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Abstract

Carbon Capture and Storage is a potential solution for the reduction of CO2 emission, that
makes use of injecting CO2 in geological formations. To establish the risks of gas injection
in these formations, it is desired to accurately simulate its effects. For the simulation of this
process, the Visage geomechanics simulator is an affected tool that can be used. A potential
improvement to the Visage geomechanics simulator lies in the way in which linear systems
describing the geomechanical process are solved. This report provides an overview of methods
that can potentially be useful in improving the process of solving linear systems within the
Visage geomechanics simulator.
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Introduction 1
One of the main challenges being faced right now is the reduction of emission of greenhouse
gasses, particularly carbon dioxide (CO2). The reduction of CO2 emission is essential to combat
rising trends in the global average temperature and the projected rise in sea level. As stated by
Metz et al. (2005 [6]), several options to reduce the emission of CO2 have been identified, such
as reducing the use of fossil fuels by replacing the use of fossil fuel by renewable alternatives
and enhancing the absorption of CO2 by natural systems. Another option has been identified,
which can specifically be applied to emission arising from industrial processes, referred to as
Carbon Capture and Storage (CCS).

Certain processes, such as the combustion of fuels for power generation and production
of hydrogen, steel and ammonia, can not be performed without CO2 being produced. CSS
technology aims to store the produced CO2 instead of emitting it in the atmosphere. For this
end, CO2 is separated from other gasses produced during these processes and transported to a
storage site, where it is supposed to remain for a long time (Metz et al., 2005 [6]).

One way of storing CO2 is by injecting the gas into geological formations that contain
hydrocarbons, such as abandoned oil or gas fields and unwinnable coal seams. The porosity
and permeability make these formations suitable locations for the storage of CO2-gas (Design,
2010 [3]). The injection of CO2 in these formations however is not risk free. Leakage of the gas
can lead to high CO2 concentrations in the areas where the gas is injected, having significant
negative effects on low-level ecosystems and potentially human health. It is thus desired to
predict risks of collapses and leakages, which is done by simulating the evolution of the storage
reservoirs (Pires et al., 2011 [7]).

To simulate the development of reservoirs for CSS, a mathematical model has to be con-
structed that takes into account both the reservoir itself and the mechanics associated with
the reservoir. Using principles derived from geomechanics, a mathematical model consisting of
Partial Differential Equations (PDEs) can be constructed. What this model exactly looks like
heavily depends on the type of reservoir that is used. Using discretization methods, such as the
Finite Element Method (FEM), a numerical model can be composed that is used to solve the
PDEs derived for the monitoring of the storage reservoir.

An important tool for the simulation of reservoirs for CSS is the Petrel geomechanics module,
developed by SLB (SLB, 2024 [10]), which provides a user-interface for generation and result
viewing of simulations in reservoir engineering. For the FEM discretization, Petrel makes use
of the Visage finite element geomechanics simulator, developed and innovated by SLB (SLB,
2024 [11]), with Visage performing calculations on rock stress and strain, displacements and
failures.

Using the stress and strain, internal forces and displacements at a certain moment in time,
Visage is able to determine these components at a later moment in time. To do this, large linear
systems are required to be solved, which can be very costly in terms of computations, and thus
in time required to develop a simulation. It is desired to find ways to make finding the solution
to these linear systems computationally less costly without losing accuracy. The solution for
this is expected to lie in a combination of using iterative solvers and applying methods that
alter the way in which the FEM discretization is done.

Saad (2003 [8]) discusses a wide range of iterative solvers for linear systems and is used to
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derive the information on these iterative solvers discussed here. The iterative solvers discussed
range from basic iterations methods to the more complicated Krylov subspace based methods.
Basic iteration methods, such as Jacobi and Gauss-Seidel iteration, which make use of a certain
iteration step, which is applied until a solution satisfies a chosen convergence condition. Methods
based on projections on Krylov subspaces, such as Conjugate Gradient (CG) and Generalized
Minimum Residual (GMRES), try to find a solution to a linear system by approximating the
inverse of the matrix in the linear system by a polynomial of this matrix. These iterative solvers
can further be improved using for example multigrid methods and preconditioning.

In this report, it is first discussed what the observed linear systems are and how they are
obtained in Chapter 2. Next, in Chapter 3 methods to solve a linear system using a direct
method, such as by computing the inverse or through Gaussian elimination, are discussed.
Chapter 4 discusses several iterative methods, such as CG and GMRES, and principles that can
be used to improve the computational efficiency of these methods, such as multigrid methods.
Lastly, Chapter 5 discusses several methods to apply preconditioning to the earlier discussed
iterative methods.
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Observed Model 2
The primary use of finite element simulation observed here is the modelling of body forces in
soil or rock formations. These forces are denoted, at a certain point in time t and in a finite
amount of discretized integration points, by p(t). It is desired to find a way to compute the
force at a later time point, t+∆t. Apart from the forces at a certain point in time, the stresses,
denoted by σ(t), strains, denoted by ϵ(t), and displacements are known or can be determined
from the forces, denoted by u(t). So, it is desired to describe a function f(·), such that

p(t+∆t) = f(p(t),u(t),σ(t), ϵ(t)).

The stress and strain at a certain time can be described using the nodal displacement, which
can be obtained from the forces at time t, by solving

Ku(t) = p(t), (2.1)

where K denotes a stiffness matrix obtained from a finite element method. For this research,
this last linear system is of most interest.

This chapter first discusses how a mathematical model that models the stress and strain in
soil or rock formations is obtained in Section 2.1. After this it is discussed, in Section 2.2, how
a system of the form of Equation (2.1) can be obtained using the model for stress and strain
using the Finite Element Method.

2.1 Stress and Strain

To derive a model used to define an equation of the form of Equation (2.1), it is necessary to
derive a way to obtain the stress and strain. Models observed here are three dimensional, which
means that the stress, σ, and strain, ϵ, consist of 6 components, each denoting stress or strain
in a certain direction. In a certain location (xi, yi, zi), the stress and strain can be described,
each consisting of normal and shear components in each direction. This gives, in a location i,
σi, ϵi ∈ R6 as

σi =



σixx
σiyy
σizz
σixy
σiyz
σizx

 , ϵi =



ϵixx
ϵiyy
ϵizz
ϵixy
ϵiyz
ϵizx

 . (2.2)

Here the stresses of the form σjj denote normal stresses and stresses of the form σjk denote
shear stresses. Similarly, ϵjj denotes normal strain and ϵjk describes shear strain. The stress
and strain are related by a stiffness tensor, D, with

σi = Dϵi. (2.3)

3



Using the displacement in a location, the strain can be described. The displacement is given
by a component in each direction, so at location i, displacement is given by

ui =

uixuiy
uiz

 . (2.4)

Each component of the strain is then described using the derivative of the two corresponding
components of the displacement, described by Liu, Shi, and Yang (2020 [5]) as

ϵikj =
1

2

(
∂uij
∂k

+
∂uik
∂j

)
, j, k ∈ {x, y, z} (2.5)

The components of the stress vector are described using the forces in a location i, pi, which
also consists of a component in each direction. These are described by Liu, Shi, and Yang (2020
[5]) as

∂σikx

∂x
+
∂σiky

∂y
+
∂σikz

∂z
+ pik = 0, k ∈ {x, y, z} (2.6)

2.2 Finite Element Model

Using the mentioned methods to find stress and strain in a certain location, a finite element
model can be established. For this the observed domain is discretized in smaller regions, within
which nodes are located where the displacement, stress, strain and forces are observed. Here, a
system that is used to determine the displacement from body forces will be derived for a single
arbitrary element. This system in a single element can be used to built a system for the full
domain using a method of global assembly. How this is exactly done depends on the exact
problem that is observed.

A single element of general shape is established from a simple shape using a shape function
N . This is used to map between local coordinates (ξ, η, ζ) and global coordinates (x, y, z). Using
the shape function, the displacement is mapped between the local coordinate system and the
global coordinate system. So the shape function is such that, for some location i,xy

z

 = N

ξη
ζ

 (2.7)

ui = Nui
n, (2.8)

where un gives the nodal displacement in the local coordinate system. Using the derivative of
the shape functions,

B =



∂Ni
∂x 0 0

0 ∂Ni
∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂z 0 ∂Ni

∂x


,

a relation is established between the nodal displacement and the strain, given by

ϵi = Bui
m. (2.9)
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In a single element, it is required that the strain energy and the energy from body and
boundary forces are equal. This is described by Borja (2000 [1]), for a domain Ωe with
boundary Γe as ∫

Ωe

ϵTσdΩe −
∫
Ωe

uT fdΩe +

∫
Γe

uT tdΓe = 0 (2.10)

Here f describes the body force and t described the traction forces in the boundary. Now using
what was established in Equation (2.3), it is obtained that∫

Ωe

ϵTσdΩe =

∫
Ωe

ϵTDϵdΩe.

Then using Equations (2.7) and (2.9) Equation (2.10) can be determined in nodal values as∫
Ωe

uT
nB

TDBunσdΩ
e −

∫
Ωe

uT
nN

T fdΩe +

∫
Γe

uT
nN

T tdΓe = 0

uT
n

(∫
Ωe

BTDBunσdΩ
e −

∫
Ωe

NT fdΩe +

∫
Γe

NT tdΓe

)
= 0

These equations can be written as a linear system for un, as

Kun = pn (2.11)

K =

∫
Ωe

BTDBσndΩ
e

pn =

∫
Ωe

NT fndΩ
e +

∫
Γe

NT tndΓ
e.

From this system in an individual element a global system can be assembled. This is the system
of the from of Equation (2.1).

Exact properties of this system differ between physical models that are being observed.
However, some assumptions can be made on the matrixK. To begin with, this matrix is assumed
to be non-singular and thus a solution to Equation (3.1) exists for any p(t). Furthermore, K is
assumed to be a large sparse matrix, so it has much more zero elements than non-zero elements.
Lastly, K is assumed to be Symmetric Positive Definite (SPD) (Schlumberger, 2023 [9]).
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Direct Linear Solver Methods 3
The goal of this project is to efficiently solve an linear system of the form of Equation (2.1). This
chapter discusses various techniques to solve such a system, which for simplicity of notation is
rewritten as

Ax = b, (3.1)

with A ∈ Rn×n a matrix of coefficients, x ∈ Rn a vector of unknowns and b ∈ Rn right-hand
side vector. In the problems observed here, as established in Chapter 2, the coefficient matrix
A can be assumed to be non-singular and SPD. This means that a unique solution x for this
system always exists.

The methods discussed in this chapter directly compute an exact solution to a linear system,
without making use of iteration. The approach of the methods described here can be applied to
any non-singular matrix (or any non-singular SPD matrix in the case of eigendecomposition),
but these methods are not necessarily optimal for the problems observed here. As the matrices
observed here are assumed to be sparse, the direct methods described in this chapter often
require a lot of unnecessary computations. Furthermore, the inverse matrix of a sparse matrix
is not necessarily sparse, which means potentially a lot of extra memory is required to store the
inverse matrix. Although these methods may not be useful to solve the full system desired to
be solved, they can be used to solve smaller systems derived in the iterative methods discussed
in Chapter 4.

First the most simple way to solve a linear system, matrix inversion, is discussed in Section
3.1, together with two methods which can be used to obtain the inverse matrix. After this,
an overview is given of a method, referred to as Gaussian Elimination which can be used to
directly solve linear systems in Section 3.2. Lastly, an efficient substitution method to solve
linear systems of triangular matrices is discussed, together with two methods to decompose a
general matrix into two triangular matrices.

3.1 Matrix Inversion

The inverse of a matrix A is the matrix A−1, which is such that

AA−1 = A−1A = I.

The matrices discussed here are assumed to be non-singular, which means that an inverse always
exists. Multiplying both sides of the system in Equation 3.1 from the left by A−1 gives a unique
solution

x = A−1b.

Several methods can be used to compute the inverse of a matrix, two of which are discussed
here. The method discussed to directly compute a solution described in Section 3.2 can also be
used to compute the inverse of a matrix.

7



3.1.1 Inversion using the cofactor Matrix

A first direct method to compute the inverse of a matrix is by using its cofactor matrix. Using
the cofactor matrix C of A, the inverse of A is obtained as

A−1 =
1

det(A)
CT . (3.2)

To compute the cofactor matrix, minor matrices of A are used, where Mij denotes the matrix
obtained from deleting row i and column j from matrix A. Then the elements of the cofactor
matrix are obtained from the determinant of these minor matrices,

[C]i,j = (−1)i+j det(Mij).

The computation of the inverse through this method requires n2 + 1 computations of deter-
minants, n2 of matrices of sizes (n − 1) × (n − 1) and 1 of a matrix of size n × n. Since the
computation of a determinant can be very costly itself for large matrices, the computational
cost of this method is very large. Because of this, this method is theoretically useful, but its
practical use is limited.

3.1.2 Inversion using the Eigendecomposition

A second method to compute the inverse of a matrix will be derived from the eigendecomposition
of the matrix. For a matrix with eigenvalues λi and linearly independent eigenvectors vi, a
factorisation of the form

A = V ΛV −1

exists. Here Λ is a diagonal matrix in which the diagonal elements are the eigenvalues of A and
V is a matrix of which the columns are the eigenvectors of A. These matrices are constructed
in a way such that a pair of an eigenvalue λi and eigenvector vi, which satisfy Avi = λvi, are
located in the positions of the corresponding index of their respective matrices, so if λi is the
i’th diagonal element of Λ, then vi is the i’th column of V . Since A is assumed to be positive
definite, such a decomposition exists and the eigenvectors can be chosen such that they are
mutually orthogonal, making V a orthogonal matrix. Furthermore, since A is non-singular, the
eigenvalues of A are non-zero and thus Λ is non-singular as well.

