.4.

4.1 Approached Linear Solver Methods

As discussed in Section 2.3, the simulations of geomechanical processes in Visage can
be performed with both direct and iterative linear solver methods. However, direct
methods are typically only suitable for small problems and the focus here is on large
problems. This means that when comparing methods, only iterative methods have to
be considered.

The iterative solver used in the Visage simulator is the PCG method using different
types of preconditioners. This CG method is performed in the way described in
Section 3.2. Before this research, two preconditioning methods were used to improve the
CG method, a Jacobi preconditioner and a deflation-based preconditioner. The Jacobi
preconditioner is the preconditioner based on the diagonal of the original matrix, as
described in Section 3.1.2. This Jacobi preconditioner gives a decrease in the condition
number of the matrix in the observed linear system, but this improvement is not always
big enough.

A bigger decrease of the condition number can be obtained by removing certain
extreme eigenvalues from the spectrum of the matrix. This is done using deflation,
which is a sophisticated method for preconditioning linear systems which are solved
using a Krylov method. The theory behind deflation is not covered here, but is
extensively described by Jönsthövel et al. [17] and Jönsthövel [16].

The stopping criterion used in this application of the CG method is based on
decreasing the relative residual, as described by Equation 3.29. Typically, the chosen
value for the tolerance ϵ is 10−8.
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Although good results are obtained using these methods, the vast majority of
runtime during simulations is spent on the linear solver. This means that there is
potential for improvement in the linear solver. Therefore, different preconditioning
methods were proposed, all based on AMG methods. The various methods consist
of different implementations of the AMG method, provided through three software
distributions.

All these linear solver methods make use of the CG method preconditioned with
an AMG method. Because of differences in implementation between the software
distributions, there will be differences between the methods, especially in the AMG
preconditioner. All these linear solvers make use of the CG method, using different
preconditioning methods. To distinguish between different methods, the methods will
in most cases be referred to by the software distribution from which they are obtained.
For example, the ”SAMGmethod” or ”SAMG” refers to the CG method preconditioned
using the AMG method obtained from the SAMG software distribution.

4.1.1 SAMG

The first software library that is approached here is the SAMG (Algebraic Multigrid
Methods for Systems) library. SAMG is a library of subroutines that are used
to efficiently compute solutions to large linear systems using multigrid methods
(Fraunhofer SCAI [11]). The library is developed by the Fraunhofer SCAI.

The specific method from SAMG that is used here is SAMGp Release 2023.3
(January 26, 2024).The SAMGp library is a version of the SAMG library that can
make use of parallel computing.

4.1.2 hypre

The second software library observed is the hypre library (Lawrence Livermore
National Security [19]). This is an open-source library with a wide range of parallel
preconditioners that is developed by the Lawrance Livermore National Laboratory.

The preconditioner in hypre that is used here is the BoomerAMG preconditioner.
This method uses an Algebraic Multigrid method, as described above. When referring
to the use of ”hypre”, ”the hypre method”, or ”the hypre library”, this always refers to
using the CG method with the BoomerAMG preconditioner, as provided by the hypre
library.

A major advantage of the hypre library is the potential use of an efficient
parallel implementation and the possibility to use GPU acceleration. Although
GPU acceleration is not investigated here, it can potentially be used to gain further
improvements in the future.

The specific hypre release that has been used in these experiments is the hypre
Release 2.31.0 (February 14, 2024).
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4.1.3 PETSc

The last software library that is used is the PETSc (Portable, Extensible Toolkit for
Scientific Computation) library (Balay et al. [4]). Like hypre, PETSc has a wider
range of applications than just the use of AMG preconditioners. Also, like hypre,
PETSc is available from an open source distribution. The PETSc release used here is
PETSc version 3.21.1 (May 27, 2024). The PETSc library is developed by UChicago
Argonne, LLC and the PETSc Development Team.

The preconditioner described in PETSc that is investigated here is the PCGAMG
preconditioner. Like the preconditioners considered for the other two libraries, this is a
preconditioner based on the AMG methods discussed above. Again, ”PETSc” or ”the
PETSc method” typically refers to the CG method preconditioned with PCGAMG as
it is implemented in the PETSc library.

Although PETSc has a wider range of possible applications than the other two
investigated libraries, the description of the AMG preconditioner is not as extensive as
that for the other two libraries. Because of this, some difficulties were encountered
in the implementation of PETSc. This means that the results obtained with the
preconditioner provided through PETSc are not as extensive as those obtained for
the other methods.

While PETSc did not turn out to be as useful as initially hoped for using AMG-
based preconditioners, one of the other methods provided through PETSc proved to
be very useful. The SLEPc library, which is an extension of PETSc, turned out to be
very useful for obtaining estimates of the eigenvalues of the observed matrices, which
in turn were used to determine the condition numbers of the matrices. The version of
SLEPc that is used here is SLEPc version 3.21 (April 27, 2024) (Roman et al. [24]).

4.2 Parallel Computing

For methods that are used to solve large problems, such as the linear solvers here,
great advantages can be obtained by using parallel computing methods (Rauber and
Rünger [23]). The methods that are covered here all have the possibility to make
use of parallel implementations and to improve the performance of the methods, an
investigation is conducted in how parallel programming is used best for these methods.

Parallel computing has two major advantages. The first is that part of the
computational work can be divided over multiple machines. By dividing the work,
it can be performed at the same time, reducing the total runtime required to solve
the problem. Secondly, by dividing the work over multiple machines, the memory of
all machines is used. This leads to more memory being available in total. For large
problems, this can be essential, as typically the memory of a single machine is not
enough to solve these problems.

Parallel computing is here, for the most part, done by distributing the work over
multiple MPI processes. To do this effectively, the problem needs to be divided over
MPI processes in a correct manner. This is done by making use of a good domain
partition, which is potentially improved by reordering certain parts of the matrices.
Section 4.2.1 discusses how this domain partition is performed and how it can be
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improved.

If a well-working parallel method has been established, metrics to determine how
well this method works need to be established. For this, the concepts of strong and
weak scalability are introduced in Section 4.2.2.

4.2.1 Domain Partitioning

When using multiple processes, the problem is divided over the different processes, and
each process solves a certain part of the problem. In linear problems like the ones
observed here, the unknowns are assigned to one of the processes, where the linear
problems are solved for all unknowns on a single process. In problems derived from a
discretised domain, unknowns are commonly divided in a way that corresponds to a
partition of the discretised domain (Saad, p. 469 [26]).

Interactions between different processes are undesirable, as these interactions require
work from multiple processes, which slows down the program. To determine how many
interactions between different processes are required, the number of unknowns which
have an interaction with unknowns allocated to a different process is considered. These
unknowns are termed halo unknowns and the set of them is termed the halo. For a
good implementation of a parallel method, the size of the halo has to be kept as small
as possible.

In Figure 4.1a an example of a domain that is partitioned over multiple processes
is seen, together with the corresponding discretisation in Figure 4.1b. In the
discretisation, some of the elements have an interaction with elements allocated to
a different processes, visible by interactions crossing the dashed lines. These elements
are called halo elements and in a good partition this halo is as small as possible. In
Figure 4.1c the structure of the matrix that corresponds to this discretisation with
this partition is shown. The blocks show interactions between different processes, with
blocks on the diagonal signifying interactions on the same process and blocks not on
the diagonal signifying interactions between different processes.

(a) (b) (c)

Figure 4.1: Example of domain partition in three parts. (a) A partition of a two-dimensional
domain and (b) the corresponding discretisation and (c) matrix are shown. (Saad, p. 477
[26]).
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In many cases it is difficult to find the best distribution of unknowns over the
different processes and a remapping is required. By moving some of the elements
from one process to another, the halo can be significantly reduced. In large problems,
this redistribution can be very complicated. To use optimal distributions of the large
matrices observed here, the k-way partitioning algorithm provided through ParMETIS
(Karypis and Schloegel [18]) is used to redistribute the matrices across multiple
processes. This partitioning method aims to reduce the number of elements in the halo.

4.2.2 Scalability of methods

The performance of parallel computing for the methods observed here will be evaluated
using the concept of parallel scalability. For this evaluation two types of scalability
are considered, strong and weak scalability. To make good use of these concepts, an
overview is given of what strong and weak scalability are and what it means for these
two types of scalability to be ideal.

To describe the concepts of scalability, it is first required to describe the speed-up
and efficiency of a parallel method. The speed-up of a parallel method is defined by
running the parallel method that is observed and a corresponding purely sequential
method. With T ∗(n) being the runtime of a certain sequential program for problem of
size n and T p(n) being a corresponding parallel program with p processors, the speed-up
of a method is described, by Rauber and Rünger [23] (p.162) as

Sp(n) =
T ∗(n)

Tp(n)
. (4.1)

It can be assumed that Sp(n) ≤ p and in theory this always holds. In practice,
the runtime of a sequential program can be unexpectedly high, leading to possible
superlinear speed-up.

Using this notion of speed-up, the efficiency of a parallel method is described as

Ep(n) =
Sp(n)

p
=

T ∗(n)

p · Tp(n)
. (4.2)

From the fact that Sp(n) ≤ p if no superlinear speed occurs, it is obtained that Ep(n) ≤
1.

The potential speed-up of parallel programs is restricted by the fact that it is never
possible to parallelise the full program. For every program, the runtime can be divided
into a sequential part, s, and a part that can be performed in parallel, f . This leads
to Amdahl’s law (Amdahl [2]), which describes the speed-up of a method as

Sp(n) =
1

s+ f
p

. (4.3)

This means that potential speed-up is restricted by the sequential part.
Now, the strong scalability of a method is studied by observing the speed-up of a

method after a certain increase of processes used. For a method that has good strong
scalability, using p processes should lead to a speed-up close to p. This means that
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according to Amdahl’s law, the sequential part of this program should then be small.
The strong scalability of a method is ideal if the speed-up is ideal, so Sp(n) = p, which
means that the sequential part is negligible.

In many cases, the speed-up of a method stagnates after a certain number of
processes at a fixed problem size. This stagnation would lead to the conclusion that the
scalability of the method is poor if no other problem sizes are considered. This leads
to Gustafson’s (Gustafson [13]) law, which states that a scaled speed-up is obtained,
when scaling a problem accordingly, that is described by

Sp(n) = p+ (1− p)s. (4.4)

This still means that the speed-up is poor if s is large. With Gustafson’s law, the
scalability of a method is dependent on a scaled problem size and thus gives a better
insight in the performance of a method for larger numbers of processes. This is referred
to as the weak scalability of a method.

The weak scalability of a method is studied by observing corresponding problems
of different sizes. For this, suppose that there are problems of sizes n1 and n2 = kn1.
To these problems a program is applied that is assumed to scale linearly with the size
of the problem. This program is applied to the problem of size n1 with p1 processes
and to the problem of size n2 with p2 = kp1 processes. Then if the method scales well
with the number of processes, according to Gustafson’s law, a speed-up of k should be
observed. As the problem size also is increased k times and the program is assumed
to scale linearly with the size of the problem, the runtimes that would be observed for
these two problems would stay the same.

4.3 Description of Test Environment

In Chapter 5 a wide range of numerical results is presented discussing the performance
of the solver methods discussed in Section 4.1. The experiments on larger models, from
which the results used to draw conclusions, are all performed on a state-of-the-art High
Performance Computing cluster. This cluster consists of 27 HPC CPU nodes connected
via infiniband HDR200. Each CPU has 32 cores with 1.8-2.4 Ghz AMD EPYC 7352
Processors. Every node has a maximum available memory of one terabyte and 500 GB
of SSD memory available. The cluster runs on the Linux Red Hat ES 8.4 operating
system.

During the experiments, at most four CPUs are used at a time. This gives access
to a maximum of 128 cores, but the experiments described in Chapter 5 do not require
the use of all 128 cores. The highest number of cores used in the shown results is 64.
In general, tests with 16 or less cores were performed on one CPU. For experiments
using 32 cores, two CPUs were used. For the largest experiments, using 64 cores, four
CPUs were used.

Some of the initial experiments on a smaller model, referred to as the GEE model
in Chapter 5, were performed on a local machine. This machine used has 32 GB of
installed RAM and uses a 2.40 GHz 12th Gen Intel(R) Core(TM) i7-12800H processor.
The tests were performed on a virtual Linux machine that used up to 16 GB of RAM.
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4.4 Overview of Comparison

Before the numerical results of the various linear solvers are presented, it is important
to form a precise basis on which these methods will be compared. To make an accurate
comparison between methods, it has to be ensured that the observed results actually
represent solving the same linear problem. For this end, the stopping criterion the
solvers use is defined and the basis upon which these methods are compared is described.
Lastly, a general description of the way in which the numerical results are presented in
Chapter 5.

4.4.1 Stopping Criterion

Apart from being the same criterion between different methods, the stopping criterion
should also not be too lenient. The solution obtained when reaching the stopping
criterion actually has to be a good approximation of the solution. Furthermore, a
too lenient stopping criterion might be satisfied too quickly by certain methods that
converge quickly at the start. Other methods that do not converge as quickly at the
start then appear to perform worse but might actually perform better for a more strict
stopping criterion.

