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SUMMARY

Multiphase flows are very common in many Nuclear engineering applications. During
high pressurized conditions there are possibilities of high thermal loads on the pressure
vessel, leading to pipe ruptures. As part of breakdown measures, the emergency core
cooling system is activated and the coolant is mixed with the fluid in the cold leg, giving
rise to multiphase turbulent flow. These regimes can comprise of large scale interfaces,
leading to stratified flows. These postulated accidents or events need to be identified and
understood to improve nuclear reactor safety. Computational fluid dynamics can serve
as an excellent tool to model these scenarios, contributes towards reactor safety. Coarse
models which are widely used in industries such as RANS are known to over-predict tur-
bulent producing unphysical gradients. Thus the turbulent mass and momentum are
not yet fully understood. Using high resolution tools such as Direct Numerical Simu-
lations (DNS), can potentially avoid these over-prediction and could model these large
scale interfaces accurately. As a long term goal, the data sets generated from these sim-
ulations can be used to train such coarse models or simply support for validation.

Placing the focus on a configuration where two fluids are in a stratified scenario, this
graduation thesis will show a systematic approach towards the development and mod-
elling of air and water moving in both co-current and counter-current direction, wherein
simulations are performed in RK-Basilisk. Primarily, the work starts with studying a sin-
gle phase turbulent channel flow to form a basis of understanding of concepts and code.
The model of [31], who use realistic properties of air-water is chosen to be implemented
in RK-Basilisk. It is realised that, implementing this is in RK-Basilisk is not straight-
forward and thus the constraints are identified and a general mathematical framework
is developed to resolve this.

One of the main objectives in this thesis is to model and understand the turbulent
behaviour near the interface of both air and water. To do so, the physical mechanisms
which govern the generation and decay of turbulence called the TKE Budgets is studied
by modelling the individual terms that complete it. The budgets are modelled and vali-
dated against [31]. Interesting conclusions are drawn which depict the trends of budget
terms and the kinetic energy, giving a good picture of the underlying interfacial turbu-
lent mechanisms. The same mathematical framework, along with some additional mod-
elling lead to an extension of this study to counter-current flows, wherein another set of
conclusions are drawn.

v
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1
INTRODUCTION

1.1. COMPUTATIONAL FLUID DYNAMICS
Computational Fluid Dynamics or CFD is the analysis of systems involving fluid flow,
heat transfer and associated phenomena by means of a computer based simulation [57].
This approach, of solving the physics of fluids with the help of a computer, has proved
to be an efficient way to tackle complex flow phenomena. The developer/user could
easily play around with the code to alter or infer different results according to the re-
quirements. Moreover, it has proved worthy to have reduced lead times and cost cutting
when it comes to research and development. Often, these revolve around the numerical
algorithms, modelling and implementation techniques to solve flow problems. The two
equations of conservation of momentum and continuity are considered to be the most
important equations of fluid dynamics. And they (in conservative form) are -

@

@t
(‰u) ¯r¢ (‰u › u) ˘ ¡rp ¯r¢τ¯‰g (1.1)

and

@‰

@t
¯r¢ (‰u) ˘ 0

where, ‰ is the density of the fluid, u is the fluid velocity vector in Rn , p is the pressure,
¿ is the stress tensor and finally, t being the time. To simplify these equations, we need
to make quite a few assumptions and consider few properties. For Newtonian fluids, In-
compressible flows, the equations are -

@‰u

@t
¯ (‰u ¢ru) ˘ ¡rp ¯„r2u ¯‰f (1.2)

and

r¢ u ˘ 0
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Which are essentially the Incompressible Navier-Stokes equation which would be the
primary partial differential equation aimed to tackle in this thesis. But, it’s not too hard
to see that these equations talk about Newtons second law and mass conservation which
gives rise to an initial boundary value problem. Each of the terms are -

• @‰u
@t talks about the rate of change of velocity with respect to time

• (u ¢ru) is the inertial acceleration in the fluid

• ¡rp is the pressure forces

• „r2u are the viscous forces

• ‰f are the external body forces. This can be g i.e,(0,0,g) in case there are no external
forces but just gravity.

Although these equations characterize the role and the importance of each and every
term, it is also very interesting to interpret these equations in a different way. These
equations, in dimensionless form give rise to different dimensionless parameters (if we
consider to make few assumptions) which can be readily be interpreted and linked to the
physical phenomena occurring in the flow. Moreover, these dimensionless parameters
give us an idea for scaling the model appropriately so that it can give a bigger picture for
predicting the performance in large scale [24]. Few notable dimensionless parameters
derived from the non-dimensionalisation of Navier-Stokes are -

• Reynold’s Number, Re ˘ ‰U L
„

• Froude Number, Fr ˘ U 2

g L

Re talks about the ratio of inertial and viscous forces, Fr talks about the ratio of inertial
and gravitational forces. Another interesting dimensionless number is the Weber Num-

ber, We ˘ ‰U 2L
° and is the ratio of inertial forces and surface tension.

These dimensionless parameters helps us to understand the contribution of each of the
terms since these are ratios of different forces on the fluid. For example, if we were to
examine the Reynolds’s number carefully, it could be easy to interpret that for a flow
with low Re (Re ¿ 1), the viscous forces would be the most dominating and for a flow
with high Re (Re À 1), the inertial forces would be dominating. As a starting point, this
could be interesting to predict whether the flow would enhance mixing characteristics
or would be diffusive in nature.

Now that we know what to solve, it is obviously necessary to think about how to solve
these equations. A general solution to the Navier-Stokes is limited to the case of two di-
mensions and is not yet extended to a three dimensional setting. Instead, it could be a
nice idea to solve them in a computer with numerical algorithm. We also need to con-
sider where and when exactly (at different time steps) these equations are to be solved.
Hence, it is also really important to choose the spatial and temporal discretization wisely
as this defines how accurate the solution is in space and time.
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For the choice of spatial discretization, some of the most common techniques are �nite
differences, �nite element method, �nite volume method and spectral methods. Much
information could be extracted if the problem is solved on more number of �nite cells
in the domain. But it is not practically possible to solve the equations on each and every
single point. Instead, we try to maximize and re�ne the mesh quality in the region of
interest.

For the choice of temporal discretization, there are wide class of algorithms. Explicit and
implicit solvers, where the discretized equations are integrated in time in either ways.
But the implicit solvers have always proved to be very ef�cient and unconditionally sta-
ble. However, these are expensive to compute and also dif�cult to implement[59][63].

But to solve the Navier Stokes, it is essential to consider how the pressure-velocity cou-
pling is solved. The system can be either can be solved together (Eg, Crank-Nicholson)
which would make it dif�cult, or decoupled to solve the pressure and velocity separately
(Eg, Chorin, SIMPLE, SIMPLEC/R, PISO - considering we have a staggered grid con�g-
uration)[59][63][57]. Sometimes, different schemes like Crank-Nicholson and Adams-
Bashforth schemes could be implemented for the viscous and convective terms respec-
tively which are both second order accurate[31].

After the non linear PDE is discretized with one of the above mentioned spatial dis-
cretization method, these reduced to a linear system of matrix-vector equations which
could be solved with either direct or iterative Methods. However a class of iterative meth-
ods like jacobi, gauss-seidel and conjugate gradient methods have proved to achieve
faster convergence rates.

In order to solve this system more accurately and faster, high performance computing
techniques can also be implemented. These entire domain is partitioned into a number
of sub-domains and each of the sub-domains are solved on a speci�c process. Owing
to the capabilities of DNS to resolve all scales of turbulence, more effort is gone to mod-
elling and developing meshes according to the smallest scales. Hence state of the art
HPC techniques become necessary for ef�cient and fast calculations[10].

After solving the system of equations, we could use various platforms (ParaView, AN-
SYS Post etc) to visualise the obtained results and infer results on various parameters .

This on whole, is the process of CFD. This entire process could be performed in open
source CFD packages/solvers or commercial CFD softwares. Open source CFD packages
provide the freedom to manipulate the underlying code so that we could play around but
however this requires much effort and knowledge to set up the problem. Some examples
of these open source CFD softwares are OpenFOAM[42], Basilisk[2], PHASTA [10] etc.
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1.2. M ULTIPHASE FLOWS
As we can �nd as much as different categories of �ows, one interesting classi�cation
would be to �nd out the different phases existing in the domain of interest and how the
behaviour and the coupling would look like. The �eld could contain �uids of the differ-
ent phase with different thermal conditions (adiabatic and diabatic �ows - condensation
and vaporization). Next, we could also think of it as two different �uids, but of the same
state ( oil and water). These, often are also referred to as multi�uids. As far as the scope
of this project is concerned, the case of gas-liquid �ow is simulated. With this, it could
be easy to de�ne what multiphase �ows are with the idea built. Multiphase character-
izes situations where several different phases - liquids, gases, solids are �owing simul-
taneously[61]. A single phase �ow would be somewhat easier to model and implement
whereas more effort needs to go in for the case of multiphase �ows (interface modelling
etc).