Inversion of the eigendecomposition gives

(V ΛV −1)−1 = (V −1)−1Λ−1V −1 = V Λ−1V −1.

V is orthogonal, so V −1 = V T and thus

A−1 = V Λ−1V T ,

meaning that only the inversion of Λ is required to compute the inverse of A. Since Λ is a
diagonal matrix, this can be done directly, with

[Λ−1]i,i =
1

λi
.

So, if the eigendecomposition of a matrix is known, its inverse can easily be computed.
However, it is still computationally costly to compute the eigendecomposition for large systems.
Therefore, this method is practically not expected to be useful for the systems observed here.
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3.2 Gaussian Elimination

Gaussian Elimination is a commonly used method for solving linear equation. It makes use
of three types of row operations, the swapping of rows, multiplication of a row by a non-zero
number and adding a multiple of one row to another row. Using these operations, a non-singular
matrix can be transformed first in its row echelon form, which is an upper triangular matrix,
and then in its reduced row echelon form, which is the identity matrix for a non-singular matrix
(Fraleigh and Raymond, 1995 [4]). Applying the same transformations used to transform
a matrix in its reduced echelon form transforms b into a unique solution x.

The operations of adding one row to other rows and the multiplication of rows that are
required to solve a system using Gaussian elimination can be described by Gaussian transfor-
mation matrices. For the first transformation, to transform a matrix in the row echelon form,
these are described by

Mk = I −α(k)eTk (3.3)

α(k) =
(
0 · · · 0

[A(k−1)]k+1,k

[A(k−1)]k,k
· · · [A(k−1)]n,k

[A(k−1)]k,k

)T
,

where the term
[A(k−1)]k+1,k

[A(k−1)]k,k
is located in the k + 1’th position of α. The matrix A(k−1) is the

matrix obtained after multiplying the original matrix with the first k−1 Gaussian transformation
matrices. A(0) is set to be the original matrix A. Using these matrices, the row echelon form
can be obtained as

Ā =Mn−1Mn−2 · · ·M1A.

Since the matrices A(i) for i < k are required to compute Mk, this calculation is usually done
step-wise.

In a similar way, Gaussian transformation matrices that transform the row echelon form in
the reduced row echelon can be defined by

Nk = I − ek

(
γ(k)

)T
γ(k) =

(
[Ā]

1,k

[Ā]
k,k

· · ·
[Ā]

k−1,k

[Ā]
k,k

0 · · · 0

)T

,

which is used to transform the matrix in the reduced row echelon form by

Ã = N1N2 · · ·Nn−1Ā.

The operation of swapping rows, or pivoting, is done using a pivoting matrix, which is the
identity matrix with two rows swapped. So for swapping rows i and j, the matrix Pi,j is sued,
which has rows i and j swapped:

Pi,j =



1
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

1
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As the diagonal element of A(k−1) can be zero, it might be necessary to apply a pivoting matrix
before the Gaussian transformation matrix. This alters the method to obtain a row echelon
form and a reduced row echelon form of a matrix to

Ā = Pn−1Mn−1 · · ·P1M1A

Ã = Q1N1 · · ·Qn−1Nn−1Ā,

where Pk and Qk are the required pivoting matrices.
Since the reduced row echelon form is the identity matrix, it is observed that

Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1A = I.

From this several useful results are obtained. First, this provides a method to obtain a solution
to the system in Equation (3.1), by applying the Gaussian transformation operations to both
sides of the equation. This gives

Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1Ax = Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1b

Ix = Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1 · · ·M1b

x = Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1 · · ·M1b.

Furthermore, the Gaussian transformation matrices can be used to describe the inverse of A. It
is obtained that, apart from left multiplication of A with the Gaussian transformation matrices
giving the identity matrices, right multiplication does so as well,

AQ1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1 = I.

This means that the product of the Gaussian transformation matrices is the inverse of A, so

A−1 = Q1N1 · · ·Qn−1Nn−1Pn−1Mn−1 · · ·P1M1.

3.3 Triangular Substitution Methods

If the matrix observed in a linear system is a triangular matrix, then the linear system can be
solved in an efficient way. This is done using forward substitution for lower triangular matri-
ces and using backward substitution for upper triangular matrices (Vuik, C. and Lahaye,
D.J.P., 2019 [12]).

Suppose L is a non-singular lower triangular matrix and it is desired to solve linear system
Lx = b. Then using forward substitution, the solution of this system is obtained as

[x]1 =
1

[L]1,1
[b]1

[x]2 =
1

[L]2,2
([b]2 − [L]2,1[x]1)

...

[x]n−1 =
1

[L]n−1,n−1

(
[b]2 −

n−2∑
i=1

[L]n−1,i[x]i

)

[x]n =
1

[L]n,n

(
[b]2 −

n−1∑
i=1

[L]n,i[x]i

)
.
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In a similar way, Uy = c, with U upper triangular, can be solved using backward substitution.
This is described by

[y]n =
1

[U ]n,n
[c]n

[y]n−1 =
1

[U ]n−1,n−1
([c]n−1 − [U ]n−1,n[y]n)

...

[y]2 =
1

[U ]2,2

(
[c]2 −

n∑
i=3

[U ]2,i[y]i

)

[y]1 =
1

[U ]1,1

(
[c]1 −

n∑
i=2

[U ]1,i[y]i

)
.

Using these procedures, any linear system with a non-singular matrix A can be solved, if
A is decomposed into a lower and upper triangular matrix. If lower triangular matrix L and
upper triangular matrix U are such that A = LU , then a linear system can be written as

LUx = b.

This can then be solved by first solving Ly = b using forward substitution and then solving
Ux = y with backward substitution. Finding triangular matrices L and U such that LU = A
can be done in several ways, two of which are discussed here.

A first method to decompose a matrix A in a lower and upper triangular matrix is using
the LU - decomposition. This makes use of the Gaussian transformation matrices described in
Section 3.2. There it was observed that a matrix A can be transformed in its row echelon form,
which is upper triangular. Now it is observed that all matrices Mk defined in Equation 3.3 are
all lower triangular, which means that the product and its inverse are also lower triangular.
Letting U be the matrix that is obtained as the row echelon matrix, it is obtained that

Pn−1Mn−1 · · ·P1M1A = U

This can be rewritten to

PA = (Mn−1Mn−2 · · ·M1)
−1U.

This means that L = (Mn−1Mn−2 · · ·M1)
−1 and U =Mn−1Mn−2 · · ·M1A gives a decomposition

of PA in a lower and upper triangular matrix. As LU here describes PA instead of A, the system
that is solved using triangular substitution methods is

LUx = Pb.

L can easily be obtained using the fact that

M−1
k = I −α(k)eTk ,

which gives

L = (Mn−1Mn−2 · · ·M1)
−1 = I +

n−1∑
k=1

α(k)eTk .
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A second way to decompose a matrix in a lower and upper matrix is using the Cholevski
decomposition, which finds a matrix C such that A = CCT . This decomposition uses only one
matrix for both the upper and lower triangular matrix, making it advantageous in terms of
used storage. However, a Cholevski decomposition is only guaranteed to exist if A is SPD. The
process of finding a Cholevksi decomposition of a matrix A is described by Algorithm 3.1.

Algorithm 3.1: Cholevski Decomposition (Vuik, C. and Lahaye, D.J.P., 2019
[12, p. 55])

Data: Coefficient Matrix A
Result: Cholevski Decomposition Matrix C
Initialize C = On,n

for k=1. . . n do

[C]k,k =
√
[A]k,k −

∑k−1
j=1 C

2
k,j

for i=k+1. . . n do

[C]i,k = 1
[C]k,k

(
[A]i,k −

∑k−1
j=1 Ci,jCk,j

)
end

end
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Iterative Linear Solver
Methods 4
Like the previous chapter, a linear system of the form

Ax = b (4.1)

is discussed, with A ∈ Rn×n a large sparse matrix of coefficients, x ∈ Rn a vector of unknowns
and b ∈ Rn right-hand side vector. Systems like this are commonly too large to apply direct
methods of solving, as this requires too many computations. Iterative solvers can often be used
to gain a significant advantage over direct solvers for large systems, especially if the observed
matrices are sparse.

This chapter explores various iterative methods for solving sparse linear systems. The first
methods discussed are basic iteration methods, such as Jacobi and Gauss-Seidel iteration, in
Section 4.1. After this a transition is made to more advanced methods, such as Conjugate
Gradient in Section 4.2 and GMRES in Section 4.4. The chapter closes with two different types
of techniques, being multigrid methods in Section 4.5 and Domain Decomposition in Section
4.6.

4.1 Basic Iterative Methods

Most basic iterative methods make use of an iteration of the form

xk+1 = Gxk + f . (4.2)

Matrix G ∈ Rn×n is given by

G =M−1N = I −M−1A, (4.3)

where M and N are obtained from a splitting of A of the form A =M −N . This splitting of A
into M and N differs between methods, but is commonly based on a splitting of A of the form

A = D − E − F. (4.4)

Here D ∈ Rn×n is a diagonal matrix, containing the diagonal elements of A, E ∈ Rn×n is a
lower triangular matrix containing the elements of A located below the diagonal, multiplied by
−1 and F ∈ Rn×n is a upper triangular matrix containing the elements of A above the diagonal,
multiplied by −1. Vector f ∈ Rn is obtained from the right-hand side vector as

f =M−1b.

The iteration described by Equation (4.2) can be seen as solving

(I −G)x = f ,

which can be rewritten using G = I −M−1A to

M−1Ax =M−1b. (4.5)

13



This type of system is called a preconditioned system with M being a preconditioner.

The iteration in Equation (4.2) starts with an initial guess x0. There are very little re-
quirements for this initial guess, and commonly a simple initial guess like x0 = 0 is used. The
iteration stops when a predetermined stopping criterion is satisfied. This can be a chosen max-
imum value for k, but is more commonly based on a bound on the residual rk = Axk−b. Then
the iteration is stopped if the norm of the residual ∥rk∥ is smaller than a chosen acceptance in
residual δ.

For iterations of the from of Equation (4.2) several aspects about convergence of the itera-
tions are known. First it is observed that the iteration satisfies

xk+1 =M−1Nxk +M−1b, (4.6)

which has limit x =M−1Nx+M−1b. So, with A =M −N , this limit satisfies Ax = b. Thus
if Equation (4.2) converges to a solution, then that solution is a solution to the original system
in Equation (4.1).

Next, it is observed that if I −G is non-singular and x∗ is an exact solution to

x = Gx+ f , (4.7)

then the error of the iterate obtained from Equation (4.2), dk = xk − x∗, satisfies

dk = Gkd0. (4.8)

The sequence dk converges in norm if G has spectral radius ρ such that

ρ(G) = max
λ∈σ(A)

|λ| < 1, (4.9)

where σ(A) is the spectrum, the set of all eigenvalues, of A. From the fact that ρ(G) ≤ ∥G∥ for
any matrix norm ∥ · ∥, it is then obtained that xk − x∗ converges in norm if there is a matrix
norm such that ∥G∥ < 1. Furthermore, both these conditions being satisfied leads to I − G
being non-singular(Saad, 2003 [8, p.115]). The last condition is commonly easier to use as
it does not require calculating all eigenvalues of G, which is computationally costly.

Lastly, it is desired to know how fast convergence happens. The most useful way to establish
the rate of convergence is by observing the general convergence factor of a method. The general
convergence factor is given by

ϕ = lim
k→∞

(
max
x0∈Rn

∥dk∥
∥d0∥

) 1
k

. (4.10)

For the general convergence factor it is obtained that it is equal to the spectral radius of G:

ϕ = lim
k→∞

(
max
d0∈Rn

∥Gkd0∥
∥d0∥

) 1
k

= lim
k→∞

(
max
d0∈Rn

(
∥Gk∥∥d0∥

∥d0∥

)) 1
k

(4.11)

= lim
k→∞

(
∥Gk∥

) 1
k

= ρ(G).
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4.1.1 Richardson’s Iteration

One of the most simple iteration methods is Richardson’s iteration. The iteration used for it is
given by

xk+1 = (I − αA)xk + αb,

so the iteration matrix Gα = I − αA is used. From the combined result of Equations (4.9) and
(4.11), it is observed that the method convergences if both

1− αλmin < 1

1− αλmax > −1.

This means that the method does not converge if A has negative eigenvalues, which it is not
expected to have as A can be expected to be SPD in the problems observed here. This means
that the convergence condition obtained for α is given by

0 < α <
2

λmax
. (4.12)

For this method a value of α that gives optimal convergence can also be obtained. This is
obtained from minimizing the spectral radius of the iteration matrix, which is done by solving

−1 + αλmax = 1− αλmax,

which gives

αopt =
2

λmax + λmin
. (4.13)

Although this value is easily derived, the actual calculation of αopt can be challenging, as it
requires the calculation of the eigenvalues of A.

4.1.2 Jacobi Method

The Jacobi method is another simple iteration method. It uses an iteration of the form of
Equation (4.2), with G = I −D−1A and f = D−1b, where D is the diagonal matrix obtained
from a splitting of A as given in Equation (4.4). Since D is a diagonal matrix, the inverse of D
can be easily calculated. The iteration obtained for the Jacobi method is as follows:

xk+1 = D−1(E + F )xk +D−1b (4.14)

The Jacobi iteration can also be viewed as solving the preconditioned system given in Equation
(4.5) with precondition matrix M = D.