On the other hand, the stopping criterion should not be too strict. A too strict
stopping criterion might cause well-working methods to be disregarded. A certain
method can work well but might not reach a certain criterion if that criterion is set to
high. Another reason to not use a too strict stopping criterion is to reduce the runtime
of the experiments. An unnecessarily strict stopping criterion makes the time required
for each experiment longer, which means that fewer experiments can be done.

Figure 4.2: Convergence of residual
using PCG with the Jacobi
preconditioner on example model,
showing that the stopping criterion
of 10−8 for the relative residual is
sufficient.

In addition to the comparison of solvers, the
choice of stopping criterion is also important
in actual simulations. For such purposes, the
stopping criterion must be sufficiently strict
so that the obtained approximate solution
accurately approximate the exact solution. On
the other hand, it is desired to keep the runtime of
the linear solver as low as possible, meaning that
the stopping criterion must not be too strict, as
extra, unnecessary iterations have to be avoided.

For the experiments carried out here, the
stopping criterion used is based on the relative
residual, as described by Equation 3.29. In
almost all experiments, the value of the tolerance
parameter used is ϵ = 10−8. This has proven for
all solvers to be a value to which convergence can
be obtained, but convergence is not obtained too
quickly. In practical simulations, a more lenient
value for the tolerance parameter (ϵ > 10−8) could be viable, but since the focus of the
experiments carried out here is on the linear solver methods, this more strict value was
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chosen. For more strict values of the tolerance parameter (ϵ < 10−8) convergence of the
linear solvers can also be obtained, but it is not required for an accurate comparison
between methods. In practical use, it can be better to use a more strict value for the
tolerance parameter if convergence can be guaranteed. For the comparison of different
linear solver methods, this is not necessary and the less strict value of ϵ = 10−8 is
sufficient.

Figure 4.2 shows an example of the convergence of the relative error with the Jacobi-
preconditioned CG method, on one of the test models, GUL-01M-ST, which is discussed
in Chapter 5. In this figure, the number of the iteration j is shown against the relative

residual,
∥rj∥
∥r0∥ . Here, it can be seen that for this method, convergence is quicker in the

first few iterations, up to a relative residual of 10−2. After that, until a relative residual
of 10−12, the relative residual decreases consistently. The chosen relative residual of
10−8, here represented by a dashed line, is therefore strict enough to be used for the
comparison of different solver methods.

4.4.2 Choices in Parallel Computing

When using parallel computing methods in this research, in most experiments this is
done using configurations of multiple MPI processes. Only a small investigation is
conducted into using hybrid configurations of MPI processes and OpenMP threads in
Section 5.7.4.

For general usage of parallel computing using multiple MPI processes in the Visage
simulator, a certain number of processes are prescribed, based on the size of the
problem. This configuration of MPI processes is referred to as the default configuration
for the particular problem size. This default configuration is the configuration up to
which a method is expected to scale well. The number of MPI processes NMPI is
obtained from the amount of nodes in the FEM discretisation of a problem by taking
a power of 2 close to the outcome of the formula

ÑMPI =
32 ·No

107
. (4.5)

Or alternatively, based on the number of unknowns, N , in the linear problem

ÑMPI =
32 ·N
3 · 107

. (4.6)

This roughly leads to the default configurations given by Table 4.1. Although this
table does not fully follow the formula provided, it gives a good overview of how the
number of MPI processes is selected. For the numerical results, this is the number of
MPI processes that is used, unless it is specified that another number of processes is
used or no parallelisation is used at all.

4.4.3 Basis of Comparison

To compare the PCG methods with different preconditioners, they are applied to
linear problems obtained from geomechanical simulations in the Visage simulator. The
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simulations observed for this are as described in Chapter 2, but only a single step of
the nonlinear solver is used and only two load steps, an initialisation and an actual load
step, are observed. In practical applications, typically more load steps and more steps
in the nonlinear solver are applied, but the linear systems in the additional steps of the
nonlinear solver and the additional load steps give linear problems similar to the one
problem studied here. This means that the comparison of the preconditioning methods
is valid for actual simulations.

To compare the approached solver methods two main aspects are considered. The
first aspect is how fast the solver methods converge to a solution of desirable accuracy.
The second aspect is the peak memory requirement in the application of the solver
methods.

In many cases, the rate of convergence is compared in terms of the number of
iterations required to find an accurate approximation of the solution. For a comparison
between the Jacobi- and deflation-based preconditioners, this is a valid comparison,
but this does not provide much information in a comparison with AMG-based
preconditioners. An iteration of a method that uses an AMG-based preconditioner
is in general much more costly than an iteration of a method that uses a Jacobi
preconditioner. On the other hand, less iterations can be expected to be required
using the AMG preconditioner.

For a valid comparison, instead of the number of iterations, the main comparison is
based on the computational work required by each of the linear solvers. To gain insight
into the amount of computational work required by these methods, the wall clock times
required to apply these methods are observed. The wall clock times are obtained from
the wall clock time of the machine on which the experiment is performed.

The computation times of these methods can be approached in different ways.
In most cases, the full time required from the start to the end of the solver call is
approached. This includes both the setup stage of the solver and the actual iterative
solver. Because, especially for the AMG based methods, a major part of the total
runtime can be spent on the setup of the method, it can be more fair to instead only
compare the time required by the iterative solver. If multiple simulation steps are
performed with similar linear problems, it is potentially possible to reuse the set-up of
a method. This puts more value in the speed of the iterative solver, which might lead

No. of nodes (No) Size linear problem (N) NMPI

Min Max Min Max

500,000 1,500,000 1

500,000 750,000 1,500,000 2,250,000 2

750,000 1,750,000 2,250,000 5,250,000 4

1,750,000 3,500,000 5,250,000 10,500,000 8

3,500,000 7,500,000 10,500,000 22,500,000 16

7,500,000 15,000,000 22,500,000 45,000,000 32

15,000,000 30,000,000 45,000,000 90,000,000 64

30,000,000 90,000,000 ≥ 128

Table 4.1: Default configurations of MPI processes used in simulations
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to an advantage for the AMG-based preconditioners.
The computation time is also used to measure how well the different methods

perform if they are performed in parallel. For this, both the strong scalability and weak
scalability are investigated. To investigate the strong scalability of the methods, they
will be applied to problems with repeatedly doubling numbers of MPI processes. The
computation times required with increasing numbers of MPI processes will be compared
to each other to determine if the methods scale well strongly. If a method has good
strong scalability, it can be expected that doubling the number of MPI processes will
half the computation time.

To investigate the weak scalability of the methods, the linear solvers are applied to
the same problem of increasing sizes with increasing amounts of MPI processes. For
this, if the problem size doubles, then the number of MPI processes is also doubled.
The studied linear solver methods can be assumed to scale linearly with the size of
the problem. If the weak scalability of a method is good, this leads to the same
computation time being observed when both the problem size and number of MPI
processes are doubled. If the weak scalability of a method is not as good, this will
result in the computation times being higher for the larger problem. In that case, the
extra processes are not used efficiently.

While the computation times of methods are important, it is not the only aspect
that needs to be compared between the different methods. Another aspect that heavily
influences the viability of the linear solvers is their memory requirement. The memory
requirements are investigated by measuring the peak requirements in terms of RAM
of the CPU during the application of the different methods. While the primary
goal is improving the runtime of the linear solvers, it is essential that their memory
requirements do not exceed the maximum available memory.

The last requirement to make a good comparison of the methods is a clear
explanation of the notation used in the following results. Some of the symbols used
repeatedly in the results are presented in Table 4.2. In general, t and T are used
for various computation times, with t being used for the time of one iteration of the
linear solver method and T being used for different total computation times within the
application of the solver methods. m and M are used for memory requirements, with m
being used for memory requirements expressed in MB and M for memory requirements
expressed in GB.

The last item presented in this table, the total peak memory requirement Mtot,
usually consists of the sum of several memory requirements. The first aspect within
the total memory requirement is the peak memory requirement of the simulator Msim.
For the methods that do not use an AMG-based preconditioner, this is the only
component of the total memory requirement. For the methods that do use an AMG-
based preconditioner, there is an additional requirement of the memory required in the
application of the solver, MAMG. Lastly, if a method is used in which a reordering of
the unknowns to improve the domain partition is applied, this requires a copy of the
original coefficient matrix, which gives a memory requirement for the reordering of the
matrix Mreor. This gives for the total peak memory requirement,

Mtot = Msim +MAMG +Mreor. (4.7)
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Symbol Description

Tsup Computation time (in seconds) in setup of a solver method

titr Computation time (in seconds) of one iteration of a solver method

nitrs Number of iterations

Tsol Total time of iterative solver, Tsol = titr · nitrs

Ttot Total time spend on solver method, Ttot = Tsup + Tsol

m Peak memory requirement of m in MB

M Peak memory requirement of M in GB

MAMG Peak memory requirement of AMG-based solver in GB

Mtot Total peak memory requirement in GB

Table 4.2: Overview of symbols used in results in Chapter 5
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Numerical Results 5
Using the guidelines discussed in Chapter 4, experiments can be performed using the
linear solvers discussed. Linear problems as they are observed in simulations using
the Visage simulator, as discussed in Chapter 2, are approached using the different
methods of preconditioning the CG method. The results of the experiments performed
are presented here, based on which a comparison between the methods is made.

First, an overview of the linear problems considered in these experiments is given
in Section 5.1. Next, in Section 5.2, a spectral analysis of one of the smaller problems
is performed, to show that the preconditioning methods can be expected to perform
well. After this, the results of the application of the different preconditioning methods
are presented, with the preconditioners originally used in the Visage simulator in
Section 5.3, the SAMG method in Section 5.4, the hypre method in Section 5.5 and
the PETSc method in Section 5.6. These methods are then compared in Section 5.7.
Lastly, an overview of the improvement in coupled simulations of the Visage simulator
is given in Section 5.8.

5.1 Observed Problems

To compare the various linear solver methods, a selection of linear problems are
approached. All of these problems are described using the formulation given in
Chapter 2. Here an overview of the specific models observed during the experiments is
given. First, an overview of the details of the observed problems is given. After this,
more details on one of the smaller models are provided.

5.1.1 Overview of problems

In total, seven models were approached, all consisting of two types of linear problem.
These approached models are obtained from real cases. The two linear problems
correspond to two different types of load step. The linear problem marked with the
code ”00” corresponds to an initialisation step. The linear problem marked by ”ST” is
the model used in actual simulation load steps. The difference between these two load
steps is in the definition of the boundary conditions of the problem, with the simulation
steps having more strict boundary conditions and thus more constraints on elements
close to the boundary.

In simulations, multiple time steps on these ST-models are performed using stiffness
matrices with the same nonzero structure. As the models on which multiple time
steps are performed dominate the total runtime of the simulations, the focus has to be
on the performance of the solvers on these models. In general, problems with fewer
constraints can be expected to require fewer iterations and thus be easier to solve.
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For the comparison between solvers, it is not expected that there are large differences
between the two types of models. A solver that performs well on the 00-models is
expected to perform well on the ST-models as well.

The seven models were used for different purposes. The first and smallest model,
here by the code of ”GEE”, was used in experiments using the linear solvers to find
the right configurations and test implementations of the solvers. Four of the models,
with the code ”GUL” and their number of nodes in millions, are the most deeply
investigated models and are used in most of the results shown in this chapter. The last
two models, with codes ”YRK” and ”GRO”, are used to confirm that the results seen
on the GUL-models are valid across different models.

Table 5.1 gives an overview of the problems observed in this project and the sizes
of these problems. The model size can be approached in two ways, the first of which
is by looking at the FEM discretisation. Here, this is done by the number of nodes,
given by No, from which the elements are built, and the number of constraints, given
by Nc, on these nodes. The other way to approach the size of the models is by looking
at the sizes of the linear systems obtained from these models, which is most important
here. For these linear systems, three main aspects are presented, the size of the linear
system, N , the number of nonzero entries of the matrices, nnz, and the average amount
of nonzero entries per row, obtained as nnz

N
. In the used discretisations, each element is

expected to interact with itself and 80 other unknowns, with the exception of elements
interacting with the boundaries. This means that most of the rows will have 81 nonzero
entries. Some of the rows, however, have less than 81 nonzero entries because of
them corresponding to elements interacting with the boundary. This leads to average
amounts of nonzero entries in each row slightly below 81. Lastly, the size of the linear

Model NMPI No Nc N nnz nnz per row

GEE-00 441 40,572 3,006,568 72.88
GEE-ST

1 13,671
2,841 37,968 2,767,188 74.10

GUL-01M-00 6,230 3,060,775 242,557,867 79.25
GUL-01M-ST

4 1,052,870
6,902 3,008,569 237,477,647 78.93

GUL-05M-00 30,710 15,102,037 1,208,335,105 80.01
GUL-05M-ST

16 5,189,990
31,382 14,986,663 1,197,035,813 79.87

GUL-10M-00 60,180 29,605,005 2,374,009,819 80.19
GUL-10M-ST

32 10,170,420
60,852 29,443,571 2,358,175,787 80.09

GUL-20M-00 120,666 59,378,241 4,769,273,149 80.32
GUL-20M-ST

64 20,392,554
121,338 59,149,691 4,746,831,353 80.25

YRK-00 14,715 3,417,354 271,128,118 79.34
YRK-ST

4 1,147,770
15,023 3,379,736 267,476,018 79.14

GRO-00 117,649 33,711,848 2,698,785,430 80.05
GRO-ST

32 11,294,304
247,609 33,580,236 2,685,914,088 79.98

Table 5.1: Overview of problems with the default MPI configuration (NMPI), number of
nodes(N0) and constraintsNc), number of unknowns (N), number of non-zero’s (nnz) and
average amount of number of non-zero’s per row.
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system relates to the numbers of nodes and constraints by

N = 3 ·No −Nc. (5.1)

When parallel computing is used in the application of linear solvers to these
problems, unless otherwise stated, the number of processes is as described in
Section 4.4.2. For these problems, this gives the numbers of MPI processes as given in
the column NMPI.