In the bigger picture, two main topologies of multiphase �ows are - dispersed and strat-
i�ed Flows. Dispersed �ows are where one of the phases is completely dispersed (en-
closed by, loosely speaking) another phase. One simple example for this would be the
case of formation of steam bubbles when boiling water. In the same fashion, if a long
elongated vertical duct is considered, as time evolves, these bubbles would gather up
and lead to form Taylor bubbles and this phenomenon is widely existent in many indus-
trial applications. On the other side, Strati�ed (segregated, separated) �ows are where,
different phases are separated due to the difference in the densities and are arranged in
a parallel fashion due to the effect of gravity. For simplicity, we could think of a long hor-
izontal duct carrying steam and water, which are strati�ed due to the density difference.

To get a visual understanding, Figure 1.1 shows different types �ow regimes for a hor-
izontal duct which are also explained in the following paragraph [61]. Yellow being one
phase and blue, the other.

Figure 1.1: Types of Horizontal two-phase �ows [61]

Bubbly �ows are dispersed in the liquid in a continuous fashion and their concentration
tend to be higher in the upper part of the tube and the factor of gravity is not so impor-
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tant at higher velocities.

Annular �ows are generally existent when the gas-velocity is much higher and the heav-
ier phase tend to form a �lm around the edges of the pipe with varying thickness.

Plug Flow are existent in low and moderate �ow rates and form a discontinuous pat-
tern of the lighter phase on the upper part of the duct.

With the same con�guration, if the velocity of the lighter phase if increased, visible slugs
are formed and contains some small bubbles which traverse along the pipe. The �ow is
somewhat chaotic and the interface is generally hard to track.

Strati�ed Flows occurs when two �uids are separated with a higher dense liquid on the
bottom and the liquid which is less dense strati�es at the top. The interface between
the two faces might be �at or wavy. When the velocity of either of the two phases is in-
creased, this give rise to the wavy interface of varying amplitudes. In [6], Open-FOAM
CFD simulations are carried out for different type of multiphase �ows (Strati�ed, Wavy,
Slug, Plug) and it is found that, the results are in good agreement with the experimental
data.

In this thesis, all of the work done would be for a con�guration of two-phase (gas - liq-
uid) strati�ed �ow. Gas-liquid strati�ed �ows exist in most of the industrial applications.
Vapour generation systems in conventional and nuclear Power plants make use of this
con�gure for the production and transport of steam for various parts across the Power
plant. Most of the process technology applications such as chemical production, food
production, oil and gas production require this type of con�guration for different as-
pects. Pipelines in large factories such as in petrochemical industries, process plants
and also in power generation require this kind of �ow regime.

With these applications to the con�guration, there comes a necessity to predict and
model the �ow beforehand. For example, in a strati�ed �ow if the interface is not �at
anymore, large wave amplitudes could have different effects on both �uids. The wavy
interface could have added effects to the turbulent �eld, and also maybe alter momen-
tum exchange between the two �uids[14].

In Nuclear Power plants, when there is a rupture in the main reactor pressure vessel,
the primary coolant may leak into the reactor hall. This is often referred to as Loss of
Coolant Accident (LOCA). During these scenarios, the coolant may mix with the �uid in-
side the reactor hall which is already hot due to high pressure and this leads to a rapid
and more turbulent mixing of the �uids. With the already existing steam which (maybe)
�ows in the opposite direction, this gives rise to a strati�ed �ow con�guration. The dif-
ference in the properties makes the entire con�guration complex leads to heat, mass and
momentum transfer which not yet fully understood. This requires us to develop some
(mathematical) models to ensure that the complex physics of the turbulent strati�ed
�ows are fully understood.
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2
L ITERATURE STUDY

2.1. TURBULENCE
Most of the �ows which we encounter in real life or in most of the engineering appli-
cations are not smooth i.e, they are not always laminar. Turbulent �ows are unavoid-
able, hence this is not only of theoretical interest. There is a point where the �ow is not
laminar anymore and it becomes unsteady and chaotic. This unsteadiness gives rise to
random �uctuations to each of the �ow properties which vary in time. Due to the �uctu-
ations, the conventional equations are altered and gives rise to additional stresses in the
�ow[54].

Above a certain Reynolds number, i.e, a critical Re (depending on internal/external �ows),
the �ow becomes unstable and the �ow properties vary in a random way with respect to
time. This random nature makes the economical prediction of �ow properties close to
impossible. Instead, a stochastic description is made. The time varying velocity is de-
composed into a mean and a �uctuating component.

u(t ) ÆU Å u0(t ) (2.1)

This is called as the Reynolds decomposition. So, a complete description of a turbulent
�ow is given mean properties ( U ,V,W,P) and statistical properties ( u0,v0,w 0,p0).

Good visualisation of turbulent motions reveals a picture of turbulent eddies. Eddies,
also called as vortices are structures of a �uid continuum swirling around due to the tur-
bulent nature of a �ow. Due to the eddying nature of �ow, random particles of the �uid
which are separated by some distance are also bought together/closer which as a part of
effective mixing and vortex stretching. As a consequence, the diffusion coef�cient is high
and enhances mixing. Due to the presence of mean velocity gradients, different layers
are sheared at different rates and leads to distortion of the existing eddies. The eddies
then break-up/stretched into smaller eddies and consequently, the energy from the big
eddies are transferred to the smaller ones in a progressive nature and this is called energy

7
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cascade.

The small/(sub-) micro scales eddies are dominated by the effect of viscosity. Hence a
complete depiction of length, time and velocity can be given by the so called Kolmogorov
Microscales and they are called the Kolmogorov time, length and velocity. The larger or
the largest eddies can be characterised by the Integral scales. Unlike Kolmogorov scales,
these scales strongly depend of the domain geometry and boundary conditions of the
model, hence they are anisotropic. Since the turbulent quantities, in the given neigh-
borhood are (maybe) not independent of each other, these scales can be computed from
the two point correlation function in space or time [54].

2.1.1. DESCRIPTORS OFTURBULENT FLOWS

TIME AVERAGE OR MEAN

The Reynolds decomposition for a �ow quantity, ' (t ), can be given by

' (t ) Æ© Å ' 0(t )

The mean © is de�ned as,

© Æ
1

¢ t

Z ¢ t

0
' (t )d t

This de�nition makes sense if the �ow is steady and does not change over time. But for
time varying �ows, the mean of the �ow at time t , is considered to be the average of
instantaneous value over a number of similar experiments, i.e, the so called ensemble
average. Theoretically, it makes sense if we consider ¢ t ! 1 , but the equation gives a
meaningful depiction for time averaged quantity if ¢ t È the smallest time scales.

VARIANCE, R.M.S AND TKE
Variance and r.m.s values tell us about the spread of the �uctuations over the mean �ow.

(' 0)2 Æ
1

¢ t

Z ¢ t

0
(' 0)2dt

' r ms Æ
q

(' 0)2 Æ

s
1

¢ t

Z ¢ t

0
(' 0)2dt

The r.m.s �uctuations are easily measured and tell us the average magnitude of the �uc-
tuations. In particular, when we work with the Navier Stokes equations, the variance of

velocity components u02,v02,w 02 are proportional to the momentum �uxes and cause
stresses which are experienced additionally by the turbulent �ow. One half of the sum of
these variances, gives a rise to the Kinetic Energy (TKE) which is the amount of kinetic
energy present per unit mass k a given point [57] and is given by

k Æ
1

2
(u02 Å v02 Å w 02)
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2.1.2. TURBULENCE IN WALL BOUNDED CHANNEL FLOWS
Since this thesis would be tackling the �ow inside a channel, it would be a good idea to
discuss about the (turbulent) Boundary layer and also the structures. A Reynolds Num-
ber relative to the distance from the wall, could tell how important the inertial/viscous
forces are as a function of distance from the wall. Rey ÆU y

º , based on the distance 'y'
from the wall. Its is now evident that, for points far away from the wall, the inertial
forces would be the most dominating and for points close to the wall, the viscous forces
would be dominating. There are also a point where the forces are equal ( Rey Æ1). From
this distance, to the wall the viscous forces dominate and on the other side, the iner-
tial forces dominate. Thus mean �ow velocity could be too depicted as a function of 'y',
U Æf (y,½,¹ ,¿w ). With this, we could get a new dimensionless parameter uÅ , de�ned as

uÅ Æ
U

u¿
Æf

µ
½u¿y

¹

¶
Æf (yÅ) (2.2)

where u¿ Æ
p

¿w
½ is the friction velocity. Far from the wall, there is a point up to which

the are additional viscous effects apart from the viscosity itself and this is experienced
by the wall shear stress and can be characterized by u¿. The appropriate length scale
where this is effective is called the turbulent boundary layer , ±. [54]. This gives us the
rough estimate of the Dimensionless Turbulent velocity uÅ from the wall at a distance
yÅ . With this, it can be interesting to classify the regions of the �ow based on law of the
wall. There are three distinct regions within which each of the inertial and the viscous
forces are important (i.e, region speci�c dominant force) called the linear or the viscous
sub-layer, log-law layer and outer layer.