For this iteration method a damped or weighted variant exists, that is based on a weighted
average of the current iterant, xk and the next iterant obtained from applying a step of Jacobi
iteration. This gives

xk+1 = (1− ω)xk + ω(D−1(E + F )xk +D−1b). (4.15)

This corresponds to an iteration of the form of Equation (4.2) with G = I − ωD−1A. This
damped Jacobi method also corresponds to applying the Richardson method with α = 1

ω to
D−1A = D−1b (Vuik, C. and Lahaye, D.J.P., 2019 [12]).
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4.1.3 Gauss-Seidel Method

Another simple iteration method is the Gauss-Seidel iteration. Like Jacobi iteration this uses
an iteration of the form of Equation (4.2), but for this method G = I − (D − E)−1A is used.
This gives the iteration

xk+1 = (D − E)−1Fxk + (D − E)−1b. (4.16)

Unlike the iteration for the Jacobi method, which only has the easily computed inverse D−1, this
iteration uses a more complicated inverse (D−E)−1. Since D−E is a lower triangular matrix,
there is in general no easy way to compute this inverse. Therefore the iteration is instead done
by solving the system

(D − E)xk+1 = Fxk + b.

This system can be solved directly using forward substitution. The Gauss-Seidel method can
also be described by the preconditioned system in Equation (4.5) with precondition matrix
M = D − E.

Similarly to the Gauss-Seidel method, a backward Gauss-Seidel method is defined. In each
step of the backward Gauss-Seidel iteration

(D − F )xk+1 = Exk + b.

is solved. This is the same as the preconditioned system using M = D − F . Forward and
backward Gauss-Seidel can be used together to obtain the Symmetric Gauss-Seidel method.
This uses an iteration consisting of a forward Gauss-Seidel iteration followed by a backward
Gauss-Seidel iteration.

4.1.4 SOR and SSOR Method

Both the Jacobi and Gauss-Seidel methods use a splitting of A of the form A = M −N , with
M = D for Jacobi and M = D − E for Gauss-Seidel. The splitting is always done in the
same way for these methods. Overrelaxation uses a splitting which can differ depending on a
parameter ω given by

ωA = (D − ωE)− (ωF + (1− ω)D).

This gives rise to Successive Over Relaxation(SOR) method, which uses iteration

(D − ωE)xk+1 = (ωF + (1− ω)D)xk + ωb. (4.17)

This corresponds to the preconditioned system with M = 1
ω (D − ωE).

Like Gauss-Seidel, a backward SOR iteration is obtained from the exchange of E and F in
the iteration step. From combining the forward and backward SOR iterations a Symmetric SOR
method is obtained. Similar to symmetric Gauss-Seidel, this method consists of first performing
a forward iteration and following it up with a backward iteration. This gives the two iterations

(D − ωE)xk+ 1
2
= (ωF + (1− ω)D)xk + ωb

(D − ωF )xk+1 = (ωE + (1− ω)D)xk+ 1
2
+ ωb.

These two iterations can be written as one iteration of the form of Equation (4.2) with

Gω = (D − ωF )−1(−I + (2− ω)D(D − ωE)−1(ωF + (1− ω)D) (4.18)

fω = ω(2− ω)(D − ωF )−1D(D − ωE)−1b (4.19)
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As the preconditioned system from Equation (4.5) this method uses M = 1
ω(2−ω)(D −

ωE)D−1(D − ωF ).
For both the SOR and the SSOR method, the performance highly depends on the choice of

parameter ω. For this choice, it is first noted that ω is required to be in (0, 2), as any value
outside of this range causes the method to be unstable. ω ∈ (0, 2) ensures convergence of the
iterations. A commonly used choice for SSOR is the simple choice of ω = 1. This simple choice
turns SOR into the Gauss-Seidel iteration. A found optimal choice of ω is given by

ωopt =
2

1 +
√
1− ρ(GJ)

.

Here GJ is the iteration matrix of the Jacobi method, given in Equation (4.14) (Demmel,
1997 [2]). Using this optimal value for ω does require calculation of the eigenvalues of the
iteration matrix of the Jacobi method, which can be computationally costly.

4.2 Conjugate Gradient Method

All the methods seen in the previous section use a simple iteration, which is the same at each
step. In general these methods work well, but the convergence of these methods can slow down
significantly if the spectral radius of the iteration matrix is close to 1. In problems obtained
from discretised PDE problems the spectral radius commonly gets closer to 1 if the size of the
problem increases, which means that for large systems, simple iteration methods might not be
sufficient.

Improvements in simple iteration techniques are often derived from techniques based on
projections onto a Krylov subspace. These techniques try to approximate A−1b by p (A)b,
where p (A) is a polynomial which has a degree depending on the degree of the Krylov subspaces.
A method of this type that works particularly well for SPD matrices is the Conjugate Gradient
(CG) method.

In the Conjugate Gradient method a projection is performed on the Krylov subspace
Km (r0, A) given by

Km (r0, A) = Span
{
r0, Ar0, A

2r0, . . . A
m−1r0

}
(4.20)

r0 is the residual of the initial guess x0, so r0 = Ax0−b. This produces a solution xm ∈ x0+Km

that has a residual orthogonal to the Krylov subspace Km.

4.2.1 Conjugate Gradient Algorithm

The method is derived from the Lanczos algorithm, which finds a solution xm ∈ Rn from

xm = x0 + Vmym

ym = T−1
m (βe1) . (4.21)

The matrix Vm ∈ Rn×m is obtained from the Lanczos vectors vj ∈ Rn, which are orthogonal
vectors that span the Krylov subspace Km (r0, A). These vectors are obtained by the Lanczos
method, which is an orthonogalisation procedure that works particularly well when producing
a Krylov subspace for an SPD matrix A. Matrix Tm is a tridiagonal matrix built from the
orthogonalisation coefficients derived in this same procedure. Saad (2003 [8, p. 196]) describes
the full Lanczos method and provides an algorithm for the calculation of the orthogonal vectors
and the coefficients used to built the matrices Vm and Tm. The scalar β is obtained from the
norm of the initial residual, β = ∥r0∥2. e1 ∈ Rm denotes the first unit vector of length m. This
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method allows for the direct computation of the residual obtained after applying the method
using only what was obtained at the last step of the algorithm by

rm = βm+1e
T
mymvm+1. (4.22)

Here βm+1,ym and vm+1 are all computed at the last step of the Lanczos procedure and
em denotes the m’th unit vector of length m. Here it is seen that rm = σmvm+1, where
σm = βm+1e

T
mym is a scalar. Then since the vectors vi are orthogonal to each other, the

residuals are orthogonal to each other as well.

To describe the Conjugate Gradient method another set of vectors, pj , is required, which
form a A-conjugate set, (Api,pj) = 0 for i ̸= j. These vectors are obtained as the columns
from the matrix Pm = VmU

−1
m , where Um is obtained from the LU-decomposition of Tm. With

these vectors the iteration for the CG method is derived as

xj+1 = xj + αjpj , (4.23)

where αj =
(rj ,rj)

(Apj ,pj)
. From this recurrence a recurrence for the residuals is obtained as

rj+1 = rj − αjApj . (4.24)

Now, computing the vectors pj from the matrix Pm is computationally very inefficient, as this
would require a matrix product of Vm and UM , which both require performing the Lanczos
procedure. Fortunately, a recurrence relation for pj can be obtained as

pj+1 = rj+1 + βjpj , (4.25)

with βj =
(rj+1,rj+1)

(rj ,rj)
. This means that all required vectors at each step can be described by

data obtained in the same or previous step.

Algorithm 4.1 describes the Conjugate Gradient method. The convergence condition used is
usually in the form of a upper bound on the residual, ∥rj∥ < a, a ∈ R. Only one matrix-vector
product is required, as Apj can be stored after the computing it the first time it is required.
Because only the previously calculated variants of vectors and scalars are required, only four
vectors are required to be stored.

4.2.2 Estimate of eigenvalues of coefficient matrix

An advantage of the Lanczos algorithm is directly obtaining the tridiagonal matrix Tm ∈ Rm×m,
of which the largest and smallest eigenvalues give a good estimate of the largest and smallest
eigenvalue of A. Here m denotes the amount of steps required in the CG algorithm to satisfy
the convergence condition. From these eigenvalues, an estimate of the condition number of A
can be obtained, which gives valuable information about the convergence of iteration methods
like the CG and Lanczos algorithm. The computation of eigenvalues of a tridiagonal matrix is
much easier than that of a general matrix A.

In the Conjugate Gradient method such a matrix is not computed directly, but the same
tridiagonal matrix Tm can also be computed using the information computed in the Conjugate
Gradient method. Tm is of the form

Tm = tridiag[ηj , δj , ηj+1],
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Algorithm 4.1: Conjugate Gradient Method (Saad, 2003 [8, p. 199])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Guess x0

Result: Solution x, Residual r
Initialize r0 = b−Ax0

p0 = r0
j = 0

while convergence condition not satisfied do
qj = Apj

αj =
(rj ,rj)
(qj ,pj)

xj+1 = xj + αjpj

rj+1 = rj − αjqj

βj =
(rj+1,rj+1)

(rj ,rj)

pj+1 = rj+1 + βjpj

j+ = 1
end
x = xj

r = rj

where ηj and δj are obtained directly from the coefficients calculated in the CG algorithm.
These coefficients are obtained from

δj+1 =

{
1
αj

, j = 0
1
αj

+
βj−1

αj−1
, j ̸= 0

ηj+1 =

√
βj−1

αj−1

Note here how for ηj no special case for j = 0 is required, as the first ηj that is used is η1.
The calculation of these coefficients can either be done during each step of the CG algorithm or
afterwards. Neither is problematic regarding computation or storage. The only added compu-
tation is only a calculation on scalars. The extra storage required consists of two or four vectors
of length m, depending on whether the values of α and β are stored.

4.2.3 Convergence behaviour of the CG method

With the derived method for finding an estimate of the solution of the system in Equation (4.1)
with the Conjugate Gradient method, it is desired to know how good this estimate is and what
the convergence behaviour of this estimate is. After m steps of the CG method, an approximate
solution xm is obtained. This xm minimises the A−norm of the error, dm = x∗ − xm, with x∗
the exact solution of Equation (4.1), in the subspace x0 + Km. Since Km consists of the set of
all vectors of the form x0 + pm (A) r0 with pm a polynomial of degree ≤ m − 1, the obtained
approximate solution is such that x = x0 + pm (A) r0. Since x is the minimizes the A−norm of
the error, the polynomial pm is such that

∥ (I −Apm (A))d0∥A = min
q∈Pm−1

∥ (I −Ap (A))d0∥A, (4.26)

so pm gives the best approximate solution x in x0 + Km. From this it can easily be concluded
that the approximate solutions of the CG method converges to the exact solution, as x0+Km ⊆
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x0 +Km+1 and

min
q∈Pm

∥ (I −Ap (A))d0∥A ≤ min
q∈Pm

∥ (I −Ap (A))d0∥A.

Furthermore, a formula for the rate of convergence of the CG method is known, given by

∥x∗ − xm∥A ≤ 2

(√
κ− 1√
κ+ 1

)m

∥x∗ − x0∥A.

κ denotes the condition number of A, which may be challenging to calculate. However, a good
estimate of the condition number can be obtained, as described in Section 4.2.2. From this
relation an expected amount of iterations can be obtained for a desired maximum tolerance of
error ϵ, which is such that ∥x∗ − x∥A < ϵ, with x the solution obtained from the CG method.
This would require

2

(√
κ− 1√
κ+ 1

)m

∥x∗ − x0∥A < ϵ,

so

m > log√
κ−1√
κ+1

(
ϵ

∥x∗ − x0∥A

)
=

log
(

ϵ
∥x∗−x0∥A

)
log
(√

κ−1√
κ+1

)
4.2.4 Variations of the Conjugate Gradient method

Aside from the default formulation of the Conjugate Gradient method, several methods exist
that are similar to this method, but satisfy different requirements. Two methods similar to
CG are described here. First the Conjugate Residual method, which is very similar to CG, is
described shortly. Then the BiCGSTAB method is described more extensively in Section 4.3.
Other variations exist, but will not be discussed extensively as they are variations of the two
methods that are discussed and are expected to perform worse than these two methods. These
include the Generalised CR and ORTHOMIN methods, which are similar to the CR method,
and the BiCG method and CG Stabilized method, which are used to derive the BiCGSTAB
method.

The Conjugate Residual method requires the residual to be A-orthogonal and the vectors
qj = Apj to be orthogonal. The algorithm for this method is very similar, but because of the
requirement of the residual being A-orthogonal instead of orthogonal and qj being orthogonal
instead of A-orthogonal, the scalars α and β are calculated differently then in the CG method

αj =
(rj , Arj)

(qj ,qj)

βj =
(rj+1, Arj+1)

(rj , Arj)
.

To satisfy the requirement of qj being orthogonal, it now is calculated by

qj+1 = Arj+1 + βjqj .