5.1.2 Analysis of Problems

For the application of the linear solver, it is important to know more about the exact
properties of the observed matrices. First, an overview of the sparsity structures of
some of the problems is given. After this, it is numerically confirmed that the observed
problems can be assumed to be SPD and that the proposed methods can be applied to
the observed problems.

5.1.2.1 Matrix structure

To gain more insight in how the linear problems exactly look like, the nonzero structures
of some of the matrices are observed. As these matrices are obtained from an FEM
discretisation, a structure is expected that appears as bands of diagonals. For these
particular problems, around 81 nonzero entries per row of the matrix are expected.
This suggests a structure that resembles 81 diagonals. Because the problems are
unstructured, it can not expected to actually observe these 81 diagonals, and instead
small jumps can be expected. For the bands of diagonals, the expectation is that the
nonzero elements are expected to roughly be located in three bands, each of which
consists of three bands itself, as the problems are three-dimensional. Because of the
unstructured nature of the observed problems, small jumps can also be expected in
these bands.

Figure 5.1 confirms the expectations for the matrix structure. There, first the full
structure of the matrix is shown, and then the structures of a series of submatrices of
decreasing size located around the centre of the matrix are shown. The nonzero entries
of the matrix are represented by black dots. The expected bands of diagonals can
clearly be seen here. In Figure 5.1b, it can be seen that the matrix consists mainly of
three bands of diagonals. Then in Figure 5.1d, it appears that the middle band again
consists of three bands of diagonals, which, as shown in Figure 5.1f, consist of nine
diagonals each. This corresponds to the expected 81 diagonals of nonzero elements.
Because of the large size of the matrix, the expected jumps in diagonals can not be
seen here, as these are typically small.

An irregularity in the structure of the matrix is observed around [A]850,000;850,000.
There a block of around 200, 000 entries is seen that does not follow the diagonal
structure seen in the rest of the matrix. The reason for this irregularity is difficult
to determine but possibly has to do with a mesh refinement in the corresponding
reservoir grid. The irregular portion consists only of few elements compared to the
diagonals. When using a domain decomposition in the application of parallel methods,
this irregularity can lead to difficulties. As the unknowns corresponding to this irregular
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Detailed overview of matrix observed in GUL-01M-ST problem, zoomed around
the element [A] 1

2
N, 1

2
N . (a) First, the original matrix structure is shown. (b-f) Then,

the zoomed-in blocks in the centre of the matrix are shown, each time of the form
[A]( 1

2
N−NB):( 1

2
N+NB),( 1

2
N−NB):( 1

2
N+NB), where NB describes the number of rows and columns

of these blocks. The value of NB starts at (b) 100,000 for the first zoomed in matrix and
(c-e) decreases by a factor 10 for each subsequent zoomed-in image of the matrix. (f) In the
last image, NB = 10

block are connected to unknowns in a way different from the unknowns corresponding
to other parts, in some cases more unknowns corresponding to this block can end up
in the halo in a domain decomposition. This would result in the halo being larger than
the halo of a matrix without the irregular portion.

5.1.2.2 SPD properties

The use of the CG method requires that the problems be SPD, which is expected for all
problems observed here, as discussed in Section 2.3. However, in practice, the problems
might not end up being SPD because of numerical issues.

For the observed problems, it can easily be confirmed that they can be assumed
to be SPD. The main difficulty of these problems lies in the symmetry of the
problems. Although the matrices should in theory be symmetric, there can be numerical
asymmetries. It must be confirmed that any numerical asymmetries are caused by
round-off errors.

This is done for the two smallest problems. First, it is observed that for the smallest
problem, the GEE problems, no asymmetries exist. For any element of the matrices
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used in the GEE problems, [A]i,j = [A]j,i is observed.
For the smallest problem that is actually used in the investigation of the AMG

methods, GUL-01M-ST, some asymmetries are observed. To confirm that these
asymmetries are small enough to not be problematic for the application of the
CG method, the relative maximum difference between two elements in positions of
symmetry is observed. Then it is seen that

|[A]i,j − [A]j,i|
|[A]i,j|

= 5.3937 · 10−14, (5.2)

which is small enough to assume the difference is due to round-off errors. As the
asymmetries are due to round-off errors, this matrix can be assumed to be symmetric
for the purpose of an iteration method like CG, which uses a tolerance large enough for
this to not be a problem. For the other, larger matrices, similar results can be expected
to be seen.

As the assumption can be made that the matrices are symmetric, it can easily be
obtained that the matrices are SPD if they are strictly diagonally dominant and all
diagonal entries are positive. The matrices observed here are all strictly diagonally
dominant and have positive diagonal entries. This, together with the assumption
they can be viewed as symmetric for the purpose of an iterative method like CG,
the assumption that they are SPD for this purpose can also be made.

5.2 Spectral Analysis

To show that the preconditioning of the matrix using the different methods discussed
here actually gives an advantage to the CG method, the condition numbers of the
preconditioned systems are approached. As covered in Section 3.2, the number of
iterations required for a preconditioned CG method to converge is directly influenced
by the condition number. To obtain the condition numbers of the preconditioned
matrices, their extreme eigenvalues must be computed.

The computations of the eigenvalues are performed on the GEE model, the smallest
of the models approached. The condition numbers obtained for this model do not
directly tell anything for the larger models observed in actual simulations, but the
reduction of the condition number can be expected to be similar.

The eigenvalues obtained here were obtained with a relative tolerance of 10−3. For
an estimated pair of eigenvalue and eigenvector (λ̃, ũ), where the eigenvector is such

that ∥u∥ = 1, the residual is computed as p̃ = Aũ − λ̃ũ. This residual is such that
∥p̃∥2
∥ũ∥2 ≤ 10−3|λ̃|. Now, since the observed matrices are SPD, it holds that |λ− λ̃| ≤ ∥p̃∥2
(Saad, p. 61 [27]). This means that |λ−λ̃|

|λ̃| ≤ 10−3, which means that the estimates

obtained for the eigenvalues are accurate enough estimates to tell something valuable
about the condition numbers.

To gain a good understanding of how much the condition number is reduced by
applying AMG preconditioners, AMG preconditioners of different levels are observed.
This is done both with and without a Jacobi smoother. For the matrices without
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smoothing, the matrices that are studied are of the form M−1A, with

M−1 = I −
(
I01I

1
2 · · · Ik−1

k

)
A−1

k

(
Ikk−1I

k−1
k−2 · · · I

1
0

)
. (5.3)

By using different values of k, the effect of AMG methods of different levels is observed.
Starting with k = 0, the eigenvalues of the original matrix A are obtained, as then
M−1 = I. k is increased upto K, the total number of levels in the AMG hierarchy,
with k = K representing the application of a AMG method without smoothing.

In a similar way, for the application of AMG with Jacobi smoothing, the studied
matrices are of the form M−1A, with

M−1 = I −
(
I01I

1
2 · · · Ik−1

k

)
A−1

k

(
SkI

k
k−1Sk−1I

k−1
k−2Sk−2 · · · I10S0

)
. (5.4)

The smoothing matrix S0 used is a damped Jacobi smoother matrix with ω = 0.4.
For k = 0, the is the original matrix multiplied by the damped Jacobi preconditioner
is observed. The matrices on higher levels are obtained in the same way as for the
unsmoothed matrices. The matrices on higher levels of the multigrid hierarchy and the
prolongation and restriction operators are obtained using the SAMG method, discussed
in Section 5.4.

In Table 5.2 condition numbers and eigenvalues for the different observed matrices
are shown. Unfortunately, it should be noted that the values shown are not the correct
values for the observed matrices. The values shown are of matrices of the form Ak and
SkAk. The method used to obtain the eigenvalues was not performed correctly, which
was discovered when there was no possibility to recompute the correct values. The
same applies to the values in Figure 5.2, where the largest and smallest eigenvalues
of the matrices are shown. Only the results for the original matrix and the matrix
preconditioned with the Jacobi method (both matrices with k = 0) are the correct
values.

The results obtained are similar to what is expected for the results that would
be observed if the eigenvalues of the correct matrices were obtained. The condition
number is expected to decrease with the application of the preconditioner, which is
true in the results seen here. Furthermore, the decrease seen by the application of
the AMG preconditioner is much more severe than that of the Jacobi preconditioner.
This also further improves by using smoothing and when more AMG levels are used.
Both aspects are seen here and would be expected to be seen if the correct values were

No smoothing ω-Jacobi smoothing

P N nnz κ λmax λmin κ λmax λmin

0 37968 2767188 8041.6 1.33 · 1011 1.66 · 107 2413.5 10.99 4.55 · 10−3

1 8673 585901 865.4 6.40 · 1010 7.39 · 107 529.7 8.84 1.67 · 10−2

2 4095 453088 184.0 2.73 · 1010 1.48 · 108 150.8 5.12 3.39 · 10−2

3 1773 185793 94.2 3.30 · 1010 3.50 · 108 74.9 5.32 7.10 · 10−2

4 647 102257 35.4 3.28 · 1010 9.29 · 108 22.1 3.81 1.72 · 10−1

Table 5.2: Condition numbers and extreme eigenvalues of matrices used in AMG on GEE
without smoothing and with smoothing using a damped Jacobi smoother.
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(a) (b)

Figure 5.2: Overview of largest and smallest eigenvalues of matrices used on different levels
of AMG, performed (a) without smoothing and with (b) Jacobi smoothing

obtained. Lastly, the numbers of iterations required for the CG method to converge
that were observed in the experiments discussed in this chapter roughly correspond to
the condition numbers observed here.

5.3 Original preconditioners

For the first results of the linear solvers on the problems described in Section 5.1, the
solvers that were originally available within the Visage simulator are used. Originally,
two methods were available, a PCG method using a Jacobi preconditioner and a CG
method using a deflation-based preconditioner, as described in Section 4.1.

To start, a comparison is made between these two preconditioners to see which of
the two is best to use as a benchmark for AMG-based methods. There, it is observed
that the most simple preconditioner of the two, the Jacobi preconditioner, is used best
as a benchmark. For this preconditioner, a further investigation of the strong scalability
is performed.

5.3.1 Jacobi and Deflation preconditioner

The first way to compare the two preconditioning methods used originally in the
Visage simulator is by comparing the convergence of the residual against the required
iterations. The convergence of the deflation PCG method is expected to require fewer
iterations than the Jacobi PCG method.

Figure 5.3 shows convergence of the norm of the residual of these two methods
applied on the linear problem of the GUL-01M-00 model, in a similar way to how it
was done for Figure 4.2. There it is seen that the PCG method using deflation converges
slightly quicker than the method preconditioned using the Jacobi preconditioner.
However, the difference in convergence for this problem is very small, only a few hundred
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iterations, while in total several thousand iterations are required.

Figure 5.3: Convergence of residual
on GUL-01M-00 for Jacobi PCG and

Deflation PCG.

In certain problems, the increase of the norm
of the residual after applying the restart of the
CG method is much greater than what is observed
here. In these types of problem, the decrease in
the required number of iterations by using the
CG method that uses a deflation preconditioner
is much more significant. For the particular
problems that are observed here, this is not the
case, making the deflation preconditioner not as
effective as it can be.

For a selection of the other problems, the
results are similar to those seen for the GUL-
01M-00 problem. The results of experiments on
these problems can be seen in Table 5.3. The
problems used in the comparison of the deflation
preconditioner and the Jacobi preconditioner are mainly the smallest problems out
of the ones presented in Section 5.1.1. The experiments performed here use parallel
configurations as discussed in Section 4.4.2. Thus, 4 MPI processes are used for all
experiments on the GUL-01M and YRK models and 16 MPI processes are used for the
GUL-05M model.

For the convergence using the two different preconditioner methods, in general
similar things are seen to what is discussed above for the GUL-01M-00 problem, but,
depending on the observed problems, some differences are observed. Commonly, the
method that uses the deflation preconditioner requires slightly less iterations than the
one that uses the Jacobi preconditioner. In two cases, GUL-05M-00 and GUL-01M-
00, the deflation preconditioner instead requires more iterations. Only for one of the
observed problems, the YRK-00 problem, a significant improvement in terms of required
iterations is obtained by using the deflation preconditioner. There, the number of
iterations required to converge to a suitable solution is reduced by one third by using
the deflation preconditioner.