L INEAR OR VISCOUS SUB-L AYER

As we all know, at the wall, the shear stress at the wall is effectively zero. Hence, motion
due to turbulent eddies should also "stop" at the wall, for a no-slip (i.e, U = 0) condition.
But close to the wall, i.e, yÅ Ç 5, it is seen that the viscous stresses are almost equal to the
wall shear ¿ and is constant. With this, we could establish a linear relationship between
the mean velocity and the shear.

¿(y) Æ¹
@U

@y
¼¿w

Hence,

U Æ
¿w y

¹

With this, we can establish that, uÅ ÆyÅ . Because of this linear relationship, between
the distance and the velocity, this is known as linear or viscous-sub layer.

LOG-LAW LAYER

From the viscous sub-layer, if we move away from the wall, there is a region (30 Ç yÅ Ç
500) where the viscous and the inertial effects are both important. Considering the mean
�ow is parallel to the wall, the turbulent velocity varies logarithmically as a function of
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wall distance. The velocity follows the logarithmic curve and hence it is called as the
log-law layer.

uÅ Æ
1

·
ln (yÅ) Å B Æ

1

·
ln (E yÅ) (2.3)

where, · is the Von Karman constant, · ¼0.4

OUTER LAYER

This is the region far away from the wall. Consequently, the pressure gradient and con-
vective terms are more dominant and free from the effects of viscosity. This is sometimes
referred to as the law of the wake layer.
By using these wall functions, we can model the �ow near the wall. This becomes impor-
tant as we need to study the behaviour near the wall. If the mesh is not well resolved near
the wall, a high Reynolds Number �ow would result in inaccuracies without modelling
near wall characteristics. With well implemented wall functions and resolved mesh near
walls, the turbulent boundary layer is well captured and the near wall characteristics are
studied better.

2.1.3. TURBULENCE MODELS
Upon time averaging for the momentum equations, it results in :
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The last term new and is called as the Reynolds Stress tensor, Ri j . The diagonal compo-
nents of this tensor gives us the additional normal stresses experienced by the �uid and
the other off-diagonal components which has the second moments of velocities tell us
the additional shear stresses acting on the �uid. These turbulent shear stresses are very
large when compared to the viscous shear stresses experienced by the �uid. Due to the
convective transport of eddies, there is a net momentum exchange, wherein a fast mov-
ing shear layer is decelerated, hence the �uid experiences additional turbulent shear
stresses, which is eventually characterized by the Reynolds stress tensor, Ri j . Due to
these additional unknowns, the NSE becomes a closure problem and therefore requires
additional modelling effort in order to full resolve the �uid �ow.

While Direct Numerical Simulations and Large Eddy Simulations provide satisfactory
results [27], they become high unsuited because of the realistic macroscopic industrial
applications mainly due to the high computational cost. Hence most of the turbulent
�ows come down to coarse models such as RANS.

The problem with RANS is that, they produce unphysical results near interface of strati-
�ed �ows [12] [34]. RANS models lose the ability to predict high velocity gradients near
interface. In [47], the author has simulated a two equation model for a �at interface and
reported some uncertainty. [48] used the k ¡ ! model the same scenario and indicated
that the interfacial conditions need to further studied to implement in such a model in
order to understand it better for a wavy �ow. The main discrepancy is that turbulent
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characteristics is over predicted near interface region. Hence [9] suggested to introduce
a damping function close to the interface region and the results were pretty satisfactory.
This was further studied in [27] as well and reported to produce results close to DNS data.

However, to stick to the scope of this thesis neither of the two approaches are taken,
but the entire problem is resolved by a Direct Numerical Simulation (DNS). The Navier-
Stokes equation directly solved without accounting for any �ltered functions or time av-
eraged �ow quantities. The main idea of RANS or LES was to model the large and small
scale eddies of various length and time scales without having to put the major emphasis
on grid resolution to be the best. Such an effort comes along in DNS[38]. Due to the ab-
sence of modelling and direct computing, the spatial grids have to be resolved to small
scales of turbulence and small time steps in order to capture the smallest eddies and the
fastest �uctuations.

2.1.4. COMPUTATIONAL COST OF DNS
By the virtue of turbulence, it's effects are over all length and time scales. For high Re, the
inertial terms become more dominant and hence the convection in the �ow becomes
dominant which mainly transports the momentum from large eddies. In this case, the
smallest scale should be solved until the viscous forces dominate.

The smallest scale, as indicated previously is the Kolmogorov Scale. The length scale
is given by

´ Æ(º 3/ ² )
1
4

and
¿´ Æ(º / ² )

1
2

where, º is the viscosity and ² is the dissipation rate. Contrasting to small scales, the
biggest scales, "Integral Scales" are represented by L and ¿0 as length and time scales.
The ratio of the smallest to the largest length scales could be represented as

´

L
Æ(Re)¡ 3

4

Hence, in other words, the number of grid points required per integral scales to solve
all kolmogorov scales would be [60]

Nh Æ
L

´
¼Re

3
4

and the required time steps would be N t as this could be the Kolmogorov scale. So the
total cost of computing the DNS would be (in 3 dimensions)

Nh ¢N t ÆRe
9
4 (2.5)

It can be veri�ed that for a relatively small Reynolds number, the computational cost
would be very high. Hence, simulating it for realistic industrial applications would not
be practical. Hence, it makes sense to simulate it for rather simpler situations and em-
phasize more on developing more coarse models based on DNS data.
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2.2. L ITERATURE SURVEY OF STRATIFIED FLOWS
In this chapter, the state of the art simulations of strati�ed �ows are investigated. A large
collection of resources helps in identifying the evolution and developments of the nu-
merical simulations over the years. An advantage of this study would help to get a bigger
picture of what the overall aspects of these simulation and experiments are. A success-
ful identi�cation of the bigger picture would help to zoom in or look into the speci�cs
which essentially would drive us towards the goal of this literature study, to formulation
a successful research question.

2.2.1. D IRECT NUMERICAL SIMULATIONS
Direct numerical simulations of turbulent �ows have been of major interest for a few
decades now. Especially, when it comes to simulations in the �eld on nuclear engineer-
ing, turbulent �ows are inherent. In particular, multiphase �ows are very common. For
the case of single phase �ows, results of the coarse models are satisfactory. But when
multiphase �ows are simulated using coarse models, especially for strati�ed �ows, the
results present unphysical gradients because of the non-stationary interface. Hence, at
these situations direct numerical simulations would be the best to consult with, but at
an expense of high computation costs.

SINGLE PHASE FLOWS

Since one of the tasks of the upcoming thesis is to validate the single-phase turbulent
channel �ow, it would be helpful to also review some literature based on the same. This
could be considered as a �rst-step towards two-phase DNS, making it more approach-
able for the case of strati�ed �ows. Many works have been carried out for the case of
single phase turbulent �ows. For example, in the review of Lahey Jr [26], direct nu-
merical simulations have been performed in PHASTA which is based on the �nite ele-
ment method, for a horizontal channel �ow. The velocity �elds are in good accordance
and also seem to obey the Law of the wall rule. The anisotropic nature of turbulence is
also veri�ed with the corresponding Reynolds stresses and the turbulence bursts are also
shown which arises in the near wall region. In Kopparthy et al. [23], several coarse mod-
els such as,k ¡ ² ,k ¡ ! , RSM and SA models have been implemented for the single phase
turbulent �ows for a diffusing horizontal column and it's seen that pressure and veloc-
ity �elds could be predicted very well with the k ¡ ² and RSM models. When it comes
to two-phase strati�ed �ows, it is reported that RSM models could predict well for low
�ow rates, but fails and gives deviating and unsatisfactory results when the �ow rates are
increased. Another interesting study of single phase channel �ow has been carried out
in Eggels et al. [8] using the �nite volume method instead of the spectral method. The
�ndings of this works compares the mean and r.m.s velocities and also Reynolds stresses
with experimental data and were found to be agreeable.