In general the original CG method is preferred over this method, as the Conjugate Residual
method requires extra storage of the vector Arj and an extra computation in the calculation
of qj when compared to the CG method. In some cases this method however turns out to be
useful.
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4.3 BiCGSTAB

The Conjugate Gradient method is designed specifically for systems with SPD matrices, which
means that the convergence of the method is most robust when applied to systems with SPD
matrices. If CG is applied to a general matrix A that is not necessarily SPD, the convergence
is expected to be slower and less robust. BiCGSTAB or Biconjugate Gradient Stabilised makes
use of a similar iteration as CG, but its convergence can be expected to not depend on whether
the coefficient matrix is SPD. BiCGSTAB makes use of projection on the Krylov subspace

Km (v1, A) = span
(
v1, Av1, A

2v1, . . . A
m−1v1

)
and orthogonal to the subspace

Lm (w1, A) = span
(
w1, Aw1, A

2w1, . . . A
m−1w1

)
,

where v = r0
∥r0∥ and w is arbitrary, but not orthogonal to v. The method uses, apart from the

residual of the system that is desired to be solved, the residual of a dual system ATx∗ = b∗.
Since in the cases observed here A is symmetric, this system is the same as the original system,
and thus the exact solution will be the same as well. However, the residual of the dual system, r∗j
is at each step obtained from the arbitrarily initialised vector w1 and thus is different from the
residual of the original system rj . At each step of the BiCGSTAB algorithm both these residuals
are used in the calculation of the coefficients αj and βj , which, like in the original CG algorithm,
are used to determine the residuals at the next step. These coefficients are calculated such that

residuals original system are orthogonal to the residuals of the dual system;
(
ri, r

∗
j

)
= 0, i ̸= j.

Residuals and vectors pj are obtained from the relations

rj = ψj (A)ϕj (A) r0

pj = ψj (A)πj (A)p0,

with

ϕj+1 (t) = ϕj (t)− αjtπj (t)

πj+1 (t) = ϕj+1 (t)− βjtπj (t)

ψj+1 (t) = (1− ωj)ψj (t) .

The scalars αj , βj and ωj are obtained as

αj =
(ψj (A)ϕj (A) r0, r

∗
0)

(Aψj (A)πj (A) r0, r∗0)

ωj =
(Asj , sj)

(Asj , Asj)

βj =
αj

(
ϕj+1 (A) r0, ψj+1

(
AT
)
r∗0
)

ωj (ϕj (A) r0, ψj (AT ) r∗0)
,

where sj = rj−αjApj . Obviously it is desired to use a recurrence relation instead of computing
the polynomials of A, which gives rise to the BiCGSTAB algorithm in Algorithm 4.2

An advantage of BiCGSTAB is that it gains faster convergence than the regular CG method
and than BiCG. The CGS method does this as well, but requires squaring the residual polyno-
mials, which can cause substantial build-up of errors. Another advantage of BiCG over similar
variations of CG like BiCG is that it does not require the use of AT , although this does not
matter if A is symmetric.
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Algorithm 4.2: BiCGSTAB Method (Saad, 2003 [8, p. 246])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Guess x0, Arbitrarily
Chosen r∗0.

Result: Solution x, Residual r
Initialize r0 = b−Ax0

p0 = r0
j = 0

while convergence condition not satisfied do
qj = Apj

αj =
(rj ,r∗0)
(qj ,r∗0)

sj = rj − αjqj

tj = Asj ω =
(tj ,sj)
(tj ,tj)

xj+1 = xj + αjpj + ωjsj
rj+1 = sj − ωjtj

βj =
(rj+1,r

∗
0)

(rj ,rj)

pj+1 = rj+1 + β (pj − ωjApj)
j+ = 1

end
x = xj

r = rj

4.4 GMRES

Like the Conjugate Gradient method, the GMRES method tries to approximate A−1b by
p (A)b, with p (A) a polynomial corresponding to a projection on a Krylov subspace of A.
The Krylov subspace used for GMRES is slightly different from the one used in the CG method
and is given by Km (v1, A), where v1 = 1

∥r0∥r0, constructed in the same way as the Krylov

subspace in Equation (4.20). Since the only difference is v1 being a scaled variant of r0, projec-
tion on this Krylov subspace also minimises the residual rm for xm ∈ x0 +Km. The difference
between the two methods lies in the fact that the residual in the GMRES is such that it is
orthogonal to the subspace

Lm (v1, A) = AKm (v1, A) = Span
{
Av1, A

2v1, A
3v1, . . . A

mv1

}
,

where the residual was orthogonal to Km in the CG method.

4.4.1 The GMRES Algorithm

The process of finding a solution using the GMRES method is based on the fact that any vector
xm ∈ x+Km can be expressed as

x = x0 + Vmym. (4.27)

Matrix Vm is similar as it was for the CG method in Equation (4.21), as its columns form an
orthogonal basis for the Krylov subspace K, but it is constructed in a different way. The residual
rm is now obtained as

rm = r0 −AVmym. (4.28)

Now let β = 1
∥r0∥ , so r0 = βv1, then since v1 is the first column of Vk, for any k. This means that

r0 = βVke1, where e1 is the first unity vector. Furthermore, the product AVm can be rewritten
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as AVm = Vm+1H̄m, where H̄m ∈ R(m+1)×m is the so called Hessenberg matrix obtained from
deleting the last row of Hm = V T

mAVm. Arnoldi’s algorithm (Saad, 2003 [8, p. 160]) gives
an efficient method to compute the entries of Hm. From this it is concluded that the residual
can be obtained from

rm = Vm+1

(
βe1 − H̄mym

)
. (4.29)

It is desired to minimize this residual in norm. Now, it is obtained that

∥rm∥ = ∥Vm+1

(
βe1 − H̄mym

)
∥

= ∥Vm+1∥∥βe1 − H̄mym∥
= ∥βe1 − H̄mym∥,

as Vm+1 is orthonormal. Thus the minimal residual is obtained from minimising βe1 − H̄mym.
Minimising this vector is computationally inexpensive compared to computations on the original
system, since H̄m is small compared to the original coefficient matrix A.

The biggest challenge in the GMRES algorithm is obtaining the matrices Vm+1 and Hm

efficiently. For this two methods are commonly used, both based on different variants of the
Arnoldi process. The first function is a basic version using Modified Gram-Schmidt orthog-
onalisation, the second version uses a Householder variant for orthogonalisation. Since the
Householder variant is numerically more robust, only this variant will be discussed extensively
here. [8] goes over both methods more extensively.

For the Householder variant of the Arnoldi method a series of makes use of the Householder
reflection matrices Pk ∈ Rn×n, given by

Pk = I − 2wkw
T
k , (4.30)

where wk is constructed from the elements of A. With these Householder matrices the columns
of Vm can be obtained as

vj = P1P2 · · ·Pjej . (4.31)

This means that xm can be obtained as

xm = x0 + P1([ym]1e1 + P2([ym]2e2 + · · ·Pm−1([ym]m−1em−1 + Pm[ym]mem))). (4.32)

The computational requirement of this iterative computation of xm is negligible compared to the
orthogonalisation process, as it takes roughly the same amount of operations as the calculation
of the last Arnoldi vector vm. From this the Householder GMRES Algorithm given in Algorithm
4.3 is obtained.

4.4.2 Minimization method

To compute ym a minimization method is required. An elegant technique to solve this problem
is by making use of plane rotations to transform matrix H̄m into an upper triangular matrix.
The plane rotation is done by multiplying H̄m by a rotation matrices of the form

Ωi =



1
. . .

1
ci si
−si ci

1
. . .

1


. (4.33)
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Algorithm 4.3: Householder GMRES Method (Saad, 2003 [8, p. 174])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Guess x0.
Result: Solution x
Initialize r0 = b−Ax0

z = r0
for j = 1, . . .m+1 do

Compute unit vector wj such that
• [wj ]i = 0, i = 1, . . . j − 1

• [z− 2wjw
T
j z]i = 0, i = j + 1 . . . n

Pj = I − 2wjw
T
j

hj−1 = z− 2wT zw
v = P1P2 · · ·Pjej
z = PjPj−1 · · ·P1Av
if [hj−1]j = 0 then

Stop
end

end
Define β = eT1 h0 = [h0]1
Define H̄m = [h1,hm][1:m+1,1:m]

Compute ym = Argminy∥βe1 − H̄my∥ using minimization method

for m,m− 1, . . . 1 do
z = Pj([ym]jej + z)

end
x = x0 + z

To use this plane rotation, we define ḡ0 = βe1, which is the right hand side in the least squares

problem that is desired to be solved, and H̄
(0)
m = H̄m. These are updated, by

H̄(i)
m = ΩiH̄

(i−1)
m (4.34)

ḡi = Ωiḡi, (4.35)

with Ωi having

s1 =
h21√

h211 + h221
(4.36)

si =
hi+1,i√(

h
(i−1)
ii

)2
+ h2i+1,i

(4.37)

c1 =
h11√

h211 + h221
(4.38)

ci =
h
(i−1)
ii√(

h
(i−1)
ii

)2
+ h2i+1,i

. (4.39)

Although these updates require a matrix-matrix multiplication and a matrix-vector multiplica-
tion, they are computationally not problematic. This is because the size of H̄m is in general
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small compared to the size of the vectors in the for-loop in Algorithm 4.3. Furthermore, up-
dates are only required in two rows of H̄m and two elements of ḡi, because of the way in which
Ωi is built. For this update it is seen that, since Ωi is unitary,

∥gi − H̄(i)
m y∥ = ∥Ωi∥∥gi − H̄(i)

m y∥
= ∥Ωigi − ΩiH̄

(i)
m y∥

= ∥gi+1 − ΩiH̄
(i+1)
m y∥.

This means that
Argminy∥ḡ0 − H̄my∥ = Argminy∥ḡm − H̄(m)

m y∥. (4.40)

Doing these updates m times provides ḡm ∈ Rm+1 and matrix H̄
(m)
m ∈ Rm+1×m, which

consists of an upper triangular Rm ∈ Rm×m and a row of zeroes. From these a square system
can be easily obtained, by taking the upper triangular matrix Rm and defining gm as the first

m elements of ḡm. Then since the last row of H̄
(m)
m consists of only zeroes,

Argminy∥ḡm − H̄(m)
m y∥ = Argminy∥gm −Rmy∥. (4.41)

Now, as stated by Saad (2003 [8, p. 176]), Rm is non-singular if A is non-singular. This is
the case here and thus

ym = R−1
m gm (4.42)

rm = |[ḡm]m+1|. (4.43)

4.4.3 Stopping Condition

The GMRES method as discussed in Section 4.4.1 is usually applied with a chosen number of
iterations, m. In Algorithm 4.3 a stopping condition is added if [hj−1]j = 0, which is a result
of the method to compute the least squares solution ∥βe1 − H̄my∥, described in Section 4.4.2.
Specifically, [hj−1]j = 0 results in sj = 0 and cj = 1 in Equations (4.37) and (4.39), which
means that the rotation matrices Ωj , as defined in Equation (4.33) is the identity matrix. This
results in the residual being 0, which means that the then found set of vectors hj leads to an
exact solution xm.

A disadvantage of a set amount of iteration is that it could be difficult to find a value of
m that ensures a solution is found that satisfies the required accuracy, but does not require
to much computation and memory storage. Since not much is known on what a good choice
for this is, it is desired to use another condition for the convergence. The simplest way to add
a convergence condition would be to compute the approximate solution x at certain intervals
within the iteration and check for convergence. There however are other ways to check the
convergence of the algorithm, which can be beneficial either in computational cost or accuracy.

A simple method for this is to make use of restarting. This is done by making sure the
chosen value of m is small and repeating the algorithm multiple times. So instead of computing
the approximate solution at intervals within the iteration, the iteration is stopped when x
is computed, which is compared to a convergence condition. If this convergence condition is
satisfied, the algorithm is stopped and the solution is returned. If this condition is not satisfied,
a new iteration of the algorithm is started, where the initial guess of the new iteration is the
found approximate solution of the previous iteration. This results in advantages both in storage
and computation. Because at each iteration of the algorithm less vectors need to be stored,
less storage is required than when using a larger value of m and the approximate solution is
computed at certain intervals. Furthermore, the computation of v and z become more costly
as j increases, which means that using a lower upper bound of j is advantageous.
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4.4.4 Convergence of GMRES

Like with the methods observed earlier, it is desired to know if the GMRES method converges
and how fast this convergence happens. The first important observation regarding the conver-
gence of the method is that at each step the residual norm is minimized in a subspace Km. For
an iteration that minimizes the residual, it is known that, if matrix A is positive definite,

∥rk+1∥2 ≤
√
1− µ2

σ2
∥rk∥2,

where µ = 1
2λmin(A + AT ) and σ = ∥A∥2. This means that if A is a positive definite matrix,

then the GMRES method converges for any m.

Next, it is also possible to establish a relation similar to the relation in Equation (4.26),
which tells that a solution obtained from m steps of the Conjugate Gradient method minimizes
the error for a polynomial of degree m. For the GMRES method, the solution obtained after
m steps of the method minimises the 2-norm of the residual in x0 + Km. Since Km contains
all vectors of the form x0 + q(A)r0, where q is a polynomial with maximum degree m− 1, the
solution is of the form xm = x0 + qm(A)r0, where qm(A) is the polynomial that minimizes the
residual. Then it is observed that for the residual at step m,

∥rm∥2 = ∥b−Axm∥2
= ∥b−Ax0 −Aqm(A)r0∥2
= ∥r0 −Aqm(A)r0∥2
= min

q∈Pm−1

∥r0 −Aq(A)r0∥2.