Although the deflation preconditioner does offer the possibility to decrease the
number of iterations required, in all but one of the cases the computation time
when using the deflation preconditioner is higher. Due to the more complicated
preconditioner, one iteration of the CG method takes more time when using the
deflation preconditioner. This leads to a longer computation time for the iterative
solver. Also, since the setup of the deflation preconditioner is more complicated, more
time is spent on the setup of the method. This is insignificant for the total runtime, as
for all experiments across the different problems and preconditioners the setup time is
only a small portion of the total runtime.

Only for one of the problems, the YRK-00 problem, the deflation preconditioner
gives an advantage for the runtime. Because of the significant improvement in the
number of iterations required to converge to a suitable approximate solution, the slightly
longer runtime of each iteration is not a problem for the total runtime. This means that
for particular problems the deflation preconditioner can be very useful. Unfortunately,
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Model Preconditioner Tsup titr nitrs Tsol Ttot Mtot

Jacobi 4.0 0.039 7568 298.2 302.2 5.5
GUL-01M-00

Deflation 4.0 0.041 7233 298.1 302.1 6.0

Jacobi 4.0 0.040 6574 266.1 270.1 6.1
GUL-01M-ST

Deflation 4.0 0.040 6720 271.9 275.9 6.6

Jacobi 5.0 0.040 4591 185.8 190.8 6.1
YRK-00

Deflation 5.0 0.046 3005 138.9 143.9 6.7

Jacobi 5.0 0.047 4575 182.3 187.3 5.9
YRK-ST

Deflation 4.9 0.055 4392 200.6 205.5 6.5

Jacobi 10.7 0.047 6985 329.5 340.2 43.4
GUL-05M-00

Deflation 13.1 0.055 7028 383.4 396.5 50.7

Jacobi 10.4 0.040 6642 310.2 320.6 46.9
GUL-05M-ST

Deflation 12.1 0.046 6235 341.2 353.3 54.2

Table 5.3: Results of the PCG method preconditioned with a Jacobi and with a deflation
preconditioner applied to both the initialisation and simulation step of three different models

this is not the case for every problem and no clear distinction can be made between
when the deflation preconditioner performs better than the Jacobi preconditioner and
when it does not.

Lastly, the peak memory requirement increases when the deflation preconditioner
is used. In all problems for which the two preconditioners are compared, the memory
requirement of the deflation preconditioner is 10 to 20% higher than that of the Jacobi
preconditioner. The numbers given here represent the total peak memory requirement
in the simulation.

Based on these results, the choice is made here to use the more simple Jacobi
preconditioner as a benchmark to compare against the AMG based preconditioners.
As discussed, the deflation preconditioner does, in most of the cases considered here,
not offer an improvement in runtime and also has a higher memory requirement.

For both the Jacobi and deflation methods, an important note has to be
made. Theoretically, the expectation is that applying the PCG method with these
preconditioners to a finer FEM discretisation of the same model results in more
iterations being required to satisfy the same decrease in relative residual. However,
when comparing the experiments on the GUL-01M case and the GUL-05M, this is not
the case here. A thorough investigation has been performed to determine why this is
the case, but no results different from what was obtained here have been found.

5.3.2 Strong Scalability

To test the strong scalability of the Jacobi preconditioned CG method, one of the
problems, the GUL-01M-ST problem, is approached with several configurations of MPI
processes. To start with, the simulation is performed without any parallel computing, so
with a single MPI process. After this, the same simulation is performed with repeatedly
doubling numbers of MPI processes. If the strong scalability of this method would be
ideal, then doubling the number of MPI processes results in the runtime being halved.
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(a) (b)

Figure 5.4: Strong scalability of runtime and corresponding memory usage for solving
the linear problem with the Jacobi PCG method in one timestep of GUL-01M-ST using
varying amounts of MPI processes. (a) The total runtime of the solver and (b) the memory
requirement are shown here.

Figure 5.4a shows the results of this investigation in strong scalability. The runtimes
shown here are runtimes of the full application of the linear solver, so both the setup of
the solver and the iterative solver itself. The results that would have been obtained if
the strong scalability of the method would have been ideal are given by the dotted line.
As can be seen, the observed runtimes remain very close to this ideal strong scalability.
Only when increasing to 32 MPI processes, the observed runtime is significantly higher
than the runtime that would be observed if the strong scalability of the solver were to
be ideal. This means that this method scales very well with the increase of the number
of MPI processes.

Figure 5.4b shows the total peak memory requirements corresponding to the same
configurations of MPI processes. Increasing the number of MPI processes results in a
significant increase in the peak memory requirement. This is especially prevalent when
using 16 or 32 processes, which can double or triple the peak memory requirement.

5.4 SAMG

After exploring the original preconditioning methods discussed in the previous section,
the advancement to AMG-based preconditioners can be made. The first AMG-based
preconditioner that is covered is the method provided through SAMG.

The AMG preconditioner using SAMG is applied in a single V-cycle. For coarsening,
standard coarsening operators are used for all but the first coarsening operations. For
the first coarsening operation, an A1-coarsening operation is applied. This changes only
in the section where different coarsening operations are considered. The prolongation
is performed through unknown-based prolongation. The smoother used, apart from in
the investigation of different smoother methods, is the ℓ1-Gauss-Seidel smoother. The
AMG preconditioner is applied to an CG iterative solver provided through the AMG

58



solver, with a small investigation being conducted into other solvers.
To gain insight into the AMG structure obtained in a practical problem, a multigrid

structure obtained through SAMG is discussed. After this, some aspects of the setup of
the SAMG preconditioner are discussed. Then, a study of the scalability of the SAMG
methods is presented.

5.4.1 Multigrid Structure

Using SAMG a multigrid hierarchy is built. This hierarchy consists of multiple matrices,
derived through interpolation from the original full-size matrix.

Figure 5.5 gives a simple overview of what such a multigrid hierarchy looks like

(a) Level 0, N=3008569 (b) Level 1, N=654004 (c) Level 2, N=283203

(d) Level 3, N=114542 (e) Level 4, N=41367 (f) Level 5, N=12292

(g) Level 6, N=2991 (h) Level 7, N=596 (i) Level 8, N=102

Figure 5.5: Overview of SAMG structure obtained using SAMG for GUL 01M ST model.
For every level the corresponding matrix size (N) is shown.
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on one of the smaller models, the GUL-01M-ST model, which was also observed in
Section 5.1.2. This hierarchy is built using an A1-aggressive coarsening operation to
built the first level from the original matrix and using standard coarsening operations
to built the subsequent levels. It can be seen that for the higher levels of the AMG
hierarchy the size of linear systems decrease, but the number of nonzero elements does
not decrease as quickly. This makes the matrices on the lower levels of the hierarchy
more dense than the matrices on the higher levels.

A particular part that is interesting in the matrices in this multigrid hierarchy
is the influence of the irregular part around the [A]850,000;850,000 entry of the original
matrix. This irregularity causes similar irregularities in the matrices at other levels
of the hierarchy. This is because some of the irregular connections in the original
coarsening heavily influence the coarsening operation at other levels of the hierarchy.
This irregular part does not cause problems for the application of the multigrid method
but can cause more computations to be required in the interpolation and restriction
operations. This could slow down the multigrid method compared to when it is applied
to a matrix with only elements in a set of diagonals.

It is observed that in the last matrix obtained here, on level 8, there is still a level
of sparsity. This suggests that it might be possible to apply additional coarsening
operations to this matrix to obtain an even smaller matrix that is completely dense.
However, in practice this is usually not done, as the linear system on the highest level
of the hierarchy is already small to effectively solve using a direct method.

For the matrices obtained on the different levels of the multigrid structure, many of
the properties of the original matrix are preserved. This means that the matrices on all
levels are symmetric. Furthermore, the matrices all have positive diagonal elements and
are diagonally dominant. This means that the matrices on every level of the hierarchy
are SPD.

5.4.2 Krylov method and Smoother

Before investigating the performance of the AMG preconditioner using SAMG software,
it is necessary to find the best possible configuration of the AMG preconditioner. The
first configuration investigated is the configuration of Krylov methods and smoothers
to be used in the application of the SAMG preconditioner. SAMG offers a wide variety
of Krylov methods and smoothers that can potentially be used in the application of
the preconditioner. A selection of the most commonly used of these options is covered
here.

The problems observed are SPD problems to which a standard AMG method is
applied. According to the SAMG Team [35] (p.38), all the available Krylov methods
should be applicable to this type of problem. As the problems are SPD, the expectation
is that the CG method is the best method for these problems. However, because of the
occurrence of poor element shapes in the FEM discretisation, problems can be nearly
singular. This raises the concern that the CG method might not always be applicable
to these problems. For the smoother in the AMG method, no clear guidelines are given,
but it can be desirable to use a smoother that is simple to compute.

In Table 5.4 an overview of the results of the investigation into the configuration
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Krylov Method Smoother Tsup titr nitrs Tsol Ttot Mitr MAMG Mtot

ω−Jacobi 3.82 0.501 36 18.0 21.8 0.09 1.28 9.1
GS 4.69 0.500 27 13.5 18.2 0.19 1.28 9.1
ℓ1-GS 4.29 0.323 27 8.7 13.0 0.13 1.28 9.1
ILU(0) 15.38 0.533 No Convergence

CG

ILUT 7.77 0.304 No Convergence

ω−Jacobi 4.15 0.584 46 26.9 31.0 0.76 1.69 9.5
GS 4.75 0.526 41 21.6 26.3 0.86 1.79 9.6
ℓ1-GS 4.31 0.404 38 15.4 19.7 0.80 1.74 9.6
ILU(0) 15.72 0.568 No Convergence

GMRES

ILUT 7.79 0.349 No Convergence

ω−Jacobi 4.10 0.612 47 28.8 32.9 0.78 1.71 9.6
GS 4.63 0.612 42 25.7 30.3 0.88 1.42 9.3
ℓ1-GS 4.37 0.445 39 17.4 21.7 0.83 1.76 9.6
ILU(0) 15.25 0.619 No Convergence

GCR

ILUT 7.93 0.374 No Convergence

ω−Jacobi 4.23 1.062 43 45.7 49.9 0.10 1.28 9.1
GS 4.75 0.906 23 20.8 25.6 0.20 1.28 9.1
ℓ1-GS 4.35 0.614 22 13.5 17.9 0.15 1.28 9.1
ILU(0) 13.97 1.022 No Convergence

BiCGSTAB

ILUT 7.80 0.543 No Convergence

Table 5.4: Comparison of application of SAMG with different Krylov method solvers and
smoothers MPI = 2

of the smoothers and Krylov methods is shown. These results are obtained for the
GUL-01M-ST problem using a tolerance in the relative residual of 10−4. The use
of a relative residual of 10−4 instead of the usually used 10−8 is to speed up the
process of these experiments. Performing a selection of the experiments with a relative
residual of 10−8 gives results similar to those observed here, but more iterations are
required. For the MPI configuration, two MPI processes are used. This is done to
signify the difference between the normal Gauss-Seidel smoother and the ℓ1−Gauss-
Seidel smoother. Without parallel computing, similar results are obtained, except that
there is no difference between the Gauss-Seidel and ℓ1−Gauss-Seidel smoother, as these
smoothers are exactly the same if parallel computing is not used.

For the results in Table 5.4, the symbols are mostly as they were introduced in
Section 4.4. There are two new results compared here that were not yet described in
Section 4.4. The first, Mitr, is the peak memory requirement during the iteration of
the Krylov method. The second, MAMG, is the peak memory requirement during the
application of the AMG method.

For the Krylov method, it is observed that the best results are obtained using
the CG method. For every smoother applied that gives convergence, the CG method
requires the shortest runtime to converge. In terms of number of iterations, the CG
method requires less iterations than both the GMRES and GCR methods and only,
for two of the smoothers, more than the BiCGSTAB method. However, the time of a
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single iteration with the BiCGSTAB method is twice as long. For the peak memory
requirement, there are some differences during the iteration of the Krylov method, with
the CG method having the lowest requirement. This advantage is less prevalent in the
total peak memory requirement.

The next aspect to consider are the different smoothing methods. Five different
smoother methods are considered, of which three, Gauss-Seidel, ℓ1-Gauss-Seidel, and
ILU(0) (Saad, p. 307 [26]), are applied in a regular way. The other two, ω−Jacobi
and ILUT need further clarification. The ω−Jacobi smoother refers to a damped Jacobi
smoother with damping parameter ω. The value of the damping used here is ω = 0.4.
Other values have been investigated and gave similar results as long as the value of ω
stays away from 0 and 1.

The ILUT (Saad, p. 321 [26]) method is used with a fill-in parameter of 1 and
a tolerance of 0.05. The fill-in parameter controls the level of fill-in allowed in the
computation of the smoother. The tolerance causes entries of the smoother matrix to
be dropped during the computation of the smoother if they are less than a relative
tolerance that is based on the global tolerance and the norm of the row of the smoother
matrix. The ILUT smoother was tested with different values of these parameters, but
no parameter configuration resulted in convergence for the ILUT smoother. The ILU
smoother, which is the same as using the ILUT smoother with 0 level of fill-in and a
tolerance of 1, does not result in convergence with any of the Krylov methods either.

For the smoothers that converge, the two Gauss-Seidel smoothers significantly
outperform the Jacobi smoother. The use of either of the two smoothers results in
requiring fewer iterations and a shorter runtime than the use of the Jacobi smoother.
Only the peak memory requirement is slightly higher during the iteration of the Krylov
method, but this is insignificant to the total memory requirement.