Studies of Moser, Kim, and Mansour [40] have performed fully developed channel (tur-
bulent) �ow for three different shear based Reynolds number Re¿ Æu¿±

º , where u¿ is the
shear based (frictional) velocity and ± being the half-channel distance. It was found that
the Reynolds based effects (log-law behaviour, components of the TKE budgets etc) are
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obeyed for 180· Re¿ · 590 and for higher Re¿, the behaviour is Reynolds-effect-free. A
very well appreciated and known work in the �eld of turbulent �ow for horizontal chan-
nel is of Kim, Moin, and Moser [17]. They have performed a DNS at a Re of 3300 for a hor-
izontal box of dimensions 192 £ 129£ 160 points. For the choice of spatial discretization,
spectral methods have been used. This method entails using Fourier series expansion
in the stream-wise and span-wise directions and using Chebyshev polynomial expan-
sion for the normal components. This stands arguably good in the case of turbulence
because of the choice of higher order interpolation functions considered here over FDM
(includes FVM) techniques. The general characteristics of turbulence were in good ar-
gument whereas the computed Reynolds stresses and vorticity �uctuations seemed to
deviate from the experimental results in the near wall region. This work was further de-
veloped by Mansour, Kim, and Moin [36] where the data sets of the channel were derived
from the previous work and the transport equation of Reynolds stresses and the dissi-
pation rate of TKE were analysed for a low Re. The main conclusion drawn was that the
terms of the budgets become more important in the near-wall region which is commonly
argued to become less important away from the wall. In particular, the production terms
of the TKE budget become more important close to the wall and the dissipation terms
become equally pronounced away from the wall. Hence it would be of much importance
to put attention to the near wall region when coarse models for the same are developed.

STRATIFIED FLOWS

One of the �rst works on the direct numerical simulation of two-phase strati�ed �ows
could be found in the literature of Riley et al. [46]. The strati�cation effects were var-
ied by using different Froude numbers. For most of the computations performed, waves
were formed for the varying Fr, hence having the induced wave effects on the �ow. The
simulations were performed in a relatively small grid of 32 3 points. A pseudo-spectral
method was used to discretize the equations in a Fourier space. A leap-frog time inte-
gration scheme was used for convective terms whereas a Crank-Nicholson scheme was
used for the diffusion terms. Limiting to the small computational domain, the Re was
limited to 27.2 In a broad sense, the statistics in the normal directions seemed to be in-
hibiting whereas the statistics in the homogeneous directions seemed to be enhancing.
Generally, it was also noticed that there was a decay in the dissipation of kinetic energy.
The general notion of vortex-stretching in turbulent �ows were also supported as the
vorticity seemed to be decaying.

Counter-current Flow : A remarking research on this topic was carried out by the group
of Lombardi, De Angelis, and Banerjee [32]. Simulations have been performed at differ-
ent density ratios (indicating the dynamic coupling between the phases) for the setting
of a counter-current �ow where-in the interface was kept �at (corresponding to very
high Weber number or high Surface Tension). The spatial length (non-dimensional)
is represented as shear-based units and the normal extent of each of the phases are
170 shear based units each. No-shear i.e, a free-slip boundary condition has been em-
ployed at the outer boundaries whereas the �uids are coupled with the so called interfa-
cial boundary conditions (continuity coupling of velocities and shear stresses, ensuring
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momentum transfer). Periodic boundary conditions are applied in the homogeneous
directions. A constant pressure gradient is applied in the to counter the effect of mo-
mentum losses at the interface due to friction. The complete Navier-Stokes along-with
the interfacial boundary conditions are solved with the pseudo-spectral method (fourier
expansions and chebyshev polynomials in the homogeneous and normal directions re-
spectively)(Sengupta, Mashayek, and Jacobs [50]). A fractional step integration is used
for the temporal discretization where-in one of the two interfacial boundary condition
is solved in the �rst half and the next in the next half of the time step. An arbitrary
Lagrangian-Eulerian boundary �tting method was used to solve the interface motion.
This constitutes for solving the advection equation on an arbitrary mesh where each of
the phases are coupled by the balance of continuity and shear.

Firstly, it was seen was seen that for the dynamic coupling far from unity, the interac-
tions are decreased. The main inference drawn from this research was that, the gas-side
sees the interface as a solid boundary due to the high shear imposed by the �uid on the
gas side. Due to this, they exhibit turbulence behaviour similar to of wall characteristics,
whereas this is not the same for the liquid side where it shows some high �uctuations
and seemed to be more active. This is also supported by analysing the energy budgets.
In the near interfacial region of the liquid side, the production and the dissipation terms
are higher and lower than on the gas side, respectively, which seem to be unbalanced
on the whole. Another main inference from the energy budget analysis about the tur-
bulent diffusion. The diffusive nature was more pronounced at the interface for the liq-
uid side and slightly away from the interface for the gas-side. A non-dimensional shear
rate, S̃ shows that, for S̃ > 1, low speed streaks appear (London [33]). Sweep events are
found near interface and ejections far away from the interface. Near the interface, gas-
liquid sweeps are found con�rming high interfacial shear stress (high Reynolds stress
production) and gas - liquid ejections are formed in the low shear regions (away from
the interface)(De Angelis [7]Lam and Banerjee [28]). This leads to the formation of quasi
stream-wise vortices between the regions of high and low shear and large vortices (few
of them) are attached to the interface, pointing out that the interfaces are coupled.

A continuation of Lombardi, De Angelis, and Banerjee [32] was carried out in Fulgosi
et al. [13] but with a free deformable interface and compared to an open-channel �ow.
One difference which was noted from Lombardi, De Angelis, and Banerjee [32] was, the
r.m.s velocities initially have a non-zero value since the interface is not �at anymore. It
was reported that the transport TKE budget revealed insigni�cant differences, only that
it was slightly more pronounced than the open-channel case in the viscous sub layer
region. Although, Reynolds stress budgets showed signi�cant different in the direction
normal to the interface. It was seen that the pressure diffusion makes turbulence more
isotropic by lowering shear stresses. An auto-correlation function for the vorticity was
maximum at the interface and reduces in the direction normal to it implying the very
existence of vortical activities which might also enhance mixing characteristics.

Direct numerical simulations for a similar setting of Lombardi, De Angelis, and Baner-
jee [32] has been carried out in Hasegawa, Kasagi, and Hanazaki [15]. Similar results for
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velocity pro�les were shown and the difference between the behaviour of gas and the
liquid side, given the degree of dynamic coupling between the two. Interestingly, it was
shown that for different length ratios (of domain) for each of the phase, the distance be-
tween the streaks formed also varies, implying the interaction between the phases with
same argument as above.

Figure 2.1: Counter-current �ow setting for various strati�cation scenarios Zonta, Soldati, and Onorato [64]

A pioneer research as an extension to Lombardi, De Angelis, and Banerjee [32]Fulgosi
et al. [13] was performed in Fulgosi et al. [14]. The full Navier-Stokes along-with the jump
conditions (interfacial boundary conditions) were solved for a counter-current setting
(for example Figure 2.1 d). Interestingly, neither of the Interface capturing nor the In-
terface tracking method were used, but a boundary(interface) �tting method. Boundary
�tting method '�ts' the mesh according to the interface. Free slip boundary conditions
were imposed on the outer boundary. The interfacial jump conditions (from the global
mass, momentum and shear stress balances) were given as Fulgosi et al. [14]
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where Re, We, Fr are the dimensionless numbers which were carefully chosen to stop
the waves from breaking, ¿ and ũ are the shear stress and the velocity respectively for
a dynamic coupling of R = 29.9 (normal air-water density coupling ratio). These three
together with
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represent the jump conditions and the advection of the interface using boundary-�tting
method. A pseudo-spectral technique similar to Lombardi, De Angelis, and Banerjee [32]
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was used for the spatial discretization (De Angelis [7]). The simulation was performed at
a shear Re of 171. The computational domain for each of the gas and liquid phase was
represented in wall units of 1074 £ 537£ 171.