This immediately gives an important difference in the solution obtained from the CG method
and the solution obtained from the GMRES method. The CG method minimises the error, the
difference between the obtained solution and the exact solution, whereas the GMRES method
minimizes the residual.

For the GMRES method it is more complicated to obtain a speed of convergence. A useful
result can only be obtained if A is diagonalizable as A = XΛX−1, where X contains the
eigenvectors of A and Λ contains the eigenvalues of A. For the convergence, Saad (2003 [8,
p. 217]) states in Corollary 6.33 that for a diagonalizable matrix A = XΛX−1, with eigenvalues
located in ellipse E(c, d, a), the residual norm obtained in m-step of GMRES satisfies

∥rm∥2 ≤ κ2(X)
Cm

(
a
d

)
|Cm

(
c
d

)
|
∥r0∥2. (4.44)

Here Cm are the Chebyshev polynomials, defined by

C0(x) = 1

C1(x) = x

Cn+1 = 2xTn(x)− Tn−1(x).
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The fraction
Cm(a

d )
|Cm( c

d)|
can be expanded to and estimated as

Cm

(
a
d

)
|Cm

(
c
d

)
|
=

(
a
d +

√(
a
d

)2 − 1

)m

+

(
a
d +

√(
a
d

)2 − 1

)−m

(
c
d +

√(
c
d

)2 − 1

)m

+

(
c
d +

√(
c
d

)2 − 1

)−m (4.45)

≈

(
a+

√
a2 − d2

c+
√
c2 − d2

)m

. (4.46)

The convergence rate obtained in Equation (4.44) can be simplified significantly if A is an
SPD matrix. For SPD matrices there always exists a diagonalisation of A, A = XΛX−1 such
that X is an orthogonal matrix, which means that κ2(X) = 1. Furthermore, it is known that the
eigenvalues of an SPD matrices are real, which means that the ellipse in which the eigenvalues
are enclosed can be given by E(λmax+λmin

2 , λmax−λmin
2 , λmax−λmin

2 ). From this the estimate in
Equation (4.46) becomes

Cm

(
a
d

)
Cm

(
c
d

) ≈ λmax − λmin

λmax + λmin + 4
√
λmaxλmin

. (4.47)

So then an approximate speed of convergence of λmax−λmin

λmax+λmin+4
√
λmaxλmin

is obtained. Unfortu-

nately, the GMRES method does not provide a way to approximate the eigenvalues directly in
a way in which the CG method does. This means that an estimate for the eigenvalues must be
obtained in a different way.

4.5 Multigrid Methods

The methods discussed in the previous sections, which are based on finding solutions in a certain
Krylov subspace, work well for smaller problems. The convergence in these methods, however,
can become much slower if problems become larger. The combination of slower convergence
and increased operations at each step may make the Krylov subspace methods less suitable for
large systems. For the matrices derived from discretized PDE methods this means that size to
which the mesh can be reduced is limited, as reducing the mesh size increases the size of the
discretization matrices.

If it is desired to reduce the mesh size in a PDE problem, Multigrid methods can be very
useful. These methods are specifically designed to solve discretized elliptic PDE problems and
the rate of convergence does not depend on the mesh size desired to be used. Multigrid methods
make use of discretizations of different sizes and combine this with iterations similar to the
iterations described in Section 4.1. The basic iterations converge slowly in general, but certain
parts of the iteration can converge very quickly. The eigenvectors of the iteration matrices can
be divided into high- and low- frequency modes, depending on how quick the error is damped
in the direction of an eigenvector. It is then observed that the high-frequency modes are the
eigenvectors corresponding to the larger eigenvalues of the iteration matrix. Multigrid methods
try to map the low-frequency modes to high-frequency modes by remapping the problem between
coarser and finer meshes.

This section discusses how problems can be remapped between coarse and fine meshes and
then uses this to establish two types of multigrid methods.
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4.5.1 Prolongation and Restriction

To make use of methods that are applied to different levels of grid sizes, it is required to be able
to transform a problem to another grid size. For this only the transfer operation between two
mesh sizes, a fine mesh Ωh and a coarse one ΩH , with H = 2h, for a one-dimensional problem is
observed. So if Ωh has n grid points, then ΩH has 1

2n grid points. These transfer operations can
be applied repeatedly to obtain transfers between finer or coarser meshes. Transfer operations
for higher dimensional problems are obtained directly from the transfer operation of the one-

dimensional problem, where in general for dimension d, ΩH has
(
1
2

)d
n grid points. The transfer

operations between mesh sizes are called prolongation and restriction, with prolongation taking
a system from the coarse grid to the fine grid and restriction doing the reverse.

The prolongation operator maps vectors from the coarse grid to the fine grid,

IhH : ΩH → Ωh.

So here a vector xH ∈ Rn is mapped to xh ∈ R2n, which is most commonly done through linear
interpolation. This results in IhH being a n× 2n matrix, given by

IhH =
1

2



1
2
1

1
2
1

. . .

1
2
1.


(4.48)

This makes sure that the elements in the coarse grid are mapped, xi
H , to the elements in the fine

grid that correspond to the same grid point, x2i
H , and that the elements in the fine grid which

were not present in the coarse grid, of the form x2i+1
H , are the average of the two neighbouring

grid points. With linear interpolation, a higher dimensional prolongation operator can be
obtained directly from the one-dimensional operator using tensor product. The two-dimensional
interpolation prolongation matrix is for example obtained as

IhH(2D)
= IhH ⊗ IhH (4.49)

The restriction operator is the reverse of the prolongation operator, so it maps from the fine
grid to the coarse grid,

IHh : Ωh → ΩH .

A very simple way of doing this is by mapping the grid points in the fine grid directly to the
corresponding grid points in the coarse grid. This gives

xH
i = xh

2i (4.50)

and is called the injection operator. With the injection operator the information obtained in
grid points of the fine grid, that do not directly correspond to a grid point of the coarse grid,
is not used. To make sure this information is not discarded, the more commonly used full
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weighting operator is defined. This operator is given by

IhH =
1

4


1 2 1

1 2 1
. . .

1 2 1

 (4.51)

and makes sure every element in the coarse grid is obtained from a weighted average of the
corresponding element in the fine grid and its neighbours. It is observed that this restriction

operator is a scaled transpose of the interpolation prolongation operator, IhH = 1
2

(
IHh
)T

. Apply-
ing the restriction and prolongation operator together to a vector does not result in the original
vector as can be seen from[

IHh I
h
HxH

]
i
=

1

4

([
IHh xh

]
2i−1

+ 2
[
IHh xh

]
2i
+
[
IHh xh

]
2i+1

)
=

1

4

(
1

2

[
xH
]
i−1

+
1

2

[
xH
]
i
+ 2

[
xH
]
2i
+

1

2

[
xH
]
i
+

1

2

[
xH
]
i+1

)
=

(
1

8
[xH ]i−1 +

3

4
[xH ]i +

1

8
[xH ]i+1

)
.

Like the interpolation prolongation operator, the weighted restriction operator can be obtained
for higher dimensions from the one-dimensional operator using tensor products. The property
of the weighted restriction operator being a scaled transpose of the interpolation prolongation
operator then remains, with

IhH =

(
1

2

)d (
IHh
)T

(4.52)

4.5.2 Geometric Multigrid

Geometric Multigrid (SMG) techniques involve solving a problem at different levels of grid
size. Typically this is done by obtaining a solution on a coarse grid first, which captures the
low-frequency components of the error well. This solution is then interpolated and possibly
smoothed to obtain an initial guess for a finer grid, from which a solution to the same problem
on a finer grid is obtained. The solution on the finer grid captures the high frequency components
of the error. The process can be applied multiple times recursively to go back and forth between
different levels of grid size.

The goal of SMG methods is to solve a problem on a fine grid with mesh size h, of the form

Ahx
h = fh. (4.53)

To apply SMG methods it is required to have a similar problem on a coarse grid with mesh size
H,

AHxH = fH . (4.54)

A way to obtain the system on the coarse grid is by discretizing the problem used to derive
the system on the fine grid on the coarse grid in the same way. Alternatively this can be done
using Galerkin projection, where AH and fH are obtained using the prolongation and restriction
operators described in Section 4.5.1 as

AH = IHh AhI
h
H , fH = IHh f

h (4.55)
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After solving the problem with a certain grid size, the problem at a new grid size is con-
structed and the solution found on the previous grid size is projected to the new grid size. This
projected solution is then used to obtain a new initial guess for the next iteration by performing
smoothing steps on the projected solution. A chosen amount of smoothing steps ν is done to
obtain the smoothed solution xh

ν . This smoothing step is of the form

xh
j+1 = xh

j +Gh(f −Ahx
h
j ). (4.56)

The smoothing matrix Gh depends on the type of iteration that is used, as it is the iteration
matrix as given in Equation (4.3), but require some type of damping. For example the Richard-
son iteration with G = ωI, weighted Jacobi iteration with G = ωD and SOR iteration with
G from Equation (4.18) are commonly used. Like how a smoothed solution xh

ν is obtained, a
smoothed residual and error can be obtained as

rhν = (I −AhGh)
νrh0

dh
ν = (I −GhAh)

νdh
0

4.5.2.1 Two-grid cycle

A theoretical simple but in practice not very useful method of applying geometric multigrid is
the two-grid cycle method. This makes use of two-grid sizes, h and H, and solves on the finer
grid size by correcting and smoothing a solution obtained on the coarse grid. Starting with an
initial guess xh

0 on the fine grid, this is done by smoothing the initial guess to xh
ν1 using the

smoothing operation given in Equation (4.56) and obtaining the residual rh = fh−Ahx
h on the

fine grid. This residual is transformed to the coarse grid and a correction factor δH is obtained
by solving

AHδH = rH .

This is used to obtain a correct the previously used solution xh
ν1 , by

xh = xh
ν1 + IhHδH .

The obtained solution is then post-smoothed, by applying ν2 smoothing steps, to obtain the
result of one iteration of the two-grid cycle xh

new. What is important in this method is that it
is never required to solve a system on the fine grid as the only time a linear system is solved is
on the coarse grid.

If the system that is desired to be solved has f = 0, the smoothing step described in Equation
(4.56) can be written as xh

j+1 = Shx
h
j , with Sh = I − BhAh. This means that applying the

smoothing step ν times to xh
0 is the same as multiplying xh

0 by (Sh)
ν . Using this the two-grid

cycle can be written as one iteration if fh = 0, with

xh
new = (Sh)

ν2
[
Ih − IhHA

−1
H IHh Ah

]
(Sh)

ν1xh
0 . (4.57)

4.5.2.2 V-and W-cycle

Although the two-grid cycle itself is not very useful in practice, it can be used to derive two
methods that are more useful. These are called the V-cycle and W-cycle and make use of the
process described for the two-grid cycle. In both methods the starting grid with mesh size hn is
too fine to obtain a solution, but there is a coarsest grid with mesh size h0, where it is possible
to solve a transformed problem. To get to the coarse problem, the problem is repetitively
coarsened to new grid sizes hi, with hi = 2hi+1. The V-cycle uses a process that consists of
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recursively applied two-grid cycles. The residual on a fine mesh size hi is calculated in the same
way and this residual is coarsened to a coarser grid to obtain rhi−1 . If the newly obtained grid
size hi−1 is still too fine to solve the system, another cycle is started, with matrix Ahi−1

, initial

guess x
hi−1

0 = 0hi−1 and right hand side fhi−1 = rhi−1 . This is repeated until the coarse enough
grid size h0 is reached. At grid size h0 the correction term δh0 is calculated and xh

new is obtained
in the same way as is done in the two-grid cycle. The W-cycle uses a similar process, but does
not obtain xh

new directly when δh0 is obtained if a coarse enough grid is reached. Instead it uses
it to first go back one grid level, to a grid with mesh size h1, and applies the correction term
to the solution at that grid level. The new solution is then used as an initial guess to perform
another two-grid cycle between h1 and h0, before going up one more level. This is repeated
at each level of grid size, so before advancing to a higher level, the cycle first goes back to the
lowest level. This process of going back and forth between layers can be repeated, depending
on a parameter γ.

In general the multigrid method of the form of a V- or W- cycle depends on four parameters.
Two of these, ν1 and ν2, determine the amount of smoothing steps, with ν1 influencing the
amount of pre-smoothing and ν2 influencing the amount of post-smoothing. The parameter n
depends on the total number of levels of grid size that is used, with the finest grid size being
given by hn. The last parameter γ influences the amount of two-grid cycles applied before
advancing to higher layer. γ = 1 corresponds to the V-cycle, larger values of γ correspond to
W-cycles.

4.5.3 Algebraic Multigrid

Geometric multigrid methods requires knowledge about the underlying mesh, which commonly
is not available. It also is challenging to apply geometric multigrid methods to more compli-
cated meshes, such as higher dimensional or non-rectangular meshes, which are commonly used
in FEM based methods. Algebraic multigrid (AMG) uses the same Galerkin approach of in-
terpolation and prolongation as geometric multigrid methods, but defines these operators only
using coefficient matrix A. It thus does not require knowledge on the grid to which it is applied.
To apply algebraic multigrid methods, it is required to have a matrix A that is positive definite.