Between the two Gauss-Seidel smoothers, the ℓ1-smoother has a significant
advantage over the normal Gauss-Seidel smoother, because the runtime required by
the ℓ1-smoother for a single iteration is much lower than that of the Gauss-Seidel
smoother.

For these reasons, the choice was made to apply the SAMG method using the CG
method with the ℓ1-Gauss-Seidel smoother. This is the configuration that is used in all
the experiments that follow.

5.4.3 Coarsening method

A second aspect in the setup of SAMG that is to be investigated is the use of aggressive
coarsening. The recommended use of aggressive coarsening for these types of problems
is to use a single A1-coarsening operation for the first coarsening operation (the
SAMG Team [35]). Here an investigation is conducted into whether this aggressive
coarsening operation is necessary and if applying more than one aggressive coarsening
operation can result in a significant improvement. If aggressive coarsening is applied,
the type of aggressive coarsening that is used is always A1-coarsening, as this is
recommended for anisotropic FEM discretisations. The value of the strong connectivity
threshold, θecg as described in Definition 3.2, is set to 0.7. This is different from the
default value used in SAMG, which is 0.25. Like the use of A1-coarsening, this is also a
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recommendation specifically for problems derived from anisotropic FEM discretisations.
To obtain the matrix on a higher level of the multigrid hierarchy, a coarsening

operation is applied. This coarsening operation can be a standard coarsening operation
or an A1-coarsening operation. To investigate the effectiveness of aggressive coarsening,
A1-coarsening operations are applied to a changing number of levels. When aggressive
coarsening is applied, it is always applied on the highest possible levels.

For these experiments, the preconditioner is applied using A1-coarsening for the first
nAO operations. In terms of the prolongation Ikk+1 and restriction Ik+1

k operators given
in Section 3.3.4, this means that operators I01 , · · · InAO−1

nAO
and I10 , · · · I

nAO
nAO−1 are obtained

through aggressive coarsening. The other prolongation and restriction operators are
obtained through standard coarsening. The value of nAO changes from 0, which means
that all coarsening operations are standard coarsening operations, to K, which means
that all coarsening operations are A1-coarsening operations.

Table 5.5 shows the numbers of unknowns on the different levels of the AMG
hierarchy when applying various numbers of A1-aggressive coarsening operations to
the linear system of the GUL-01M-ST problem. The number of aggressive coarsening
operations corresponds to the parameter p here. In the first column, no aggressive
coarsening is applied, in the second one operation is applied, between level 0 and level
1 and so on. In the last column, all coarsening operations are aggressive. One level of
aggressive coarsening is what is typically used and corresponds to the example discussed
above in Section 5.4.1.

In Table 5.6 the results of the approached configurations of aggressive coarsening
operations are shown, along with the AMG complexities of the used multigrid
hierarchies. All results shown here were obtained without the use of parallel computing.
There, it is observed that a massive advantage is obtained by using at least one level
of aggressive coarsening. Although the change in number of iterations is small, the
decrease in time required for each iteration is significantly reduced. Furthermore, the
time required in the setup of the AMG method is reduced significantly by the use of
aggressive coarsening. Lastly, the peak memory requirement of the AMG method is
cut to a third by using at least one aggressive coarsening operation. This results in a

Number of operations of A1-aggressive coarsening

Level 0 1 2 3 4 5

0 3060775 3060775 3060775 3060775 3060775 3060775

1 1407219 654004 654004 654004 654004 654004

2 624557 283203 137006 137006 137006 137006

3 259911 114542 52555 23782 23782 23782

4 98370 41367 17358 7675 3108 3108

5 32933 12292 4641 1999 746 331

6 9140 2991 1069 400 143

7 2150 596 206

8 444 102

Table 5.5: Numbers of unknowns on each level of the AMG structures for GUL-01M-ST with
different aggressive coarsening applied to varying amounts of levels
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nAO Tsup titr nitrs Tsol Ttot MAMG Mtot ωg ωa

0 36.94 2.325 145 337.1 374.1 4.90 12.47 1.8093 2.0804

1 20.90 1.688 138 232.9 253.8 1.78 9.35 1.3686 1.4147

2 16.91 1.553 139 215.9 232.8 1.78 9.34 1.2881 1.2874

3 16.37 1.541 139 214.2 230.6 1.78 9.34 1.2742 1.2636

4 16.32 1.541 139 214.2 230.5 1.77 9.34 1.2722 1.2612

5 17.96 1.535 140 214.9 232.9 1.77 9.34 1.2720 1.2610

Table 5.6: Results of SAMG on GUL-01M-ST with different amounts of levels to which
aggressive coarsening is applied.

memory requirement that is 25% lower in total.
The use of two coarsening operations can further reduce the runtime of both the

setup stage and the iteration stage. Here, a further reduction of around 20% of the
runtime is obtained by using an extra aggressive coarsening operation.

Using more than two aggressive coarsening operations gives similar results as using
two aggressive coarsening operations. In some cases, using too many aggressive
coarsening operations can lead to a loss of information in the prolongation operator.
This would lead to a loss in the effectiveness of the AMG preconditioner. However, this
is not observed here, possibly because the used method for aggressive coarsening is not
aggressive enough for this to happen.

Although using more than one aggressive coarsening operation gives a further
improvement over only using one, this improvement is not large. For this reason, the
recommendation given by the SAMG Team [35] (p.90) is followed and only a single
aggressive coarsening operation will be used for the experiments covered below.

5.4.4 Use of unknown redistribution

For efficient application of SAMG with parallel computing methods, it is essential
to have a good domain partitioning. To improve this, ParMETIS can be used
to redistribute unknowns over the used processors. The downside of the use of
redistributing the unknowns is a more complicated setup of the method being required
along with the requirement to copy the matrix an extra time, which results in a higher
peak memory requirement.

Figure 5.6a gives an example of how a domain partition is applied to one of the
matrices used in the experiments, with four MPI processes. This is the same matrix
that was studied in Section 5.1.2, obtained from the GUL-01M-ST problem. The
domain partition of the matrix over the four MPI processes is illustrated by the dashed
lines. Blocks on the diagonal represent interactions within a single MPI process, blocks
not on the diagonal represent interactions between different processes. Nonzero entries
located in the off diagonal blocks results in the unknowns corresponding to the nonzero
entry being in the halo. To reduce the communications between MPI processes, the
size of this halo has to be kept as small as possible.

By reordering the unknowns, the size of the halo can be decreased. On this particular
matrix, the influence of using matrix reordering is not large, as most of the entries in
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(a) (b)

Figure 5.6: Overview of domain partition and changes made to it by redistributing the
unknowns using ParMETIS on the GUL-01M-ST with 4 MPIs. (a) First the original domain
partition is shown, (b) then partition after application of redistributing.

the halo are located in the locations where unknowns corresponding to the diagonal
bands are distributed over the different processes. These locations are signified by the
main diagonal band crossing the dotted lines into a block corresponding to a different
process. Redistributing these unknowns typically does not reduce the halo, as for each
unknown removed from the halo, a new one is added back in.

In some locations in this matrix, advantages can be obtained from reordering the
unknowns. The elements in the matrix that correspond to this are marked by circles.
Through the reordering of unknowns, these elements are moved to a new location in
the matrix, as seen in Figure 5.6b. This means that some of the unknowns have been
removed from the halo.

The effect of redistribution of unknowns is small for this problem. In larger
problems, many more unknowns are located in the halo, which means that the effect
of the redistribution of unknowns can be much bigger.

To investigate the possible advantages of redistributing the unknowns of the
matrix and to determine whether the use of it is necessary to effectively apply the
SAMG method, a comparison is made between the results obtained from experiments
performed with and without the use of ParMETIS. Models of different sizes are
investigated using various amounts of MPI processes. For all investigated cases, the
default configuration of MPI processes, as described in Section 4.4.2, is investigated.
Along with this, a select few other configurations are investigated for some of the
models. By doing this, it can be confirmed that the possible advantages of redistributing
the unknowns are more prevalent because of the problem size or because of the number
of MPI processes.

Table 5.7 shows the problems, the investigated configurations of MPI processes
for these problems and the sizes of the halo before and after the application of the
reordering. There, Nhalo refers to the number of unknowns in the halo before the
unknowns are reordered and Nhalo R refers to the unknowns after the reordering is
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Model N nnz nMPI Nhalo Nhalo R
Nhalo R
Nhalo

∗ 4 134,183 115,282 0.86
8 305,001 234,212 0.77GUL-ST-01M 3,008,569 237,477,647

16 619,584 384,956 0.62

GUL-ST-05M 14,986,663 1,197,035,813 16 2,949,442 1,203,206 0.41

∗ 16 5,782,311 1,885,235 0.33
∗ 32 11,596,341 2,778,817 0.24GUL-ST-10M 29,443,571 2,358,175,787
64 23,290,476 3,786,155 0.16

GUL-ST-20M 59,149,691 4,746,831,353 ∗ 64 46,402,661 6,048,025 0.13

YRK-ST 3,379,736 267,476,018 ∗ 4 326,998 161,966 0.50

GRO-ST 33,580,236 2,685,914,088 ∗ 32 22,565,420 2,746,335 0.12

Table 5.7: Reduction of size of halo with and without METIS on several models. ∗ marks the
default configurations of MPI processes.

performed. Along with this, a rate is given of how much the halo is reduced by the
reordering. This is obtained by dividing the number of elements in the halo after
reordering by the number of elements originally in the halo. It is observed that the size
of the halo roughly doubles when either the size of the problem doubles or the number of
MPI processes doubles if no reordering is used. This is what is expected to be observed
when the unknowns are not reordered. When reordering is used, the number of elements
in the halo still increases when increasing the number of MPI processes or the problem
size, but less significantly than without reordering. This results in the reordering being
especially effective when applied to large problems which use high numbers of MPI
processes. The reduction of the halo can be very large, over 80% in the problems seen
here. A great reduction of the halo can be expected to have a positive influence on the
runtime as it decreases the amount of communications between processors.

The results obtained from the experiments with and without the reordering of the
unknowns are presented in Table 5.8. In this table, the column ’Reor.’ indicates
whether the reordering of the unknowns is used in the experiments, with experiments
labelled ’N’ for not using reordering and ’Y’ for using reordering. The column marked by
Treor shows the time spent applying the matrix reordering and is zero for all experiments
that do not use matrix reordering.

For the models of limited size, such as GUL-01M-ST, GUL-05M-ST and YRK,
no advantage is obtained through the application of matrix reordering. Some small
improvements are seen in the setup stage and iteration stage of the solvers for these
models, but this is nullified by the extra time spent on the application of matrix
reordering. This is in line with what was seen in Table 5.7, as the reduction in the
halo on these models is small.

For the GUL-05M-ST problem, the runtime required for the application of the
reordering is longer than seen on any of the other models. This causes the total runtime
to be much higher than the observed runtime without reordering. The high runtime
during the reordering of unknowns for this particular problem is unexpected.

On the larger models, the influence of matrix reordering is more noticeable.
Especially on GRO-ST, GUL-20M-ST and GUL-10M-ST with 32 processes the time
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Model nMPI Reor. Treor Tsup titr nitrs Tsol Ttot MAMG Mtot

N 0.0 7.4 0.439 137 61.0 68.5 1.7 9.8
4 ∗

Y 2.7 7.2 0.443 139 61.6 71.7 1.6 10.6
N 0.0 5.4 0.231 142 32.8 38.3 2.6 11.8

8
Y 1.8 5.2 0.237 140 33.2 40.6 1.8 12.0
N 0.0 4.7 0.136 145 19.7 24.7 1.9 13.4

GUL-01M-ST

16
Y 4.2 5.5 0.132 141 18.6 29.0 3.1 15.7

N 0.0 26.4 0.625 122 76.3 104.4 16.2 73.6
GUL-05M-ST 16 ∗

Y 21.3 16.4 0.686 116 79.6 123.5 15.7 77.7

N 0.0 51.5 1.257 117 147.1 199.5 31.4 144.1
16

Y 10.3 34.8 1.231 118 145.3 191.2 30.3 152.3
N 0.0 58.4 0.650 120 78.0 138.0 61.9 219.5

32 ∗
Y 6.7 27.3 0.700 116 81.2 116.9 59.2 226.0
N 0.0 71.8 0.446 131 58.4 131.5 122.9 370.2

GUL-10M-ST

64
Y 55.9 27.1 0.477 115 54.9 141.6 115.3 371.8

N 0.0 142.9 0.911 123 112.1 261.2 251.5 748.2
GUL-20M-ST 64 ∗

Y 9.3 39.9 0.721 116 83.6 136.1 235.4 750.6

N 0.0 12.2 0.516 128 66.0 78.3 3.2 11.9
YRK-ST 4 ∗

Y 3.7 8.9 0.508 123 62.5 75.2 2.7 12.4

N 0.0 88.1 0.803 78 62.6 152.0 74.2 234.4
GRO-ST 32 ∗

Y 8.9 26.1 0.676 69 46.6 82.6 66.3 236.7

Table 5.8: Results of problems of different size of GUL model, solved using SAMG with
and without reordering the unknowns beforehand with ParMETIS. ∗ marks the default
configurations of MPI processes.

required in the setup of the method is reduced significantly, at the cost of some extra
time being spent on the process of reordering, which together gives a clear reduction
to the total runtime. For GUL-10M-ST with 64 processes, a similar clear reduction in
setup time is obtained, but the advantage of this is lost because of the amount of time
required to reorder the matrix. This could suggest that, for this particular problem, no
more than 32 processes should be used.