One of the main conclusions drawn was that the role of the deforming interface was
to act like a dampener of the turbulent �eld in the region near interface. This was con-
�rmed by less pronounced values of r.m.s velocities and the rate-of strain tensor. Al-
though an extensive analysis about sweep-ejection events are not provided as in Lom-
bardi, De Angelis, and Banerjee [32], it is argued that the deforming interface did not
affect the orientation of quasi-streamwise vortices since there was not much change in
the vorticity, ! z. Studying the energy budget equations, especially for the Turbulent Ki-
netic Energy (TKE) budget given by,
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It revealed the similarity to the previous conclusion of general dampening of turbulent
�eld. This argument emerged since the dissipation terms seemed to be lesser than the
channel �ow case (which this was validated against). Additionally, the Reynolds stress
budgets (half trace of Equation 2.8) were also studied. It was seen that the pressure diffu-
sion (source of energy and also re-distributive mechanisms) seemed to counter-balance
the reduction in dissipation. The energy was redistributed from the normal components,
thus reducing the turbulent production and promoting isotropy. Hence it was concluded
that, the deforming nature of the interface dampens the turbulent �eld, reduced the dis-
sipation thus making the near interface region less anisotropic. However away from the
interface, the production and transport terms were more pronounced. Interestingly, it
was also seen that, that the drag is reduced near the interface. This is due to the fact that,
since energy is redistributed, there is essentially reduction in shear, making some com-
ponents of the RST (Reynolds stress tensor) lower than of the channel �ow case (which
was compared against). Similar to Lombardi, De Angelis, and Banerjee [32]Fulgosi et
al. [13], a non-dimensional shear rate built and the effective streak formation was also
studied and non zero value of TKE at the interface con�rmed the coupling mechanisms
(momentum transfer etc.)

In Zonta, Soldati, and Onorato [64], a DNS was performed in a counter current setting
to explore the in�uence of dynamics based on the dominance of We and Fr. The phys-
ical domain which is distorted, is mapped to a reference domain and the equations are
solved using a pseudo-spectral method. It was noticed that, initially the growth of the
waves were linear. Later in time, the wavy interface had some in�uence on the dynamics

of the near interface region. For the ratios of
p

F
We < 2, the surface tension effects dominate

and for ratios
p

F
We >2, the gravity effects dominate due to exponential growth.
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Co-current �ow : In Liu et al. [31], a DNS of a gas-liquid co-current couette �ow for a
�at interface con�guration was performed. The shear Re for water and air were set at
120 and 271 respectively. For the choice of spatial and temporal discretization, the same
setting as of Lombardi, De Angelis, and Banerjee [32] was used. From the �ow statistics,
it was concluded that the gas side, perceives the (�at) interface as a solid wall. The water
side boundary layer was found to be much thinner than the air side due to increasing
turbulent transport near interface. TKE budget analysis revealed that, the peak values
for production are attained near the interface when compared to the gas-side. Turbu-
lent transport was enhanced by viscous diffusion. Apparently, the water side showed
an increase in the dissipation of TKE which contrasting to Lombardi, De Angelis, and
Banerjee [32]. Moreover, in the air-side the TKE is transported from bulk to the interface,
whereas in the liquid side, TKE is transported from the interface to the bulk region which
could be argued with the vortex dynamics across the interface.

Although quite a number of researches have reported on the turbulent characteristics
of strati�ed �ows and the in�uence of interface, there are very few which talk about the
growth of the interface and how it affects the nearby region during it's growth. One such
work would be of Lin et al. [30], where a DNS is performed for gas-liquid co-current �ow
at a Re¤ Æ115. Boundary conditions and the spatial discretization mimic Fulgosi et al.
[13]Lombardi, De Angelis, and Banerjee [32]. A second order Runge-Kutta method was
used for the time integration. It's seen that the wave evolve linearly initially but at later
stages, the growth becomes exponential (Zonta, Soldati, and Onorato [64]Fernandino
and Ytrehus [11]). When the surface waves were weak, the streaks observed were quite
disoriented and when they grew strong, the streaks became more oriented. In a gen-
eral sense, it was seen that for the air side, the changing wave effect did not have much
in�uence as the water side did, for the turbulent �uctuations. The velocity variances
are signi�cantly changed in the horizontal and also the normal component in the near
interface region as the waves start to build. The pressure �uctuations in the air side
behaved differently for the period linear and exponential growth. Initially during the lin-
ear growth, the pressure �uctuations were due to the turbulent motion but at later stages
(exponential growth) become waveform and move along-with surface waves (Zonta, Sol-
dati, and Onorato [64]).
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2.3. D ISCUSSIONS BASED ON THE REVIEW

Author Flow setting Num meth Interface geometry
Riley et al.[45] n.a Pseudo-spectral n.a

Lombardi et al.[32] Counter current Pseudo-spectral Flat
Lam et al.[28] Counter current Pseudo-spectral Flat

Fulgosi et al.[13] Counter current Pseudo-spectral Wavy
Fulgosi et al.[13] Counter current Pseudo-spectral Wavy

Hasegawa et al.[15] Counter current Pseudo-spectral Flat
Zonta et al.[64] Counter current Pseudo-spectral Wavy

Liu et al.[31] Co current Pseudo-spectral,FDM Flat
Lin et al.[30] Co current Pseudo-spectral Wavy

Trontin et al.[55] n.a FVM-WENO Decaying
Vincent et al.[58] n.a FVM-WENO Decaying
Komori et al.[22] Co Current FDM Wavy
Kurose et al.[25] Co-Current FDM Wavy

Table 2.1: This table summarizes the different numerical schemes, �ow setting and the interface geometry
used in various simulations

Author Interface model Re¤ We Fr R =½1
½2

Riley et al.[45] n.a 27.2 n.a 3.65, 1.83 n.a
Lombardi et al.[32] ALE,BFC 60.4 n.a low 29.9,1,10

Lam et al.[28] ALE,BFC 60.4 n.a low n.a
Fulgosi et al.[13] ALE,BFC 171 5.3£ 10¡ 3 4.5£ 10¡ 4 29.9
Fulgosi et al.[14] ALE,BFC 171 4.8£ 10¡ 3 8.7£ 10¡ 4 29.9

Hasegawa et al.[15] ALE,BFC 300,150 n.a low 841
Zonta et al.[64] ALE,BFC 170 8.4£ 10¡ 4 2.9£ 10¡ 6 n.a

Liu et al.[31] ALE,BFC 120,271 n.a n.a 828
Lin et al.[30] ALE,BFC 115 n.a n.a n.a

Trontin et al.[55] LS 93 n.a n.a 1
Vincent et al.[58] LS n.a 0.05,2,110 n.a 1
Komori et al.[22] ALE,BFC 210 5.6 n.a n.a
Kurose et al.[25] ALE,BFC 380 9948 116 n.a

Table 2.2: This table summarizes the various interface modelling techniques, the shear Reynolds number, We-
ber and Froude number and the degree of dynamic coupling between the phases
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2.4. M AIN I NFERENCES
The main discussions based on the review of the existing literature of Two-Phase Strati-
�ed �ow can be summarized by the following points-

• Table 2.1 and 2.2 summarizes the state of the art direct numerical simulations per-
formed in the recent literature. The numerical method, the �ow setting, interface
geometry and modelling have been listed. Boundary conditions for almost all of
the simulations employed periodic conditions in the homogeneous and free slip
boundary condition in the normal direction, with expceptions from [46] simulated
with periodic conditions and [31] simulated with periodic and no-slip condition.
Moreover, the �ow properties like the Re (listed as air,water in-case different Re
were used or just one if both were same), We, Fr and the degree of dynamic cou-
pling R for each of the simulations have also been discussed. Information about
the property which was not highlighted in the literature is written as n.a. (not avail-
able.) This gives an easy identi�cation of the methods and the properties around
which each of the direct numerical simulations is performed, thus also enabling
to identify the most suitable setting for this thesis.

• Most of the literature have considered the pseudo-spectral method for the choice
of spatial discretization. Spectral methods, in general provide good results when
simulating turbulent �ow and have an advantage of using high-order interpola-
tion functions which makes is easy to perform computations on a coarse mesh
than a very �ne mesh with low order �nite difference schemes[50]. Most of the
literature have used Fourier polynomials in the stream and span-wise directions
and Chebyshev polynomials in the normal direction[32][14] ([31] uses second or-
der FDM for the normal direction). For the choice of time intergration, some of the
literature solved it with a fractional time step (solving continuity of shear and ve-
locity in fractional times, mostly with Adams-Bashforth and Crank-Nicholson for
convective and viscous terms respectively) [32][14][13] and second order Runge-
Kutta method in [30]. On the outer boundaries of each of the phases, mainly to
prevent turbulence generation at and near walls (other than the interface), a free
slip condition is used and for the streamwise and the spanwise directions. To com-
pensate for the loss momentum due to friction, a constant pressure gradient is ap-
plied in the stream-wise direction to drive the �ow. These choices of boundary
conditions and discretization schemes could be considered to implement for this
thesis project.