To apply AMG to a fine problem

Ahx
h = fh, (4.58)

where h denotes the fine mesh, a way to transform the fine problem to a coarse problem is
required. The fine problem finds a solution xh ∈ Xh ⊆ Rn, the coarse problem

AHxH = fH , (4.59)

finds a solution xH ∈ XH ⊆ Rm. Here the dimension of the coarse problem is much lower than
the dimension of the fine problem, with the dimension of the fine problem usually being around
2d, with d the dimension of the physical problem, times as large as the dimension of the coarse
problem. To transform this problem, it is required to find a way to coarsen the grid from Xh

to XH and define a restriction operator IhH .
Coarsening the grid is typically done by taking a subset of the nodes of the fine grid. Letting

F = (VF , EF ) denote the graph of nodes on the fine grid and C = (VC , EC) the graph of nodes
of the coarse grid we have VC ⊂ VF . The way in which the coarse grid is obtained can be done
in several ways, but must satisfy the requirements of having a good representation of smooth
functions, the coarse problem being much smaller than the fine problem and strong couplings
not being lost. A strong coupling is a couple of nodes i and j in the fine problem that have
[Ah]ij
[Ah]ii

> σ for a predetermined value of σ. This coupling is maintained by ensuring that one
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of the nodes is in C or one of the nodes is strongly coupled to a node in C. A simple and
commonly used way of coarsening the grid is by letting VC be an independent set of F .

The restriction operator is used to transform Ah and fh to AH and fH , in the same way as
it was done for other multigrid methods, by Equation (4.55). Thus it is given that IhH ∈ Rn×m.
IhH must however now be defined algebraically from Ah, as it is not possible to use knowledge
of the grid as it was done in Section 4.5.1. The prolongation operator is obtained directly from
the transform of the restriction operator,

IhH =
(
IHh
)T
. (4.60)

It is desired to define the restriction operator in such a way that smoothness is maintained.
To do this, for a coarse node i ∈ VC , the nodes connected to i, nodes such that [A]ij ̸= 0, are
divided in three groups. The first group, denoted by Ci is the set of nodes connected to i that
are coarse nodes as well. The second group, denoted by F s

i , is strongly connected to i, so for

j ∈ F s
i ,

[Ah]ij
[Ah]ii

> σ. The last group, denoted by Fw
i , is weakly connected to i, so for j ∈ F s

i ,
[Ah]ij
[Ah]ii

≤ σ. With this a smooth error is defined as a s ∈ Rn, such that for smoothing matrix Sh,

∥Shs∥A ≈ ∥s∥A.

From this it is obtained that (As, s) ≈ 0, so As ≈ 0. For row i of A, this means

[A]iisi ≈ −
∑
j ̸=i

[A]ijsj = −
∑
j∈Ci

[A]ijsj −
∑
j∈F s

i

[A]ijsj −
∑
j∈Fw

i

[A]ijsj . (4.61)

This can be worked out to the relation s =
∑

j∈Ci
wijsj (Saad, 2003 [8, p. 459]), with

wij = −
[A]ij +

∑
k∈F s

i

[A]ik[A]kj
δk

[A]ii +
∑

k∈Fw
i
[A]ik

δk =
∑
l∈Ci

[A]jl.

This means that elements of the restriction operator are obtained as

[
IhH

]
ij
=


1 i ∈ VC , i = j

0 i ∈ VC , i ̸= j

wij i /∈ VC , j ∈ VC

0 i /∈ VC , j /∈ VC

(4.62)

Using this restriction operator and the corresponding prolongation operator, the methods shown
for SMG, such as the two-grid cycle and the V-and W-cycle can be applied with AMG as well.

4.5.4 Convergence

To observe the convergence of a multigrid method, the results described by Saad (2003 [8,
p. 453]) are used, where a simple two-grid cycle is observed. The convergence properties of
more complicated grid cycles can be obtained from expanding the results found here. Let Sh
describe the smoothing process used and let TH

h be the coarse grid correction operator,

TH
h = Ih − IhHA

−1
H IHh Ah.
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Both operators were used in a similar way in Equation (4.57). The smoothing operator can be
assumed to satisfy the so-called smoothing property.∥∥∥Sheh∥∥∥2

Ah

≤
∥∥∥eh∥∥∥2

Ah

− α
∥∥∥Aeh∥∥∥2

D−1
∀ eh ∈ Ωh.

The coarse grid correction operator satisfies the approximation property, which states

min
uH∈ΩH

∥∥∥eh − IhHe
H
∥∥∥2
D
≤ β

∥∥∥eh∥∥∥2
Ah

.

For a SPD original matrix Ah and prolongation and restriction operators satisfying a relation
of the form of Equation (4.52), these two properties can be used to ensure convergence of the
two-grid cycle. If the operators are such that they have both the smoothing property and the
approximation property, then the two-grid cycle converges if α ≤ β. Furthermore, the operation
of applying both the smoothing operator and coarse grid correction operator can be bounded
in norm

∥ShTH
h ∥Ah

≤
√
1− α

β
.

4.6 Block Methods and Domain Decomposition

In problems arising from discretized partial differential equations, it is often possible to divide
the problem into multiple subproblems. This can be most advantageous if the domain is of a
complicated shape, but can be divided into less complicated subproblems. Dividing the problem
into p smaller problems is done by dividing the domain into p covering subsets. This results
in the coefficient matrix A being divided into p2 smaller matrices, each corresponding to the
interactions within a subset of the domain or between two different subsets of the domain. This
gives

A =


A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App

 . (4.63)

Here the blocks on the diagonal, Aii, correspond to interactions within domain i, other blocks,
Aij correspond to interactions between domain i and j. Figure 4.1a provides an illustration of an
example of a cover that partitions a square domain, on which a finite difference approximation
is applied, that is decomposed into three smaller domains. Figure 4.1b gives an illustration of
how the corresponding matrix is divided into blocks.

Like how the coefficient matrix is divided into blocks, the right-hand side vector b and
solution x are divided into smaller vectors, each corresponding to one of the subdomains of the
division:

x =


ξ1
ξ2
...
ξp

 , b =


β1

β2
...
βp

 . (4.64)

The way of dividing x and b directly corresponds to the division of A, in a way such that

βi =

p∑
j=1

Aijξj . (4.65)
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For the simple example in Figure 4.1 x and b are divided into three smaller vectors, each with
ξi,βi ∈ R6.

The covering partition shown here is done in a very simple way, by cutting certain edges in the
graph that describes the domain. More generally, such a cover can be described by either a set-
partition or a set-decomposition. A set-partition decomposes the variable set S = {1, 2, . . . n}
into disjoint subsets, S1, S2 . . . Sp. With these disjoint subsets, submatrices and subvectors of
A, x and b are defined through these same partitions. This is done by defining the submatrices
of A and subvectors of x and b as

Aij = [A]Si,Sj (4.66)

ξi = [x]Si

βi = [b]Si

A set-decomposition allows for overlap and thus only requires the union of the subsets to be
a cover of the original full set, so it defines subsets S1, S2 . . . Sp such that

Si ⊆ S⋃
i=1,···p

Si = S.

For covers that allow overlap, it is required to define the submatrices Aij and subvectors ξi and
βi in a way that is able to deal with the overlapping elements.

For a particular subset Si, of size ni, given by

Si =
{
m1

i ,m
2
i ,m

3
i , · · ·m

ni
i

}
,

two matrices can be defined,

Vi =
[
em1

i
em2

i
· · · emn1

i

]
(4.67)

Wi =
[
ηm1

i
em1

i
ηm2

i
em2

i
· · · ηmn1

i
emn1

i

]
,

which are used to define the submatrices Aij . Here ηm2
i
are weight factors, such that

W T
i Vi = I.

Using the matrices Wi and Vj , obtained using the indices in subsets Si and Sj , the submatrices
Aij ∈ Rni×nj are defined as

Aij =W T
i AVj . (4.68)

The subvectors corresponding to indices in a subset Si are obtained as

ξi =W T
i x

βi =W T
i b,

from which x can be obtained as

x =

p∑
i=1

Viξi.

It is observed that defining the submatrices and subvectors using matrices Vi and Wi for
disjoint subsets Si leads to the same submatrices and subvectors obtained from directly taking
the elements with corresponding indices, as was done in Equation (4.66).

34



(a) (b)

Figure 4.1: (a) 6x6 Domain of finite difference approximation decomposed into 3 subdomains
(b) with corresponding matrix divided into 9 blocks (Saad, 2003 [8, p. 110])

4.6.1 Block relaxations for Basic Iterative Methods

For the Basic Iterative Methods discussed in Section 4.1 a variant can be described that makes
use of blocks as described by Equation (4.66). Here a splitting of A of the form A = D−E−F is
used, similar to the one described in Equation (4.4). However, the matrices are now described
using the blocks obtained from A by Equation (4.66) instead of diagonal, lower and upper
elements. The matrices D, E and F are described by

D =


A11 O · · · O
O A22 · · · O
...

...
. . .

...
O O · · · App

 , E = −


O O · · · O
A21 O · · · O
...

...
. . .

...
Ap1 Ap2 · · · O

 , F = −


O A12 · · · A1p

O O · · · A2p
...

...
. . .

...
O O · · · O

 .
This splitting can be used to define the iterations of the basic iterative methods, in exactly

the same way as the splitting described by Equation (4.4). This means that the Jacobi iteration
is again described by Equation (4.14), Gauss-Seidel by Equation (4.16) and SOR by Equation
(4.17), but with the newly defined matrices D,E and F .

Note that this can only be applied directly for covers without overlap. For covers that allow
for overlap, matrices D,E and F would not be of the same size as A making it not possible
to apply the direct iteration schemes. This means that instead an iteration is defined using
the element-wise iterations for the basic iteration methods. For the Jacobi and Gauss-Seidel
iteration these are given in Algorithm 4.4 and 4.5.

4.6.2 Domain Decomposition

Using the idea of dividing the problem into multiple subproblems, a more formal method can
be described. This method is called Domain Decomposition and makes use of a decomposition
between so called subdomain nodes, located in multiple subdomains, and interface nodes, that
correspond to interaction between subdomains. This means that, when working with p subdo-
mains, the set of indices corresponding to model nodes, S = {1, . . . , n}, is divided into a cover
of p + 1 subsets. The first p subsets, S1, . . . , Sp each correspond to one subdomain. The last
subset, SC , corresponds contains the indices of the interface nodes.
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Algorithm 4.4: Block Jacobi Iteration (Saad, 2003 [8, p. 112])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Guess x0, Partition
matrices Vi,Wi, Aii (as in Equations (4.67) and (4.68))

Result: Solution x, Residual r
Initialize k = 0
while convergence condition not satisfied do

Set rk = b−Axk
for i = 1 · · · p do

Solve Aiiδi =W T
i rk

Set xk+1 = xk + Viδi
end
k = k + 1

end

Algorithm 4.5: Block Gauss-Seidel Iteration (Saad, 2003 [8, p. 112])

Data: Coefficient Matrix A, Right-hand side Vector b, Initial Guess x0, Partition
matrices Vi,Wi, Aii (as in Equations (4.67) and (4.68))

Result: Solution x, Residual r
while convergence condition not satisfied do

for i = 1 · · · p do
Solve Aiiδi =W T

i (b−Ax)
Set x = x+ Viδi

end

end

Again the matrix-vector system can be split according to these subsets, like how it was done
in Equations (4.63) and (4.64). Since there is no interaction between different subdomains, only
between the subdomains and the interface nodes, it is observed that any submatrix Aij is the
zero matrix, if i ̸= j and neither i or j is p+ 1. This results in a system of the form[

B E
F C

](
x
y

)
=

(
f
g

)
, (4.69)

where

[
B E
F C

]
,

(
x
y

)
and

(
f
g

)
each correspond to A,x and b in the original system, as described

in Equation (4.1). The submatrices, B ∈ R(n−|SC |)×(n−|SC |), C ∈ R|SC |×|SC |, E ∈ R(n−|SC |)×|SC |

and F ∈ R|SC |×(n−|SC |), each describe a specific part of the interactions between nodes. B
is a diagonal block matrix, with blocks Bi, each describing the interactions between nodes of
indices in subset Si. E and F both are made up of submatrices, Ei and Fi, which describe the
interaction between subdomain i and the interface nodes. C describes the interaction between

interface nodes. The solution and right-hand side vectors,

(
x
y

)
and

(
f
g

)
, both consist of a

part corresponding to the subdomain nodes, f , x ∈ Rn−|SC |, and a part corresponding to the
interface nodes, g, y ∈ R|SC |.

Figure 4.2a, shows an example of a domain of a more complicated shape being split into 3
rectangular subdomains and a group of interface nodes. Here it is observed that the subdomain
subsets are S1 = {1, . . . 9}, S2 = {10, . . . 21} and S3 = {22, . . . 33} and the interface subset
is SC = {34, . . . 40}. Figure 4.2b shows an impression of the corresponding matrix, with the
different blocks marked. As can be seen, there are no interactions between different subdomains.
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(a) (b)

Figure 4.2: (a) L-shaped domain of finite difference approximation decomposed into 3 subdo-
mains and interface nodes (b) with corresponding matrix divided into blocks corresponding to
Equation (4.69), this matrix is referred to as an arrowhead matrix. (Saad, 2003 [8, p. 473])

The decomposition shown in Figure 4.2a is one way of decomposing the domain, but de-
pending on certain choices, this decomposition can be done in several ways. The first thing
that must be decided is the amount of subdomains and the size of these subdomains. The next
choice that has to be made is whether overlap of subdomains is allowed. Allowing subdomains
to overlap can require changes to the block matrix, to ensure there are no values in the parts
that are expected to be zero. Alternatively, alterations can be made to the methods used, to
make sure this is dealt with.