For all problems, it is observed that the maximum memory requirement in the
application of the solver is slightly reduced by reordering the matrix. However, this
advantage is lost because the extra copy of the matrix is made to apply the reordering
of the unknowns.

In the end, the use of reordering of the unknowns can provide a significant advantage
for some of the larger models and does not cause problems for smaller models. The
memory requirement when applying the reordering is slightly higher, but this is
insignificant. For these reasons, the reordering of the unknowns using ParMETIS will
be applied if possible.
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5.4.5 Strong Scalability

Similar to how this was done for the Jacobi preconditioned CG, the strong scalability
of the linear solver obtained from SAMG will be studied as well. Again, experiments
are performed on the GUL-01M-ST problem with repeatedly doubling numbers of MPI
processes. For all configurations of MPI processes, the reordering of the unknowns
using ParMETIS is applied to the linear system. For this small problem, the effect
of reordering the unknowns is very small, so the results seen when applying matrix
reordering are nearly the same.

Figure 5.7a shows the runtimes that are observed when using the SAMG method
with different numbers of processes. Again, the dotted line presents the runtimes that
would have been observed if the strong scalability of the method was perfect. It is
observed that the strong scalability of the SAMG method is good for a low number of
processes. For as much as eight processes, the observed runtime stays close to this line
of ideal scalability. For more than eight processes very little improvement is observed
when adding more processes.

Although the strong scalability of the entire method is not great for more than eight
processes, the strong scalability of only the iterative solver is better. This is seen in
Figure 5.7b, where the strong scalability of only the iterative solver stage is shown.
The times shown correspond to the variable Tsol, as explained in Section 4.4. The much
better strong scalability of the iterative solver suggests that the worse scalability of the
full method can be largely attributed to the setup stage of the solver. In applications
where several similar systems are used, it can be possible to reuse the setup of an earlier
used AMG method. If this can be done, the scalability of the full method is closer to
what is observed for only the iterative solver.

Lastly, Figure 5.7c shows the peak memory requirements for the different
configurations of MPI processes used to observe the scalability of the methods. The
peak memory requirements of the Visage simulator and the SAMG solver are shown
separately along with the total memory requirement. It is again observed that using
more MPI processes significantly increases the peak memory requirement, especially
when using 16 or more processes. This increase is observed in the peak memory

(a) (b) (c)

Figure 5.7: Scalability of runtime and corresponding memory usage for solving linear problem
using SAMG in one timestep of GUL-01M-ST using varying amounts of MPI processes. (a)
The total runtime of the solver, (b) the runtime of only the iterative solver and (c) the memory
requirement are shown here.
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requirements of both Visage and SAMG.

5.4.6 Weak Scalability

A last aspect of the SAMG method that is considered is the weak scalability of the
method. For this, the method is again applied both with and without the reordering
of the unknowns. To study the weak scalability of the method, the solver is applied to
discretisations of various grid sizes of the same model, in this case the GUL-ST model.
For each of the problems, the default number of MPI processes is used, as discussed in
Section 4.4.2.

To conduct an appropriate study of the weak scalability, it is desirable to use
problems for which both the size of the problem and the number of MPI processes
scale in the same way between different observed problems. Unfortunately, the available
problems do not fully follow this. The smallest of the observed problems has roughly
one million nodes and three million unknowns and is solved using 4 MPI processes. The
second smallest problem, which has five million nodes and fifteen million unknowns and
uses 16 MPI processes. This means that the second problem is five times the size of the
smallest problem but only uses four times as many MPI processes. This means that
the comparison between the smallest and second smallest problem is not completely
valid. The results for the smallest problems are still included, as it gives some insight
in the weak scalability, but should not be considered for the conclusions. For larger
problems, the problems and the number of MPI processes used do scale in the desired
way, with both doubling between each of the models.

Figure 5.8a gives an overview of the runtimes of the full method of SAMG for
solving the linear problem with (SAMG) and without (No METIS) the use of matrix
reordering. These results are the same as what was presented in Table 5.8. There,

(a) (b)

Figure 5.8: Scalability of runtime of SAMG with and without reordering of unknowns for
solving the linear problems in GUL-ST models of increasing size. The scalability of (a) the
total runtime required by the solver and (b) the runtime required in only the iterative solver
are both shown.

69



it can be seen that the full method does not have great weak scalability, especially
when matrix reordering is not applied. If the weak scalability would be ideal, the
runtimes would be constant for the different problems, which is not the case for the
SAMG method without matrix reordering. For the method with matrix reordering,
the runtimes stay more close together, but it is hard to draw conclusions from this
because of the unexpected result in the runtime of the application of ParMETIS for
the 05M-problem, as seen in Table 5.8.

The weak scalability of only the iterative solver is much better. In Figure 5.8b a very
good weak scalability is observed for the SAMG method with matrix reordering. The
weak scalability of the iterative solver of the SAMG method without matrix reordering
is also better than that of the full method, but there is still a significant increase in
runtime observed in the largest problem.

5.5 hypre

The second method using an AMG preconditioner that is investigated is the
BoomerAMG implementation of the AMG method provided through hypre. Here,
this method is referred to most as ’the hypre method’ or simply ’hypre’.

For fair comparison, it is attempted to apply this method using a setup that is
as close as possible to the setup that was used during the investigation of SAMG.Like
SAMG, hypre is applied using a single V-cycle. For the coarsening method, again, apart
from in the investigation of different coarsening methods, A1-coarsening is used for the
first coarsening operation and standard coarsening is used for the other coarsening
operations. For the prolongation method, again unknown-based prolongation is used.
Outside of the investigation of different smoother methods, a ℓ1-Gauss-Seidel smoother
is used. Parallel computing is used for the hypre method in the same way as for the other
preconditioning methods. With hypre, if any parallel computing is used, reordering of
the unknowns is applied.

An important note that has to be made about the method provided through hypre
is that the output of certain information is not as clear as it is for SAMG and the
originally used solvers. This especially gives difficulties in estimation of the peak
memory requirement. Where the methods observed earlier gave clear estimates of
the observed peak memory requirements, the only way to gain a similar estimate for
the hypre method is by estimating it based on the percentage of total available memory
used. The method used here to obtain this estimate gives percentages with an accuracy
of one decimal, which means that there is some range of error in these estimates. The
ranges, [Pmin, Pmax], that estimate the peak memory requirements that are shown here
are derived this percentage, with the minimum and maximum being obtained

Mmin = nMPI · (α− 0.05) · 1024
Mmax = nMPI · (α + 0.05) · 1024

where Pmin and Pmax are the minimum and maximum of the range respectively. α is
the percentage of the total available memory of one of the used cores that is used in
the application of the linear solver. This percentage is rounded to one decimal.
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5.5.1 Choice of Smoother

Like SAMG, hypre also offers several different smoothers that can be used in the
application of the AMG method. Because the SAMG method was applied using the
ℓ1-smoother, it is likely best for a fair comparison to apply the hypre method with the
ℓ1-Gauss-Seidel smoother as well. However, other smoothers are also investigated to
confirm that the ℓ1-Gauss-Seidel smoother also performs best for the hypre method.
Unlike SAMG, hypre does not offer the option to use the AMG method as a
preconditioner to other Krylov methods than the CG method. This is not a problem,
as the CG method was also used with SAMG and is the method that is most desirable
to use for the SPD problems encountered here.

For the smoothers investigated, once again the damped Jacobi, ℓ1-Gauss-Seidel
and ILUT smoother are approached. For the damped Jacobi method, once again the
parameter used is ω = 0.4. hypre does not offer the possibility to use a full Gauss-
Seidel smoother when using multiple processes. This means that ℓ1-Gauss-Seidel and
Gauss-Seidel smoother can not be approached separately. The experiments performed
here use only a single process, meaning that the observed ℓ1-Gauss-Seidel smoother is
the same as a full Gauss-Seidel smoother.

The results of the comparison of different smoothers are presented in Table 5.9. For
this, the linear systems of the GUL-01M-00 and GUL-01M-ST problems are approached
using a single MPI process. Because a single MPI process was used, the ℓ1-Gauss-Seidel
smoother is the same as the ℓ1-Gauss-Seidel smoother.

It is observed that using the Gauss-Seidel smoother results in significantly faster
convergence than using the Jacobi smoother. The number of iterations required for
these methods to converge is for both these problems less than half of the number of
iterations required to converge with the Jacobi smoother. This comes at the cost of the
time required for one iteration being higher. In the end, both smoother methods were
faster than the Jacobi smoother, but not by much. For this reason and because it was
already used in the SAMG method, the ℓ1-Gauss-Seidel method will also be used for
the hypre method.

For the last smoother, the ILUT smoother, once again no convergence was obtained.
This is similar to what was observed above in the corresponding investigation of SAMG.

Model Smoother Tsup titr nitrs Tsol Ttot

ω-Jacobi 8.47 1.123 112 125.8 139.3
ℓ−GS 8.73 1.915 54 103.4 117.3GUL-01M-00
ILUT No Convergence

ω-Jacobi 8.38 1.095 320 350.3 363.6
ℓ−GS 8.77 1.864 141 262.8 276.5GUL-01M-ST
ILUT No Convergence

Table 5.9: Comparison of different smoothers for hypre on the initialisation and simulation
models for GUL-01M
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5.5.2 Coarsening method

The second element in the setup of the hypre method investigated is the coarsening
methods and the use of aggressive coarsening. The study of the use of different numbers
of coarsening methods is not carried out as extensively as was done for the SAMG
method. Instead, only the use of no aggressive coarsening operations, one aggressive
coarsening operation on the first multigrid level, and aggressive coarsening for every
coarsening operation are approached. The method for aggressive coarsening operations
is again A1-coarsening.

Along with this, the parameter for the threshold for strong connections is
investigated. For the SAMG method, based on the information provided, the choice
was made to use θecg = 0.7 for this parameter. hypre Project Developers [15] instead
suggests a value of θecg = 0.9 for this threshold parameter. Both values are investigated
for each different number of aggressive coarsening operations.

Table 5.10 shows the results of the use of these different configurations of coarsening
methods. These results were obtained on the GUL-01M-ST problem with no parallel
computing. Here, nAO refers to the number of aggressive operations and nL denotes
the number of levels in the multigrid hierarchy. The last two rows, where ’All’ is given
for nAO, use aggressive coarsening for all levels of multigrid hierarchy. ωg and ωa refer
to the multigrid complexities discussed in Section 3.3.3. All other results covered here
are as they are described in Section 4.4.

It is observed that the use of aggressive coarsening gives a significant improvement
in runtime, similar to what was seen for the SAMG method. The number of iterations
required remains roughly the same, but the runtime for a single iteration is significantly
reduced. Together with the reduction in the setup time, this gives a clear reduction in
total runtime. Again, the use of aggressive coarsening for every coarsening operation
gives a small improvement over the use of a single aggressive coarsening operation.
However, using more aggressive coarsening operations makes the method less stable
and therefore it is advised not to use more than one coarsening operation (hypre
Project Developers [15]). Thus, the choice is made to still use a single coarsening
operation on only the highest level.

For the threshold parameter, the differences between the two choices for the
parameter are small. The value of 0.7 requires fewer iterations of the linear solver,
but the runtime of a single iteration is higher. This results in a shorter runtime for

nAO θecg Tsup titr nitrs Tsol Ttot nL ωg ωa

0.7 18.21 2.702 137 370.14 393.41 11 1.7985 2.0885
0

0.9 12.53 2.451 145 355.38 372.93 11 1.7790 1.8492

0.7 10.77 1.938 140 271.30 287.16 10 1.3659 1.4273
1

0.9 8.64 1.861 141 262.37 275.93 10 1.3839 1.3819

0.7 8.39 1.752 143 250.54 264.07 7 1.2698 1.2634
All

0.9 7.74 1.733 145 251.27 264.03 8 1.2974 1.2790

Table 5.10: Comparison of different methods of coarsening for hypre on the GUL-01M-ST
model.
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θecg = 0.9. Since θecg = 0.9 is the recommended value in hypre and the results it gives
in this example are better, this is the value for θecg that will be used here.

5.5.3 Strong Scalability

Last, the strong scalability of the hypre method will be investigated, in a similar way
as in which this was done for the two other methods discussed above. Again, the
linear solver method is applied to a particular problem, the GUL-01M-ST problem,
with different numbers of MPI processes. The runtime observed with a single process
is used as a benchmark for runtimes that would have been observed if the method had
scaled perfectly.

In Figure 5.9a the runtimes of the solver using repeatedly doubling numbers of MPI
processes are shown, together with the runtimes that would be observed if the method
were to scale perfectly. There, it is seen that observed runtimes stay close to the line
of ideal scalability. With more than eight MPI processes, the scalability of the full
solver is less good. The scalability of only the iterative solver is better, as is shown in
Figure 5.9b. This stays close to perfect upto 16 MPI processes and even for 32 MPI
processes it scales close to perfectly.