• Interface plays an important role in the turbulent characteristics of each of the
phase. The turbulent �uctuations are varied near the interface. And majority of the
effects are shown in the region very close to the interface. Many results conclude
the instantaneous velocities, pressure �elds and the vorticity �elds, budget terms
in the TKE and the Reynolds stresses are all affected in the Viscous sub-layer and
the log-law layer.

• For a �at or a freely deformable interface, most of the effects in the �uid are due
to turbulence existing in the �ow. But for higher speed to wave-slope ratios, the
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velocities have an additional orbital (wave induced component of velocity) mo-
tion which has high in�uence in the near interface turbulent characteristics. This
means that the wave induced turbulence becomes more effective [64][11].

• Although, turbulence in the liquid phase (heavier phase) is the most affected and
active. Most of the analyses in the gas-side concluded that the gas phase (lighter)
perceives the interface as a �exible solid boundary. Hence, the gas-side shows
close wall-behaviour (near-wall characteristics).

• Velocities and the lower order statistics show a different behavior than the wall
for the liquid side. For different sheared environments, for example wavy strat-
i�ed �ow, the statistics have additional effects. Statistics in the homogeneous
directions are enhanced while there's not much effect in the normal directions
[13][45][32][31].

• Energy and stress budgets reveal a lot of information about different mechanisms
(or individual effects) of turbulence near interface. A common conclusion from
all of the authors was that, the dissipation terms seemed to be reducing near the
interface. This could be because of the large shear stresses acting across the inter-
face. In case of deformable interface, this is balanced by viscous diffusion. In-
crease in the diffusive nature, transports the TKE into the bulk region. This is
also veri�ed by the pressure-strain correlation. This also shows that, turbulence
becomes more isotropic. In a general notion, it could be said that the transport
mechanisms are higher and the viscous mechanisms are reducing in nature in the
near interface region. [31][14][32].

• Lastly, low speed streaks are formed near the interface. Vorticity �elds also show
that sweeps dominate near high shear and ejections in low shear region. Quasi-
streamwise vortices are known to be formed and some of them are also attached
to the interface, justifying coupling mechanisms. [28].

2.5. I NITIAL RESEARCHQUESTIONS
To keep it ideal and more purposeful, it is the best to mainly narrow down on perform-
ing direct numerical simulations for two-phase strati�ed �ows, with a combination of
different pre-processing and post Processing tools, where-in the simulation would be
mainly performed in RK-Basilisk (an extension to Basilisk which was developed at NRG).
To execute this, the most sensible questions that could be asked are:

R.1 Which of the con�guration/setting, either a co-current or a counter-current �ow
could be simulated so as to achieve results speci�c to application or close the sci-
enti�c gap?

R.2 Since the problems needs to simulate sharp interfaces, capture smallest scales of
turbulence (which DNS inherently does) a good strategy for meshing needs to be
developed.

R.3 The most important question would be as to how the entire simulation would be
set up. The choice of spatial and temporal discretizations and the role of boundary
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and initial conditions play an important role on the stability and convergence of
these simulations.

R.4 Due to the friction at the surface, there is momentum loss. Turbulence is also dis-
sipative in nature. How do we then exactly drive the �ow ?

R.5 How is the validation of the obtained DNS data sets going to be performed?

R.6 With the energy and stress budget analysis, much near-interface "information"
could be extracted. How can we accurately compute the budget terms and what
are the useful inferences that could be collected?

2.6. UPCOMING GOALS AND OBJECTIVES
The main goals for the upcoming graduation project are:

• Validation of RK-Basilisk for a pipe �ow and single-phase channel �ow using ref-
erence DNS data sets.

• Development of strati�ed two-phase �ow con�guration: With the identi�ed set-
ting from this literature research, a suitable simulation strategy is developed for
the case of two-phase strati�ed �ow.

• Development of a DNS for this �ow con�guration using RK-Basilisk: As a contin-
uation from the previous step, a direct numerical simulation for the setting would
be performed on RK-Basilisk with the HPC clusters at NRG.

• Further Code development on RK-Basilisk: As discussed earlier, the interface dy-
namics are better studied with TKE budgets. A code would be developed on RK-
Basilisk and implemented for the same.

• Analysis and post-processing of the DNS data sets, which include studying the
contours, �ow properties and the budgets near interface.





3
BASILISK

This chapter discusses the technical aspects of the software used to run the simulations
in this thesis. Basilisk, a successor of Gerris, is an open-source CFD solver, built on 'C',
to solve partial differential equations based on the discretization scheme Finite volume
method (FVM). Although this solver is capable of solving a wide array CFD problems,
it serves as an excellent tool for simulating multiphase problems. Since basilisk com-
bines adaptive re�nement (Adaptive mesh re�nement (AMR)) and the Multigrid itera-
tive method, simulating two-phase becomes more feasible.

Usually, the domain is divided into a number of cells where the equations of mass
and momentum are solved. This is called meshing. There are situations wherein the
accuracy of the solution becomes important in a speci�c region of interest. To achieve
accurate results in these regions, we require a well re�ned mesh than the regions out of
scope for multi resolution analysis. Such grids with multiple resolutions are termed as
Non-Uniform (Cartesian) meshes (E.g. - A Shishkin grid to resolve the boundary layer for
singularly perturbed problems). But if we expect this region of interest to change dynam-
ically, the mesh needs to "adapt" with respect to a few constraints speci�ed. A method
that uses ef�cient algorithms to generate dynamic meshes which adapt to the accuracy
within sensitive regions over time is called Adaptive mesh re�nement (AMR) . For exam-
ple, simulating bubble-bubble interaction or a Taylor bubble would be computationally
cheaper on AMR since the region of interest/study would be the gas-liquid interface and
not the continuous phase itself. Basilisk, which works on AMR, facilitates to simulate
them with different resolutions based on a user-de�ned inputs as the maximum and
minimum level re�nement and a �eld based on which the re�nement is done. The same
applies to strati�ed two-phase �ows, where it is necessary to capture the dynamics in
the near-interface region. Basilisk restricts this to be a scalar �eld and as immediate ex-
amples, one could specify the phase fraction or velocity gradient �eld etc.
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3.1. NUMERICAL MODELLING IN (RK-) BASILISK
Basilisk is a solver which combines non-uniform quadtree and octree based discretiza-
tions with �nite volumes, AMR and multigrid. The momentum equations are solved with
an approximate projection scheme [44]. The Poisson's equation for pressure is solved
thereby ensuring the incompressibility constraints. Additional modules and conditions
are also available for problems with embedded boundaries. RK Basilisk is a solver devel-
oped at NRG by making a few amendments to the standard Basilisk solver. A few notable
concepts in (RK-)Basilisk are:

• A general idea of discretizations, time integration procedures are given in [44].
Although this reference is based on Gerris, it closely resembles the features of
Basilisk. Similar to the standard Basilisk solver, RK-Basilisk uses a projection-based
algorithm to solve the momentum equation. To be precise, it uses the Pressure Im-
plicit Splitting of Operators (PISO) scheme. A range of implicit and explicit time
integration schemes are available to solve the equations, following the Butcher-
Tableau of de�nitions. Choices are also available for a discretization of the con-
vective scheme. For the simulations of strati�ed �ow, a 3 stage RK method for time
integration and a central difference scheme for the convection term were chosen.

• In non-body con�rming grids, the �ow does not always align with the grid. This is
generally referred to as immersed boundaries. Another similar concept is also an
embedded boundary. Both the standard and RK-Basilisk solver have the capability
to solve problems with complex �ow geometries. Wall damping and penalisations
are introduced to the solver to tackle these boundaries.

• Another possibility in RK-Basilisk is to solve the full discretization of the viscous
term

D Æ
¹

2
(r u År uT ) (3.1)

which leaves second part the rate of strain tensor to be non-zero, staying fully dis-
cretized.

• Fields in both standard Basilisk and RK-Basilisk are available which are basically
iterators over physical �elds. Instead of the conventional for-loops inherent to C,
(RK-) Basilisk introduces iterators which can iterate through cells ( foreach()), faces
(foreach_faces()), boundaries ( foreach_boundary() ), dimensions ( foreach_dimension() )
etc. These iterators are necessary to apply/modify boundary conditions, compute
�uxes etc.

• For explicit time marching iteration-based schemes, to ensure convergence, it is
important to have a correct CFL condition. In this case, (RK-) Basilisk offers a pre-
de�ned function under which the user could input a value prior to the simulation
based on the problem being solved so as to ensure convergence.

By default, Basilisk initiates a square domain in 2D and a cubic domain in 3D and
hence is not desirable to study the boundary layer phenomenon. In these situations,
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Figure 3.1: Grid transformation of  p !  b with included metrics

(RK)-Basilisk offers to stretch the domain by certain deformation and cell stretch func-
tions (more to be discussed in the upcoming chapters).