A last important choice is how the partitioning is done. For this three possibilities are
commonly used, the first of which, element-base partitioning, was used in Figure 4.2a. This
method of partitioning makes a split based on elements and does not allow an element to be split
between two subdomains. The second method, edge-based partitioning, makes a split in a way
in which no edges are split between two different subdomains. The last method, vertex-based
partitioning, splits the original set of vertices into subsets of vertices, without restrictions on
elements or edges.

Because of the format of the matrix, the most complicated part in solving the system in
Equation (4.69) is finding the solution for the part that corresponds to the interface nodes, y.
For this solution, it is observed that

Sy = g − FB−1f , (4.70)

where S is the so called Schur complement matrix S = C − FB−1E. This Schur complement
matrix satisfies the properties of being non-singular if A is non-singular and of being SPD if A
is SPD as well (Saad, 2003 [8, p. 476]). This computation can be complicated, as it requires
B−1, it however is less complicated than solving the original system.

If this y is obtained, the solutions in the subdomains, xi, can easily be obtained from

Bixi = fi − Eiyi.

This can be solved using a direct or iterative solver, depending on the size and complexity of
the resulting problem.
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Preconditioning 5
Krylov subspace methods like the CG and the GMRES method are theoretically well-working
methods, they however can lack in speed of convergence when applied to practical problems.
Although these solvers will in theory always converge to a solution, this convergence can be
very slow. To improve the efficiency of these iterative methods one can use preconditioning.
Preconditioning a system is done by transforming the system into another system that has the
same solution but on which the performance of an iterative solver is improved. The way to
improve the performance is usually by making sure the new system is more well-conditioned
than the original system, which improves the speed of convergence. The typical way to transform
the system is by multiplying it by a preconditioning matrix M in one of three different ways.
The first way to transform a system is by left multiplication of the system, leading to

M−1Ax =M−1b. (5.1)

The second is by applying M to the right, leading to

AM−1u = b, x =M−1u. (5.2)

The last way to apply a preconditioning matrix is a combining the first two methods. If a
preconditioning matrix can be split in two triangular matrices with M =MLMR, then the left
and right method can be combined as

M−1
L AM−1

R u =M−1
L b, x =M−1

R u. (5.3)

The preconditioning matrix M can be defined in several ways, but has a few minimal require-
ments it must satisfy. First, M obviously has to be non-singular, as it has to be possible to
make use of the inverse of M . Secondly, as it is desired to speed up the convergence of the
system, solving Mx = b has to be computationally inexpensive. Lastly, it is desired to make
sure M is similar to the original matrix A, to make sure M−1 is an approximation of A−1.
This causes M−1A to be close to the identity matrix, which means that κ2(M

−1A) ≈ 1, as the
condition number of the identity matrix is 1.

This chapter first discusses ways of applying preconditioning to the Conjugate Gradient
method in Section 5.1 and the GMRES method in Section 5.2. After this ways to actually find
preconditioner matrices are discussed in Sections 5.3, 5.4 and 5.5.

5.1 Preconditioned Conjugate Gradient

An important property of matrices to which CG usually is applied is the fact that they are
required to be SPD. As a preconditioning matrix M is chosen in a way such that it is similar
to A, which means that it is required for M to be SPD as well. With this M , preconditioning
can be applied directly, using one of the methods described above. This however may cause
problems in the application of CG to the obtained systems, as the obtained matrices M−1A in
Equation 5.1 and AM−1 in Equation 5.2 are not necessarily SPD. This is only the case if A
and M−1 commute, which they in general do not do, as this would mean that the left and right
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preconditioned systems are the same. It is thus important to apply a preconditioning matrix in
a way in which the obtained system is a SPD system, so to make sure CG can be applied.

A simple way to make sure a preconditioned system is preserved is using a split precondi-
tioned system

L−1AL−Tu = L−1b, x = L−Tu, (5.4)

where L is obtained from an incomplete Cholevski factorisation ofM , soM = LLT . The matrix
in this system, L−1AL−T , is SPD, as for any SPD matrix A and non-singular B, BABT is SPD.
This means that it is possible to apply CG to this obtained system.

It can however be undesirable to compute the Cholevski factorisation of the preconditioning
matrix. This means that it is desired to develop an alteration to the CG method that takes
the preconditioner matrix into account. For this it is observed that M−1A is not necessarily
self-adjoint with the Euclidian inner product, but it is self-adjoint with respect to the M - inner
product, as

(M−1Ax,y)M = (Ax,y) = (x, Ay) = (x,MM−1Ay) = (x,M−1Ay)M .

From this an alternative CG method is obtained that replaces Euclidian inner product by M -
inner products. This results in iterates that are obtained in a similar way as described in Section
4.2.1, with a new residual for the preconditioned system described by zj = M−1rj , obtained
from the residual. This residual is used to alter the scalars αj from Equation 4.23 and βj from
Equation 4.25, along with the calculation of the vectors pj that span the Lanczos space. The
new way in which these are computed is by

αj =
(zj , zj)M

(M−1Apj ,pj)M
=

(rj , zj)

(Apj ,pj)

βj =
(zj+1, zj+1)M
(zj , zj))M

=
(rj+1, zj+1)

(rj , zj))

pj+1 = zj+1 + βjpj .

The second variants to compute αj and βj are what would be used in practice, as these omit
the computation of the M -inner products. Saad (2003 [8, p. 277]) provides a full overview of
the newly obtained algorithm for this Preconditioned CG method. In a similar way a precon-
ditioned CG method for the right preconditioned system can be composed, using M−1 inner
products. This however ends up giving the exact same iterates as the left preconditioned system.
Furthermore, applying CG to the split preconditioned system using the incomplete Cholevski
decomposition also results in the same iterates as the left preconditioned CG method.

Another way in which preconditioning on the CG method can be done is using Eisenstat’s
implementation. In this implementation matrix A is split, using its symmetric property, in a
diagonal matrix D0 and triangle matrices E and ET , by

A = D0 − E − ET . (5.5)

Using the matrices from the splitting, preconditioned CG is applied to

Âu = (D − E)−1b

with
Â = (D − E)−1A(D − ET )−1, x = (D − ET )−1u

andM−1 = D as a preconditioner matrix. HereD is a diagonal matrix that is not necessarily the
same as D0, but is often related to it. This method generally requires 3n+2nnz(A) operations,
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while the regular preconditioned CG method requires 4nnz(A) − n operations. This means
that Eisenstat’s method is computationally less costly than the regular method. However, a
downside is that only a single special preconditioner can be used.

5.2 Preconditioned GMRES

GMRES has no requirements for the system which is desired to be solved, other than the
coefficient matrix being non-singular. This means that applying preconditioning is relatively
straight forward. The three variants of preconditioning as discussed in Equations 5.1-5.3 can
all be applied directly to obtain three Preconditioned GMRES (P-GMRES) methods. For right
preconditioning a special flexible variant exists, that makes use of a different preconditioning
matrix at each iteration.

Left P-GMRES is simply done by applying the GMRES method as described in Section 4.4
to the system in Equation 5.1. This means that the Krylov subspace that is constructed by the
GMRES method is of the form

Span
{
z0,M

−1Az0, (M
−1A)2z0, . . . (M

−1A)m−1z0
}
, (5.6)

where z0 corresponds to the preconditioned initial residual M−1(b − Ax0). As this subspace
is based on the residual of the preconditioned system, all residuals computed in the GMRES
iteration correspond to preconditioned residuals zm = M−1(b − Axm). This means that if it
is desired to find the residual of the original system, without a preconditioner, it is required
to multiply the obtained preconditioned residual zm by M . This makes it more challenging
to base a stopping condition on the actual residual and instead it is more convenient to use a
stopping criterion based on the preconditioned residual. If A is close to an SPD matrix or is an
SPD matrix itself, it is possible to use a preconditioning matrix M that is SPD. This results in
an algorithm, which replaces the Euclidian inner products in the GMRES method by M -inner
products in the same way as it was done for the preconditioned CG method. A problem that
might arise when doing this is certain inner products becoming negative due to round-off errors.

In the same way right preconditioning can be used with the GMRES method. This results
in applying the GMRES method to Equation 5.2, with a simple alteration to find the initial
residual. Since u0 is commonly not available, b− AM−1u0 can not be computed. x0 however
is available, so it is possible to compute the initial residual from b − Ax0. Applying GMRES
to a right preconditioned system leads to solutions in the Krylov subspace given by

Span
{
r0, AM

−1r0, (AM
−1)2r0, . . . (AM

−1)m−1r0
}
. (5.7)

Unlike left P-GMRES, right P-GMRES uses residuals of the original system, rm = b − Axm.
This can be more convenient when defining a stopping condition.

The third way to apply preconditioning to the GMRES method is to use split precondition-
ing. This is done by splitting the matrix M by LU-factorisation in matrices L and U such that
LU =M . This results in a split preconditioned system

L−1AU−1u = L−1b, x = U−1u.

Applying GMRES results in residuals preconditioned by the left split, rm = L−1(b−Axm).

The main difference between the three preconditioning methods is the way in which residuals
are computed. This means that each method needs a stopping criterion that is slightly different.
Determining a well-working stopping criterion based on the preconditioning matrix M can be
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challenging if M is ill-conditioned. Between the left P-GMRES and right P-GMRES another
connection can be made in the function they minimize. Left P-GMRES minimizes

∥M−1b−M−1Ax∥2,

whereas right P-GMRES minimizes

∥b−AM−1u∥2.

These two are only substantially different if M is ill-conditioned, which it is not expected to be.
This means that it can be assumed that there is not massive difference in quality of performance
between left and right P-GMRES.

5.3 BIM based Preconditioners

Now that ways in which preconditioners can be used to help improve iterative methods are
established, it is necessary to find ways to define the preconditioning matrixM described above.
The most simple way of obtaining a preconditioner matrix is from the basic iterative methods
discussed in 4.1. These methods make use of an iteration of the form of Equation (5.8)

xk+1 = Gxk + f , (5.8)

where G = I −M−1A, where M is obtained from some way of splitting A = M − N . This
iteration solves (I − G)x = f , which is essentially the same as solving the left preconditioned
system described in Equation 5.1. Thus, the matrix M obtained from splitting A can be used
as a left preconditioning matrix. These exact same matrices where used to described the basic
iterative methods in Section 4.1, which used an iteration of the form I −M−1A, so they can be
used as preconditioner matrices here as well.

For the Jacobi method the iteration matrix is given by I −D−1A, where D consists of the
elements on the diagonal of A. This means that the obtained preconditioning matrix is given
by D. Preconditioning withM = D is equivalent to scaling the matrix such that every diagonal
element becomes one. In the same way the Gauss-Seidel iteration uses an iteration matrix of
I − (D − E)−1A, so then M = D − E is used as a preconditioning matrix.

Preconditioning matrices obtained from damped methods such as the Damped Jacobi iter-
ation and SSOR can be used as preconditioners as well. However, the choice of the damping
parameter ω often is less important than it is in a fixed-point iteration. Generally, the most
simple choice, ω = 1, is used, which causes the damped Jacobi method to be exactly the same
as the standard Jacobi method. For the SSOR iteration, which has preconditioning matrix

M = (D − ωE)D−1(D − ωF ),

this results in the Symmetric Gauss-Seidel preconditioning matrix,

M = (D − E)D−1(D − F ). (5.9)

This is the same as using the LU -decomposition of A for preconditioning.(Saad, 2003 [8,
p. 299])
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5.4 ILU factorisation

Another way to define preconditioning matrices is using incomplete LU factorisation. This uses
an approximation of the LU factorisation of A, with some residual matrix R, such that

A = LU +R. (5.10)

Like the full LU factorisation of a matrix, methods for obtaining an ILU factorisation of a
matrix are based on Gaussian elimination. The difference between the ILU factorisation and
the full LU factorisation is that in the ILU factorisation certain positions are chosen in which
the elements are dropped. For ILU factorisation a zero pattern set P , which is a subset of all
off-diagonal elements, is defined, which is used to compute an L and U that satisfy this zero
pattern. The zero pattern set can be defined in several ways, giving different ILU methods.

A general algorithm for the ILU method is provided in Algorithm 5.1. This algorithm is
derived from the algorithm for computing the LU decomposition using Gaussian elimination,
with the extra requirement of forcing certain elements to zero. Using the empty set as the zero
pattern results in the full LU decomposition. The result of this algorithm is the upper matrix
U , with the elements of L obtained during the intermediate steps.

Algorithm 5.1: ILU Factorisation (Saad, 2003 [8, p. 303])

Data: Coefficient Matrix A, Zero pattern P ⊂ {(i, j)|i ̸= j; 1 ≤ i, j ≤ n}
Result: ILU decomposition L and U
Initialize L = In
for (i, j) ∈ P do

Set [A]i,j = 0
end
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do
if (i, k) /∈ P then

[A]i,k =
[A]i,k
[A]k,k

for j = k + 1, . . . , n do
if (i, j) /∈ P then

[A]i,j = [A]i,j − [A]k,k · [A]k,j
end

end

end

end

end
Set L and U as the lower and upper triangles of A.