The peak memory requirements of the hypre method observed for different numbers
of MPI processes are shown in Figure 5.9c. The range of inaccuracy in the memory
requirement is given by the dashed part. For eight or less processes, the differences in
memory requirement are small. For more than eight processes, the memory requirement
quickly increases. For 32 processes, the memory requirement is nearly double that of
what is seen for less than eight processes.

(a) (b) (c)

Figure 5.9: Scalability of runtime and corresponding memory usage for solving linear problem
using hypre in one timestep of GUL-01M-ST using varying amounts of MPI processes. (a)
The total runtime of the solver, (b) the runtime of only the iterative solver and (c) the memory
requirement are shown here.
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5.6 PETSc

The last AMG-based method studied is the PCGAMG method provided by PETSc.
However, for this method, it turned out not to be possible to obtain similar results as
those seen for the other two methods. Due to limitations and the good results observed
in the two methods discussed above, it was decided not to pursue this method beyond
the stage in which some of the initial tests were performed. Although the PETSc
software did not become useful as an AMG method, the implementation of PETSc was
still useful in the spectral analysis of linear problems, as discussed in Section 5.2.

For the PCGAMG solver, the only available results are for the small GEE problem.
These results are obtained on the local machine and do not use parallel computing.
From these results, the expectation is that the PETSc method does not perform better
than the other AMG methods or even the Jacobi preconditioner.

Table 5.11 shows the results of an experiment used to compare the PETSc solver
with the other methods. First, it is observed that the setup of PETSc is much longer
than that of the other methods. However, this might be attributed to an imperfect
implementation of the PETSc method and cannot be used directly to draw conclusions.
However, the run-time per iteration is also significantly higher than that of the other
AMG methods, which results in a higher run-time of the iterative solver. This can not
be attributed to poor implementation and instead suggests that the performance of the
PETSc method is not as good as that of the other methods.

The peak memory requirement of the PETSc solver also seems higher than that of
the other solvers. For this, it is difficult to draw a concrete conclusion, as the memory
requirements found for both the hypre and PETSc methods are not fully accurate.
These peak memory requirements are based on the memory usage reported during the
application of these solvers, with a range of error. The given peak memory requirements
of the Jacobi preconditioner and the SAMG method are accurate.

Preconditioner Tsup titr nitrs Tsol Ttot mAMG mtot

Jacobi 0.17 0.002 305 0.48 0.65 0.0 63.8

SAMG 1.04 0.017 17 0.28 1.33 29.0 141.1

hypre 0.10 0.024 6 0.15 0.29 29.0-58.0 141.1-170.0

PETSc 5.26 0.066 16 1.06 6.32 70.6-91.1 150.8-171.3

Table 5.11: Results on the smaller GEE for the four considered preconditioners.
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5.7 Comparison of solvers

Above five different methods for preconditioning the CG method have been discussed,
the two methods originally used in the Visage simulator and three methods based
on Algebraic Multigrid. After the decision to use the Jacobi preconditioner over the
deflation preconditioner and the decision to not use the AMG method provided through
PETSc, three methods remain to be compared. These are the Jacobi preconditioned
CG method that was originally used and the CG methods preconditioned by AMG as
provided by SAMG and hypre. For a simple way to distinguish between the different
methods, the three methods are in most cases referred to as ’Jacobi’ or ’Jacobi PCG’
for the Jacobi preconditioned CG method that was used originally in the simulator and
’SAMG’ and ’hypre’ for the two AMG based methods.

To compare these methods, first the convergence of the residual in the CG method
for these different solvers is covered. Then, the performance of these methods on the
different problems, with their default configurations of MPI processes, is discussed.
After this, a comparison of the scalability of the methods, as discussed above, is made.
Lastly, a short investigation is done in the performance of parallel computing using a
combination of multiple MPI processes and multiple OpenMP threads.

5.7.1 Convergence of residual

The convergence of the residual is studied in the same way as was done in Section 5.3.1
for the Jacobi and deflation preconditioned CG methods. The relative residual is

calculated at each iteration of the CG method as
∥rj∥
∥r0∥ for iteration j.

Figure 5.10 shows the results of this on the GUL-01M-ST model for the three
different preconditioned CG methods. It is difficult to make a direct comparison
between the Jacobi preconditioned method and the two AMG method, since a single
iteration of the Jacobi preconditioned CG method is vastly different from an iteration
of an AMG preconditioned method. The methods that use an AMG preconditioner
converge much faster, but a single iteration for these methods is computationally much

(a) (b)

Figure 5.10: Convergence of error on GUL-01M-ST for (a) Jacobi PCG and (b) the two AMG
methods, SAMG and hypre.
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more costly. For all methods faster convergence is seen in the first few iterations. The
influence of this fast convergence is much more noticeable in the AMG methods, where
very fast convergence is observed to a relative residual of 10−4.

Between the two AMG methods, very little difference in their way of convergence
is observed. For this particular example, the method using SAMG requires fewer
iterations to converge, but the difference in total iterations is small. This also differs
between different problems, with on some models hypre requiring less iterations and on
some models SAMG requiring less iterations.

5.7.2 Performance on most commonly observed problems

For a direct comparison of how the methods would work in practice, the problems
described above are approached using the default number of MPI processes, as described
in Section 4.4. For the comparison of the methods the focus is kept on problems which
are used in the simulation steps, marked by ’ST’ here. In actual simulations, the
solvers need to be applied to these problems multiple times, meaning that potential
improvements on these problems will in practice be the most important. Although
only the results on these models are discussed here, the results seen on the initialisation
models are similar. The linear solver methods are applied using the setups discussed
above.

Table 5.12 shows the results of the performed experiments on these problems with
the three methods which are to be compared. All experiments were performed using
parallel computing, with the number of MPI processes being as they are described
in Section 5.1. The methods all make use of the CG method that is preconditioned
differently. Because the implementation of the CG method may not be the exact same
across the studied methods, there can be small differences in the iterative method, but
these should not influence the results.

What is immediately evident from these results is that the total runtime required to
apply the linear solver with the AMG methods is much lower than that of the Jacobi
preconditioned method. Depending on the observed problem, the total runtimes of the
AMG solvers can be as low as one fifth of the total runtime of the Jacobi PCG method.
Especially in the stage of the iterative solver large improvements are seen for the AMG
methods. The setup of the AMG solvers can in some cases, especially for the smaller
problems, take longer than that of the Jacobi PCG method.

The AMG preconditioner is expected to lead to far less iterations being required
for the CG method to converge than the Jacobi PCG method, at the cost of more
time expensive iterations. Here, this is observed as the AMG methods require fewer
iterations than the Jacobi PCG method, but each single iteration takes much longer.
This still results in a much shorter total time required for the iterative solver.

The main downside of the AMG based methods is the higher peak memory
requirement. This higher peak memory requirement was anticipated for these methods,
as these methods require the use of a memory-expensive multigrid hierarchy. In most
cases, the peak memory requirement of the methods using an AMG preconditioner is
close to two times the peak memory requirement of the Jacobi PCG method on the
same problem. In some cases, this can even be higher, especially for the hypre solver.
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Model Method Tsup titr nitrs Tsol Ttot MAMG Mtot

Jacobi 4.0 0.040 6574 266.1 270.1 0.0 6.1
SAMG 9.8 0.443 139 61.6 71.7 1.6 10.6GUL-01M
hypre 8.3 0.489 144 70.4 79.9 5.5-9.6 14.4-18.6

Jacobi 10.4 0.047 6679 311.3 321.7 0.0 46.9
SAMG 37.7 0.686 116 79.6 123.5 15.7 77.7GUL-05M
hypre 18.7 0.688 135 92.9 113.7 45.2-61.7 107.3-123.8

Jacobi 20.2 0.048 6625 318.4 338.6 0.0 134.8
SAMG 34.0 0.700 116 81.2 116.9 59.2 226.0GUL-10M
hypre 20.0 0.702 123 86.3 108.7 80.7-113.7 247.6-280.6

Jacobi 49.4 0.056 6858 382.5 431.9 0.0 442.2
SAMG 49.3 0.721 116 83.6 136.1 235.4 750.6GUL-20M
hypre 25.6 0.741 126 93.4 123.4 178.0-244.0 693.2-759.2

Jacobi 5.6 0.040 4575 182.3 187.9 0 5.9
SAMG 12.4 0.508 123 62.5 75.2 2.6 11.9YRK
hypre 9.3 0.597 152 90.8 101.4 1 7.5-15.6 1 17.3-25.4

Jacobi 33.2 0.057 6748 384.2 417.4 0 136.9
SAMG 34.6 0.676 69 46.6 82.6 66.3 216.9GRO
hypre 21.9 0.785 77 60.5 84.9 1 85.0-127.4 1 241.0-278.0

Table 5.12: Results on all observed models with the three different preconditioners, the
originally used Jacobi, SAMG and hypre. The number of MPI processes used is the default
number described in Section 4.4.2.
1 Because of technical difficulties, no estimate of the memory requirement for hypre was
obtained on the YRK and GRO models. The estimate shown here is obtained form the
estimate of GUL models of similar sizes, combined with the results seen for SAMG.

Between the two AMG methods, SAMG and hypre, the differences are small. The
setup of the hypre method is faster than that of the SAMG method, but the iteration
stage of the SAMG method is faster. In the end, both methods are faster on some of
the observed problems, but there is no clear difference as to for what type of problem
which method is fastest. Especially in smaller models, the peak memory requirement of
the hypre method is much higher than that of the SAMG method. On larger models,
the differences between the two AMG methods are smaller, with the peak memory
requirement of the hypre method in some of the large models possibly being lower.
It again has to be noted that there is some range of inaccuracy in the peak memory
requirements of the hypre method due to the inaccurate method of obtaining this
number described above.

5.7.3 Comparison of scalability

For each of the methods considered, investigations have been carried out on the
scalability of the method. Here, the scalability of the three preconditioning methods
is compared. This is used to determine how well parallel computing works for each of
these methods.
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5.7.3.1 Strong Scalability

The first type of scalability that is approached is the strong scalability of the different
methods. This is covered in Section 5.3.2, Section 5.4.5 and Section 5.5.3 individually.
Here, these results are combined and the strong scalability of the methods is compared.
Again, the problem on the GUL-ST-01M model is observed with varying numbers of
MPI processes.

In Figure 5.11 the results of solving the same problem with the three solvers and
an increasing number of MPI processes are shown. This is a combination of the three
figures, Figure 5.4, Figure 5.7 and Figure 5.9.

Figure 5.11a shows the runtimes of the solvers for a increasing numbers of MPI
processes. It is again seen that the AMG methods give a significant improvement in
terms of runtime over the Jacobi PCG method and that this is seen for all numbers of
MPI processes. The scalability of the AMG methods is not as good as that of the Jacobi
PCG method. Where the Jacobi PCG method scales well up to 16 processes, the AMG
methods only scale well up to eight processes. Even though the Jacobi PCG method
scales better, for no possibly used number of MPI processes is it faster or expected to
be faster than the AMG methods.

Although the full methods do not scale so well for the AMG methods, the iterative
solver scales nearly as well as the iterative solver of the Jacobi PCG method, as seen
in Figure 5.11b. This means that the main reason for the poorer scalability of the
AMG methods is the more expensive setup of the methods, which was already seen in
Section 5.7.2.

Increasing the number of MPI processes causes an increase in the peak memory
requirements, with similar increases being seen across the methods. In Figure 5.11c,
it is seen that the results are similar between the changing number of MPI processes.
For each experiment, the peak memory requirement of the AMG methods is higher
than that of the Jacobi PCG method. The only difference between different numbers
of processes is that the increase of the peak memory requirement in the application of
AMG methods is not as large for configurations with more MPI processes.

The differences in scalability between the two AMG methods are small. For low

(a) (b) (c)

Figure 5.11: Scalability of runtime and corresponding memory usage for solving linear problem
using the three different methods, Jacobi, SAMG and hypre. All are applied to one timestep
of GUL-01M-ST using varying amounts of MPI processes. (a) The total runtime of the solver,
(b) the runtime of only the iterative solver and (c) the memory requirement are shown here.
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numbers of MPI processes, SAMG seems to scale better and stays very close to ideal
scalability, especially when only the iterative solver stage is considered. hypre scales
better on larger numbers of MPI processes, and the trajectory of the scalability of
hypre is very close to being logarithmically linear. For 16 or more processes, hypre
even clearly outperforms SAMG.

5.7.3.2 Weak Scalability

Next, the weak scalability of the linear solver methods is considered. This is done in a
similar way to the way it was done before for the SAMG method in Section 5.4.6. The
results of the different solvers on models of the same problems with discretisations of
varying sizes are approached. Each problem is solved with a scaling number of MPI
processes, which are the default numbers of processes used throughout this discussion.
The weak scalability of a method is then considered to be good if the runtime required
across the problems of changing size remains similar.

Figure 5.12a shows the runtimes compared with each other for these solvers. These
results are the same as what is given in Table 5.12 for the total runtime of the solvers.
It is seen that the weak scalability of none of the methods is great, the runtimes
for all solvers clearly increase when approaching the same problem with more fine
discretisations and a scaling number of MPI processes. However, this increase is not
large which means that the scalability of these methods is not poor either.