Before discussing the deformations and cell stretching, metrics in Basilisk are intro-
duced. It is vital to know that Basilisk does not have the physical de�nitions of cell vol-
umes and cell faces. Assuming we have a physical domain,  p , with uniform spacing,
the �nite volumes would be unit cubic cells having area :

Ap Æ¢ 2

and volume:
Vp Æ¢ 3

where ¢ Æ L
N , is the cell to cell distance with L and N ÆNx ÆNy ÆNz, being the length

and the number of cells respectively. Basilisk maps these unit cubic cells belonging to
a uniform grid,  p to cubic cells belonging to a transformed grid in,  b additionally
with the so called metrics (also shown in Fig.3.1), such that: ³ :  p !  b |  p ,  b µ Rd ,
d Æ1,2,3.

xb Æ³ (xp) (3.2)

xb 2  b µ Rd and xp 2  p µ Rd .

With metrics, the transformed volume and area could be de�ned as:

V Æcm £ ¢ 3

and

A f Æf m £ ¢ 2

where cm and f m are the cell and face metrics respectively. Since they map to a uniform
grid, the metrics are equal to unity. But there is a possibility to have a new de�nition for
the metrics in order to have a non-uniform grid, subjected to deformations.
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For studying single phase or two phase strati�ed �ows, we need accurate informa-
tion near interface and near walls. Using adaptive mesh re�nement might not lead to
the same accurate solution at all time instants. One of the few reasons is that the inter-
polation coarse grid to a �ne grid is shown to have spurious excitation in the spectrum
of turbulence [37]. In this case, it is advised to have a high-resolution static mesh to re-
solve the boundary layers. Although (RK-) Basilisk offers as an extensive tool for AMR
and multigrid for simulating multiphase �ows, due to the importance of resolutions,
other computational efforts and considering the geometry of the interface (discussed
in the upcoming chapters), an alternative solution is to construct meshes with a high
resolution near the boundary and to gradually coarsen it towards the region where the
solution is not as important, by means of stretching, deformations and metric changes
to have non-uniform boundary con�rming grids, which is what is adapted in this thesis,
introduced in the next chapter.



4
SINGLE PHASE FLOWS

As mentioned in the previous chapters, this thesis moves forward to the main goal, that
is to accurately develop a methodology to perform DNS of two-phase turbulent strati�ed
�ow. Before going ahead with the aforementioned task, a Single phase problem is stud-
ied, modelled, simulated, validated and understood so as to help us put in initial contact
with the canonical problem of the two-phase turbulent �ow. This chapter is aimed to es-
tablish the key concepts, development of methodology, statistics of turbulence and some
initial results which could then be correlated or extended to the two-phase �ow prob-
lem. Hence, the concepts of meshing, averaging strategy and the results are explained a
bit more extensively. Initially the numerical methodologies are discussed, followed by a
section strategies to construct an ef�cient mesh. Next, the actions of the averaging pro-
cedure is brie�y explained and �nally some results are shown and elaborated.

As there are many classical studies based on pressure driven turbulent pipe and
channel �ows ( ref [17] [36] [1]), a the focus is shifted to study turbulent Couette �ows
instead. The key difference between channel �ows and Couette �ows is the way how
the �ow is driven. Flows that are purely driven by shear, known as Couette �ows were
studied in [20][39]. One of the bounding walls is moved with a shear velocity relative
to the other (which is a stationary wall) to impose the required wall shear stress based
frictional Reynolds number. [20][39] base their main study on the large structures which
are observed in the bulk region of the channel. Because of these large-scale structures in
Couette �ow, slightly higher production and diffusion is observed along with a balance
in the transport of momentum �uxes of


u0v0

®
and �uctuating pressure.

In some of the studies for example in, [19] [5] and [18], the �ow was driven by both
pressure and shear. This is particularly possible if there is free slip imposed on a mov-
ing wall, and the �ow being driven by a mean pressure gradient, and generally called
as Couette-Poiseuille �ows. All three works employ a pressure gradient which is ap-
plied dynamically to balance a super�cial wall shear stress. The computational meth-
ods adopted were FDM on a staggered grid, with a Crank-Nicholson scheme for the time
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integration. It is seen that the Reynolds stresses and the turbulent intensity are higher
which leads to an elongation of the logarithmic region when compared to pure pressure-
driven - Poiseuille �ows with a similar Re¿.

Another interesting DNS of turbulent plane Couette �ow was studied by the group
of [56]. A DNS was performed to solve the governing equations by FDM using Crank-
Nicholson and Adam-Bashforth for time integration. The �ow was driven by moving the
top wall with a certain wall velocity, Uw relative to a stationary bottom wall, whereas
periodic B.C. were used in the homogeneous directions. Two-point velocity correla-
tions provided evidence to use large enough computational domains to capture the large
structures. A TKE budget equation is solved to study the individual


u i u j

®
budgets. A

Re¿ dependence is observed for some of the terms in the budget of

u0v0

®
and


v0v0

®

In all of the presented literature, none of them were based on the Finite Volume
Method for a DNS. Considering this as an amendment to this thesis, the modelling and
the simulation is done in RK-Basilisk, which is based on FVM and it is shown that good
statistics could be obtained even with using low order interpolation functions on coarse
meshes when compared to the classical spectral methods. Considering the goals of this
chapter, since [56] presents concise and adequate information on modelling, statistics of
velocities and budgets, this study is adapted as a reference case and are validated against
the simulations performed in RK-Basilisk.

4.1. NUMERICAL METHODS
The brief literature survey informed about the various trends in simulating Single phase
turbulent �ows. The key difference in these simulations were the �ow driving mech-
anisms, where either a streamwise pressure gradient r x p̃ or a wall shear stress ¿w is
applied to drive the �ow by a pressure difference or by shearing the boundaries respec-
tively. As discussed earlier, considering the main goal of this thesis which aims to solve
a two-phase shear driven �ow like [31], we adapt to solve the Single phase turbulent
�ow with this same mechanism as presented in [56] and validate the results using NRG's
solver RK-Basilisk.

Numerical simulations are performed to solve the Navier-Stokes in a channel as shown
in Fig.4.1. It is sometimes useful to represent velocities in a different scale, i.e, when non-
dimensionalised with a certain reference velocity. As we know turbulent �ows scales
with shear, we use a velocity scale which is directly associated with the shear stress. This
velocity scale is obtained by non-dimensionalising the velocity by a reference velocity
called shear or frictional velocity. This frictional velocity, u¿ could be de�ned by:

u¿ Æ

s
¿w

½
(4.1)

where ¿w Æ¹ @u
@y is the associated shear stress, known as the wall shear stress. The

shear velocity becomes important in the near-wall region since it characterizes the tur-
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bulent scales and strength. By using u¿ as the reference velocity, the half-height H as

Figure 4.1: The computational domain for the problem simulated

the reference length scale and ts as the reference time scale, we non-dimensionalise the
Navier-Stokes equations which results in :

@̃u i

@̃t
Å

@̃u i ũ j

@̃x j
Æ ¡

@̃p

@̃xi
Å

1

Re¿

@2ũ i

@̃x2
j

@̃u i

@̃xi
Æ0

(4.2)

which are solved in a computational domain,  nb of the size (Lx £ Ly £ Lz) Æ(2¼£ 2£ ¼).
The numerical discretization is based on the second-order �nite volume method. Dis-
cretization for the convective term uses a central difference scheme. A second-order
explicit 3-stage Runge-Kutta method has been used to integrate the convection and dif-
fusion terms in time. Hence, to ensure convergence, a CFL = 0.4 has been used. Sim-
ulations are performed for a shear Reynolds number, Re¿ Æ126 which corresponds to
ReÆ8600, which is in a turbulent regime of wall-bounded �ows.

The required wall shear stress, ¿w is imposed by choosing a certain frictional veloc-
ity. Range of values for the ratio of u¿

Uw
was given in [31]. By choosing u¿ Æ1 the ra-

tio u¿
Uw

Æ0.02937 givesUw Æ34.0. Hence, the top wall is constrained to have a no-slip
boundary, Uw Æ34.0 (represented by a thick solid arrow in Fig4.1) relative to the bot-
tom wall, U Æ0.0. Instead of a well de�ned inlet and outlet, we have a periodic domain.
Hence, we have periodic boundary conditions in the streamwise and the spanwise di-
rection (represented by the dashed arrows in Fig4.1).