5.4.1 ILU(0)

A straight forward choice for the zero pattern P in the ILU factorisation is the zero pattern of
the original matrix A. This provides us with the ILU(0) factorisation. This factorisation results
in matrices L and U which have a zero pattern closely related to the zero pattern of A. In fact,
the zero pattern of L is exactly the same as the zero pattern of A below the diagonal and the
zero pattern of U is the zero pattern of A above the diagonal. For more efficient storage, it can
be convenient to make use of the non-zero pattern of A instead of the zero pattern, denoted by
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NZ(A) = {(i, j)|[A]i,j ̸= 0}, as A is expected to be a sparse matrix. Then, instead of checking
whether a combination of indices (i, j) is not in P , it is checked whether (i, j) ∈ NZ(A). With
this non-zero pattern, it is observed that the elements of the residual R = A−LU corresponding
to indices in NZ(A) are zero.

If A is such that the product of its strict-lower and strict-upper parts, E and F from
Equation (4.4), only consists of diagonal elements and fill-in elements, the result of the ILU(0)
factorisation is of the form

M = (D − E)D−1(D − F ). (5.11)

The matrix D is a diagonal matrix, of which the elements are obtained from the ILU(0) factori-
sation. The obtained preconditioning matrix is similar to what is obtained from preconditioning
with the Symmetric Gauss-Seidel method, as done in Equation (5.9). Note, however, here that
the diagonal matrices are not the same. For the Symmetric Gauss-Seidel method, the diagonal
matrix is the diagonal of matrix A, whereas the diagonal matrix used in ILU(0) is a diagonal
matrix, that is such that the diagonal of the product M in Equation (5.11) is the same as the
diagonal of A.

5.4.2 ILU(p)

Using the ILU(0) factorisation similar, more accurate factorisations can be described. To make
the incomplete factorisation more accurate, it is desired to allow some fill-in, but only in those
locations were it is expected to give a significant increase while limiting the required storage
and amount of computations. A way to do this is to only allow fill-in up to some level p.

The level of fill-in is described by the non-zero patterns of recursively obtained incomplete
LU-decompositions. Using the ILU(0) decomposition, matrices L0 and U0 are obtained, for
which NZ(L0) = NZ(U0) = NZ(A). Let this be denoted by NZ0(A). Now the product of L0

and U0 has a different non-zero pattern than A. Using L0 and U0, NZ1(A) is defined of the non-
zero pattern of L0U0. With this newly obtained non-zero pattern, a new ILU decomposition,
ILU(1) denoted by L1 and U1, is obtained by applying the ILU decomposition with P = NZ1(A).
Using the obtained L1 and U1, a next non-zero pattern NZ2(A) can be defined, to which the
same process is applied. Applying this process p times gives us aNZp(A) and ILU decomposition
matrices Lp and Up. This decomposition is called the ILU(p) decomposition. For a specific
element, the level of fill-in is the step at which the element is added to the non-zero set. So an
element that is present in NZp(A), but not in NZp−1(A), has a fill-in level p.

Alternatively, the level of fill-in can be described using the Gaussian elimination process.
For this, to each location (i, j) in matrix A a value for the level of fill-in, levi,j is assigned.
Initially, this is described by

levi,j =

{
0 if(i, j) ∈ NZ(A)

∞ if(i, j) /∈ NZ(A).

Then at each step of the Gaussian elimination process, levi,j is updated if the element in location
(i, j) is altered, so if the update [A]i,j = [A]i,j − [A]i,k[A]k,j is applied. If this is done, the level
of fill-in of (i, j) is updated by

levi,j = min{levi,j , levi,k + levk,j + 1}.

This provides another way to determine the ILU(p) decomposition. By applying the complete
Gaussian elimination process, but skipping any updates where levi,j exceeds the maximum level
of fill-in p, the same ILU(p) decomposition is obtained. The advantage of this is that only one
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Gaussian elimination process is required, instead of the p required processes when using ILU
decompositions of lower order to compute ILU(p).

In some special cases a clear relation between different levels of fill-in can be observed. For
example, let A be a sparse matrix with non-zero values located in diagonals, so

NZ(A) = {(i, j)|i = j + k, k ∈ K ⊂ N}.

Here K is a set of a limited size, so A has a few diagonals which are non-zero. The fill-in will
be located around these diagonals. Specifically, fill-in of order p will be located in a diagonal
that satisfies i = j + k ± p, so p diagonals away from a diagonal that is include in NZ(A). For
general cases however, the amount of fill-in is unpredictable.

Most often in ILU(p) the dropped elements are simply discarded and not used for anything
anymore. However, it can be advantageous to compensate for these dropped elements. The way
to compensate for dropped elements is by subtracting all dropped elements in one row from the
diagonal element in that same row. In Algorithm 5.1 this introduces an extra operation, applied
after computing the L and U matrices, in which the sum of each row of obtained remainder
matrix is subtracted from the diagonal element corresponding to that row,

[A]i,i = [A]i,i −
∑
j=1

n[R]i,j .

This ensures that the row sums of the obtained incomplete LU decomposition are the same as
the row sums of the original matrix,

A1n = LU1n.

This method is referred to as Modified ILU or MILU.

5.4.3 ILUT

Factorisations relying on levels of fill-in, like the ILU(p) strategies, in general can not tell
anything about the locations in which fill-in happens. In some special cases, like matrices
consisting of diagonals, something can be established about the locations of fill-in, but there is
no way to generalize this. This means that it is possible for there to be much more fill-in in one
part of the matrix than in other parts. Another problem with factorisations like ILU(p) is that
the level of fill-in does not tell anything about the magnitude of the fill-in. Because of this a lot
of fill-in elements of very low magnitude can be added. The improvement obtained from using
low magnitude elements is of low magnitude as well, but the low magnitude elements require
the same amount of storage and computation as higher magnitude elements. It might thus be
advantageous to remove the low-magnitude elements from the decomposition.

The ILUT, or Incomplete LU with Threshold(s), method uses ways to improve upon these
things. Like the ILU(0) and ILU(p) methods observed before, ILUT makes use of Gaussian
elimination, with certain rules to drop elements, to compute an LU decomposition of a matrix.
However, unlike the previously discussed methods, ILUT does not use a predefined non-zero
structure. It instead uses predefined dropping rules to dynamically obtain a non-zero structure.

A common way of applying ILUT is by defining two parameters, a maximum number of
elements per row p and a relative tolerance τ , which are used in the Gaussian elimination
process used to determine a regular LU-decomposition (Algorithm 5.1 with P = ∅). The
relative tolerance is used to drop updates of small magnitude in the Gaussian elimination
process. For any computation to update a value of A, the new value is compared against the
relative tolerance multiplied by the norm of the row of the element and the update is only
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performed if it is greater than this tolerance. If the updated element is smaller, it is dropped
and replaced by 0. The maximum number of elements per row p is used after calculating all
elements of the LU decomposition. For both the obtained lower triangular matrix L and upper
triangular matrix U only the p largest elements in each row are kept. All other elements are
dropped and replaced by 0. In this way, both the amount of elements per row and the minimal
magnitude of elements are limited.

Smaller modifications to this process can be made, like the MILU modification described for
the earlier discussed ILU methods. This same modification can be applied to ILUT in the same
way, by subtracting remainders obtained in the ILU decomposition from the diagonal elements
of the obtained matrix U . Another modification that can be used is not dropping the elements
in the upper triangle of the matrix that are of largest modulus in their row in the original
matrix. So for each row i, there is a position (i, jil ), for which [A]i,jil

is the largest element of
row i. Then the dropping rules are at no point in the Gaussian elimination process applied to
elements in position (i, jil ). An important result of the combination of these two modifications
is that, if the original matrix A is diagonal dominant, then the product of the obtained ILU
decomposition, LU , is also diagonal dominant.

5.4.4 ILUS

In certain applications it is common for sparse matrices to be stored in a sparse skyline format.
This format stores the diagonal elements and the parts of columns above the diagonal and the
parts of rows below the diagonal both as sparse vectors. If a matrix is symmetric, only the
vector representing the upper part of columns is required to be stored.

An efficient way of computing an LDU-factorisation of a matrix can be defined specifically
for matrices that are stored in this sparse skyline format. To this method dropping rules,
similar to those in ILUT can be applied, to obtain an ILU decomposition. This is called the
ILUS method.

Suppose that for a matrix Ak ∈ Rk×k an LDU-factorisation has been obtained, so

Ak = LkDkUk,

and using Ak a larger matrix Ak+1 ∈ R(k+1)×(k+1) can be defined by

Ak+1 =

[
Ak vk

wk αk+1

]
.

Then an LDU-factorisation can be obtained as

Ak =

[
Lk 0k
yk 1

] [
Dk 0k
0Tk dk+1

] [
Uk zk
0Tk 1

]
,

with

zk = D−1
k L−1

k vk

yk = wD−1
k L−1

k

dk+1 = αk+1 − ykDkzk.

To the computation of zk and yk a dropping strategy can be applied. For example dropping
elements if they are smaller than the relative threshold τ and only using the largest p values
of zk and yk, like it was done for ILUT. This gives the ILUS(τ, p) method. Applying this
method to a symmetric matrix A results in an incomplete Cholevski matrix, which means that
symmetries are preserved.
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5.5 Approximate Inverse

A downside of the Incomplete LU factorisations discussed in the previous section is that they
only work well for specific types of matrices. If the matrix that is required to be preconditioned
is diagonally dominant and an M-matrix, then ILU preconditioning works very well. However,
if this is not the case the performance of ILU preconditioners can not be guaranteed. It can for
example be seen that when A is not diagonally dominant, it can not be guaranteed that LU is
well conditioned. For the error matrix, obtained from

E = A− LU,

the preconditioned error matrix can be computed as

L−1EU−1 = L−1AU−1 − I.

Here it is observed that poorly conditioned matrices L and U lead to a preconditioned matrix
which may not remain within desired limits.

To deal with these problems, Approximate Inverse preconditioners try to define a precon-
ditioning matrix M which is a direct approximation of the inverse of A and does not require
solving a linear system. This is done by finding a matrix that minimizes the Frobenius norm of
the residual matrix, for the right preconditioner given by

F (M) = ∥I −AM∥2F =

n∑
j=1

∥ej −A[M ]:,j , (5.12)

with similar definitions for the left and split preconditioners.
To obtain the approximation of the inverse, M is treated as an unknown sparse matrix.

Then a descent technique that minimizes Equation (5.12) is applied, using M as an unknown
in Rn2

. Such a technique is defined by iterations of the form

Mi+1 =Mi + αG,

where G is a chosen direction and α is such that F (Mi+1) is minimized. For Equation (5.12)
this is done by setting

α =
tr(RTAG)

tr((AG)TAG)
,

where R = I − AM . Defining a search direction G can be more challenging. A simple way of
defining a search direction is by using the previous residual G = I − AMi. Another commonly
used method to obtain a search direction is by using the direction of steepest descent, obtained
from the gradient of F . This gradient is obtained as G = −2AT (I −AM). Using the direction
steepest descent can lead to very slow convergence and thus might not be desired.

An alternative way of obtaining an approximate inverse is by minimizing the norm columns
of the residuals separately. Then n functions of the form

fj(m) = ∥ej −Amj∥22
need to be minimized and matrix M is defined by setting the vectors mj as its columns.
Minimizing these functions is done by solving the equations of the form Amj = ej , which is
again a matrix-vector system. Solving this can be done iteratively, but then it is required to
use a small amount of iterations compared to the amount of iterations applied later to the
preconditioned original system in Equation (5.2). This is to ensure that the computational
work in the process of determining the preconditioner is not more than the computational work
required to solve the original system.
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Conclusion 6
The objective of the project, for which this literature study was performed, is to investigate the
potential of improving the performance of the linear solver used in the Visage finite element
geomechanics simulator. This literature study gives a summary of options for solving linear
systems, some of which might be useful for improving the linear solver used by Visage.

This report discusses various methods for solving linear systems derived from an FEM
discretization of a system of PDEs describing forces and displacements in reservoirs for CCS.
For this, it is discussed what such a linear system actually looks like. After this, a wide range
of methods for solving these linear systems have been discussed. First, it was established which
direct methods for solving such equations can be applied. These methods are able to find
accurate solutions to the problems that are studied, but are computationally and memory-wise
very costly for large systems. Therefore, it was required to shift to iterative methods, which do
not necessarily find an exact solution to a system but are able to make a good approximation
of the exact solution and require much less computations and memory than direct methods.
Several techniques are discussed to improve these iterative methods, such as multigrid methods
and preconditioning.

As this study only discusses possible methods for solving linear systems, it is challenging to
draw any substantial conclusions. An important conclusion that can be drawn is that GMRES is
unlikely to perform better than methods such as CG. This is because CG is developed specifically
for SPD systems, which the systems observed are, and is expected to perform better on these
types of systems.

For the upcoming phase of this research, a wide range of questions remains, most impor-
tantly involving integrating an implementation of the linear solvers seamlessly with the existing
implementation of the Visage simulator. A summary of these questions is given in Table 6.1.
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Category Questions

What are the methods that are currently used to solve linear
systems?

Current Situation
What does the implementation of the currently used solver look
like?

Which of the methods discussed here can be expected to give
an advantage over the current implementation?Advantage of discussed

iterative methods How can these methods be implemented in a way that corre-
sponds the implementation of the currently used solver?

What packages can be used for solving linear systems using
iterative methods?Software Packages

for iterative solvers How can these packages be used with the Visage software?

Identification of test cases What are more concrete examples of test cases these solvers are
applied to?

What improvements in performance are observed when apply-
ing these solvers to test cases?

Performance of solver
How much can the solver be improved in terms of saved time
and memory, while keeping the same accuracy?

Other What methods, not discussed yet, are available to further im-
prove the solver?

Table 6.1: Questions to be answered during next phase of research
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