For the AMGmethods, a decrease is observed when going from the 05M model to the
10M model. For SAMG, this is likely because of the poor application of METIS which
gave a significant increase to the runtime for this problem. For hypre, the unexpected
high runtime is also observed when only considering the iteration stage. This suggests
poor performance of the hypre method on the specific problem obtained from the 05M

(a) (b)

Figure 5.12: Scalability of runtime of the Jacobi PCG, SAMG and hypre method, for solving
the linear problems in GUL-ST models of increasing size. The scalability of (a) the total
runtime required by the solver and (b) the runtime required in only the iterative solver are
both shown.
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model.
The runtimes of only the iteration stage of the solvers are visible in Figure 5.12b.

There, it is seen that for the iteration stage the AMG methods scale very well and
better than the Jacobi PCG method. The only point where either of the methods does
not scale well is the 05M problem for the hypre method.

5.7.4 Hybrid MPI + OpenMP

The results that have been obtained using parallel computing so far have all been
obtained using methods that purely use MPI processes. It is also possible to use both
multiple MPI processes and OpenMP threads in hybrid configuration. This can result
in large differences in the performance of certain methods.

In most of the experiments, only parallel methods using multiple MPI processes
were approached. Initial tests showed that parallelisation purely with multiple MPI
processes gave the largest decrease in required runtime for the solvers. Because the
focus was on decreasing the runtime as much as possible, the use of multiple OpenMP
threads was not researched deeply.

Several experiments into hybrid configurations of multiple MPI processes and
multiple OpenMP threads were conducted. These were performed on the GUL-10M-
ST problem and always used 32 cores in total, which is the default number of cores
described for this problem. The 32 cores were distributed in different ways over MPI
processes and OpenMP threads.

The results of this are shown in Table 5.13. There nMPI and nOMP refer to the
number of MPI processes and the number of OpenMP threads used respectively. The
different configurations were applied to the Jacobi PCG method and the two AMG
preconditioned CG methods.

It can be seen that the use of a hybrid configuration gives a longer runtime for all
of the solvers. In general, as the number of OpenMP threads increases and thus the

Prec. nMPI nOMP Tsup titr nitrs TAMG Ttot MAMG Mtot

32 1 20.2 0.048 6625 318.4 338.6 0.0 134.8
16 2 20.5 0.055 6625 365.8 386.3 0.0 93.4
8 4 24.0 0.058 6625 382.3 406.2 0.0 74.0

Jacobi

4 8 38.8 0.072 6625 477.6 516.5 0.0 66.9

32 1 34.0 0.700 116 81.2 116.9 59.2 226.0
16 2 52.3 0.983 121 118.9 173.9 30.3 153.7
8 4 67.1 0.996 117 116.5 186.8 23.9 126.7

SAMG

4 8 84.3 1.320 116 153.1 241.0 22.7 118.0

32 1 20.1 0.702 123 86.3 108.7 80.7-113.7 247.6-280.6
16 2 24.7 0.803 135 108.5 137.5 82.9-99.4 206.3-222.8
8 4 36.0 0.822 133 109.4 150.7 74.5-82.8 177.4-185.7

hypre

4 8 54.9 1.176 136 160.0 228.3 71.9-76.0 167.1-171.2

Table 5.13: Results obtained using different hybrid configurations of MPI and OpenMP on
the GUL-10M-ST model
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number of MPI processes decreases, the runtime of the solvers increases as well. For the
configuration with the most OpenMP threads and the least amount of MPI processes,
the runtime is nearly double the runtime of pure MPI methods. Both the setup time and
the iterative solver time are much higher for configurations with fewer MPI processes,
with an especially steep increase in the setup time for the AMG methods.

The advantage of using a hybrid configuration is the significantly lower peak memory
requirement. Using more OpenMP threads and fewer MPI processes gives a significant
decrease in the peak memory requirements for all three methods. The method with the
most OpenMP threads observed here even cuts the peak memory requirement in half
when compared with the pure MPI configuration.

The differences between the different solver methods remain the same across the
different configurations of MPI processes and OpenMP threads. The AMG methods
are much faster and have a higher peak memory requirement than the Jacobi PCG
method. What is interesting is that some of the configurations give an improvement
over the originally used solver in both these areas. The configuration of eight MPI
processes and four OpenMP threads with the SAMG method has a lower peak memory
requirement than the originally used Jacobi PCG method, while also requiring less than
half the runtime.
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5.8 Improvement in coupled simulations

In the experiments discussed in this chapter, only the Visage geomechanics simulator
was considered. The results shown only consider the linear solver method in this
simulator. From these results, it is concluded that the AMG preconditioners can give
major advantages in simulations performed by the Visage simulator.

However, so far no results have been shown that represent the actual application for
which the Visage simulator is practically used. The approached AMG-preconditioners
are mainly considered for simulations in which the Visage simulator is coupled with the
Intersect simulator. There, the Intersect simulator performs a simulation on the flow
of fluid or gas in a reservoir and Visage performs the corresponding simulation of the
stresses in the rock surrounding the reservoir.

These simulations were not studied in this research, which means that the available
results are limited. However, the results shown here should give a good insight in
the improvement obtained from the application of the AMG preconditioner to these
simulations.

Figure 5.13: Runtimes of Visage and Intersect
in coupled simulation using the Jacobi
preconditioned CG method and the AMG
preconditioned CG method using the SAMG
method on a particular problem

In Figure 5.13 the runtimes of such
a coupled simulation can be seen. The
stress simulation performed by Visage
in this project uses 2.3 million cells,
which leads to around 6.9 million
unknowns. In this project, eight load
steps are performed. Parallel computing
is used with 16 MPI processes. The
AMG preconditioner used in the Visage
simulator in this simulation is the
method provided by SAMG.

It is observed that in the simulation
that uses the Jacobi preconditioner, the
runtime is severely dominated by the
Visage simulator. More than 90% of
the total runtime is spent on the Visage
simulation. In the simulation that uses
the AMG preconditioner, the runtime of
the Visage simulator is decreased to a
fourth of the runtime of the simulation
with the Jacobi preconditioner. This
leads to the total simulation being
decreased to a third of what was
observed previously.
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Summary and Conclusions 6
To form an accurate model of subsurface deformations, geomechanical simulations are
an essential part. The main problem with these simulations is their high computational
costs in large simulations, which results in high runtimes of the simulations. In this
research, the computational cost of these geomechanical simulations is studied, with a
specific focus on geomechanical models of reservoirs with a high flow of fluids or gasses.
This study of geomechanical simulations is done through the Visage geomechanical
simulator.

In these simulations, the global equilibrium of internal stresses and external forces is
attempted to be solved. This continuous problem is discretised using the Finite Element
Method. This discretisation leads to a nonlinear problem, to which an approximate
solution is obtained using the Newton-Raphson method. In the application of the
Newton-Raphson method, a Symmetric Positive Definite linear problem is required to
be solved.

Solving linear problems with Symmetric Positive Definite matrices can be done in
various ways. In small models, a direct method can be applied to obtain an exact
solution to the linear problem. However, for the large models that are typically
observed in geomechanical simulations, these methods are rarely applicable. Instead,
an approximation of the solution of the large linear systems is obtained using iterative
methods.

The main method that is considered for iteratively solving large linear problems is
the Conjugate Gradient method. This method is typically the most efficient method
for solving large Symmetric Positive Definite linear problems. To further improve the
convergence of this method, a preconditioner can be applied to the linear system which
is solved using the Conjugate Gradient method. For these preconditioner methods,
various methods exist, with more advanced methods giving bigger improvements, but
being more difficult to apply.

In this research, the Algebraic Multigrid method is studied to be used as a
preconditioner to the Conjugate Gradient method. This method is able to give large
improvements to speed of convergence of the Conjugate Gradient method, but requires
a problem-specific setup configuration to be used effectively. It is studied how this
preconditioner is applied effectively within the geomechanical simulation.

The Algebraic Multigrid method is approached through different software
distributions, namely those in SAMG, hypre and PETSc. Experiments with the
preconditioner methods obtained from these software distributions are performed using
the Visage simulator. For these experiments, problems with at least three million
unknowns are approached. The experiments are carried out on a state-of-the-art High
Performance Computing cluster.

On the basis of the results of these experiments, a comparison of the different
preconditioning methods is made. The Algebraic Multigrid methods are compared with
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each other and with the Jacobi preconditioner, which is the preconditioning method
previously used by the Visage simulator. For this comparison, the focus is on the
runtimes and peak memory requirements of the different solver methods in the carried
out experiments.

For one of the three AMG methods, the PETSc method, it was not possible to
make a complete comparison with the other two methods. It was, in this research,
not possible to apply this method to the approached linear problems. The other two
methods are applicable to the approached problems and the results are compared to
the Jacobi preconditioner.

It is observed that Algebraic Multigrid preconditioners can give a significant
improvement over Jacobi preconditioners. A massive reduction of the required number
of iterations is observed, with the use of the Algebraic Multigrid preconditioners
leading to up to 80 times less iterations being required for the Conjugate Gradient
method to converge. While a single iteration of the Algebraic Multigrid preconditioned
method requires a longer runtime, the total runtime of the linear solver method is
a lot shorter. For the total runtime, improvements of up to five times are observed
by the application of the Algebraic Multigrid method. A downside of the Algebraic
Multigrid preconditioners is the increased peak memory requirement. The peak
memory requirement for the Algebraic Multigrid method is in the worst case double
that of the Jacobi preconditioned method.

6.1 Recommendations on Linear Solvers

Based on this research, the main recommendation regarding the application of
the Conjugate Gradient method in linear problems obtained through geomechanical
simulations is to use the Algebraic Multigrid preconditioner. This preconditioner gives
significant improvements over the Jacobi preconditioner in the observed linear problems
obtained from large geomechanical simulations.

In terms of runtime, the AMG preconditioners are much more efficient. Runtimes
with the AMG preconditioners are as low as a fourth of the runtime of the Jacobi
preconditioner. The reduction of runtimes can be even bigger when only the time of
the iterative solver is considered. The time to set up the AMG-based preconditioners
is typically higher, because the preconditioner is more complicated.

The downside of AMG preconditioners is their higher peak memory requirement.
In most cases, the memory requirement of the linear solver is doubled when applying
the AMG-based preconditioners. This means that these preconditioners might not be
applicable if the available memory of the used system is limited.

Between the two methods for which results are obtained on the observed problems,
the observed differences are small. The runtimes of these methods are, in most cases,
very similar. Some differences in peak memory requirements are observed, with the
SAMG method typically having a significantly lower requirement on smaller models.
However, on larger models this difference is not observed. An advantage of the SAMG
method is the more accurate estimate of the memory requirement that is obtained. An
advantage of the hypre method is the potential use of GPU acceleration. This might
reduce the runtime even further, but this has not been approached in this research.
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The method provided through PETSc is only considered in a small model, where it
does not give better results than the other two AMG preconditioners. In this research,
this leads to the suggestion to not consider PETSc further. PETSc does have the
advantage of being useful in the spectral analysis of problems. Furthermore, if it
can be applied to the observed problems, it also provides the possibility to use GPU
acceleration.

For the specific configurations of the AMG methods, different options are
approached. In most cases, the result of this was that the options recommended by the
distributors of the AMG methods were the best performing.

Large reductions in runtime can be obtained through the use of parallel computing.
This was primarily applied using multiple MPI processes. The AMG preconditioners
generally scale well when using parallel computing. The Jacobi preconditioner scales
even better than the AMG preconditioners, but this method is for no number of MPI
processes faster than the AMG preconditioners.

When parallel computing is used with the AMG preconditioners, crucial advantages
are obtained through the redistribution of the unknowns using ParMETIS. In the
largest models, where the highest number of MPI processes is used, the AMG methods
perform much worse without the use of unknown redistribution. In these models, it is
recommended to use such a redistribution of the unknowns. On smaller models with
fewer MPI processes, the advantage is smaller and can even be not noticeable.

The use of parallel computing with multiple OpenMP threads has so far not been
thoroughly researched. For a small set of experiments, the hybrid use of multiple
OpenMP threads and MPI processes has been approached. From this it is observed
that these hybrid configurations are not as fast as pure MPI configurations but have
lower peak memory requirements.

6.2 Future Research

In this report, different ways of applying AMG-based preconditioners are presented. In
the future, more research can be done to further improve these preconditioners.

The main concept that can possibly provide further improvements is the application
of GPU acceleration. The hypre method that was investigated here provides this
possibility, but this was not approached so far. In many other applications the use
of GPU acceleration gives significant advantages and it might do so as well in the
application of AMG-based preconditioners.

Next, it might be worth considering further investigating the use of hybrid
configurations in parallel computing. So far these showed a higher runtime, but
lower memory requirements. If a trade-off between these two has to be made, hybrid
configurations could give advantages.

Finally, the use of AMG-based preconditioners is currently only considered in
geomechanical simulations coupled with the simulations of fluids or gasses in reservoirs,
but it is likely useful in other geomechanical applications as well. The Visage simulator
has several other applications, in which AMG-based preconditioners can provide
advantages.
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