As a general practice, the perturbations are added in to generate a turbulent �ow
after the �ow is developed. But in our simulations, sinusoidal pro�les superimposed on
a linear pro�le of velocity to start with a turbulent �ow. In the homogeneous directions,
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the initial pro�les are:

ũ (y,z) Æ
µ
Uw

2

¶
(y Å H ) Å

sin(4z)

4

w̃ (x) Æ
µ
Uw

2

¶
sin(2x)

4

(4.3)

A general work�ow is followed in pre and post processing this Single phase test case.
The same work�ow is followed for the upcoming two-phase model as well. Initially, the
problem to be simulated is understood from the test case. A brief survey helps to un-
derstand and translate the reference case so as to model it in NRG's solver RK-Basilisk
C. Codes are written to set up the physics, discretization schemes, boundary conditions,
�ow initialisation etc. The strategy for meshing (discussed in chapter 4.2) is also imple-
mented along with the code, as a part of the pre-processing stage. Depending on the
problem size, simulations are run in parallel in NRG's HPC cluster. As the simulations
are running, a script averages the instantaneous quantities and stores it as scalar �elds.
This completes the simulation stage. The post processing stage is started by visualising
the �ow �elds, examining the scalar �elds for correctness. In case, if there are any dis-
crepancies in the solution, the simulations are run again after rectifying the issue. If not,
another script ensemble averages over space and time (stored as N snapshots at user de-
�ned intervals as the simulation progresses) by interpolating data from an unstructured
RK-Basilisk grid to a structured grid. This returns a number of scalar �elds by averaging
over a 3D domain to a 2D space in the wall normal direction. Finally, a python script
is written for �nal stages of post processing the ensemble averaged quantities and to
visualise the mean velocities, r.m.s', turbulent kinetic energy budgets etc.

4.2. M ESHING
Since we have two rigid walls, the �ow is con�ned and interacts with it. The presence
of these walls directly in�uences the overall turbulence in the channel. It is essential
to capture the associated turbulent boundary layers as accurate as possible. Moreover,
considering the goal of this chapter, which is to study the TKE budgets, they become
locally important in these near-wall viscous regions. Hence, the mesh needs to be con-
structed with a resolution that is �ne enough to capture these layers. Since we know
that DNS is already computationally expensive and restricted to small domains, it is not
always feasible to adapt to a higher-level grid (i.e, a mesh with more cells than a given
level). A foremost goal would be to �nd an "adequate grid" that has a good agreement of
the statistics with [56]. Of course, moving onto a higher-level grid will be interesting to
visually study and to post-process the data.

In section 3, it was discussed how a grid is transformed from a physical space,  p to
Basilisk space,  b by a mapping. A unit cubic cell a mapped to a cube which includes
new metrics cm and f m . But there is also a possibility that they could be mapped to
form a non-uniform grid,  nb as well, which are subjected to deformation and stretch-
ing (see Fig 4.2). Cells belonging in and around the boundary layer need to be stretched
and deformed with a strategy that would essentially capture all the necessary informa-
tion. The basic idea is to have a non-uniform grid with homogeneous deformation in
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Figure 4.2: Mapping of an untransformed cell from  p to a stretched cell in  nb

the streamwise and the spanwise directions, but a highly clustered grid near the top and
bottom boundaries in the normal direction. Hence, we need a transformation that maps
the uniformly spaced grid,  p to a non-uniform grid,  nb (non-uniform basilisk do-
main) with the use of some cell stretching and deformation functions.

As a �rst step, a geometric grading ratio is determined. This grading ratio, also known
as agrading factor controls the growth of each cell based on the cell width. Based on a
given �rst cell height ¢ 0 of  p , half-height, H of the domain and the number of cells in
the normal direction, Ny a function determines a constant grading factor, ® which could
be represented by:

® Æ´ (¢ 0,H ,Ny) (4.4)

For  p which has the normal coordinates yi , i Æ1, ...,Ny , the cell width with a 'constant
stretching' can be written as:

¢ i Æyi Å1 ¡ yi Æ®¢ i ¡ 1

Based on this, we can also de�ne a cell width to be based on the �rst cell height, ¢ 0

leading to a non-uniform grid:

¢ i Æ®i ¢ 0 i Æ0, ...,Ny

Hence, the wall normal coordinates of this deformed grid can be constructed by a
deformation function, ³ :  p !  nb | ynb Æ³ (yi ,®,¢ 0), ynb 2  nb and yi 2  p , where
 nb is abbreviated for a non-uniform deformed basilisk domain, which maps a uniform
grid to a non-uniform grid:

yi ,nb Æ³ (yb ,®,¢ 0) Æy0 Å
i ÇN y¡ 1X

i Æ1
®i ¢ 0 (4.5)

where y0 is the �rst wall normal co-ordinate and
P i ÇN y¡ 1

i Æ1 ®i ¢ 0 is the formed by a
geometric progression:

i ÇN y¡ 1X

i Æ1
®i ¢ 0 Æy0 Å ¢ 0

µ
®i ¡ 1

®¡ 1

¶
(4.6)
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Figure 4.3: Transformed and untransformed coordinates, y 2  p

A typical transformation of grid is represented in Fig4.3. Two different curves are pre-
sented. A normalised ¢ y0 Æ¢ yÅ

0 Æ¢ 0u¿
º , (here, ¢ y0 is the �rst cell width) Ny Æ32 and

H Æ1 has been used as the �rst cell height, the number of points and the half-height
respectively. Blue markers represent coordinates, yp 2  p Æ[¡ 0.5,0.5] and red mark-
ers represent the deformed grid coordinates, ynb 2  nb Æ[¡ 1,1], therefore stretching
the further by 0.5 units in both the normal directions. If a transformed grid has no de-
formation and it is clear that this curve will have an ® Æ1, representing an uniformly
transformed grid. Hereafter, the wall normal coordinates are not represented as ynb , but
just as y to maintain simplicity and uniformity. Although, when non-dimensionalised
distances are written, they are denoted appropriately.

In Basilisk, it is not only suf�cient to model the transformation of the normal coor-
dinates but to specify the magnitude by which each cell is stretched so as to perfectly �t
in with these transformed coordinates. It might be confusing to sometimes differentiate
between the grading factor and cell stretching. Grading factor is basically an expansion
ratio which is a constant determined based on the global parameters, while cell stretch
is a function that stretches a cell based on the local coordinates. Upon observation, we
can notice these cell stretches are basically the derivatives of the deformation function,
which determine a factor by which the cells are expanded/compressed. This stretching
function is clearly represented in Fig.4.4. We clearly have a high peak around 0, two cells
sharing the maximum magnitude of stretching and the lowest at the other ends. This
depicts that the cells in the bulk regions are stretched more when compared to the cells
in the top and the bottom wall. Hence the near-wall region has a �ne resolution, which
is exactly what we desire. To get visual understanding, these cells are visualised as edges
in paraview as shown in Fig.4.5. The clustered cells are visualised better on a mesh with
lower level; Nx £ Ny £ Nz Æ64£ 64£ 64 cells. It is clear that the bulk region has a very
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Figure 4.4: Cell stretching, y 2  p

coarse mesh, with the near-wall regions being re�ned well. We now have a mesh which
geometrically progresses from the wall towards the bulk and declines away from the bulk
towards the other wall.

To have good accuracy in capturing the boundary, the value yÅ should be chosen to
be in the viscous sub-layer. This simply means that the �rst cell should have a certain
value that falls under the thickness of the viscous sub layer. For internally bounded �ows,
yÅ Ç 5 represents the viscous sub layer. This yÅ value coming out by normalising the y-
coordinate by º

u¿
, is a non-dimensionalised wall normal distance (in the non-uniform

deformed basilisk domain). A more compact de�nition

yÅ Æ
yu¿

º
Æ

yRe¿

H
(4.7)

basically, represents the 'local frictional Reynolds number'. Similarly the non-dimensionalised
cell width is written:

¢ yÅ Æ
¢ yu¿

º
Æ

¢ yRe¿

H
(4.8)

In our simulation, we choose ¢ yÅ Æ1.5 to resolve the layers adequately for M6 and M7.
Moving to a higher mesh, M8 which has 256 cells in each direction, this ¢ yÅ value was
found to be too big in order to �nd a grading factor, ®. Hence, the ¢ yÅ value is lowered
to 0.9 (only for the M8 mesh) to produce a grading factor. We run the simulations for
Re¿ Æ126. Hence, we place the �rst cell at

¢ y Æ
µ

¢ yÅ

Re¿

¶

which seemed to be a good resolution to resolve the layer. Simulation runs are per-
formed on 3 different meshes, M 6,M 7,M 8 which has 26,27,28 cells in each direction
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